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Chapter

Introduction

Graph theory has tremendous applications in many real life problems and many
areas of science such as chemistry, computer networks, computational neuro -
science, condensed matter physics etc. By using the principles of graph theory
many problems in the field of economics, linguistics, artificial intelligence, pattern

recognition, network topologies etc. can be modeled and analysed.

Graphs do not model all the systems properly due to the uncertainty or
haziness of the parameters of systems. For example, a social network may be
represented as a graph where vertices represent accounts (persons, institutions,
etc.) and edges represent the relation between the accounts. If the relations
among accounts are to be measured as good or bad according to the frequency
of contacts among the accounts. This and many other problems motivated to
define fuzzy graphs. Agzriel Rosenfeld was first introduced the concept of fuzzy

graphs. Crisp graph and fuzzy graph are structurally similar. But fuzzy graph



has a separate importance, when there is an uncertainty on vertices and/or edges

comes.

M-strong fuzzy graphs [4] were introduced by Bhutani and Battou. Bhutani
and Rosenfeld consider strong arcs in fuzzy graphs [5] for their work. Mathew
and Sunitha have introduced different types of arcs in fuzzy graphs and studied

their properties [30].

Ore and Berge studied the domination set in graphs. Due to the diversity
of applications of domination theory to real situation or location problem, the
research in this field grows rapidly. Domination in Fuzzy graphs is discussed by
A. Somasundram and S. Somasundram through their paper Domination in fuzzy

graphs —1 [50].

In this thesis we consider strong fuzzy graphs which were introduced by
Mordeson J. N. and Peng [34]. Sheeba M. B. [48] defined the strength of fuzzy
graphs which are connected. We extend this definition to arbitrary fuzzy graphs
as the maximum of strength of all connected components of a fuzzy graph. Also,
in our work we have made an attempt to introduce the concept of extra strong

k— path domination in strong fuzzy graphs.

Outline of the Thesis

Apart from this introductory chapter, we have presented our work in six chapters.



In Chapter 1, we describe the basic concepts, facts, elementary results and
some of the operations of crisp graphs and fuzzy graphs. In this chapter we
familiarise the concept of strength of fuzzy graphs and give some theorems that
explain the strength of certain fuzzy graphs such as fuzzy path, fuzzy cycle etc.

which are needed in the subsequent discussion.

In Chapter 2, we first derive an algorithm for finding the strength of a fuzzy
path in a fuzzy graph G(V,pu, o) and then the length of the path joining two
vertices with minimum length and maximum strength. All of these algorithms
are illustrated through examples. Apart from this, we define properly linked
fuzzy graphs and derive strength of such graphs when each part of it is a strong
fuzzy complete graph. Also in this chapter we find the strength of a strong fuzzy
complete bipartite graph, strong fuzzy diamond graph, strong fuzzy butterfly

graph and strong fuzzy bull graph.

In Chapter 3, we discuss join of some strong fuzzy graphs, corona of some
strong fuzzy graphs, subdivision graph, middle graph, total graph, split graph
and shadow graph of some strong fuzzy graphs. There are five sections in this
chapter. In the first section, ’strength of join of fuzzy graphs’ we find the strength
of join of (1) two complete fuzzy graphs, (2) two fuzzy fan graphs, (3) two fuzzy
star graphs, (4) two strong fuzzy paths, (5) strong fuzzy wheel graph which is
the join of a fuzzy cycle and a fuzzy trivial graph. In the next section 'Corona
of strong fuzzy graphs’ we find the strength of corona of (1) a fuzzy trivial

graph and a strong fuzzy graph which is not a fuzzy null graph, (2) two fuzzy



null graphs G1(U, 1, 01) and Go(V, g, 09) with |U| = 1 and |V| > 1, (3) two
strong fuzzy paths, (4) two strong fuzzy butterfly graphs. In the section "Fuzzy
subdivision graph of strong fuzzy graphs’ we find the strength of subdivision
graph of (1) strong fuzzy path, (2) strong fuzzy butterfly graph, (3) strong fuzzy
Bull graph, (4) strong fuzzy star graph, (5) strong fuzzy diamond graph and (6)
fuzzy complete graph. In the next section 'Fuzzy middle graph’ we find strength
of middle graph of (1)complete fuzzy graph, (2)strong fuzzy star graph and (3)
strong fuzzy diamond graph. In the next section ’total fuzzy graph’ we find the
strength of total graph of fuzzy null graph and a fuzzy complete graph. In the
next section 'Fuzzy split graph’ we find the strength of split graph of a strong
fuzzy path and a fuzzy complete graph. In the next section 'Fuzzy shadow graph’

we find the strength of a strong fuzzy path and a fuzzy complete graph.

In Chapter 4, the strengths of Cartesian product, tensor product, composition

and normal product of certain strong fuzzy graphs are determined.

First of all, we prove the Cartesian product of two fuzzy paths, each has P, as
its underlying crisp graph is a fuzzy cycle and its strength is 2. Also we find the
strength of Cartesian product of two fuzzy paths with respective crisp graphs P,
and P, for all values of m and n and strength of Cartesian product of two strong
fuzzy graphs with underlying crisp graphs P, and C),. We define the fuzzy book,
and fuzzy pages and find the strength of fuzzy book. The strength of Cartesian
product of a strong fuzzy path on 2 vertices and a strong fuzzy butterfly graph

is also find.



In the next section, we determine the strength of tensor product of a strong
fuzzy path on two vertices and a strong fuzzy path on n vertices. Also we find
the strength of tensor product of a strong fuzzy path on two vertices and a fuzzy
star graph, a strong fuzzy cycle. The strength of tensor product of two fuzzy

complete graphs is also find here.

The third section discusses the strength of composition of strong fuzzy paths
P,, and P, for all values of m and n and prove that the strength of composition
of two strong fuzzy paths on 2 and n vertices is not equal to that of the strength
of composition of two strong fuzzy paths on n and 2 vertices respectively. We
derive the strength of composition of a strong fuzzy path on two vertices and a
strong fuzzy star graph and that of strong fuzzy Bull graph, and a strong fuzzy

cycle.

The fourth section deals with the normal product of some strong fuzzy graphs
and determine the strength of normal product of two strong fuzzy graphs with
their respective underlying crisp graphs, (1) the paths P, and P,,n > 1, (2) the
complete graphs K, and K,,, (3) the paths P, and the star graph S, (4) the
star graphs 5, and S,,. This section also introduces a new concept called fuzzy
merger graph. Using this concept, we derive the strength of normal product of

a strong fuzzy path on two vertices and a strong fuzzy butterfly graph is 2.

In Chapter 5 we find the strengths of line graphs of some strong fuzzy graphs
which include strong fuzzy butterfly graph, strong fuzzy star graph, strong fuzzy

bull graph and strong fuzzy diamond graph.



A path P in a fuzzy graph G(V,pu, o) with all its edges have weight equal
to w where w = min {o(uv) : o(uv) > 0 in G} is called a weakest path. A
weakest path which is not a proper subpath of any other weakest path in the
fuzzy graph G is called a maximal weakest path in G. We find strength of line

graph a strong fuzzy path and strength of line graph of strong fuzzy cycle.

Chapter 6 introduces extra strong k— path domination in a strong fuzzy
graph G(V, u, o), fuzzy extra strong k— path neighbour of a vertex, for a subset
X of V, the open and closed extra strong k— path neighbourhood of X, fuzzy
extra strong k— path isolated vertex, fuzzy extra strong k— path neighbourhood
degree, minimal and maximal fuzzy extra strong k— path dominating set and
fuzzy extra strong k— path domination number. Also we give an algorithm for
finding an extra strong k— path minimal dominating set of a fuzzy graph and

find extra strong k— path domination number of certain strong fuzzy graphs.

Fuzzy extra strong k— path private neighbour, fuzzy extra strong k— path in-
dependent set and fuzzy extra strong k— path minimal (and maximal) redundant

and irredundant set are introduced and discussed with some of its properties.



Chapter

Preliminaries

Graph theory is most accepted because of its tremendous applications in various
fields of Mathematics and other subjects. The publications of last thirty years
show that Graph Theory is the fastest growing area among all the subjects in all
disciplines. Many problems can be described by using a mathematical structure
consisting of a set of points together with lines joining certain pair of points;

such a diagram is termed as a graph [7].

The purpose of this chapter is to list the terminology and notation that we
shall use in this work. Much of the terms used are standard graph theoretic

terminology, a few terms will be introduced later when their turn comes.

A (undirected) graph [39] G(V(G), E(G)) consists of a nonempty set V(G)
and a collection E(G) of unordered pair of elements of V(G). If there is no
ambiguity we simply write G(V, E) or just G instead of G(V(G), E(G)) and if
e = (u,v), where e € E and u,v € V, we simply write e = uv. An element,

7



1.1. Basics of Graph Theory

indicated by a point, of V is called a vertex [7]. An element, a line joining the
points representing ends, of F is called an edge [7], V' is the vertex set and F is

the edge set of G [39].

1.1 Basics of Graph Theory

Let G(V, E) be the given graph. The order [7] of G is the number of vertices of
G and the size [7] of G is the number of edges of G. The vertices u and v are
said to be adjacent if e = uwv is an edge of G and the edge e is said to incident
with (incident to or incident at) u and v. The end vertices of the edge e [7] are
uw and v. Then the vertex v is called a neighbour of u. The set of all neighbours
of the vertex u in a graph G is denoted by N(u) [7]. Adjacent [7] edges have a
common vertex. An edge with identical ends is called a loop [7] and an edge with
distinct ends is called a link [7]. Two or more links with the same pair of ends
are said to be parallel edges or multiple edges and graph having multiple edges
is a multigraph [7]. A graph having a set of vertices connected by edges, where
the edges have a direction associated with them is a directed graph (digraph) [7].
If edges have no orientation in a graph then that graph is an undirected graph.
A simple graph is an undirected graph having no multiple edges and loops [7].
A graph G(V, E) is finite [7] if both V and E are finite. A graph with a single

vertex is called a trivial graph [7] and other graphs are nontrivial.

Through out the thesis, we consider only finite, simple, undirected graphs.



1.1. Basics of Graph Theory

The degree [20] of a vertex v in the graph G is the number of edges incident
to v and is denoted by deg v. A vertex of degree one is called an end vertex or a
pendant vertex [32] and a vertex adjacent to a pendant vertex is called a support
vertex [7]. A pendant edge is the edge incident with a pendant vertex. A vertex
v is isolated [7] if deg v = 0. By an empty graph [7] we mean a graph with no
edges. The minimum degree of vertices in G is denoted by §(G) and maximum
degree of vertices in G by A(G) [7]. If both §(G) and A(G) is equal to r then
G is said to be r— regular or regular of degree r [7]. A simple graph G is said
to be complete [40] if every pair of distinct vertices of G are adjacent in G. By
K, we mean a complete graph on n vertices. If the vertex set of a graph can be
partitioned into two subsets, X and Y so that every edge has one end in X and
other end in Y is called a bipartite graph ; such a partition (X,Y’) is called a
bipartition of the bipartite graph [7]. A simple bipartite graph is complete [7]
if each vertex of X is adjacent to all vertices of Y. A complete bipartite graph
with |X| = m and |Y| = n is denoted by K,,,. When m = 1, K,,, is called a
star graph [1]. The Wagner graph is the graph which is formed by adding to an
octagon four edges joining its diagonally opposite pairs of vertices [27]. A planar
undirected graph with 4 vertices and 5 edges is called a diamond graph [52]. Tt

consists of a complete graph K, minus one edge( http:// en.m.wikepedia.org).

Let G be a simple graph of order n, where V(G) = {uy,us,...,u,}. The



1.1. Basics of Graph Theory

n x n zero-one matrix A(G) = [a;;], where

1 if U U5 S E(G),

is the adjacency matrix [9] of G

Note that A is a symmetric matrix, i.e, row i of A is identical to column 7 of A

n n
for every integer ¢ with 1 <1 < n. It is observed that Zlaij = kZlakj = deg(v;).
j= =

Let G be a simple graph [58] of order n, where V(G) = {u; : i =1,2,...,n}

and E(G) ={e; : j =1,2,...,n}. The n x m matrix M(G) = [m;;], where

0 if u; is not an end of e;,

M =4 1 if u; is an end of the non-loop e;,

2 if ¢ is an end of the loop e;.

is the incidence matrix [32] of G. It is observed that gllmij = deg(u;) and
]:

m
1=1

A walk [7] in a graph G is an alternating sequence of vertices and edges,
such as W = wpejuyes ... e u,, beginning and ending with vertices in which
€; = U;_1U;; Ug is the origin and wu,, is the terminus of W. The walk W is said to
join ug and w,; it is also referred to as a uy —u,, walk. The length [7] of a walk is
the number of edges in it. A walk is called a trail [7] if all the edges appearing

in the walk are distinct. It is called a path [7] if all its vertices are distinct. Thus

10



1.1. Basics of Graph Theory

a path in G is automatically a trail in G. When writing a path, we usually omit
the edges. A cycle [7] is a closed trail in which all the vertices are distinct. A
cycle of length n is denoted by C), and a path with n vertices is denoted by P,.
Note that P, has length (n—1) [11]. A butterfly graph is constructed by joining
two cycles C3 with a common vertex [13]. A bull graph consists of a triangle

with two pendent edges at two distinct vertices of the triangle [17].

If there exist at least one path joining any two vertices of a graph G then
it is said to be connected [22]. Otherwise, it is a disconnected graph [17]. For
any two vertices u; and u; connected by a path in a graph G, the distance [11]

between wu; and w;, denoted by d(u;, u;), is the length of a shortest u; — u; path.

A graph K is called a subgraph [7] of G if V(K) C V(G), and E(K) C E(G).
In this case G is a supergraph of K. Given any two graphs G and K, K is an
induced subgraph [9] of G if V(K) C V(G), only adjacent vertices in K are
adjacent in G. In this case if V(K) = 5, we write K = G[S] or K =< § >. A
subgraph K of G is a spanning subgraph [14] of G, if V(K) = V(G). A maximal
complete subgraph of a graph is a clique [6] of the graph. That is if @ is a clique

in G, then no subgraph of G which contains () properly is complete.

If e is an edge of a graph GG, then G — e is the graph in which it is obtained
from G by deleting the edge e [59]. More generally, if F is any set of edges in
G, then G — F is the graph obtained from G by deleting all the edges in F [59].
Similarly, if v is a vertex of a graph G, then the graph obtained from G by

deleting the vertex u and all edges incident with it is denoted by G — u [59].

11



1.2. Operations on graphs

More generally, if S is any set of vertices in G, G — S is the graph obtained from
G by deleting all the vertices in .S, and all edges incident with at least one of the

vertices of S [59].

A component [22] of a graph G is a connected subgraph not properly con-
tained in any other connected subgraph. A vertex v in a connected graph G is
a cut vertex [9] if G — v is disconnected. A connected graph that has no cut

vertices is called a block [7]. A block of G containing exactly one cut vertex of

G is called an end-block [9] of G.

1.2 Operations on graphs

This section deals with some of the operations on graphs that are used in subse-
quent chapters. G;UG5 is the union [58] of two graphs G and G5 with vertex set
is the union of V(G;) and V(G3) and edge set is the union of F(G7) and E(G5).
The join of two graphs G; and G, denoted by G1V (G5, is the graph with vertex set
same as that of G;UG, and edge set E(G1)UE(G2)U{uu; : v; € V(Gh) and u; €
V(Gq)} is called the join [18] of graphs G; and G5. The corona [18] of two
graphs G and G is the graph G = G; ® G4 formed from one copy of G; and
|V (G1)| copies of Go, where i vertex of the copy of G, is adjacent to every
vertex in i'* copy of Gy. The middle graph [32] of the graph G is the graph
M(G) = (V(G)UE(G), E'(G)), where uwv € E’ if and only if either u is a vertex of

G and v is an edge containing u, or u and v are edges having a vertex in common.

12



1.2. Operations on graphs

The line graph [58] L(G) of a graph G, is the graph with vertex set is the edge set
of G, E(G) and edge set is {ef : e, f € E(G) and e, f have a vertex in common}.
The Cartesian product [26] G = G10Gs of two graphs G1(V1, E1) and Go(Va, Es)
is the graph G whose vertex set V; x V5. Let (uy,v1) and (ug, v2) be two vertices
of G. They are adjacent in G1JGs, if and only if ujus € F; and vy = vy, or
u1 = ug and v;ve € Fy. The tensor product (or direct product) [8] G = G1 ® G
of two graphs G; and G is the graph G whose vertex set is V/(G1) x V(G2). Let
(ug,v1) and (ug, v2) be two vertices being adjacent in Gy ® Gs, if ujus € E(Gh)
and v1vy € E(G3). The strong (or normal ) product [40] G; K G5 of two simple
graphs G and G is the graph with V(G XG2) = V(G1) x V(Gs), where (uq, v;)

and (ug, vq) are adjacent in G1 X Gy if either

1. u; = uy and vy is adjacent to vy, or

2. wuq is adjacent to us and vy = vy, or

3. wuy is adjacent to us and vy is adjacent to wvs.

The composition (lexico graphic product) [47] G1[G3] of two graphs Gy and
G, is the graph with vertex set V(G7) x V(G3) and two vertices (ug,v;) and
(ug,v9) are adjacent in G1[Gs], whenever ujuy € E(G1), or u; = ug and vivy €

E(Gh).

Through out this thesis we consider the product of two graphs with disjoint

vertex sets.
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1.3. Fuzzy Relations

1.3 Fuzzy Relations

In this section we give some definitions in fuzzy set theory. A classical crisp set
is normally defined as a collection X of objects that can be finite, countable, or

uncountable.

A fuzzy subset [25] of a set X is a function p : X — [0, 1], where [0, 1]
denotes the set {t € R : 0 <t <1} [60]. Let u be a fuzzy subset of X then the

support of u, Supp(pn) = {z € X : pu(x) > 0} [35]. Let u, v be two fuzzy subsets

of X. Then

L. p Curvif p(x) <v(z),Vo e X.

2. pCrvif u(zr) <wv(zr),VYr € X and there exists at least one z € X such that

p(z) < v(zx).

3. p=vif p(z) = v(x), for all z € X.

Let X and Y be any two subsets and u,v be fuzzy subsets of X and Y
respectively. Then a fuzzy relation o from the fuzzy subset p into the fuzzy
subset v is a fuzzy subset o of X XY such that o(uv) < p(x)Av(z) forallu € X
andv € Y. Alsolet 0 : X XY — [0, 1] be a fuzzy relation from a fuzzy subset p
of X into a fuzzy subset v of Y and p : Y x Z — [0, 1] be a fuzzy relation from
a fuzzy subset v of Y into a fuzzy subset n of Z. Define cop: X x Z — [0, 1]

by oo p(z,z) = V{o(z,y) ANp(y,2) |y € Y} forall z € X,z € Z. Then oo pis
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1.4. Fuzzy graphs

called the composition of o with p [35].

Note that o o p is a fuzzy relation from a fuzzy subset p of X into a fuzzy
subset 1 of Z. The composition operation, o o p can be computed similar to
matrix multiplication, where the addition and multiplication are replaced by V
and A respectively. Composition being associative, we use the notation o2 to
denote the composition o o o, o* to denote o' oo, k > 1. Define 0> (z,y) =

V{c*(z,y)lk =1,2,...} [35].

1.4 Fuzzy graphs

A fuzzy graph [35] G(V,u,0) is a non empty set V' together with a pair of
functions p : V. — [0,1] and o : V x V' — [0, 1] such that for all u,v in V,
o(u,v) < p(u)Ap(v). We call p the fuzzy vertex set of G and o the fuzzy edge set
of G, respectively. The fuzzy graph K(V,v, 1) is called a partial fuzzy subgraph

[43] of G(V,p,0) if v C pand 7 C 0. Similarly, the fuzzy graph K(U,v, 1) is
called a fuzzy subgraph [16] of G(V, u,0) induced by U if U C V,v(u) = p(u)
for all w € U and 7(u,v) = o(u,v) for all u,v € U. A vertex u of a fuzzy
graph G(V, u, o) is said to be isolated vertex [50] if o (u,v) < p(u) A p(v) for all
v € V \ {u}. Through out this Thesis the edge between two vertices u and v in

a fuzzy graph is denoted by uv rather than (u,v).

The fuzzy graph [23] G(V, u,0) with o(u,v) = 0 for all u,v € V is called a

fuzzy null graph. A fuzzy trivial graph [30] is a fuzzy null graph on a single
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1.4. Fuzzy graphs

vertex.

The underlying crisp graph of a fuzzy graph G(V, u, o) is denoted by G(V, E).
A sequence of distinct vertices P = wg, uy, usg, . .., u, such that o(u;_ju;) > 0,
1 < i< niscalled a path [42] P in a fuzzy graph G(V, u, o). Here length of the
path P is n > 1. The consecutive pairs (u;_1,u;) are called edges of the fuzzy
path. The strength of P [5] is defined as iZ\IU(ui,lui). That is weight of the
weakest edge of the fuzzy path P is called the strength of P. A single vertex u
may also be considered as a fuzzy path. In this case the fuzzy path is of length
0, and its strength is defined to be p(u). A partial fuzzy subgraph H(V, pu, o) is
said to be connected [51] if o> (uv) = V{o*(v;_1v;) : k =1,2,...,n} > 0 where

p(u) >0, and p(v) > 0 Yu,v € V.

A fuzzy cycle is the one in which its underlying crisp graph is a cycle and
there exist more than one edge uv such that o(uv) = A{o(u;u;) : o(uu;) > 0}.
Maximal connected partial fuzzy subgraphs are called components [31]. In fact, u
and v are connected if, and only if, 0> (uv) > 0. A fuzzy graph G is connected [51]

if, and only if, o> (uv) > 0 for all u,v € V.

A fuzzy graph G is a forest if the underlying crisp graph is a forest and a
tree if the underlying crisp graph is connected forest. A fuzzy graph G(V, u, o)
is called a complete fuzzy graph [3] if o(uv) = p(u) A p(v), for all u,v € V. A
fuzzy graph G(V, p, o) is said to be a strong fuzzy graph if o(uv) = p(u) A p(v),
for all uv € E, the edge set of GG, the crisp graph which we call the edge set of G

itself. A fuzzy graph G(V, pu, o) is regular if, and only if (i) its underlying crisp
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1.4. Fuzzy graphs

graph is an odd cycle and o is a constant function, (ii) its underlying crisp graph
is an even cycle and either o is a constant function or alternate edges have same
weights [49]. A fuzzy star graph [57] G(u, o) consists of two vertex sets V' and

U with |V]| =1 and |U| > 1, such that for v € V and w; € U, o(v,u;) > 0 and

Let u and v be two distinct vertices of G(V, i, o), a fuzzy graph with under-
lying crisp graph G(V, E). Let its order and size be n and m respectively. If
there exists at least one path between u and v of length less than or equal to
k then the connectedness of strength k between u and v [49] is defined as the
maximum of the strength of all paths between them of length less than or equal
to k. Otherwise it is defined as zero. The n x n matrix A = (a;;) defined by

O'(’Uﬂ)j) if 4 7£.],

aij =

plv)  ifi=j.

is called the weight matrix of G.

An example of a connected fuzzy graph is depicted as in Figure 1.1. The con-
nectedness of strength 2 between the vertices v; and vy is 0.2. The connectedness

of strength 3 between the vertices v; and vy is 0.5.
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1.4. Fuzzy graphs

Y06
0.6
©5 Y30.9 0.7 V4(0.7
(02)
V,0.6
A fuzzy graph

Figure 1.1: A fuzzy graph G.

The weight matrix A of the fuzzy graph in Figure 1.1 is

0.6 0.5 0.2 0.0
0.5 0.6 0.6 0.0

0.2 0.6 0.7 0.7

0.0 0.0 0.7 0.7

Also let A be an n x n weight matrix of the fuzzy graph G. For all © > n,
the least positive integer n such that A™ = A’ is called the strength of G. The

strength of the fuzzy graph G in Figure 1.1 is 3.

A path P = vv;41...v; of a fuzzy graph G(V,u, o) is said to connect the
vertices v; and v; of G strongly [48] if its strength is maximum among all the
paths between v; and v;. Such paths are called strong paths. Any strong path
between two distinct vertices v; and v; in G with minimum length is called an
extra strong path [48] between them. The maximum length of extra strong paths

between every pair of distinct vertices in G is called the strength of connectivity
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1.4. Fuzzy graphs

of the graph G [48]. Strength of connectivity of the graph G is proved to be the

same as strength of G.

Theorem 1.4.1. [48] The strength of

(i) a strong fuzzy path on n vertices is its length (n — 1).
(i1) a complete fuzzy graph is one.

(iii) a regular fuzzy graph on n vertices is [3].

(iv) a fuzzy star graph is 2.

Theorem 1.4.2. [48] The strength of a fuzzy cycle G with underlying crisp

graph a cycle on n vertices and | weakest edges, which altogether form a subpath

in G isn—1if | <™ and [2] if | > [2F].

Theorem 1.4.3. [48] Let G be a fuzzy cycle with underlying crisp graph a cycle
of length n, having | weakest edges which do not altogether form a subpath. If
I > [5] =1 then the strength of the graph is [§] and if | = [5] —1 then the strength

of the graph is [“£].

Theorem 1.4.4. [48] In a fuzzy cycle of length n suppose there are | < [5] — 1
weakest edges which do not altogether form a subpath. Let s denote the mazimum
length of the subpath which does not contain any weakest edge. If s < [§] then

the strength of the graph is [§] and if s > [§] then the strength of the graph is s.
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Chapter

Strength of certain fuzzy graphs

In this chapter we derive an algorithm for finding the strength of fuzzy graphs.
Strength of strong fuzzy complete bipartite graph have been determined. A new
concept named properly linked fuzzy graphs is introduced in this chapter. Also a
fuzzy merger graph is defined and find a relation connecting fuzzy merger graph
and a 1— linked fuzzy graph. Further strength of such graphs are determined.

Also strength of strong fuzzy Wagner graph has been determined.

Some results of this chapter are included in the following paper Chithra K. P., Raji Pi-
lakkat, International Journal of Pure and Applied Mathematics, 106(3) 2016, 883-892
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2.1. Algorithm for finding strength of fuzzy graphs

2.1 Algorithm for finding strength of fuzzy graphs

In this section we consider only those fuzzy graphs whose underline graphs
are connected. Graph theory and graph algorithms are inseparably interwined
subjects. Bhattacharya and Suraweera [2] have given an algorithm for finding
0> (u,v) using maximum spanning tree algorithm of fuzzy graphs. Here we give
an algorithm for finding the strength of a fuzzy graph in a direct method. The
concept of strength of connectivity between two vertices of a fuzzy graph in-
troduced by Bhattacharya and Suraweera [2] was further studied by Sheeba M.
B. [48] by introducing two new terminologies extra strong paths and strength
of fuzzy graphs. Though theoretical approach is the strong clear cut method,
it is some times difficult and tedious to find the strength for arbitrary graphs.
So we tried for an algorithmic approach to find the strength of the fuzzy graphs
and have succeeded. This section discusses an algorithmic approach to find the

strength of fuzzy graphs.

Algorithm 2.1.1. Algorithm for finding the strength of a path in a

fuzzy graph G.

Let G be a fuzzy graph and v;,v; be two vertices of G. Let P = z125 ... 2,,
where v; = x; and v; = =z, be a v; — v; path with oy = o(xp2ps1), kb =
1,2,...,(n —1). Then the minimum value of oy, for £ = 1,2,...,(n — 1) is
the strength of P.

Input : 0y = o(z129).
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2.1. Algorithm for finding strength of fuzzy graphs

Step 1. For k = 2, find 04 and compare o, and oy.

If o4, > 01 then ignore the value of oy.
If O < 01 then 01 = Ok.

Step 2. Repeat Step 1 for k =3,4,...,(n—1).

Output : The strength of P = o;.

Tllustration:

Figure 2.1: Fuzzy graph G.

Consider the fuzzy graph G in Figure 2.1. There are 3 paths joining v; and

Us; V10405, V1U30405 and viveUs in G. Let P = vjvgugvs. Then o = o(vjvg) =

0.3,09 = o(v9vy4) = 0.8,03 = o(v4vs) = 0.7. Here oo > 0y. Therefore ignore o5.

Since o3 > oy ignore o3. So o1 = 0.3 is the strength of P;.

In a similar manner we can find the strength of the path of vyv4v5 = 0.2 and

that of viv3v4v5 is equal to 0.4.

Algorithm 2.1.2. Algorithm for finding k,,,,, the length of the path joining

two vertices v; and v; with minimum length and with maximum strength.
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2.1. Algorithm for finding strength of fuzzy graphs

Let G be a fuzzy graph with underlying crisp graph G(V, E') having vertex
set {v1,va,...,v,}. For the vertices vy, v;, ky,, denotes the minimum length of
all the v; — v; paths having maximum strength.

Input : All the paths joining v; and v; in G.
Step 1. Name the paths between v; and v; as Py, Ps, ..., P,.
Step 2. Find the strength S; of P; using Algorithm 2.1.1.

Step 3. For k = 2, find the strength S;, of the k' path, P, by Algorithm 2.1.1
and compare it with 57.

If S; < Si then rename P, by P;.

If S; > Sk then ignore the path P, and repeat the step with Py instead of Pj.
If S; = Sk then rename Py by P if length of P, < length of P;. Otherwise ignore

B.

Step 4. Repeat Step(3) with & = k+ 1,k + 2,...,n to get the path P; with

minimum length and with maximum strength between v; and v;.

Step 5. The length of the path P is ky,,-

Illustration:

For the fuzzy graph G in Figure 2.1, name the paths vy vov4vs, V10405, V1V3V4U5
as Pp, P, and P respectively. By Algorithm(1), S; = strength of P, = 0.3, Sy =
strength of P, = 0.2 and S3 = strength of P; = 0.4. Here S; > S5 so ignore the
path P, and compare the strength of P; and P;. Since S5 > Sy, ignore the path

P;. Then the length of P3(= 3) is Ky, ..
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2.1. Algorithm for finding strength of fuzzy graphs

By the same algorithm we have, k,,, = 3,kpu = L kno, = 2,k =

2 kppoy = 1, Koy = 2, kpgoy, = 1, kg = 2, and k. = 1.
Algorithm 2.1.3. Algorithm for finding the strength of a fuzzy graph.

Let G be a fuzzy graph with underlying crisp graph G* having vertex set

{v1,v9,...,0,}. Form > 1,1 <i<i+m<n,letk denote the minimum

ViVi+m
length of all the paths joining v; and v;,, having maximum strength. Let m,,,, =

kyv, and define for 1 < i <i+1 < ... <i+m < n, my, recursively

Vit1--Vitm
a8 Muvyyvipm = MOT{M0i01 iy 1 Koy b fOr mo > 2 and my, 0, =

MAT{ M, vismons Koismoismes 15 f0r m = 1. Then strength of G is m,, .,

Input : A fuzzy graph G with vertex set {vy,vq,...v,}.

Step 1. Choose the vertices vy and vy and find ky, 4, = My, -

Step 2. For i =1, m = 2 find k., and my,e, 1. 00, =
max{mvmﬂ---vwmq s Koo }-
Do the same for i = 1,m = 3,4, ... (n — 7) successively and find m,v,,,...0,,-

Step 3. Fori = 1,m = 1find ky, v,y @0d My vis = MAT{ M, vpson s

k

Vi+mUi+m—+1 } *

Step 4. For the value i = 2 perform Step(2) for m = 2,3,...,(n — ) and then

Step(3) for m = 1 successively to find My, v, .-

Step 5. Repeat Step(4) for i = 3,4,...,(n — 2) to find m,,_,,, which is the

strength of G.
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2.2. Strength of strong fuzzy complete bipartite graph

Illustration:

For the graph G in Figure 2.1, Ky p, = 3 = My,
i=1,m=2kyu =1 and My, = Max{my, v, kuw} = 3,
i =1,m =3, kyp, =2 and My, vyv50, = MAT{ My, 0005, Koy, } = 3,
i =1,m =4 ky v =3 and My, vyug0405 = max{mv1v2v3v4,kvlv4} =3,
i=1,m=1kyu, =2 and m,,, = max{my,wusvivss Kogos } = 3,
i =2,m=2ky,, =1 and my,y, = Mar{Mmy,u,, kuw, } = 3,
i =2,m =3k, =2 and Myyus00; = MAT{Mupus0ss Kogos } = 3,
i =2,m=1,kyy, =1 and my,,, = max{my,uuvs, kosos } = 3,
i =3,m=2 kyp =2 and My,p0; = Mar{My,u,, kugos } = 3,
i=3m=1,ky. =1 and my,., = max{my,m,vs, ks } = 3. Then the strength

of G is 3.

2.2 Strength of strong fuzzy complete bipartite
graph

We start this section with very simple but very useful and strong result which
states that if two vertices are adjacent in a strong fuzzy graph then the path
(edge) wv is the extra strong path connecting them. Therefore the length of the
extra strong path joining two adjacent vertices in a strong fuzzy graph is one.
Two vertices in a fuzzy graph are said to be adjacent if the weight of the edge

determined by them is positive that is they are adjacent in the underlying crisp
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2.2. Strength of strong fuzzy complete bipartite graph

graph. We also determine the strength of strong fuzzy complete bipartite graphs.

Theorem 2.2.1. Let G be a strong fuzzy graph. If uw and v are two adjacent

vertices of G then the length of the extra strong path joining u and v is one.

Proof. Suppose that v and v are adjacent in G. Since G is a strong fuzzy graph,
the edge uv, has strength p(u) A p(v). All the other paths joining v and v have
strength less than or equal to u(u) A p(v). Hence the edge uv is the unique extra

strong path joining u and v. Hence the result. O
Corollary 2.2.1. If GG is a strong fuzzy complete graph then its strength is one.

Remark 2.2.1. G is a strong fuzzy graph. Suppose u and v are two adjacent
vertices of G. Then the path (edge) wv is the only extra strong path joining u
and v. So for the computation of strength of a fuzzy graph we need to consider

only its distinct non-adjacent vertices.

Theorem 2.2.2. Strength of a strong fuzzy complete bipartite graph [44] G is

two if |V(G)| > 2.

Proof. Let G(V, u, o) be a strong fuzzy complete bipartite graph with K, as its
underlying crisp graph. Suppose that m +n > 2. Let U = {w; : i =1,,...,m}
and V' = {v; : j = 1,2,...,n} be the bipartite sets. Also let v and v be any
two distinct non-adjacent vertices of G. If w and v € U, then all the u — v
paths in G pass through atleast one vertex in V. Let w be a vertex in V' with

p(w) > p(v;),Yu; € V. Then strength of any u — v path is less than or equal
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to that of the path uwv in G. Therefore uwv is one of the extra strong paths
joining u and v and which is of length 2. Similar is the case when both u,v € V.

Hence the theorem. O

2.3 Properly linked fuzzy graphs

This section deals with properly linked fuzzy graphs. We give certain examples

for it. Also, we find out the strength of properly linked fuzzy graphs.

Definition 2.3.1. A finite sequence of distinct fuzzy graphs [36] G1, G, ..., Gy,
with the property that V(G;) NV (G;) is nonempty if and only if |j —i] < 1,1 <
1,7 < m is called a properly linked sequence or simply properly linked . It is n—
linked if the crisp graph induced by < V(G;) NV (G;) > is K,,, a complete graph

on n vertices, if |j —i| =1,1<14,j <m.

Definition 2.3.2. A fuzzy graph G is said to be properly linked (n— linked) if
there exists a finite sequence of properly linked partial fuzzy subgraphs G, Go, . . .,
Gy, where m > 1, such that G = Gy UGy U ... UG,,. In this case we say that

G1,Gs, ..., G, are parts of G.

Notation 2.3.1. If a fuzzy graph G is a union of a sequence of m, n— linked

fuzzy graphs Gy, G, ..., G,,, for some n then we write G = G < Gy < ... < Gyy.

Lemma 2.3.1. Let G = G} < G5 < ... < Gy, be a 1-linked strong fuzzy graph

with G1,Gs, ..., G, (where m > 1) as its parts. Let G1,Go, ..., G, be complete
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2.3. Properly linked fuzzy graphs

strong fuzzy graphs. For, i = 1,2,...,n — 1, let V(G;) N V(Gi;1) = {v;}. Let
u,v be any two distinct vertices of G. For k < m, if u € V(Gy) \ {v1} and
v € V(Ggy1) \ {vx} then the length of extra strong path joining u and v in G is

kE+1.

Proof. This result is proved by induction on k. When k =1, u € V(Gy) \ {v1}
and v € V(Gy) \ {v1}. Therefore all the u — v paths pass through v;. Since G is
complete, the extra strong path joining u and v; and the same for v; and v are
respectively uv; and viv. Therefore the length of the extra strong path joining

w and v is 2.

Now, let us assume the result is true for every £k < n < m — 1. Let u €
V(G1) \ {v1} and v € V(G,42) \ {vas1}. Note that every u — v path must
pass through the vertex v,,;. By induction hypothesis the length of every extra
strong path joining v and v, ; is n + 1. Since v,.1 and v lie in G4, the only
extra strong path joining v, ,; and v is the edge v, 1v. Hence the length of the
extra strong path joining v and v is n 4+ 2. In fact there is only one extra strong

path joining u and v. Hence the lemma holds by induction. O

The following theorem is an immediate consequence of Lemma 2.3.1.

Theorem 2.3.1. Let G be a 1— linked fuzzy graph with m (where m > 1)

complete fuzzy graphs as its parts. Then the strength of G is m, the diameter of

G.

Theorem 2.3.1 can be used to find the strength of certain fuzzy graphs. For
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example strong fuzzy butterfly graph, strong fuzzy bull graph.

Definition 2.3.3. A strong fuzzy butterfly graph is a strong fuzzy graph with

its underlying crisp graph is a butterfly graph [55].

Corollary 2.3.1. The strength of a strong fuzzy butterfly graph is two.

Proof. A strong fuzzy butterfly graph is a properly linked fuzzy graph with two
complete fuzzy triangles as its parts. So, by Theorem 2.3.1, the strength of a

fuzzy butterfly graph is 2. O

Definition 2.3.4. A strong fuzzy bull graph is a strong fuzzy graph with its

underlying crisp graph is a bull graph [10].

Corollary 2.3.2. The strength of a strong fuzzy bull graph is 3.

Proof. A strong fuzzy bull graph is 1— linked by a sequence of 3 complete strong
fuzzy graphs G, G5 and G3, where GGy and Gy are fuzzy paths on two vertices
and G3 a strong fuzzy triangle graph which is a complete strong fuzzy graph. So

the strength of a strong fuzzy bull graph is three. O

Theorem 2.3.1 can be generalized as follows.

Notation 2.3.2. If P, = wqus...u, and Py = u,uyiq ... u, are two paths in a

fuzzy graph G then P, + P, denote the path ujusg ... uptyyq ... Upy,.

Theorem 2.3.2. Let G(V,u,0) be a properly linked fuzzy graph with the com-

plete fuzzy graphs Gi,Gs, ..., G,, as its parts, where m > 1. Suppose for i =
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L,2,...,m—1, <V(G)NV(Git1) >= K,,, a complete fuzzy graph on n; vertices.

Then the strength of G is the diameter m of G [20)].

Proof. Let V(G;) NV (Git1) = {uwi1, Uio, . .., Ui, }, fori=1,2,...,

m — 1. Let u and v be any two distinct non-adjacent vertices of G.

We prove the theorem in two steps.

Step 1: In this step we prove that if u € V(Gy) \ {u11, w12, ..., u1,, } and v €
V(Gry1) \ {wk1, ug2, - . ., Ugy, } then the length of the extra strong u — v path is

k+1, where 1 <k <m — 1.
We prove this result by induction on k. Assume that £ = 1.

Then every u — v path lies completely in G; UGy. When m = 2 it is obvious.
Otherwise, any u — v path have at least 4 subpaths Py, P, P3, Py, and can be
written as P, + P, + P3 + Py, where P; is a path from u to some vertex uo;
of {ua1, U2, ..., usp,} in Gy UGy, Py is a path from ug; to some vertex w in
G3UG4U...UG,,, Psis a path from w to some vertex wug; of {uar, ugg, ..., Usp, }
in Gs UGy U...UG, and P, is a path from uy; to v in G; U G5. Such paths,
obviously have strength < that of the path P, +ug;ug;+ FPs. Thus we can conclude

that all the extra strong paths joining v and v lie completely in G; U Gs.

Since G; and G5 are complete fuzzy graphs, both u and v are adjacent to all

the vertices of {uq1,u1a, ..., U1, . If pugk) = V p(uy;), then uuigv is an extra

<z

strong path joining u and v in G7 U G5 and is of length 2.

Assume that the result is true for £k < n < m — 2. To prove the re-
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2.3. Properly linked fuzzy graphs

sult for k = n+ 1, let u € V(Gy) \ {u11, w12, ..., U1, } and v € V(Gpya) \
{Un411; Unt12 - - - Ungin, . }- Then as above we prove that every extra strong
path joining u and v lies completely in Gy UGy U. .. UG, 9. When n = m —2, it
is obvious. For n < m—2, if the result is not true then there exist a u—v path in G
which passes through a vertex of V/(Gy13) \ {tnt21, Unt22, - -, Unyon, ., . Then it
must pass through at least one vertex of the set {w, 101, Unt92, - - -, Unton, +2}. Any
such path have at least four subpaths Py, P», P3, P, where P; is a path from u to
some vertex Uy yo; of the set {un 191, Uny22, - -, Unyon, ., } 1D G1UGU. . UGy 0, Ps
is a path from u,, 9; to a vertex z in G;UG,, 3UG, 4U...UG,,, P3is a path from
z to some vertex wnyoj of {Unto1, Unt22s - - -, Unton, o} I Gz UG, U. . UG,

and Py is a path from u, 9; to v in Gy UG U ... UGy,

Clearly the path P + w,42;un42; + Py has strength greater than or equal to
all such paths. Thus any extra strong path can be written as sum of two paths
P, @ where P is an extra strong path from u to w € {Upq11, Unt12, - - -, Untin,,, }
in GiUGLU. . .UG,42, where p(w) = :L\zllu(unﬂl) and @ is the edge wv of G419,
since GG, o is complete. Now by induction hypothesis the length of P is n + 1.

Therefore the length of extra strong path joining u and v is n + 2.

Step 2: Let u and v be any two vertices of (G. Suppose u and v belong
to the same part GG; of G. Then u and v are adjacent because G; is complete.
Hence the edge uv is the only extra strong v — v path in G. Otherwise u belongs
to some G; and v belongs to some G; of GG, where GG; and G; are two distinct

parts of G. Without loss of generality assume that ¢ < j. Then by Step 1 we
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2.3. Properly linked fuzzy graphs

can conclude that the length of extra strong path is j — ¢+ 1 < m. In particular
when ¢ = 1 and j = m, the length of extra strong u — v path is m. Therefore

< (G) = m. Hence the theorem. O

Remark 2.3.1. Theorem 2.3.2 need not be true when at least one part of a
properly linked fuzzy graph fails to be a complete fuzzy graph. For example, the
strong fuzzy graph G in Figure 2.2 is a 2—linked fuzzy graph of strength 3 with
parts GG; and G5, where (7 is a complete fuzzy graph but Gy is not a complete

fuzzy graph.

Figure 2.2: A 2-linked fuzzy graph G, its parts G; and Gb.

Definition 2.3.5. A fuzzy diamond graph [24] is a fuzzy graph with the under-

lying crisp graph is a diamond graph.

From the definition of a strong fuzzy diamond graph, which is a 2— linked
fuzzy graph having two parts and each is complete. Therefore we have the

following Corollary.
Corollary 2.3.3. The strength of a strong fuzzy diamond graph is 2.

Definition 2.3.6. Let Gy, G, ..., G, be n simple graphs with vertex sets V7, V5,

...V, respectively. For i # jif [V;nVj| > 1, let Z; = ViN V. Let V = kglvk
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2.3. Properly linked fuzzy graphs

and Z = UZ,;, where the union is taken for those ¢ # j for which |V; NV;| > 1.
For such ¢ and j, form a single vertex z;; by merging the vertices of V; N V;. Let
U= (V\Z)U{z;}. The simple graph with vertex set U and edge set E is called

the merger graph of G, G, ..., G,; where, for u # v € U, uv € E provided,

1. u,v € V'\ Z and are adjacent in 'ngGi.

2. u = z; for some i and j, v € V' \ Z and v is adjacent to at least one vertex

in Z;

ij

3. u = 2, v = 2z for some 4,7,k and | and at least one vertex of Z;; is

adjacent to at least one vertex of 7.

Iel Merger graph of G
Ien 1\ Ga_ G
0 4
\ Z12 Z23
\/I
G Merger graph of G

Figure 2.3: Fuzzy graph G and its merger graph.

Note 2.3.1. If V;NV; = ¢, Vi, j then the merger graph of Gy, G, ..., G, is just

Gi1UGU...UG,.
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2.3. Properly linked fuzzy graphs

Definition 2.3.7. Let G;(V;, pi, 04),i = 1,2,...,n be fuzzy graphs with under-
lying crisp graph G;(V;, E;). The fuzzy merger graph G(U, pimer, Omer) 18 a fuzzy
graph with its underlying crisp graph G(U, E') is a merger graph of G;(V;, E;),i =
1,2,...,nwhere U and F are as in Definition 2.3.6 and the membership functions

Mmer aNd O e are given by

i (w) if ueV;\ Z for some i,
Nmer<u> =
Ue‘é\m‘/j(ui(v) A pi(v))  if w = w;; for some i, j.
o (uwv) if u,v € V; for some i,
Omer (UV) =

Lomer (W) A fimer(v)  otherwise.
Remark 2.3.2. Let G;(V;, i, 07),i = 1,2,...,n be n fuzzy graphs such that
VinV; # ¢ if and only if |j —i| = 1. Then the merger graph of these fuzzy
graphs G;,i = 1,2,...,n is a 1— linked fuzzy graph. Thus if each G; is a
complete strong fuzzy graph and V; NV, # ¢ if and only if [j —¢| = 1 then, their
merger fuzzy graph has strength equal to its diameter by Theorem 2.3.1 which
is also equal to the strength of iglGi. This result need not be true if Gis are
not complete. For example, the merger graph of G in Figure 2.2 is the fuzzy

butterfly graph which is of strength 2 but the strength of G is 3.

34



2.4. Strong fuzzy Wagner graph

2.4 Strong fuzzy Wagner graph

A strong fuzzy Wagner graph is a strong fuzzy graph with its underlying crisp

graph is a Wagner graph ( https://en.wikipedia.org/wiki/Wagnergraph).

Theorem 2.4.1. Let G be a strong fuzzy Wagner graph. Then 2 < .7 (G) < 4.

Proof. From Figure 2.4 it is clear that to prove the theorem it is enough to prove

(@) never be greater than 4.

ug(@9)
ug(@s) ug (00)
ug(09) ugé@.@)
L ()
ug59)

Figure 2.4: Strong fuzzy Wagnergraphs with strengths 2,3 and 4.

Let u, v be two nonadjacent vertices of G. Without loss of generality assume,
u = uy. Then v € {us, uy, ug, ur}. If possible assume, length of an extra strong
u — v path is greater than 4 then there exists at least one path joining u and v
of length greater than 4. But all those paths must pass either through both wus,
ug or through uy, ug. Since G is a strong fuzzy graph, these paths never be extra

strong. 0
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Chapter 3

Strength of Fuzzy graphs derived

from certain known Fuzzy graphs

In this chapter we determine the strength of join and corona of certain strong
fuzzy graphs and that of middle graph and total graph of certain strong fuzzy

graphs.

Definition 3.0.1. [34] Let G;(V;, p;, 0:),i = 1,2 be two connected fuzzy graphs
with underlying crisp graphs G;(V;, E;),i = 1,2 respectively. Then the union of
two fuzzy graphs denoted by G; UG5 of G and Gy is G(V, i, o) with underlying
crisp graph G(V, F) is the union of G;(V;, E;),i = 1,2 where V = V; U V5 and

E:E1UE2 and

pi(u) ifueVy\ Vs,
plu) =
po(u) ifue Vo\ Wy,
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3.1. Strength of join of fuzzy graphs

o1(uv) if uv € Ey \ Es,
o(uwv) =

oa(uv) if uv € Ey \ Ey.

3.1 Strength of join of fuzzy graphs

In this section we concentrate our study on the strength of join of certain known

fuzzy graphs.

Definition 3.1.1. [34] Let G1(Vi, p1,01) and Ga(Va, pe, 02) be two connected
fuzzy graphs with underlying crisp graph G1(V1, E1) and Go(Va, Es) respectively,
where Vi NV, = ¢. Then the join G(V, u,0) of G7 and Gy is the fuzzy graph
with the underlying crisp graph G(V, F) is the join of G1(Vi, Ey) and Gy(Va, Es),
where V =V, UV, and E = E; U Ey, U E’ where E’ is the set of all edges joining
the vertices in V; with vertices in V5, also the membership functions p and o are

defined as follows.

pi(u) ifuwe Vi,
plu) =
| p2(u)  ifue Vs
)
o1 (uv) if u,v e V7,
o(uv) = oo (uv) if u,v e Vs,
pr(u) A pg(v) ifueVyand v e Vs

Example 3.1.1. 1. A fuzzy complete 2— partite graph is the join of two

37



3.1. Strength of join of fuzzy graphs

fuzzy null graphs.
2. A fuzzy wheel graph is the join of a fuzzy cycle and a trivial fuzzy graph.

3. A fuzzy star graph is the join of a fuzzy null graph and a fuzzy trivial

graph.
Remark 3.1.1. From the definition of join G of two fuzzy graphs G; and Gb,
both G and G can be considered as maximal partial fuzzy subgraphs of G.
The join of two complete fuzzy graphs is again a complete fuzzy graph. Hence
we have the following Theorem.
Theorem 3.1.1. The strength of join of two complete fuzzy graphs is one.

Definition 3.1.2. A fuzzy fan graph F,,, [41] is defined as the join of a fuzzy

null graph on m > 1 vertices and a fuzzy path on n > 1 vertices.

Figure 3.1: Fuzzy fan graph Fjy.

Let G(V, i, o) be the join of two graphs G1(V1, i1, 01) and Go(Va, 2, 09) where

G a fuzzy null graph on m vertices with vertex set V) = {uq, ua, ..., u,;} and Go
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3.1. Strength of join of fuzzy graphs

a strong fuzzy path on n vertices with vertex set Vo = {vy,v9,...,v,}. fn=1
then for any m, G is a fuzzy star graph. Therefore its strength is 1 if m = 1 and
2ifm > 1. If n =2 and m = 1 then G is complete. Therefore its strength is
one. If n =2 and m > 1 then .(G) is 2. For if v and v are two nonadjacent
vertices in GG then they are vertices of G. If w is a vertex of G5 with maximum

weight among the vertex of Gy then uwv is an extra strong path of G.

Now consider the cases for n > 3. First of all suppose that m = 1. In this
case Vi = {ur}. If py(ug) < 7\1/,@(@]-) then clearly for any u and v € V(Gy), this
]:

u — v path of GGy is the extra strong u — v path of G.

Otherwise po(v;) < p1(uy). Then we have two cases. Let u and v be two
nonadjacent vertices of G. Let [ be the maximum of length of all subpaths of

Go of strength > puq(uqp) if such a path exists, otherwise let [ be zero. Then

L (G)=2VI
The preceding discussion may be generalized as follows.

Theorem 3.1.2. Let G(V, i, o) be the join of two fuzzy graphs G1(Vi, py, 01) and
Go(Va, po, 09), where Gy is a fuzzy null graph on m > 2 vertices with vertex set
Vi = {uy,ug, ..., un} and Gy a strong fuzzy path onn > 3 vertices with vertex set
{v1,v9,...,0,}. If there exists a path in Go, whose strength is > Z.T:\r/Ll,ul(ui) then

let I be the maximum of length of all such subpaths of Gy. Then #(G) =1V 2.

Proof. Let u and v be two nonadjacent vertices of GG. If both of them are in V)

then all u — v paths must pass through at least one vertex of V5, since all v; in
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3.1. Strength of join of fuzzy graphs

V, are adjacent to both v and v. Then wv;v is an extra strong v — v path in G

where p(v;) 2 V pa(vy).
If both u and v are in V5 then we have the following cases.

Case 1. [ = 0.

In this case every subpath of (G5 has strength < A\r;l,ul(ui). Let u; be the
1=
vertex in V; such that g (u;) > vlul(ui) then wu;v is an extra strong u — v path
1=

in G.

Case 2. [ =1.

As u, v are nonadjacent vertices of Gy, the u — v path of GG contains a vertex
of weight < <\n/1u1(u,~). Let u; be a vertex of Gy such that p(u;) > strength of
1=

the v — v path in G. Then uu;v is an extra strong u — v path in Gs.

If I > 1 then clearly .(G) = . O

Corollary 3.1.1. Let GG1, G5 and G be fuzzy graphs as in Theorem 3.1.2. Then

if vlul(ui) < ,Kl/,@(vj) then ./ (G) =n — 1.
= ji=

Now consider the case where both G; and G, are fuzzy paths. That is
G(V, i, o) is the join of two strong fuzzy graphs say, G1(V1, p1, 01) and Go(Va, o,
09) with underlying crisp graphs P,, with vertex set V} = {uy, us, ..., u,;} and
P, with vertex set Vo = {vy,v9,...,v,}. The case n = 1 and the case m =1 are
included in Theorem 3.1.2. So we suppose that both m,n > 2. For n = m = 2,

G is a complete strong fuzzy graph on 4 vertices so its strength is 1.
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3.1. Strength of join of fuzzy graphs

When m = 2 and n > 2, ./ (G) = 2V [ where [ is the maximum of length of
all subpaths of G5 having strength > '\ZM(ui) if there exists such a path in Gj.

The following theorem determines .(G) in all other cases.

Theorem 3.1.3. Let G(V, i, o) be the join of two strong fuzzy graphs G1(Vi, p1,
01) and Go(Va, g, 09) with underlying crisp graphs P, and P, with vertex sets
Vi = {ug,ug, ... up}t and Vo = {v,09,... 0}, m > n > 2. Let Iy be the
maximum of length of all subpaths of G of strength > j\zlug(vj) if such a path
exists otherwise let [y = 0. Also let Iy be the mazximum of length of all subpaths
of Gy of strength > z‘\ZM(ui) if such a path exists otherwise let Iy, = 0. ./ (G) =

LVipV2.

Proof. Let u and v be two nonadjacent vertices of G. Then either v and v € V)

or u and v € Vs.

Case 1. |, =1, =0.

Figure 3.2: Example for two fuzzy paths having l; =, = 0.

Let w and v € Vi. Then an extra strong u — v path is uv;v where v; is

such that po(v;) = ‘\_7;1[,62(1}@'). Similarly if v and v € V5 then wu;v is an extra
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3.1. Strength of join of fuzzy graphs

strong u — v path in G, where u; is such that u;(u;) =

<3

l,ul(uj). So in this case

7 (G) = 2.

Case 2. [;=1landl, =0o0rl; =0and 5 = 1.

0.1 0.2 0.12 0.1 0.1
———— 00— 0 —90
G1

Figure 3.3: Example for two fuzzy paths having [; = 1 and [, = 0.

Consider the case [; = 1 and I, = 0. Let v and v € V5. Since I = 0, the
strength of u — v path of Gy < _zﬂl(uz‘)- Let u; be a vertex of Gy such that
p(uj) = _\Zul(ui). Then wujv is an extra strong u — v path in G of length 2.

Let w and v € V;. Since [; = 1, uuyv is an extra strong u — v path in GG; where

<3

V; =

2(vj). Thus the strength of G is 2.

7j=1

Similarly we can prove the case when [; =0 and [y = 1.

Case 3.1, >1orly > 1.
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3.1. Strength of join of fuzzy graphs

0.3 0.3 0.3 0.01 0.01

Figure 3.4: Example for two fuzzy paths having [ > 1 and [, = 0.

First of all we consider the case, [; > 1. In this case [, = 0. Therefore if u,v €
Vs, as in case 2, uu;v is an extra strong path in G, where ji1(u;) = glﬂl(ui). Now
let u,v € V}. Since l; > 1 either strength of the u — v path in Gy is > j\zlug(vj)
or there exists a vertex v; € Vy such that ps(v;) > strength of the u — v path in
GG1. In the first case the u — v path of (G; is the only an extra strong v — v path
in G. In the second case the path uv;v in G is an extra strong u — v path. From
this it follows that .#(G) = l3. Similarly we can prove that .7 (G) = Iy if Iy > 1.

Therefore .7 (G) =11 V . O

3.1.1 Fuzzy wheel graph

Definition 3.1.3. A fuzzy wheel graph W, is the join of the fuzzy cycle C,,_;

and a fuzzy trivial graph.

Some results of this chapter are included in the following paper Chithra K. P., Raji Pi-
lakkat, International Journal of Pure and Applied Mathematics, 106(3) 2016, 883-892
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3.1. Strength of join of fuzzy graphs

Definition 3.1.4. A vertex h of the wheel graph W, is said to be a fuzzy hub

if it is adjacent to all the other vertices of W,,.

Definition 3.1.5. A strong fuzzy wheel graph is a fuzzy wheel graph which is

also a strong fuzzy graph.

Theorem 3.1.4. Forn >4, let W,, = C,,_1 V K1 be a strong fuzzy wheel graph
n—1
with fuzzy hub h and uyus ... u,_quy the fuzzy cycle C,_1. If p(h) < ‘\—/1”(%)

then the strength of W, is the strength of C,,_1.

Proof. Choose two distinct non-adjacent vertices u and v of W,,. Clearly u,v €
V(Cn-1). Since p(h) < :L\:_/llu(uz), all paths joining w and v, through h have
strength p(h), which is less than the strength of any path joining u; and u; in
Cy—1. Therefore the length of extra strong paths joining u and v in W,, and those

in C),_; are one and the same. Hence the result. ]

n—1
Theorem 3.1.5. Let W,, be as in Theorem 3.1.4. If u(h) > '\_/l,u(ui) then the

strength of W, is one when n =4 and two when n > 4.

Proof. When n = 4, W, is a complete fuzzy graph. Therefore the strength of

W, is one [48].

Now suppose that n > 4. Let u and v be any two distinct non-adjacent
vertices of W,,. Therefore both belong to V(C,_1). Clearly uhv is an extra

strong u — v path in W,,. So strength of W, is 2. O

The only remaining case is that some vertices of C,_; have weight greater

44



3.1. Strength of join of fuzzy graphs

than p(h) and some have weight less than or equal to p(h). In this case we have

the following result.

Theorem 3.1.6. Let W, be as in Theorem 3.1.4. Suppose that p(h) < u(u;) for
some but not all the vertices u;,1 =1,2,...,n— 1. Let P be one of the mazrimal

paths of C,,_1 with the property that each edge of which has strength greater than

w(h). Letl be the length of P. Then . (W,) =1V 2.

Proof. Let u,v be any two distinct non-adjacent vertices of W,,. Then u and v
are vertices of C),_1. Let P; and P, be two paths in C,,_; having u and v as the

end vertices.

Suppose that [ < 1. Then both P, and P, have strength less than or equal
to p(h). Therefore uhv is an extra strong path in W,. Hence in this case

S (W,) = 2.

Now suppose [ > 2. If both the paths P, and P, have strength less than or
equal to p(h) then whv is an extra strong path joining v and v and which is of
length 2. If exactly one of the paths P, and P, say P, has strength greater than
w(h), then the extra strong path joining v and v in W, is the path P;. Since
each edge of which has strength greater than u(h), the length of P; < length of
P = 1. In particular if © and v are the end vertices of P, then P itself is an extra

strong path joining u and v. Hence the theorem. O
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3.2 Corona of strong fuzzy graphs

Definition 3.2.1. [21] Let G1(U, p1, 01)and Go(V, p2, 02) be two fuzzy graphs
with the respective underlying crisp graphs G;(U, E) and Go(V, Ey) where U =
{ug,ug,...,up} and V.= {vy,vy,...,v,}. Then the corona G(W, u,o) of Gy
and Gy is a fuzzy graph with the underlying crisp graph is the corona G =
G1 ® Gy of G1(U, Ey) and Go(V, Ey) with vertex set W = U U (U™, V;), where
Vi = A{vii, 095, ..o}, i =1,2,...m. For 1 <i <m and 1 < j <mn, the vertex
v;; represent the vertex v; of G in the i copy of Gy corresponding to the vertex

u; of G1. The fuzzy subset u and the fuzzy relation ¢ on W are defined as

pr(wg) ifw=uwu; €U,

p(w) =
po(v;) fw=w;i=1,2,...,mj=12...,n
and
(
o1 (uv) if u,vel,
oo (uv) if there exists an i such that uw = vj,;
o(uv) = and v = vy, for some ji,j with 1 < j; # jo < m,

pi(u) A pe(v)  if v=wj for some i and w=u,

or u=vj forsome ¢ and v =u;.

46



3.2. Corona of strong fuzzy graphs

ul u2 us3 Um

*o—eo—0--9
G1
V11 v21 w31 Vn1 V12 w22 wv3zy Un2 Vim V2m  V3m Unm
vy v2 v3
PS ® P _181 Ga1 Ga2 Gan
G2 G

Figure 3.5: Two fuzzy graphs G; and G2 and their corona.

As in the case of join, if GG is the corona of G; and G5 then both G; and G,

can be considered as partial fuzzy subgraphs of G.

If GGy is complete and G5 is a trivial fuzzy graph then,

1 if 7 is trivial,
(G) =

3 otherwise.

Notation 3.2.1. Suppose G; and G are fuzzy graphs as in Definition 3.2.1.
The copy of Gy in G corresponding to the vertex u; of GGy in the corona G of G

and G4 is denoted by Go;.

Let G1(U, pu1,01) and Go(V, g, 02) be two fuzzy null graphs and G(W, i, o)
be the corona of Gy and Go. If |V]| = 1 then G is the union of paths on two
vertices. Therefore, by Theorem 1.4.1 strength of G is one. If |[V| > 1 then G is

the union of strong fuzzy star graphs with at least three vertices. So its strength

is 2 by Theorem 1.4.1.
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3.2. Corona of strong fuzzy graphs

The corona of a fuzzy trivial graph and a non - null strong fuzzy graph is their
join. Hence the Theorem. Hence by the discussions which precedes Theorem

3.2.1.

Theorem 3.2.1. Let G1(U, pu1,01) be a fuzzy trivial graph with vertex set {u}
and Go(V, o, 02) be not a fuzzy null graph with vertex set V.= {vy,vq,...,0,}.
Let G(W, u,0) be the corona of Gy and Gy. Let | be the mazimum of length of
all subpaths of Gy of strength > py(u) if such a path exists. Otherwise let | be

zero. Then 7 (G) =1V 2.

Definition 3.2.2. Let G(V, i, 0) be a fuzzy graph. A path P with ends u and v
in GG is said to be a critical extra strong path if P is an extra strong u — v path

with length is equal to .7 (G).

Note 3.2.1. A fuzzy graph GG may contain more than one critical extra strong

paths.

Notation 3.2.2. The minimum of strength of all critical extra strong paths of

a fuzzy graph G is denoted by oo(G) or simply by g if there is no confusion.

Proposition 3.2.1. Let G1(U, u1,01) and Go(V, g, 09) be two strong fuzzy

graphs. Let G(W, u, o) be the corona of Gy and Gy then . (G) > .7 (Gh).

Proof. Let u,v € V(G). If u and v are in V(G;) then all the u — v paths lie
completely in the partial fuzzy subgraph G; of G. So length of an extra strong
u — v path in G is equal to that in GG;. So by definition of strength of a fuzzy
graph, . (G) > .(G1). Hence the proposition. O
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The following Theorems deal with only those fuzzy graphs whose underlying

crisp graphs are connected.

Definition 3.2.3. Let GG be a fuzzy graph of strength .#(G). Any extra strong

path of length .(G) — 1 is called a minus critical extra strong path .

Theorem 3.2.2. Let G(W, u, o) be the corona of two strong fuzzy graphs Gy (U, 1,
o1) and Gy(V, g, 09) on the vertex sets U = {uy,...,u,} and V = {v1} respec-
tively. Let po(v1) < 9. Suppose (G1) > 4 and Gy contains no minus critical
extra strong path. Then ./ (G) = .7 (G1) provided, the ends of every critical path

in G is also connected by a path of length < .7 (G4) — 2.

Proof. Let u,v be two nonadjacent vertices of G.

If w and v € V(Gy) then length of the extra strong u—v path in G'is < . (Gy).
If w = vy; and v = vy;,% # j then all the u — v paths must pass through both
u; and u; and all such paths in G have strength p(v1). The hypothesis of the
theorem imply that there is a u—wv path in G of length < .(G;) —2. Therefore,

the length of the extra strong u — v path in G is < . (G;) —2+ 2 = S (Gy).

Similarly, if u € V(G1) and v € V(Gy;) then the length of the extra strong

u — v path is < .7(Gy).
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3.2. Corona of strong fuzzy graphs

Figure 3.6: Corona G of two strong fuzzy graphs G; and Go with . (G;) = . (G) = 6.

The following three theorems can be proved in the same way as the previous

one was proved.

Theorem 3.2.3. Let G(W, i, o) be the corona of two strong fuzzy graphs G1 (U, 1,
01) and Gy(V, ua, 09) on the vertex sets U = {uy,...,u,} and V = {v,} respec-
tiely. Let po(v1) < og. Suppose ./ (G1) > 4 and Gy contains a minus critical
extra strong path. Then ./ (G) = ./ (G1) provided the ends of every critical path
in Gy is connected by a path of length < .7 (G1) —2 and the ends of every minus

critical path in Gy is also connected by a path of length < .#(Gy) — 1.

Theorem 3.2.4. Let G(W, u, o) be the corona of two strong fuzzy graphs Gy (U, 1,
o1) and Gy(V, g, 09) on the vertex sets U = {uy,...,u,} and V = {v,} respec-
tively. Suppose there exists no minus extra strong path in Gy. Let po(vq) < og
and #(Gh) > 4. Then . (G) = (G1) + 1 provided the ends of every critical

path is also connected by a path of length . (G1) — 1 and there exists a critical
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path in G whose ends are connected by paths of length % (G) and % (G) —1 only

m Gl.

Theorem 3.2.5. Let G(W, i, o) be the corona of two strong fuzzy graphs G1 (U, 1,
o1) and Gy(V, g, 09) on the vertex sets U = {uy,...,u,} and V = {v1} respec-
tively. Suppose there exists a minus extra strong path in Gy. If us(v) < o9 and
L (Gy) > 4 then S (G) = L (Gy1) + 1 provided that the ends of every critical
extra strong path in Gy is connected by a path of length < .7 (G1) — 1 and either
there exists a minus critical extra strong path whose ends are connected only by
paths of length .7 (G) — 1 or there exists a critical extra strong path whose ends

are connected only by paths of length > ./ (G) —

N. 05 08

ozzo‘tx ’\.0’

Figure 3.7: Corona of two fuzzy graphs G and G2 with .(G1) =5, . (G) = 6.

Theorem 3.2.6. Let G(W, i, o) be the corona of two strong fuzzy graphs G1 (U, 1,
o1) and Go(V, o, 02) on the verter sets U = {uy,...,u,} with [U| > 1 and
V = {1} respectively. Suppose that there exists a critical extra strong path P
in Gy such that either its ends are joined by only one path in Gy or every other
paths in Gy which joins the ends of P with strength > ps(vy) is of length > that
of P. Then & (G) = Z(Gy) + 2

o1



3.2. Corona of strong fuzzy graphs

Proof. Let u,v be two nonadjacent vertices of G. If uw and v € V(G1) then length
of the extra strong u — v path in G is less than or equal to .#(G;). Now suppose
that there exists a critical extra strong path P in GGy such that its ends are joined
by only one path in ;. Let u; and u; be the ends of P. Then there exists only
one path in G joining vy; and vy;. Therefore it itself is an extra strong vi; — vy

path in G and its length is .#’(G1)+2. Therefore in this case ./ (G) = . (G1)+2.

In the second case also, we suppose that u; and wu; are the ends of P. Then
the extra strong vi; — vi; path in G is the path obtained by adding the edges
vi;u; and ujvy; at the ends u; and u; of the path P to P respectively. Therefore

in this case also .7 (G) = . (G;) + 2. O

Theorem 3.2.7. Let G(W, u,0), G1(U, 1, 01) and Go(V, pa, 09) be as in The-
orem 3.2.6. If there exists a critical path P in Gy of strength < po(vy) then

F(G) = S(G1) + 2.

Proof. Suppose there exists a critical path P of strength < ps(vy) in G with
ends u; and u;. Then the v; —v; path in G obtained by adding the edges vi;u4
and u;vy; at u; and u; respectively of P to P is an extra strong vy; — vy, path of

length .(G1) + 2. So we can conclude that .7 (G) = (Gy) + 2. O
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3.2. Corona of strong fuzzy graphs

0.2

0.6

&7 05 08 09
~o--o-

Figure 3.8: Corona of two fuzzy graphs G; and Gy with . (G1) =5 and .7 (G) = 7.

Theorem 3.2.8. Let G1(U, uy,01) be a strong fuzzy graph. Suppose that the
underlying crisp graph is a path with vertex set U = {uy,ug,...,u,}. Let
Go(V, pa, 02) be a fuzzy null graph with vertex V= {vy, va, ..., vy} with |V| > 1.

Let G(W, u, o) be the corona of Gi and Gy. Then (G) = % (G1) + 2.

Proof. When |V| = 1, the result follows by Theorem 3.2.6. When |V| > 1, let
u and v be two nonadjacent vertices of G. If both of them are in G| then the
length of the extra strong u — v path is < .(Gy). If v and v are in the same

copy of Gy, say G9; of G then uu;v is the only extra strong path joining them.

If uw and v are in different copies of G in G say u € Gy and v € Ggj, 7 # j
then every u —v path in G is a union of the edge uu;, u; — u; path in the partial
fuzzy subgraph of G of G' and the edge u;v. So length of an extra strong u — v
path is equal to (length of the w; —u; path in G;)+2. If u; = u; and u; = u,, then
the length of the extra strong v — v path in G = % (G1) + 2. If u € V(Gs;) and
v € V(Gy) then the length of the extra strong u— v path is clearly < .(G;) +2.

(See Figure 3.9).
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3.2. Corona of strong fuzzy graphs

X A A N
V33 v v
G, o0 o
g U2 “315 up V12 22 “32‘ 42 T3 T3 M8 4

Gy Gy, Gy
G

Figure 3.9: Two fuzzy graphs G; and G5 and their corona.

Suppose G1(U, 1, 01) and Go(V, e, 02) are two strong fuzzy paths on n and
m vertices respectively. Let G(W, i, o) be the corona of Gy and Gy. Then G is
a path on 2 vertices if n =m = 1. So in this case .’(G) = 1. When n = 2 and
m = 1, G is a path on 4 vertices. So in this case .(G) = 3. When n = 1 and
m = 2, G is a fuzzy cycle on 3 vertices. Hence .(G) = 1. When n = 2, m = 2,
G is a 1— linked fuzzy graph with 3 parts. Therefore its strength is 3. Theorem

3.2.9 gives the general case.

G G

21 22

Gy v Gl v
u u, 1 I: :: 7}
G, oo L) V22

Figure 3.10: Corona G of two fuzzy graphs G and Gg with |G| = |Ga| = 2.
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3.2. Corona of strong fuzzy graphs

Theorem 3.2.9. Let G1(U, py,01) and Go(V, ps, 09) be two strong fuzzy paths
with P, and P,, be their respective crisp graphs, where n and m > 3. For each
vertex u; of Gy, let l; be the mazximum length of subpaths of G whose strength
> py(u;) and let | = i\zlli' If there is no such path, let [; = 0. Then the strength

of the corona G(W, i, 0) of Gy and Gy is (n+ 1) V L.

Proof. Let U = {uy,ug,...,u,} and V"= {vy,...,v,,}. Let u and v be two
nonadjacent vertices of G(V,pu, o). If u and v are in Gy then the extra strong

u — v path in G lies in G; and hence its length < . (G1) =n — 1.

Let u € V(Gy;) and v € V(Gy). Then all the u — v paths must pass through
u; of G1. Since u and u; are adjacent the only extra strong u — v path in G is
the union of the edge uu; and the path u; — v of GG;. So, the length of the extra

strong u — v path is < . (G1) + 1 = n.

Let u € V(Gy;) and v € V(Gyj),i # j. Then all the v — v paths in G must
pass through both u; and u; of G;. So in this case the extra strong v — v path
in G is a union of the edge uu; of G, the path u; — u; of G and the edge u;v of

G. So, length of the extra strong u — v path in G is < ./ (Gh) +2=n+ 1.

Let u,v € V(Go;). If I; > 2, then the length of any extra strong v — v path in
G is < l;. If uw and v are the end vertices of a subpath of Gy; of length [; such that
if strength > g9 (u;) then the length of extra strong u — v path is ;. Otherwise,

that is if [; < 1, it is 2. Hence the Theorem. O

Theorem 3.2.10. Let G1(U, p1,01) and Go(V, o, 09) be two strong fuzzy but-
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3.2. Corona of strong fuzzy graphs

terfly graphs. Then the strength of corona G(W, u, o) of G1 and Gy is 4.

Proof. Let w be the central vertex of G; and w’ be the central vertex of G5. Let
the vertices of Gy be {uy,us, us, ug, w} and vertices of Gy be {vy,vs, v3, vy, w'}.
Let us denote the copy of G5 corresponding to w by Gs,. Let u,v be two

nonadjacent vertices of G.
If w and v are in GG; the length of extra strong v — v path in G is < 2.

Let v = v;; and v = v;; where j # k. Then, both u and v are adjacent to
u; € V(G1) in G. Also all the u—v paths either pass through w; of G; or through
the central vertex w’ of Gg; in G. If py(u;) = po(w’) then all the u — v paths

have same strength. So the length of the extra strong path is 2.

If py(u;) > po(w’) then the extra strong path does not pass through w'.
Therefore the extra strong u — v path is uuv. If pq(u;) < pe(w’) then the extra
strong u — v paths lie completely in G5;. Therefore such paths have length 2.
Now let us suppose that v and v be in two different copies of Gs. If u € G9; and
v € Gy; then the length of the extra strong u — v path in G'is 4. On the other
hand if u € G5; and v € (G5, then length of the extra strong u — v path is 3. Also

if u; or u; is w, the length of the extra strong u — v path is 3. So S/ (G) =4. O
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3.3. Fuzzy Subdivision graph

3.3 Fuzzy Subdivision graph

Definition 3.3.1. [?] Let G(V,u,0) be a fuzzy graph with underlying crisp
graph G(V, E). Then the subdivision graph of G, denoted by sd(G), is the
fuzzy graph sd(G)(Vsq, thsa, 0sq) with the underlying crisp graph is the subdivision
graph of G(V, E), where the vertex set Vy; = VUE and the membership functions

ltsq and o4 are defined as

wlu) ifuelV,
frsa(u) =
o(u) ifuekFE.

tsa(uw) A psa(e) if u € Vie € E and u is one of the end vertices of e in G,
osa(u, e) =
0 otherwise.

Theorem 3.3.1. Let G be a strong fuzzy path on n vertices. Then the strength

L (sd(@)) of the subdivision graph sd(G) of G is 2.7 (QG).

Proof. The subdivision graph of a strong fuzzy path on n vertices is a strong fuzzy
path on 2n — 1 vertices. (See Figure 3.11). So strength of sd(G)is (2n—1)—1 =

2(n — 1) = 27(G). 0
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3.3. Fuzzy Subdivision graph

Up Uy Uppq
*—eo—0--0—0
ll1 ll2 u, u, llun
G

Figure 3.11: A strong fuzzy path and its subdivision graph.

Theorem 3.3.2. Let G(V,pu,0) be a strong fuzzy butterfly graph. Then the

strength ./ (sd(Q)) of the subdivision graph of G is 6.

Proof. Let the vertex set of G' be {uy, ug, us, uy, us} with uz as the central vertex.
Then G is a 1— linked fuzzy graph with two parts Gy and G5, where both GG; and
G, are fuzzy cycles on 3 vertices. Its subdivision graph is also a 1— linked fuzzy
graph with two parts which are cycles on 6 vertices. (See Figure 3.12). Since
each part G, (1 = 1,2) of G has at least two weakest edges of G;, sd(G;),1 = 1,2

has at least 4 weakest edges in sd(G;).

Let u,v be any two vertices of sd(G). If both u and v € V(sd(G;)),i = 1,2
then any extra strong path joining u and v lie completely in sd(G;),i = 1 or 2.
So the strength of the u — v path in G is 3 by Theorem 1.4.2. Since uz € V(G1)N
V(Gy), uz € V(sd(G1)) NV (sd(G3)). If u € sd(G1) \ {us} and v € sd(G5) \ {us}
then all the u — v paths can be considered as the union of two paths P; of sd(G)
joining u to uz and Py of sd(G2) joining us to v. Therefore, the length of any

extra strong the u — v path is less than or equal to the length of any extra strong
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3.3. Fuzzy Subdivision graph

u — ug path in sd(Gy) and uz — v path in sd(Gs) which is less than or equal to
3+ 3 = 6. Also when u is the vertex € V(sd(G)) corresponding to the edge ujusg
in G; and v is the vertex € V(sd(G)) corresponding to the edge usus in V(Gs)

the strength of the u — v path is exactly 6.

Hence the theorem. O

Figure 3.12: A strong fuzzy butterfly graph and its subdivision graph.

Theorem 3.3.3. Let G be a strong fuzzy Bull graph then the strength .7 (sd(G))

of the subdivision graph of G is 6.

Proof. A fuzzy bull graph G(V, i, 0) is a 1—linked fuzzy graph with three parts.
Let P, P’ and P” be its parts, where P and P’ are fuzzy paths on two vertices
and P’ is a fuzzy triangle. Then sd(G) is also a 1— linked fuzzy graph with parts

G1 = sd(P),Gy = sd(P’) and G5 = sd(P"). (See Figure 3.13 ).
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3.3. Fuzzy Subdivision graph

sd(G)

Figure 3.13: A strong fuzzy Bull graph G and its subdivision graph sd(G).

Let w and v be any two non-adjacent vertices of sd(G). If u,v € V(G;) or
u,v € V(G3) then the length of any extra strong u — v path in G is 2. Since

both sd(P) and sd(P") are paths on 3 vertices.

If u,v € V(G3) then all the paths joining u and v lie completely in G3. Since
(73 is the subdivision graph of the strong fuzzy triangle P”, it is a strong fuzzy
cycle on 6 vertices. As P’ contains at least 2 weakest edges, sd(G3) contains at
least 4 weakest edges. Therefore by Theorem 1.4.2, the length of the extra strong

u — v path in Gy is 3.

Let {w} = V(G1) NV (G3) and {w'} = V(G) NV (Gs). If w € V(Gy) and
v € V(Gy) then all the u — v paths pass through both w and v’ in sd(G). Since
w and w’" are adjacent in G, the extra strong path joining w and w’ in sd(G)
is wew’ where e is the vertex in sd(G) corresponding to the edge ww' in G. So
the length of the extra strong path joining v and v is <2+ 2+ 2 =6. When u
and v are the pendant vertices of GG then the extra strong v — v path has length

exactly 6. Therefore . (G) = 6.
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3.3. Fuzzy Subdivision graph

For a strong fuzzy tree GG, the strength of GG is the diameter of the underlying
crisp graph of GG. The subdivision graph of a fuzzy star graph is a fuzzy tree. It
is immediate from the definition of fuzzy star graph and subdivision of a fuzzy

graph the strength of the subdivision graph of a fuzzy star graph is 4.

Theorem 3.3.4. The strength of the subdivision graph of a fuzzy star graph [56]

G is 4.

Note 3.3.1. Let G be a strong fuzzy cycle on n vertices with [ weakest edges
in G having weight w. Then the edges in sd(G) incident with that vertices of
sd(G) corresponding to weakest edges of G are of weight w. Therefore in sd(G),

there are 21 weakest edges.

Theorem 3.3.5. Let G be a strong fuzzy cycle of length n, which contains |
weakest edges and which do not contain any weakest edge of G. Then the strength,

L (sd(@)), of the subdivision graph of G is 2.7 (G).

Proof. We have by Note 3.3.1, for a strong fuzzy cycle G of length n, if there are
[ weakest edges which altogether form a subpath in G then there are 2/ weakest

edges which altogether form a subpath in sd(G).

By Theorem 1.4.2 if 21 < [2281] then (sd(G)) = 2n — 2l = 2(n —1). If

21 < [22H] then | < [2H] so S(sd(G)) = 2.7(G). Also by Theorem 1.4.2 if

21 > [225] then .7 (sd(G)) = [3*] = 2[2]. We have 20 > [222] implies [ > [%H]

so L (sd(@)) = 2.7(G).
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3.3. Fuzzy Subdivision graph

Suppose there are [ weakest edges which do not altogether form a subpath in
G. Then the 2l weakest edges of sd(G) also do not form a subpath in sd(G). So

by Theorem 1.4.3 if 20 > [2*] — 1 then ./(sd(G)) = [%].

But if 2 > [2*] — 1 then [ > [2] — 1. Hence in this case ./(sd(G)) = 2.7(G).

Similarly if 20 < [%}] — 1 then .7 (sd(G)) = [%2]. Also 2] < [%}] — 1 implies

1< [2]— 1. So.#(sd(G)) = [2] = 2.7(Q).

Hence the proof. O

Theorem 3.3.6. The strength of the subdivision graph of a strong fuzzy diamond

graph is 4.

Proof. Let G be a strong fuzzy diamond graph with vertex set {uy, us, us, ts}.

Also let u and v be two non-adjacent vertices of sd(G).

Case 1. u,v € V(G).

If uw and v are adjacent in G and e be the edge joining v and v in GG then the
strength of the u — v path is less than or equal to psq(u) A psq(v) and which is
equal to og4(e). So the path uev is the extra strong path joining u and v in sd(G)
which is of length 2. If u and v are non-adjacent vertices in G then u, v € {ug, us}

as shown in Figure 3.14. Suppose that u = uy and v = uy.
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3.3. Fuzzy Subdivision graph

Figure 3.14: A strong fuzzy diamond graph G and its subdivision graph sd(G).

Then any extra strong path joining u and v in sd(G) pass either through u,
or through w3 depending up on their weights. Without loss of generality assume
that p(uy) > p(ug). Since u; is adjacent to both u and v and e; is the edge uuy
and ey is the edge u v in G, so uejujeqv is an extra strong path in sd(G) and it

is of minimum length among all the other strong paths.

Case 2. u,v € E(G).

If u and v have a common vertex w in G then in sd(G) the path uwv is an
extra strong path since, the strength of all the paths joining uw and v in sd(G)
have strength < pgq(u) A psa(v) and psq(w) > psa(w) A psqa(v). So the length of

the extra strong path joining v and v is 2.

Otherwise, suppose u and v have no common vertex in GG then v and v €
{e1,e3} or {es,e4}. (See Figure 3.14). Without loss of generality assume that u
and v € {e1,e3}. In this case all the u — v paths have strength less than or equal
t0 prsa(u) A psa(v) = psa(ur) A psa(us) A prsa(us) A psq(ug). Therefore, the length
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3.3. Fuzzy Subdivision graph

of the extra strong path is the minimum distance between v and v which is 4.

Case 3. u € V(G) and v € E(G).

Without loss of generality assume that u = u; and v = e3 where e3 is the
vertex in sd(G) corresponding to the edge usuy in G. (See Figure 3.14). Then
strength of each u — v path in sd(G) < psa(u) A psa(v) = p(ur) A p(us) A p(ug).
So the extra strong path joining u and v lies completely in the maximal partial
fuzzy subgraph of sd(G) with vertex set {uy, us, uy, €3, €4, €5}, which is a strong
fuzzy cycle on 6 vertices. So the length of the extra strong path joining v and v

1s 3.
O

Theorem 3.3.7. Let G be a fuzzy complete graph. Then the strength .7 (sd)(G)

1s 3 forn =3 and 4 for n > 3.

Proof. When n = 3, sd(G) is a strong fuzzy cycle on 6 vertices having at least 4

weakest edges. So the the result follows by Theorem 1.4.2.

Consider the case, n > 3. Let u,v be two non-adjacent vertices of sd(G). If
u and v are the vertices of GG then the extra strong path joining u and v is uev

where e is the edge uv in G and is of length 2.

If uw and v are edges of GG then, if they have a common vertex w in G then
the path wwv in sd(G) is of strength exactly equal to psq(u) A prsa(v), which is

an extra strong path joining them in sd(G).
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3.4. Fuzzy middle graph

Suppose u = u;ur and v = wu,, are edges of G and have no vertex in
common. The weight of the edges uwu; and uuy are the same and the weight of
the edges vu; and vu,, are the same in sd(G) and the extra strong path joining
any two vertices v’ and u” of G in sd(G) is u'eu”, where e is the edge joining v’
and u” in G. So all the u—v paths must have same strength in sd(G). Therefore,
the length of the extra strong path joining v and v is the length of the shortest

u — v path in sd(G), which is 4. O

3.4 Fuzzy middle graph

Definition 3.4.1. [29] Let G(V, i, o) be a fuzzy graph with its underlying crisp
graph G(V, E). The fuzzy middle graph of G is denoted by M(G)(Vir, tiar, oar)
with crisp graph M(G)(Var, Ear), where the vertex set Vi = V U E and edge
set Epy = {uv : either u and v are two adjacent edges of G or u € V and v €

E with u as one end vertex of v},

p(u) ifueV,
piar(u) =
o(u) ifuek.
and
o(u) ANo(v) if u,v are two adjacent edges of G,
oy (uv) =

o(v) if u eV and v € F with u as one end vertex of v.
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3.4. Fuzzy middle graph

From the definition of middle graph of a fuzzy graph it is clear that the
middle graph of a strong fuzzy path on n vertices is a 1— linked fuzzy graph
with n parts, each of which is a complete fuzzy graph. So by Lemma 2.3.2 the

strength of middle graph of a strong fuzzy path on n vertices is n.

Theorem 3.4.1. Let G(V, u, o) be a complete strong fuzzy graph with M(G)(Vyy,

W, o) its fuzzy middle graph. Then

0 if|V]=1,
S (M(G)) = "

2 if V] > 2.

Proof. Let G(V, u, o) be a complete fuzzy graph with middle graph M (G)(Vas, tar,
on). Let {uy,ug, ..., u,} be the vertex set and {ey,es,...,enm-1 } be the edge

set of G. If |[V| = 1 then G and M(G) are fuzzy trivial graphs. Hence

If |V] =2 then M(G) is a path on 3 vertices. Hence . (G) = 2.
Suppose that |V| > 2. Let u, v be two non - adjacent vertices of M(G).

Case 1. u,v € V(G).

Since all the vertices of GG are adjacent, e = uv is an edge of G and therefore
it is a vertex of M(G). By the definition of M(G), e is adjacent to both u and
vin M(G) and pp(e) = o(e) = p(u) A p(v). As all the paths joining w and v
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in M(G) have strength less than or equal to p(u) A pu(v), uev is an extra strong

u — v path in M(G).

Case 2. u,v € E(G).

Suppose uy, ug, Uy, and u; € V(G) such that v = wuy and v = u,u;, in G.
Then any path joining v and v have strength < pu(w;) A pe(ug) A pwm) A p(uj) =
to(say). If w is the edge wy,u; or umuy or uju; or ujuy of G then wwo is a path in
M (G) with strength p,. So the length of any extra strong u — v path in M(G)

1s 2.

Case 3. u € V(G) and v € E(G).

Clearly all the u — v paths in M(G) must have strengths < pps(u) A par(v).
Let w be one of the end vertices of v. Since G is complete, u is adjacent to
w. Therefore e = uw is an edge of G. Hence it is a vertex of M(G) adjacent
to both v and v in M(G). Thus uev is a u — v path in M(G) having strength
pear(w) A ppr(v). Therefore uev is an extra strong u — v path in M(G). Hence

the theorem. O

Theorem 3.4.2. Let G(V, 1, 0) be a strong fuzzy star graph and M (G)(Var, tiar, oar)

be its fuzzy middle graph. Then

4

0 i |V]=1,
S (M(G) =1 2 if V] =2,

3  otherwise.

\
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3.4. Fuzzy middle graph

Proof. If |V| = 1 or 2 then G is a complete fuzzy graph. Therefore the result
follows from Theorem 3.4.1. So suppose that |V| > 3. Let V = {uy,ug, ..., u,}
be the vertex set of G with w, as the central vertex and {ej,es,..., e, 1} be
the edge set of G with ex = wpu,. Then {uy, ug, ..., up, €1,€2,...,€,1} be the

vertex set of the middle graph M (G) of G (See Figure 3.15).

Figure 3.15: A strong fuzzy star graph and its middle graph M(G).

Let u and v be two non-adjacent vertices of M (G). Then we have the following

three cases:

i Both u and v are pendant vertices of G.

ii One of u and v is a pendant vertex and the other is the central vertex of

G .

iii One of u and v say u is a pendant vertex of G and other is a vertex of

M (G) which corresponds to an edge in G with u is not an end vertex.
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In the first case, let us suppose that u = u; and v = u;, where 1 <7 # j <n-—1.
Then all the u — v paths pass through both the vertices e; and e; in M(G). Since
the middle graph of a strong fuzzy graph is strong fuzzy, M (G) is a strong fuzzy
graph. As e; and e; are the support vertices of u and v in M (G) respectively, all
u— v paths in M (G) must pass through these two vertices. Thus the u — v path

ue;e;v of M(G) will be an extra strong u — v path with length 3.

In the second case, without loss of generality assume v = u; and v = u,, 7 < n.
All the u — v paths must pass through e;. As e; is adjacent to both u and v, ue;v

is an extra strong u — v path with length 2.

In the last case, we suppose that u = w;, where ¢ # n and v = ¢; = u,u;,
where j # 1. Here, ue;v is an extra strong u — v path in G of length 2. Hence

the Theorem. O

Theorem 3.4.3. Let G(V, i, 0) be a strong fuzzy diamond graph and M (G)(Var, i,

o) be its fuzzy middle graph. Then . (M(G)) = 3.

Proof. Let V' = {uq, us, us, us} be the vertex set and E = {ey, ey,...,e5} where
€1 = Ujlg, €9 = Ugliz, €3 = U3lUy, €4 = Ugll1, €5 = uyuz be the edge set of G. Then

Ve = {ug,ug, ..., ug, €1, €9,...,e5} (See Figure 3.16).
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3.4. Fuzzy middle graph

(@) G (b) M(G)

Figure 3.16: A fuzzy diamond graph G and its middle graph M (G).

Let u, v be two nonadjacent vertices of M (G). Then

Case 1. u and v are two adjacent vertices in G.

Suppose u = u; and v = uy. Since o(ey) = pu(uy) A p(us) = par(er) and the
vertex e; is adjacent to both u; and us in M(G), uiejus is the extra strong path
joining u and v. So that the length of the extra strong u; — uy path is 2. In all

other cases also the length of the extra strong u — v path is 2.

Case 2. u and v are two non - adjacent vertices in G say u = us and v = uy.

Without loss of generality assume that p(uq) < p(ug). If p(ug) A plug) <
p(ug) then the length of an extra strong path must be the minimum length of

the path joining v and v, which is 3.

If p(ug) A p(ug) > p(ug) then usesezuy is an extra strong u — v path and is
of length equal to 3.
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Case 3. u and v are two non-adjacent edges in G.

Then u,v € {e1,e3} or u,v € {ey,e4} in M(G). So all the u — v paths have
strength = par(er) A par(es) = p(ur) A p(uz) A p(us) A p(uy). Therefore each

ere;es, i =2 or 4 or 5 is an extra strong path and is of length 2.

Case 4. u is a vertex of G and v is an edge of G.

Because of the symmetry we need only to consider the case u = wu; and
v = e3. As all extra strong u — v path have strength < pp(u1) A par(es) =
plur) A p(us) A p(ug) and since ppr(es) = oes) = p(ur) A pus), uiesus is an

extra strong u — v path of length 2. Hence the theorem. O

3.5 Total fuzzy graph, fuzzy split graph and

fuzzy shadow graph

This section discusses the strength of total fuzzy graph, fuzzy split graph and

fuzzy shadow graph.

3.5.1 Total fuzzy graph

The total graph of a graph G(V, F) is the graph with vertex set V U E and two

vertices are adjacent, whenever they are either adjacent or incident in G [53].
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Definition 3.5.1. [28] Let G(V,u,0) be a fuzzy graph with underlying crisp
graph G(V, E). Then the total fuzzy graph of GG, denoted by T(G) is the fuzzy
graph T(G)(Vy, pr, or) with the underlying crisp graph is the total graph of
G(V, E), where the vertex set Vp = VUE and the membership functions pz and

o are defined as

p(u) ifueV,
pr(u) =
o(u) ifuek.
and for u,v € Vp,
(
o(uv) if u,v eV,

o(u) ANo(v) if u,v € E and have a common vertex,
or(uv) =

p(u) ANo(v) ifueV,oe E and uis a vertex incident withF),

0 otherwise.

If G is a trivial or a null fuzzy graph then T'(G) is G and hence .7 (T'(G)) =
S (G) = 0. If G is a strong fuzzy path on 2 vertices then T'(G) is a complete

strong fuzzy graph on 3 vertices. Hence .(T(G)) = 1 by Theorem 1.4.1.

Y Y
TG (G)
U, Uy

G T(G)

Figure 3.17: A fuzzy path on 2 vertices and its total fuzzy graph.
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Theorem 3.5.1. Let G(V, u,0) be a strong fuzzy graph with its underlying crisp

graph G(V, E), a path on n > 2 vertices. Then the strength of T(G) is n — 1.

Proof. Let us suppose that V' = {uy, us,....u,} and F = {ey,ea,...,6€, 1} where

ei:uiuiﬂ,i: 1,2,...,77,—1.

Let u,v be two non-adjacent vertices of T'(G) (See Figure 3.18 ).

€ € €, p
o——o—“*—9o"1»
uy ug us ug

Figure 3.18: A fuzzy path on 4 vertices and its total fuzzy graph.

Case 1. u,v € {uj,us,...,u,} or u,v € {ey,€9,...,€,_1}.

First of all suppose that u,v € {uy,us,...,u,}. Let us suppose that u = u;
and v = uj,7 < j. Clearly any extra strong v — v path lie in the maximal partial
fuzzy subgraph G’ with vertex set {u;, €;, u;+1, €41, . . ., u;, €;}. In this case there
is only one extra strong u — v path, namely w;u;;; ... u; If possible, let k be the
least positive integer > ¢ such that e, belongs to the vertex set of an extra strong
u — v path P in T(G). Let exexiq ... eryn be the maximal subpath of P which

lies in the path ejes...e,_; beginning at e.

Then P, = upugi1€p€riq ... €pinlkiprr OF Po = upljii€k . ..€5 pUgrp OT
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P3 = ugey ... e ipupipni1 or Py = ugey ... epipupyy is a subpath of P. Then
by replacing the subpaths P; by ugugyq ... uripye1 and Py and Py by the path
UpUgy1 - - - Uptn, We get a u— v path of strength > that of P and length less than
or equal to that of P; a contradiction. So we can conclude that the extra strong
u — v path in this case is w;u;y1...uj_1u;. Therefore the length of the extra

strong v — v path is less than or equal to n — 1.

Similarly we can prove that if u,v € {e1,es,...,e,_1} then the length of the

extra strong u — v path is < n — 2.

Case 2. u € {ug,ug,...,u,} and v € {eg,eq,...,€, 1}

Let u = u; and v = ¢;,% < j. In this case every extra strong v — v path must
be a subpath of the maximal partial fuzzy subgraph G” of T(G) with vertex
set U, Uit1, ..., Uj, €, €41,...,€;. Let us denote the path wjus...u, of T(G)
by P, and the path ejes...e, 1 of T(G) by P,. Also let P be an extra strong
u — v path in T(G) which lies in G”. Suppose k is the least positive integer
such that e, € V(P). Then i < k < j. By case 1 we can conclude that P is
Uilig1 - .. Up€) ... €. Its length is clearly k —i+j -k +1=j7—-i+1<n-1

and equal ton — 1ifi =1 and j = n. O

3.5.2 Fuzzy split graph

Definition 3.5.2. [7] For a graph G and a vertex v of G, the neighbourhood

set N(v) is defined as the set of all vertices of G which are adjacent to v in G.
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Definition 3.5.3. [46] For a graph G the split graph split(G) is obtained by
adding a new vertex v’ corresponding to each vertex v of G such that N(v') =

N(v).

Unless otherwise specified we denote the vertex corresponding to the vertex

v of G in split(G) by v' and the set of all such vertices v’ by V'.

Hence the split(G) has the vertex set Vi = V UV’ and the edge set Egpe =
{uv : u,v € V and u, v are adjacent in G or v € V,v = w’ € V' such that u,w are

adjacent in G}.

Definition 3.5.4. The fuzzy split graph split(G)(Vipiit, fesplits Ospiir) of a fuzzy
graph G(V,pu,0) is a fuzzy graph with underlying crisp graph split(G) where
psprit(w) = psprit(u') = p(u) for uw € V and v’ € V.
( o(uv) if u and v are adjacent in V,

p(u) A p(v) it v =w" e V' such that v and w,
Ospiit(UV) =

are adjacent in G,

0 othewise.

\

For |V| = 1, split(G) is a null fuzzy graph on 2 vertices. Therefore its strength

is 0.

Theorem 3.5.2. Let G(V,u,0) be a strong fuzzy path on n > 1 vertices. Then

the strength of split(G), the fuzzy split graph of G is

n—1 ifn>3,
S (split(G)) =

3 ifn=2,3.
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Proof. When n = 2, the split graph of GG is a fuzzy path on 4 vertices. Hence

strength of split(G) is 3. (See Figure 3.19 (a)).

When n = 3, let V' = {vy,v9,v3} be the vertex set of G as shown in Figure

3.19 (b) and u, v be two nonadjacent vertices of fuzzy split graph of G. If u = vy

and v = v then uvyv and uvjv are the only extra strong u —v paths in split(G).

If u = v and if v is either v{ or v}, the respective extra strong u — v paths are

V120 V10205, Which is of length 2. If u = v} and v = v |, = 1,2, all the u — v

paths have length 3. In the case u = v} and v = v} there is only one u — v path,

which is of length 2. Therefore in this case the strength of fuzzy split graph of

G is 3.
Y A
Y1
€1
V2
1
Vi vlz
G Split  (G)

(a)

G

v \0) vy

o—o—0

V; V2 V3

Split (G) W

1
1 V2

V3

(b)

Figure 3.19: (a) A fuzzy path on 2 vertices and its split graph, (b) A fuzzy path

on 3 vertices and its split graph.
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V; v

1 2 Vi1 Vi Vi+rl  Vp-1 Y
o—O0---0—0—0---0----90
G
Y V2 Vi-1 Vi Vil Va1l “a
: :C",: t i\"',: i
\N 7 \N 7
v v
7N\ 7N\

4 N\ 4 N\

v, 1 U v.I vI vl vI vl
1 \p) i-1 i i+1 n-1 n

Split (G)

Figure 3.20: A fuzzy path on n vertices and its split graph.

When n > 3 we proceed as follows. Let u and v be two nonadjacent vertices

of split(G).

Case 1. u,v € {vy,v9,...,0,}.

Let u = v; and v = v;,¢ < j. Then every extra strong v — v path must be a
subpath P of the maximal partial fuzzy subgraph G’ of split(G) with vertex set
Vi, Vit 1y -+ -5 Vg, Uiy q, - - -, V5. First of all note that if a u — v path P in split(G)
passes through v;_; then it must pass through v} and v;;1. In fact vv;_1, v;_1v]
and vjv;11 are edges of P. In this case by deleting the vertices v; for j < i and
v} for j < i of P and adding the edge v;viy; to P we get new u — v path with
less length and, strength not less than that of P, a contradiction. If P passes
through v} then v;v;_1, v;_1v, and vjv;;; are edges of P. As above by deleting
these edges of P and adding the edge v;v;,1, we get a u — v path with strength

not less than that of P but length strictly less than that of P, a contradiction.
Similarly we can prove that P can’t pass through any of the vertices vy, k > j
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or v, k > j.

Also from the definition of split(G) the path P must pass through either vy
or vi;k =i+ 1,...,5 — 1. Since pepit(vi) = pspie(vy) for k = 1,2,...,n, the
path P is of the form w;u;yq ... u;—1u; where uy = v, or v, k=i+1,...,7— 1L
In such a way that if some u, = vy then w1 = vgyq or v,’Hl and if some uy, = v},

then ug, 1 = v 1. Clearly length of P is j —i.

If u = v, and v = v,, then the length of the extra strong u — v path is equal

to n — 1. (See Figure 3.19).

/ / /!
Case 2. u,v € {v},vh,..., v, }.

As u is adjacent to v;—; and v;41 and v is adjacent to v;_; and v,y only
and any path from u to v traverse through vy or v;. Then there exist an ex-
tra strong path P in the maximal partial fuzzy subgraph of G with vertex set

/! / !/
UZ,UH_l,’UH_l, o e ,'Uj_l,vj.

Clearly P contains either v;, or v, but not both for i < k < j. Therefore

length of P =5 — 1.

Case 3. u € {vy,v9,...,v,} and v € {v],v5, ...,V

> nlJ

Let u = v; and v = v} with i < j. If i = j then v = v; . In this case, since
v is adjacent to only v;,; and v;_; all the extra strong u — v path must pass
through either v;_y or vy q. If p(v;—1) > p(vie1 then wv;_jv is an extra strong

path in G, otherwise uv; v is an extra strong path in G.
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As in the proof of Case (2) we can conclude that the length of the extra

strong path joining v and v is j-i. O

Proposition 3.5.1. Let G(V, u, o) be a strong fuzzy complete graph on 3 ver-
tices. If there exists a vertex in G whose weight is strictly less than the weight

of the other two vertices then . (split(G)) is 3. Otherwise it is 2.

Proof. Consider a strong fuzzy complete graph with vertex set {vy,ve,v3}. Let

u, v be two nonadjacent vertices of split(G).

Suppose u = v; and v = v],1 < ¢ < 3. Since v; is adjacent to all vertices
except v) and since p(v;) = fuspit(v;), Vj, in split(G) , wogv is an extra strong
u — v path, where vy, k # @ is a vertex of G with p(vg) > max{pu(v;) : j # i}.

Now suppose, u = v; and v = v}, 1 <i # j < 3.

Let vy, be the vertex distinct from v; and v;. If pu(vg) > p(v;) Ap(v;) then wogv
is an extra strong w—v path in split(G). Otherwise, that isif p(vi) < p(v;) Ap(v;)
then uwv;v;v is an extra strong u — v path in split(G).

If at least two vertices of G have the minimum weight then all edges of

split(G) have the same weight. Therefore .77 (split(G)) = 2.
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Figure 3.21: A graph G on 3 vertices and its split graph.

We generalize Proposition 3.5.1 as follows:

Theorem 3.5.3. Let G(V, u,0) be a strong fuzzy complete graph on n > 3. If
there ezist two vertices u,v in G such that p(u) Ap(v) is greater than the strength

of all other vertices in G. Then the strength of split(G) is 3. Otherwise it is 2.

3.5.3 Fuzzy shadow graph

Definition 3.5.5. [54] The shadow graph of a connected graph G(V,FE) is
constructed by taking two copies of G say G'(V', E’) and G"(V", E") and by
joining each vertex v’ of G’ to those vertices in G” which are neighbours of v”,

where v" and v” represent the same vertex v of G.

Definition 3.5.6. The fuzzy shadow graph S(G)(Vj, s, 05) of a fuzzy graph
G(V, p, o) with underlying crisp graph G(V, E) is defined as a fuzzy graph with
its underlying crisp graph is the shadow graph of G(V, E) with vertex set Vg =
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V'U V" where V' and V" are the vertex sets corresponding to the two copies of
G'(V',E") and G"(V",E") of G(V, E). For each v € V, the vertices v' € V' and
v"” € V" corresponding to v have weight u(v) that is, pus(v') = ps(v”) = u(v)

For v/ € V' and a neighbour w” of v” in V", og(v'w"”) = p(v) A pu(w) and
for two adjacent vertices u/,v" in V’ and for two adjacent vertices u”,v” in V",

og(u'v') = og(u"v") = o(uv), where u,v € V, and og is zero in all the other

cases.

Theorem 3.5.4. Let G(V,u,0) be a strong fuzzy path on n vertices. Then the
strength .#(S(G)) of the shadow graph S(G) of G is

n—1 ifn>3,

Z(5(G)) =

p ifn=2.
Proof. For n = 2 the shadow graph of G is a fuzzy cycle on 4 vertices. Hence
by Theorem 1.4.2 its strength is 2. Let v and v be two non-adjacent vertices
of S(G). The underlying crisp graph of S(G) has vertex set V(G') U V(G"),
where G’ and G” are two copies of G with vertex set V(G') = {v},v},... v},

V(G") = {v],vy,... v}, (See Figure 3.22).

Y UnlJ
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Figure 3.22: (a) Fuzzy path on 2 vertices and its shadow graph (b) Fuzzy path

on 4 vertices and its shadow graph.

/ /
Case 1. u,v € {v}, v},

S

Let u = v; and v = v},i < j. Then all the extra strong u — v paths must

be a subpath of the maximal partial fuzzy subgraph G’ of S(G) with vertex set
Vfy Viggs s Uy Vfpgs e, U5

If an extra strong u — v path P passes through v;_; or v/ ; then this path

must pass through v’ and as v}’ is adjacent to v, ; and v;’ |, P must pass through

!/ "
at least one of v; ; and v; ;.

In the first case by deleting all vertices in P with suffices <, and by adding

the single edge vjv;,, and in the second case by deleting all vertices in G' with

suffices < 7 and by adding the single edge v

i, we get another u — v path of

strength > that of P and length < that of P, a contradiction.

Similarly we can prove that P does not pass through v}, or v}, ;. Thus any
extra strong u — v path lie in G'.

82



3.5. Total fuzzy graph, fuzzy split graph and fuzzy shadow graph

From the adjacency relation in S(G) every u — v path traverses at least once
through vy or vy, i < k < j. As u(vy) = p(vy) each extra strong u — v path
contains exactly one vy, or v for ¢ < k < j. Thus any such path is given by
Ulliyq - .. uj—1v where uy = v, or vy for i < k < j. Therefore the length of such

u—wv path is j —i. If u = v} and v = v}, then the length of the extra strong u — v

path is equal to n — 1. Also the case is same when u,v € {v}, v}, ... v/

>V nl)

Case 2. u € {v},v},..., v} and v € {v{,v},... v/} in S(G).

Let u = v; and v = v},i < j. Here also we can conclude that every extra
strong v — v path lies in the maximal partial fuzzy subgraph G with vertex
set {v, : k=1—1,....,5U{v) : k =i,...,7}. But all the u — v paths
in G” must pass either through v; or through v; or through both v; and vy,
where ¢ < k < j. As ps(vy,) = ps(vy), all the u — v paths in G” have strength
< ps(v) Aps (Vi) A Aps (V) Aps(vf). Thus the path P = uwugug . .. uj v
has strength equal to ps(v)) Aps(vig) A Aps(V_y) Aps(vy), where uy, = v} or
vy for 2 <k < j—1, and no other u — v path in G having length less than that
of P have strength greater than P. So P is an extra strong v — v path and is of
length equal to j —i. When u = v] and v = v the length of the extra strong

u — v path is equal to n — 1.

O

Theorem 3.5.5. Let G(V, u, o) be a strong fuzzy complete graph with vertex set

V = {vy,v9,...,0,}. Then the strength of the shadow graph S(G) of G is 2 for
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Proof. Let S(G)(W, ug,0s) be the shadow graph of G with the underlying crisp
graph has vertex set W = V(G') UV (G"), where G’ and G” are two copies of
G with vertex set V(G') = {v], v}, ..., v}, V(G") = {v], vy, ..., v}, For n =2
the shadow graph of G is a fuzzy cycle on 4 vertices. Hence the result is true
by Theorem 1.4.2. So assume that n > 3. Let u, v be two non-adjacent vertices
of S(G) (See Figure 3.23). Then u = v}, for 1 <i¢<mnandov=1v/,1<i<n.
Note that both v] and v]" are adjacent to all the other vertices of S(G). So uwv
where w € W\ {v}, v/} such that p(w) = j\;ius(vé) is an extra strong u — v path.

Hence the theorem.

Figure 3.23: A fuzzy complete graph on 3 vertices and its shadow graph.
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Chapter

Products of fuzzy graphs

In this chapter we discuss the strength of Cartesian product, tensor product,

composition and normal product of certain strong fuzzy graphs.

4.1 Cartesian product

First of all we consider the Cartesian product of two strong fuzzy paths G; and
G5 on 2 vertices. Also here we discuss the strength of Cartesian product of two
fuzzy paths, a fuzzy path on two vertices and a fuzzy cycle on n vertices, a fuzzy

path on two vertices and a strong fuzzy star graph.

Definition 4.1.1. [26] Fori = 1,2, let G;(V}, p;, 0;) be two fuzzy graphs with un-
derlying crisp graphs G;(V;, E;). Their Cartesian product G, denoted by G10G+
is the fuzzy graph G(V, u, o) with the underlying crisp graph G(V, F), the Carte-

sian product of the crisp graphs G1(V1, E1) and Go(Vs, Es) with vertex set V =
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Vi x V5 and edge set E = {(u, u2)(u, vo)|u € Vi, usvs € Ey} U {(ug,w)(vy,w)|w €

Vo, uyvp € E1} and whose membership functions p and o are defined as

p(ur, uz) = pa(ur) A pa(us); (w1, uz) €'V,

(
pi(ur) A og(ugvg) i uy = v and usve € Eo,

o((u, ug)(v1,v2)) = po(ug) A op(uvy)  if ug = vy and wyvy € Fy,

0 otherwise.

\

Notation 4.1.1. Unless otherwise specified for Vi = {uy, us,...,u,} and Vo =

{v1,v9,..., vy} the notation w;; is used to denote the vertex (u;,v;) € Vi x V.

Lemma 4.1.1. Let G1(V1, u1,01) and Ga(Va, pa, 02) be two fuzzy paths, each
has P, as its underlying crisp graph. Then the Cartesian product G;0JG5 of G

and (G is a fuzzy cycle.

Proof. Let G1(Vi, pu, 01) and Ga(Va, pr,02) be two fuzzy graphs with P, as their

underlying crisp graph. The fuzzy graph G10G, is depicted in Figure 4.1.
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uq Uo
@ @
G1
@ @
GZ
Wi . Wi2
w o "
o 22
G!G,xG,

Figure 4.1: The fuzzy paths GG;, G5 and their Cartesian product G;0G,.

Suppose that o1(ujus) < o9(v109). Then o(wiwse) = o(wigwes) = o1 (uuz)
and o(wijwe) = o(wiawey) = o1(ugus). o(wiiwin) = pi(ug) A oa(vive) and
o(wogwag) = p1(uz) A og(vivy). Clearly wijwis and wiswqy are weakest edges of
G10G5. Therefore G1G5 has at least two weakest edges. Hence G10G5 is a

fuzzy cycle.

Note 4.1.1. If G1(V1, p1, 01) and Go(Va, po, 09) are two strong fuzzy paths then
o(urug) = py(ug) A pp(ug) and og(v1vg) = pa(v1) A pz(ve). If let us suppose that

pa(ur) = min{py (ur), pa(uz), p2(vr), po(v2)}. Then o(wiwie) = o(wiws) =
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4.1. Cartesian product

o(wiawey) = a say and o(wywey) is greater than or equal to this common value
a. Thus if G; and G5 are strong fuzzy graphs then at least three edges of GG,

are weakest edges.

The following lemma holds by Lemma 4.1.1 and Note 4.1.1.

Lemma 4.1.2. Let G1(V3, p11, 01) and Go(Va, 19, 02) be two strong fuzzy graphs.
Suppose both the graphs have underlying crisp graphs P on two vertices. Then

the strength of the Cartesian product of G; and G5 is two.

Lemma 4.1.3. Let G1(Vi, p1,01) and Gy(Va, pig, 02) be two fuzzy graphs with

crisp graphs P, and Pj respectively. Then the strength of GG, is 3.

Proof. Let the fuzzy graphs G1(Vi, 1, 01), Go(Va, 19, 02) and their Cartesian
product G100G5 be as depicted in Figure 4.2. We denote the weights of the

edges wiqwig, Wi1Wa1, WoWos and wiswses by a, b, ¢ and d respectively.
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Cartesian product

Figure 4.2: The fuzzy subgraphs GG; and G5, their Cartesian product G10G5 and

v1

w12
Y12 gy, 412

G GixGy

W12, awyg

Wi2yg w12

2 v2

2

w11

v

Hw

wi2
Hd

1 w12
Wiz iz e
2

two partial fuzzy subgraphs H; and H, of G10Gs.

The two partial fuzzy subgraphs H; and Hy of G1JG5 shown in Figure 4.2
are fuzzy cycles by Lemma 4.1.1. Theorem 4.1.2 shows that both H; and H,

have strength 2. Suppose the weakest edge of H; has weight a and those of Ho

have weight (3.

Case 1. a > 0.

In this case d > o

Subcase 1. d > . Thene =g = f = — (1). Let u and v be two vertices
of G. If w and v are in V(H;), then the length of the extra strong path joining

u and v is < the strength of Hy, ie 2. Because, if a u — v path P passes through
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a vertex in V(G) \ V(H;) then it has strength < any u — v path in H; and its

length must be greater than or equal to any u — v path in Hj.

If w and v are in V(G\ H;) then u,v € {w;3, was} and hence adjacent. There-

fore, the extra strong path joining u and v is wy3wsg, which is of length one.

If wisin V(G\Hz) and v is inV(G\H;). Then all the paths joining v and v
must pass through an edge having weight . Therefore, all the paths joining u
and v have same strength. So, length of the extra strong path joining u and v is

<3.
In particular if u = wq; and v = wsz or u = wy; and v = wy3 then the length

of extra strong path is equal to 3.

Subcase 2. d = .

Then py(uy) = 5 or py(ug) = B or us(ve) = B. In the first case d = f =

b

e

a

f. In the second case d = e = g = b = ¢ = . In the third case

d

e =g =a = c = f. In these cases the strength of any path connected by

any two nonadjacent vertices are the same.

Case 2. a < .

The proof follows by interchanging the roles of H; and Hs.

0

Theorem 4.1.1. Let Gy and G5 be two strong fuzzy graphs with respective un-

derlying crisp graphs Py and P,,. Then the strength of Cartesian product G1U0G5
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of G1 and G5 is n.

Proof. Let G1(V1, 1, 01) and Go(Va, g, 02) be two fuzzy graphs with underlying
crisp graphs P, with vertex set {uj,us} and P, with vertex set {vy,ve,...,v,}

respectively.

Let G(V, i, o) be the Cartesian product G100G; of G and G with underlying
crisp graph G(V, E) where the vertex set V = {(w;,vj) = w;; : w; € Vj,v; €
Vo,i=1,2,5 = 1,2,...,n} and edge set £ = {w;;w;j11 : 1 <j<n-—1i=

1,2}U{w1jw2j ] = 1,2,...,71}.

We prove the theorem by induction on n. The result is trivial when n = 1
and the result is true for n = 2, and n = 3 by Lemmas 4.1.2 and 4.1.3. When
n = 2, ie, when (7 and G5 are two fuzzy graphs with respective crisp graphs P,
we proved that, the strength of the graph is 2, by showing that if © = wq; and
v = wgy (Or u = wy; and v = wyy) then length of the extra strong u — v path is
2 and for any other v and v, it is 1. Also in the case, GGy is a fuzzy graph with
the underlying crisp graph P, and G5 a fuzzy graph with underlying crisp graph
Ps, we proved that the length of any extra strong v — v path is 3, when v = wy;
and v = wsz or u = wy; and v = wi3. For all other choices of u and v the length
of the extra strong u — v path is < 3 and the extra strong wy; — wi3 path is

W11 W12W13.

We assume that the result is true for n = m, where m > 3. That is if G is

the fuzzy path P, with vertex set {u;,us} and Gy is a fuzzy path P, with vertex
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4.1. Cartesian product

set {v1,v9,..., vy} then assume that length of the extra strong path joining the
vertices wy; and wsy,, or the vertices wy; and wy,, in G10G, is m and if u = wy;
and v = wy,, or if u = wy; and v = ws,, then the length of the extra strong u —wv
path is m — 1, and in fact wywis . .. wy, is the extra strong wi; — wy,, path. u
and v are any other vertices of G;[JG5 then the length of the extra strong u — v

path is <m — 1.

Let us suppose that GGy be the fuzzy path on the vertex set {u;,us} and Gy
be the fuzzy path on the vertex set {vy,vo,..., U1} For 1 <p <qg<m+1,
H,, denotes the maximal partial fuzzy subgraph of G' with vertex set {w;;;i =

1,2,p < j <q}. (See Figure 4.3).

Clearly, Hl m+l = G1|:| GQ.

W22 Wg2 W22 W2 woo

wg2 w2 wg2 w32 w2

H, H,
22 132 fa}_ I"G%Q I"R%
wgo w32 Y2 W2 W2,

Figure 4.3: Partial fuzzy subgraphs Hy, , Hi3 and Hy, 1 of G = G1UUGS,.

Let u and v be two non -adjacent vertices of G1L0G,. We assert that if u = w;;

and v = wy; € Hypmyq then any extra strong v — v path of G lie in Hy,, 1 and
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4.1. Cartesian product

the length of any extra strong v — v path in G10G5 is < m+ 1, by the induction
hypothesis when v = ws; and when v = wy,,11 then the length of the extra

strong v — v path is m + 1.
Case 1. Suppose that v and v are in {w;; :i=1,2;j=2,3,...,m}.

Then any path joining u and v in G can be viewed either as a path in the
maximal partial fuzzy graph Hi,, with vertex set {w;; : i =1,2,1 < j <m} or
as a path in the maximal partial fuzzy graph Hs,,4; with vertex set {w;; : i =
1,2;2 < j < (m+1)}. Note that both these graphs have underlying crisp graphs
isomorphic to P,[JP,,. Therefore by induction hypothesis the length of the extra

strong v — v path is <m < (m + 1).

Case 2. u,v € {wi1, Wa1, Wim+1, W21 }-

Suppose u € {wiy,wa} and v € {wy 41, W me1}. Then we can prove the

result in two steps.

(i) If u = wyy and v = Wiy (Or U = woy and v = woyy,y1). Any path P, in
Hj py1 joining wy; and w41 can be considered as sum of two paths P! and
P? where P! is a path in H,, joining wy; and wy,, or it is a path joining w1,
and ws,, in Hy,, and P?is PNH,, 1. Note that the strength of the path P
is minimum of strength of the paths P’ : i = 1,2. By induction hypothesis
if P! is a path joining w;; and wy, then it has maximum strength if P! =
W1 W12, a0y, - DINCE Wiy, and wy ,,,11 are adjacent, the path wy,, w41 is the

extra strong path joining wi,, and w; ,,41. In the second case, that is P!
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4.1. Cartesian product

is a path from w; to ws,, in Hy,, and P?> = PN H,, 41 then by induction
hypothesis P! has length m when P! is an extra strong path. Therefore in
this case length of the path P is m + 2 and it has strength < the strength
of the path wywys ... w1 jyy1. Therefore, we can conclude that the path P
has maximum strength if P! = wjwis ... wi, and P? = wimwy mer. Also
the length of P! is minimum among all paths in Hj,, between w;; and

W1 m-

(i) If w = wy; and v = Wy 11 (or u = wy; and v = Wypy1)-

In this case as in the proof of (i) we can prove that the strength of u — v

pathism+ 1 in Hy 1.

Hence the theorem. O

Theorem 4.1.2. Let G and G5 be two strong fuzzy graphs with the underlying
crisp graphs the path P,, and the path P, on m and n vertices respectively. Then

the strength of the Cartesian product G = G10Gy of G1 and G is m +n — 2.

Proof. For a fixed n, we prove this theorem by induction on m. If m = 1 then
GGy is a fuzzy trivial graph. Thus when m = 1, G = G,01G5 is a copy of P,, a
fuzzy path on n vertices. If n = 1, its strength is zero. If n > 1 then its strength
is n — 1. In either case we have the strength is m +n —2. Assume that the result
is true for m = k > 1. To prove the result for m = k + 1, let G; and G5 be
strong fuzzy graphs with underlying crisp graphs Py, and P, respectively and

let G be their Cartesian product. If n = 1 then G is a copy of GG;. Therefore
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4.1. Cartesian product

strength of GG is k = m + n — 2 thus in this case the theorem holds. So assume

that n > 1. Also let u,v € V(G).

Wil Whhi1 YA wyp+1 FAE Wyt

| | |
wm g

Figure 4.4: Cartesian product of two fuzzy graphs with underlying graphs Py, and

P,.

Case 1. u,v € {w;; : 1 <i<k,1<j<n}oruve{w;:2<i<k+11<
j <n}. Let H; and H, be the two maximal partial fuzzy subgraphs of G with
vertex set {w;; : 1 < i < k1 <j<n} {w; :2<i<k+11<j<n}
respectively. Then any extra strong path joining u and v in G can be either a

path in H; or in Hs of G.

To prove this assertion we proceed as follows. Let us suppose that u,v €
V(Hy). Suppose P is an extra strong u — v path in GG, which passes through at
least one of the vertices wi1, wyo, ..., w1,. Then, we claim that P does not pass
through any of the vertices wyy11, Wgi12,. .., Wrr1n- If SO, it contains a subpath

Wh Wk 1 [ Wh+114+1 - - - W41 jWk; of G, which can be viewed as a path of the maxi-
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4.1. Cartesian product

mal partial fuzzy subgraph with vertex set {wy1, wia, . . ., Wi, Wet11 - - -,

Wkt1n-1, Wkt1n) of G which is of the form P,P,. Therefore the extra strong
path joining wy; and wy; is Wi w41 . . . wi; by the proof of Theorem 4.1.1. There-
fore we can conclude that every path like P is contained in H;. Hence its length

by induction < k 4 n — 2. Similar is the case when u,v € V(H,).

Case 2. ue€ {wy:1=1,2,...,n}and v € {wyy1,: 1 =1,2,...,n}.

Let us suppose that u = wy; and v = wi4y;. For i =1,2,...,k+ 1 we denote
the path w;jw;s . .. wy, with vertices w;i, wys, ..., w;, in G by L;. We claim that
for a fixed [,1 = 1,2,...,n the edge wy 1wy, has strength greater than or equal
to the strength of any path from v to any vertex w of L. Suppose a path
P, from v to a vertex of Lj; contains a subpath Q1 = Wpy1Wkt1j-1- . Wit1s
of Ly where j > [, then the path P, has strength less than or equal to that
of the edge wyiqwy;. For if the edge wyy1,wk; is not a weakest edge of the
cycle O Wy 141 W1 141 Wht1 Wk Wi 141 then weight of w1 w1141 < weight of

W1 Wk Therefore the strength of P, < strength of wyiqwy;.

If wy 1wy is a weakest edge of C' then the subpath @) of P, which belongs
to L1 has strength < strength of wy,ywy. If @1 has strength greater than
that of wy1,wy; then all the edges wy41,wk1, - . ., Wi1 ;wi; have weight equal to
that of wy,wy;. Therefore we can conclude that in this case the path P; has
strength < that of wg,qwy. If Py contains no subpath of Ly,; then any path

from v to a vertex of L, pass through the edge vwy,. Hence its strength must
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4.1. Cartesian product

be less than or equal to the strength of the edge vwy;. Hence the path having
minimum length and with maximum strength from wy,1; to a vertex of Ly is just

the edge wy.1wyy.

By the same argument, the edge wywy_1; has the maximum strength and min-
imum length from wy; to any vertex in Lj_;. Therefore the path wy wpwy_q; is
the path from wy.1; to Ly_1. Proceeding similarly we get the path wy ;... wy; is
the path with maximum strength and minimum length from wy.,; to any vertex
of L. Proceeding similarly wy;...ws; is the path with maximum strength and
minimum length path joining w;; and wy;. Therefore the strength of the v — v

pathis<(n—1)+k=k+n—1.

When v = wy; and v = wgy1,, the strength of the u — v path is equal to
k+n—1. Thus the theorem is true for m = k+ 1. Therefore the theorem follows

by induction. O

Next we consider the Cartesian product of the fuzzy graphs P, and a fuzzy
cycle Cy,. Suppose Vi = {uy,us}, and Vo = {v1,v9,...,v,} are the vertex set of
G, and G5 respectively. Then the Cartesian product of G5 and Gy is the fuzzy
graph G(V, i, o) where the underlying crisp graph is G(V, E') with vertex set V' =
{wij,i=1,2,7=1,2,...,n} and edge set £ = {w;;w;j+1,1 < j <n,i=1,2}U
{wwe,1 < j < npU{wpwi,, i = 1,2} where p(w;;) = pr(ui) A po(vy), Vw; € V
o(wijwiji1) = pa(ui) A o2(vivi1), wi € Vi, (vj,0541) € Ea;

a(wlngj) = O'1<U1UQ) A IMQ(’UJ‘); a(wilwin) = ,lLl(UZ) A O'2<U1Un).
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4.1. Cartesian product

For example

u u
1 2
G1
v Y v,

g
N
(®)

Figure 4.5: Cartesian product of the fuzzy graphs G; with underlying crisp graph

P, and G5 with underlying crisp graph C,,.

Theorem 4.1.3. Let G and G4 be two strong fuzzy graphs with underlying crisp
graphs the path Py with vertex set Vi = {uy,us} and the cycle C,, with vertex set
Vo = {v1,09,...,0,} respectively and the weight of the weakest vertices of Gy is
greater than the weight of the weakest vertices of Go. If the weakest vertices of
G altogether form a subpath of length | in G5 then the strength of the Cartesian

product of Gi and Gy is (n — 1+ 1) if | < [%2] and [2] of | > [%H].

Proof. Let u and v be two non-adjacent vertices of G. Without loss of generality
assume that vy, vq,...,v,_1 are the weakest vertices of G. Also assume that

the weight of each v;,7 =1,2,...,l — 1 is w and these vertices altogether form a
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4.1. Cartesian product

subpath in GG5. Then in G, the vertices wiy, wia, ..., wy_1 and way, Wag, . .., Woy_1

have the same weight w (See Figure 4.6).

Figure 4.6: The Cartesian product of Gy and Gy — {vy,...,v,1}.

Case 1. [ < [*H].

If u,v € V(G) = {wi1,...,wy_1,ws1,...,ws 1} then the length of the extra
strong u—v path in G is < n—I[+1, since the extra strong paths joining v and v lie
completely in the maximal partial fuzzy subgraph G;0(Gs —{v1, va, ..., v_1}) of
G with underlying crisp graph is of the form P,UFP,_;_1). Therefore by Theorem

4.1.2 the length of the extra strong u — v path in G <n —1[+ 1.

If u,v € {wyy,...,wy_1,Wwa1,...,wy_1} then all the u — v paths have same
strength in G. So all the extra strong paths joining v and v lie in the maximal
partial subgraph G10GY of G, where G is the maximal partial fuzzy graph of
Go with vertex set {vy,vq,...,u_1}. Also since [ < ["TH] the length of the extra

strong u —v pathis <l —1<n-—1+1.

Ifu € {wu, e, W11, W21y, We 171} and v c V(G)-{U)H, e, Wy —2,Wa 1,
..., Wy _o} or vice versa then all the paths joining v and v have same strength.

So the length of the extra strong u — v path is the minimum distance between u
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4.1. Cartesian product

and v in the underlying crisp graph of G, P,OC,, which is < (n — 1+ 1).

If u = wy; and v = wy,, then the length of the extra strong u — v path is

equal ton — [+ 1.

Case 2. [ > [*H].

If u,v € V(G)\ {wi1,...,wy_1,Ws1,...,wy_1} then as in Case 1 strength of
u—ov pathin Gisn—14+1<[5]. If u,v € {wy,...,wy_1,wa,...,wy_1} or
u € G—{wiy, ..., wy_1,Wa,...,we_1}and v € {wyy, ..., W11, Wa1, ..., Wo 1}
then all the u — v paths must have same strength in G, and therefore the length
of the extra strong path joining u and v is < [%], since [ > [*H]. When u = wy;
and v = wy, where k = [5] then strength of the u — v path in G is exactly equal

to [5]. Hence the Theorem. O

Theorem 4.1.4. Let G1(Vi, 1, 01) and Go(Va, 1o, 09) be two strong fuzzy graphs
with underlying crisp graphs K1 =< u > and the cycle C,, = vivy ... v,v1 respec-
tiwely. Let G(V, u, o) be the Cartesian product of Gy and Gs. If v be a weakest

vertex of Gy then

5] if pa(u) < pa(v),

S (Gs)  otherwise.

Proof. 1f py(u) < pz(v) then all the vertices of GhJG5 have the same weight
p1(u). Therefore it is a regular fuzzy cycle. Hence by Theorem 1.4.1, strength

of G1|:|G2 is [%]
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4.1. Cartesian product

IF i1 (1) > pra(v), then,

pa(v;) if po(v;) < pua(u),
M(ua 'Ui) =
p1(u)  otherwise.

Thus a vertex (u,v;) of G is a weakest vertex of G if and only if v; is a weakest

vertex of Gy. Therefore, the strength .#(G) of G is that of Gs. O

Theorem 4.1.5. Let G1(Vi, 1, 01) and Go(Va, o, 09) be two strong fuzzy graphs
with underlying crisp graphs the path Py = wuyus and C, = wvivy...v,v; Te-
spectively. Suppose that pi(uy) < py(ug) A pa(vy) A po(ve) A .o A po(vy). Let
G = G10G; be the Cartesian product of Gy and Gy. Then the strength .7 (G) of

the Cartesian product G of Gy and Gy is,

(G) = maz {Y(GQDG;;), [" ; 1} } :

where Gy is the null graph with vertex set {us}.

Proof. Let u and v be two distinct vertices of G.

Case 1. py(ug) > po(vy) A pa(va) ..o A pa(vy).

Subcase 1. Let u,v € {wy;,1 < j < n}. Since p(wy;) = p1(ur);1 < j < n, all
the edges having w;; as one of the end vertices, 1 < j < n have weight equal

to pu1(u1). Therefore, the length of the extra strong path joining u and v is the
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4.1. Cartesian product

minimum length of the path joining v and v in GG. That is less than or equal to
[5]-

Subcase 2. Let u,v € {wq;,1 < j <n}.

Since p(wy;) < p(ws;), the extra strong path joining v and v lies in the maximal

partial fuzzy subgraph G3[Gs of G. So we have by Theorem 4.1.4, the length

of the extra strong u — v path is the strength of G,.

Subcase 3. Let v € {wy;: 1 <j<n}andv e {wy :1<j<n}

Since py(uy) < py(ug) A pa(vr) A ... A po(vy), all the u — v paths in G have
strength 1 (u1). So length of the extra strong u — v path in G is the length of

the shortest © — v path in G which is < {%W

Case 2. p(ua) < pa(v) A pio(va) ... A pio(vp).

Subcase 1. ju;(u1) = p1(u2). Then p(w;;) = p1(uq) Vi, j. Therefore, the length
of the extra strong path joining v and v in G is the minimum length of the path
joining v and v in G, which is less than or equal to [%5].

Subcase 2. pi1(u1) < p1(u2). Then p(wi;) = p(wr) and p(wsy) = pa(u2) Vi, j.
If worve {w;,1<j <n}, then all the paths joining u and v have weight

p1(ug). Therefore, the length of the extra strong path joining u and v is the

minimum length of the path joining v and v in G which is [F].

If wand v € {wy;,1 < j < n}, then the extra strong path joining v and v
lie in the subgraph G30G5. So by Theorem 4.1.4 the length of the extra strong
u — v path in G is [§].
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4.1. Cartesian product

0

Note 4.1.2. Let G(V, i, 0) be a fuzzy graph. If W is a subset of V' then < W >

denotes the maximal partial fuzzy subgraph of G on W.

Definition 4.1.2. The fuzzy book is defined as the Cartesian product of graphs
(G1 with underlying crisp graph P, and fuzzy star graph S,,, where n > 2. Let
V(Py) = {u1,us} and V(S,) = {v1,ve,...,v,} with vy as the central vertex. For
i =2,3,...,n, the maximal partial fuzzy subgraph < {wi;, way, wy;, we; } > with
vertex set < {wq1, way, Wy, we; } > is called a fuzzy page of the fuzzy book, whose
underlying crisp graph is isomorphic to P,JP,. The crisp graph of the union of
two fuzzy pages < {wi1, war, Wy, wo; } > and < {wyy, wor, wyj, wo;} >

is isomorphic to P,00P3,2 <1 # 7 < n. It is called a fuzzy Domino graph.

wig
w12
s wi w13
w
wy \ 1
v5
vy vg
ug w25 wa3
v4 w21
G Go G10G2

Figure 4.7: Cartesian product GG, of a fuzzy path GG and a fuzzy star graph

Go.

Theorem 4.1.6. Let G and G4 be two strong fuzzy graphs with underlying crisp

graphs the path Py and the star graph S,, respectively. Let V(Py) = {uy,us} and
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V(S,) = {v1,v2,...,v,} with vy as the central vertex. Then the strength of the

Cartesian product G = G1Gy is 3.

Proof. Let {wy1,w1a, . .., Wiy, War, Was, . .., Way, }, Wwhere n > 3, be the vertex set
of G. Clearly wy;ws; is the common edge of the pages of G1[0Gs. Let v and v
be two non-adjacent vertices of G (See Figure 4.7 ). Then u and v lie on the
same page or different pages of G. For 2 < i # j < n, denote the partial fuzzy
subgraph < {wy1, wor, wy;, wa; } > U < {wy, war, wyj, we;} > of P,OS, by Hjj.
Therefore any extra strong path joining v and v can be considered as a path
in H;; for some 7 and j. Since the underlying crisp graph of H;; is P,LPs, the
length of any extra strong path joining u and v in G is less than or equal to 3,

by Theorem 4.1.3.

In particular if u = w1y and v = wsyg3, then any extra strong path joining u

and v lie completely in Hs3 and hence has length exactly 3. Hence the theorem.

O

Now we are going to find the strength of the Cartesian product of fuzzy path

and a fuzzy butterfly graph.

Theorem 4.1.7. Let G1(V1, 1, 01) and Go(Va, 1o, 02) be two strong fuzzy graphs
with crisp graphs the path Py with vertex set {uy,us} and the butterfly graph with
vertex set {vy, v, ..., vs} respectively. Then the strength of the Cartesian product

G(V,u,0) of Gy and Go is 3.
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Proof. First of all assume that the degree of the vertex vy of Gy is 4 and pq(up) <
f1 (uz).

Let u and v be any two non-adjacent vertices of G = GG, with vertex set

{wir, wiz, . Wi, Wy, W, - Was
Case 1. py(uy) or py(ug) < pa(v) A pa(ve) Ao A pa(vs).

Then all the u — v paths passing through any of wy;,j = 1,2,...,5 have
strength 111 (u1), because every edge incident with w;; has weight pi;(uq). There-
fore if at least one of u and v belongs to {wy1, wya, ..., w5} then the extra strong
u — v paths are the shortest u — v paths in the underlying crisp graph of G and

therefore has length less than or equal to 3.

If u,v € {woy,we,...,wes} then any extra strong u — v path lie in the
maximal partial fuzzy subgraph with vertex set {ws;, was, . .., wes} which is a
strong fuzzy butterfly graph. Therefore, by Corollary 2.3.1 the length of any

extra strong u — v path in G is 2.

Case 2. p5(v;) less than pi;(ug) for at least one j. Let us suppose that pg(v;) <
p2(vr) A pa(va) .. A pia(vs).

Subcase 1. v; = v;.

Then all the paths passing through w;;,7 = 1,2 have strength ps(vy). The fuzzy
graph of G can be viewed as the union of two fuzzy subgraphs H; and H,, as
shown in Figure 4.8. Note that P,[JC5 is the underlying crisp graph of both H;

and H,.
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w12 Wiy w14 wi2 w Vel w
w, wys Wil w13 1 15
w
wy Was w21 woo w23 2 h Was
w2 w 24
wo1 24
G H1 H2

Figure 4.8: Cartesian product G = GG, of a fuzzy path GGy on 2 vertices and

G, a fuzzy butterfly graph and the fuzzy subgraphs H; and Hs of G.

Suppose u and v belong to V(H;). Then any extra strong u — v path lie in
Hy, since p(wi1) = p(wey) = po(vy), all the w — v paths through wy; and we
have the same strength. Therefore the length of the extra strong u — v path is
< 2. Similarly if v and v € V(H;) the length of any extra strong u — v path is

< 2.

Let w € V(H;) and v € V(Hs) \ V(H;). In this case all the u — v paths pass
through w; or we; or both. Therefore all the u — v paths have same strength.
Hence the length of the extra strong path joining u and v is less than or equal

to the minimum distance between v and v in GG which is 3.
Subcase 2. v; # v;.

Without loss of generality assume that v; = vo. Then by our assumption,
po(ve) < po(v1) A pa(ve) Ao A ps(vs). Let wor v € V(Hy). If at least one of the

vertices u and v € {wyy, wos}, then all the u — v paths have strength po(vs). So

the length of any extra strong u — v path in G is < 3. If uw and v ¢ {wq2, wan}
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then all the extra strong u — v paths lie in the graph H in Figure 4.9, which is

obtained by deleting the vertices wyo, wes from G.

Figure 4.9: A fuzzy subgraph H of G.

In this case if u and v € V/(H;) then either u = w3, and v = we; or u = w3
and v = wsy3. In both these cases if a path joining v and v pass through a
vertex of Hs then it must pass through wy; and wy; and any such path have
strength < p(wi1) A p(wyr). Thus each extra strong path lies in the maximal
partial fuzzy subgraph with vertex set {wiq, way, w13, wo3}. Hence the length of
the extra strong u—wv path is 2 by Theorem 4.1.2. Now suppose v and v € V(H,),
if any of the u — v path through wis ( or wes), definitely will pass through wog
(or wy3), wy; and wyy. Any such path has strength < p(wi1) A p(ws). So every
extra strong path lies in Hy. Therefore, the length of any extra strong u — v path

is 2.

If w = w3 and v = w5 then any u — v path in H has length > 3. Also any

u — v path through the vertices wy4 or woy has length > 3 and strength < any
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other u — v path in H. Therefore the length of extra strong u — v path is the
minimum distance between u and v, which is 3. Hence we can conclude that

7(G) = 3. O

4.2 Tensor product

This section discusses strength of tensor product of certain graphs.

Definition 4.2.1. [12] Let G1(V1, 11, 01) and Go(Va, 12, 02) be two fuzzy graphs
with underlying crisp graphs G1(V1, E1) and Gy(Vs, Fy) respectively. Then the
tensor product G, denoted by G ® Ga, of G1 and Gy is the fuzzy graph G(V, u; ®
2, 01 ® 09) with the underlying crisp graph G(V, E; ® E») is the tensor product
of G1(V4, E1) and Go(Va, Es), where V- = V) x Vy and By ® Ey = {(ug, us)(vy, v2) :
uvy € By, ugvy € Eo}y (1 @ po)(ug, ug) = py(ug) A po(us) for (ug,uz) € V- and

(01 ®092)((ur, uz)(vy,v9)) = o1 (uy, v1) Aog(us, ve) for (ug,us) € Fy and (vq,vy) €

Es.

Theorem 4.2.1. Let G and G5 be two fuzzy graphs with underlying crisp graphs
Py and P, respectively. Then the strength .#(G1 @ G2) of the tensor product of

G{ and Gy isn — 1.

Proof. If n = 1 then Gy ® G is a null fuzzy graph. Therefore (G ® Gy) =
0=n—1. If n > 1 then it is the disjoint union of two fuzzy paths on n vertices

(See Figure 4.10). So by Theorem 1.4.1 .¥(G) =n — 1.
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u u, Wy W Wiz Wiy W
M
AN 7/
N/
VaS
VAN
O @ ®---9
"1 "2 V3 Vn-1 Vw22 W21 W22 W23 W2n_1 W2w22
(a) (b)

Figure 4.10: Tensor product of two fuzzy paths.

If we replace the fuzzy graph G of Theorem 4.2.1 by an another fuzzy graph,
having star graph as the underlying crisp graph on n vertices and keeping G as
it is then, their tensor product G is a null fuzzy graph, if n = 1. It is a disjoint
union of two fuzzy paths if n = 2 and if n > 2 it is a disjoint union of two
fuzzy star graphs on n vertices. Therefore in the first case, that is if n = 1 then
Z(G) = 0 and in the second case that is if n = 2, .(G) = 1 and when n > 3,

< (G) = 2 by Theorem 3.1.4. We can summarize these results as follows.

Theorem 4.2.2. Let G1(Vi, 1, 01) and Go(Va, pa, 09) be two fuzzy graphs with
underlying crisp graph the path Py and the star graph S, respectively. Then the

strength of the tensor product G is

0 fn=1,

S(G)=9 1 ifn=2,

| 2 ifn>3.
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4.2. Tensor product

Theorem 4.2.3. Let G1(V1, 1, 01) and Go(Va, 1o, 09) be two strong fuzzy graphs
with the underlying crisp graphs the path Py with vertex set Vi = {uy,us} and the
cycle C,, with vertex set Vo = {vy,v9,...,v,}. Let o = puy(uq) A g (ug) A pa(vy) A
po(ve) ... A pa(vy). Then the strength of the tensor product of G1 @ Ga(V, u, o)

with vertex set V. ={w;; :1=1,2;j=1,2,...,n} is

;

5] if |V(Gs)| s even and

there exist w € V(Gy), such that py(w) = po,
S(G) = L (Gy) if |[V(Gy)| is even and
there ezist no w € V(Gy), such that py(w) = po,

n if |V(Ge)| s odd.

Proof.

Case 1. |V (Gy)] is even.

ul u2 - - =~ ~
L ® - - \\
-
-
(a) vepg _.-T%p  ve13 614 Y65 vols ]
-
Vv, U
io—a¥
Vs \A
/
/
/
vy,

Figure 4.11: Tensor product of two strong fuzzy graphs.
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4.2. Tensor product

Then G = G ® G4 is a disjoint union of two fuzzy cycles H; with vertex set
{w11, wae, w3, Way, . .., Wip_1,Way }, and Hy with vertex set

{U}lg, Wa3, W14, W25, . . ., Won—1, Win, ’wgl}. (See Figure 411)

Subcase 1. There exist w € V; such that u(w) = po.

In this case, all the edges of G have the same weight. So, the strength of G =

strength of H; = strength of H, = [5].

Subcase 2. There exist no w € V; such that u(w) = pe.

In this case, there exists a w € V4, such that ps(w) = po. Without loss of
generality assume that w = v;. Then wy; and wy; are two weakest vertices of G.
In fact each weakest vertex of Gy determines exactly one weakest vertex in H; as
well as in Hy. So the number of weakest vertices of H; and that of H, are equal
and equal to that of G5. Note only that if G5 has m consecutive weakest vertices
then both H; and H, have the same number of consecutive weakest vertices.

From this we can conclude that the strength of G is equal to that of Gs.

Case 2. |V(G,)] is odd.

In this case G = G ® G is a strong fuzzy cycle with vertex set

{wn, W2z, W13, W24, - - - , Wap—1, Wip, W21, W12, W23, . . ., Win—1, w2n}- (See Figure 4-12)-
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4.2. Tensor product

u, u,
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v, A2 Seo IR

-~
e —————

(b)

Figure 4.12: (a ) A fuzzy path on two vertices G, (b) a strong fuzzy cycle G

and (c) their tensor product of G.

Subcase 1.

Then all the edges of G have the same weight. Therefore by Theorem 1.4.1 ;

zn
2

X
8
[

Subcase 2. There exist no w € V; such that p(w) = po.

By our assumption there exists a vertex w € V5 such that ps(w) = p.. Assume
that w = v;. Then wy; and ws; are weakest vertices of the partial fuzzy subgraph
P =< {w1, wag, w13, Way, . .., Wap_1, W1} > and Q =< {wywisWag . . . Wiy_1
way, } > of G. Also corresponding to each weakest path of length m in Gy there
exist weakest paths of the same length in P and in (). Let u and v be any two
vertices of G. Then the path joining v and v having length > n passes through
at least one weakest edge of GG. So the length of the extra strong v — v path in

G is < n. If u =wy; and v = woy; then the length of the extra strong u — v path
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4.2. Tensor product

is exactly n. Hence the proof. O

Theorem 4.2.4. Let G1(Vi, p1,01) and Ga(Va, pe, 02) be two strong fuzzy graphs
with underlying crisp graphs K, and K, respectively. Let Vi = {uy,us, ..., u,}
and Vo = {vy,v9, ..., 0} be the set of all vertices of K, and K,,. Then the

strength of the tensor product G; @ Go(V, p, o) of G1 and Gy is,

.

0 for n=1m>1 orn>1,m=1,
1 for n=m=2,
S(G1 @ Gy) =

2 for n>2 and m > 2,

3 n=2m>2o0rn>2m=2.

\
Proof. Let u and v be two non-adjacent vertices of G = G ® Gy, say u = w;;

and v = wy. Then u; is not adjacent to uy in G or v; is not adjacent to v; in

Gy.
Case l.n=1,m>1lorm=1,n>1.

In this case G = G; ® G3 is a null fuzzy graph on m (or n) vertices. Therefore
Z(G) is 0.
Case 2. n=m = 2.

In this case the tensor product is the disjoint union of two fuzzy paths with
P, as the underlying crisp graphs. So strength of G is 1 by Theorem 1.4.1.

Case 3. n > 2 and m > 2.
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4.2. Tensor product

Since (G; and G5 are complete fuzzy graphs of order > 2 there exist at least

one vertex in G; ® Gy which is adjacent to both v and v in Gy ® Gs.

Whether ¢ = k or not, since n and m > 2, we can find a u, € V(G;) different
from u; and wy, such that pq(u,) = V{pi(u,) : 1 <p# i,k <n}andav, € V(Gy)
such that ps(vs) = V{ua(vy) : 1 < g #1,j < m}, so that w, is adjacent to both
u and v in G. By the choice of w,4 the path uw, v is an extra strong path joining

uw and v in G of length 2.

Case 4. m>2andn=2 (orn>2and m=2).

First of all suppose that n = 2 and m > 2. The case m > 2 and n = 2 can

be dealt as in the same way. We have the following cases,

iu:wljav:wlhlgj#lgm)

11 U:'lUQj,'U:le,lSj#lSm,

ili v = w;; and v = wy; for some j.

In the first two cases we can proceed as in the proof of Case 3 and prove that

the length of the extra strong path joining u and v is 2.

When u = wy; and v = wsy;, there is no vertex in G' which is adjacent to
both w and v. Since wy; is adjacent to wyy, for k& # j and ws; is adjacent
to wy, for I # j, the extra strong path joining u and v is wwsy,wisu, where

(v.), 7 # j is chosen so that pa(v,) > V{pa(v,);r # j} and v, s # j,r, is chosen
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4.3. Composition

such that po(vs) > V{ua(vy); ¢ # j,r}. Hence the length of the extra strong

path joining v and v is 3. O

4.3 Composition

Another product we consider is the composition.

Definition 4.3.1. [47] Let G1(V1, 1, 01) and Go(Va, ua, 09) be two fuzzy graphs
with underlying crisp graphs G1(V1, E1) and Gy(Vs, Fy) respectively. Then the
composition G(V, i, o), denoted by G1[Gs], of G1 and Gs is the fuzzy graph with
the underlying crisp graph G(V, E) is the composition of the crisp graphs of G;
and Gy where V =V} x V4 and E = {((u1,us)(v1,v2)) : uy = vy, (ug,v9) €
E; or (uy,v1) € Ey} are the vertex set and edge set of G(V, E) respectively and

w and o are defined as

pur, ug) = pur(ur) A po(uz), (ur,ug) € V,
4

w1 (ur) A og(ug, vg) if u; = vy and (ug, v9) € Eo,
U(<u17 u2)<v17v2)) = MQ(UQ) A [LQ(’UQ) VAN al(ul, 1)1) if (ul, 1)1) € El,
\ 0 otherwise.

Recall that the vertex (u;,v;) of Vi x V4 is denoted by w;;.

For m =1 and n = 2 or m = 2 and n = 1 the composition of paths P,, and
P, is a path on two vertices and for m = n = 2 their composition is a complete
graph on 4 vertices. Hence in both these cases the strength of composition of

P,, and P, is one.
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4.3. Composition

Lemma 4.3.1. Let G1(Vi, 1, 01) and Go(Va, pa, 09) be two strong fuzzy paths
with underlying crisp graphs P, = ujus and P, = vivy...v,. Let G(V,u,0) =
G1[Gs] be the composition of G; and Ga. Then

S(G) = 2 if py(uy) = pr(ue) or 1 < 1,

[ otherwise.
where [ is the maximum length of subpaths of Gy having strength > gy (uq) A

1 (ug) if such a path exists, zero otherwise.

Proof. Let u = w;; and v = wg,, be two nonadjacent vertices of G. Then ¢ = k
and v; and v, are not adjacent. Assume that p(u1) > p1(ug). If u = wq; and
U = Wy, then any uw — v path has strength < gy (us) A pa(vy) A p2(vy,). As the
path wwi ;v has strength gy (ua) A pia(v;) A pa(vs,), it is an extra strong v — v path

in G.

Now suppose that u = wy; and v = wy,,. Also suppose that pi(u1) = p11(us2).
In this case by interchanging the values of u; and us in the discussion above we
get uwoy;v is an extra strong v —v path in G. If pq(ug) < p1q(uy) and if [ < 1 then
any subpath of P, of length > 2 has strength < p(us). Thus any u—wv path which
lies in the maximal partial subgraph of G' with vertex set {wyy, wis, ..., wy,} has

strength < py(us). Therefore in this case uwsjv is an extra strong u — v path in

G.

Now suppose that [ > 1. If we choose v; and v,, as the ends of a subpath of
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4.3. Composition

P, of length [ and strength > 1 (us2) then wy;wij1W1p OF Wi Wiy - .. Wy 1S
an extra strong u — v path according as m > j or j > m respectively. Therefore
the length of extra strong u — v path is < [. Thus if we choose v; and v,, as the
ends of the maximal subpath we get the length of the extra strong wi; — wi,

path is [. Hence the lemma. O

In general, for two graphs G and Go , G1[Gs] # G3[G1]. Therefore if G; and
G are two fuzzy graphs then also G1[Gs] # G2[G1]. For example if G; and Gy
are fuzzy graphs with the underlying crisp graphs P, and Ps respectively then
G1[Gs] is a 2— linked fuzzy graph with n — 1 parts, each part is a complete fuzzy
graphs on 4 vertices (See Figure 4.13(b)). On the other hand G5[G1] is as shown

in Figure 4.13(a).

Let G1(Vi, p1,01) and Go(Va, 2, 09) be two strong fuzzy paths with crisp
graphs P, and P, respectively and G(V, i, o) be their composition. Then G(V, i, o)
is a properly linked fuzzy graphs with n — 1 parts, each is complete. Then by

Theorem 2.3.2 we have the following result.

Theorem 4.3.1. Let G1(Vi, 1, 01) and Ga(Va, pa, 02) be two fuzzy graphs with
crisp graphs P, and Py respectively and G(V, u, o) be their composition. Then

the strength 7 (G) of G = G1[G3] is 1 form =1 and (n —1) forn > 1.
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4.3. Composition

e, L ENTEN NN A EAreNy eATel

(a) Gz[ G,] (b) G[G,]

Figure 4.13: Composition of fuzzy graphs.

Theorem 4.3.2. Let G1(V1, p1,01) and Ga(Va, pa, 09) be two strong fuzzy paths
with underlying crisp graphs Py = uius and P, = v1vs . . . v, Tespectively. Also let
G(V, p, o) be their composition. If py(uq)V g (uz) < po(v1) Apa(va) A Ape(vy),

then the strength ./ (G) of the composition G = G1[G3] of G1 and G is as follows.

4

1 ifn=1o0rn=2,

L(G) =9 (n—1) if pi(w) # pa(uz) and n > 2,

2 if pa(uy) = py(ug) and n > 2.

\
Proof. For n =1, G is a strong fuzzy path on two vertices and for n =2, G is a
strong fuzzy complete graph on 4 vertices. Therefore in these cases . (G) = 1

by Theorems 1.4.1.

Now suppose that n > 2.
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4.3. Composition

Case 1. ,ul(ul) 7& ,ul(u2).

Without loss of generality assume that pq(u;) < p1(ue) in Gy. Let u and
v be any two non - adjacent vertices of G. If u or v or both belong to the set
{wy; : 1 < j < n} then all the paths joining u and v have strength g (uy).

Therefore uwq;v,j = 1,2,...,n are all extra strong u — v paths.

Ifuwand v € {wy; : 1 < j < n}. Let us suppose that u = wy; and v = wsy; with
t < j. If a path joining v and v contains a vertex wyy; 1 < k < n then its strength
is p11(u1). Therefore the extra strong path joining w and v is uwy;qy ... wej_1v.
Its length is clearly less than or equal to n — 1. If u = wy; and v = ws,, then the

length of the extra strong u — v path is equal to n — 1.
Similarly we can prove that if pq(uy) > po(uz) then . (G) =n — 1.

Case 2. ,ul(ul) = ,ul(u2).

Then all the edges of G have the same weight p(ui). For u = wy,v =
w1, uwyv and for u = wy;, v = way;, uw,Y are extra strong paths. Therefore in

this case strength of G is 2. U

Theorem 4.3.3. Let G1(Vi, 1, 01) and Go(Va, 1o, 02) be two strong fuzzy graphs
with crisp graphs the path Py = ujus and the path P, = vivs ... v, respectively
and G(V,p,0) be their composition. Let | = mazimum length of all subpaths
of the path wiiwis ... wy, of G of strength > py(uz2)V mazimum length of all
subpaths of the path waway . .. wa, of G of strength > uq(uy) if such subpaths
exist, otherwise let | = 0. Let py(uy) V pur(ug) > pa(v1) A pro(va) A oo A pa(vy).
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4.3. Composition

Then the strength .7 (G) of the composition of Gy and Gy is 2 if g (uy) = pu1(us).

Otherwise, it is [V 2.

Proof. Let u and v be two non - adjacent vertices of G. Without loss of generality
assume that pq(ur) < p(u2). If w,v € {wy; : 1 < j < n}. Then u = wy; and
v = wyy for some 1 < i # k < n. Then wy;wgwqy, has strength p(wy;) A p(wiy).

Therefore wy;wq;wyy is an extra strong u — v path.

Suppose v and v € {wy; : 1 < j < n}. Let u = wy and v = wy,
with ¢ < j. If all the vertices vg,7 < k < j have weight > p;(u;) then
the extra strong path joining u and v is the path wgjwe;y1 ... we—1we; of Gs
joining wq; and wyj. Otherwise wywigws;, for some k for which po(vy) =
Z:nllg:pn{ug(vl)} is an extra strong path joining w and v. Therefore ./ (G) =
max {2, length of the maximal subpath ofGG5 having strength > p(u;)}. O
Theorem 4.3.4. Let G1(Vi, pu1, 01) and Go(Va, 1o, 09) be two strong fuzzy graphs
with crisp graphs P,, and P, respectively where P,, = ujusy...u,, and P, =
V1V . ..V, where m,n > 2. Let the paths P,, = ujus ... u,, and P, = vivy...0,

be their respective underlying crisp graphs, where, m,n > 2. Let G(V,u, o) be

the composition of G1 and Gy. Then the strength .7 (G) of G is (m—1)V (n—1).

Proof. Let u,v be two non- adjacent vertices of G.

Case 1. u,v € {w;; : j=1,2,...,n}.
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4.3. Composition

Without loss of generality assume that v = w;, and v = w;, with k < ¢.
Suppose there exist a vertex which is adjacent to both v and v in G such that
p(w) > p(wig) A p(wig1) A .o A p(wig) such a vertex may exist if gy (u;—1) or
p1(uiyq) is greater than or equal to pg(w;). Then uwwv is an extra strong path,

which is of length 2.

Otherwise, the path Py, = wiywik41 ... w;, is an extra strong v — v path in

G. The length of Py, is g —k <n —1.

Case 2. u,v € {w;; :i=1,2,...,m} for some j, 1 < j <n.

For 1 < j < n, let H; be the path wy;ws;...wy; of G and for 1 <i <m, L,
be the path w;jwis ... wiy,. Let v = wy; and v = wy;, k # p,1 < j < n. Then,
all the u — v paths pass through at least one vertex of each L;; k <17 < p. So
WhjWhi1j - - - We4m; 18 an extra strong w — v path. Every such path has length
|p — k|. Therefore, if u = wy; and v = w,,; then the length of the extra strong

path is m — 1.

Case 3. u = w;; and v = wy;, where 7 # k and j # [.

Without loss of generality assume that ¢ < k and j < [. Then all the
u — v paths pass through at least one vertex of each L;,1, Liyo,...,Lr_1. So
the strength of the u—v path in G must be < gy (u;) Aoy (wip1) Ao oA pg (ug—1) A
pr(ur) A pa(vy) A po(vr). Here wjjwiyq . .. wp—1wy is an extra strong path in G

and is of length equal to |k — i|, which is = n — 1 when k = 1 and i = n.
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4.3. Composition

Hence the theorem. O

Theorem 4.3.5. Let G1(Vi, p1,01) and Ga(Va, pe, 02) be two strong fuzzy graphs
with underlying crisp graphs the path P, with verter set {ui,us} and the star
graph S,,n > 3 with vertex set {vy,va,...,v,} having v, as the central vertex

respectively. If G(V, u, o) is their composition, then the strength of G is 2.

Proof. Let u = w;; and v = wy; be two non - adjacent vertices of G. Then either
t =k=1ori=Fk=2and j and [ are distinct from n. Let us suppose that
i =k = 1. In this case any u — v path has strength < i1 (u1) A pa(vj) A pa(uy).

If i (ur) < pa(uz) then wwq;v is an extra strong path in G.

Now consider the case fi3(u1) > p1(uz). In this case we have the following
subcases. If z%,zmwi) < p1(u2) then again uwsjv is an extra strong u— v path in
G. Otherwise, let a = i\éJm(m) > py(ug). If po(vy,) = a then wwy,v is an extra
strong u — v path in G. If s (v,,) = a for some m # j, I, n and ps(v,) < py(uz)

then wws,,v is an extra strong u — v path in GG. Thus in the case i = k = 1 the

length of the extra strong v — v path is 2.

If i = k = 2, as above, we can prove that the length of extra strong u — v

path is 2. Hence . (G) = 2.
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G-
@G 1) G, © G: G/[G,]

Figure 4.14: (a) A strong fuzzy path Gi, (b) a strong fuzzy star graph G5 and

(¢) their composition G.

O

Theorem 4.3.6. Let G1(Vi, p1,01) and Ga(Va, pe, 02) be two strong fuzzy graphs
with underlying crisp graphs, the path P, with vertexr set {uy,us} and the Bull
graph with vertex set {vy,vq, v3,v4,v5} respectively and G(V,p, o) be their com-

position. Then the strength 7 (G) of G is 2 if pq(u1) = p1(ug).

Proof. Let G1,G5 and G be as shown in Figure 4.15. Let u and v be two non-
adjacent vertices of G. Then u,v € {wy, w3, wi5} or u,v € {wyy, w4} or u,v €

{wi2, w15} or u, v € {wa, was, was} or u, v € {way, wau} or u, v € {wa, was}.

First of all we suppose that u, v belong to {wi1, w13, w5} or belong to {wyq, w4}
or belong to {w2,wy5}. In these cases let us write u = wy; and v = wy; for suit-
able 7 and j. Then since p1(u1) = p1(ug) and strength of any path joining u and
vis < p(ug) A po(v;) A pa(v;) we have wwq;v is an extra strong u — v path in G,

which is of length 2.

Similarly if w, v belong to {wa, was3, wos} or belong to {way, way} or belong to
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4.3. Composition

{wa2,wes} then also every extra strong path joining them has length 2. Hence

S(G) =2.

vy Vs

w1
v v
(%)

G Ga

Figure 4.15: Composition of a fuzzy path and a fuzzy bull graph.

O

Theorem 4.3.7. Let G1(Vi, 1, 01) and Go(Va, 1o, 09) be two strong fuzzy graphs
with underlying crisp graphs, the path P, with vertexr set {uy,us} and the Bull
graph with vertex set {vy,ve,vs,v4,v5}. Let G(V,p, o) be their composition. If
pa(ur) > po(va) A pro(va) > pa(uz) or p(ur) < pa(ve) A pra(vs) < pa(ug) then the

strength of G is 3.

Proof. Let G1,G5 and G as shown in Figure 4.15. First of all suppose that
pi(ur) > po(ve) A pa(vy) > pr(uz). Let u and v be two nonadjacent vertices
of G. Then u,v € {wy1, w3, w15} or u,v € {wyy,wis} or u,v € {wyy, w5} or
u,v € {wa, Wz, Wos} Or u,v € {wgy,wog} or u,v € {way,wes}. If u = wyy
and v = wy; or vice versa then there is only one extra strong path P, which is

wiiwiswigwis. All other u — v paths have strength either strictly less than that
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4.3. Composition

of P or length > that of P and strength < that of P. Clearly length of P is 3.

In all other cases the length of extra strong u — v paths are of length 2.

Therefore strength of G is 3.

Similarly we can prove that strength of G is 3 if py(u1) < pa(va) A pa(vs) <

f11 (uz). 0

Theorem 4.3.8. Let G1(Vi, pu1, 01) and Go(Va, 1o, 02) be two strong fuzzy graphs
with underlying crisp graphs, the path P, with vertexr set {uy,us} and the Bull
graph with vertex set {vy,ve,vs,v4,v5}. Let G(V,p, o) be their composition. If

pra(ur) # pa(uz) and pa(va) A pa(va) = pia(ua) A pa(uz). Then strength of G is 2.

Proof. Suppose that pq(uy) > pi(uz) and ps(ve) < ps(vy). The other case can
be dealt in the same fashion. Then the given condition becomes pi;(u2) = pa(v2).
In this case if u = wy; and v = w5 ( or u = w9 and v = wsys) then uweyv (
respectively wwiqv ) is an extra strong u — v path in G of length 2. In all other
cases clearly extra strong u — v paths have length 2. Therefore strength of G is

2. U

Theorem 4.3.9. Let G1(Vi, 1, 01) and Go(Va, 1o, 09) be two strong fuzzy graphs
with underlying crisp graphs the path Py = ujus and C,, = vyvs . . . v, respectively.
Letv € V(G3) be such that ps(v) = pa(vy) Ape(va) .. .Ape(vy). Then the strength

of composition of G and G is
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(3] if () and g (uz) < po(v) and pn(ur) # pa(uz),
2 if pi(ur) and g (uz) < po(v) and i (ur) = pa(u2)
S(G) = orif pi(uy) and  pq(ug) > i\zlug(vi),

S(G) if () > Vo)) and pua(uz) < pav)

orif pu(uz) > Vpia(vi)  and i (ur) < pa(v).

Proof. Let u and v be two nonadjacent vertices of G = G1[Gs]. Then either

u,v€{wyj:j=12,...,n}oru,v € {wy:j=12,...,n}( See Figure 4.16 ).
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4.3. Composition

Figure 4.16: (a) A strong fuzzy path Gy, (b) a strong fuzzy cycle Gy and (c)

their composition G.

Case 1. py(u1) and py(uz) < po(v) and p(uy) # pg(us).

In this case p(w;;) = p(u;) for ¢ = 1,2. Without loss of generality assume

that f11(u1) < g1 (uz). Then for the first choice of v and v ie, for u,v € {wy; : j =

1,2,...,n} all the u—v paths have same strength in G. So uwv is an extra strong
u — v path of length 2 where w is any vertex in the set {wq; : j = 1,2,...,n}.
For the second choice of u and v ie, for u,v € {wq; : j = 1,2,...,n}, the

vertices of the extra strong path joining them lie completely in the set of {wy; :

j=1,2,...,n}. In G this set of vertices forms a fuzzy cycle and each vertex has
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same strength as ju;(u2). So the strength of the v — v path in G is [5].

Case 2. p(ur) and py(uz) < po(v) and py(uy) = pq(us).

Then all the vertices of G have same weight g (u;). So in both choices for u
and v ie, for u,v € {wy; : j=1,2,...,n}oru,v € {wy; : j =1,2,...,n}, every

extra strong path is of length 2.

Case 3. p1(u1) A pi(ug) > the weight of every vertex of Gj.

In this case the vertices in {wy; : j =1,2,...,n} andin {wy; : j =1,2,...,n}
form two fuzzy cycles both are copies of Gy. Therefore, if u,v € {wy; : j =
1,2,...,n} and by choosing a vertex w of {wq; : j = 1,2,...,n} of maximum
weight, we get an extra strong u — v path namely uwwv of length 2. Similarly
if u,v € {wy; 1 j =1,2,...,n} we get an extra strong v — v path of length 2.

Therefore in this case strength of G is 2.

Case 4. py(uy) > i\:n/lm(vi) and py(ug) < po(v) or py(ug) > i\zlug(vi) and
pa (ur) < pra(v).

n

Without loss of generality assume pq(up) > ,\_/I,uQ(Ui) and 1 (ug) < pa(v).
Then ju(ws;) = pa(u2)Vj.
If w and v are in the first choice, the vertices of the extra strong paths joining

them lie completely in the set of {wy; : j =1,2,...,n}. In G this set of vertices

forms a fuzzy cycle, which is a copy of G5. So the strength of the u — v path in

G is 7 (Gy).
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4.4. Normal products

If u, v are as in the second choice then all the u — v paths have same strength

p1(uz). So the length of the extra strong path joining u and v is 2.

4.4 Normal products

In this section Normal products of strong fuzzy graphs and their strength are

discussed.

Definition 4.4.1. [3§]

Fori = 1,2, let G;(V;, ps, 0;) be two fuzzy graphs with underlying crisp graphs
G;(Vi, E;). Their normal product, denoted by G; X G5, of G and G is the fuzzy
graph G(V, u, o) with the underlying crisp graph the normal product of the crisp
graph G1(V1, E1) and Go(Vs, Ey) with vertex set V' = V) x V5 and the edge set
E = {(u,us)(u,vo)|u € Vi, (uz,v9) € Eo} U {(ug,w)(vy,w)|(ug,v1) € Er,w €
VoYU {(u1, ug) (v1, v2)|(u1,v1) € Ei, (ug,v3) € Eo} and whose membership func-

tions p and o are defined as pu(uy, us) = py(ug) A po(us) if (ug,uz) € V- and

4
w1 (ur) A og(ug, vg) if u; = vy and (ug, vq) € Es,

o1(ug, v1) A po(usg) if uy = vy and (uy,v1) € Ey,
U((U1,U2)(017U2)) =

o1(ug, v1) A og(ug,ve) if (uy,us) € Ey and (vy,v9) € Fo,

0 otherwise.

\

Theorem 4.4.1. Let G(V, u, o) be the normal product of two strong fuzzy graphs

G1(Vi, py, 01) and Go(Va, pio, 09) with their respective underlying crisp graphs
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4.4. Normal products

1. the paths Py and P,,n > 1. Then . (G) =n — 1.

2. the complete graphs K,, and K,,. Then /(G) = 1.

3. the paths Py and the star graph S,. Then . (G) = 2.

4. the star graphs S,, and S,. Then ./ (G) = 2.

Proof. O

1. In this case the normal product of G; and G5 is a 2— connected fuzzy graph
with n parts. Each part of which is a complete fuzzy graph on 4 vertices.

Hence the proof follows by Theorem 2.3.2.

G1 vn“ vn1 vnl3 Un| 4 vn | wosy
v v NS
q 2 N
7N\ 1
4 \\|
-
G 2 ® ® ¢ ®----0 1 vn22 "3 Ur4 i) wa2

Uf vy vg vz Yoo

Figure 4.17: Normal product of a strong fuzzy path on two vertices and a strong

fuzzy path on n vertices.

2. In this case the normal product of G; and G5 is a complete fuzzy graph.

So .#(G) =1 by Theorem 1.4.1.
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4.4. Normal products

Figure 4.18: Normal product of two complete fuzzy graphs GG; and Gs.

3. Let G; be a strong fuzzy path on the vertex set Vi = {uj,us} and Gy
be the strong fuzzy star graph with vertex set Vo = {vy,...,v,} with
v, as the central vertex of Gy. Let u,v be two non-adjacent vertices of
G = G; X G, (See Figure 4.19). As all the u — v paths contain the vertex
wi, or the vertex w,, or both wi, and ws,, the strength of any v — v
path is < (u(wi,) V p(we,)) A p(u) A p(v). From this it is clear that uwv
is an extra strong u — v path in GG, where w = wy, or wsy, according as

p(win) > p(way,) or p(wsy,) > u(win). Therefore .7 (G) = 2.
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4.4. Normal products

Figure 4.19: Normal product of a strong fuzzy path on two vertices and a strong

fuzzy star graph.

4. Let G; and G5 be two strong fuzzy star graphs with their underlying crisp
graphs S, and S, respectively. Let V(Gy) = {uy, us, ..., upn} and V(Gy) =
{v1,v9,...,v,}. Let u,, be the central vertex of G and v, be the central
vertex of Gy. Let u, v be two non-adjacent vertices of G. Then u, v # Wy,
because w,,, is adjacent to all the other vertices of GG. If one of them is
w;j,7 =1,2,...,n—1, then the other is different from w;,, and one of them

is w;;,7=1,2,...,m — 1 then the other is different from w,,;.

Let w,v € {w;; : j = 1,2,...,n — 1} for some 4,1 < i < m. Then all
the u — v paths pass through either w;, or through w,,; or through wy,,.
Therefore wwv is an extra strong path where w € {wjy, Wi, Wy} such
that p(w) = max{p(Wmy), p(win), p(wm;)}. Therefore the length of the
extra strong u — v path is 2. Similarly if u,v € {w;; : i =1,2,...,m — 1}

for some 7,1 < 57 < n, the length of extra strong u — v path is 2.

Let u = w;; and v = wy; where ¢ # k and j # land 1 < ¢,k < m,
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4.4. Normal products

1 < 4,1 <n. Then all the paths must pass through w,,,. Hence we have

only one extra strong v — v path in G, that is uw,,,v.

Theorem 4.4.2. Let G(V,pu,0) be the normal product of a strong fuzzy path
G1(Vi, py,01) on two vertices and a strong fuzzy butterfly graph Go(Va, ps, 09).

Then .7 (G) = 2.

Proof. O

Let Hy be the strong fuzzy path with vertex set Vi = {uy,us} and Hj be the
strong fuzzy butterfly graph with vertex set Vo = {vy,vq, v3,v4,v5} as shown in

Figure 4.20.

The merger graph of the normal product GG of G; and G5 is a 1— linked graph

with two parts. Therefore .7 (G) = 2.

Figure 4.20: Normal product of a strong fuzzy path on two vertices and a strong

fuzzy butterfly graph and their merger graph.

Conjecture 4.4.1. Let G(V, u,0) be the normal product of two strong fuzzy

graphs G1(V1, p1,01) and Go(Va, o, 02) with their respective underlying crisp
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4.4. Normal products

graphs are the paths P, and P,, with n > m,m,n > 1. Then . (G) =n — 1.

Conjecture 4.4.2. Let G1(Vi, p1,01) and Go(Va, o, 02) be two strong fuzzy
graphs with their underlying crisp graphs P, = ujuy and C),, = vyvs ... v, respec-
tively and the weight of the weakest vertices of (G; is greater than the weight
of the weakest vertices of GG5. If the weakest vertices of GGy altogether form a
subpath of length [ in G5 then the strength of normal product G(V, u, o) of G,

and Gy is n — Lif | < [2] and [2] if [ > [%].

Conjecture 4.4.3. Let G1(Vi, p1,01) and Go(Va, o, 02) be two strong fuzzy
graphs with their underlying crisp graphs P, = wjus and C,, = vjvs...v, re-
spectively. Suppose that g (uy) < py(ug) A po(v1) A po(ve) Aot A pa(vy,). Let
G(V,p,0) be the normal product of G; and Gy. Then the strength .7 (G) is

maz{[3], 7 (Ga)}  if pi(us) > Apa(vi),
S(G) =

[g] if gy (ug) < Apo(v;).
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Chapter

Relation between some fuzzy

graphs and their line graphs

The line graph of a graph G(V, E) represents the adjacencies between edges
of G. Whitney and Krausz (1943) constructed the line graph in their papers
'Congruent graphs and the connectivity of graphs’ and and the name line graph
was given by Harary and Norman [19]. John N. Mordeson [33] defined and gave

some results of fuzzy line graph in his paper 'Fuzzy line graphs’.

In this chapter we find the strength of the line graphs of strong fuzzy butterfly
graph, strong fuzzy star graph, strong fuzzy bull graph and strong fuzzy diamond

graph, strong fuzzy path, strong fuzzy cycle in terms of the respective graphs.

Definition 5.0.1. [33] Let G(V, i, o) be a fuzzy graph with its underlying crisp

Some results of this chapter are included in the following paper Chithra K. P.; Raji Pi-
lakkat, Annals of Fuzzy Mathematics and Informatics, Volume 30, No:2, 2017, 107-115
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5.1. Line graph of some strong fuzzy graphs

graph G(V, E). The fuzzy line graph L(G)(Vy, pr, o) of G(V, i, o) is the fuzzy
graph with its underlying crisp graph L(G)(Vy, Er) is the line graph of G(V, E)
where the vertex set V, = F and edge set

Ep, = {uv: v and v are edges in G, which have a common vertex in G}, pr(u) =
o(u) if u € Vi, and for u,v € Ey,

o(u) ANo(v) if u and v have a vertex in common,
or(uv) =

0 otherwise.

5.1 Line graph of some strong fuzzy graphs

5.1.1 Strong fuzzy butterfly graph

Theorem 5.1.1. The strength of the line graph of a strong fuzzy butterfly graph

18 three.

Proof. The line graph L(G) of a strong fuzzy butterfly graph G(V,u,0) is a
2—linked fuzzy graph with parts G1(Vi, p1, 01), Go(Va, po, 02), and G3(Vs, s, 03),
where G1(V1, p1,01) and G3(V3, s, 03) are fuzzy triangles and Go(Va, pio, 03) is
fuzzy complete graph on 4 vertices (A butterfly graph and its line graph are

shown in figure 1). So by Theorem 2.3.2 strength of L(G) is 3.
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5.1. Line graph of some strong fuzzy graphs

f1 %((056)

4(¢0)6) 5 (676)

f1a(605)7)

Figure 5.1: (a) A strong fuzzy Butterfly graph G and (b) its line graph L(G).

5.1.2 Strong fuzzy star graph

Theorem 5.1.2. The strength of the line graph of a strong fuzzy star graph is

one.

Proof. In a strong fuzzy star graph S, all the edges are adjacent. So the line
graph of the strong fuzzy star graph is a strong fuzzy complete graph. Therefore
by Theorem 1.4.1 the strength of the line graph of a strong fuzzy star graph is

one. [l

5.1.3 Strong fuzzy bull graph

Theorem 5.1.3. The strength of the line graph of a strong fuzzy bull graph is 2.
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5.1. Line graph of some strong fuzzy graphs

Proof.
Figure 5.2: (a) A strong fuzzy Bull graph G and (b) its line graph L(G).
The line graph of a strong fuzzy bull graph is a strong fuzzy butterfly graph
( A bull graph G(V, i, 0) and its line graph are shown in Figure 2). Therefore

by Theorem 2.3.2 the strength of the line graph of a strong fuzzy bull graph is

2.

5.1.4 Strong fuzzy diamond graph

Theorem 5.1.4. The strength of line graph of a strong fuzzy diamond graph is

2.

Proof. The line graph of a strong fuzzy diamond graph is a strong fuzzy wheel
graph on 5 vertices as shown in Figure 5.3. Therefore by Theorems 3.1.4, 3.1.5,

3.1.6 strength of line graph of a strong fuzzy diamond graph is 2.
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5.2. Line graph of strong fuzzy cycle

e4)6)

@ G ¢§(66)
®) LG

Figure 5.3: A strong fuzzy diamond graph G and its line graph L(G).

5.2 Line graph of strong fuzzy cycle

Proposition 5.2.1. In a strong fuzzy cycle of length n suppose there are [ weak-
est edges which do not altogether form a subpath. Let s denote the maximum

length of a subpath which does not contain any weakest edge. Then

5] if s<[3],
(@) =

s if s> [5).

Proof. Let u, v be two non-adjacent vertices of G. Then in G there are two paths
joining v and v. If both the paths contain a weakest vertex then the extra strong
path joining u and v is the shortest path joining v and v in its underlying crisp
graph, which is of length < [§]. If u and v are the end vertices of a path having

length [§] then the extra strong path joining u and v is of length = [%].
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5.2. Line graph of strong fuzzy cycle

Otherwise, there is a u — v path P having no weakest vertices. Then P is an
extra strong path joining v and v. The length of P, by hypothesis, is < s. If u
and v are the end vertices of the maximal subpath which does not contain any

weakest edge in GG then the length of P is s. Hence the theorem. O

Now we consider the case of the strength of line graph of a fuzzy cycle. To

determine this we introduce the following definitions:

Definition 5.2.1. Two paths P, and P, of a fuzzy cycle C' are said to be vertex
disjoint or simply disjoint if V(P) N V(P) = ¢ and edge disjoint if E(P;) N
E(Py) = ¢ where V(P,) denotes the vertices of P, and E(P,) denotes the edges

of Pi=1,2.

Definition 5.2.2. Suppose P, and P, are two disjoint paths of a fuzzy cycle C'
with respective end points uq,v; and ug, ve. Then, < (V(C) \ (V(P U Py)) U
{uq,uz,v1,v9}) > is a union of two disjoint paths of C, called complementary

paths relative to the paths P, and Ps.

Definition 5.2.3. Let G(V, u,0) be a fuzzy graph. A path P in G with all its
edges have weight equal to w where w = min {o(uv) : o(uv) > 0 in G} is called
a weakest path. A weakest path which is not a proper subpath of any other

weakest path in the fuzzy graph G is called a maximal weakest path in G.

Here after in this chapter we denote the weight of weakest paths of any fuzzy

graph G by w.
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5.2. Line graph of strong fuzzy cycle

Note 5.2.1. A graph may have more than one maximal weakest paths. For ex-
ample, in the strong fuzzy cycle G in Figure 5.4 usugususugur; and ugtigti1gtii o

are maximal weakest paths of G.

Figure 5.4: A strong fuzzy cycle G.

Definition 5.2.4. Two paths of the collection P of pairwise disjoint paths in
a fuzzy cycle C are said to be consecutive if one of the complementary paths

relative to them contains all other paths of P.

Definition 5.2.5. A collection P of pairwise disjoint paths in a fuzzy cycle C' is
said to form a chain if its members can be arranged in a sequence P, P, ..., P,

such that (P, Py), (P, P3),...,(P,_1, P,) and (P, P,) are consecutive.

Proposition 5.2.2. Let G be a strong fuzzy path (or a strong fuzzy cycle), then

its fuzzy line graph L(G) is also a strong fuzzy path (strong fuzzy cycle).

Proof. Let G be a strong fuzzy path. Let underlying crisp graph be the graph
with vertex set {vq, va, ..., v,} and edge set {e1, e, ..., €, 1} where ¢; = v;v;41,1 =
1,2,...,n—1. Since for 1 < i < n—1 the edge e; in the underlying crisp graph is
adjacent only to the edge e;_; and e;,1, the vertex e; of the crisp graph L*(G) of
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5.2. Line graph of strong fuzzy cycle

L(G) is adjacent only to the vertices e;_; and ;1 of L*(G). Since the edge e; of
underlying crisp graph is adjacent only to the edge e, of underlying crisp graph
and the edge e, of underlying crisp graph is adjacent only to the edge e, ; of

underlying crisp graph, the vertices e; and e, of L*(G) are adjacent only to its

vertices e; and e, respectively. Thus L*(G) is a path with vertices ey, eq, ..., €,
and edges ejes, ese3, ..., €, 16,. The lemma now follows from the definition of
L(G). O

Similar is the case of a fuzzy cycle.

Proposition 5.2.3. If P is a weakest path of length £ in a strong fuzzy graph
G then in the fuzzy line graph L(G) of G the path P’ corresponding to the path

P of G with vertex set as edge set of P is a weakest path in L(G) of length k — 1.

Theorem 5.2.1. Let G be a strong fuzzy cycle of length n. Suppose there are |
weakest edges which form m maximal weakest paths in G. Then for n > 3 and

m < [5] the line graph L(G) of G has [ +m weakest edges.

Proof. By Proposition 5.2.3, for a weakest path P of G with strength w and
length [, the path P’ of L(G) with vertex set as edge set of P is a path of length
(I —1) with strength w. Note that the end vertices of u and v of P’ are also have
weight w. So the edges incident with u and v in L(G) are also have weight w.
So each maximal weakest path P in G of length p gives a weakest path in L(G)
of length p + 1. Therefore m weakest paths, give rise to (I + m) weakest edges
in L(G).
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5.2. Line graph of strong fuzzy cycle

Also if P] and P, are two paths of L(G) corresponding to two distinct maximal
paths P; and P, of G, then they are edge disjoint. | Note that the path P’ of

L(G) thus obtained need not be maximal. See Figure 5.5]. O

(05 "2 09 OP) iafsf) 50

¢ piGO

ey (0.3)
s

505) cos9) O

e5(0.5)

Figure 5.5: A fuzzy cycle G of length 6 with 4 weakest edges and its line graph L(G).

Proposition 5.2.4. Suppose P, and P, are two disjoint weakest paths of lengths
ny and ng respectively in the fuzzy cycle C. Suppose one of the complementary
paths P relative to these paths is of length one, then there exists a weakest path

of length (ny + ng) in L(G) with edges of Pj, P, and P as vertex set.

Theorem 5.2.2. Let G be a strong fuzzy cycle of length n. Suppose G contains
exactly one mazximal weakest path P. Let its length be l. Then the strength

L (L(Q)) of the line graph L(G) of G is

S(G) =1 af 1<[552],
S (L(G)) =

7 (G) if 1> ["54.

Proof. Since P is a path of length [ in G by Proposition 5.2.3 the path P’ of

L(G) with vertex set as edge set of P is a weakest path of L(G) of length [ — 1.
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5.2. Line graph of strong fuzzy cycle

If | = n —1, then all edges in G but one is weakest. In this case all the edges
of L(G) are weakest. Hence by 1.4.1, 7 (L(G)) = [5] = /(G). Let us suppose
that [ < n — 1. Since all the vertices of P" are weakest the edges incident to the
vertices of P' are also weakest edges and all the other edges are non-weakest.
There are [ + 1 edges incident with the vertices of P’ by Theorem 5.2.1. In this
case there is only one weakest path L(G) which is of length [ + 1.

Now by Theorem 1.4.2.

n—(+1) if 1+1<[22],

[5] if 1+1 >[4

S(G) =1 if 1<%,

2@ i >[5
]

Theorem 5.2.3. Let G be a strong fuzzy cycle of length n with | weakest edges.
Let there be m maximal weakest paths Py, Ps, ..., P, in G, where m > 1. If for
1 =1,2,...,m — 1, one of the complementary paths Q); between P; and Py, 1s
of length one such that PyQ1P2Qs . .. Py _1Qm_1P, is a path of length | +m — 2

and the complementary paths between Py and P,, which does not contain any P;
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5.2. Line graph of strong fuzzy cycle

is of length > 2. Then the strength 7 (L(G)) of L(G) 1is

F(E)—m i 1< [ —m,
S(L(G)) =

2] if 1> [2H]—m.

Proof. Let ) be the complementary path between P,, and P;. Then () does not

contain any of the paths Py, Py, P3,..., Py_1, Py.

If @ is of length one then in L(G) either both ends of each edge is weakest
vertices or one of the ends is a weakest vertex. Thus every edge in L(G) in this

case is a weakest edge. Hence .7 (L(G)) = [5] = /(G) by Theorem 1.4.1.

Now suppose that the length of ) is not one. Note that the vertices of L(G)
corresponding to the edges of P, P, ..., P, are weakest. Though the vertices
of L(G) corresponding to the edges Q1,Qs, . .., Q1 are not weakest, the edges
incident with them have weakest vertices on the other end. Thus the path P in
L(G) with vertex set as edge set of the path PiQ1PQs ... Py 1Qm_1P, of G
together forms a weakest path of length [ +m — 2. Since there are more than
one edge in (), the edge e; of ) incident with P, and the edge es of () incident
with the path P, are different in L(G). The vertex of L(G) corresponding to
the edge e; of G is adjacent to one end vertex of P by a weakest edge and the
vertex of L(G) corresponding to the edge ey is adjacent to the other end of P
by a weakest edge. All other edges of L(G) are of non weakest. Hence L(G)

contains only one maximal weakest path of length [ 4+ m. Therefore the strength
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5.2. Line graph of strong fuzzy cycle

L (L(G)) of L(G) is

Hence the proof. 0

Theorem 5.2.4. Let G be a strong fuzzy cycle of length n. Suppose there
are | weakest edges in G which do not altogether form a subpath in G. Let
Py, Py, ..., P, be the chain of all m maximal weakest paths in G. If for every P;,
P;y1 which do not contain any of the Py’s are of length greater than one (when
j =m,Pjy = P). Let s denote the mazimum length of the subpaths which
do not contain any weakest edge of G. Then if | < [5] — (m + 1), the strength

L (L(Q)) of the line graph L(G) of G is

SL(G)—=1  if s=[5]+1 andn odd,

Z(G) otherwise.
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5.2. Line graph of strong fuzzy cycle

Proof. Since | weakest edges of GG are distributed to form m maximal weakest
paths in G, there are [ + m weakest edges in L(G). Also the maximum length
of paths in L(G) which do not contain any weakest edge is clearly s — 1. By

Theorem 1.4.4, the strength .(L(G)) of L(G), when [ +m < [§] —11is

(2] if s<[E]+1,
S (L(G)) =

s—1 if s>[5]+1.

Consider the case s < [§] + 1. Then either s < [§] or s = [§] + 1. Also
I4+m < [§]—11implies that [ < [§]—1. So when s < [3], (G) = [5] = S (L(G))

by Theorem 1.4.4.

When s = [§] + 1,

n1 3] if n even,

[2]+1  if n odd.

S (G) if n even,

L (G)—1  ifnodd.
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5.2. Line graph of strong fuzzy cycle

When s > [§] + 1, s > §. Therefore .(G) = ./(L(G)). Therefore

S(G)—=1  if s=[3]+1 andn odd,

S (G) otherwise.

Hence the proof. O

Theorem 5.2.5. Let G be a strong fuzzy cycle of length n. Let there be | weakest
edges in G which do not altogether form a subpath in G and form a chain of
paths Py, P, ..., P,. Also there ewist at least two indices i < j such that the
complementary paths between P;, Piy1 and Pj, Pj41 which do not contain any
one of the Pys are of length greater than one (when j =m, Pj.1 = P in G). Let
s denote the maximum length of the subpaths which do not contain any weakest
edge in G. Then if | > [5] — (m + 1) the strength 7 (L(G)) of the line graph

L(G) of G is

Z(G) if 1>[5]=1, orif 1<[5]-1 and s<[3),

SL(G)—=1  if I<[5]—-1, and s> [§].

S (G) if 1<[3]—1, s<[5] andn is odd,
S (L(G)) = (G +1 if 1<[5]=1, s<[5] andn even,
LG -1 if I<[3]-1, s>[5]
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5.2. Line graph of strong fuzzy cycle

Proof. For | > [4] — (m + 1), consider the following cases.

Case 1. [ > [§] — L.

Here, by applying Theorem 1.4.3 we get .#(L(G)) = [4] which is equal to

Z(G).

Case 2. [<[§]—-1<l+m

Then by Lemma 5.2.1 and by Theorem 1.4.4

5] if s<I[5],
S(G) =

s if s> [5].

That is if s < [4] then s — 1 < [§] which gives 7(L(G)) = [5] = L(G). ( See
Figure 5.6 with n = 12,1 = 4, m = 2 and Figure 5.7 with n = 13,1 = 5, m = 2).
If s > [3] then s —1 = [3]. So S (L(G)) = [§] = s —1=7(G) — 1. (See Figure

5.8 with n = 13,1 =4, m = 2).

1
2 v %
LB - %
N J
1%
1 v,
]
@
s UZ ~o Ug
i (%)
10 8

Figure 5.6: A fuzzy graph G with 12 vertices and 4 nonconsecutive weakest edges.
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5.2. Line graph of strong fuzzy cycle

Figure 5.8: A fuzzy graph G with 13 vertices and 4 nonconsecutive weakest edges.

Consider the case [ = [2] — (m + 1) then .#(L(G)) = [2£*]. Since m > 2,

I < [3] — 1. By applying Theorem 1.4.3 .7(G) = [5] if s < [§]. So

n 5] if n even,
A = "4 =
[2]+1  if nodd.
Therefore
S (G) if n even,
S (L(G)) =

L(G)+1 if n odd.
If I <[§] =1 then if s > [5], S(G) = 5. So S(L(G)) = s -1 = 7(G) - 1.

Hence the proof. O
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Chapter

Fuzzy extra strong k— path domination

in strong fuzzy graphs

Domination in fuzzy graphs is discussed by A.Somasundram and S.Somasundram
[50], by using effective edges [50] in fuzzy graphs. Using strong edges, Na-
goor Gani and Chandrasekaran [15] are introduced in fuzzy graphs - the dom-
ination, the independent domination and the irredundance. C.Natarajan and
S.K.Ayyaswamy [37] introduced strong(weak) domination in fuzzy graphs. The
concept of Strong (Weak) domination [45] in graphs was introduced by Sam-
pathkumar and Pushpalatha. This chapter introduces fuzzy extra strong k—

path domination in strong fuzzy graphs and discusses some of its properties.

Definition 6.0.1. Let G(V, i, o) be a fuzzy graph. Let u,v € V. For a positive
integer k, v is said to be an extra strong k— path neighbour of u if there exists

an extra strong u — v path of length < k in G.
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We denote the set of all extra strong k— path neighbours of u by Ni(u). That

is Ng(u) = {v € V : 3 an extra strong u — v path of length < k}.

Definition 6.0.2. Let G(V, i, o) be a fuzzy graph. For a subset S of V', the open

extra strong k— path neighbourhood of S is defined to be Ng(S) = USNk(u)
ue

and the closed extra strong k— path neighbourhood of S is Ni[S] = Ni(S) U S.

If S = {u}, a singleton subset of V| then instead of N¢[S]| we write Ni[u], and

call a closed extra strong neighbourhood of u.
Remark 6.0.1. A vertex v € Ng(u) if and only if u € Ni(v).

Definition 6.0.3. Let G(V, u,0) be a fuzzy graph on V. Let u,v € V. If there
does not exist an extra strong v — v path joining u and v of length < k in GG then

v is called an extra strong k— path isolated vertex of u and vice versa.

Remark 6.0.2. If G is of strength k then for any n > k, then

i Np(u) =V \{u} for any vertex u of V' and

ii N,[S] =V, for any subset S of V.

Example 6.0.1.

ug(0.7)
u1(0.6)
0.6
u4(0.4) u5(0.6
u5(0.7) L
0.3 0.2

0.7

u3(0.4) ©.8)
u7 (0.

Figure 6.1: A fuzzy graph G having Strength 5.
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For the fuzzy graph G in Figure 6.1, there is only one extra strong path P of

length 5 which is ujusususugur. Therefore Ns(uy) = {us, us, ug, us, ug, ur}.

It is to be noted that Nj(us) = {u4, ug}, No(us) = {us, ug, ug, ur} and for any

k Z 37Nk(u5) - {u17u27u37u47u67u7}'

By considering the extra strong path joining two vertices of a fuzzy graph we

define two types of degree for each vertex v of a fuzzy graph.

Definition 6.0.4. For a fuzzy graph G(V, u, o) on the vertex set V' and for a
positive integer k, the extra strong k— path degree dSi(v) of a vertex v in G,
is defined as the sum of the strength of all the extra strong paths joining v and
vertices in Ni(v). The extra strong k— path neighbourhood degree dNy(v) of a

vertex v of a fuzzy graphis X pu(u).
u€E Ny (v)

From Figure 6.1, dS;(us) = 0.8, dNy(us) = 1.1, dSs(us) = 1.6 and dNs(u;) =

2.6.

Notation 6.0.1. For a fuzzy graph G on the vertex set V' and for an integer k,
min{dSk(u) : u € V(G)} is denoted by dg, (G) or simply by ds, and maz{dSy(u) :
u € V(G)} is denoted by Ag, (G) or by Ag,. Similarly minimum extra strong
k— path neighbourhood degree of a fuzzy graph and maximum extra strong k—
path neighbourhood degree of a fuzzy graph are denoted by ox, (G) and Ay, (G)

respectively.

From Figure 6.1, ds,(G) = 0.4, Ag, (G) = 1.3, iy, (G) = 0.7, Ap, (G) = 1.4.
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Definition 6.0.5. Let G(V, i1, 0) be a fuzzy graph and S C V(G) andv € V-5,
di (v, S) is defined to be the minimum length of the extra strong paths from v to

u, u € S.

Note 6.0.1. For every vertex v € V — S, di(v, S) < strength of the graph G.

Definition 6.0.6. Let G(V, i, 0) be a fuzzy graph. For a positive integer k, a
subset S C V is said to be fuzzy extra strong k— path dominating set of G if for
every v € V either v € S or there exist an extra strong path of length < £ from

v to a vertex of S in G.

Note 6.0.2. Let G(V, i, o) be a fuzzy graph. A subset S of V is said to be fuzzy
extra strong k— path dominating set of G, if for every vertex v € V — S5, 4 an
extra strong path of length < k from v to a vertex u of S then we simply say

that v extra strong k— path dominates u.

Remark 6.0.3. If S is a fuzzy extra strong k— path dominating set of a fuzzy
graph G then every superset S’ O S is also a fuzzy extra strong k— path domi-

nating set.

Definition 6.0.7. A fuzzy extra strong k— path dominating set S is a minimal
fuzzy extra strong k— path dominating set if no proper subset S” C S is a fuzzy

extra strong k— path dominating set.

Note 6.0.3. The set of all minimal fuzzy extra strong k— path dominating sets

of a fuzzy graph G is denoted by ESmk — DS(G).
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Definition 6.0.8. A fuzzy extra strong k— path dominating set of a fuzzy graph
with minimum number of vertices is called a minimum extra strong k— path

dominating set.

Definition 6.0.9. The fuzzy extra strong k— path domination number g, (G)

of a fuzzy graph G is the minimum cardinality of a ESmk — DS(G) set.

The fuzzy extra strong k— path upper domination number I'g (G) is the

maximum cardinality of sets in ESmk — DS(G).

Example 6.0.2.

From Figure 6.1, for k = 1, the sets {us, ug}, {u1, us, us, ug}, {u1, us, ug, ug},
{ug, us, ur} are minimal extra strong k— path dominating sets. For k = 2, {uy, us},

{u27 u6}7 {ulu U,4}, {u17 u7}7 for k = 37 {u4}7 {u17 U7}, {ulu u6}7 {u37 u6}7 {U,g, U‘?}u
{ug,ur},{us} are minimal extra strong k— path dominating sets. Also for any

k > 3, all singletons are minimal dominating for G.
So, ES 75, (G) =2, ES 'y, (G) = 4.

Remark 6.0.4. Let G(V, u,0) be a fuzzy graph. Note that for any u,v € V if
u extra strong k— path dominates v then v extra strong k— path dominates wu.

Hence extra strong k— path domination is a symmetric relation on V.
Definition 6.0.10. Let G(V, i, o) be a fuzzy graph and V; C V. G\ V; is defined
to be the fuzzy graph G(Va, p1,01), Vo =V \ Vi, 111 = p/vy, 01 = 0 /vy 513
Algorithm 6.0.1. Algorithm for finding an extra strong k— path minimal dom-
inating set D of a fuzzy graph G.
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Step 1. Find the length of the extra strong path joining every pair of vertices

of G using Algorithm (2.2.2).

Step 2. List out all pairs of vertices of GG so that the length of extra strong paths

between them is less than or equal to k, as U.

Step 3. Select a vertex which appears most number of times in the pairs of U.
If there are more than one, select one among them (say w) and put it in the set

D. Now group the vertices paired to u in U as Vj.

Step 4. From the fuzzy graph G; = G — (V;, U {u}).

Step 5. Add the isolated vertices I; of G to the set D and denote Gy = G —I;.
Step 6. Repeat Steps 3, 4 and 5 successively for each component of Gs.

Step 7. Stop the process when the union of D and the deleted vertices of G is

V(@)

The subset D of V' thus obtained will be a minimal ES k— path dominating
set.
Illustration:
Let G(V, p1, o) be a fuzzy graph with vertex set V' = {uy, us, ..., u1o}. Foru;, u; €

V', denote the length of an extra strong u; — u; path of G by ky,u;-
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Kuruz = 2,
Kupus = 1,
Kuus = 2,
Kurus = 3,
Kurue = 4,
Kuyu; =5,
Kurus = 0,
Kurug = 5,
Kururo = 6,

OAé (0.8)

oA-7<0<8)(0.8

Figure 6.2: A fuzzy graph G.

Kuzus = 2,
Kuzus = 1,
Kugus = 2,
Kusus = 4,
Kusu; =5,
Kusus = 6,
Kusug = 9,
Kusuro = 6,
Kuzuio = 3,

kugug =

Kusus = 1,
Kusus = 2,
Kusur = 3,
Kusus = 4,
Kusug = 3,
Kuguio = 4,
Kugus = 2,
Kuzus = 1,
Kuguo =4,

Kusus = 1,
Kusur = 2,
Kusus = 3,
Kusug = 2,
Kusuio = 3,
Kugur = 1,
Kugus = 1,
Kuzug = 2,
kuguyo = 1.

For finding a minimal extra strong 1— path dominating set D, the vertex pairs

to be considered are (uy,us), (ug, uy), (us, ug), (wq, us), (us, ug), (ug, wr), (ug, ug), (U7, ug).

Here ug repeats maximum number of times. Therefore ug € D. Here the ver-

tices paired to ug are us, u7, ug. Now form the graph G by deleting the vertices
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us, Ug, Uz, ug from G. Thus V(Gy) = {uq, us, ug, w4, us, 1o }-

205
f 05 A 409
(0.5) }‘ (0.9) @ o,5(07)
@ 0.708)
°%0g ©8 0509) ’

Figure 6.3: The fuzzy subgraph Gj.

Form the graph G5 by deleting the isolated vertices ug and w19 from Gj ie,

Go = Gy \ {us, u10}. Now add the isolated vertices ug and wuyg of Gy to D.

For the graph Gs, Kkuyjuy = 3 kuyus = 1 kuyuy = 2 Fugus = 2 Kuguy = 1 Kuguy =
1. Consider the vertex pairs (uy,us), (u2,us), and (us,us). The length of the
extra strong path joining the vertices in each pair is one. Here two vertices
uz and uy repeat maximum number of times. Choose one among them, say us
and add it to D and delete the vertices paired to us and the vertex us from Gs
and form G3. The resulting graph Gj3 is the trivial fuzzy graph on the vertex
{us}. Add uy to D. The subset D thus obtained is an an ES k— path minimal

dominating set, where D = {uy, us, ug, us, uip}-

Note 6.0.4.

1. For any strong fuzzy graph G, the length of an extra strong path joining
adjacent vertices is 1. Therefore extra strong 1— path dominating sets are

dominating sets of the underlying crisp graphs.
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2. For a positive integer k, if S is a fuzzy extra strong k— path dominating
set then it is also a fuzzy extra strong k + 1 dominating set. In general
an extra strong (k 4+ 1)— path dominating set will not be an extra strong
k— path dominating set. But if k is the strength of the graph, every fuzzy
extra strong (k + 1)— path dominating set is a fuzzy extra strong k— path
dominating set. More generally any fuzzy extra strong [— path dominating

set where [ > k is fuzzy extra strong k— path dominating set.

3. For a fuzzy graph G and for k = 1 if there exist an extra strong k— path
dominating set S consisting of a single vertex v of GG then S is a the minimal
extra strong k— path dominating set for all values of k. Thus if for a fuzzy

graph G if ES 74, (G) = 1 then ES g, (G) = 1, Vk.

Note 6.0.5.

1. From Note 6.0.4 if the given fuzzy graph G is a complete fuzzy graph or
a strong fuzzy wheel graph or a strong fuzzy butterfly graph or a strong

fuzzy star graph, ES 7g, (G) = 1 for all values of k.

Example 6.0.3.

Figure 6.4 (a) shows that for a strong fuzzy wheel graph G, with fuzzy hub
v, {v}is an ES k— path minimal dominating set for all values of k. But
from Figure 6.4(b) it is clear that {v} is not a minimal extra strong 1—

path dominating set.
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Figure 6.4: A strong fuzzy wheel graph and a fuzzy wheel graph.

Theorem 6.0.1. For a fuzzy path G on n vertices, ES s, (G) = (TZJ , VEk.

Proof. For a fuzzy path, there is only one path joining any two vertices of G. So

for each value k,

2k+1

To see the reverse inequality, let D be a fuzzy ES k— path dominating set

with |D| = r. If possible, let r < {#ﬂw — 1. The r vertices of D dominate at

the most r(2k + 1) vertices of G including the vertices of D. But r(2k 4+ 1) <
(g +1—=1)(2k + 1) < n. Thus D can dominates only < |G| vertices, a

contradiction. Thus r > [TZJ Hence the result. O

Corollary 6.0.1. The ES k— path domination number of the line graph of a

2 if k=1,
strong fuzzy butterfly graph G(V, u, o) is vs, (G) =

1 if k>2.
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G, G,
M W, W3

@ G (b) L(G) (c) Merger graph of L(G)

Figure 6.5: (a) A strong fuzzy Butterfly graph G, (b) its line graph L(G) and (c)

merger graph of L(G).

Corollary 6.0.2. Let GG be a fuzzy graph with its underlying crisp graph is a path

on n vertices. Suppose L(G) is the line graph of G. Then ES v, (L(G)) = H};ﬂ .

Corollary 6.0.3. Let G be a fuzzy graph with its underlying crisp graph is a

path on n vertices. If sd(G) is the subdivision graph of G, then ES ~g, (sd(G)) =

|57 |

Theorem 6.0.2. For a fuzzy graph G(V,p, o), with underlying crisp graph a

cycle of length n, ES vs,(G) = [525] Vk.

2k+1

Proof. Let V' = {uq,us,...,u,}. Also let u be a vertex in V' such that pu(u) =
Z/Sl,u(ul) We have by Theorem 1.4.2, 1.4.3, 1.4.4, (G) > [5]. It is obvious that
for k > [5], u fuzzy extra strong k— path dominates all the vertices of G. So
ES 7s5,(G) = 1, Yk > [§]. Now we want to prove the result for & < [§]. Let G*
be the underlying crisp graph of G on n vertices uy,us, ..., u,. Suppose there
are [ weakest edges which altogether form a subpath, say, P’ = ujus . ..u; where
[ > 2 in G. Then strength of the graph is [2]. In this case the vertex u;

dominates 2k + 1 vertices of GG including wu;.
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The remaining n — (2k + 1) vertices are extra strong k— path dominated by

lrn—(Zk-i—l)

CTm] -‘ vertices of GG. So for each value of k,

ES 75,(G) < [%ﬁrﬂ 1= [%Z J

Suppose the weakest edges of G do not altogether form a subpath. Then 4

at most one extra strong path joining any two vertices of G of length < k. So

n
<
ES 45,(G) < [2k+ J

That is in both the cases the r vertices of G dominates r(2k + 1) vertices
including these r vertices of G. So the converse part follows as in the case of a

fuzzy path.

O

Theorem 6.0.3. Let G be a strong fuzzy complete bipartite graph with K,,, as

its underlying crisp graph. Then the ES k— path domination number of G is
1 ifk>2o0rk=1andm orn is equal to 1,

2 otherwise.

Proof. Let U = {uy,us,...,uy,} and V- = {vy,vq,...,v,} be the bipartite sets of

G.
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Case 1. k>2, ork=1landm=1ork=1andn=1.

If m and n are not simultaneously one then .(G) = 2 and if m =n =1
then .(G) = 1. Therefore in these cases length of extra strong path joining any
two vertices of G is at most 2. Clearly a single vertex of G can extra strong k—

path dominate all the other vertices of G. Clearly ESvs, (G) = 1.

Case 2. k =1 and m,n are greater than 1.

It is obvious that any vertex in U extra strong 1— path dominate all the
vertices of V', and any vertex in V' can extra strong 1-path dominate all the
vertices of U. Soif u € U and v € V then {u, v} extra strong 1— path dominates
all the vertices of G. So ESvs,(G) < 2. Also for k = 1, no vertex in U can

dominate any other vertices of U, so ES 7g, (G) # 1. Therefore ES v, (G) = 2.

O

Theorem 6.0.4. Let G be a properly linked fuzzy graph with the complete fuzzy
graphs G1,Gs, ..., Gy, as its parts. Suppose fori = 1,2,....m — 1, V(G;) N
V(Giy1) = Ky, , a complete graph on n; vertices. Then the ES k— path domi-

nation number of G, ES s, (G) = [ 3]

Proof. As each G; is complete, each vertex of (G; dominates all the vertices of
G;. If a vertex belongs to V(G;) N V(G,41) then it dominates all the vertices of
both G; and G;41. In the case of k > 1, a vertex in V(G;) N V(G;41), dominates

k parts to the left and k parts to the right of that vertex, (if they exist). So as
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far as the domination is concerned, instead of taking the whole chain we take its
merger graph G’. The merger graph G’ is a 1— liked fuzzy graph with m parts
where each part is complete. The strength of a strong fuzzy complete graph is 1
by Theorem 1.4.1. As there is only one extra strong path joining any two vertices

of G', we have for each value of k, ES s, (G) < [5].

Conversely, let S be an arbitrary extra strong k— path dominating set of G’
with [S] < [5z]. Let u be any vertex of S. If u = w; ;41 with the notation of
Definition 2.3.6 for some i, j then it extra strong k— path dominates 2k parts and
itself. If u # w;; then it dominates at most 2k — 1 parts. Therefore if |S| < [ ]

it will not E'S k— path dominate all the vertices of G. Hence the proof. O

The middle graph of a strong fuzzy path on n vertices is a 1— linked graph

with n — 1 fuzzy complete graphs as its parts.

Corollary 6.0.4. Let G be a fuzzy graph with its underlying crisp graph is a
path on n vertices and M(G) its middle graph of G. Then g, (M(G)) = [%2],

for k> 1.

Corollary 6.0.5. The ES k— path domination number of a strong fuzzy Bull

2 ifk=1,
graph G is 75, (G) =

1 itk >2.

Proof. A strong fuzzy Bull graph is a strong fuzzy graph with three parts each

of which is complete and from Theorem 6.0.4 the proof follows. U
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Corollary 6.0.6. The ES k— path domination number of a strong fuzzy dia-

mond graph G is 1, Vk.

Proof. The line graph G of a strong fuzzy diamond graph is a strong fuzzy wheel
graph on 5 vertices. Hence by Note 1 extra strong k— path domination number

of a strong fuzzy diamond graph is 1. O

Theorem 6.0.5. The ES k— path domination number of line graph of strong

fuzzy diamond graph G is 1,Vk.

Proof. The line graph of a strong fuzzy diamond graph G is a strong fuzzy wheel
graph on 5 vertices. See Figure 5.3. So the fuzzy hub can dominate all the other

4 vertices of the line graph of GG. Hence the theorem. O

Definition 6.0.11. For S C V| a vertex v € S is called an extra strong k— path
enclave of S if Nig[v] C S, and v € S is an extra strong k— path isolate of S if
Ni(v) €V \ S. A set is said to be extra strong k— path enclaveless if it does

not contain any extra strong k— path enclaves.

Property 1. The following statements are equivalent for a strong fuzzy graph

G(V,p,0). Let S C V be an extra strong k— path dominating set.

i For every vertex v € V'\ S, 3 a vertex u € S such that the length of the

extra strong path joining u to v < k .

ii For every vertex v € V'\ S,dg(v,S) < k.
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i Ny[S] =V.

iv For every vertex v € V'\ S, [Nx[v]NS| > 1, that is for every vertex v € V'\ S,

there exists u € S and extra strong path joining v to u of length < k.
v For every vertex v € V, |[Ny[v] N S| > 1.

vi The set V'\ S is extra strong k— path enclaveless.

Theorem 6.0.6. Let G(V, i, 0) be a fuzzy graph. An extra strong k— path dom-
inating set S is an extra strong minimal k— path dominating set if and only if

for each verter w € S any one of the following conditions holds:

(a) w is an extra strong k— path isolate of S.

(b) there ezist a vertex v € V '\ S for which Ni(v) NS = {u}.

Proof. Suppose S is an extra strong k— path dominating set and for each vertex
u € S one of the conditions (a) and (b) holds. Suppose that S is not an extra
strong minimal k— path dominating set. That is there exists a vertex u € S
such that S\ {u} is an extra strong k— path dominating set. Hence there exists
an extra strong path joining u to at least one vertex in S\ {u} having length
< k that is, (a) does not hold for S. Since S\ {u} is an extra strong k— path
dominating set, for every vertex in V'\ S there exist an extra strong path having

length < k to at least one vertex in S\ {u}, that is (b) does not hold.

Conversely, assume that S is an extra strong minimal £— path dominating

set of G. Then for every vertex v € S, S\ {u} is not an extra strong k— path
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dominating set. This means for some v € (V' \ S) U {u}, there does not exist
an extra strong path joining u to v having length < k. Now either v = u or
v € V\ S in the first case u is an extra strong k— path isolate of S. In the
second case, since v is not extra strong k— path dominated by S\ {u}, but is

extra strong k— path dominated by S, Ni(v) NS = {u}. O

Definition 6.0.12. Let G(V, u,0) be a fuzzy graph and S be a set of vertices
of G and let u € S. A vertex v € V is said to be an ES k— path private
neighbour of u with respect to S if Ni[v] NS = {u}. The set of all ES k— path
private neighbours of u is called the E'S k— path private neighbour set of v and

is denoted by ES PNgu, S].

In other words, ES PN[u,S| = Nilu| — Nig[S — {u}]. Also notice that, if

u € ES PNg[u, S] then u is an extra strong k— path isolated vertex in S.

Example 6.0.4.

Let S be the subset {ug,ug} of the vertex set of the graph in Figure 6.1
ES PNyluy, S] = {uy, ug, uz, us},
ES PNilug, S] = {us, ug, ur},
ES PNyug, S| = {uy, ug, us, ug, us },

ES PNQ[U@, S] = {U4,U5, U7}.

Remark 6.0.5. A subset S of the vertex set of a fuzzy graph G(V,u,0) is a
minimal fuzzy ESk— path dominating set if and only if for every vertex v € S

there exists a vertex w € V — (S — {v}) which is not dominated by S — {v}.
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Which is equivalent to, S is a minimal fuzzy ESk— path dominating set if and
only if ES PNg[u, S| # ¢ for every vertex u € S, that is every vertex u € S has

at least one EF.Sk— path private neighbour with respect to S.

Definition 6.0.13. If there is no extra strong path of length < k between u and
v, two vertices of a fuzzy graph G then in G, v and v are said to be fuzzy extra
strong k— path independent. If any two vertices of D, a subset of V', are fuzzy
extra strong k— path independent and are extra strong k— path dominating then

D is said to be an extra strong k— path independent set of G.

In Figure 6.1 {u4, ur} is a fuzzy extra strong 2— path independent set.

Definition 6.0.14. If for every vertex v € V — 5, S is a fuzzy extra strong k—
path independent set of G(V, i, o), the set S U {v} is not a fuzzy extra strong
k— path independent set of GG then S is a maximal fuzzy extra strong k— path

independent set of G(V, u, o).

Proposition 6.0.1. A fuzzy extra strong k— path independent set S in a fuzzy
graph G(V, u, o) is maximal fuzzy extra strong k— path independent set if and
only if it is fuzzy extra strong k— path independent and fuzzy extra strong k—

path dominating.

Proof. Let S be a maximal fuzzy extra strong k— path independent set. Then
from the definition it is clear that S is both fuzzy extra strong k— path inde-
pendent and fuzzy extra strong k— path dominating. Conversely, if a set S is

both fuzzy extra strong k— path independent and fuzzy extra strong k— path
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dominating. Suppose S is not maximal fuzzy extra strong k— path independent.
Then there exists a vertex u € V' — S for which SU{u} is fuzzy extra strong k—
path independent. Therefore there does not exist an extra strong path of length
less than or equal to k joining any vertex in S to u. Hence S cannot be fuzzy

extra strong k— path dominating. Hence the proof. O

Theorem 6.0.7. FEvery mazimal fuzzy extra strong k— path independent set in
a fuzzy graph G is a minimal fuzzy extra strong k— path dominating set of G for

each value of k.

Proof. Let S be a maximal fuzzy extra strong k— path independent set in G.
Proposition 6.0.1 asserts that S is a fuzzy extra strong k— path dominating
set. We must show that S is, in fact, a fuzzy extra strong k— path minimal
dominating set. A fuzzy extra strong k— path dominating set S is a minimal
fuzzy extra strong k— path dominating set if for every vertex v € S the set
S — {v} is not a fuzzy extra strong k— path dominating set. Assume therefore
that S is not a minimal fuzzy extra strong k— path dominating set. But if for
some v € S, S — {v} fuzzy extra strong k— path dominates V — (S — {v}),
then there is an extra strong path of length less than or equal to k£ joining at
least one vertex in S — {v} to v. This contradicts our assumption that S is a
maximal fuzzy extra strong k— path independent set of GG. Therefore, S must be

a minimal fuzzy extra strong k— path dominating set. Hence the proof. O

Definition 6.0.15. Let G(V, u, o) be a fuzzy graph and S C V. A vertex u € S

is said to be a fuzzy extra strong k— path redundant vertex with respect to S if
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ES PNg[u,S] = ¢. This means for any v € V, Ni[v] NS = ¢ or [Nx[v]N S| > 1
or Ny[v]NS C S\ {u}. Equivalently u is fuzzy extra strong k— path redundant
in S if Ngfu] € Ng[S — {u}]. Otherwise u is said to be fuzzy extra strong k—

path irredundant vertex.

Definition 6.0.16. Let G(V, i, 0) be a fuzzy graph and S C V. The set S is
said to be fuzzy extra strong k— path irredundant set if £'S PNy[u, S] # ¢ for
every vertex u in S. That is, every vertex u € S has at least one extra strong
k— path private neighbour in S. A fuzzy ES k— path irredundant set S is a
maximal irredundant set, if for every vertex u € V'\ S, the set S U {u} is not
fuzzy irredundant set. The minimum cardinality taken over all maximal ES k—
path irredundant sets of vertices of GG is called lower irredundance number and
is denoted by E'S irg,. The maximum cardinality taken over all maximal ES k—

path irredundant sets of vertices of G is called upper irredundance number and

is denoted by ES IRg,.

Proposition 6.0.2. A fuzzy extra strong k— path dominating set S is a minimal
fuzzy ES k— path dominating set if and only if it is fuzzy extra strong k— path

dominating and fuzzy extra strong k— path irredundant.

Proof. The fact that a minimal extra strong k— path dominating set is both fuzzy
extra strong k— path dominating and fuzzy extra strong k— path irredundant.
Conversely, if a set S is both fuzzy extra strong k— path dominating and fuzzy
extra strong k— path irredundant, we must show that it is minimal extra strong

k— path dominating. Suppose not, by Remark 6.0.5 it is sufficient to show
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that there exists a vertex v € S such that S — {v} is a fuzzy extra strong
k— path dominating set. But since S is irredundant, ESPNg[v, S] # ¢. Let
w € ESPNgv,S]. By Definition 6.0.15 there does not exist an extra strong
path joining w to any vertex in S — {v}. Therefore S — {v} is not a dominating

set, a contradiction. O

Theorem 6.0.8. Let G(V,u,0) be a fuzzy graph and S C V. If no vertex of
S us an extra strong k— path isolate of S and if S is an extra strong k— path

irredundant set then V' — S is an extra strong k— path dominating set.

Proof. Let S be an extra strong k— path irredundant set in a fuzzy graph G which
has no extra strong k— path isolated vertex. Suppose V'\ S is not an extra strong
k— path dominating set. Then there exists a vertex v in S such that the length
of extra strong paths joining v to any vertex of V'\ S is > k, because no vertex of
S is an extra strong isolate of S. Therefore ES PNi[v, S| = ¢, a contradiction.

Hence the theorem. O

Theorem 6.0.9. Let G(V,pu,0) be a fuzzy graph with S C V be a fuzzy extra
strong k— path irredundant set. Then ES ~s, (G)/2 < ES irs, (G) < ES 75, (G) <

2ES irg, (G) — 1.

Proof. Let ES irg, (G) = p and let S = {vy,vs,...,v,} be a fuzzy extra strong
k— path irredundant set of G. Therefore ES PNy[v;, S] # ¢, for 1 < i < p.

Let 8" = {uy,ua,...,u,} where u; € ES PNg[v;, S],i = 1,2,...,p. Note that
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possibly u; = v; ((if v; is its own ES k— path private neighbour), but in any case

the cardinality of SU S" is < 2p = 2ES irg, (G).

We claim that the set S” = SUS’ is an extra strong k— path dominating set.
If not, then there must exist at least one vertex w € V — S” which is not extra
strong k— path dominated by S”. This means that w ¢ Ng[x] for any vertex

z € 5", and therefore ES PNi[w, S U {w}] # ¢.

In particular v; ¢ Ni[w] for any vertex v; € S. Therefore ES PN[v;, S U
{w}] # ¢. Thus S U {w}is a fuzzy extra strong k— path irredundant set, which
contradicts the assumption that S is a maximal fuzzy extra strong k— path

irredundant set. Therefore, S” is a fuzzy extra strong k— path dominating set.
By Theorem 6.0.7, ES irs, (G) < ES vs,(G).

To prove the last inequality, note that although S” is an extra strong k— path
dominating set it cannot be a minimal fuzzy extra strong k— path dominating
set unless |S”| = S, by Theorem 6.0.7. Therefore ES v, (G) < 2ES irg, (G) —1

and ES vg,(G)/2 < ES irg, (G). O
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Epilogue

In this research work the strength of various strong fuzzy graphs, derived strong
fuzzy graphs, products of strong fuzzy graphs have been determined. The results
obtained in this work may be extended to all types of fuzzy graphs. Also by
suitable modifications the results obtained here may be extended to directed
fuzzy graphs. Much more research remains to be done on fuzzy extra strong k—

path domination.

We presume that the above stated problems will be beneficial for research

aspirants.
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