Reg. No.....

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS—UG)

Applied Statistics with Data Science

MST 1C 01—MATHEMATICS 1 : DIFFERENTIAL CALCULUS, LOGIC AND BOOLEAN ALGEBRA

(2021 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer atleast **eight** questions.

Each question carries 3 marks.

All questions can be attended.

Overall ceiling 24.

- 1. Find the derivative of the function $u = \frac{5x+1}{2\sqrt{x}}$ with respect to x.
- 2. Find $\frac{d^2y}{dx^2}$, where $y = \sec x$.
- 3. Find the slope of the tangent to the curve $y = 2 \tan \left(\frac{\pi x}{4} \right)$ at x = 1.
- 4. State the mean value theorem.
- 5. Define critical point of a function f and find the critical points of $f(x) = 8x x^4$.
- 6. Find the function f(x) whose derivative is 2 and whose graph passing through the point (0, 5).
- 7. Find the domain and range of the three variable function $w = \sqrt{x^2 + y^2 + z^2}$.
- 8. Evaluate $\lim_{(x,y)\to(1,0)} = \frac{x \sin y}{x^2 + 1}$.

- 9. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the function $f(x, y) = e^{xy} \ln y$.
- 10. Show by truth table that $(p \land q) \rightarrow (p \rightarrow q)$ is a tautology.
- 11. Define contra positive of a statement and give an example.
- 12. Express the statement:

"Every student in this class has studied calculus", as a universal quantification.

 $(8 \times 3 = 24 \text{ marks})$

Section B

Answer atleast **five** questions. Each question carries 5 marks. All questions can be attended. Overall ceiling 25.

- 13. Find $\frac{d^2y}{dx^2}$ if $ax^2 + 2hxy + by^2 = 1$, where a, b, h are constants.
- 14. Find $\frac{d^2y}{dx^2}$ at $t = \frac{2\pi}{3}$ when $x = \cos t$, $y = \sqrt{3}\cos t$.
- 15. State and Prove Rolle's Theorem.
- 16. Find $\lim_{(x,y)\to(0,0)} = \frac{x^2 xy}{\sqrt{x} \sqrt{y}}$.
- 17. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln s$ and z = 2r.
- 18. Construct a truth table for each of the following compound propositions:
 - (a) $p \wedge \neg p$
 - (b) $(p \lor \neg p) \to q$
 - (c) $(p \lor q) \to (p \land q)$

- 19. Define and give one example for each:
 - (a) Proposition.
 - (b) Tautology.
 - (c) Contradiction.

 $(5 \times 5 = 25 \text{ marks})$

Section C

3

Answer any one question.

The question carries 11 marks.

- 20. (a) Find the tangent and normal to the curve $x^3 + y^3 9xy = 0$ at the point (2, 4).
 - (b) Find the derivative of $y = \sec(\tan x)$.
- 21. Find the interval on which the function $f(x) = 2x^3 18x$ is increasing and decreasing. Find the local and absolute extreme values of f, if any.

 $(1 \times 11 = 11 \text{ marks})$

D 13224 (Pages: 3) Name......

Rag	No			

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2021

(CBCSS—UG)

Applied Statistics with Data Science

ASD 1B 01—STATISTICS 1 : DESCRIPTIVE STATISTICS AND BASIC R PROGRAMMING

(2021 Admissions)

Time: Two Hours and a Half

Maximum: 80 Marks

Use of calculator and Statistical table are permitted

Section A

Answer atleast **ten** questions. Each question carries 3 marks. All questions can be attended. Overall ceiling 30.

- 1. Write a short note on MOSPI.
- 2. Explain the methods of data input in R.
- 3. What is the role of CSO in the development of India?
- 4. Write a short note on UNFPA.
- 5. How do you retrieve work in R?
- 6. Write a short note on getting help in R.
- 7. What are the advantages of using secondary data?
- 8. Briefly explain nominal scale.
- 9. Define frequency curve.
- 10. Write a short note on arithmetic mean.
- 11. Define standard deviation.
- 12. Describe ratio scale.
- 13. How will you find out mode and median using R?

- 14. What is a schedule?
- 15. What are the limitations of Statistics?

 $(10 \times 3 = 30 \text{ marks})$

Section B

Answer atleast **five** questions. Each question carries 6 marks. All questions can be attended. Overall ceiling 30.

- 16. Define the common measures of central tendencies.
- 17. Briefly explain the history of development of 'R'. What are the advantages of R over other statistical software?
- 18. Distinguish between questionnaire and schedule.
- 19. Define stem and leaf chart with an example. Write R commands for creating a stem and leaf chart.
- 20. Explain the concept of population and sample. Give an example.
- 21. What are the functions of Directorate of Economics and Statistics and organization of large sample survey?
- 22. Explain the functions of NSSO and MOSPI.
- 23. Derive the relationship between raw moments and central moments.

 $(5 \times 6 = 30 \text{ marks})$

Section C

Answer any **two** questions. Each question carries 10 marks.

- 24. What is primary data and secondary data? Describe the methods for collecting primary data and secondary data.
- 25. a) Define dispersion. What are the various measures of dispersion? Briefly explain standard deviation, quartile deviation and mean deviation.
 - b) For the following data find the standard deviation:

X	12. 5	13	13. 5	14	14.5	15	15.5	16
f	4	19	30	63	66	29	18	1

26. Explain co-efficient of variation. Write the R command for finding coefficient of variation. Find the co-efficient of variation for the following data:

Age Group	20-30	30-40	40-50	50–60	60–70	70–80	80–90
Frequency	25	35	45	55	65	75	85

- 27. Explain the following:
 - a) Lists in R programming.
 - b) Data frames in R programming.
 - c) Work space in R programming.
 - d) Scripts in R programming.
 - e) Scan function in R programming.

 $(2 \times 10 = 20 \text{ marks})$