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Chapter 0

Introduction

Graph theory has tremendous applications in many real life problems and many

areas of science such as chemistry, computer networks, computational neuro -

science, condensed matter physics etc. By using the principles of graph theory

many problems in the field of economics, linguistics, artificial intelligence, pattern

recognition, network topologies etc. can be modeled and analysed.

Graphs do not model all the systems properly due to the uncertainty or

haziness of the parameters of systems. For example, a social network may be

represented as a graph where vertices represent accounts (persons, institutions,

etc.) and edges represent the relation between the accounts. If the relations

among accounts are to be measured as good or bad according to the frequency

of contacts among the accounts. This and many other problems motivated to

define fuzzy graphs. Azriel Rosenfeld was first introduced the concept of fuzzy

graphs. Crisp graph and fuzzy graph are structurally similar. But fuzzy graph
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has a separate importance, when there is an uncertainty on vertices and/or edges

comes.

M-strong fuzzy graphs [4] were introduced by Bhutani and Battou. Bhutani

and Rosenfeld consider strong arcs in fuzzy graphs [5] for their work. Mathew

and Sunitha have introduced different types of arcs in fuzzy graphs and studied

their properties [30].

Ore and Berge studied the domination set in graphs. Due to the diversity

of applications of domination theory to real situation or location problem, the

research in this field grows rapidly. Domination in Fuzzy graphs is discussed by

A. Somasundram and S. Somasundram through their paper Domination in fuzzy

graphs −1 [50].

In this thesis we consider strong fuzzy graphs which were introduced by

Mordeson J. N. and Peng [34]. Sheeba M. B. [48] defined the strength of fuzzy

graphs which are connected. We extend this definition to arbitrary fuzzy graphs

as the maximum of strength of all connected components of a fuzzy graph. Also,

in our work we have made an attempt to introduce the concept of extra strong

k− path domination in strong fuzzy graphs.

Outline of the Thesis

Apart from this introductory chapter, we have presented our work in six chapters.
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In Chapter 1, we describe the basic concepts, facts, elementary results and

some of the operations of crisp graphs and fuzzy graphs. In this chapter we

familiarise the concept of strength of fuzzy graphs and give some theorems that

explain the strength of certain fuzzy graphs such as fuzzy path, fuzzy cycle etc.

which are needed in the subsequent discussion.

In Chapter 2, we first derive an algorithm for finding the strength of a fuzzy

path in a fuzzy graph G(V, µ, σ) and then the length of the path joining two

vertices with minimum length and maximum strength. All of these algorithms

are illustrated through examples. Apart from this, we define properly linked

fuzzy graphs and derive strength of such graphs when each part of it is a strong

fuzzy complete graph. Also in this chapter we find the strength of a strong fuzzy

complete bipartite graph, strong fuzzy diamond graph, strong fuzzy butterfly

graph and strong fuzzy bull graph.

In Chapter 3, we discuss join of some strong fuzzy graphs, corona of some

strong fuzzy graphs, subdivision graph, middle graph, total graph, split graph

and shadow graph of some strong fuzzy graphs. There are five sections in this

chapter. In the first section, ’strength of join of fuzzy graphs’ we find the strength

of join of (1) two complete fuzzy graphs, (2) two fuzzy fan graphs, (3) two fuzzy

star graphs, (4) two strong fuzzy paths, (5) strong fuzzy wheel graph which is

the join of a fuzzy cycle and a fuzzy trivial graph. In the next section ’Corona

of strong fuzzy graphs’ we find the strength of corona of (1) a fuzzy trivial

graph and a strong fuzzy graph which is not a fuzzy null graph, (2) two fuzzy
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null graphs G1(U, µ1, σ1) and G2(V, µ2, σ2) with |U | = 1 and |V | > 1, (3) two

strong fuzzy paths, (4) two strong fuzzy butterfly graphs. In the section ’Fuzzy

subdivision graph of strong fuzzy graphs’ we find the strength of subdivision

graph of (1) strong fuzzy path, (2) strong fuzzy butterfly graph, (3) strong fuzzy

Bull graph, (4) strong fuzzy star graph, (5) strong fuzzy diamond graph and (6)

fuzzy complete graph. In the next section ’Fuzzy middle graph’ we find strength

of middle graph of (1)complete fuzzy graph, (2)strong fuzzy star graph and (3)

strong fuzzy diamond graph. In the next section ’total fuzzy graph’ we find the

strength of total graph of fuzzy null graph and a fuzzy complete graph. In the

next section ’Fuzzy split graph’ we find the strength of split graph of a strong

fuzzy path and a fuzzy complete graph. In the next section ’Fuzzy shadow graph’

we find the strength of a strong fuzzy path and a fuzzy complete graph.

In Chapter 4, the strengths of Cartesian product, tensor product, composition

and normal product of certain strong fuzzy graphs are determined.

First of all, we prove the Cartesian product of two fuzzy paths, each has P2 as

its underlying crisp graph is a fuzzy cycle and its strength is 2. Also we find the

strength of Cartesian product of two fuzzy paths with respective crisp graphs Pm

and Pn for all values of m and n and strength of Cartesian product of two strong

fuzzy graphs with underlying crisp graphs P2 and Cn. We define the fuzzy book,

and fuzzy pages and find the strength of fuzzy book. The strength of Cartesian

product of a strong fuzzy path on 2 vertices and a strong fuzzy butterfly graph

is also find.
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In the next section, we determine the strength of tensor product of a strong

fuzzy path on two vertices and a strong fuzzy path on n vertices. Also we find

the strength of tensor product of a strong fuzzy path on two vertices and a fuzzy

star graph, a strong fuzzy cycle. The strength of tensor product of two fuzzy

complete graphs is also find here.

The third section discusses the strength of composition of strong fuzzy paths

Pm and Pn for all values of m and n and prove that the strength of composition

of two strong fuzzy paths on 2 and n vertices is not equal to that of the strength

of composition of two strong fuzzy paths on n and 2 vertices respectively. We

derive the strength of composition of a strong fuzzy path on two vertices and a

strong fuzzy star graph and that of strong fuzzy Bull graph, and a strong fuzzy

cycle.

The fourth section deals with the normal product of some strong fuzzy graphs

and determine the strength of normal product of two strong fuzzy graphs with

their respective underlying crisp graphs, (1) the paths P2 and Pn, n > 1, (2) the

complete graphs Kn and Km, (3) the paths P2 and the star graph Sn, (4) the

star graphs Sm and Sn. This section also introduces a new concept called fuzzy

merger graph. Using this concept, we derive the strength of normal product of

a strong fuzzy path on two vertices and a strong fuzzy butterfly graph is 2.

In Chapter 5 we find the strengths of line graphs of some strong fuzzy graphs

which include strong fuzzy butterfly graph, strong fuzzy star graph, strong fuzzy

bull graph and strong fuzzy diamond graph.

5



A path P in a fuzzy graph G(V, µ, σ) with all its edges have weight equal

to w where w = min {σ(uv) : σ(uv) > 0 in G} is called a weakest path. A

weakest path which is not a proper subpath of any other weakest path in the

fuzzy graph G is called a maximal weakest path in G. We find strength of line

graph a strong fuzzy path and strength of line graph of strong fuzzy cycle.

Chapter 6 introduces extra strong k− path domination in a strong fuzzy

graph G(V, µ, σ), fuzzy extra strong k− path neighbour of a vertex, for a subset

X of V , the open and closed extra strong k− path neighbourhood of X , fuzzy

extra strong k− path isolated vertex, fuzzy extra strong k− path neighbourhood

degree, minimal and maximal fuzzy extra strong k− path dominating set and

fuzzy extra strong k− path domination number. Also we give an algorithm for

finding an extra strong k− path minimal dominating set of a fuzzy graph and

find extra strong k− path domination number of certain strong fuzzy graphs.

Fuzzy extra strong k− path private neighbour, fuzzy extra strong k− path in-

dependent set and fuzzy extra strong k− path minimal (and maximal) redundant

and irredundant set are introduced and discussed with some of its properties.

6



Chapter 1

Preliminaries

Graph theory is most accepted because of its tremendous applications in various

fields of Mathematics and other subjects. The publications of last thirty years

show that Graph Theory is the fastest growing area among all the subjects in all

disciplines. Many problems can be described by using a mathematical structure

consisting of a set of points together with lines joining certain pair of points;

such a diagram is termed as a graph [7].

The purpose of this chapter is to list the terminology and notation that we

shall use in this work. Much of the terms used are standard graph theoretic

terminology, a few terms will be introduced later when their turn comes.

A (undirected) graph [39] G(V (G), E(G)) consists of a nonempty set V (G)

and a collection E(G) of unordered pair of elements of V (G). If there is no

ambiguity we simply write G(V,E) or just G instead of G(V (G), E(G)) and if

e = (u, v), where e ∈ E and u, v ∈ V, we simply write e = uv. An element,

7



1.1. Basics of Graph Theory

indicated by a point, of V is called a vertex [7]. An element, a line joining the

points representing ends, of E is called an edge [7], V is the vertex set and E is

the edge set of G [39].

1.1 Basics of Graph Theory

Let G(V,E) be the given graph. The order [7] of G is the number of vertices of

G and the size [7] of G is the number of edges of G. The vertices u and v are

said to be adjacent if e = uv is an edge of G and the edge e is said to incident

with (incident to or incident at) u and v. The end vertices of the edge e [7] are

u and v. Then the vertex v is called a neighbour of u. The set of all neighbours

of the vertex u in a graph G is denoted by N(u) [7]. Adjacent [7] edges have a

common vertex. An edge with identical ends is called a loop [7] and an edge with

distinct ends is called a link [7]. Two or more links with the same pair of ends

are said to be parallel edges or multiple edges and graph having multiple edges

is a multigraph [7]. A graph having a set of vertices connected by edges, where

the edges have a direction associated with them is a directed graph (digraph) [7].

If edges have no orientation in a graph then that graph is an undirected graph.

A simple graph is an undirected graph having no multiple edges and loops [7].

A graph G(V,E) is finite [7] if both V and E are finite. A graph with a single

vertex is called a trivial graph [7] and other graphs are nontrivial.

Through out the thesis, we consider only finite, simple, undirected graphs.

8



1.1. Basics of Graph Theory

The degree [20] of a vertex v in the graph G is the number of edges incident

to v and is denoted by deg v. A vertex of degree one is called an end vertex or a

pendant vertex [32] and a vertex adjacent to a pendant vertex is called a support

vertex [7]. A pendant edge is the edge incident with a pendant vertex. A vertex

v is isolated [7] if deg v = 0. By an empty graph [7] we mean a graph with no

edges. The minimum degree of vertices in G is denoted by δ(G) and maximum

degree of vertices in G by ∆(G) [7]. If both δ(G) and ∆(G) is equal to r then

G is said to be r− regular or regular of degree r [7]. A simple graph G is said

to be complete [40] if every pair of distinct vertices of G are adjacent in G. By

Kn we mean a complete graph on n vertices. If the vertex set of a graph can be

partitioned into two subsets, X and Y so that every edge has one end in X and

other end in Y is called a bipartite graph ; such a partition (X, Y ) is called a

bipartition of the bipartite graph [7]. A simple bipartite graph is complete [7]

if each vertex of X is adjacent to all vertices of Y . A complete bipartite graph

with |X| = m and |Y | = n is denoted by Km,n. When m = 1, Kmn is called a

star graph [1]. The Wagner graph is the graph which is formed by adding to an

octagon four edges joining its diagonally opposite pairs of vertices [27]. A planar

undirected graph with 4 vertices and 5 edges is called a diamond graph [52]. It

consists of a complete graph K4 minus one edge( http:// en.m.wikepedia.org).

Let G be a simple graph of order n, where V (G) = {u1, u2, . . . , un}. The

9



1.1. Basics of Graph Theory

n× n zero-one matrix A(G) = [aij ], where

aij =











1 if uiuj ∈ E(G),

0 if uiuj /∈ E(G).

is the adjacency matrix [9] of G

Note that A is a symmetric matrix, i.e, row i of A is identical to column i of A

for every integer i with 1 ≤ i ≤ n. It is observed that
n

Σ
j=1

aij =
n

Σ
k=1

akj = deg(vi).

Let G be a simple graph [58] of order n, where V (G) = {ui : i = 1, 2, . . . , n}

and E(G) = {ej : j = 1, 2, . . . , n}. The n×m matrix M(G) = [mij ], where

mij =



























0 if ui is not an end of ej,

1 if ui is an end of the non-loop ej ,

2 if i is an end of the loop ej .

is the incidence matrix [32] of G. It is observed that
n

Σ
j=1

mij = deg(ui) and

m

Σ
i=1

mij = 2.

A walk [7] in a graph G is an alternating sequence of vertices and edges,

such as W = u0e1u1e2 . . . enun, beginning and ending with vertices in which

ei = ui−1ui; u0 is the origin and un is the terminus of W . The walk W is said to

join u0 and un; it is also referred to as a u0−un walk. The length [7] of a walk is

the number of edges in it. A walk is called a trail [7] if all the edges appearing

in the walk are distinct. It is called a path [7] if all its vertices are distinct. Thus

10



1.1. Basics of Graph Theory

a path in G is automatically a trail in G. When writing a path, we usually omit

the edges. A cycle [7] is a closed trail in which all the vertices are distinct. A

cycle of length n is denoted by Cn and a path with n vertices is denoted by Pn.

Note that Pn has length (n−1) [11]. A butterfly graph is constructed by joining

two cycles C3 with a common vertex [13]. A bull graph consists of a triangle

with two pendent edges at two distinct vertices of the triangle [17].

If there exist at least one path joining any two vertices of a graph G then

it is said to be connected [22]. Otherwise, it is a disconnected graph [17]. For

any two vertices ui and uj connected by a path in a graph G, the distance [11]

between ui and uj, denoted by d(ui, uj), is the length of a shortest ui − uj path.

A graph K is called a subgraph [7] of G if V (K) ⊆ V (G), and E(K) ⊆ E(G).

In this case G is a supergraph of K. Given any two graphs G and K,K is an

induced subgraph [9] of G if V (K) ⊆ V (G), only adjacent vertices in K are

adjacent in G. In this case if V (K) = S, we write K = G[S] or K =< S >. A

subgraph K of G is a spanning subgraph [14] of G, if V (K) = V (G). A maximal

complete subgraph of a graph is a clique [6] of the graph. That is if Q is a clique

in G, then no subgraph of G which contains Q properly is complete.

If e is an edge of a graph G, then G− e is the graph in which it is obtained

from G by deleting the edge e [59]. More generally, if F is any set of edges in

G, then G− F is the graph obtained from G by deleting all the edges in F [59].

Similarly, if u is a vertex of a graph G, then the graph obtained from G by

deleting the vertex u and all edges incident with it is denoted by G − u [59].

11



1.2. Operations on graphs

More generally, if S is any set of vertices in G,G−S is the graph obtained from

G by deleting all the vertices in S, and all edges incident with at least one of the

vertices of S [59].

A component [22] of a graph G is a connected subgraph not properly con-

tained in any other connected subgraph. A vertex v in a connected graph G is

a cut vertex [9] if G − v is disconnected. A connected graph that has no cut

vertices is called a block [7]. A block of G containing exactly one cut vertex of

G is called an end-block [9] of G.

1.2 Operations on graphs

This section deals with some of the operations on graphs that are used in subse-

quent chapters. G1∪G2 is the union [58] of two graphs G1 and G2 with vertex set

is the union of V (G1) and V (G2) and edge set is the union of E(G1) and E(G2).

The join of two graphsG1 andG2, denoted byG1∨G2, is the graph with vertex set

same as that of G1∪G2 and edge set E(G1)∪E(G2)∪{uiuj : ui ∈ V (G1) and uj ∈

V (G2)} is called the join [18] of graphs G1 and G2. The corona [18] of two

graphs G1 and G2 is the graph G = G1 ⊙ G2 formed from one copy of G1 and

|V (G1)| copies of G2, where ith vertex of the copy of G1 is adjacent to every

vertex in ith copy of G2. The middle graph [32] of the graph G is the graph

M(G) = (V (G)∪E(G), E ′(G)), where uv ∈ E ′ if and only if either u is a vertex of

G and v is an edge containing u, or u and v are edges having a vertex in common.

12



1.2. Operations on graphs

The line graph [58] L(G) of a graph G, is the graph with vertex set is the edge set

of G,E(G) and edge set is {ef : e, f ∈ E(G) and e, f have a vertex in common}.

The Cartesian product [26] G = G1�G2 of two graphs G1(V1, E1) and G2(V2, E2)

is the graph G whose vertex set V1 × V2. Let (u1, v1) and (u2, v2) be two vertices

of G. They are adjacent in G1�G2, if and only if u1u2 ∈ E1 and v1 = v2, or

u1 = u2 and v1v2 ∈ E2. The tensor product (or direct product) [8] G = G1 ⊗G2

of two graphs G1 and G2 is the graph G whose vertex set is V (G1)×V (G2). Let

(u1, v1) and (u2, v2) be two vertices being adjacent in G1 ⊗ G2, if u1u2 ∈ E(G1)

and v1v2 ∈ E(G2). The strong (or normal ) product [40] G1 ⊠G2 of two simple

graphs G1 and G2 is the graph with V (G1⊠G2) = V (G1)×V (G2), where (u1, v1)

and (u2, v2) are adjacent in G1⊠G2 if either

1. u1 = u2 and v1 is adjacent to v2, or

2. u1 is adjacent to u2 and v1 = v2, or

3. u1 is adjacent to u2 and v1 is adjacent to v2.

The composition (lexico graphic product) [47] G1[G2] of two graphs G1 and

G2, is the graph with vertex set V (G1) × V (G2) and two vertices (u1, v1) and

(u2, v2) are adjacent in G1[G2], whenever u1u2 ∈ E(G1), or u1 = u2 and v1v2 ∈

E(G2).

Through out this thesis we consider the product of two graphs with disjoint

vertex sets.
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1.3. Fuzzy Relations

1.3 Fuzzy Relations

In this section we give some definitions in fuzzy set theory. A classical crisp set

is normally defined as a collection X of objects that can be finite, countable, or

uncountable.

A fuzzy subset [25] of a set X is a function µ : X −→ [0, 1], where [0, 1]

denotes the set {t ∈ R : 0 ≤ t ≤ 1} [60]. Let µ be a fuzzy subset of X then the

support of µ, Supp(µ) = {x ∈ X : µ(x) > 0} [35]. Let µ, ν be two fuzzy subsets

of X . Then

1. µ ⊆ ν if µ(x) ≤ ν(x), ∀x ∈ X .

2. µ ⊂ ν if µ(x) ≤ ν(x), ∀x ∈ X and there exists at least one x ∈ X such that

µ(x) < ν(x).

3. µ = ν if µ(x) = ν(x), for all x ∈ X .

Let X and Y be any two subsets and µ, ν be fuzzy subsets of X and Y

respectively. Then a fuzzy relation σ from the fuzzy subset µ into the fuzzy

subset ν is a fuzzy subset σ of X×Y such that σ(uv) ≤ µ(x)∧ν(x) for all u ∈ X

and v ∈ Y . Also let σ : X×Y −→ [0, 1] be a fuzzy relation from a fuzzy subset µ

of X into a fuzzy subset ν of Y and ρ : Y ×Z −→ [0, 1] be a fuzzy relation from

a fuzzy subset ν of Y into a fuzzy subset η of Z. Define σ ◦ ρ : X × Z −→ [0, 1]

by σ ◦ ρ(x, z) = ∨{σ(x, y) ∧ ρ(y, z) | y ∈ Y } for all x ∈ X, z ∈ Z. Then σ ◦ ρ is
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1.4. Fuzzy graphs

called the composition of σ with ρ [35].

Note that σ ◦ ρ is a fuzzy relation from a fuzzy subset µ of X into a fuzzy

subset η of Z. The composition operation, σ ◦ ρ can be computed similar to

matrix multiplication, where the addition and multiplication are replaced by ∨

and ∧ respectively. Composition being associative, we use the notation σ2 to

denote the composition σ ◦ σ, σk to denote σk−1 ◦ σ, k > 1. Define σ∞(x, y) =

∨{σk(x, y)|k = 1, 2, . . .} [35].

1.4 Fuzzy graphs

A fuzzy graph [35] G(V, µ, σ) is a non empty set V together with a pair of

functions µ : V −→ [0, 1] and σ : V × V −→ [0, 1] such that for all u, v in V ,

σ(u, v) ≤ µ(u)∧µ(v). We call µ the fuzzy vertex set of G and σ the fuzzy edge set

of G, respectively.The fuzzy graph K(V, ν, τ) is called a partial fuzzy subgraph

[43] of G(V, µ, σ) if ν ⊂ µ and τ ⊂ σ. Similarly, the fuzzy graph K(U, ν, τ) is

called a fuzzy subgraph [16] of G(V, µ, σ) induced by U if U ⊂ V, ν(u) = µ(u)

for all u ∈ U and τ(u, v) = σ(u, v) for all u, v ∈ U . A vertex u of a fuzzy

graph G(V, µ, σ) is said to be isolated vertex [50] if σ(u, v) < µ(u) ∧ µ(v) for all

v ∈ V \ {u}. Through out this Thesis the edge between two vertices u and v in

a fuzzy graph is denoted by uv rather than (u, v).

The fuzzy graph [23] G(V, µ, σ) with σ(u, v) = 0 for all u, v ∈ V is called a

fuzzy null graph. A fuzzy trivial graph [30] is a fuzzy null graph on a single
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1.4. Fuzzy graphs

vertex.

The underlying crisp graph of a fuzzy graph G(V, µ, σ) is denoted by G(V,E).

A sequence of distinct vertices P = u0, u1, u2, . . . , un such that σ(ui−1ui) > 0,

1 ≤ i ≤ n is called a path [42] P in a fuzzy graph G(V, µ, σ). Here length of the

path P is n ≥ 1. The consecutive pairs (ui−1, ui) are called edges of the fuzzy

path. The strength of P [5] is defined as
n
∧
i=1

σ(ui−1ui). That is weight of the

weakest edge of the fuzzy path P is called the strength of P . A single vertex u

may also be considered as a fuzzy path. In this case the fuzzy path is of length

0, and its strength is defined to be µ(u). A partial fuzzy subgraph H(V, µ, σ) is

said to be connected [51] if σ∞(uv) = ∨{σk(vi−1vi) : k = 1, 2, . . . , n} > 0 where

µ(u) > 0, and µ(v) > 0 ∀u, v ∈ V .

A fuzzy cycle is the one in which its underlying crisp graph is a cycle and

there exist more than one edge uv such that σ(uv) = ∧{σ(uiuj) : σ(uiuj) > 0}.

Maximal connected partial fuzzy subgraphs are called components [31]. In fact, u

and v are connected if, and only if, σ∞(uv) > 0. A fuzzy graphG is connected [51]

if, and only if, σ∞(uv) > 0 for all u, v ∈ V .

A fuzzy graph G is a forest if the underlying crisp graph is a forest and a

tree if the underlying crisp graph is connected forest. A fuzzy graph G(V, µ, σ)

is called a complete fuzzy graph [3] if σ(uv) = µ(u) ∧ µ(v), for all u, v ∈ V . A

fuzzy graph G(V, µ, σ) is said to be a strong fuzzy graph if σ(uv) = µ(u)∧ µ(v),

for all uv ∈ E, the edge set of G, the crisp graph which we call the edge set of G

itself. A fuzzy graph G(V, µ, σ) is regular if, and only if (i) its underlying crisp
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graph is an odd cycle and σ is a constant function, (ii) its underlying crisp graph

is an even cycle and either σ is a constant function or alternate edges have same

weights [49]. A fuzzy star graph [57] G(µ, σ) consists of two vertex sets V and

U with |V | = 1 and |U | > 1, such that for v ∈ V and ui ∈ U , σ(v, ui) > 0 and

σ(ui, ui+1) = 0, 1 ≤ i ≤ n.

Let u and v be two distinct vertices of G(V, µ, σ), a fuzzy graph with under-

lying crisp graph G(V,E). Let its order and size be n and m respectively. If

there exists at least one path between u and v of length less than or equal to

k then the connectedness of strength k between u and v [49] is defined as the

maximum of the strength of all paths between them of length less than or equal

to k. Otherwise it is defined as zero. The n× n matrix A = (aij) defined by

aij =











σ(vivj) if i 6= j,

µ(vi) if i = j.

is called the weight matrix of G.

An example of a connected fuzzy graph is depicted as in Figure 1.1. The con-

nectedness of strength 2 between the vertices v1 and v4 is 0.2. The connectedness

of strength 3 between the vertices v1 and v4 is 0.5.
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Figure 1.1: A fuzzy graph G.

The weight matrix A of the fuzzy graph in Figure 1.1 is

A =























0.6 0.5 0.2 0.0

0.5 0.6 0.6 0.0

0.2 0.6 0.7 0.7

0.0 0.0 0.7 0.7























Also let A be an n × n weight matrix of the fuzzy graph G. For all i ≥ n,

the least positive integer n such that An = Ai is called the strength of G. The

strength of the fuzzy graph G in Figure 1.1 is 3.

A path P = vivi+1 . . . vj of a fuzzy graph G(V, µ, σ) is said to connect the

vertices vi and vj of G strongly [48] if its strength is maximum among all the

paths between vi and vj . Such paths are called strong paths. Any strong path

between two distinct vertices vi and vj in G with minimum length is called an

extra strong path [48] between them. The maximum length of extra strong paths

between every pair of distinct vertices in G is called the strength of connectivity
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of the graph G [48]. Strength of connectivity of the graph G is proved to be the

same as strength of G.

Theorem 1.4.1. [48] The strength of

(i) a strong fuzzy path on n vertices is its length (n− 1).

(ii) a complete fuzzy graph is one.

(iii) a regular fuzzy graph on n vertices is [n
2
].

(iv) a fuzzy star graph is 2.

Theorem 1.4.2. [48] The strength of a fuzzy cycle G with underlying crisp

graph a cycle on n vertices and l weakest edges, which altogether form a subpath

in G is n− l if l ≤ [n+1
2
] and [n

2
] if l > [n+1

2
].

Theorem 1.4.3. [48] Let G be a fuzzy cycle with underlying crisp graph a cycle

of length n, having l weakest edges which do not altogether form a subpath. If

l > [n
2
]−1 then the strength of the graph is [n

2
] and if l = [n

2
]−1 then the strength

of the graph is [n+1
2
].

Theorem 1.4.4. [48] In a fuzzy cycle of length n suppose there are l < [n
2
]− 1

weakest edges which do not altogether form a subpath. Let s denote the maximum

length of the subpath which does not contain any weakest edge. If s ≤ [n
2
] then

the strength of the graph is [n
2
] and if s > [n

2
] then the strength of the graph is s.
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Chapter 2

Strength of certain fuzzy graphs

In this chapter we derive an algorithm for finding the strength of fuzzy graphs.

Strength of strong fuzzy complete bipartite graph have been determined. A new

concept named properly linked fuzzy graphs is introduced in this chapter. Also a

fuzzy merger graph is defined and find a relation connecting fuzzy merger graph

and a 1− linked fuzzy graph. Further strength of such graphs are determined.

Also strength of strong fuzzy Wagner graph has been determined.

Some results of this chapter are included in the following paper Chithra K. P., Raji Pi-
lakkat, International Journal of Pure and Applied Mathematics, 106(3) 2016, 883-892
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2.1. Algorithm for finding strength of fuzzy graphs

2.1 Algorithm for finding strength of fuzzy graphs

In this section we consider only those fuzzy graphs whose underline graphs

are connected. Graph theory and graph algorithms are inseparably interwined

subjects. Bhattacharya and Suraweera [2] have given an algorithm for finding

σ∞(u, v) using maximum spanning tree algorithm of fuzzy graphs. Here we give

an algorithm for finding the strength of a fuzzy graph in a direct method. The

concept of strength of connectivity between two vertices of a fuzzy graph in-

troduced by Bhattacharya and Suraweera [2] was further studied by Sheeba M.

B. [48] by introducing two new terminologies extra strong paths and strength

of fuzzy graphs. Though theoretical approach is the strong clear cut method,

it is some times difficult and tedious to find the strength for arbitrary graphs.

So we tried for an algorithmic approach to find the strength of the fuzzy graphs

and have succeeded. This section discusses an algorithmic approach to find the

strength of fuzzy graphs.

Algorithm 2.1.1. Algorithm for finding the strength of a path in a

fuzzy graph G.

Let G be a fuzzy graph and vi, vj be two vertices of G. Let P = x1x2 . . . xn,

where vi = x1 and vj = xn be a vi − vj path with σk = σ(xkxk+1), k =

1, 2, . . . , (n − 1). Then the minimum value of σk, for k = 1, 2, . . . , (n − 1) is

the strength of P .

Input : σ1 = σ(x1x2).
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2.1. Algorithm for finding strength of fuzzy graphs

Step 1. For k = 2, find σk and compare σ1 and σk.

If σk > σ1 then ignore the value of σk.

If σk ≤ σ1 then σ1 = σk.

Step 2. Repeat Step 1 for k = 3, 4, . . . , (n− 1).

Output : The strength of P = σ1.

Illustration:
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Figure 2.1: Fuzzy graph G.

Consider the fuzzy graph G in Figure 2.1. There are 3 paths joining v1 and

v5; v1v4v5, v1v3v4v5 and v1v2v4v5 in G. Let P1 = v1v2v4v5. Then σ1 = σ(v1v2) =

0.3, σ2 = σ(v2v4) = 0.8, σ3 = σ(v4v5) = 0.7. Here σ2 > σ1. Therefore ignore σ2.

Since σ3 > σ1 ignore σ3. So σ1 = 0.3 is the strength of P1.

In a similar manner we can find the strength of the path of v1v4v5 = 0.2 and

that of v1v3v4v5 is equal to 0.4.

Algorithm 2.1.2. Algorithm for finding kvivj , the length of the path joining

two vertices vi and vj with minimum length and with maximum strength.
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Let G be a fuzzy graph with underlying crisp graph G(V,E) having vertex

set {v1, v2, . . . , vn}. For the vertices vi, vj, kvivj denotes the minimum length of

all the vi − vj paths having maximum strength.

Input : All the paths joining vi and vj in G.

Step 1. Name the paths between vi and vj as P1, P2, . . . , Pn.

Step 2. Find the strength S1 of P1 using Algorithm 2.1.1.

Step 3. For k = 2, find the strength Sk of the kth path, Pk by Algorithm 2.1.1

and compare it with S1.

If S1 < Sk then rename Pk by P1.

If S1 > Sk then ignore the path Pk and repeat the step with Pk+1 instead of Pk.

If S1 = Sk then rename Pk by P1 if length of Pk < length of P1. Otherwise ignore

Pk.

Step 4. Repeat Step(3) with k = k + 1, k + 2, . . . , n to get the path P1 with

minimum length and with maximum strength between vi and vj .

Step 5. The length of the path P1 is kvivj .

Illustration:

For the fuzzy graph G in Figure 2.1, name the paths v1v2v4v5, v1v4v5, v1v3v4v5

as P1, P2 and P3 respectively. By Algorithm(1), S1 = strength of P1 = 0.3, S2 =

strength of P2 = 0.2 and S3 = strength of P3 = 0.4. Here S1 > S2 so ignore the

path P2 and compare the strength of P1 and P3. Since S3 > S1, ignore the path

P1. Then the length of P3(= 3) is kv1v5 .
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2.1. Algorithm for finding strength of fuzzy graphs

By the same algorithm we have, kv1v2 = 3, kv1v3 = 1, kv1v4 = 2, kv2v3 =

2, kv2v4 = 1, kv2v5 = 2, kv3v4 = 1, kv3v5 = 2, and kv4v5 = 1.

Algorithm 2.1.3. Algorithm for finding the strength of a fuzzy graph.

Let G be a fuzzy graph with underlying crisp graph G∗ having vertex set

{v1, v2, . . . , vn}. For m ≥ 1, 1 ≤ i < i+m ≤ n, let kvivi+m
denote the minimum

length of all the paths joining vi and vi+m having maximum strength. Letmv1v2 =

kv1v2 and define for 1 ≤ i < i + 1 < . . . < i + m ≤ n, mvivi+1...vi+m
recursively

as mvivi+1...vi+m
= max{mvivi+1...vi+m−1

, kvivi+m
} for m ≥ 2 and mvi+mvi+m+1

=

max{mvi+m−1vi+m...vn , kvi+mvi+m+1
}, for m = 1. Then strength of G is mvn−1vn .

Input : A fuzzy graph G with vertex set {v1, v2, . . . vn}.

Step 1. Choose the vertices v1 and v2 and find kv1v2 = mv1v2 .

Step 2. For i = 1, m = 2 find kvivi+m
and mvivi+1...vi+m

=

max{mvivi+1...vi+m−1
, kvivi+m

}.

Do the same for i = 1, m = 3, 4, . . . (n− i) successively and find mvivi+1...vi+m
.

Step 3. For i = 1, m = 1 find kvi+mvi+m+1
andmvi+mvi+m+1

= max{mvi+m−1vi+mvn ,

kvi+mvi+m+1
}.

Step 4. For the value i = 2 perform Step(2) for m = 2, 3, . . . , (n− i) and then

Step(3) for m = 1 successively to find mvi+mvi+m+1
.

Step 5. Repeat Step(4) for i = 3, 4, . . . , (n − 2) to find mvn−1vn which is the

strength of G.
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Illustration:

For the graph G in Figure 2.1, kv1v2 = 3 = mv1v2 .

i = 1, m = 2, kv1v3 = 1 and mv1v2v3 = max{mv1v2 , kv1v3} = 3,

i = 1, m = 3, kv1v4 = 2 and mv1v2v3v4 = max{mv1v2v3 , kv1v4} = 3,

i = 1, m = 4, kv1v5 = 3 and mv1v2v3v4v5 = max{mv1v2v3v4,kv1v4
} = 3,

i = 1, m = 1, kv2v3 = 2 and mv2v3 = max{mv1v2v3v4v5 , kv2v3} = 3,

i = 2, m = 2, kv2v4 = 1 and mv2v3v4 = max{mv2v3 , kv2v4} = 3,

i = 2, m = 3, kv2v5 = 2 and mv2v3v4v5 = max{mv2v3v4 , kv2v5} = 3,

i = 2, m = 1, kv3v4 = 1 and mv3v4 = max{mv2v3v4v5 , kv3v4} = 3,

i = 3, m = 2, kv3v5 = 2 and mv3v4v5 = max{mv3v4 , kv3v5} = 3,

i = 3, m = 1, kv4v5 = 1 and mv4v5 = max{mv3v4v5 , kv4v5} = 3. Then the strength

of G is 3.

2.2 Strength of strong fuzzy complete bipartite

graph

We start this section with very simple but very useful and strong result which

states that if two vertices are adjacent in a strong fuzzy graph then the path

(edge) uv is the extra strong path connecting them. Therefore the length of the

extra strong path joining two adjacent vertices in a strong fuzzy graph is one.

Two vertices in a fuzzy graph are said to be adjacent if the weight of the edge

determined by them is positive that is they are adjacent in the underlying crisp
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2.2. Strength of strong fuzzy complete bipartite graph

graph. We also determine the strength of strong fuzzy complete bipartite graphs.

Theorem 2.2.1. Let G be a strong fuzzy graph. If u and v are two adjacent

vertices of G then the length of the extra strong path joining u and v is one.

Proof. Suppose that u and v are adjacent in G. Since G is a strong fuzzy graph,

the edge uv, has strength µ(u) ∧ µ(v). All the other paths joining u and v have

strength less than or equal to µ(u)∧µ(v). Hence the edge uv is the unique extra

strong path joining u and v. Hence the result.

Corollary 2.2.1. If G is a strong fuzzy complete graph then its strength is one.

Remark 2.2.1. G is a strong fuzzy graph. Suppose u and v are two adjacent

vertices of G. Then the path (edge) uv is the only extra strong path joining u

and v. So for the computation of strength of a fuzzy graph we need to consider

only its distinct non-adjacent vertices.

Theorem 2.2.2. Strength of a strong fuzzy complete bipartite graph [44] G is

two if |V (G)| > 2.

Proof. Let G(V, µ, σ) be a strong fuzzy complete bipartite graph with Kmn as its

underlying crisp graph. Suppose that m + n > 2. Let U = {ui : i = 1, , . . . , m}

and V = {vj : j = 1, 2, . . . , n} be the bipartite sets. Also let u and v be any

two distinct non-adjacent vertices of G. If u and v ∈ U , then all the u − v

paths in G pass through atleast one vertex in V . Let w be a vertex in V with

µ(w) ≥ µ(vi), ∀vi ∈ V . Then strength of any u − v path is less than or equal
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2.3. Properly linked fuzzy graphs

to that of the path uwv in G. Therefore uwv is one of the extra strong paths

joining u and v and which is of length 2. Similar is the case when both u, v ∈ V .

Hence the theorem.

2.3 Properly linked fuzzy graphs

This section deals with properly linked fuzzy graphs. We give certain examples

for it. Also, we find out the strength of properly linked fuzzy graphs.

Definition 2.3.1. A finite sequence of distinct fuzzy graphs [36] G1, G2, . . . , Gm

with the property that V (Gi)∩ V (Gj) is nonempty if and only if |j− i| ≤ 1, 1 ≤

i, j ≤ m is called a properly linked sequence or simply properly linked . It is n−

linked if the crisp graph induced by < V (Gi)∩V (Gj) > is Kn, a complete graph

on n vertices, if |j − i| = 1, 1 ≤ i, j ≤ m.

Definition 2.3.2. A fuzzy graph G is said to be properly linked (n− linked) if

there exists a finite sequence of properly linked partial fuzzy subgraphsG1, G2, . . . ,

Gm, where m > 1, such that G = G1 ∪G2 ∪ . . . ∪ Gm. In this case we say that

G1, G2, . . . , Gm are parts of G.

Notation 2.3.1. If a fuzzy graph G is a union of a sequence of m, n− linked

fuzzy graphs G1, G2, . . . , Gm, for some n then we writeG = G1 < G2 < . . . < Gm.

Lemma 2.3.1. Let G = G1 < G2 < . . . < Gm be a 1−linked strong fuzzy graph

with G1, G2, . . . , Gm (where m > 1) as its parts. Let G1, G2, . . . , Gm be complete
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2.3. Properly linked fuzzy graphs

strong fuzzy graphs. For, i = 1, 2, . . . , n − 1, let V (Gi) ∩ V (Gi+1) = {vi}. Let

u, v be any two distinct vertices of G. For k < m, if u ∈ V (G1) \ {v1} and

v ∈ V (Gk+1) \ {vk} then the length of extra strong path joining u and v in G is

k + 1.

Proof. This result is proved by induction on k. When k = 1, u ∈ V (G1) \ {v1}

and v ∈ V (G2) \ {v1}. Therefore all the u− v paths pass through v1. Since G is

complete, the extra strong path joining u and v1 and the same for v1 and v are

respectively uv1 and v1v. Therefore the length of the extra strong path joining

u and v is 2.

Now, let us assume the result is true for every k ≤ n < m − 1. Let u ∈

V (G1) \ {v1} and v ∈ V (Gn+2) \ {vn+1}. Note that every u − v path must

pass through the vertex vn+1. By induction hypothesis the length of every extra

strong path joining u and vn+1 is n + 1. Since vn+1 and v lie in Gn+2, the only

extra strong path joining vn+1 and v is the edge vn+1v. Hence the length of the

extra strong path joining u and v is n+ 2. In fact there is only one extra strong

path joining u and v. Hence the lemma holds by induction.

The following theorem is an immediate consequence of Lemma 2.3.1.

Theorem 2.3.1. Let G be a 1− linked fuzzy graph with m (where m > 1)

complete fuzzy graphs as its parts. Then the strength of G is m, the diameter of

G.

Theorem 2.3.1 can be used to find the strength of certain fuzzy graphs. For
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2.3. Properly linked fuzzy graphs

example strong fuzzy butterfly graph, strong fuzzy bull graph.

Definition 2.3.3. A strong fuzzy butterfly graph is a strong fuzzy graph with

its underlying crisp graph is a butterfly graph [55].

Corollary 2.3.1. The strength of a strong fuzzy butterfly graph is two.

Proof. A strong fuzzy butterfly graph is a properly linked fuzzy graph with two

complete fuzzy triangles as its parts. So, by Theorem 2.3.1, the strength of a

fuzzy butterfly graph is 2.

Definition 2.3.4. A strong fuzzy bull graph is a strong fuzzy graph with its

underlying crisp graph is a bull graph [10].

Corollary 2.3.2. The strength of a strong fuzzy bull graph is 3.

Proof. A strong fuzzy bull graph is 1− linked by a sequence of 3 complete strong

fuzzy graphs G1, G2 and G3, where G1 and G2 are fuzzy paths on two vertices

and G3 a strong fuzzy triangle graph which is a complete strong fuzzy graph. So

the strength of a strong fuzzy bull graph is three.

Theorem 2.3.1 can be generalized as follows.

Notation 2.3.2. If P1 = u1u2 . . . un and P2 = unun+1 . . . um are two paths in a

fuzzy graph G then P1 + P2 denote the path u1u2 . . . unun+1 . . . um.

Theorem 2.3.2. Let G(V, µ, σ) be a properly linked fuzzy graph with the com-

plete fuzzy graphs G1, G2, . . . , Gm as its parts, where m > 1. Suppose for i =
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2.3. Properly linked fuzzy graphs

1, 2, . . . , m−1, < V (Gi)∩V (Gi+1) >= Kni
, a complete fuzzy graph on ni vertices.

Then the strength of G is the diameter m of G [20].

Proof. Let V (Gi) ∩ V (Gi+1) = {ui1, ui2, . . . , uini
}, for i = 1, 2, . . . ,

m− 1 . Let u and v be any two distinct non-adjacent vertices of G.

We prove the theorem in two steps.

Step 1: In this step we prove that if u ∈ V (G1) \ {u11, u12, . . . , u1n1} and v ∈

V (Gk+1) \ {uk1, uk2, . . . , uknk
} then the length of the extra strong u − v path is

k + 1, where 1 ≤ k ≤ m− 1.

We prove this result by induction on k. Assume that k = 1.

Then every u− v path lies completely in G1 ∪G2. When m = 2 it is obvious.

Otherwise, any u − v path have at least 4 subpaths P1, P2, P3, P4, and can be

written as P1 + P2 + P3 + P4 where P1 is a path from u to some vertex u2i

of {u21, u22, . . . , u2n2} in G1 ∪ G2, P2 is a path from u2i to some vertex w in

G3∪G4∪ . . .∪Gm, P3 is a path from w to some vertex u2j of {u21, u22, . . . , u2n2}

in G3 ∪ G4 ∪ . . . ∪ Gm and P4 is a path from u2j to v in G1 ∪ G2. Such paths,

obviously have strength ≤ that of the path P1+u2iu2j+P4. Thus we can conclude

that all the extra strong paths joining u and v lie completely in G1 ∪G2.

Since G1 and G2 are complete fuzzy graphs, both u and v are adjacent to all

the vertices of {u11, u12, . . . , u1n1}. If µ(u1k) =
m
∨
i=1

µ(u1i), then uu1kv is an extra

strong path joining u and v in G1 ∪G2 and is of length 2.

Assume that the result is true for k ≤ n ≤ m − 2. To prove the re-
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2.3. Properly linked fuzzy graphs

sult for k = n + 1, let u ∈ V (G1) \ {u11, u12, . . . , u1n1} and v ∈ V (Gn+2) \

{un+11, un+12 . . . , un+1nn+1}. Then as above we prove that every extra strong

path joining u and v lies completely in G1∪G2∪ . . .∪Gn+2. When n = m−2, it

is obvious. For n < m−2, if the result is not true then there exist a u−v path inG

which passes through a vertex of V (Gn+3)\{un+21, un+22, . . . , un+2nn+2}. Then it

must pass through at least one vertex of the set {un+21, un+22, . . . , un+2nn+2}. Any

such path have at least four subpaths P1, P2, P3, P4 where P1 is a path from u to

some vertex un+2i of the set {un+21, un+22, . . . , un+2nn+2} inG1∪G2∪. . .∪Gn+2, P2

is a path from un+2i to a vertex z in G1∪Gn+3∪Gn+4∪. . .∪Gm, P3 is a path from

z to some vertex un+2j of {un+21, un+22, . . . , un+2nn+2} in Gn+3 ∪Gn+4 ∪ . . .∪Gm

and P4 is a path from un+2j to v in G1 ∪G2 ∪ . . . ∪Gn+2.

Clearly the path P1 + un+2iun+2j + P4 has strength greater than or equal to

all such paths. Thus any extra strong path can be written as sum of two paths

P,Q where P is an extra strong path from u to w ∈ {un+11, un+12, . . . , un+1nn+1}

in G1∪G2∪ . . .∪Gn+2, where µ(w) =
n+1
∨
i=1

µ(un+1,i) and Q is the edge wv of Gn+2,

since Gn+2 is complete. Now by induction hypothesis the length of P is n + 1.

Therefore the length of extra strong path joining u and v is n+ 2.

Step 2: Let u and v be any two vertices of G. Suppose u and v belong

to the same part Gi of G. Then u and v are adjacent because Gi is complete.

Hence the edge uv is the only extra strong u− v path in G. Otherwise u belongs

to some Gi and v belongs to some Gj of G, where Gi and Gj are two distinct

parts of G. Without loss of generality assume that i < j. Then by Step 1 we
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2.3. Properly linked fuzzy graphs

can conclude that the length of extra strong path is j − i+1 ≤ m. In particular

when i = 1 and j = m, the length of extra strong u − v path is m. Therefore

S (G) = m. Hence the theorem.

Remark 2.3.1. Theorem 2.3.2 need not be true when at least one part of a

properly linked fuzzy graph fails to be a complete fuzzy graph. For example, the

strong fuzzy graph G in Figure 2.2 is a 2−linked fuzzy graph of strength 3 with

parts G1 and G2, where G1 is a complete fuzzy graph but G2 is not a complete

fuzzy graph.
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Figure 2.2: A 2-linked fuzzy graph G, its parts G1 and G2.

Definition 2.3.5. A fuzzy diamond graph [24] is a fuzzy graph with the under-

lying crisp graph is a diamond graph.

From the definition of a strong fuzzy diamond graph, which is a 2− linked

fuzzy graph having two parts and each is complete. Therefore we have the

following Corollary.

Corollary 2.3.3. The strength of a strong fuzzy diamond graph is 2.

Definition 2.3.6. Let G1, G2, . . . , Gn be n simple graphs with vertex sets V1, V2,

. . . , Vn respectively. For i 6= j if |Vi ∩ Vj | ≥ 1, let Zij = Vi ∩ Vj . Let V =
n
∪
k=1

Vk
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2.3. Properly linked fuzzy graphs

and Z = ∪Zij, where the union is taken for those i 6= j for which |Vi ∩ Vj | ≥ 1.

For such i and j, form a single vertex zij by merging the vertices of Vi ∩ Vj. Let

U = (V \Z)∪{zij}. The simple graph with vertex set U and edge set E is called

the merger graph of G1, G2, . . . , Gn; where, for u 6= v ∈ U, uv ∈ E provided,

1. u, v ∈ V \ Z and are adjacent in
n

∪
i=1

Gi.

2. u = zij for some i and j, v ∈ V \Z and v is adjacent to at least one vertex

in Zij.

3. u = zij, v = zkl for some i, j, k and l and at least one vertex of Zij is

adjacent to at least one vertex of Zkl.
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Figure 2.3: Fuzzy graph G and its merger graph.

Note 2.3.1. If Vi ∩ Vj = φ, ∀i, j then the merger graph of G1, G2, . . . , Gn is just

G1 ∪G2 ∪ . . . ∪Gn.
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Definition 2.3.7. Let Gi(Vi, µi, σi), i = 1, 2, . . . , n be fuzzy graphs with under-

lying crisp graph Gi(Vi, Ei). The fuzzy merger graph G(U, µmer, σmer) is a fuzzy

graph with its underlying crisp graph G(U,E) is a merger graph of Gi(Vi, Ei), i =

1, 2, . . . , n where U and E are as in Definition 2.3.6 and the membership functions

µmer and σmer are given by

µmer(u) =















µi(u) if u ∈ Vi \ Z for some i,

∧
v∈Vi∩Vj

(µi(v) ∧ µj(v)) if u = wij for some i, j.

σmer(uv) =











σi(uv) if u, v ∈ Vi for some i ,

µmer(u) ∧ µmer(v) otherwise.

Remark 2.3.2. Let Gi(Vi, µi, σi), i = 1, 2, . . . , n be n fuzzy graphs such that

Vi ∩ Vj 6= φ if and only if |j − i| = 1. Then the merger graph of these fuzzy

graphs Gi, i = 1, 2, . . . , n is a 1− linked fuzzy graph. Thus if each Gi is a

complete strong fuzzy graph and Vi ∩ Vj 6= φ if and only if |j− i| = 1 then, their

merger fuzzy graph has strength equal to its diameter by Theorem 2.3.1 which

is also equal to the strength of
n
∪
i=1

Gi. This result need not be true if G′
is are

not complete. For example, the merger graph of G in Figure 2.2 is the fuzzy

butterfly graph which is of strength 2 but the strength of G is 3.
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2.4. Strong fuzzy Wagner graph

2.4 Strong fuzzy Wagner graph

A strong fuzzy Wagner graph is a strong fuzzy graph with its underlying crisp

graph is a Wagner graph ( https://en.wikipedia.org/wiki/Wagnergraph).

Theorem 2.4.1. Let G be a strong fuzzy Wagner graph. Then 2 ≤ S (G) ≤ 4.

Proof. From Figure 2.4 it is clear that to prove the theorem it is enough to prove

S (G) never be greater than 4.
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Figure 2.4: Strong fuzzy Wagnergraphs with strengths 2, 3 and 4.

Let u, v be two nonadjacent vertices of G. Without loss of generality assume,

u = u1. Then v ∈ {u3, u4, u6, u7}. If possible assume, length of an extra strong

u − v path is greater than 4 then there exists at least one path joining u and v

of length greater than 4. But all those paths must pass either through both u2,

u8 or through u4, u6. Since G is a strong fuzzy graph, these paths never be extra

strong.
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Chapter 3

Strength of Fuzzy graphs derived

from certain known Fuzzy graphs

In this chapter we determine the strength of join and corona of certain strong

fuzzy graphs and that of middle graph and total graph of certain strong fuzzy

graphs.

Definition 3.0.1. [34] Let Gi(Vi, µi, σi), i = 1, 2 be two connected fuzzy graphs

with underlying crisp graphs Gi(Vi, Ei), i = 1, 2 respectively. Then the union of

two fuzzy graphs denoted by G1∪G2 of G1 and G2 is G(V, µ, σ) with underlying

crisp graph G(V,E) is the union of Gi(Vi, Ei), i = 1, 2 where V = V1 ∪ V2 and

E = E1 ∪ E2 and

µ(u) =











µ1(u) if u ∈ V1 \ V2,

µ2(u) if u ∈ V2 \ V1.
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3.1. Strength of join of fuzzy graphs

σ(uv) =











σ1(uv) if uv ∈ E1 \ E2,

σ2(uv) if uv ∈ E2 \ E1.

3.1 Strength of join of fuzzy graphs

In this section we concentrate our study on the strength of join of certain known

fuzzy graphs.

Definition 3.1.1. [34] Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two connected

fuzzy graphs with underlying crisp graph G1(V1, E1) and G2(V2, E2) respectively,

where V1 ∩ V2 = φ. Then the join G(V, µ, σ) of G1 and G2 is the fuzzy graph

with the underlying crisp graph G(V,E) is the join of G1(V1, E1) and G2(V2, E2),

where V = V1 ∪ V2 and E = E1 ∪E2 ∪E ′ where E ′ is the set of all edges joining

the vertices in V1 with vertices in V2, also the membership functions µ and σ are

defined as follows.

µ(u) =











µ1(u) if u ∈ V1,

µ2(u) if u ∈ V2.

σ(uv) =



























σ1(uv) if u, v ∈ V1,

σ2(uv) if u, v ∈ V2,

µ1(u) ∧ µ2(v) if u ∈ V1 and v ∈ V2.

Example 3.1.1. 1. A fuzzy complete 2− partite graph is the join of two
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3.1. Strength of join of fuzzy graphs

fuzzy null graphs.

2. A fuzzy wheel graph is the join of a fuzzy cycle and a trivial fuzzy graph.

3. A fuzzy star graph is the join of a fuzzy null graph and a fuzzy trivial

graph.

Remark 3.1.1. From the definition of join G of two fuzzy graphs G1 and G2,

both G1 and G2 can be considered as maximal partial fuzzy subgraphs of G.

The join of two complete fuzzy graphs is again a complete fuzzy graph. Hence

we have the following Theorem.

Theorem 3.1.1. The strength of join of two complete fuzzy graphs is one.

Definition 3.1.2. A fuzzy fan graph Fmn [41] is defined as the join of a fuzzy

null graph on m ≥ 1 vertices and a fuzzy path on n ≥ 1 vertices.
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Figure 3.1: Fuzzy fan graph F24.

LetG(V, µ, σ) be the join of two graphsG1(V1, µ1, σ1) andG2(V2, µ2, σ2) where

G1 a fuzzy null graph on m vertices with vertex set V1 = {u1, u2, . . . , um} and G2
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3.1. Strength of join of fuzzy graphs

a strong fuzzy path on n vertices with vertex set V2 = {v1, v2, . . . , vn}. If n = 1

then for any m, G is a fuzzy star graph. Therefore its strength is 1 if m = 1 and

2 if m > 1. If n = 2 and m = 1 then G is complete. Therefore its strength is

one. If n = 2 and m > 1 then S (G) is 2. For if u and v are two nonadjacent

vertices in G then they are vertices of G1. If w is a vertex of G2 with maximum

weight among the vertex of G2 then uwv is an extra strong path of G.

Now consider the cases for n ≥ 3. First of all suppose that m = 1. In this

case V1 = {u1}. If µ1(u1) <
n
∧
j=1

µ2(vj) then clearly for any u and v ∈ V (G2), this

u− v path of G2 is the extra strong u− v path of G.

Otherwise µ2(vi) < µ1(u1). Then we have two cases. Let u and v be two

nonadjacent vertices of G. Let l be the maximum of length of all subpaths of

G2 of strength > µ1(u1) if such a path exists, otherwise let l be zero. Then

S (G) = 2 ∨ l.

The preceding discussion may be generalized as follows.

Theorem 3.1.2. Let G(V, µ, σ) be the join of two fuzzy graphs G1(V1, µ1, σ1) and

G2(V2, µ2, σ2), where G1 is a fuzzy null graph on m ≥ 2 vertices with vertex set

V1 = {u1, u2, . . . , um} and G2 a strong fuzzy path on n ≥ 3 vertices with vertex set

{v1, v2, . . . , vn}. If there exists a path in G2, whose strength is >
m
∨
i=1

µ1(ui) then

let l be the maximum of length of all such subpaths of G2. Then S (G) = l ∨ 2.

Proof. Let u and v be two nonadjacent vertices of G. If both of them are in V1

then all u − v paths must pass through at least one vertex of V2, since all vj in
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V2 are adjacent to both u and v. Then uvjv is an extra strong u − v path in G

where µ(vj) ≥
n
∨
i=1

µ2(vi).

If both u and v are in V2 then we have the following cases.

Case 1. l = 0.

In this case every subpath of G2 has strength ≤
n
∨
i=1

µ1(ui). Let uj be the

vertex in V1 such that µ1(uj) ≥
m
∨
i=1

µ1(ui) then uujv is an extra strong u−v path

in G.

Case 2. l = 1.

As u, v are nonadjacent vertices of G2, the u− v path of G2 contains a vertex

of weight ≤
n

∨
i=1

µ1(ui). Let uj be a vertex of G1 such that µ1(uj) ≥ strength of

the u− v path in G. Then uujv is an extra strong u− v path in G2.

If l > 1 then clearly S (G) = l.

Corollary 3.1.1. Let G1, G2 and G be fuzzy graphs as in Theorem 3.1.2. Then

if
m
∨
i=1

µ1(ui) <
n
∧
j=1

µ2(vj) then S (G) = n− 1.

Now consider the case where both G1 and G2 are fuzzy paths. That is

G(V, µ, σ) is the join of two strong fuzzy graphs say, G1(V1, µ1, σ1) and G2(V2, µ2,

σ2) with underlying crisp graphs Pm with vertex set V1 = {u1, u2, . . . , um} and

Pn with vertex set V2 = {v1, v2, . . . , vn}. The case n = 1 and the case m = 1 are

included in Theorem 3.1.2. So we suppose that both m,n ≥ 2. For n = m = 2,

G is a complete strong fuzzy graph on 4 vertices so its strength is 1.
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3.1. Strength of join of fuzzy graphs

When m = 2 and n > 2, S (G) = 2 ∨ l where l is the maximum of length of

all subpaths of G2 having strength >
n
∨
i=1

µ1(ui) if there exists such a path in G2.

The following theorem determines S (G) in all other cases.

Theorem 3.1.3. Let G(V, µ, σ) be the join of two strong fuzzy graphs G1(V1, µ1,

σ1) and G2(V2, µ2, σ2) with underlying crisp graphs Pm and Pn with vertex sets

V1 = {u1, u2, . . . , um} and V2 = {v1, v2, . . . , vn}; m ≥ n > 2. Let l1 be the

maximum of length of all subpaths of G1 of strength >
n
∨
j=1

µ2(vj) if such a path

exists otherwise let l1 = 0. Also let l2 be the maximum of length of all subpaths

of G2 of strength >
m

∨
i=1

µ1(ui) if such a path exists otherwise let l2 = 0. S (G) =

l1 ∨ l2 ∨ 2.

Proof. Let u and v be two nonadjacent vertices of G. Then either u and v ∈ V1

or u and v ∈ V2.

Case 1. l1 = l2 = 0.
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Figure 3.2: Example for two fuzzy paths having l1 = l2 = 0.

Let u and v ∈ V1. Then an extra strong u − v path is uvjv where vj is

such that µ2(vj) =
n
∨
i=1

µ2(vi). Similarly if u and v ∈ V2 then uuiv is an extra
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3.1. Strength of join of fuzzy graphs

strong u− v path in G, where ui is such that µ1(ui) =
m
∨
j=1

µ1(uj). So in this case

S (G) = 2.

Case 2. l1 = 1 and l2 = 0 or l1 = 0 and l2 = 1.
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Figure 3.3: Example for two fuzzy paths having l1 = 1 and l2 = 0.

Consider the case l1 = 1 and l2 = 0. Let u and v ∈ V2. Since l2 = 0, the

strength of u − v path of G2 ≤
m
∨
i=1

µ1(ui). Let uj be a vertex of G1 such that

µ1(uj) =
m

∨
i=1

µ1(ui). Then uujv is an extra strong u − v path in G of length 2.

Let u and v ∈ V1. Since l1 = 1, uu1v is an extra strong u− v path in G1 where

vi =
n
∨
j=1

µ2(vj). Thus the strength of G is 2.

Similarly we can prove the case when l1 = 0 and l2 = 1.

Case 3. l1 > 1 or l2 > 1.
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3.1. Strength of join of fuzzy graphs
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First of all we consider the case, l1 > 1. In this case l2 = 0. Therefore if u, v ∈

V2, as in case 2, uujv is an extra strong path in G, where µ1(uj) =
m

∨
i=1

µ1(ui). Now

let u, v ∈ V1. Since l1 > 1 either strength of the u− v path in G1 is >
n
∨
j=1

µ2(vj)

or there exists a vertex vi ∈ V2 such that µ2(vi) ≥ strength of the u− v path in

G1. In the first case the u− v path of G1 is the only an extra strong u− v path

in G. In the second case the path uviv in G is an extra strong u− v path. From

this it follows that S (G) = l1. Similarly we can prove that S (G) = l2 if l2 > 1.

Therefore S (G) = l1 ∨ l2.

3.1.1 Fuzzy wheel graph

Definition 3.1.3. A fuzzy wheel graph Wn is the join of the fuzzy cycle Cn−1

and a fuzzy trivial graph.

Some results of this chapter are included in the following paper Chithra K. P., Raji Pi-
lakkat, International Journal of Pure and Applied Mathematics, 106(3) 2016, 883-892
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3.1. Strength of join of fuzzy graphs

Definition 3.1.4. A vertex h of the wheel graph Wn is said to be a fuzzy hub

if it is adjacent to all the other vertices of Wn.

Definition 3.1.5. A strong fuzzy wheel graph is a fuzzy wheel graph which is

also a strong fuzzy graph.

Theorem 3.1.4. For n ≥ 4, let Wn = Cn−1 ∨K1 be a strong fuzzy wheel graph

with fuzzy hub h and u1u2 . . . un−1u1 the fuzzy cycle Cn−1. If µ(h) <
n−1
∨
i=1

µ(ui)

then the strength of Wn is the strength of Cn−1.

Proof. Choose two distinct non-adjacent vertices u and v of Wn. Clearly u, v ∈

V (Cn−1). Since µ(h) <
n−1
∨
i=1

µ(ui), all paths joining u and v, through h have

strength µ(h), which is less than the strength of any path joining ui and uj in

Cn−1. Therefore the length of extra strong paths joining u and v in Wn and those

in Cn−1 are one and the same. Hence the result.

Theorem 3.1.5. Let Wn be as in Theorem 3.1.4. If µ(h) ≥
n−1
∨
i=1

µ(ui) then the

strength of Wn is one when n = 4 and two when n > 4.

Proof. When n = 4, Wn is a complete fuzzy graph. Therefore the strength of

Wn is one [48].

Now suppose that n > 4. Let u and v be any two distinct non-adjacent

vertices of Wn. Therefore both belong to V (Cn−1). Clearly uhv is an extra

strong u− v path in Wn. So strength of Wn is 2.

The only remaining case is that some vertices of Cn−1 have weight greater

44



3.1. Strength of join of fuzzy graphs

than µ(h) and some have weight less than or equal to µ(h). In this case we have

the following result.

Theorem 3.1.6. Let Wn be as in Theorem 3.1.4. Suppose that µ(h) ≤ µ(ui) for

some but not all the vertices ui, i = 1, 2, . . . , n− 1. Let P be one of the maximal

paths of Cn−1 with the property that each edge of which has strength greater than

µ(h). Let l be the length of P . Then S (Wn) = l ∨ 2.

Proof. Let u, v be any two distinct non-adjacent vertices of Wn. Then u and v

are vertices of Cn−1. Let P1 and P2 be two paths in Cn−1 having u and v as the

end vertices.

Suppose that l ≤ 1. Then both P1 and P2 have strength less than or equal

to µ(h). Therefore uhv is an extra strong path in Wn. Hence in this case

S (Wn) = 2.

Now suppose l ≥ 2. If both the paths P1 and P2 have strength less than or

equal to µ(h) then uhv is an extra strong path joining u and v and which is of

length 2. If exactly one of the paths P1 and P2 say P1 has strength greater than

µ(h), then the extra strong path joining u and v in Wn is the path P1. Since

each edge of which has strength greater than µ(h), the length of P1 ≤ length of

P = l. In particular if u and v are the end vertices of P , then P itself is an extra

strong path joining u and v. Hence the theorem.
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3.2. Corona of strong fuzzy graphs

3.2 Corona of strong fuzzy graphs

Definition 3.2.1. [21] Let G1(U, µ1, σ1)and G2(V, µ2, σ2) be two fuzzy graphs

with the respective underlying crisp graphs G1(U,E1) and G2(V,E2) where U =

{u1, u2, . . . , um} and V = {v1, v2, . . . , vn}. Then the corona G(W,µ, σ) of G1

and G2 is a fuzzy graph with the underlying crisp graph is the corona G =

G1 ⊙ G2 of G1(U,E1) and G2(V,E2) with vertex set W = U ∪ (∪n
i=1Vi), where

Vi = {v1i, v2i, . . . , vni}, i = 1, 2, . . .m. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, the vertex

vji represent the vertex vj of G2 in the ith copy of G2 corresponding to the vertex

ui of G1. The fuzzy subset µ and the fuzzy relation σ on W are defined as

µ(w) =











µ1(ui) if w = ui ∈ U,

µ2(vj) if w = vji, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

and

σ(uv) =











































































σ1(uv) if u, v ∈ U,

σ2(uv) if there exists an i such that u = vj1i

and v = vj2i for some j1, j2 with 1 ≤ j1 6= j2 ≤ m,

µ1(u) ∧ µ2(v) if v = vji for some i and u = ui

or u = vji for some i and v = ui.
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3.2. Corona of strong fuzzy graphs

PSfrag replacements

u1 u2 u3 um

v1 v2 v3 vn

u1

u2 um

v11 v21 v31 vn1 v12 v22 v32 vn2 v1m v2m v3m vnm

G1

G2 G

G1

G21 G22 G2n

Figure 3.5: Two fuzzy graphs G1 and G2 and their corona.

As in the case of join, if G is the corona of G1 and G2 then both G1 and G2

can be considered as partial fuzzy subgraphs of G.

If G1 is complete and G2 is a trivial fuzzy graph then,

S (G) =











1 if G1 is trivial,

3 otherwise.

Notation 3.2.1. Suppose G1 and G2 are fuzzy graphs as in Definition 3.2.1.

The copy of G2 in G corresponding to the vertex ui of G1 in the corona G of G1

and G2 is denoted by G2i.

Let G1(U, µ1, σ1) and G2(V, µ2, σ2) be two fuzzy null graphs and G(W,µ, σ)

be the corona of G1 and G2. If |V | = 1 then G is the union of paths on two

vertices. Therefore, by Theorem 1.4.1 strength of G is one. If |V | > 1 then G is

the union of strong fuzzy star graphs with at least three vertices. So its strength

is 2 by Theorem 1.4.1.
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3.2. Corona of strong fuzzy graphs

The corona of a fuzzy trivial graph and a non - null strong fuzzy graph is their

join. Hence the Theorem. Hence by the discussions which precedes Theorem

3.2.1.

Theorem 3.2.1. Let G1(U, µ1, σ1) be a fuzzy trivial graph with vertex set {u}

and G2(V, µ2, σ2) be not a fuzzy null graph with vertex set V = {v1, v2, . . . , vn}.

Let G(W,µ, σ) be the corona of G1 and G2. Let l be the maximum of length of

all subpaths of G2 of strength > µ1(u) if such a path exists. Otherwise let l be

zero. Then S (G) = l ∨ 2.

Definition 3.2.2. Let G(V, µ, σ) be a fuzzy graph. A path P with ends u and v

in G is said to be a critical extra strong path if P is an extra strong u− v path

with length is equal to S (G).

Note 3.2.1. A fuzzy graph G may contain more than one critical extra strong

paths.

Notation 3.2.2. The minimum of strength of all critical extra strong paths of

a fuzzy graph G is denoted by σ0(G) or simply by σ0 if there is no confusion.

Proposition 3.2.1. Let G1(U, µ1, σ1) and G2(V, µ2, σ2) be two strong fuzzy

graphs. Let G(W,µ, σ) be the corona of G1 and G2 then S (G) ≥ S (G1).

Proof. Let u, v ∈ V (G). If u and v are in V (G1) then all the u − v paths lie

completely in the partial fuzzy subgraph G1 of G. So length of an extra strong

u − v path in G is equal to that in G1. So by definition of strength of a fuzzy

graph, S (G) ≥ S (G1). Hence the proposition.

48



3.2. Corona of strong fuzzy graphs

The following Theorems deal with only those fuzzy graphs whose underlying

crisp graphs are connected.

Definition 3.2.3. Let G be a fuzzy graph of strength S (G). Any extra strong

path of length S (G)− 1 is called a minus critical extra strong path .

Theorem 3.2.2. Let G(W,µ, σ) be the corona of two strong fuzzy graphs G1(U, µ1,

σ1) and G2(V, µ2, σ2) on the vertex sets U = {u1, . . . , un} and V = {v1} respec-

tively. Let µ2(v1) < σ0. Suppose S (G1) ≥ 4 and G1 contains no minus critical

extra strong path. Then S (G) = S (G1) provided, the ends of every critical path

in G1 is also connected by a path of length ≤ S (G1)− 2.

Proof. Let u, v be two nonadjacent vertices of G.

If u and v ∈ V (G1) then length of the extra strong u−v path inG is ≤ S (G1).

If u = v1i and v = v1j , i 6= j then all the u − v paths must pass through both

ui and uj and all such paths in G have strength µ2(v1). The hypothesis of the

theorem imply that there is a u−v path in G1 of length ≤ S (G1)−2. Therefore,

the length of the extra strong u− v path in G is ≤ S (G1)− 2 + 2 = S (G1).

Similarly, if u ∈ V (G1) and v ∈ V (G2i) then the length of the extra strong

u− v path is ≤ S (G1).
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Figure 3.6: Corona G of two strong fuzzy graphsG1 and G2 with S (G1) = S (G) = 6.

The following three theorems can be proved in the same way as the previous

one was proved.

Theorem 3.2.3. Let G(W,µ, σ) be the corona of two strong fuzzy graphs G1(U, µ1,

σ1) and G2(V, µ2, σ2) on the vertex sets U = {u1, . . . , un} and V = {v1} respec-

tively. Let µ2(v1) < σ0. Suppose S (G1) ≥ 4 and G1 contains a minus critical

extra strong path. Then S (G) = S (G1) provided the ends of every critical path

in G1 is connected by a path of length ≤ S (G1)− 2 and the ends of every minus

critical path in G1 is also connected by a path of length ≤ S (G1)− 1.

Theorem 3.2.4. Let G(W,µ, σ) be the corona of two strong fuzzy graphs G1(U, µ1,

σ1) and G2(V, µ2, σ2) on the vertex sets U = {u1, . . . , un} and V = {v1} respec-

tively. Suppose there exists no minus extra strong path in G1. Let µ2(v1) < σ0

and S (G1) ≥ 4. Then S (G) = S (G1) + 1 provided the ends of every critical

path is also connected by a path of length S (G1) − 1 and there exists a critical
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3.2. Corona of strong fuzzy graphs

path in G whose ends are connected by paths of length S (G) and S (G)−1 only

in G1.

Theorem 3.2.5. Let G(W,µ, σ) be the corona of two strong fuzzy graphs G1(U, µ1,

σ1) and G2(V, µ2, σ2) on the vertex sets U = {u1, . . . , un} and V = {v1} respec-

tively. Suppose there exists a minus extra strong path in G1. If µ2(v1) < σ0 and

S (G1) ≥ 4 then S (G) = S (G1) + 1 provided that the ends of every critical

extra strong path in G1 is connected by a path of length ≤ S (G1)− 1 and either

there exists a minus critical extra strong path whose ends are connected only by

paths of length S (G)− 1 or there exists a critical extra strong path whose ends

are connected only by paths of length ≥ S (G)− 1.
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Figure 3.7: Corona of two fuzzy graphs G1 and G2 with S (G1) = 5, S (G) = 6.

Theorem 3.2.6. Let G(W,µ, σ) be the corona of two strong fuzzy graphs G1(U, µ1,

σ1) and G2(V, µ2, σ2) on the vertex sets U = {u1, . . . , un} with |U | > 1 and

V = {v1} respectively. Suppose that there exists a critical extra strong path P

in G1 such that either its ends are joined by only one path in G1 or every other

paths in G1 which joins the ends of P with strength ≥ µ2(v1) is of length ≥ that

of P . Then S (G) = S (G1) + 2.
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3.2. Corona of strong fuzzy graphs

Proof. Let u, v be two nonadjacent vertices of G. If u and v ∈ V (G1) then length

of the extra strong u− v path in G is less than or equal to S (G1). Now suppose

that there exists a critical extra strong path P in G1 such that its ends are joined

by only one path in G1. Let ui and uj be the ends of P . Then there exists only

one path in G joining v1i and v1j. Therefore it itself is an extra strong v1i − v1j

path in G and its length is S (G1)+2. Therefore in this case S (G) = S (G1)+2.

In the second case also, we suppose that ui and uj are the ends of P . Then

the extra strong v1i − v1j path in G is the path obtained by adding the edges

v1iui and ujv1j at the ends ui and uj of the path P to P respectively. Therefore

in this case also S (G) = S (G1) + 2.

Theorem 3.2.7. Let G(W,µ, σ), G1(U, µ1, σ1) and G2(V, µ2, σ2) be as in The-

orem 3.2.6. If there exists a critical path P in G1 of strength ≤ µ2(v1) then

S (G) = S (G1) + 2.

Proof. Suppose there exists a critical path P of strength ≤ µ2(v1) in G1 with

ends ui and uj. Then the v1i − v1j path in G obtained by adding the edges v1iu1

and ujv1j at ui and uj respectively of P to P is an extra strong v1i − v1j path of

length S (G1) + 2. So we can conclude that S (G) = S (G1) + 2.
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Figure 3.8: Corona of two fuzzy graphs G1 and G2 with S (G1) = 5 and S (G) = 7.

Theorem 3.2.8. Let G1(U, µ1, σ1) be a strong fuzzy graph. Suppose that the

underlying crisp graph is a path with vertex set U = {u1, u2, . . . , un}. Let

G2(V, µ2, σ2) be a fuzzy null graph with vertex V = {v1, v2, . . . , vm} with |V | > 1.

Let G(W,µ, σ) be the corona of G1 and G2. Then S (G) = S (G1) + 2.

Proof. When |V | = 1, the result follows by Theorem 3.2.6. When |V | > 1, let

u and v be two nonadjacent vertices of G. If both of them are in G1 then the

length of the extra strong u − v path is ≤ S (G1). If u and v are in the same

copy of G2, say G2i of G then uuiv is the only extra strong path joining them.

If u and v are in different copies of G2 in G say u ∈ G2i and v ∈ G2j , i 6= j

then every u− v path in G is a union of the edge uui, ui− uj path in the partial

fuzzy subgraph of G1 of G and the edge ujv. So length of an extra strong u− v

path is equal to (length of the ui−uj path in G1)+2. If ui = u1 and uj = un then

the length of the extra strong u− v path in G = S (G1) + 2. If u ∈ V (G2i) and

v ∈ V (G1) then the length of the extra strong u−v path is clearly ≤ S (G1)+2.

(See Figure 3.9).
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Figure 3.9: Two fuzzy graphs G1 and G2 and their corona.

Suppose G1(U, µ1, σ1) and G2(V, µ2, σ2) are two strong fuzzy paths on n and

m vertices respectively. Let G(W,µ, σ) be the corona of G1 and G2. Then G is

a path on 2 vertices if n = m = 1. So in this case S (G) = 1. When n = 2 and

m = 1, G is a path on 4 vertices. So in this case S (G) = 3. When n = 1 and

m = 2, G is a fuzzy cycle on 3 vertices. Hence S (G) = 1. When n = 2, m = 2,

G is a 1− linked fuzzy graph with 3 parts. Therefore its strength is 3. Theorem

3.2.9 gives the general case.
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Figure 3.10: Corona G of two fuzzy graphs G1 and G2 with |G1| = |G2| = 2.

54



3.2. Corona of strong fuzzy graphs

Theorem 3.2.9. Let G1(U, µ1, σ1) and G2(V, µ2, σ2) be two strong fuzzy paths

with Pn and Pm be their respective crisp graphs, where n and m ≥ 3. For each

vertex ui of G1, let li be the maximum length of subpaths of G2i whose strength

> µ1(ui) and let l =
n
∨
i=1

li. If there is no such path, let li = 0. Then the strength

of the corona G(W,µ, σ) of G1 and G2 is (n+ 1) ∨ l.

Proof. Let U = {u1, u2, . . . , un} and V = {v1, . . . , vm}. Let u and v be two

nonadjacent vertices of G(V, µ, σ). If u and v are in G1 then the extra strong

u− v path in G lies in G1 and hence its length ≤ S (G1) = n− 1.

Let u ∈ V (G2i) and v ∈ V (G1). Then all the u− v paths must pass through

ui of G1. Since u and ui are adjacent the only extra strong u − v path in G is

the union of the edge uui and the path ui − v of G1. So, the length of the extra

strong u− v path is ≤ S (G1) + 1 = n.

Let u ∈ V (G2i) and v ∈ V (G2j), i 6= j. Then all the u − v paths in G must

pass through both ui and uj of G1. So in this case the extra strong u − v path

in G is a union of the edge uui of G, the path ui − uj of G1 and the edge ujv of

G. So, length of the extra strong u− v path in G is ≤ S (G1) + 2 = n+ 1.

Let u, v ∈ V (G2i). If li ≥ 2, then the length of any extra strong u− v path in

G is ≤ li. If u and v are the end vertices of a subpath of G2i of length li such that

if strength > µ1(ui) then the length of extra strong u− v path is li. Otherwise,

that is if li ≤ 1, it is 2. Hence the Theorem.

Theorem 3.2.10. Let G1(U, µ1, σ1) and G2(V, µ2, σ2) be two strong fuzzy but-
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3.2. Corona of strong fuzzy graphs

terfly graphs. Then the strength of corona G(W,µ, σ) of G1 and G2 is 4.

Proof. Let w be the central vertex of G1 and w′ be the central vertex of G2. Let

the vertices of G1 be {u1, u2, u3, u4, w} and vertices of G2 be {v1, v2, v3, v4, w
′}.

Let us denote the copy of G2 corresponding to w by G2w. Let u, v be two

nonadjacent vertices of G.

If u and v are in G1 the length of extra strong u− v path in G is ≤ 2.

Let u = vij and v = vik where j 6= k. Then, both u and v are adjacent to

ui ∈ V (G1) in G. Also all the u−v paths either pass through ui of G1 or through

the central vertex w′ of G2i in G. If µ1(ui) = µ2(w
′) then all the u − v paths

have same strength. So the length of the extra strong path is 2.

If µ1(ui) > µ2(w
′) then the extra strong path does not pass through w′.

Therefore the extra strong u− v path is uuiv. If µ1(ui) < µ2(w
′) then the extra

strong u − v paths lie completely in G2i. Therefore such paths have length 2.

Now let us suppose that u and v be in two different copies of G2. If u ∈ G2i and

v ∈ G2j then the length of the extra strong u − v path in G is 4. On the other

hand if u ∈ G2i and v ∈ G2w then length of the extra strong u−v path is 3. Also

if ui or uj is w, the length of the extra strong u− v path is 3. So S (G) = 4.
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3.3. Fuzzy Subdivision graph

3.3 Fuzzy Subdivision graph

Definition 3.3.1. [?] Let G(V, µ, σ) be a fuzzy graph with underlying crisp

graph G(V,E). Then the subdivision graph of G, denoted by sd(G), is the

fuzzy graph sd(G)(Vsd, µsd, σsd) with the underlying crisp graph is the subdivision

graph of G(V,E), where the vertex set Vsd = V ∪E and the membership functions

µsd and σsd are defined as

µsd(u) =











µ(u) if u ∈ V,

σ(u) if u ∈ E.

σsd(u, e) =











µsd(u) ∧ µsd(e) if u ∈ V, e ∈ E and u is one of the end vertices of e in G,

0 otherwise.

Theorem 3.3.1. Let G be a strong fuzzy path on n vertices. Then the strength

S (sd(G)) of the subdivision graph sd(G) of G is 2S (G).

Proof. The subdivision graph of a strong fuzzy path on n vertices is a strong fuzzy

path on 2n−1 vertices. (See Figure 3.11). So strength of sd(G) is (2n−1)−1 =

2(n− 1) = 2S (G).

57



3.3. Fuzzy Subdivision graph
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Figure 3.11: A strong fuzzy path and its subdivision graph.

Theorem 3.3.2. Let G(V, µ, σ) be a strong fuzzy butterfly graph. Then the

strength S (sd(G)) of the subdivision graph of G is 6.

Proof. Let the vertex set of G be {u1, u2, u3, u4, u5} with u3 as the central vertex.

Then G is a 1− linked fuzzy graph with two parts G1 and G2, where both G1 and

G2 are fuzzy cycles on 3 vertices. Its subdivision graph is also a 1− linked fuzzy

graph with two parts which are cycles on 6 vertices. (See Figure 3.12). Since

each part Gi, (i = 1, 2) of G has at least two weakest edges of Gi, sd(Gi), i = 1, 2

has at least 4 weakest edges in sd(Gi).

Let u, v be any two vertices of sd(G). If both u and v ∈ V (sd(Gi)), i = 1, 2

then any extra strong path joining u and v lie completely in sd(Gi), i = 1 or 2.

So the strength of the u−v path in G is 3 by Theorem 1.4.2. Since u3 ∈ V (G1)∩

V (G2), u3 ∈ V (sd(G1))∩ V (sd(G2)). If u ∈ sd(G1) \ {u3} and v ∈ sd(G2) \ {u3}

then all the u−v paths can be considered as the union of two paths P1 of sd(G1)

joining u to u3 and P2 of sd(G2) joining u3 to v. Therefore, the length of any

extra strong the u−v path is less than or equal to the length of any extra strong
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3.3. Fuzzy Subdivision graph

u − u3 path in sd(G1) and u3 − v path in sd(G2) which is less than or equal to

3+ 3 = 6. Also when u is the vertex ∈ V (sd(G)) corresponding to the edge u1u2

in G1 and v is the vertex ∈ V (sd(G)) corresponding to the edge u4u5 in V (G2)

the strength of the u− v path is exactly 6.

Hence the theorem.
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Figure 3.12: A strong fuzzy butterfly graph and its subdivision graph.

Theorem 3.3.3. Let G be a strong fuzzy Bull graph then the strength S (sd(G))

of the subdivision graph of G is 6.

Proof. A fuzzy bull graph G(V, µ, σ) is a 1−linked fuzzy graph with three parts.

Let P, P ′ and P ′′ be its parts, where P and P ′′ are fuzzy paths on two vertices

and P ′ is a fuzzy triangle. Then sd(G) is also a 1− linked fuzzy graph with parts

G1 = sd(P ), G2 = sd(P ′) and G3 = sd(P ′′). (See Figure 3.13 ).
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Figure 3.13: A strong fuzzy Bull graph G and its subdivision graph sd(G).

Let u and v be any two non-adjacent vertices of sd(G). If u, v ∈ V (G1) or

u, v ∈ V (G3) then the length of any extra strong u − v path in G is 2. Since

both sd(P ) and sd(P ′′) are paths on 3 vertices.

If u, v ∈ V (G3) then all the paths joining u and v lie completely in G3. Since

G3 is the subdivision graph of the strong fuzzy triangle P ′′, it is a strong fuzzy

cycle on 6 vertices. As P ′ contains at least 2 weakest edges, sd(G3) contains at

least 4 weakest edges. Therefore by Theorem 1.4.2, the length of the extra strong

u− v path in G3 is 3.

Let {w} = V (G1) ∩ V (G3) and {w′} = V (G2) ∩ V (G3). If u ∈ V (G1) and

v ∈ V (G2) then all the u− v paths pass through both w and w′ in sd(G). Since

w and w′ are adjacent in G, the extra strong path joining w and w′ in sd(G)

is wew′ where e is the vertex in sd(G) corresponding to the edge ww′ in G. So

the length of the extra strong path joining u and v is ≤ 2 + 2 + 2 = 6. When u

and v are the pendant vertices of G then the extra strong u− v path has length

exactly 6. Therefore S (G) = 6.
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3.3. Fuzzy Subdivision graph

For a strong fuzzy tree G, the strength of G is the diameter of the underlying

crisp graph of G. The subdivision graph of a fuzzy star graph is a fuzzy tree. It

is immediate from the definition of fuzzy star graph and subdivision of a fuzzy

graph the strength of the subdivision graph of a fuzzy star graph is 4.

Theorem 3.3.4. The strength of the subdivision graph of a fuzzy star graph [56]

G is 4.

Note 3.3.1. Let G be a strong fuzzy cycle on n vertices with l weakest edges

in G having weight w. Then the edges in sd(G) incident with that vertices of

sd(G) corresponding to weakest edges of G are of weight w. Therefore in sd(G),

there are 2l weakest edges.

Theorem 3.3.5. Let G be a strong fuzzy cycle of length n, which contains l

weakest edges and which do not contain any weakest edge of G. Then the strength,

S (sd(G)), of the subdivision graph of G is 2S (G).

Proof. We have by Note 3.3.1, for a strong fuzzy cycle G of length n, if there are

l weakest edges which altogether form a subpath in G then there are 2l weakest

edges which altogether form a subpath in sd(G).

By Theorem 1.4.2 if 2l ≤ [2n+1
2

] then S (sd(G)) = 2n − 2l = 2(n − l). If

2l ≤ [2n+1
2

] then l ≤ [n+1
2
] so S (sd(G)) = 2S (G). Also by Theorem 1.4.2 if

2l > [2n+1
2

] then S (sd(G)) = [2n
2
] = 2[n

2
]. We have 2l > [2n+1

2
] implies l ≥ [n+1

2
]

so S (sd(G)) = 2S (G).
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3.3. Fuzzy Subdivision graph

Suppose there are l weakest edges which do not altogether form a subpath in

G. Then the 2l weakest edges of sd(G) also do not form a subpath in sd(G). So

by Theorem 1.4.3 if 2l > [2n
2
]− 1 then S (sd(G)) = [2n

2
].

But if 2l > [2n
2
]− 1 then l > [n

2
]− 1. Hence in this case S (sd(G)) = 2S (G).

Similarly if 2l < [2n
2
] − 1 then S (sd(G)) = [2n

2
]. Also 2l < [2n

2
] − 1 implies

l ≤ [n
2
]− 1. So S (sd(G)) = [2n

2
] = 2S (G).

Hence the proof.

Theorem 3.3.6. The strength of the subdivision graph of a strong fuzzy diamond

graph is 4.

Proof. Let G be a strong fuzzy diamond graph with vertex set {u1, u2, u3, u4}.

Also let u and v be two non-adjacent vertices of sd(G).

Case 1. u, v ∈ V (G).

If u and v are adjacent in G and e be the edge joining u and v in G then the

strength of the u − v path is less than or equal to µsd(u) ∧ µsd(v) and which is

equal to σsd(e). So the path uev is the extra strong path joining u and v in sd(G)

which is of length 2. If u and v are non-adjacent vertices in G then u, v ∈ {u2, u4}

as shown in Figure 3.14. Suppose that u = u2 and v = u4.
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3.3. Fuzzy Subdivision graph
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Figure 3.14: A strong fuzzy diamond graph G and its subdivision graph sd(G).

Then any extra strong path joining u and v in sd(G) pass either through u1

or through u3 depending up on their weights. Without loss of generality assume

that µ(u1) ≥ µ(u3). Since u1 is adjacent to both u and v and e1 is the edge uu1

and e4 is the edge u1v in G, so ue1u1e4v is an extra strong path in sd(G) and it

is of minimum length among all the other strong paths.

Case 2. u, v ∈ E(G).

If u and v have a common vertex w in G then in sd(G) the path uwv is an

extra strong path since, the strength of all the paths joining u and v in sd(G)

have strength ≤ µsd(u) ∧ µsd(v) and µsd(w) ≥ µsd(u) ∧ µsd(v). So the length of

the extra strong path joining u and v is 2.

Otherwise, suppose u and v have no common vertex in G then u and v ∈

{e1, e3} or {e2, e4}. (See Figure 3.14). Without loss of generality assume that u

and v ∈ {e1, e3}. In this case all the u− v paths have strength less than or equal

to µsd(u) ∧ µsd(v) = µsd(u1) ∧ µsd(u2) ∧ µsd(u3) ∧ µsd(u4). Therefore, the length
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3.3. Fuzzy Subdivision graph

of the extra strong path is the minimum distance between u and v which is 4.

Case 3. u ∈ V (G) and v ∈ E(G).

Without loss of generality assume that u = u1 and v = e3 where e3 is the

vertex in sd(G) corresponding to the edge u3u4 in G. (See Figure 3.14). Then

strength of each u− v path in sd(G) ≤ µsd(u) ∧ µsd(v) = µ(u1) ∧ µ(u3) ∧ µ(u4).

So the extra strong path joining u and v lies completely in the maximal partial

fuzzy subgraph of sd(G) with vertex set {u1, u3, u4, e3, e4, e5}, which is a strong

fuzzy cycle on 6 vertices. So the length of the extra strong path joining u and v

is 3.

Theorem 3.3.7. Let G be a fuzzy complete graph. Then the strength S (sd)(G)

is 3 for n = 3 and 4 for n > 3.

Proof. When n = 3, sd(G) is a strong fuzzy cycle on 6 vertices having at least 4

weakest edges. So the the result follows by Theorem 1.4.2.

Consider the case, n > 3. Let u, v be two non-adjacent vertices of sd(G). If

u and v are the vertices of G then the extra strong path joining u and v is uev

where e is the edge uv in G and is of length 2.

If u and v are edges of G then, if they have a common vertex w in G then

the path uwv in sd(G) is of strength exactly equal to µsd(u) ∧ µsd(v), which is

an extra strong path joining them in sd(G).
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3.4. Fuzzy middle graph

Suppose u = ujuk and v = ulum are edges of G and have no vertex in

common. The weight of the edges uuj and uuk are the same and the weight of

the edges vul and vum are the same in sd(G) and the extra strong path joining

any two vertices u′ and u′′ of G in sd(G) is u′eu′′, where e is the edge joining u′

and u′′ in G. So all the u−v paths must have same strength in sd(G). Therefore,

the length of the extra strong path joining u and v is the length of the shortest

u− v path in sd(G), which is 4.

3.4 Fuzzy middle graph

Definition 3.4.1. [29] Let G(V, µ, σ) be a fuzzy graph with its underlying crisp

graph G(V,E). The fuzzy middle graph of G is denoted by M(G)(VM , µM , σM)

with crisp graph M(G)(VM , EM), where the vertex set VM = V ∪ E and edge

set EM = {uv : either u and v are two adjacent edges of G or u ∈ V and v ∈

E with u as one end vertex of v},

µM(u) =











µ(u) if u ∈ V,

σ(u) if u ∈ E.

and

σM (uv) =











σ(u) ∧ σ(v) if u, v are two adjacent edges of G,

σ(v) if u ∈ V and v ∈ E with u as one end vertex of v.
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3.4. Fuzzy middle graph

From the definition of middle graph of a fuzzy graph it is clear that the

middle graph of a strong fuzzy path on n vertices is a 1− linked fuzzy graph

with n parts, each of which is a complete fuzzy graph. So by Lemma 2.3.2 the

strength of middle graph of a strong fuzzy path on n vertices is n.

Theorem 3.4.1. Let G(V, µ, σ) be a complete strong fuzzy graph with M(G)(VM ,

µM , σM) its fuzzy middle graph. Then

S (M(G)) =











0 if |V | = 1,

2 if |V | ≥ 2.

Proof. LetG(V, µ, σ) be a complete fuzzy graph with middle graphM(G)(VM , µM ,

σM ). Let {u1, u2, . . . , un} be the vertex set and {e1, e2, . . . , en(n−1)
2

} be the edge

set of G. If |V | = 1 then G and M(G) are fuzzy trivial graphs. Hence

S (M(G)) = S (G) = 0.

If |V | = 2 then M(G) is a path on 3 vertices. Hence S (G) = 2.

Suppose that |V | > 2. Let u, v be two non - adjacent vertices of M(G).

Case 1. u, v ∈ V (G).

Since all the vertices of G are adjacent, e = uv is an edge of G and therefore

it is a vertex of M(G). By the definition of M(G), e is adjacent to both u and

v in M(G) and µM(e) = σ(e) = µ(u) ∧ µ(v). As all the paths joining u and v

66



3.4. Fuzzy middle graph

in M(G) have strength less than or equal to µ(u) ∧ µ(v), uev is an extra strong

u− v path in M(G).

Case 2. u, v ∈ E(G).

Suppose ul, uk, um and uj ∈ V (G) such that u = uluk and v = umuj, in G.

Then any path joining u and v have strength ≤ µ(ul)∧ µ(uk)∧ µ(um)∧ µ(uj) =

µ◦(say). If w is the edge umul or umuk or ujul or ujuk of G then uwv is a path in

M(G) with strength µ◦. So the length of any extra strong u − v path in M(G)

is 2.

Case 3. u ∈ V (G) and v ∈ E(G).

Clearly all the u − v paths in M(G) must have strengths ≤ µM(u) ∧ µM(v).

Let w be one of the end vertices of v. Since G is complete, u is adjacent to

w. Therefore e = uw is an edge of G. Hence it is a vertex of M(G) adjacent

to both u and v in M(G). Thus uev is a u − v path in M(G) having strength

µM(u) ∧ µM(v). Therefore uev is an extra strong u − v path in M(G). Hence

the theorem.

Theorem 3.4.2. Let G(V, µ, σ) be a strong fuzzy star graph andM(G)(VM , µM , σM)

be its fuzzy middle graph. Then

S (M(G)) =



























0 if |V | = 1,

2 if |V | = 2,

3 otherwise.
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3.4. Fuzzy middle graph

Proof. If |V | = 1 or 2 then G is a complete fuzzy graph. Therefore the result

follows from Theorem 3.4.1. So suppose that |V | ≥ 3. Let V = {u1, u2, . . . , un}

be the vertex set of G with un as the central vertex and {e1, e2, . . . , en−1} be

the edge set of G with ek = ukun. Then {u1, u2, . . . , un, e1, e2, . . . , en−1} be the

vertex set of the middle graph M(G) of G (See Figure 3.15).
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Figure 3.15: A strong fuzzy star graph and its middle graph M(G).

Let u and v be two non-adjacent vertices ofM(G). Then we have the following

three cases:

i Both u and v are pendant vertices of G.

ii One of u and v is a pendant vertex and the other is the central vertex of

G .

iii One of u and v say u is a pendant vertex of G and other is a vertex of

M(G) which corresponds to an edge in G with u is not an end vertex.
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3.4. Fuzzy middle graph

In the first case, let us suppose that u = ui and v = uj, where 1 ≤ i 6= j ≤ n−1.

Then all the u−v paths pass through both the vertices ei and ej in M(G). Since

the middle graph of a strong fuzzy graph is strong fuzzy, M(G) is a strong fuzzy

graph. As ei and ej are the support vertices of u and v in M(G) respectively, all

u− v paths in M(G) must pass through these two vertices. Thus the u− v path

ueiejv of M(G) will be an extra strong u− v path with length 3.

In the second case, without loss of generality assume u = ui and v = un, i < n.

All the u− v paths must pass through ei. As ei is adjacent to both u and v, ueiv

is an extra strong u− v path with length 2.

In the last case, we suppose that u = ui, where i 6= n and v = ej = unuj,

where j 6= i. Here, ueiv is an extra strong u − v path in G of length 2. Hence

the Theorem.

Theorem 3.4.3. Let G(V, µ, σ) be a strong fuzzy diamond graph andM(G)(VM , µM ,

σM ) be its fuzzy middle graph. Then S (M(G)) = 3.

Proof. Let V = {u1, u2, u3, u4} be the vertex set and E = {e1, e2, . . . , e5} where

e1 = u1u2, e2 = u2u3, e3 = u3u4, e4 = u4u1, e5 = u1u3 be the edge set of G. Then

VM = {u1, u2, . . . , u4, e1, e2, . . . , e5} (See Figure 3.16).
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Figure 3.16: A fuzzy diamond graph G and its middle graph M(G).

Let u, v be two nonadjacent vertices of M(G). Then

Case 1. u and v are two adjacent vertices in G.

Suppose u = u1 and v = u2. Since σ(e1) = µ(u1) ∧ µ(u2) = µM(e1) and the

vertex e1 is adjacent to both u1 and u2 in M(G), u1e1u2 is the extra strong path

joining u and v. So that the length of the extra strong u1 − u2 path is 2. In all

other cases also the length of the extra strong u− v path is 2.

Case 2. u and v are two non - adjacent vertices in G say u = u2 and v = u4.

Without loss of generality assume that µ(u1) ≤ µ(u3). If µ(u4) ∧ µ(u2) ≤

µ(u1) then the length of an extra strong path must be the minimum length of

the path joining u and v, which is 3.

If µ(u4) ∧ µ(u2) > µ(u1) then u2e2e3u4 is an extra strong u − v path and is

of length equal to 3.
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3.5. Total fuzzy graph, fuzzy split graph and fuzzy shadow graph

Case 3. u and v are two non-adjacent edges in G.

Then u, v ∈ {e1, e3} or u, v ∈ {e2, e4} in M(G). So all the u − v paths have

strength = µM(e1) ∧ µM(e3) = µ(u1) ∧ µ(u2) ∧ µ(u3) ∧ µ(u4). Therefore each

e1eie3, i = 2 or 4 or 5 is an extra strong path and is of length 2.

Case 4. u is a vertex of G and v is an edge of G.

Because of the symmetry we need only to consider the case u = u1 and

v = e3. As all extra strong u − v path have strength ≤ µM(u1) ∧ µM(e3) =

µ(u1) ∧ µ(u3) ∧ µ(u4) and since µM(e5) = σ(e5) = µ(u1) ∧ µ(u3), u1e5u3 is an

extra strong u− v path of length 2. Hence the theorem.

3.5 Total fuzzy graph, fuzzy split graph and

fuzzy shadow graph

This section discusses the strength of total fuzzy graph, fuzzy split graph and

fuzzy shadow graph.

3.5.1 Total fuzzy graph

The total graph of a graph G(V,E) is the graph with vertex set V ∪ E and two

vertices are adjacent, whenever they are either adjacent or incident in G [53].
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3.5. Total fuzzy graph, fuzzy split graph and fuzzy shadow graph

Definition 3.5.1. [28] Let G(V, µ, σ) be a fuzzy graph with underlying crisp

graph G(V,E). Then the total fuzzy graph of G, denoted by T (G) is the fuzzy

graph T (G)(VT , µT , σT ) with the underlying crisp graph is the total graph of

G(V,E), where the vertex set VT = V ∪E and the membership functions µT and

σT are defined as

µT (u) =











µ(u) if u ∈ V,

σ(u) if u ∈ E.

and for u, v ∈ VT ,

σT (uv) =











































σ(uv) if u, v ∈ V,

σ(u) ∧ σ(v) if u, v ∈ E and have a common vertex,

µ(u) ∧ σ(v) if u ∈ V, v ∈ E and u is a vertex incident withE,

0 otherwise.

If G is a trivial or a null fuzzy graph then T (G) is G and hence S (T (G)) =

S (G) = 0. If G is a strong fuzzy path on 2 vertices then T (G) is a complete

strong fuzzy graph on 3 vertices. Hence S (T (G)) = 1 by Theorem 1.4.1.

u
1

u
2

1

T(G)

u
1

u
2

1

G
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G

T (G) T (G)

Figure 3.17: A fuzzy path on 2 vertices and its total fuzzy graph.
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3.5. Total fuzzy graph, fuzzy split graph and fuzzy shadow graph

Theorem 3.5.1. Let G(V, µ, σ) be a strong fuzzy graph with its underlying crisp

graph G(V,E), a path on n > 2 vertices. Then the strength of T (G) is n− 1.

Proof. Let us suppose that V = {u1, u2, . . . .un} and E = {e1, e2, . . . , en−1} where

ei = uiui+1, i = 1, 2, . . . , n− 1.

Let u, v be two non-adjacent vertices of T (G) (See Figure 3.18 ).

PSfrag replacements
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u1

e1

e1
u2

u2

e2

e2
u3

u3

e3

e3
u4

u4

G T (G)

Figure 3.18: A fuzzy path on 4 vertices and its total fuzzy graph.

Case 1. u, v ∈ {u1, u2, . . . , un} or u, v ∈ {e1, e2, . . . , en−1}.

First of all suppose that u, v ∈ {u1, u2, . . . , un}. Let us suppose that u = ui

and v = uj, i < j. Clearly any extra strong u− v path lie in the maximal partial

fuzzy subgraph G′ with vertex set {ui, ei, ui+1, ei+1, . . . , uj, ej}. In this case there

is only one extra strong u− v path, namely uiui+1 . . . uj If possible, let k be the

least positive integer ≥ i such that ek belongs to the vertex set of an extra strong

u − v path P in T (G). Let ekek+1 . . . ek+h be the maximal subpath of P which

lies in the path e1e2 . . . en−1 beginning at ek.

Then P1 = ukuk+1ekek+1 . . . ek+huk+h+1 or P2 = ukuk+1ek . . . ek+huk+h or
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3.5. Total fuzzy graph, fuzzy split graph and fuzzy shadow graph

P3 = ukek . . . ek+huk+h+1 or P4 = ukek . . . ek+huk+h is a subpath of P . Then

by replacing the subpaths P3 by ukuk+1 . . . uk+h+1 and P2 and P4 by the path

ukuk+1 . . . uk+h, we get a u− v path of strength ≥ that of P and length less than

or equal to that of P ; a contradiction. So we can conclude that the extra strong

u − v path in this case is uiui+1 . . . uj−1uj. Therefore the length of the extra

strong u− v path is less than or equal to n− 1.

Similarly we can prove that if u, v ∈ {e1, e2, . . . , en−1} then the length of the

extra strong u− v path is ≤ n− 2.

Case 2. u ∈ {u1, u2, . . . , un} and v ∈ {e1, e2, . . . , en−1}.

Let u = ui and v = ej , i < j. In this case every extra strong u− v path must

be a subpath of the maximal partial fuzzy subgraph G′′ of T (G) with vertex

set ui, ui+1, . . . , uj, ei, ei+1, . . . , ej. Let us denote the path u1u2 . . . un of T (G)

by P1 and the path e1e2 . . . en−1 of T (G) by P2. Also let P be an extra strong

u − v path in T (G) which lies in G′′. Suppose k is the least positive integer

such that ek ∈ V (P ). Then i ≤ k ≤ j. By case 1 we can conclude that P is

uiui+1 . . . ukek . . . ej . Its length is clearly k − i + j − k + 1 = j − i + 1 ≤ n − 1

and equal to n− 1 if i = 1 and j = n.

3.5.2 Fuzzy split graph

Definition 3.5.2. [7] For a graph G and a vertex v of G, the neighbourhood

set N(v) is defined as the set of all vertices of G which are adjacent to v in G.
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3.5. Total fuzzy graph, fuzzy split graph and fuzzy shadow graph

Definition 3.5.3. [46] For a graph G the split graph split(G) is obtained by

adding a new vertex v′ corresponding to each vertex v of G such that N(v′) =

N(v).

Unless otherwise specified we denote the vertex corresponding to the vertex

v of G in split(G) by v′ and the set of all such vertices v′ by V ′.

Hence the split(G) has the vertex set Vsplit = V ∪V ′ and the edge set Esplit =

{uv : u, v ∈ V and u, v are adjacent in G or u ∈ V, v = w′ ∈ V ′ such that u, w are

adjacent in G}.

Definition 3.5.4. The fuzzy split graph split(G)(Vsplit, µsplit, σsplit) of a fuzzy

graph G(V, µ, σ) is a fuzzy graph with underlying crisp graph split(G) where

µsplit(u) = µsplit(u
′) = µ(u) for u ∈ V and u′ ∈ V ′.

σsplit(uv) =











































σ(uv) if u and v are adjacent in V,

µ(u) ∧ µ(v) if v = w′ ∈ V ′ such that u and w,

are adjacent in G,

0 othewise.

For |V | = 1, split(G) is a null fuzzy graph on 2 vertices. Therefore its strength

is 0.

Theorem 3.5.2. Let G(V, µ, σ) be a strong fuzzy path on n > 1 vertices. Then

the strength of split(G), the fuzzy split graph of G is

S (split(G)) =











n− 1 if n > 3,

3 if n = 2, 3.
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3.5. Total fuzzy graph, fuzzy split graph and fuzzy shadow graph

Proof. When n = 2, the split graph of G is a fuzzy path on 4 vertices. Hence

strength of split(G) is 3. (See Figure 3.19 (a)).

When n = 3, let V = {v1, v2, v3} be the vertex set of G as shown in Figure

3.19 (b) and u, v be two nonadjacent vertices of fuzzy split graph of G. If u = v1

and v = v3 then uv2v and uv′2v are the only extra strong u− v paths in split(G).

If u = v1 and if v is either v′1 or v′3, the respective extra strong u − v paths are

v1v2v
′
1 v1v2v

′
3, which is of length 2. If u = v′i and v = v′i+1, i = 1, 2, all the u− v

paths have length 3. In the case u = v′1 and v = v′3 there is only one u− v path,

which is of length 2. Therefore in this case the strength of fuzzy split graph of

G is 3.
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Split (G)
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v
3

1 2
v v

1 2
v v v

v3

3

1 2
v v

(a)
(b)
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Figure 3.19: (a) A fuzzy path on 2 vertices and its split graph, (b) A fuzzy path

on 3 vertices and its split graph.
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Figure 3.20: A fuzzy path on n vertices and its split graph.

When n > 3 we proceed as follows. Let u and v be two nonadjacent vertices

of split(G).

Case 1. u, v ∈ {v1, v2, . . . , vn}.

Let u = vi and v = vj , i < j. Then every extra strong u− v path must be a

subpath P of the maximal partial fuzzy subgraph G′ of split(G) with vertex set

vi, vi+1, . . . , vj, v
′
i+1, . . . , v

′
j−1. First of all note that if a u− v path P in split(G)

passes through vi−1 then it must pass through v′i and vi+1. In fact vivi−1, vi−1v
′
i

and v′ivi+1 are edges of P . In this case by deleting the vertices vj for j < i and

v′j for j ≤ i of P and adding the edge vivi+1 to P we get new u − v path with

less length and, strength not less than that of P , a contradiction. If P passes

through v′i then vivi−1, vi−1v
′
i and v′ivi+1 are edges of P . As above by deleting

these edges of P and adding the edge vivi+1, we get a u − v path with strength

not less than that of P but length strictly less than that of P , a contradiction.

Similarly we can prove that P can’t pass through any of the vertices vk, k > j
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3.5. Total fuzzy graph, fuzzy split graph and fuzzy shadow graph

or v′k, k ≥ j.

Also from the definition of split(G) the path P must pass through either vk

or v′k; k = i + 1, . . . , j − 1. Since µsplit(vk) = µsplit(v
′
k) for k = 1, 2, . . . , n, the

path P is of the form uiui+1 . . . uj−1uj where uk = vk or v′k, k = i+ 1, . . . , j − 1.

In such a way that if some uk = vk then uk+1 = vk+1 or v
′
k+1 and if some uk = v′k

then uk+1 = vk+1. Clearly length of P is j − i.

If u = v1 and v = vn then the length of the extra strong u− v path is equal

to n− 1. (See Figure 3.19).

Case 2. u, v ∈ {v′1, v
′
2, . . . , v

′
n}.

As u is adjacent to vi−1 and vi+1 and v is adjacent to vj−1 and vj+1 only

and any path from u to v traverse through vk or v′k. Then there exist an ex-

tra strong path P in the maximal partial fuzzy subgraph of G with vertex set

v′i, vi+1, v
′
i+1, . . . , vj−1, v

′
j .

Clearly P contains either vk or v′k but not both for i ≤ k ≤ j. Therefore

length of P = j − i.

Case 3. u ∈ {v1, v2, . . . , vn} and v ∈ {v′1, v
′
2, . . . , v

′
n}.

Let u = vi and v = v′j with i ≤ j. If i = j then v = v′i . In this case, since

v′i is adjacent to only vi+1 and vi−1 all the extra strong u − v path must pass

through either vi−1 or vi+1. If µ(vi−1) ≥ µ(vi+1 then uvi−1v is an extra strong

path in G, otherwise uvi+1v is an extra strong path in G.
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3.5. Total fuzzy graph, fuzzy split graph and fuzzy shadow graph

As in the proof of Case (2) we can conclude that the length of the extra

strong path joining u and v is j-i.

Proposition 3.5.1. Let G(V, µ, σ) be a strong fuzzy complete graph on 3 ver-

tices. If there exists a vertex in G whose weight is strictly less than the weight

of the other two vertices then S (split(G)) is 3. Otherwise it is 2.

Proof. Consider a strong fuzzy complete graph with vertex set {v1, v2, v3}. Let

u, v be two nonadjacent vertices of split(G).

Suppose u = vi and v = v′i, 1 ≤ i ≤ 3. Since vi is adjacent to all vertices

except v′i and since µ(vj) = µsplit(vj), ∀j, in split(G) , uvkv is an extra strong

u − v path, where vk, k 6= i is a vertex of G with µ(vk) ≥ max{µ(vj) : j 6= i}.

Now suppose, u = v′i and v = v′j, 1 ≤ i 6= j ≤ 3.

Let vk be the vertex distinct from vi and vj . If µ(vk) ≥ µ(vi)∧µ(vj) then uvkv

is an extra strong u−v path in split(G). Otherwise, that is if µ(vk) < µ(vi)∧µ(vj)

then uvjviv is an extra strong u− v path in split(G).

If at least two vertices of G have the minimum weight then all edges of

split(G) have the same weight. Therefore S (split(G)) = 2.
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Figure 3.21: A graph G on 3 vertices and its split graph.

We generalize Proposition 3.5.1 as follows:

Theorem 3.5.3. Let G(V, µ, σ) be a strong fuzzy complete graph on n ≥ 3. If

there exist two vertices u, v in G such that µ(u)∧µ(v) is greater than the strength

of all other vertices in G. Then the strength of split(G) is 3. Otherwise it is 2.

3.5.3 Fuzzy shadow graph

Definition 3.5.5. [54] The shadow graph of a connected graph G(V,E) is

constructed by taking two copies of G say G′(V ′, E ′) and G′′(V ′′, E ′′) and by

joining each vertex v′ of G′ to those vertices in G′′ which are neighbours of v′′,

where v′ and v′′ represent the same vertex v of G.

Definition 3.5.6. The fuzzy shadow graph S(G)(Vs, µs, σs) of a fuzzy graph

G(V, µ, σ) with underlying crisp graph G(V,E) is defined as a fuzzy graph with

its underlying crisp graph is the shadow graph of G(V,E) with vertex set VS =

80



3.5. Total fuzzy graph, fuzzy split graph and fuzzy shadow graph

V ′ ∪ V ′′ where V ′ and V ′′ are the vertex sets corresponding to the two copies of

G′(V ′, E ′) and G′′(V ′′, E ′′) of G(V,E). For each v ∈ V , the vertices v′ ∈ V ′ and

v′′ ∈ V ′′ corresponding to v have weight µ(v) that is, µS(v
′) = µS(v

′′) = µ(v)

For v′ ∈ V ′ and a neighbour w′′ of v′′ in V ′′, σS(v
′w′′) = µ(v) ∧ µ(w) and

for two adjacent vertices u′,v′ in V ′ and for two adjacent vertices u′′, v′′ in V ′′,

σS(u
′v′) = σS(u

′′v′′) = σ(uv), where u, v ∈ V , and σS is zero in all the other

cases.

Theorem 3.5.4. Let G(V, µ, σ) be a strong fuzzy path on n vertices. Then the

strength S (S(G)) of the shadow graph S(G) of G is

S (S(G)) =











n− 1 if n ≥ 3,

2 if n = 2.

Proof. For n = 2 the shadow graph of G is a fuzzy cycle on 4 vertices. Hence

by Theorem 1.4.2 its strength is 2. Let u and v be two non-adjacent vertices

of S(G). The underlying crisp graph of S(G) has vertex set V (G′) ∪ V (G′′),

where G′ and G′′ are two copies of G with vertex set V (G′) = {v′1, v
′
2, . . . , v

′
n},

V (G′′) = {v′′1 , v
′′
2 , . . . , v

′′
n}. (See Figure 3.22).
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Figure 3.22: (a) Fuzzy path on 2 vertices and its shadow graph (b) Fuzzy path

on 4 vertices and its shadow graph.

Case 1. u, v ∈ {v′1, v
′
2, . . . , v

′
n}.

Let u = v′i and v = v′j , i < j. Then all the extra strong u − v paths must

be a subpath of the maximal partial fuzzy subgraph G′ of S(G) with vertex set

v′i, v
′
i+1, . . . , v

′
j, v

′′
i+1, . . . , v

′′
j .

If an extra strong u − v path P passes through v′i−1 or v′′i−1 then this path

must pass through v′′i and as v′′i is adjacent to v′i+1 and v′′i+1, P must pass through

at least one of v′i+1 and v′′i+1.

In the first case by deleting all vertices in P with suffices ≤ i, and by adding

the single edge v′iv
′
i+1 and in the second case by deleting all vertices in G with

suffices ≤ i and by adding the single edge v′iv
′′
i+1 we get another u − v path of

strength ≥ that of P and length < that of P , a contradiction.

Similarly we can prove that P does not pass through v′j+1 or v′′j+1. Thus any

extra strong u− v path lie in G′.
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From the adjacency relation in S(G) every u− v path traverses at least once

through v′k or v′′k , i ≤ k ≤ j. As µ(v′k) = µ(v′′k) each extra strong u − v path

contains exactly one v′k or v′′k for i < k < j. Thus any such path is given by

uui+1 . . . uj−1v where uk = v′k or v′′k for i < k < j. Therefore the length of such

u−v path is j− i. If u = v′1 and v = v′n then the length of the extra strong u−v

path is equal to n− 1. Also the case is same when u, v ∈ {v′′1 , v
′′
2 , . . . , v

′′
n}.

Case 2. u ∈ {v′1, v
′
2, . . . , v

′
n} and v ∈ {v′′1 , v

′′
2 , . . . , v

′′
n} in S(G).

Let u = v′i and v = v′′j , i < j. Here also we can conclude that every extra

strong u − v path lies in the maximal partial fuzzy subgraph G with vertex

set {v′k : k = i − 1, . . . , j} ∪ {v′′k : k = i, . . . , j}. But all the u − v paths

in G′′ must pass either through v′k or through v′′k or through both v′k and v′′k ,

where i < k < j. As µS(v
′
k) = µS(v

′′
k), all the u − v paths in G′′ have strength

≤ µS(v
′
i)∧µS(v

′
i+1)∧ . . .∧µS(v

′
j−1)∧µS(v

′′
j ). Thus the path P = uu2u3 . . . uj−1v

has strength equal to µS(v
′
i)∧µS(v

′
i+1)∧ . . .∧µS(v

′
j−1)∧µS(v

′′
j ), where uk = v′k or

v′′k for 2 ≤ k ≤ j − 1, and no other u− v path in G having length less than that

of P have strength greater than P . So P is an extra strong u− v path and is of

length equal to j − i. When u = v′1 and v = v′′n the length of the extra strong

u− v path is equal to n− 1.

Theorem 3.5.5. Let G(V, µ, σ) be a strong fuzzy complete graph with vertex set

V = {v1, v2, . . . , vn}. Then the strength of the shadow graph S(G) of G is 2 for
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3.5. Total fuzzy graph, fuzzy split graph and fuzzy shadow graph

n ≥ 2.

Proof. Let S(G)(W,µS, σS) be the shadow graph of G with the underlying crisp

graph has vertex set W = V (G′) ∪ V (G′′), where G′ and G′′ are two copies of

G with vertex set V (G′) = {v′1, v
′
2, . . . , v

′
n}, V (G′′) = {v′′1 , v

′′
2 , . . . , v

′′
n}. For n = 2

the shadow graph of G is a fuzzy cycle on 4 vertices. Hence the result is true

by Theorem 1.4.2. So assume that n ≥ 3. Let u, v be two non-adjacent vertices

of S(G) (See Figure 3.23). Then u = v′i, for 1 ≤ i ≤ n and v = v′′i , 1 ≤ i ≤ n.

Note that both v′i and v′′i are adjacent to all the other vertices of S(G). So uwv

where w ∈ W \{v′i, v
′′
i } such that µs(w) = ∨

j 6=i
µs(v

′
j) is an extra strong u−v path.

Hence the theorem.
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Figure 3.23: A fuzzy complete graph on 3 vertices and its shadow graph.
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Chapter 4

Products of fuzzy graphs

In this chapter we discuss the strength of Cartesian product, tensor product,

composition and normal product of certain strong fuzzy graphs.

4.1 Cartesian product

First of all we consider the Cartesian product of two strong fuzzy paths G1 and

G2 on 2 vertices. Also here we discuss the strength of Cartesian product of two

fuzzy paths, a fuzzy path on two vertices and a fuzzy cycle on n vertices, a fuzzy

path on two vertices and a strong fuzzy star graph.

Definition 4.1.1. [26] For i = 1, 2, letGi(Vi, µi, σi) be two fuzzy graphs with un-

derlying crisp graphs Gi(Vi, Ei). Their Cartesian product G, denoted by G1�G2

is the fuzzy graph G(V, µ, σ) with the underlying crisp graph G(V,E), the Carte-

sian product of the crisp graphs G1(V1, E1) and G2(V2, E2) with vertex set V =
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4.1. Cartesian product

V1 ×V2 and edge set E = {(u, u2)(u, v2)|u ∈ V1, u2v2 ∈ E2}∪ {(u1, w)(v1, w)|w ∈

V2, u1v1 ∈ E1} and whose membership functions µ and σ are defined as

µ(u1, u2) = µ1(u1) ∧ µ2(u2); (u1, u2) ∈ V,

σ((u1, u2)(v1, v2)) =



























µ1(u1) ∧ σ2(u2v2) if u1 = v1 and u2v2 ∈ E2,

µ2(u2) ∧ σ1(u1v1) if u2 = v2 and u1v1 ∈ E1,

0 otherwise.

Notation 4.1.1. Unless otherwise specified for V1 = {u1, u2, . . . , un} and V2 =

{v1, v2, . . . , vm} the notation wij is used to denote the vertex (ui, vj) ∈ V1 × V2.

Lemma 4.1.1. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two fuzzy paths, each

has P2 as its underlying crisp graph. Then the Cartesian product G1�G2 of G1

and G2 is a fuzzy cycle.

Proof. Let G1(V1, µ1, σ1) and G2(V2, µ,σ2) be two fuzzy graphs with P2 as their

underlying crisp graph. The fuzzy graph G1�G2 is depicted in Figure 4.1.
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Figure 4.1: The fuzzy paths G1, G2 and their Cartesian product G1�G2.

Suppose that σ1(u1u2) ≤ σ2(v1v2). Then σ(w11w21) = σ(w12w22) = σ1(u1u2)

and σ(w11w21) = σ(w12w22) = σ1(u1u2). σ(w11w12) = µ1(u1) ∧ σ2(v1v2) and

σ(w21w22) = µ1(u2) ∧ σ2(v1v2). Clearly w11w12 and w12w22 are weakest edges of

G1�G2. Therefore G1�G2 has at least two weakest edges. Hence G1�G2 is a

fuzzy cycle.

Note 4.1.1. If G1(V1, µ1, σ1) and G2(V2, µ2, σ2) are two strong fuzzy paths then

σ(u1u2) = µ1(u1) ∧ µ1(u2) and σ2(v1v2) = µ2(v1) ∧ µ2(v2). If let us suppose that

µ1(u1) = min{µ1(u1), µ1(u2), µ2(v1), µ2(v2)}. Then σ(w11w12) = σ(w11w21) =
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4.1. Cartesian product

σ(w12w22) = a say and σ(w21w22) is greater than or equal to this common value

a. Thus if G1 and G2 are strong fuzzy graphs then at least three edges of G1�G2

are weakest edges.

The following lemma holds by Lemma 4.1.1 and Note 4.1.1.

Lemma 4.1.2. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs.

Suppose both the graphs have underlying crisp graphs P2 on two vertices. Then

the strength of the Cartesian product of G1 and G2 is two.

Lemma 4.1.3. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two fuzzy graphs with

crisp graphs P2 and P3 respectively. Then the strength of G1�G2 is 3.

Proof. Let the fuzzy graphs G1(V1, µ1, σ1), G2(V2, µ2, σ2) and their Cartesian

product G1�G2 be as depicted in Figure 4.2. We denote the weights of the

edges w11w12, w11w21, w21w22 and w12w22 by a, b, c and d respectively.
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Figure 4.2: The fuzzy subgraphs G1 and G2, their Cartesian product G1�G2 and

two partial fuzzy subgraphs H1 and H2 of G1�G2.

The two partial fuzzy subgraphs H1 and H2 of G1�G2 shown in Figure 4.2

are fuzzy cycles by Lemma 4.1.1. Theorem 4.1.2 shows that both H1 and H2

have strength 2. Suppose the weakest edge of H1 has weight α and those of H2

have weight β.

Case 1. α ≥ β.

In this case d ≥ α.

Subcase 1. d > β. Then e = g = f = β −→ (1). Let u and v be two vertices

of G. If u and v are in V (H1), then the length of the extra strong path joining

u and v is ≤ the strength of H1, ie 2. Because, if a u− v path P passes through
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4.1. Cartesian product

a vertex in V (G) \ V (H1) then it has strength ≤ any u − v path in H1 and its

length must be greater than or equal to any u− v path in H1.

If u and v are in V (G\H1) then u, v ∈ {w13, w23} and hence adjacent. There-

fore, the extra strong path joining u and v is w13w23, which is of length one.

If u is in V (G\H2) and v is inV (G\H1). Then all the paths joining u and v

must pass through an edge having weight β. Therefore, all the paths joining u

and v have same strength. So, length of the extra strong path joining u and v is

≤ 3.

In particular if u = w11 and v = w23 or u = w21 and v = w13 then the length

of extra strong path is equal to 3.

Subcase 2. d = β.

Then µ1(u1) = β or µ1(u2) = β or µ2(v2) = β. In the first case d = f =

e = a = b = β. In the second case d = e = g = b = c = β. In the third case

d = e = g = a = c = β. In these cases the strength of any path connected by

any two nonadjacent vertices are the same.

Case 2. α < β.

The proof follows by interchanging the roles of H1 and H2.

Theorem 4.1.1. Let G1 and G2 be two strong fuzzy graphs with respective un-

derlying crisp graphs P2 and Pn. Then the strength of Cartesian product G1�G2
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4.1. Cartesian product

of G1 and G2 is n.

Proof. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two fuzzy graphs with underlying

crisp graphs P2 with vertex set {u1, u2} and Pn with vertex set {v1, v2, . . . , vn}

respectively.

Let G(V, µ, σ) be the Cartesian product G1�G2 of G1 and G2 with underlying

crisp graph G(V,E) where the vertex set V = {(ui, vj) = wij : ui ∈ V1, vj ∈

V2, i = 1, 2, j = 1, 2, . . . , n} and edge set E = {wijwij+1 : 1 ≤ j ≤ n − 1, i =

1, 2} ∪ {w1jw2j : j = 1, 2, . . . , n}.

We prove the theorem by induction on n. The result is trivial when n = 1

and the result is true for n = 2, and n = 3 by Lemmas 4.1.2 and 4.1.3. When

n = 2, ie, when G1 and G2 are two fuzzy graphs with respective crisp graphs P2,

we proved that, the strength of the graph is 2, by showing that if u = w11 and

v = w22 (or u = w21 and v = w12) then length of the extra strong u− v path is

2 and for any other u and v, it is 1. Also in the case, G1 is a fuzzy graph with

the underlying crisp graph P2 and G2 a fuzzy graph with underlying crisp graph

P3, we proved that the length of any extra strong u− v path is 3, when u = w11

and v = w23 or u = w21 and v = w13. For all other choices of u and v the length

of the extra strong u − v path is < 3 and the extra strong w11 − w13 path is

w11w12w13.

We assume that the result is true for n = m, where m ≥ 3. That is if G1 is

the fuzzy path P2 with vertex set {u1, u2} and G2 is a fuzzy path Pm with vertex
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4.1. Cartesian product

set {v1, v2, . . . , vm} then assume that length of the extra strong path joining the

vertices w11 and w2m or the vertices w21 and w1m in G1�G2 is m and if u = w11

and v = w1m or if u = w21 and v = w2m then the length of the extra strong u−v

path is m− 1, and in fact w11w12 . . . w1m is the extra strong w11 − w1m path. u

and v are any other vertices of G1�G2 then the length of the extra strong u− v

path is < m− 1.

Let us suppose that G1 be the fuzzy path on the vertex set {u1, u2} and G2

be the fuzzy path on the vertex set {v1, v2, . . . , vm+1}. For 1 ≤ p < q ≤ m + 1,

Hpq denotes the maximal partial fuzzy subgraph of G with vertex set {wij; i =

1, 2, p ≤ j ≤ q}. (See Figure 4.3).

Clearly, H1m+1 = G1�G2.
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Figure 4.3: Partial fuzzy subgraphs H12 , H13 and H1n+1 of G = G1�G2.

Let u and v be two non -adjacent vertices of G1�G2. We assert that if u = wij

and v = wkl ∈ H2m+1 then any extra strong u − v path of G lie in H2m+1 and
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4.1. Cartesian product

the length of any extra strong u− v path in G1�G2 is ≤ m+1, by the induction

hypothesis when u = w21 and when v = w1m+1 then the length of the extra

strong u− v path is m+ 1.

Case 1. Suppose that u and v are in {wij : i = 1, 2; j = 2, 3, . . . , m}.

Then any path joining u and v in G can be viewed either as a path in the

maximal partial fuzzy graph H1m with vertex set {wij : i = 1, 2, 1 ≤ j ≤ m} or

as a path in the maximal partial fuzzy graph H2m+1 with vertex set {wij : i =

1, 2; 2 ≤ j ≤ (m+1)}. Note that both these graphs have underlying crisp graphs

isomorphic to P2�Pm. Therefore by induction hypothesis the length of the extra

strong u− v path is ≤ m < (m+ 1).

Case 2. u, v ∈ {w11, w21, w1m+1, w2m+1}.

Suppose u ∈ {w11, w21} and v ∈ {w1 m+1, w2 m+1}. Then we can prove the

result in two steps.

(i) If u = w11 and v = w1m+1 ( or u = w21 and v = w2m+1). Any path Pm in

H1m+1 joining w11 and w1m+1 can be considered as sum of two paths P 1 and

P 2 where P 1 is a path in H1m joining w11 and w1m or it is a path joining w11

and w2m inH1m and P 2 is P∩Hm m+1. Note that the strength of the path P

is minimum of strength of the paths P i : i = 1, 2. By induction hypothesis

if P 1 is a path joining w11 and w1m then it has maximum strength if P 1 =

w11w12...w1m . Since w1m and w1 m+1 are adjacent, the path w1mw1m+1 is the

extra strong path joining w1m and w1 m+1. In the second case, that is P 1
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4.1. Cartesian product

is a path from w11 to w2m in H1m and P 2 = P ∩Hm m+1 then by induction

hypothesis P 1 has length m when P 1 is an extra strong path. Therefore in

this case length of the path P is m+ 2 and it has strength ≤ the strength

of the path w11w12 . . . w1 m+1. Therefore, we can conclude that the path P

has maximum strength if P 1 = w11w12 . . . w1m and P 2 = w1mw1 m+1. Also

the length of P 1 is minimum among all paths in H1m between w11 and

w1 m.

(ii) If u = w11 and v = w2m+1 (or u = w21 and v = w1m+1).

In this case as in the proof of (i) we can prove that the strength of u − v

path is m+ 1 in H1 m+1.

Hence the theorem.

Theorem 4.1.2. Let G1 and G2 be two strong fuzzy graphs with the underlying

crisp graphs the path Pm and the path Pn on m and n vertices respectively. Then

the strength of the Cartesian product G = G1�G2 of G1 and G2 is m+ n− 2.

Proof. For a fixed n, we prove this theorem by induction on m. If m = 1 then

G1 is a fuzzy trivial graph. Thus when m = 1, G = G1�G2 is a copy of Pn, a

fuzzy path on n vertices. If n = 1, its strength is zero. If n > 1 then its strength

is n−1. In either case we have the strength is m+n−2. Assume that the result

is true for m = k > 1. To prove the result for m = k + 1, let G1 and G2 be

strong fuzzy graphs with underlying crisp graphs Pk+1 and Pn respectively and

let G be their Cartesian product. If n = 1 then G is a copy of G1. Therefore
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4.1. Cartesian product

strength of G is k = m+ n− 2 thus in this case the theorem holds. So assume

that n > 1. Also let u, v ∈ V (G).
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Figure 4.4: Cartesian product of two fuzzy graphs with underlying graphs Pk+1 and

Pn.

Case 1. u, v ∈ {wij : 1 ≤ i ≤ k, 1 ≤ j ≤ n} or u, v ∈ {wij : 2 ≤ i ≤ k + 1, 1 ≤

j ≤ n}. Let H1 and H2 be the two maximal partial fuzzy subgraphs of G with

vertex set {wij : 1 ≤ i ≤ k, 1 ≤ j ≤ n}, {wij : 2 ≤ i ≤ k + 1, 1 ≤ j ≤ n}

respectively. Then any extra strong path joining u and v in G can be either a

path in H1 or in H2 of G.

To prove this assertion we proceed as follows. Let us suppose that u, v ∈

V (H1). Suppose P is an extra strong u− v path in G, which passes through at

least one of the vertices w11, w12, . . . , w1n. Then, we claim that P does not pass

through any of the vertices wk+11, wk+12, . . . , wk+1n. If so, it contains a subpath

wklwk+1 lwk+1 l+1 . . . wk+1 jwkj of G, which can be viewed as a path of the maxi-
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4.1. Cartesian product

mal partial fuzzy subgraph with vertex set {wk1, wk2, . . . , wkn, wk+11 . . . ,

wk+1n−1, wk+1n} of G which is of the form P2�Pn. Therefore the extra strong

path joining wkl and wkj is wklwk l+1 . . . wkj by the proof of Theorem 4.1.1. There-

fore we can conclude that every path like P is contained in H1. Hence its length

by induction ≤ k + n− 2. Similar is the case when u, v ∈ V (H2).

Case 2. u ∈ {w1l : l = 1, 2, . . . , n} and v ∈ {wk+1l : l = 1, 2, . . . , n}.

Let us suppose that u = w1j and v = wk+1l. For i = 1, 2, . . . , k+1 we denote

the path wi1wi2 . . . win with vertices wi1, wi2, . . . , win in G by Li. We claim that

for a fixed l, l = 1, 2, . . . , n the edge wk+1lwkl has strength greater than or equal

to the strength of any path from v to any vertex w of Lk. Suppose a path

P1 from v to a vertex of Lk contains a subpath Q1 = wk+1 jwk+1 j−1 . . . wk+1 l

of Lk+1 where j > l, then the path P1 has strength less than or equal to that

of the edge wk+1lwkl. For if the edge wk+1 lwk l is not a weakest edge of the

cycle C : wk l+1wk+1 l+1wk+1 lwk lwk l+1 then weight of wk+1 lwk+1 l+1 < weight of

wk+1 lwk l. Therefore the strength of P1 < strength of wk+1 lwk l.

If wk+1lwkl is a weakest edge of C then the subpath Q1 of P1 which belongs

to Lk+1 has strength ≤ strength of wk+1lwkl. If Q1 has strength greater than

that of wk+1 lwk l then all the edges wk+1 lwk l, . . . , wk+1 jwkj have weight equal to

that of wk+1lwkl. Therefore we can conclude that in this case the path P1 has

strength ≤ that of wk+1lwkl. If P1 contains no subpath of Lk+1 then any path

from v to a vertex of Lk pass through the edge vwkl. Hence its strength must
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be less than or equal to the strength of the edge vwkl. Hence the path having

minimum length and with maximum strength from wk+1l to a vertex of Lk is just

the edge wk+1lwkl.

By the same argument, the edge wklwk−1l has the maximum strength and min-

imum length from wkl to any vertex in Lk−1. Therefore the path wk+1lwklwk−1l is

the path from wk+1l to Lk−1. Proceeding similarly we get the path wk+1l . . . w1l is

the path with maximum strength and minimum length from wk+1l to any vertex

of L1. Proceeding similarly w1l . . . w1j is the path with maximum strength and

minimum length path joining w1j and w1l. Therefore the strength of the u − v

path is ≤ (n− 1) + k = k + n− 1.

When u = w11 and v = wk+1n, the strength of the u − v path is equal to

k+n−1. Thus the theorem is true for m = k+1. Therefore the theorem follows

by induction.

Next we consider the Cartesian product of the fuzzy graphs P2 and a fuzzy

cycle Cn. Suppose V1 = {u1, u2}, and V2 = {v1, v2, . . . , vn} are the vertex set of

G1 and G2 respectively. Then the Cartesian product of G1 and G2 is the fuzzy

graph G(V, µ, σ) where the underlying crisp graph is G(V,E) with vertex set V =

{wij, i = 1, 2, j = 1, 2, . . . , n} and edge set E = {wijwij+1, 1 ≤ j < n, i = 1, 2} ∪

{w1jw2j, 1 ≤ j < n}∪{wi1win, i = 1, 2} where µ(wij) = µ1(ui)∧µ2(vj), ∀wij ∈ V

σ(wijwij+1) = µ1(ui) ∧ σ2(vjvj+1), ui ∈ V1, (vj , vj+1) ∈ E2;

σ(w1jw2j) = σ1(u1u2) ∧ µ2(vj); σ(wi1win) = µ1(ui) ∧ σ2(v1vn).
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Figure 4.5: Cartesian product of the fuzzy graphs G1 with underlying crisp graph

P2 and G2 with underlying crisp graph Cn.

Theorem 4.1.3. Let G1 and G2 be two strong fuzzy graphs with underlying crisp

graphs the path P2 with vertex set V1 = {u1, u2} and the cycle Cn with vertex set

V2 = {v1, v2, . . . , vn} respectively and the weight of the weakest vertices of G1 is

greater than the weight of the weakest vertices of G2. If the weakest vertices of

G2 altogether form a subpath of length l in G2 then the strength of the Cartesian

product of G1 and G2 is (n− l + 1) if l < [n+1
2
] and [n

2
] if l ≥ [n+1

2
].

Proof. Let u and v be two non-adjacent vertices of G. Without loss of generality

assume that v1, v2, . . . , vl−1 are the weakest vertices of G2. Also assume that

the weight of each vi, i = 1, 2, . . . , l− 1 is w and these vertices altogether form a
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subpath in G2. Then in G, the vertices w11, w12, . . . , w1l−1 and w21, w22, . . . , w2l−1

have the same weight w (See Figure 4.6).

w

21 ww
2n

w

w11

w

w

w w

w w
1nw12 1 l-1

22 2 l-1

1 l

2 l

1 n-1

2 n-1

PSfrag replacements

w11

w12

w1l−1

w1l

w1l+1

w1n

w21

w22

w2l−1

w2l

w2l+1

w2n

Figure 4.6: The Cartesian product of G1 and G2 − {v1, . . . , vl−1}.

Case 1. l < [n+1
2
].

If u, v ∈ V (G)− {w11, . . . , w1l−1, w21, . . . , w2l−1} then the length of the extra

strong u−v path in G is ≤ n−l+1, since the extra strong paths joining u and v lie

completely in the maximal partial fuzzy subgraph G1�(G2−{v1, v2, . . . , vl−1}) of

G with underlying crisp graph is of the form P2�Pn−(l−1). Therefore by Theorem

4.1.2 the length of the extra strong u− v path in G ≤ n− l + 1.

If u, v ∈ {w11, . . . , w1l−1, w21, . . . , w2 l−1} then all the u − v paths have same

strength in G. So all the extra strong paths joining u and v lie in the maximal

partial subgraph G1�G′
2 of G, where G′

2 is the maximal partial fuzzy graph of

G2 with vertex set {v1, v2, . . . , vl−1}. Also since l ≤ [n+1
2
] the length of the extra

strong u− v path is ≤ l − 1 ≤ n− l + 1.

If u ∈ {w11, . . . , w1 l−1, w2 1, . . . , w2 l−1} and v ∈ V (G)−{w11, . . . , w1 l−2, w2 1,

. . . , w2 l−2} or vice versa then all the paths joining u and v have same strength.

So the length of the extra strong u− v path is the minimum distance between u
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and v in the underlying crisp graph of G, P2�Cn which is ≤ (n− l + 1).

If u = w2 l and v = w1n then the length of the extra strong u − v path is

equal to n− l + 1.

Case 2. l ≥ [n+1
2
].

If u, v ∈ V (G) \ {w11, . . . , w1l−1, w21, . . . , w2l−1} then as in Case 1 strength of

u − v path in G is n − l + 1 ≤ [n
2
]. If u, v ∈ {w11, . . . , w1l−1, w21, . . . , w2l−1} or

u ∈ G−{w11, . . . , w1l−1, w21, . . . , w2 l−1} and v ∈ {w11, . . . , w1 l−1, w2 1, . . . , w2 l−1}

then all the u− v paths must have same strength in G, and therefore the length

of the extra strong path joining u and v is ≤ [n
2
], since l > [n+1

2
]. When u = w11

and v = w1k where k = [n
2
] then strength of the u− v path in G is exactly equal

to [n
2
]. Hence the Theorem.

Theorem 4.1.4. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs

with underlying crisp graphs K1 =< u > and the cycle Cn = v1v2 . . . vnv1 respec-

tively. Let G(V, µ, σ) be the Cartesian product of G1 and G2. If v be a weakest

vertex of G2 then

S (G) =











[n
2
] if µ1(u) ≤ µ2(v),

S (G2) otherwise.

Proof. If µ1(u) ≤ µ2(v) then all the vertices of G1�G2 have the same weight

µ1(u). Therefore it is a regular fuzzy cycle. Hence by Theorem 1.4.1, strength

of G1�G2 is [n
2
].
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If µ1(u) > µ2(v), then,

µ(u, vi) =











µ2(vi) if µ2(vi) ≤ µ1(u),

µ1(u) otherwise.

Thus a vertex (u, vi) of G is a weakest vertex of G if and only if vi is a weakest

vertex of G2. Therefore, the strength S (G) of G is that of G2.

Theorem 4.1.5. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs

with underlying crisp graphs the path P2 = u1u2 and Cn = v1v2 . . . vnv1 re-

spectively. Suppose that µ1(u1) ≤ µ1(u2) ∧ µ2(v1) ∧ µ2(v2) ∧ . . . ∧ µ2(vn). Let

G = G1�G2 be the Cartesian product of G1 and G2. Then the strength S (G) of

the Cartesian product G of G1 and G2 is,

S (G) = max

{

S (G2�G3),

⌈

n+ 1

2

⌉}

;

where G3 is the null graph with vertex set {u2}.

Proof. Let u and v be two distinct vertices of G.

Case 1. µ1(u2) > µ2(v1) ∧ µ2(v2) . . . ∧ µ2(vn).

Subcase 1. Let u, v ∈ {w1j , 1 ≤ j ≤ n}. Since µ(w1j) = µ1(u1); 1 ≤ j ≤ n, all

the edges having w1j as one of the end vertices, 1 ≤ j ≤ n have weight equal

to µ1(u1). Therefore, the length of the extra strong path joining u and v is the
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4.1. Cartesian product

minimum length of the path joining u and v in G. That is less than or equal to

[

n
2

]

.

Subcase 2. Let u, v ∈ {w2j , 1 ≤ j ≤ n}.

Since µ(w1j) ≤ µ(w2j), the extra strong path joining u and v lies in the maximal

partial fuzzy subgraph G3�G2 of G. So we have by Theorem 4.1.4, the length

of the extra strong u− v path is the strength of G2.

Subcase 3. Let u ∈ {w1j : 1 ≤ j ≤ n} and v ∈ {w2j : 1 ≤ j ≤ n}.

Since µ1(u1) ≤ µ1(u2) ∧ µ2(v1) ∧ . . . ∧ µ2(vn), all the u − v paths in G have

strength µ1(u1). So length of the extra strong u − v path in G is the length of

the shortest u− v path in G which is ≤
⌈

n
2

⌉

.

Case 2. µ1(u2) ≤ µ2(v1) ∧ µ2(v2) . . . ∧ µ2(vn).

Subcase 1. µ1(u1) = µ1(u2). Then µ(wij) = µ1(u1) ∀i, j. Therefore, the length

of the extra strong path joining u and v in G is the minimum length of the path

joining u and v in G, which is less than or equal to [n+1
2
].

Subcase 2. µ1(u1) < µ1(u2). Then µ(w1j) = µ1(u1) and µ(w2j) = µ1(u2) ∀i, j.

If u or v ∈ {w1j, 1 ≤ j ≤ n}, then all the paths joining u and v have weight

µ1(u1). Therefore, the length of the extra strong path joining u and v is the

minimum length of the path joining u and v in G which is [n
2
].

If u and v ∈ {w2j, 1 ≤ j ≤ n}, then the extra strong path joining u and v

lie in the subgraph G3�G2. So by Theorem 4.1.4 the length of the extra strong

u− v path in G is [n
2
].
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4.1. Cartesian product

Note 4.1.2. Let G(V, µ, σ) be a fuzzy graph. If W is a subset of V then < W >

denotes the maximal partial fuzzy subgraph of G on W .

Definition 4.1.2. The fuzzy book is defined as the Cartesian product of graphs

G1 with underlying crisp graph P2 and fuzzy star graph Sn, where n > 2. Let

V (P2) = {u1, u2} and V (Sn) = {v1, v2, . . . , vn} with v1 as the central vertex. For

i = 2, 3, . . . , n, the maximal partial fuzzy subgraph < {w11, w21, w1i, w2i} > with

vertex set < {w11, w21, w1i, w2i} > is called a fuzzy page of the fuzzy book, whose

underlying crisp graph is isomorphic to P2�P2. The crisp graph of the union of

two fuzzy pages < {w11, w21, w1i, w2i} > and < {w11, w21, w1j, w2j} >

is isomorphic to P2�P3, 2 ≤ i 6= j ≤ n. It is called a fuzzy Domino graph.
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Figure 4.7: Cartesian product G1�G2 of a fuzzy path G1 and a fuzzy star graph

G2.

Theorem 4.1.6. Let G1 and G2 be two strong fuzzy graphs with underlying crisp

graphs the path P2 and the star graph Sn respectively. Let V (P2) = {u1, u2} and
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4.1. Cartesian product

V (Sn) = {v1, v2, . . . , vn} with v1 as the central vertex. Then the strength of the

Cartesian product G = G1�G2 is 3.

Proof. Let {w11, w12, . . . , w1n, w21, w22, . . . , w2n}, where n ≥ 3, be the vertex set

of G. Clearly w11w21 is the common edge of the pages of G1�G2. Let u and v

be two non-adjacent vertices of G (See Figure 4.7 ). Then u and v lie on the

same page or different pages of G. For 2 ≤ i 6= j ≤ n, denote the partial fuzzy

subgraph < {w11, w21, w1i, w2i} > ∪ < {w11, w21, w1j, w2j} > of P2�Sn by Hij .

Therefore any extra strong path joining u and v can be considered as a path

in Hij for some i and j. Since the underlying crisp graph of Hij is P2�P3, the

length of any extra strong path joining u and v in G is less than or equal to 3,

by Theorem 4.1.3.

In particular if u = w12 and v = w23, then any extra strong path joining u

and v lie completely in H23 and hence has length exactly 3. Hence the theorem.

Now we are going to find the strength of the Cartesian product of fuzzy path

and a fuzzy butterfly graph.

Theorem 4.1.7. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs

with crisp graphs the path P2 with vertex set {u1, u2} and the butterfly graph with

vertex set {v1, v2, . . . , v5} respectively. Then the strength of the Cartesian product

G(V, µ, σ) of G1 and G2 is 3.

104



4.1. Cartesian product

Proof. First of all assume that the degree of the vertex v1 of G2 is 4 and µ1(u1) ≤

µ1(u2).

Let u and v be any two non-adjacent vertices of G = G1�G2 with vertex set

{w11, w12, . . . , w15, w21, w22, . . . , w25}.

Case 1. µ1(u1) or µ1(u2) ≤ µ2(v1) ∧ µ2(v2) ∧ . . . ∧ µ2(v5).

Then all the u − v paths passing through any of w1j, j = 1, 2, . . . , 5 have

strength µ1(u1), because every edge incident with w1j has weight µ1(u1). There-

fore if at least one of u and v belongs to {w11, w12, . . . , w15} then the extra strong

u− v paths are the shortest u− v paths in the underlying crisp graph of G and

therefore has length less than or equal to 3.

If u, v ∈ {w21, w22, . . . , w25} then any extra strong u − v path lie in the

maximal partial fuzzy subgraph with vertex set {w21, w22, . . . , w25} which is a

strong fuzzy butterfly graph. Therefore, by Corollary 2.3.1 the length of any

extra strong u− v path in G is 2.

Case 2. µ2(vj) less than µ1(u1) for at least one j. Let us suppose that µ2(vj) ≤

µ2(v1) ∧ µ2(v2) . . . ∧ µ2(v5).

Subcase 1. vj = v1.

Then all the paths passing through wi1, i = 1, 2 have strength µ2(v1). The fuzzy

graph of G can be viewed as the union of two fuzzy subgraphs H1 and H2, as

shown in Figure 4.8. Note that P2�C2 is the underlying crisp graph of both H1

and H2.
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4.1. Cartesian product
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Figure 4.8: Cartesian product G = G1�G2 of a fuzzy path G1 on 2 vertices and

G2, a fuzzy butterfly graph and the fuzzy subgraphs H1 and H2 of G.

Suppose u and v belong to V (H1). Then any extra strong u − v path lie in

H1, since µ(w11) = µ(w21) = µ2(v1), all the u − v paths through w11 and w21

have the same strength. Therefore the length of the extra strong u − v path is

≤ 2. Similarly if u and v ∈ V (H2) the length of any extra strong u − v path is

≤ 2.

Let u ∈ V (H1) and v ∈ V (H2) \ V (H1). In this case all the u− v paths pass

through w11 or w21 or both. Therefore all the u − v paths have same strength.

Hence the length of the extra strong path joining u and v is less than or equal

to the minimum distance between u and v in G which is 3.

Subcase 2. vj 6= v1.

Without loss of generality assume that vj = v2. Then by our assumption,

µ2(v2) ≤ µ2(v1)∧ µ2(v2)∧ . . .∧ µ2(v5). Let u or v ∈ V (H1). If at least one of the

vertices u and v ∈ {w12, w22}, then all the u− v paths have strength µ2(v2). So

the length of any extra strong u − v path in G is ≤ 3. If u and v /∈ {w12, w22}

106



4.1. Cartesian product

then all the extra strong u − v paths lie in the graph H in Figure 4.9, which is

obtained by deleting the vertices w12, w22 from G.
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Figure 4.9: A fuzzy subgraph H of G.

In this case if u and v ∈ V (H1) then either u = w13, and v = w21 or u = w11

and v = w23. In both these cases if a path joining u and v pass through a

vertex of H2 then it must pass through w11 and w21 and any such path have

strength ≤ µ(w11) ∧ µ(w21). Thus each extra strong path lies in the maximal

partial fuzzy subgraph with vertex set {w11, w21, w13, w23}. Hence the length of

the extra strong u−v path is 2 by Theorem 4.1.2. Now suppose u and v ∈ V (H2),

if any of the u− v path through w13 ( or w23), definitely will pass through w23

(or w13), w11 and w21. Any such path has strength ≤ µ(w11) ∧ µ(w21). So every

extra strong path lies in H2. Therefore, the length of any extra strong u−v path

is 2.

If u = w13 and v = w25 then any u − v path in H has length ≥ 3. Also any

u − v path through the vertices w14 or w24 has length > 3 and strength ≤ any
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4.2. Tensor product

other u − v path in H . Therefore the length of extra strong u − v path is the

minimum distance between u and v, which is 3. Hence we can conclude that

S (G) = 3.

4.2 Tensor product

This section discusses strength of tensor product of certain graphs.

Definition 4.2.1. [12] Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two fuzzy graphs

with underlying crisp graphs G1(V1, E1) and G2(V2, E2) respectively. Then the

tensor product G, denoted by G1⊗G2, of G1 and G2 is the fuzzy graph G(V, µ1⊗

µ2, σ1 ⊗ σ2) with the underlying crisp graph G(V,E1 ⊗E2) is the tensor product

of G1(V1, E1) and G2(V2, E2), where V = V1×V2 and E1⊗E2 = {(u1, u2)(v1, v2) :

u1v1 ∈ E1, u2v2 ∈ E2}, (µ1 ⊗ µ2)(u1, u2) = µ1(u1) ∧ µ2(u2) for (u1, u2) ∈ V and

(σ1⊗σ2)((u1, u2)(v1, v2)) = σ1(u1, v1)∧σ2(u2, v2) for (u1, u2) ∈ E1 and (v1, v2) ∈

E2.

Theorem 4.2.1. Let G1 and G2 be two fuzzy graphs with underlying crisp graphs

P2 and Pn respectively. Then the strength S (G1 ⊗ G2) of the tensor product of

G1 and G2 is n− 1.

Proof. If n = 1 then G1 ⊗ G2 is a null fuzzy graph. Therefore S (G1 ⊗ G2) =

0 = n− 1. If n > 1 then it is the disjoint union of two fuzzy paths on n vertices

(See Figure 4.10). So by Theorem 1.4.1 S (G) = n− 1.
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Figure 4.10: Tensor product of two fuzzy paths.

If we replace the fuzzy graph G2 of Theorem 4.2.1 by an another fuzzy graph,

having star graph as the underlying crisp graph on n vertices and keeping G1 as

it is then, their tensor product G is a null fuzzy graph, if n = 1. It is a disjoint

union of two fuzzy paths if n = 2 and if n > 2 it is a disjoint union of two

fuzzy star graphs on n vertices. Therefore in the first case, that is if n = 1 then

S (G) = 0 and in the second case that is if n = 2, S (G) = 1 and when n ≥ 3,

S (G) = 2 by Theorem 3.1.4. We can summarize these results as follows.

Theorem 4.2.2. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two fuzzy graphs with

underlying crisp graph the path P2 and the star graph Sn respectively. Then the

strength of the tensor product G is

S (G) =



























0 if n = 1,

1 if n = 2,

2 if n ≥ 3.
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4.2. Tensor product

Theorem 4.2.3. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs

with the underlying crisp graphs the path P2 with vertex set V1 = {u1, u2} and the

cycle Cn with vertex set V2 = {v1, v2, . . . , vn}. Let µ◦ = µ1(u1)∧µ1(u2)∧µ2(v1)∧

µ2(v2) . . . ∧ µ2(vn). Then the strength of the tensor product of G1 ⊗ G2(V, µ, σ)

with vertex set V = {wij : i = 1, 2; j = 1, 2, . . . , n} is

S (G) =











































































[n
2
] if |V (G2)| is even and

there exist w ∈ V (G1), such that µ1(w) = µ◦,

S (G2) if |V (G2)| is even and

there exist no w ∈ V (G1), such that µ1(w) = µ◦,

n if |V (G2)| is odd.

Proof.

Case 1. |V (G2)| is even.
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Figure 4.11: Tensor product of two strong fuzzy graphs.
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4.2. Tensor product

Then G = G1 ⊗G2 is a disjoint union of two fuzzy cycles H1 with vertex set

{w11, w22, w13, w24, . . . , w1n−1, w2n}, and H2 with vertex set

{w12, w23, w14, w25, . . . , w2n−1, w1n, w21}. (See Figure 4.11).

Subcase 1. There exist w ∈ V1 such that µ1(w) = µ◦.

In this case, all the edges of G have the same weight. So, the strength of G =

strength of H1 = strength of H2 = [n
2
].

Subcase 2. There exist no w ∈ V1 such that µ1(w) = µ◦.

In this case, there exists a w ∈ V2 such that µ2(w) = µ◦. Without loss of

generality assume that w = v1. Then w11 and w21 are two weakest vertices of G.

In fact each weakest vertex of G2 determines exactly one weakest vertex in H1 as

well as in H2. So the number of weakest vertices of H1 and that of H2 are equal

and equal to that of G2. Note only that if G2 has m consecutive weakest vertices

then both H1 and H2 have the same number of consecutive weakest vertices.

From this we can conclude that the strength of G is equal to that of G2.

Case 2. |V (G2)| is odd.

In this case G = G1 ⊗G2 is a strong fuzzy cycle with vertex set

{w11, w22, w13, w24, . . . , w2n−1, w1n, w21, w12, w23, . . . , w1n−1, w2n}. (See Figure 4.12).
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Figure 4.12: (a ) A fuzzy path on two vertices G1, (b) a strong fuzzy cycle G2

and (c) their tensor product of G.

Subcase 1.

Then all the edges of G have the same weight. Therefore by Theorem 1.4.1 ;

S (G) = [2n
2
] = n.

Subcase 2. There exist no w ∈ V1 such that µ1(w) = µ◦.

By our assumption there exists a vertex w ∈ V2 such that µ2(w) = µ◦. Assume

that w = v1. Then w11 and w21 are weakest vertices of the partial fuzzy subgraph

P =< {w11, w22, w13, w24, . . . , w2n−1, w1n} > and Q =< {w21w12w23 . . . w1n−1

w2n} > of G. Also corresponding to each weakest path of length m in G2 there

exist weakest paths of the same length in P and in Q. Let u and v be any two

vertices of G. Then the path joining u and v having length ≥ n passes through

at least one weakest edge of G. So the length of the extra strong u − v path in

G is ≤ n. If u = w11 and v = w21 then the length of the extra strong u− v path
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4.2. Tensor product

is exactly n. Hence the proof.

Theorem 4.2.4. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs

with underlying crisp graphs Kn and Km respectively. Let V1 = {u1, u2, . . . , un}

and V2 = {v1, v2, . . . , vm} be the set of all vertices of Kn and Km. Then the

strength of the tensor product G1 ⊗G2(V, µ, σ) of G1 and G2 is,

S (G1 ⊗G2) =























































0 for n = 1, m ≥ 1 or n ≥ 1, m = 1,

1 for n = m = 2,

2 for n > 2 and m > 2,

3 n = 2, m > 2 or n > 2, m = 2.

Proof. Let u and v be two non-adjacent vertices of G = G1 ⊗ G2, say u = wij

and v = wkl. Then ui is not adjacent to uk in G1 or vj is not adjacent to vl in

G2.

Case 1. n = 1, m ≥ 1 or m = 1, n ≥ 1.

In this case G = G1⊗G2 is a null fuzzy graph on m (or n) vertices. Therefore

S (G) is 0.

Case 2. n = m = 2.

In this case the tensor product is the disjoint union of two fuzzy paths with

P2 as the underlying crisp graphs. So strength of G is 1 by Theorem 1.4.1.

Case 3. n > 2 and m > 2.
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4.2. Tensor product

Since G1 and G2 are complete fuzzy graphs of order > 2 there exist at least

one vertex in G1 ⊗G2 which is adjacent to both u and v in G1 ⊗G2.

Whether i = k or not, since n and m > 2, we can find a ur ∈ V (G1) different

from ui and uk such that µ1(ur) = ∨{µ1(up) : 1 ≤ p 6= i, k ≤ n} and a vs ∈ V (G2)

such that µ2(vs) = ∨{µ2(vq) : 1 ≤ q 6= l, j ≤ m}, so that wrs is adjacent to both

u and v in G. By the choice of wrs the path uwrsv is an extra strong path joining

u and v in G of length 2.

Case 4. m > 2 and n = 2 (or n > 2 and m = 2 ).

First of all suppose that n = 2 and m > 2. The case m > 2 and n = 2 can

be dealt as in the same way. We have the following cases,

i u = w1j , v = w1l, 1 ≤ j 6= l ≤ m,

ii u = w2j , v = w2l, 1 ≤ j 6= l ≤ m,

iii u = w1j and v = w2j for some j.

In the first two cases we can proceed as in the proof of Case 3 and prove that

the length of the extra strong path joining u and v is 2.

When u = w1j and v = w2j , there is no vertex in G which is adjacent to

both u and v. Since w1j is adjacent to w2k, for k 6= j and w2j is adjacent

to w1l, for l 6= j, the extra strong path joining u and v is uw2rw1su, where

(vr), r 6= j is chosen so that µ2(vr) ≥ ∨{µ2(vp); r 6= j} and vs, s 6= j, r, is chosen
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4.3. Composition

such that µ2(vs) ≥ ∨{µ2(vq); q 6= j, r}. Hence the length of the extra strong

path joining u and v is 3.

4.3 Composition

Another product we consider is the composition.

Definition 4.3.1. [47] Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two fuzzy graphs

with underlying crisp graphs G1(V1, E1) and G2(V2, E2) respectively. Then the

composition G(V, µ, σ), denoted by G1[G2], of G1 and G2 is the fuzzy graph with

the underlying crisp graph G(V,E) is the composition of the crisp graphs of G1

and G2 where V = V1 × V2 and E = {((u1, u2)(v1, v2)) : u1 = v1, (u2, v2) ∈

E2 or (u1, v1) ∈ E1} are the vertex set and edge set of G(V,E) respectively and

µ and σ are defined as

µ(u1, u2) = µ1(u1) ∧ µ2(u2), (u1, u2) ∈ V ,

σ((u1, u2)(v1, v2)) =



























µ1(u1) ∧ σ2(u2, v2) if u1 = v1 and (u2, v2) ∈ E2,

µ2(u2) ∧ µ2(v2) ∧ σ1(u1, v1) if (u1, v1) ∈ E1,

0 otherwise.

Recall that the vertex (ui, vj) of V1 × V2 is denoted by wij.

For m = 1 and n = 2 or m = 2 and n = 1 the composition of paths Pm and

Pn is a path on two vertices and for m = n = 2 their composition is a complete

graph on 4 vertices. Hence in both these cases the strength of composition of

Pm and Pn is one.
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Lemma 4.3.1. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy paths

with underlying crisp graphs P2 = u1u2 and Pn = v1v2 . . . vn. Let G(V, µ, σ) =

G1[G2] be the composition of G1 and G2. Then

S (G) =











2 if µ1(u1) = µ1(u2) or l ≤ 1,

l otherwise.

where l is the maximum length of subpaths of G2 having strength > µ1(u1) ∧

µ1(u2) if such a path exists, zero otherwise.

Proof. Let u = wij and v = wkm be two nonadjacent vertices of G. Then i = k

and vj and vm are not adjacent. Assume that µ1(u1) ≥ µ1(u2). If u = w2j and

v = w2m then any u − v path has strength ≤ µ1(u2) ∧ µ2(vj) ∧ µ2(vm). As the

path uw1jv has strength µ1(u2)∧µ2(vj)∧µ2(vm), it is an extra strong u−v path

in G.

Now suppose that u = w1j and v = w1m. Also suppose that µ1(u1) = µ1(u2).

In this case by interchanging the values of u1 and u2 in the discussion above we

get uw2jv is an extra strong u−v path in G. If µ1(u2) < µ1(u1) and if l ≤ 1 then

any subpath of P2 of length≥ 2 has strength ≤ µ1(u2). Thus any u−v path which

lies in the maximal partial subgraph of G with vertex set {w11, w12, . . . , w1n} has

strength ≤ µ1(u2). Therefore in this case uw2jv is an extra strong u− v path in

G.

Now suppose that l > 1. If we choose vj and vm as the ends of a subpath of
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4.3. Composition

Pn of length l and strength > µ1(u2) then w1jw1j+1w1m or w1mw1m+1 . . . w1j is

an extra strong u− v path according as m > j or j > m respectively. Therefore

the length of extra strong u− v path is ≤ l. Thus if we choose vj and vm as the

ends of the maximal subpath we get the length of the extra strong w1j − w1m

path is l. Hence the lemma.

In general, for two graphs G1 and G2 , G1[G2] 6= G2[G1]. Therefore if G1 and

G2 are two fuzzy graphs then also G1[G2] 6= G2[G1]. For example if G1 and G2

are fuzzy graphs with the underlying crisp graphs Pn and P2 respectively then

G1[G2] is a 2− linked fuzzy graph with n−1 parts, each part is a complete fuzzy

graphs on 4 vertices (See Figure 4.13(b)). On the other hand G2[G1] is as shown

in Figure 4.13(a).

Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy paths with crisp

graphs Pn and P2 respectively andG(V, µ, σ) be their composition. ThenG(V, µ, σ)

is a properly linked fuzzy graphs with n − 1 parts, each is complete. Then by

Theorem 2.3.2 we have the following result.

Theorem 4.3.1. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two fuzzy graphs with

crisp graphs Pn and P2 respectively and G(V, µ, σ) be their composition. Then

the strength S (G) of G = G1[G2] is 1 for n = 1 and (n− 1) for n > 1.
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Figure 4.13: Composition of fuzzy graphs.

Theorem 4.3.2. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy paths

with underlying crisp graphs P2 = u1u2 and Pn = v1v2 . . . vn respectively. Also let

G(V, µ, σ) be their composition. If µ1(u1)∨µ1(u2) < µ2(v1)∧µ2(v2)∧ . . .∧µ2(vn),

then the strength S (G) of the composition G = G1[G2] of G1 and G2 is as follows.

S (G) =



























1 if n = 1 or n = 2,

(n− 1) if µ1(u1) 6= µ1(u2) and n > 2,

2 if µ1(u1) = µ1(u2) and n > 2.

Proof. For n = 1, G is a strong fuzzy path on two vertices and for n = 2, G is a

strong fuzzy complete graph on 4 vertices. Therefore in these cases S (G) = 1

by Theorems 1.4.1.

Now suppose that n > 2.
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4.3. Composition

Case 1. µ1(u1) 6= µ1(u2).

Without loss of generality assume that µ1(u1) < µ1(u2) in G1. Let u and

v be any two non - adjacent vertices of G. If u or v or both belong to the set

{w1j : 1 ≤ j ≤ n} then all the paths joining u and v have strength µ1(u1).

Therefore uw2jv, j = 1, 2, . . . , n are all extra strong u− v paths.

If u and v ∈ {w2j : 1 ≤ j ≤ n}. Let us suppose that u = w2i and v = w2j with

i < j. If a path joining u and v contains a vertex w1k; 1 ≤ k ≤ n then its strength

is µ1(u1). Therefore the extra strong path joining u and v is uw2i+1 . . . w2j−1v.

Its length is clearly less than or equal to n− 1. If u = w21 and v = w2n then the

length of the extra strong u− v path is equal to n− 1.

Similarly we can prove that if µ1(u1) > µ2(u2) then S (G) = n− 1.

Case 2. µ1(u1) = µ1(u2).

Then all the edges of G have the same weight µ1(u1). For u = w1i, v =

w1j , uw2kv and for u = w2i, v = w2j, uw1kv are extra strong paths. Therefore in

this case strength of G is 2.

Theorem 4.3.3. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs

with crisp graphs the path P2 = u1u2 and the path Pn = v1v2 . . . vn respectively

and G(V, µ, σ) be their composition. Let l = maximum length of all subpaths

of the path w11w12 . . . w1n of G of strength > µ1(u2)∨ maximum length of all

subpaths of the path w21w22 . . . w2n of G of strength > µ1(u1) if such subpaths

exist, otherwise let l = 0. Let µ1(u1) ∨ µ1(u2) ≥ µ1(v1) ∧ µ2(v2) ∧ . . . ∧ µ2(vn).
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4.3. Composition

Then the strength S (G) of the composition of G1 and G2 is 2 if µ1(u1) = µ1(u2).

Otherwise, it is l ∨ 2.

Proof. Let u and v be two non - adjacent vertices of G. Without loss of generality

assume that µ1(u1) ≤ µ1(u2). If u, v ∈ {w1j : 1 ≤ j ≤ n}. Then u = w1i and

v = w1k for some 1 ≤ i 6= k ≤ n. Then w1iw2iw1k has strength µ(w1i) ∧ µ(w1k).

Therefore w1iw2iw1k is an extra strong u− v path.

Suppose u and v ∈ {w2j : 1 ≤ j ≤ n}. Let u = w2i and v = w2j

with i < j. If all the vertices vk, i ≤ k ≤ j have weight > µ1(u1) then

the extra strong path joining u and v is the path w2iw2i+1 . . . w2j−1w2j of G2

joining w2i and w2j . Otherwise w2iw1kw2j , for some k for which µ2(vk) =

max
i=1,2,...n

{µ2(vi)} is an extra strong path joining u and v. Therefore S (G) =

max {2, length of the maximal subpath ofG2 having strength > µ1(u1)}.

Theorem 4.3.4. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs

with crisp graphs Pm and Pn respectively where Pm = u1u2 . . . um and Pn =

v1v2 . . . vn where m,n > 2. Let the paths Pm = u1u2 . . . um and Pn = v1v2 . . . vn

be their respective underlying crisp graphs, where, m,n > 2. Let G(V, µ, σ) be

the composition of G1 and G2. Then the strength S (G) of G is (m−1)∨(n−1).

Proof. Let u, v be two non- adjacent vertices of G.

Case 1. u, v ∈ {wij : j = 1, 2, . . . , n}.
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4.3. Composition

Without loss of generality assume that u = wik and v = wiq with k < q.

Suppose there exist a vertex which is adjacent to both u and v in G such that

µ(w) ≥ µ(wik) ∧ µ(wik+1) ∧ . . . ∧ µ(wiq) such a vertex may exist if µ1(ui−1) or

µ1(ui+1) is greater than or equal to µ1(ui). Then uwv is an extra strong path,

which is of length 2.

Otherwise, the path Pkq = wikwik+1 . . . wiq is an extra strong u − v path in

G. The length of Pkq is q − k ≤ n− 1.

Case 2. u, v ∈ {wij : i = 1, 2, . . . , m} for some j, 1 ≤ j ≤ n.

For 1 ≤ j ≤ n, let Hj be the path w1jw2j . . . wmj of G and for 1 ≤ i ≤ m, Li

be the path wi1wi2 . . . win. Let u = wkj and v = wpj, k 6= p, 1 ≤ j ≤ n. Then,

all the u − v paths pass through at least one vertex of each Li; k ≤ i ≤ p. So

wkjwk+1j . . . wk+mj is an extra strong u − v path. Every such path has length

|p − k|. Therefore, if u = w11 and v = wm1 then the length of the extra strong

path is m− 1.

Case 3. u = wij and v = wkl, where i 6= k and j 6= l.

Without loss of generality assume that i < k and j < l. Then all the

u − v paths pass through at least one vertex of each Li+1, Li+2, . . . , Lk−1. So

the strength of the u−v path in G must be ≤ µ1(ui)∧µ1(ui+1)∧ . . .∧µ1(uk−1)∧

µ1(uk) ∧ µ2(vj) ∧ µ2(vl). Here wijwi+1l . . . wk−1lwkl is an extra strong path in G

and is of length equal to |k − i|, which is = n− 1 when k = 1 and i = n.
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4.3. Composition

Hence the theorem.

Theorem 4.3.5. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs

with underlying crisp graphs the path P2 with vertex set {u1, u2} and the star

graph Sn, n ≥ 3 with vertex set {v1, v2, . . . , vn} having vn as the central vertex

respectively. If G(V, µ, σ) is their composition, then the strength of G is 2.

Proof. Let u = wij and v = wkl be two non - adjacent vertices of G. Then either

i = k = 1 or i = k = 2 and j and l are distinct from n. Let us suppose that

i = k = 1. In this case any u − v path has strength ≤ µ1(u1) ∧ µ2(vj) ∧ µ2(vl).

If µ1(u1) ≤ µ1(u2) then uw2jv is an extra strong path in G.

Now consider the case µ1(u1) > µ1(u2). In this case we have the following

subcases. If ∨
i 6=j,l

µ2(vi) ≤ µ1(u2) then again uw2jv is an extra strong u−v path in

G. Otherwise, let α = ∨
i 6=j,l

µ2(vi) > µ1(u2). If µ2(vm) = α then uw1nv is an extra

strong u− v path in G. If µ2(vm) = α for some m 6= j, l, n and µ2(vn) ≤ µ1(u2)

then uw2mv is an extra strong u − v path in G. Thus in the case i = k = 1 the

length of the extra strong u− v path is 2.

If i = k = 2, as above, we can prove that the length of extra strong u − v

path is 2. Hence S (G) = 2.
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Figure 4.14: (a) A strong fuzzy path G1, (b) a strong fuzzy star graph G2 and

(c) their composition G.

Theorem 4.3.6. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs

with underlying crisp graphs, the path P2 with vertex set {u1, u2} and the Bull

graph with vertex set {v1, v2, v3, v4, v5} respectively and G(V, µ, σ) be their com-

position. Then the strength S (G) of G is 2 if µ1(u1) = µ1(u2).

Proof. Let G1, G2 and G be as shown in Figure 4.15. Let u and v be two non-

adjacent vertices of G. Then u, v ∈ {w11, w13, w15} or u, v ∈ {w11, w14} or u, v ∈

{w12, w15} or u, v ∈ {w21, w23, w25} or u, v ∈ {w21, w24} or u, v ∈ {w22, w25}.

First of all we suppose that u, v belong to {w11, w13, w15} or belong to {w11, w14}

or belong to {w12, w15}. In these cases let us write u = w1i and v = w1j for suit-

able i and j. Then since µ1(u1) = µ1(u2) and strength of any path joining u and

v is ≤ µ1(u1)∧ µ2(vi)∧ µ2(vj) we have uw2iv is an extra strong u− v path in G,

which is of length 2.

Similarly if u, v belong to {w21, w23, w25} or belong to {w21, w24} or belong to
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4.3. Composition

{w22, w25} then also every extra strong path joining them has length 2. Hence

S (G) = 2.
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Figure 4.15: Composition of a fuzzy path and a fuzzy bull graph.

Theorem 4.3.7. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs

with underlying crisp graphs, the path P2 with vertex set {u1, u2} and the Bull

graph with vertex set {v1, v2, v3, v4, v5}. Let G(V, µ, σ) be their composition. If

µ1(u1) > µ2(v2) ∧ µ2(v4) > µ1(u2) or µ1(u1) < µ2(v2) ∧ µ2(v4) < µ1(u2) then the

strength of G is 3.

Proof. Let G1, G2 and G as shown in Figure 4.15. First of all suppose that

µ1(u1) > µ2(v2) ∧ µ2(v4) > µ1(u2). Let u and v be two nonadjacent vertices

of G. Then u, v ∈ {w11, w13, w15} or u, v ∈ {w11, w14} or u, v ∈ {w12, w15} or

u, v ∈ {w21, w23, w25} or u, v ∈ {w21, w24} or u, v ∈ {w21, w25}. If u = w11

and v = w15 or vice versa then there is only one extra strong path P , which is

w11w12w14w15. All other u− v paths have strength either strictly less than that
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4.3. Composition

of P or length ≥ that of P and strength ≤ that of P . Clearly length of P is 3.

In all other cases the length of extra strong u − v paths are of length 2.

Therefore strength of G is 3.

Similarly we can prove that strength of G is 3 if µ1(u1) < µ2(v2) ∧ µ2(v4) <

µ1(u2).

Theorem 4.3.8. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs

with underlying crisp graphs, the path P2 with vertex set {u1, u2} and the Bull

graph with vertex set {v1, v2, v3, v4, v5}. Let G(V, µ, σ) be their composition. If

µ1(u1) 6= µ1(u2) and µ2(v2) ∧ µ2(v4) = µ1(u1) ∧ µ1(u2). Then strength of G is 2.

Proof. Suppose that µ1(u1) > µ1(u2) and µ2(v2) ≤ µ2(v4). The other case can

be dealt in the same fashion. Then the given condition becomes µ1(u2) = µ2(v2).

In this case if u = w11 and v = w15 ( or u = w21 and v = w25) then uw24v (

respectively uw14v ) is an extra strong u − v path in G of length 2. In all other

cases clearly extra strong u− v paths have length 2. Therefore strength of G is

2.

Theorem 4.3.9. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy graphs

with underlying crisp graphs the path P2 = u1u2 and Cn = v1v2 . . . vn respectively.

Let v ∈ V (G2) be such that µ2(v) = µ2(v1)∧µ2(v2) . . .∧µ2(vn). Then the strength

of composition of G1 and G2 is
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S (G) =




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
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




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










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





[n
2
] if µ1(u1) and µ1(u2) ≤ µ2(v) and µ1(u1) 6= µ1(u2),

2 if µ1(u1) and µ1(u2) ≤ µ2(v) and µ1(u1) = µ1(u2)

or if µ1(u1) and µ1(u2) >
n

∨
i=1

µ2(vi),

S (G2) if µ1(u1) >
n
∨
i=1

µ2(vi) and µ1(u2) < µ2(v)

or if µ1(u2) >
n
∨
i=1

µ2(vi) and µ1(u1) < µ2(v).

Proof. Let u and v be two nonadjacent vertices of G = G1[G2]. Then either

u, v ∈ {w1j : j = 1, 2, . . . , n} or u, v ∈ {w2j : j = 1, 2, . . . , n}( See Figure 4.16 ).
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Figure 4.16: (a) A strong fuzzy path G1, (b) a strong fuzzy cycle G2 and (c)

their composition G.

Case 1. µ1(u1) and µ1(u2) ≤ µ2(v) and µ1(u1) 6= µ1(u2).

In this case µ(wij) = µ1(ui) for i = 1, 2. Without loss of generality assume

that µ1(u1) < µ1(u2). Then for the first choice of u and v ie, for u, v ∈ {w1j : j =

1, 2, . . . , n} all the u−v paths have same strength in G. So uwv is an extra strong

u− v path of length 2 where w is any vertex in the set {w2j : j = 1, 2, . . . , n}.

For the second choice of u and v ie, for u, v ∈ {w2j : j = 1, 2, . . . , n}, the

vertices of the extra strong path joining them lie completely in the set of {w2j :

j = 1, 2, . . . , n}. In G this set of vertices forms a fuzzy cycle and each vertex has
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same strength as µ1(u2). So the strength of the u− v path in G is [n
2
].

Case 2. µ1(u1) and µ1(u2) ≤ µ2(v) and µ1(u1) = µ1(u2).

Then all the vertices of G have same weight µ1(u1). So in both choices for u

and v ie, for u, v ∈ {w1j : j = 1, 2, . . . , n} or u, v ∈ {w2j : j = 1, 2, . . . , n}, every

extra strong path is of length 2.

Case 3. µ1(u1) ∧ µ1(u2) > the weight of every vertex of G2.

In this case the vertices in {w1j : j = 1, 2, . . . , n} and in {w2j : j = 1, 2, . . . , n}

form two fuzzy cycles both are copies of G2. Therefore, if u, v ∈ {w1j : j =

1, 2, . . . , n} and by choosing a vertex w of {w2j : j = 1, 2, . . . , n} of maximum

weight, we get an extra strong u − v path namely uwv of length 2. Similarly

if u, v ∈ {w2j : j = 1, 2, . . . , n} we get an extra strong u − v path of length 2.

Therefore in this case strength of G is 2.

Case 4. µ1(u1) >
n

∨
i=1

µ2(vi) and µ1(u2) < µ2(v) or µ1(u2) >
n

∨
i=1

µ2(vi) and

µ1(u1) < µ2(v).

Without loss of generality assume µ1(u1) >
n
∨
i=1

µ2(vi) and µ1(u2) < µ2(v).

Then µ(w2j) = µ2(u2)∀j.

If u and v are in the first choice, the vertices of the extra strong paths joining

them lie completely in the set of {w1j : j = 1, 2, . . . , n}. In G this set of vertices

forms a fuzzy cycle, which is a copy of G2. So the strength of the u− v path in

G is S (G2).
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If u, v are as in the second choice then all the u− v paths have same strength

µ1(u2). So the length of the extra strong path joining u and v is 2.

4.4 Normal products

In this section Normal products of strong fuzzy graphs and their strength are

discussed.

Definition 4.4.1. [38]

For i = 1, 2, let Gi(Vi, µi, σi) be two fuzzy graphs with underlying crisp graphs

Gi(Vi, Ei). Their normal product, denoted by G1⊠G2, of G1 and G2 is the fuzzy

graph G(V, µ, σ) with the underlying crisp graph the normal product of the crisp

graph G1(V1, E1) and G2(V2, E2) with vertex set V = V1 × V2 and the edge set

E = {(u, u2)(u, v2)|u ∈ V1, (u2, v2) ∈ E2} ∪ {(u1, w)(v1, w)|(u1, v1) ∈ E1, w ∈

V2}∪ {(u1, u2)(v1, v2)|(u1, v1) ∈ E1, (u2, v2) ∈ E2} and whose membership func-

tions µ and σ are defined as µ(u1, u2) = µ1(u1) ∧ µ2(u2) if (u1, u2) ∈ V and

σ((u1, u2)(v1, v2)) =






















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

















µ1(u1) ∧ σ2(u2, v2) if u1 = v1 and (u2, v2) ∈ E2,

σ1(u1, v1) ∧ µ2(u2) if u2 = v2 and (u1, v1) ∈ E1,

σ1(u1, v1) ∧ σ2(u2, v2) if (u1, u2) ∈ E1 and (v1, v2) ∈ E2,

0 otherwise.

Theorem 4.4.1. Let G(V, µ, σ) be the normal product of two strong fuzzy graphs

G1(V1, µ1, σ1) and G2(V2, µ2, σ2) with their respective underlying crisp graphs
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1. the paths P2 and Pn, n > 1. Then S (G) = n− 1.

2. the complete graphs Kn and Km. Then S (G) = 1.

3. the paths P2 and the star graph Sn. Then S (G) = 2.

4. the star graphs Sm and Sn. Then S (G) = 2.

Proof.

1. In this case the normal product of G1 and G2 is a 2− connected fuzzy graph

with n parts. Each part of which is a complete fuzzy graph on 4 vertices.

Hence the proof follows by Theorem 2.3.2.
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Figure 4.17: Normal product of a strong fuzzy path on two vertices and a strong

fuzzy path on n vertices.

2. In this case the normal product of G1 and G2 is a complete fuzzy graph.

So S (G) = 1 by Theorem 1.4.1.
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Figure 4.18: Normal product of two complete fuzzy graphs G1 and G2.

3. Let G1 be a strong fuzzy path on the vertex set V1 = {u1, u2} and G2

be the strong fuzzy star graph with vertex set V2 = {v1, . . . , vn} with

vn as the central vertex of G2. Let u, v be two non-adjacent vertices of

G = G1 ⊠G2. (See Figure 4.19). As all the u− v paths contain the vertex

w1n or the vertex w2n or both w1n and w2n, the strength of any u − v

path is ≤ (µ(w1n) ∨ µ(w2n)) ∧ µ(u) ∧ µ(v). From this it is clear that uwv

is an extra strong u − v path in G, where w = w1n or w2n according as

µ(w1n) ≥ µ(w2n) or µ(w2n) ≥ µ(w1n). Therefore S (G) = 2.
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Figure 4.19: Normal product of a strong fuzzy path on two vertices and a strong

fuzzy star graph.

4. Let G1 and G2 be two strong fuzzy star graphs with their underlying crisp

graphs Sm and Sn respectively. Let V (G1) = {u1, u2, . . . , um} and V (G2) =

{v1, v2, . . . , vn}. Let um be the central vertex of G1 and vn be the central

vertex of G2. Let u, v be two non-adjacent vertices of G. Then u, v 6= wmn,

because wmn is adjacent to all the other vertices of G. If one of them is

wij , j = 1, 2, . . . , n−1, then the other is different from win and one of them

is wij , i = 1, 2, . . . , m− 1 then the other is different from wmj .

Let u, v ∈ {wij : j = 1, 2, . . . , n − 1} for some i, 1 ≤ i < m. Then all

the u − v paths pass through either win or through wmj or through wmn.

Therefore uwv is an extra strong path where w ∈ {win, wmj, wmn} such

that µ(w) = max{µ(wmn), µ(win), µ(wmj)}. Therefore the length of the

extra strong u− v path is 2. Similarly if u, v ∈ {wij : i = 1, 2, . . . , m− 1}

for some j, 1 ≤ j ≤ n, the length of extra strong u− v path is 2.

Let u = wij and v = wkl where i 6= k and j 6= l and 1 ≤ i, k ≤ m,
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4.4. Normal products

1 ≤ j, l ≤ n. Then all the paths must pass through wmn. Hence we have

only one extra strong u− v path in G, that is uwmnv.

Theorem 4.4.2. Let G(V, µ, σ) be the normal product of a strong fuzzy path

G1(V1, µ1, σ1) on two vertices and a strong fuzzy butterfly graph G2(V2, µ2, σ2).

Then S (G) = 2.

Proof.

Let H1 be the strong fuzzy path with vertex set V1 = {u1, u2} and H2 be the

strong fuzzy butterfly graph with vertex set V2 = {v1, v2, v3, v4, v5} as shown in

Figure 4.20.

The merger graph of the normal product G of G1 and G2 is a 1− linked graph

with two parts. Therefore S (G) = 2.
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Figure 4.20: Normal product of a strong fuzzy path on two vertices and a strong

fuzzy butterfly graph and their merger graph.

Conjecture 4.4.1. Let G(V, µ, σ) be the normal product of two strong fuzzy

graphs G1(V1, µ1, σ1) and G2(V2, µ2, σ2) with their respective underlying crisp
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4.4. Normal products

graphs are the paths Pn and Pm with n ≥ m,m, n > 1. Then S (G) = n− 1.

Conjecture 4.4.2. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy

graphs with their underlying crisp graphs P2 = u1u2 and Cn = v1v2 . . . vn respec-

tively and the weight of the weakest vertices of G1 is greater than the weight

of the weakest vertices of G2. If the weakest vertices of G2 altogether form a

subpath of length l in G2 then the strength of normal product G(V, µ, σ) of G1

and G2 is n− l if l ≤
[

n
2

]

and [n
2
] if l > [n

2
].

Conjecture 4.4.3. Let G1(V1, µ1, σ1) and G2(V2, µ2, σ2) be two strong fuzzy

graphs with their underlying crisp graphs P2 = u1u2 and Cn = v1v2 . . . vn re-

spectively. Suppose that µ1(u1) ≤ µ1(u2) ∧ µ2(v1) ∧ µ2(v2) ∧ . . . ∧ µ2(vn). Let

G(V, µ, σ) be the normal product of G1 and G2. Then the strength S (G) is

S (G) =



















max{[n
2
],S (G2)} if µ1(u2) > ∧µ2(vi),

[n
2
] if µ1(u2) ≤ ∧µ2(vi).
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Chapter 5

Relation between some fuzzy

graphs and their line graphs

The line graph of a graph G(V,E) represents the adjacencies between edges

of G. Whitney and Krausz (1943) constructed the line graph in their papers

’Congruent graphs and the connectivity of graphs’ and and the name line graph

was given by Harary and Norman [19]. John N. Mordeson [33] defined and gave

some results of fuzzy line graph in his paper ’Fuzzy line graphs’.

In this chapter we find the strength of the line graphs of strong fuzzy butterfly

graph, strong fuzzy star graph, strong fuzzy bull graph and strong fuzzy diamond

graph, strong fuzzy path, strong fuzzy cycle in terms of the respective graphs.

Definition 5.0.1. [33] Let G(V, µ, σ) be a fuzzy graph with its underlying crisp

Some results of this chapter are included in the following paper Chithra K. P., Raji Pi-
lakkat, Annals of Fuzzy Mathematics and Informatics, Volume 30, No:2, 2017, 107-115
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5.1. Line graph of some strong fuzzy graphs

graph G(V,E). The fuzzy line graph L(G)(VL, µL, σL) of G(V, µ, σ) is the fuzzy

graph with its underlying crisp graph L(G)(VL, EL) is the line graph of G(V,E)

where the vertex set VL = E and edge set

EL = {uv : u and v are edges in G,which have a common vertex in G}, µL(u) =

σ(u) if u ∈ VL and for u, v ∈ EL

σL(uv) =











σ(u) ∧ σ(v) if u and v have a vertex in common,

0 otherwise.

5.1 Line graph of some strong fuzzy graphs

5.1.1 Strong fuzzy butterfly graph

Theorem 5.1.1. The strength of the line graph of a strong fuzzy butterfly graph

is three.

Proof. The line graph L(G) of a strong fuzzy butterfly graph G(V, µ, σ) is a

2−linked fuzzy graph with parts G1(V1, µ1, σ1), G2(V2, µ2, σ2), and G3(V3, µ3, σ3),

where G1(V1, µ1, σ1) and G3(V3, µ3, σ3) are fuzzy triangles and G2(V2, µ2, σ2) is

fuzzy complete graph on 4 vertices (A butterfly graph and its line graph are

shown in figure 1). So by Theorem 2.3.2 strength of L(G) is 3.
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Figure 5.1: (a) A strong fuzzy Butterfly graph G and (b) its line graph L(G).

5.1.2 Strong fuzzy star graph

Theorem 5.1.2. The strength of the line graph of a strong fuzzy star graph is

one.

Proof. In a strong fuzzy star graph Sn all the edges are adjacent. So the line

graph of the strong fuzzy star graph is a strong fuzzy complete graph. Therefore

by Theorem 1.4.1 the strength of the line graph of a strong fuzzy star graph is

one.

5.1.3 Strong fuzzy bull graph

Theorem 5.1.3. The strength of the line graph of a strong fuzzy bull graph is 2.
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Figure 5.2: (a) A strong fuzzy Bull graph G and (b) its line graph L(G).

The line graph of a strong fuzzy bull graph is a strong fuzzy butterfly graph

( A bull graph G(V, µ, σ) and its line graph are shown in Figure 2). Therefore

by Theorem 2.3.2 the strength of the line graph of a strong fuzzy bull graph is

2.

5.1.4 Strong fuzzy diamond graph

Theorem 5.1.4. The strength of line graph of a strong fuzzy diamond graph is

2.

Proof. The line graph of a strong fuzzy diamond graph is a strong fuzzy wheel

graph on 5 vertices as shown in Figure 5.3. Therefore by Theorems 3.1.4, 3.1.5,

3.1.6 strength of line graph of a strong fuzzy diamond graph is 2.
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Figure 5.3: A strong fuzzy diamond graph G and its line graph L(G).

5.2 Line graph of strong fuzzy cycle

Proposition 5.2.1. In a strong fuzzy cycle of length n suppose there are l weak-

est edges which do not altogether form a subpath. Let s denote the maximum

length of a subpath which does not contain any weakest edge. Then

S (G) =



















[n
2
] if s ≤ [n

2
],

s if s > [n
2
].

Proof. Let u, v be two non-adjacent vertices of G. Then in G there are two paths

joining u and v. If both the paths contain a weakest vertex then the extra strong

path joining u and v is the shortest path joining u and v in its underlying crisp

graph, which is of length ≤ [n
2
]. If u and v are the end vertices of a path having

length [n
2
] then the extra strong path joining u and v is of length = [n

2
].
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5.2. Line graph of strong fuzzy cycle

Otherwise, there is a u− v path P having no weakest vertices. Then P is an

extra strong path joining u and v. The length of P , by hypothesis, is ≤ s. If u

and v are the end vertices of the maximal subpath which does not contain any

weakest edge in G then the length of P is s. Hence the theorem.

Now we consider the case of the strength of line graph of a fuzzy cycle. To

determine this we introduce the following definitions:

Definition 5.2.1. Two paths P1 and P2 of a fuzzy cycle C are said to be vertex

disjoint or simply disjoint if V (P1) ∩ V (P2) = φ and edge disjoint if E(P1) ∩

E(P2) = φ where V (P2) denotes the vertices of P2 and E(P2) denotes the edges

of Pi, i = 1, 2.

Definition 5.2.2. Suppose P1 and P2 are two disjoint paths of a fuzzy cycle C

with respective end points u1, v1 and u2, v2. Then, < (V (C) \ (V (P1 ∪ P2)) ∪

{u1, u2, v1, v2}) > is a union of two disjoint paths of C, called complementary

paths relative to the paths P1 and P2.

Definition 5.2.3. Let G(V, µ, σ) be a fuzzy graph. A path P in G with all its

edges have weight equal to w where w = min {σ(uv) : σ(uv) > 0 in G} is called

a weakest path. A weakest path which is not a proper subpath of any other

weakest path in the fuzzy graph G is called a maximal weakest path in G.

Here after in this chapter we denote the weight of weakest paths of any fuzzy

graph G by w.
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5.2. Line graph of strong fuzzy cycle

Note 5.2.1. A graph may have more than one maximal weakest paths. For ex-

ample, in the strong fuzzy cycle G in Figure 5.4 u2u3u4u5u6u7 and u8u9u10u11u12

are maximal weakest paths of G.
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Figure 5.4: A strong fuzzy cycle G.

Definition 5.2.4. Two paths of the collection P of pairwise disjoint paths in

a fuzzy cycle C are said to be consecutive if one of the complementary paths

relative to them contains all other paths of P .

Definition 5.2.5. A collection P of pairwise disjoint paths in a fuzzy cycle C is

said to form a chain if its members can be arranged in a sequence P1, P2, . . . , Pn

such that (P1, P2), (P2, P3), . . . , (Pn−1, Pn) and (P1, Pn) are consecutive.

Proposition 5.2.2. Let G be a strong fuzzy path (or a strong fuzzy cycle), then

its fuzzy line graph L(G) is also a strong fuzzy path (strong fuzzy cycle).

Proof. Let G be a strong fuzzy path. Let underlying crisp graph be the graph

with vertex set {v1, v2, . . . , vn} and edge set {e1, e2, . . . , en−1} where ei = vivi+1, i =

1, 2, . . . , n−1. Since for 1 < i < n−1 the edge ei in the underlying crisp graph is

adjacent only to the edge ei−1 and ei+1, the vertex ei of the crisp graph L∗(G) of
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5.2. Line graph of strong fuzzy cycle

L(G) is adjacent only to the vertices ei−1 and ei+1 of L
∗(G). Since the edge e1 of

underlying crisp graph is adjacent only to the edge e2 of underlying crisp graph

and the edge en of underlying crisp graph is adjacent only to the edge en−1 of

underlying crisp graph, the vertices e1 and en of L∗(G) are adjacent only to its

vertices e2 and en−1 respectively. Thus L
∗(G) is a path with vertices e1, e2, . . . , en

and edges e1e2, e2e3, . . . , en−1en. The lemma now follows from the definition of

L(G).

Similar is the case of a fuzzy cycle.

Proposition 5.2.3. If P is a weakest path of length k in a strong fuzzy graph

G then in the fuzzy line graph L(G) of G the path P ′ corresponding to the path

P of G with vertex set as edge set of P is a weakest path in L(G) of length k−1.

Theorem 5.2.1. Let G be a strong fuzzy cycle of length n. Suppose there are l

weakest edges which form m maximal weakest paths in G. Then for n > 3 and

m < [n
2
] the line graph L(G) of G has l +m weakest edges.

Proof. By Proposition 5.2.3, for a weakest path P of G with strength w and

length l, the path P ′ of L(G) with vertex set as edge set of P is a path of length

(l−1) with strength w. Note that the end vertices of u and v of P ′ are also have

weight w. So the edges incident with u and v in L(G) are also have weight w.

So each maximal weakest path P in G of length p gives a weakest path in L(G)

of length p + 1. Therefore m weakest paths, give rise to (l +m) weakest edges

in L(G).
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5.2. Line graph of strong fuzzy cycle

Also if P ′
1 and P ′

2 are two paths of L(G) corresponding to two distinct maximal

paths P1 and P2 of G, then they are edge disjoint. [ Note that the path P ′ of

L(G) thus obtained need not be maximal. See Figure 5.5].
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Figure 5.5: A fuzzy cycle G of length 6 with 4 weakest edges and its line graph L(G).

Proposition 5.2.4. Suppose P1 and P2 are two disjoint weakest paths of lengths

n1 and n2 respectively in the fuzzy cycle C. Suppose one of the complementary

paths P relative to these paths is of length one, then there exists a weakest path

of length (n1 + n2) in L(G) with edges of P1, P2 and P as vertex set.

Theorem 5.2.2. Let G be a strong fuzzy cycle of length n. Suppose G contains

exactly one maximal weakest path P . Let its length be l. Then the strength

S (L(G)) of the line graph L(G) of G is

S (L(G)) =



















S (G)− 1 if l ≤ [n−1
2
],

S (G) if l > [n−1
2
].

Proof. Since P is a path of length l in G by Proposition 5.2.3 the path P ′ of

L(G) with vertex set as edge set of P is a weakest path of L(G) of length l − 1.
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5.2. Line graph of strong fuzzy cycle

If l = n − 1, then all edges in G but one is weakest. In this case all the edges

of L(G) are weakest. Hence by 1.4.1, S (L(G)) = [n
2
] = S (G). Let us suppose

that l < n− 1. Since all the vertices of P ′ are weakest the edges incident to the

vertices of P ′ are also weakest edges and all the other edges are non-weakest.

There are l + 1 edges incident with the vertices of P ′ by Theorem 5.2.1. In this

case there is only one weakest path L(G) which is of length l + 1.

Now by Theorem 1.4.2.

S (L(G)) =



















n− (l + 1) if l + 1 ≤ [n+1
2
],

[n
2
] if l + 1 > [n+1

2
].

=



















S (G)− 1 if l ≤ [n−1
2
],

S (G) if l > [n−1
2
].

Theorem 5.2.3. Let G be a strong fuzzy cycle of length n with l weakest edges.

Let there be m maximal weakest paths P1, P2, . . . , Pm in G, where m ≥ 1. If for

i = 1, 2, . . . , m − 1, one of the complementary paths Qi between Pi and Pi+1 is

of length one such that P1Q1P2Q2 . . . Pm−1Qm−1Pm is a path of length l+m− 2

and the complementary paths between P1 and Pm which does not contain any Pi
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5.2. Line graph of strong fuzzy cycle

is of length ≥ 2. Then the strength S (L(G)) of L(G) is

S (L(G)) =



















S (G)−m if l ≤ [n+1
2
]−m,

[n
2
] if l > [n+1

2
]−m.

Proof. Let Q be the complementary path between Pm and P1. Then Q does not

contain any of the paths P1, P2, P3, . . . , Pm−1, Pm.

If Q is of length one then in L(G) either both ends of each edge is weakest

vertices or one of the ends is a weakest vertex. Thus every edge in L(G) in this

case is a weakest edge. Hence S (L(G)) = [n
2
] = S (G) by Theorem 1.4.1.

Now suppose that the length of Q is not one. Note that the vertices of L(G)

corresponding to the edges of P1, P2, . . . , Pm are weakest. Though the vertices

of L(G) corresponding to the edges Q1, Q2, . . . , Qm−1 are not weakest, the edges

incident with them have weakest vertices on the other end. Thus the path P in

L(G) with vertex set as edge set of the path P1Q1P2Q2 . . . Pm−1Qm−1Pm of G

together forms a weakest path of length l + m − 2. Since there are more than

one edge in Q, the edge e1 of Q incident with P1 and the edge e2 of Q incident

with the path Pm are different in L(G). The vertex of L(G) corresponding to

the edge e1 of G is adjacent to one end vertex of P by a weakest edge and the

vertex of L(G) corresponding to the edge e2 is adjacent to the other end of P

by a weakest edge. All other edges of L(G) are of non weakest. Hence L(G)

contains only one maximal weakest path of length l+m. Therefore the strength
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5.2. Line graph of strong fuzzy cycle

S (L(G)) of L(G) is

S (L(G)) =



















n− (l +m) if l ≤ [n+1
2
]−m,

[n
2
] if l > [n+1

2
]−m.

=



















(n− l)−m if l ≤ [n+1
2
]−m,

[n
2
] if l > [n+1

2
]−m.

=



















S (G)−m if l ≤ [n+1
2
]−m,

[n
2
] if l > [n+1

2
]−m.

Hence the proof.

Theorem 5.2.4. Let G be a strong fuzzy cycle of length n. Suppose there

are l weakest edges in G which do not altogether form a subpath in G. Let

P1, P2, . . . , Pm be the chain of all m maximal weakest paths in G. If for every Pi,

Pi+1 which do not contain any of the Pk’s are of length greater than one (when

j = m,Pj+1 = P1). Let s denote the maximum length of the subpaths which

do not contain any weakest edge of G. Then if l < [n
2
] − (m + 1), the strength

S (L(G)) of the line graph L(G) of G is

S (L(G)) =



















S (G)− 1 if s = [n
2
] + 1 and n odd,

S (G) otherwise.
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5.2. Line graph of strong fuzzy cycle

Proof. Since l weakest edges of G are distributed to form m maximal weakest

paths in G, there are l + m weakest edges in L(G). Also the maximum length

of paths in L(G) which do not contain any weakest edge is clearly s − 1. By

Theorem 1.4.4, the strength S (L(G)) of L(G), when l +m < [n
2
]− 1 is

S (L(G)) =



















[n
2
] if s ≤ [n

2
] + 1,

s− 1 if s > [n
2
] + 1.

Consider the case s ≤ [n
2
] + 1. Then either s ≤ [n

2
] or s = [n

2
] + 1. Also

l+m < [n
2
]−1 implies that l < [n

2
]−1. So when s ≤ [n

2
], S (G) = [n

2
] = S (L(G))

by Theorem 1.4.4.

When s = [n
2
] + 1,

S (G) = [
n+ 1

2
] =



















[n
2
] if n even,

[n
2
] + 1 if n odd.

where as S (L(G)) = [n
2
] which implies

S (L(G)) =



















S (G) if n even,

S (G)− 1 if n odd.
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5.2. Line graph of strong fuzzy cycle

When s > [n
2
] + 1, s > n

2
. Therefore S (G) = S (L(G)). Therefore

S (L(G)) =



















S (G)− 1 if s = [n
2
] + 1 and n odd,

S (G) otherwise.

Hence the proof.

Theorem 5.2.5. Let G be a strong fuzzy cycle of length n. Let there be l weakest

edges in G which do not altogether form a subpath in G and form a chain of

paths P1, P2, . . . , Pn. Also there exist at least two indices i < j such that the

complementary paths between Pi, Pi+1 and Pj, Pj+1 which do not contain any

one of the Pks are of length greater than one (when j = m,Pj+1 = P1 in G). Let

s denote the maximum length of the subpaths which do not contain any weakest

edge in G. Then if l > [n
2
] − (m + 1) the strength S (L(G)) of the line graph

L(G) of G is

S (L(G)) =



















S (G) if l > [n
2
]− 1, or if l ≤ [n

2
]− 1 and s ≤ [n

2
],

S (G)− 1 if l ≤ [n
2
]− 1, and s > [n

2
].

If l = [n
2
]− (m+ 1) then

S (L(G)) =







































S (G) if l < [n
2
]− 1, s ≤ [n

2
] and n is odd,

S (G) + 1 if l < [n
2
]− 1, s ≤ [n

2
] and n even,

S (G)− 1 if l < [n
2
]− 1, s > [n

2
].
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5.2. Line graph of strong fuzzy cycle

Proof. For l > [n
2
]− (m+ 1), consider the following cases.

Case 1. l > [n
2
]− 1.

Here, by applying Theorem 1.4.3 we get S (L(G)) = [n
2
] which is equal to

S (G).

Case 2. l ≤ [n
2
]− 1 < l +m

Then by Lemma 5.2.1 and by Theorem 1.4.4

S (G) =



















[n
2
] if s ≤ [n

2
],

s if s > [n
2
].

That is if s ≤ [n
2
] then s − 1 ≤ [n

2
] which gives S (L(G)) = [n

2
] = S (G). ( See

Figure 5.6 with n = 12, l = 4, m = 2 and Figure 5.7 with n = 13, l = 5, m = 2).

If s > [n
2
] then s− 1 = [n

2
]. So S (L(G)) = [n

2
] = s− 1 = S (G)− 1. (See Figure

5.8 with n = 13, l = 4, m = 2).
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Figure 5.6: A fuzzy graphG with 12 vertices and 4 nonconsecutive weakest edges.
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5.2. Line graph of strong fuzzy cycle
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Figure 5.8: A fuzzy graphG with 13 vertices and 4 nonconsecutive weakest edges.

Consider the case l = [n
2
] − (m + 1) then S (L(G)) = [n+1

2
]. Since m ≥ 2,

l < [n
2
]− 1. By applying Theorem 1.4.3 S (G) = [n

2
] if s ≤ [n

2
]. So

S (L(G)) = [
n+ 1

2
] =



















[n
2
] if n even,

[n
2
] + 1 if n odd.

Therefore

S (L(G)) =











S (G) if n even,

S (G) + 1 if n odd.

If l < [n
2
] − 1 then if s > [n

2
], S (G) = s. So S (L(G)) = s − 1 = S (G) − 1.

Hence the proof.
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Chapter 6

Fuzzy extra strong k− path domination

in strong fuzzy graphs

Domination in fuzzy graphs is discussed by A.Somasundram and S.Somasundram

[50], by using effective edges [50] in fuzzy graphs. Using strong edges, Na-

goor Gani and Chandrasekaran [15] are introduced in fuzzy graphs - the dom-

ination, the independent domination and the irredundance. C.Natarajan and

S.K.Ayyaswamy [37] introduced strong(weak) domination in fuzzy graphs. The

concept of Strong (Weak) domination [45] in graphs was introduced by Sam-

pathkumar and Pushpalatha. This chapter introduces fuzzy extra strong k−

path domination in strong fuzzy graphs and discusses some of its properties.

Definition 6.0.1. Let G(V, µ, σ) be a fuzzy graph. Let u, v ∈ V . For a positive

integer k, v is said to be an extra strong k− path neighbour of u if there exists

an extra strong u− v path of length ≤ k in G.
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We denote the set of all extra strong k− path neighbours of u by Nk(u). That

is Nk(u) = {v ∈ V : ∃ an extra strong u− v path of length ≤ k}.

Definition 6.0.2. Let G(V, µ, σ) be a fuzzy graph. For a subset S of V , the open

extra strong k− path neighbourhood of S is defined to be Nk(S) =
⋃

u∈S

Nk(u)

and the closed extra strong k− path neighbourhood of S is Nk[S] = Nk(S) ∪ S.

If S = {u}, a singleton subset of V , then instead of Nk[S] we write Nk[u], and

call a closed extra strong neighbourhood of u.

Remark 6.0.1. A vertex v ∈ Nk(u) if and only if u ∈ Nk(v).

Definition 6.0.3. Let G(V, µ, σ) be a fuzzy graph on V . Let u, v ∈ V . If there

does not exist an extra strong u−v path joining u and v of length ≤ k in G then

v is called an extra strong k− path isolated vertex of u and vice versa.

Remark 6.0.2. If G is of strength k then for any n ≥ k, then

i Nn(u) = V \ {u} for any vertex u of V and

ii Nn[S] = V , for any subset S of V .

Example 6.0.1.

PSfrag replacements

u1(0.6)

u2(0.7)
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Figure 6.1: A fuzzy graph G having Strength 5.
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For the fuzzy graph G in Figure 6.1, there is only one extra strong path P of

length 5 which is u1u2u4u5u6u7. Therefore N5(u1) = {u2, u3, u4, u5, u6, u7}.

It is to be noted that N1(u5) = {u4, u6}, N2(u5) = {u2, u4, u6, u7} and for any

k ≥ 3, Nk(u5) = {u1, u2, u3, u4, u6, u7}.

By considering the extra strong path joining two vertices of a fuzzy graph we

define two types of degree for each vertex v of a fuzzy graph.

Definition 6.0.4. For a fuzzy graph G(V, µ, σ) on the vertex set V and for a

positive integer k, the extra strong k− path degree dSk(v) of a vertex v in G,

is defined as the sum of the strength of all the extra strong paths joining v and

vertices in Nk(v). The extra strong k− path neighbourhood degree dNk(v) of a

vertex v of a fuzzy graph is Σ
u∈Nk(v)

µ(u).

From Figure 6.1, dS1(u5) = 0.8, dN1(u5) = 1.1, dS2(u5) = 1.6 and dN2(u5) =

2.6.

Notation 6.0.1. For a fuzzy graph G on the vertex set V and for an integer k,

min{dSk(u) : u ∈ V (G)} is denoted by δSk
(G) or simply by δSk

andmax{dSk(u) :

u ∈ V (G)} is denoted by ∆Sk
(G) or by ∆Sk

. Similarly minimum extra strong

k− path neighbourhood degree of a fuzzy graph and maximum extra strong k−

path neighbourhood degree of a fuzzy graph are denoted by δNk
(G) and ∆Nk

(G)

respectively.

From Figure 6.1, δS1(G) = 0.4, ∆S1(G) = 1.3, δN1(G) = 0.7, ∆N1(G) = 1.4.
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Definition 6.0.5. Let G(V, µ, σ) be a fuzzy graph and S ⊆ V (G) and v ∈ V −S,

dk(v, S) is defined to be the minimum length of the extra strong paths from v to

u, u ∈ S.

Note 6.0.1. For every vertex v ∈ V − S, dk(v, S) ≤ strength of the graph G.

Definition 6.0.6. Let G(V, µ, σ) be a fuzzy graph. For a positive integer k, a

subset S ⊆ V is said to be fuzzy extra strong k− path dominating set of G if for

every v ∈ V either v ∈ S or there exist an extra strong path of length ≤ k from

v to a vertex of S in G.

Note 6.0.2. Let G(V, µ, σ) be a fuzzy graph. A subset S of V is said to be fuzzy

extra strong k− path dominating set of G, if for every vertex v ∈ V − S, ∃ an

extra strong path of length ≤ k from v to a vertex u of S then we simply say

that v extra strong k− path dominates u.

Remark 6.0.3. If S is a fuzzy extra strong k− path dominating set of a fuzzy

graph G then every superset S ′ ⊇ S is also a fuzzy extra strong k− path domi-

nating set.

Definition 6.0.7. A fuzzy extra strong k− path dominating set S is a minimal

fuzzy extra strong k− path dominating set if no proper subset S ′′ ⊆ S is a fuzzy

extra strong k− path dominating set.

Note 6.0.3. The set of all minimal fuzzy extra strong k− path dominating sets

of a fuzzy graph G is denoted by ESmk −DS(G).
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Definition 6.0.8. A fuzzy extra strong k− path dominating set of a fuzzy graph

with minimum number of vertices is called a minimum extra strong k− path

dominating set.

Definition 6.0.9. The fuzzy extra strong k− path domination number γSk
(G)

of a fuzzy graph G is the minimum cardinality of a ESmk −DS(G) set.

The fuzzy extra strong k− path upper domination number ΓSk
(G) is the

maximum cardinality of sets in ESmk −DS(G).

Example 6.0.2.

From Figure 6.1, for k = 1, the sets {u2, u6}, {u1, u3, u5, u6}, {u1, u3, u4, u6},

{u2, u5, u7} are minimal extra strong k− path dominating sets. For k = 2, {u1, u5},

{u2, u6}, {u1, u4}, {u1, u7}, for k = 3, {u4}, {u1, u7}, {u1, u6}, {u3, u6}, {u3, u7},

{u2, u7}, {u5} are minimal extra strong k− path dominating sets. Also for any

k > 3, all singletons are minimal dominating for G.

So, ES γS1(G) = 2 , ES ΓS1(G) = 4.

Remark 6.0.4. Let G(V, µ, σ) be a fuzzy graph. Note that for any u, v ∈ V , if

u extra strong k− path dominates v then v extra strong k− path dominates u.

Hence extra strong k− path domination is a symmetric relation on V.

Definition 6.0.10. Let G(V, µ, σ) be a fuzzy graph and V1 ⊂ V . G\V1 is defined

to be the fuzzy graph G(V2, µ1, σ1), V2 = V \ V1, µ1 = µ/V2, σ1 = σ/V1×V2.

Algorithm 6.0.1. Algorithm for finding an extra strong k− path minimal dom-

inating set D of a fuzzy graph G.
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Step 1. Find the length of the extra strong path joining every pair of vertices

of G using Algorithm (2.2.2).

Step 2. List out all pairs of vertices of G so that the length of extra strong paths

between them is less than or equal to k, as U .

Step 3. Select a vertex which appears most number of times in the pairs of U .

If there are more than one, select one among them (say u) and put it in the set

D. Now group the vertices paired to u in U as V1.

Step 4. From the fuzzy graph G1 = G− (V1 ∪ {u}).

Step 5. Add the isolated vertices I1 of G1 to the set D and denote G2 = G1−I1.

Step 6. Repeat Steps 3, 4 and 5 successively for each component of G2.

Step 7. Stop the process when the union of D and the deleted vertices of G is

V (G).

The subset D of V thus obtained will be a minimal ES k− path dominating

set.

Illustration:

Let G(V, µ, σ) be a fuzzy graph with vertex set V = {u1, u2, . . . , u10}. For ui, uj ∈

V , denote the length of an extra strong ui − uj path of G by kuiuj
.
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Figure 6.2: A fuzzy graph G.

ku1u2 = 2, ku2u3 = 2, ku3u4 = 1, ku4u5 = 1, ku5u6 = 1,

ku1u3 = 1, ku2u4 = 1, ku3u5 = 5, ku4u6 = 2, ku5u7 = 2,

ku1u4 = 2, ku2u5 = 2, ku3u6 = 3, ku4u7 = 3, ku5u8 = 3,

ku1u5 = 3, ku2u6 = 4, ku3u7 = 4, ku4u8 = 4, ku5u9 = 2,

ku1u6 = 4, ku2u7 = 5, ku3u8 = 5, ku4u9 = 3, ku5u10 = 3,

ku1u7 = 5, ku2u8 = 6, ku3u9 = 4, ku4u10 = 4, ku6u7 = 1,

ku1u8 = 6, ku2u9 = 5, ku3u10 = 4, ku6u8 = 2, ku6u9 = 1,

ku1u9 = 5, ku2u10 = 6, ku6u10 = 2, ku7u8 = 1, ku7u9 = 2,

ku1u10 = 6, ku7u10 = 3, ku8u9 = 3, ku8u10 = 4, ku9u10 = 1.

For finding a minimal extra strong 1− path dominating setD, the vertex pairs

to be considered are (u1, u3), (u2, u4), (u3, u4), (u4, u5), (u5, u6), (u6, u7), (u6, u9), (u7, u8).

Here u6 repeats maximum number of times. Therefore u6 ∈ D. Here the ver-

tices paired to u6 are u5, u7, u9. Now form the graph G1 by deleting the vertices
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u5, u6, u7, u9 from G. Thus V (G1) = {u1, u2, u3, u4, u8, u10}.
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Figure 6.3: The fuzzy subgraph G1.

Form the graph G2 by deleting the isolated vertices u8 and u10 from G1 ie,

G2 = G1 \ {u8, u10}. Now add the isolated vertices u8 and u10 of G2 to D.

For the graph G2, ku1u2 = 3 ku1u3 = 1 ku1u4 = 2 ku2u3 = 2 ku2u4 = 1 ku3u4 =

1. Consider the vertex pairs (u1, u3), (u2, u4), and (u3, u4). The length of the

extra strong path joining the vertices in each pair is one. Here two vertices

u3 and u4 repeat maximum number of times. Choose one among them, say u3

and add it to D and delete the vertices paired to u3 and the vertex u3 from G2

and form G3. The resulting graph G3 is the trivial fuzzy graph on the vertex

{u2}. Add u2 to D. The subset D thus obtained is an an ES k− path minimal

dominating set, where D = {u2, u3, u6, u8, u10}.

Note 6.0.4.

1. For any strong fuzzy graph G, the length of an extra strong path joining

adjacent vertices is 1. Therefore extra strong 1− path dominating sets are

dominating sets of the underlying crisp graphs.
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2. For a positive integer k, if S is a fuzzy extra strong k− path dominating

set then it is also a fuzzy extra strong k + 1 dominating set. In general

an extra strong (k + 1)− path dominating set will not be an extra strong

k− path dominating set. But if k is the strength of the graph, every fuzzy

extra strong (k+1)− path dominating set is a fuzzy extra strong k− path

dominating set. More generally any fuzzy extra strong l− path dominating

set where l ≥ k is fuzzy extra strong k− path dominating set.

3. For a fuzzy graph G and for k = 1 if there exist an extra strong k− path

dominating set S consisting of a single vertex v of G then S is a the minimal

extra strong k− path dominating set for all values of k. Thus if for a fuzzy

graph G if ES γS1(G) = 1 then ES γSk
(G) = 1, ∀k.

Note 6.0.5.

1. From Note 6.0.4 if the given fuzzy graph G is a complete fuzzy graph or

a strong fuzzy wheel graph or a strong fuzzy butterfly graph or a strong

fuzzy star graph, ES γSk
(G) = 1 for all values of k.

Example 6.0.3.

Figure 6.4 (a) shows that for a strong fuzzy wheel graph G, with fuzzy hub

v, {v} is an ES k− path minimal dominating set for all values of k. But

from Figure 6.4(b) it is clear that {v} is not a minimal extra strong 1−

path dominating set.
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Figure 6.4: A strong fuzzy wheel graph and a fuzzy wheel graph.

Theorem 6.0.1. For a fuzzy path G on n vertices, ES γSk
(G) =

⌈

n
2k+1

⌉

, ∀k.

Proof. For a fuzzy path, there is only one path joining any two vertices of G. So

for each value k,

ES γSk
(G) ≤

⌈

n
2k+1

⌉

.

To see the reverse inequality, let D be a fuzzy ES k− path dominating set

with |D| = r. If possible, let r ≤
⌈

n
2k+1

⌉

− 1. The r vertices of D dominate at

the most r(2k + 1) vertices of G including the vertices of D. But r(2k + 1) <

( n
2k+1

+ 1 − 1)(2k + 1) < n. Thus D can dominates only < |G| vertices, a

contradiction. Thus r ≥
⌈

n
2k+1

⌉

. Hence the result.

Corollary 6.0.1. The ES k− path domination number of the line graph of a

strong fuzzy butterfly graph G(V, µ, σ) is γSk
(G) =











2 if k = 1,

1 if k ≥ 2.
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Corollary 6.0.2. LetG be a fuzzy graph with its underlying crisp graph is a path

on n vertices. Suppose L(G) is the line graph of G. Then ES γSk
(L(G)) =

⌈

n−1
2k+1

⌉

.

Corollary 6.0.3. Let G be a fuzzy graph with its underlying crisp graph is a

path on n vertices. If sd(G) is the subdivision graph of G, then ES γSk
(sd(G)) =

⌈

2n−1
2k+1

⌉

.

Theorem 6.0.2. For a fuzzy graph G(V, µ, σ), with underlying crisp graph a

cycle of length n, ES γSk
(G) =

⌈

n
2k+1

⌉

∀k.

Proof. Let V = {u1, u2, . . . , un}. Also let u be a vertex in V such that µ(u) =

n

∧
i=1

µ(ui). We have by Theorem 1.4.2, 1.4.3, 1.4.4, S (G) ≥ [n
2
]. It is obvious that

for k ≥ [n
2
], u fuzzy extra strong k− path dominates all the vertices of G. So

ES γSk
(G) = 1, ∀k ≥ [n

2
]. Now we want to prove the result for k < [n

2
]. Let G∗

be the underlying crisp graph of G on n vertices u1, u2, . . . , un. Suppose there

are l weakest edges which altogether form a subpath, say, P ′ = u1u2 . . . ul where

l > n+1
2

in G. Then strength of the graph is [n
2
]. In this case the vertex u1

dominates 2k + 1 vertices of G including u1.
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The remaining n− (2k + 1) vertices are extra strong k− path dominated by
⌈

n−(2k+1)
2k+1

⌉

vertices of G. So for each value of k,

ES γSk
(G) ≤

⌈

n− (2k + 1)

2k + 1

⌉

+ 1 =

⌈

n

2k + 1

⌉

.

Suppose the weakest edges of G do not altogether form a subpath. Then ∃

at most one extra strong path joining any two vertices of G of length ≤ k. So

ES γSk
(G) ≤

⌈

n

2k + 1

⌉

.

That is in both the cases the r vertices of G dominates r(2k + 1) vertices

including these r vertices of G. So the converse part follows as in the case of a

fuzzy path.

Theorem 6.0.3. Let G be a strong fuzzy complete bipartite graph with Kmn as

its underlying crisp graph. Then the ES k− path domination number of G is

ESγSk
(G) =











1 if k ≥ 2 or k = 1 and m or n is equal to 1,

2 otherwise.

Proof. Let U = {u1, u2, . . . , um} and V = {v1, v2, . . . , vn} be the bipartite sets of

G.
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Case 1. k ≥ 2, or k = 1 and m = 1 or k = 1 and n = 1.

If m and n are not simultaneously one then S (G) = 2 and if m = n = 1

then S (G) = 1. Therefore in these cases length of extra strong path joining any

two vertices of G is at most 2. Clearly a single vertex of G can extra strong k−

path dominate all the other vertices of G. Clearly ESγSk
(G) = 1.

Case 2. k = 1 and m,n are greater than 1.

It is obvious that any vertex in U extra strong 1− path dominate all the

vertices of V , and any vertex in V can extra strong 1-path dominate all the

vertices of U . So if u ∈ U and v ∈ V then {u, v} extra strong 1− path dominates

all the vertices of G. So ESγS1(G) ≤ 2. Also for k = 1, no vertex in U can

dominate any other vertices of U , so ES γS1(G) 6= 1. Therefore ES γS1(G) = 2.

Theorem 6.0.4. Let G be a properly linked fuzzy graph with the complete fuzzy

graphs G1, G2, . . . , Gm as its parts. Suppose for i = 1, 2, . . . , m − 1, V (Gi) ∩

V (Gi+1) = Kni
, a complete graph on ni vertices. Then the ES k− path domi-

nation number of G, ES γSk
(G) = ⌈m

2k
⌉.

Proof. As each Gi is complete, each vertex of Gi dominates all the vertices of

Gi. If a vertex belongs to V (Gi) ∩ V (Gi+1) then it dominates all the vertices of

both Gi and Gi+1. In the case of k > 1, a vertex in V (Gi)∩ V (Gi+1), dominates

k parts to the left and k parts to the right of that vertex, (if they exist). So as
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far as the domination is concerned, instead of taking the whole chain we take its

merger graph G′. The merger graph G′ is a 1− liked fuzzy graph with m parts

where each part is complete. The strength of a strong fuzzy complete graph is 1

by Theorem 1.4.1. As there is only one extra strong path joining any two vertices

of G′, we have for each value of k, ES γSk
(G) ≤ ⌈m

2k
⌉.

Conversely, let S be an arbitrary extra strong k− path dominating set of G′

with |S| < ⌈m
2k
⌉. Let u be any vertex of S. If u = wi i+1 with the notation of

Definition 2.3.6 for some i, j then it extra strong k− path dominates 2k parts and

itself. If u 6= wij then it dominates at most 2k− 1 parts. Therefore if |S| < ⌈m
2k
⌉

it will not ES k− path dominate all the vertices of G. Hence the proof.

The middle graph of a strong fuzzy path on n vertices is a 1− linked graph

with n− 1 fuzzy complete graphs as its parts.

Corollary 6.0.4. Let G be a fuzzy graph with its underlying crisp graph is a

path on n vertices and M(G) its middle graph of G. Then γSk
(M(G)) =

⌈

n−1
2k

⌉

,

for k ≥ 1.

Corollary 6.0.5. The ES k− path domination number of a strong fuzzy Bull

graph G is γSk
(G) =











2 if k = 1,

1 if k ≥ 2.

Proof. A strong fuzzy Bull graph is a strong fuzzy graph with three parts each

of which is complete and from Theorem 6.0.4 the proof follows.
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Corollary 6.0.6. The ES k− path domination number of a strong fuzzy dia-

mond graph G is 1, ∀k.

Proof. The line graph G of a strong fuzzy diamond graph is a strong fuzzy wheel

graph on 5 vertices. Hence by Note 1 extra strong k− path domination number

of a strong fuzzy diamond graph is 1.

Theorem 6.0.5. The ES k− path domination number of line graph of strong

fuzzy diamond graph G is 1, ∀k.

Proof. The line graph of a strong fuzzy diamond graph G is a strong fuzzy wheel

graph on 5 vertices. See Figure 5.3. So the fuzzy hub can dominate all the other

4 vertices of the line graph of G. Hence the theorem.

Definition 6.0.11. For S ⊆ V , a vertex v ∈ S is called an extra strong k− path

enclave of S if Nk[v] ⊆ S, and v ∈ S is an extra strong k− path isolate of S if

Nk(v) ⊆ V \ S. A set is said to be extra strong k− path enclaveless if it does

not contain any extra strong k− path enclaves.

Property 1. The following statements are equivalent for a strong fuzzy graph

G(V, µ, σ). Let S ⊂ V be an extra strong k− path dominating set.

i For every vertex v ∈ V \ S, ∃ a vertex u ∈ S such that the length of the

extra strong path joining u to v ≤ k .

ii For every vertex v ∈ V \ S, dk(v, S) ≤ k.
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iii Nk[S] = V .

iv For every vertex v ∈ V \S, |Nk[v]∩S| ≥ 1, that is for every vertex v ∈ V \S,

there exists u ∈ S and extra strong path joining v to u of length ≤ k.

v For every vertex v ∈ V , |Nk[v] ∩ S| ≥ 1.

vi The set V \ S is extra strong k− path enclaveless.

Theorem 6.0.6. Let G(V, µ, σ) be a fuzzy graph. An extra strong k− path dom-

inating set S is an extra strong minimal k− path dominating set if and only if

for each vertex u ∈ S any one of the following conditions holds:

(a) u is an extra strong k− path isolate of S.

(b) there exist a vertex v ∈ V \ S for which Nk(v) ∩ S = {u}.

Proof. Suppose S is an extra strong k− path dominating set and for each vertex

u ∈ S one of the conditions (a) and (b) holds. Suppose that S is not an extra

strong minimal k− path dominating set. That is there exists a vertex u ∈ S

such that S \ {u} is an extra strong k− path dominating set. Hence there exists

an extra strong path joining u to at least one vertex in S \ {u} having length

≤ k that is, (a) does not hold for S. Since S \ {u} is an extra strong k− path

dominating set, for every vertex in V \S there exist an extra strong path having

length ≤ k to at least one vertex in S \ {u}, that is (b) does not hold.

Conversely, assume that S is an extra strong minimal k− path dominating

set of G. Then for every vertex u ∈ S, S \ {u} is not an extra strong k− path
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dominating set. This means for some v ∈ (V \ S) ∪ {u}, there does not exist

an extra strong path joining u to v having length ≤ k. Now either v = u or

v ∈ V \ S in the first case u is an extra strong k− path isolate of S. In the

second case, since v is not extra strong k− path dominated by S \ {u}, but is

extra strong k− path dominated by S, Nk(v) ∩ S = {u}.

Definition 6.0.12. Let G(V, µ, σ) be a fuzzy graph and S be a set of vertices

of G and let u ∈ S. A vertex v ∈ V is said to be an ES k− path private

neighbour of u with respect to S if Nk[v] ∩ S = {u}. The set of all ES k− path

private neighbours of u is called the ES k− path private neighbour set of u and

is denoted by ES PNk[u, S].

In other words, ES PNk[u, S] = Nk[u] − Nk[S − {u}]. Also notice that, if

u ∈ ES PNk[u, S] then u is an extra strong k− path isolated vertex in S.

Example 6.0.4.

Let S be the subset {u2, u6} of the vertex set of the graph in Figure 6.1

ES PN1[u2, S] = {u1, u2, u3, u4},

ES PN1[u6, S] = {u5, u6, u7},

ES PN2[u2, S] = {u1, u2, u3, u4, u5},

ES PN2[u6, S] = {u4, u5, u7}.

Remark 6.0.5. A subset S of the vertex set of a fuzzy graph G(V, µ, σ) is a

minimal fuzzy ESk− path dominating set if and only if for every vertex v ∈ S

there exists a vertex w ∈ V − (S − {v}) which is not dominated by S − {v}.
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Which is equivalent to, S is a minimal fuzzy ESk− path dominating set if and

only if ES PNK [u, S] 6= φ for every vertex u ∈ S, that is every vertex u ∈ S has

at least one ESk− path private neighbour with respect to S.

Definition 6.0.13. If there is no extra strong path of length ≤ k between u and

v, two vertices of a fuzzy graph G then in G, u and v are said to be fuzzy extra

strong k− path independent. If any two vertices of D, a subset of V , are fuzzy

extra strong k− path independent and are extra strong k− path dominating then

D is said to be an extra strong k− path independent set of G.

In Figure 6.1 {u4, u7} is a fuzzy extra strong 2− path independent set.

Definition 6.0.14. If for every vertex v ∈ V − S, S is a fuzzy extra strong k−

path independent set of G(V, µ, σ), the set S ∪ {v} is not a fuzzy extra strong

k− path independent set of G then S is a maximal fuzzy extra strong k− path

independent set of G(V, µ, σ).

Proposition 6.0.1. A fuzzy extra strong k− path independent set S in a fuzzy

graph G(V, µ, σ) is maximal fuzzy extra strong k− path independent set if and

only if it is fuzzy extra strong k− path independent and fuzzy extra strong k−

path dominating.

Proof. Let S be a maximal fuzzy extra strong k− path independent set. Then

from the definition it is clear that S is both fuzzy extra strong k− path inde-

pendent and fuzzy extra strong k− path dominating. Conversely, if a set S is

both fuzzy extra strong k− path independent and fuzzy extra strong k− path
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dominating. Suppose S is not maximal fuzzy extra strong k− path independent.

Then there exists a vertex u ∈ V −S for which S ∪{u} is fuzzy extra strong k−

path independent. Therefore there does not exist an extra strong path of length

less than or equal to k joining any vertex in S to u. Hence S cannot be fuzzy

extra strong k− path dominating. Hence the proof.

Theorem 6.0.7. Every maximal fuzzy extra strong k− path independent set in

a fuzzy graph G is a minimal fuzzy extra strong k− path dominating set of G for

each value of k.

Proof. Let S be a maximal fuzzy extra strong k− path independent set in G.

Proposition 6.0.1 asserts that S is a fuzzy extra strong k− path dominating

set. We must show that S is, in fact, a fuzzy extra strong k− path minimal

dominating set. A fuzzy extra strong k− path dominating set S is a minimal

fuzzy extra strong k− path dominating set if for every vertex v ∈ S the set

S − {v} is not a fuzzy extra strong k− path dominating set. Assume therefore

that S is not a minimal fuzzy extra strong k− path dominating set. But if for

some v ∈ S, S − {v} fuzzy extra strong k− path dominates V − (S − {v}),

then there is an extra strong path of length less than or equal to k joining at

least one vertex in S − {v} to v. This contradicts our assumption that S is a

maximal fuzzy extra strong k− path independent set of G. Therefore, S must be

a minimal fuzzy extra strong k− path dominating set. Hence the proof.

Definition 6.0.15. Let G(V, µ, σ) be a fuzzy graph and S ⊆ V . A vertex u ∈ S

is said to be a fuzzy extra strong k− path redundant vertex with respect to S if
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ES PNk[u, S] = φ. This means for any v ∈ V, Nk[v] ∩ S = φ or |Nk[v] ∩ S| > 1

or Nk[v] ∩ S ⊂ S \ {u}. Equivalently u is fuzzy extra strong k− path redundant

in S if Nk[u] ⊆ Nk[S − {u}]. Otherwise u is said to be fuzzy extra strong k−

path irredundant vertex.

Definition 6.0.16. Let G(V, µ, σ) be a fuzzy graph and S ⊆ V . The set S is

said to be fuzzy extra strong k− path irredundant set if ES PNk[u, S] 6= φ for

every vertex u in S. That is, every vertex u ∈ S has at least one extra strong

k− path private neighbour in S. A fuzzy ES k− path irredundant set S is a

maximal irredundant set, if for every vertex u ∈ V \ S, the set S ∪ {u} is not

fuzzy irredundant set. The minimum cardinality taken over all maximal ES k−

path irredundant sets of vertices of G is called lower irredundance number and

is denoted by ES irSk
. The maximum cardinality taken over all maximal ES k−

path irredundant sets of vertices of G is called upper irredundance number and

is denoted by ES IRSk
.

Proposition 6.0.2. A fuzzy extra strong k− path dominating set S is a minimal

fuzzy ES k− path dominating set if and only if it is fuzzy extra strong k− path

dominating and fuzzy extra strong k− path irredundant.

Proof. The fact that a minimal extra strong k− path dominating set is both fuzzy

extra strong k− path dominating and fuzzy extra strong k− path irredundant.

Conversely, if a set S is both fuzzy extra strong k− path dominating and fuzzy

extra strong k− path irredundant, we must show that it is minimal extra strong

k− path dominating. Suppose not, by Remark 6.0.5 it is sufficient to show
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that there exists a vertex v ∈ S such that S − {v} is a fuzzy extra strong

k− path dominating set. But since S is irredundant, ESPNk[v, S] 6= φ. Let

w ∈ ESPNk[v, S]. By Definition 6.0.15 there does not exist an extra strong

path joining w to any vertex in S − {v}. Therefore S − {v} is not a dominating

set, a contradiction.

Theorem 6.0.8. Let G(V, µ, σ) be a fuzzy graph and S ⊆ V . If no vertex of

S is an extra strong k− path isolate of S and if S is an extra strong k− path

irredundant set then V − S is an extra strong k− path dominating set.

Proof. Let S be an extra strong k− path irredundant set in a fuzzy graphG which

has no extra strong k− path isolated vertex. Suppose V \S is not an extra strong

k− path dominating set. Then there exists a vertex v in S such that the length

of extra strong paths joining v to any vertex of V \S is > k, because no vertex of

S is an extra strong isolate of S. Therefore ES PNk[v, S] = φ, a contradiction.

Hence the theorem.

Theorem 6.0.9. Let G(V, µ, σ) be a fuzzy graph with S ⊆ V be a fuzzy extra

strong k− path irredundant set. Then ES γSk
(G)/2 < ES irSk

(G) ≤ ES γSk
(G) <

2ES irSk
(G)− 1.

Proof. Let ES irSk
(G) = p and let S = {v1, v2, . . . , vp} be a fuzzy extra strong

k− path irredundant set of G. Therefore ES PNk[vi, S] 6= φ, for 1 ≤ i ≤ p.

Let S ′ = {u1, u2, . . . , up} where ui ∈ ES PNk[vi, S], i = 1, 2, . . . , p. Note that
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possibly ui = vi ( if vi is its own ES k− path private neighbour), but in any case

the cardinality of S ∪ S ′ is ≤ 2p = 2ES irSk
(G).

We claim that the set S ′′ = S∪S ′ is an extra strong k− path dominating set.

If not, then there must exist at least one vertex w ∈ V − S ′′ which is not extra

strong k− path dominated by S ′′. This means that w /∈ Nk[x] for any vertex

x ∈ S ′′, and therefore ES PNk[w, S ∪ {w}] 6= φ.

In particular vi /∈ Nk[w] for any vertex vi ∈ S. Therefore ES PNk[vi, S ∪

{w}] 6= φ. Thus S ∪ {w}is a fuzzy extra strong k− path irredundant set, which

contradicts the assumption that S is a maximal fuzzy extra strong k− path

irredundant set. Therefore, S ′′ is a fuzzy extra strong k− path dominating set.

By Theorem 6.0.7, ES irSk
(G) ≤ ES γSk

(G).

To prove the last inequality, note that although S ′′ is an extra strong k− path

dominating set it cannot be a minimal fuzzy extra strong k− path dominating

set unless |S ′′| = S, by Theorem 6.0.7. Therefore ES γSk
(G) ≤ 2ES irSk

(G)− 1

and ES γSk
(G)/2 < ES irSk

(G).
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Epilogue

In this research work the strength of various strong fuzzy graphs, derived strong

fuzzy graphs, products of strong fuzzy graphs have been determined. The results

obtained in this work may be extended to all types of fuzzy graphs. Also by

suitable modifications the results obtained here may be extended to directed

fuzzy graphs. Much more research remains to be done on fuzzy extra strong k−

path domination.

We presume that the above stated problems will be beneficial for research

aspirants.
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