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INTRODUCTION

Concept of the regular open set was introduced by M. H. Stone in 1937. It has

been shown by him that the collection of all regular open sets in a topological space form

a complete lattice. M. H. Stone further gave results on application of theory of Boolean

algebras to general topology. In 1980, R. C. Jain worked on ‘role of regularly open sets in

topology’ on his thesis. C. Ronse in 1990 studied generalizations of regular open sets in a

complete lattice and discussed on relevance of such concepts for representing objects in

continuous and digital spaces. Thus introduction of regular open sets raised many topo-

logical questions which have led to a productive study in which many new notions have

been defined and examined. As a result of which many new properties and characteriza-

tions have been introduced. Purpose of this thesis is to investigate more on regular open

sets, its types, properties, characterizations and also to compare various functions.

In the years 2001 and 2003, F. Nakaoka and N. Oda [20,21,22] introduced and

studied minimal open (resp. minimal closed) sets and maximal open (resp. maximal closed)

sets. S. S. Benchali, Basavaraj Ittanagi and R. S. Wali [5] studied on minimal open sets and

functions in topological spaces. Whether there exists such minimal and maximal sets in col-

lection of regular open sets is enquired in first chapter. Also discussion on minimal regular

open, maximal regular open, minimal regular closed and maximal regular closed sets are

given. In many examples, sets which have only X as a regular open superset are seen. Based

on that property weakly regular open sets are defined. In 1983, A. S. Mashhour[18] intro-

duced the concept of supra topological space[18] and studied s − continuous maps and

s∗ − continuous maps. In 2008, R. Devi [9] introduced and studied a class of sets called
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supra α-open sets [9] and class of maps on topological spaces called supra α-continuous

maps. Attempt is made to find out whether such sets and functions can be defined using

regular open sets. Supra r-open sets are defined and properties are discussed. Thus four

new types of regular open sets namely minimal regular open, maximal regular open, weakly

regular open and supra r-open sets are introduced in chaper 1.

Two distinct points and two distinct sets of a topological space can be separated

using open sets and closed sets. Separation axioms were defined for that purpose. Questions

like whether such separation is possible using regular open sets and regular closed sets led

to the introduction of separation axioms using such sets. Using those axioms, points and

sets are separated in terms of regular open, regular closed and clopen sets. While coming

across types of regular open sets, some spaces are seen which contain only minimal regular

open sets or maximal regular open sets or no proper regular open sets. To categorize such

spaces, rTmin, rTmax and rTweak spaces are introduced. Thus using types of regular open

sets, special types of spaces are introduced in chapter 2.

Studies on various types of regular open sets and special spaces posed problems

like whether there exist certain special functions defined on such spaces. Such a function

named - almost perfectly continuous was studied by Dontchev, Ganster and Reilly. Some

properties of almost perfectly continuous function was studied by D. Singh[28]. In chap-

ter 3, some attempt is done to study more properties of almost perfectly continuous

functions. Another type of function namely somewhat continuous was studied by Gen-

tre and Hoyle [11]. Using regular open sets, somewhat r-continuous function is thus de-

fined. S. S. Benchali, Basavaraj Ittanagi and R. S. Wali [5] studied on minimal continuous

2



maps. Studies using regular open sets in this area resulted in many functions which maps

various types of regular open sets and open sets in topological spaces. Using the notion

of supra continuity, supra r-continuity is defined. Thus many functions which map various

types of regular open sets to themselves and each other are introduced in this chap-

ter. After studying such functions, it has been found that certain functions imply certain

other functions. So attempt is made to find out whether there exists any such relation

between above defined functions and some other existing functions. What will happen to

the composition and restriction of these functions are also studied in chapter 3.

Relation between continuity, openness, closedness and invertibility of functions

are given in many books on topology. In chapter 4, whether such relation exists between

various functions defined in chapter 3 is checked. Relation between various such functions

in certain special spaces is also studied. Relation between various functions and their

graph functions has been studied by several researchers. So attempt is made to find out

the relation between the various functions defined above and their graph functions.

Whole work is divided into 4 chapters. Chapters are divided into sections and sub

sections. In chapter 1, we introduce certain new types of regular open sets. The chapter

contains 9 sections. Section 2, contains preliminary ideas on regular open sets. Minimal

regular open sets and maximal regular open sets are introduced in section 3. In section

4, minimal regular closed sets and maximal regular closed sets are introduced. Section

5 and 6 deals with properties of sets discussed in sections 3 and 4. In section 7, weakly

regular open sets are introduced and some of its properties are studied. Section 8 contains

preliminary ideas on supra topology. In section 9, discussion is done on supra r-open sets.

3



In chapter 2, we define separation axioms using regular open sets. Spaces

like rTmin, rTmax and rTweak are introduced and their properties are studied. Also relation

between the spaces rTmin, rTmax and rTweak and some other spaces like r-door, rT 1
2

etc. are

studied. Section 2, contains preliminary ideas on separation axioms. In section 3, more sep-

aration axioms in terms of regular open sets are given. Section 4, introduces quasi reg-

ular components. Submaximal regular spaces, r-door and rT 1
2

are introduced in section

5. Section 6, contains discussion on regular open and regular closed functions. Properties

of rT2, r-regular and r-normal spaces are studied in section 7. Relation between various

spaces is the topic of section 8. In section 9, rTmin, rTmax and rTweak spaces are introduced

and properties are studied.

Chapter 3 contain discussions about almost perfectly continuous func-

tions, somewhat r-continuous functions, minimal and maximal r-continuous functions

minimal-maximal and maximal-minimal r-continuous functions, minimal and maximal r-

irresolute functions. Properties of composition, restriction and extension of such functions

is also studied. Throughout the chapter X and Y denote topological spaces with topologies

τ and σ respectively. Section 2 is on preliminary ideas. In section 3, properties of almost

perfectly continuous function is discussed. Somewhat r-continuous function and its proper-

ties are given in section 4. Section 5, is on minimal r-continuous and maximal r-continuous

functions and their properties. Supra r-continuous function and its properties is discussed

in section 6.

In chapter 4, properties of almost perfectly continuous function and

4



somewhat r-continuous function on certain special spaces like r-door, rT 1
2

etc. are dis-

cussed. Discussion is also done on regular totally open function, some what r-open func-

tion, supra r-open function, supra r-closed function and minimal r-open function. Properties

of almost perfectly continuous function and somewhat r-continuous function, on certain

special spaces are studied in section 2. Regular totally open function on special spaces is

discussed in section 3. Section 4, is on somewhat r-open function. Supra r-open function is

the topic of discussion of section 5. Minimal r-open function and its properties are intro-

duced in section 6. Properties of graph function of various functions are given in section

7.
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CHAPTER 1

Types of regular open sets

1.1 Introduction

In this chapter, we introduce certain new types of regular open sets. The chapter contains 9

sections. Section 2 contains preliminary ideas on regular open sets. Minimal regular open

sets and maximal regular open sets are introduced in section 3. In section 4, minimal

regular closed sets and maximal regular closed sets are introduced. Section 5 and 6 deals

with properties of sets discussed in sections 3 and 4. In section 7, weakly regular open sets

are introduced and some of its properties are studied. Section 8 contains preliminary ideas

on supra topology. In section 9, discussion is done on supra r-open sets.

1.2 Preliminary ideas on regular open sets

Definition 1.2.1

A subset A of a topological space X is said to be

(i.) regular open, if A = Int(Cl(A)).

(ii.) regular closed, if A = Cl(Int(A)).

(iii.) clopen, if A is both open and closed.
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1.2.1 Properties of regular open sets

(i.) Every clopen set is regular open and every regular open set is open.

(ii.) Finite union of regular open sets need not be regular open.

(iii.) Finite intersection of regular open sets is regular open.

(iv.) Arbitrary union of regular open sets need not be regular open.

(v.) Arbitrary intersection of regular open sets is regular open.

1.3 Minimal regular open and maximal regular open sets

Definition 1.3.1

A proper non empty regular open subset U of a topological space X is said to be a minimal

regular open set, if any regular open set which is contained in U is φ or U .

Example 1.3.1

Let X = {a, b, c}, τ = {X,φ, {a}, {b, c}, {a, b}, {c}, {b}, {a, c}}. Then {a}, {b} and {c} are

minimal regular open sets.

Definition 1.3.2

A proper non empty regular open subset U of a topological space X is said to be a maximal

regular open set, if any regular open set which contains U is U or X.

Example 1.3.2

Let X = {a, b, c}, τ = {X,φ, {a}, {b, c}, {a, b}, {c}, {b}, {a, c}}. Then {b, c}, {a, c} and

{a, b} are maximal regular open sets.

7



1.4 Minimal regular closed and maximal regular closed sets

Definition 1.4.1

A proper non empty regular closed subset F of a topological space X is said to be a minimal

regular closed set, if any regular closed set which is contained in F is φ or F .

Example 1.4.1

Let X = {a, b, c}, τ = {X,φ, {a}, {b, c}, {a, b}, {c}, {b}, {a, c}}. Then {a}, {b} and {c} are

minimal regular closed sets.

Definition 1.4.2

A proper non empty regular closed subset F of a topological space X is said to be a maximal

regular closed set, if any regular closed set which contains F is F or X.

Example 1.4.2

Let X = {a, b, c}, τ = {X,φ, {a}, {b, c}, {a, b}, {c}, {b}, {a, c}}. Then {b, c}, {a, c} and

{a, b} are maximal regular closed sets.

1.5 Properties of minimal regular open and maximal regular open sets

Theorem 1.5.1

Let X be a topological space and U ⊂ X. Then U is a minimal regular open set if and

only if X −U is a maximal regular closed set and U is a maximal regular open set if and

only if X − U is a minimal regular closed set.
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Theorem 1.5.2

Let U be a minimal regular open set and W be a regular open set.

Then either U ∩W = φ or U ⊂ W .

Theorem 1.5.3

Let U and W be minimal regular open sets. Then either U ∩W = φ or U = W .

Theorem 1.5.4

Let U be a maximal regular open set and W be a regular open set.

Then either U ∪W = X or W ⊂ U .

Theorem 1.5.5

Let U and W be maximal regular open sets.

Then either U ∪W = X or U = W

1.6 Properties of minimal regular closed and maximal regular closed sets

Theorem 1.6.1

Let X be a topological space and F ⊂ X. Then F is a minimal regular closed set if and

only if X − F is a maximal regular open set and F is a maximal regular closed set if and

only if X − F is a minimal regular open set.

Theorem 1.6.2

Let U be a minimal regular closed set and W be a regular closed set. Then either U∩W = φ

or U ⊂ W .
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Theorem 1.6.3

Let U and W be minimal regular closed sets. Then either U ∩W = φ or U = W

Theorem 1.6.4

Let U be a maximal regular closed set and W be a regular closed set.

Then either U ∪W = X or U ⊃ W .

Theorem 1.6.5

Let U and W be maximal regular closed sets. Then either U ∪W = X or U = W .

1.7 Weakly regular open sets

Definition 1.7.1

Let A be a proper subset of X. Then A is said to be weakly regular open, if the only regular

open set containing A is X.

Example 1.7.1

Let X = {a, b, c}, τ = {X,φ, {a}, {b}, {a, b}}. Then {a, b} is a weakly regular open set.

Definition 1.7.2

Let A be a proper subset of X. Then A is said to be weakly regular closed, if its complement

is weakly regular open.

10



1.7.1 Properties of weakly regular open and weakly regular closed sets

Remark 1.7.0:

(i.) Union of two proper regular open sets is either weakly regular open or whole set.

(ii.) Intersection of two proper regular closed sets is either weakly regular closed or

empty.

(iii.) Intersection of a weakly regular open set and a proper regular open set is regular

open.

(iv.) Union of a weakly regular closed set and a proper regular closed set is regular

closed.

Remark 1.7.0:

(i.) Union of two weakly regular open sets is either a weakly regular open set or the

whole set.

(ii.) Intersection of two weakly regular closed sets is either a weakly regular closed set

or empty.

(iii.) Union of two weakly regular closed sets is either a closed set or the whole set.

(iv.) Intersection of two weakly regular open sets is either an open set or empty.

1.8 Preliminary ideas on supra topology

Definition 1.8.1

Let X be any set. A collection τ∗ of subsets of X is called a supra topology [18] on X, if

11



X,φ ∈ τ∗ and τ∗ is closed under arbitrary union. (X, τ∗) is called a supra topological

space. The elements of τ∗ are known as supra open sets. The complement of a supra open

set is known as supra closed set.

Definition 1.8.2

Supra Int(A) is the union of all supra open sets contained in A.Supra Cl(A) is the

intersection of all supra closed sets containing A.

Remark 1.8.0:

If (X, τ) is a topological space and τ ⊂ τ∗, then τ∗ is known as supra topology associated

with τ .

1.9 Supra r-open sets

Definition 1.9.1

Let (X, τ ∗) be a supra topological space.A is called Supra r-open if A = Supra Int(Cl(A)),

where Supra Int(Cl(A)) denotes Int(Cl(A)) in τ∗. The complement of a supra r-open set

is called a supra r-closed set.

Example 1.9.1

Let (X, τ∗) where X = {a, b, c, d}, τ∗ = {X,φ, {a}, {b, c, d}, {a, b}} be a supra topological

space. Then {b, c, d} is supra r-open.

Remark 1.9.0:

Let (X, τ) be a topological space and τ ∗ be supra topology associated with τ . Then every

regular open set is supra r-open.

12



Theorem 1.9.1

Every supra r-open set is supra open.

Proof:

Since every regular open set is open, supra r-open set is supra open. 2

Remark 1.9.1:

Converse of the above theorem need not be true.

Example 1.9.2

Let (X, τ∗) where X = {a, b, c, d}, τ∗ = {X,φ, {a}, {b}, {a, b}} be a supra topological

space. Then {a, b} is a supra open set, but not supra r-open.

Theorem 1.9.2

If supra topology equals discrete topology, then every supra open set is supra r-open.

Remark 1.9.2:

(i.) Union of a Supra r-open set and a supra open set is a supra open set as supra

topology is closed under arbitrary unions.

(ii.) Intersection of a Supra r-open set and a supra open set need not be a supra open

set as supra topology is not closed under intersection.

Let X = {a, b, c}, τ = {X,φ, {a}}, τ∗ = {X,φ, {a}, {b, c}, {a, c}}.

Then {b, c} is supra r-open. {a, c} is supra open.

But their intersection {c} is not supra open.

13



Theorem 1.9.3

Finite intersection of supra r-open sets is supra r-open.

Proof:

Let V1 and V2 be supra r-open. Then V1 = Supra Int (Cl (V1)),V2 = Supra Int (Cl (V2)).

Supra Int (Cl (V1 ∩ V2)) ⊆ Supra Int(Cl(V1)) ∩ Supra Int(Cl(V2))=V1 ∩ V2.

Also V1 ∩ V2 ⊆ Supra Int (Cl(V1 ∩ V2)). Hence V1 ∩ V2 is supra r-open. 2

Theorem 1.9.4

Finite union of supra r-closed sets is supra r-closed.

Proof:

Let V1 and V2 be supra r-closed. Then (X − V1) ∩ (X − V2) is supra r-open. That is

X − (V1 ∪ V2) is supra r-open. Hence V1 ∪ V2 is supra r-closed. 2

Theorem 1.9.5

Finite union of supra r-open sets may fail to be supra r-open.

Example 1.9.3

Let X = {a, b, c}, τ∗ = {X,φ, {a}, {b}, {a, b}}.

Then {a} and {b} are supra r-open. But their union {a, b} is not supra r-open.

Theorem 1.9.6

Finite intersection of supra r-closed sets may fail to be supra r-closed.

Example 1.9.4

Let X = {a, b, c}, τ∗ = {X,φ, {a}, {b}, {a, b}}. Then {b, c} and {a, c} are supra r-closed. But

14



their intersection {c} is not supra r-closed.

1.9.1 Supra r-closure and supra r-interior

Definition 1.9.2

Supra r-closure of a set A denoted by Supra rCl (A) is the intersection of all supra r-closed

sets containing A.

Example 1.9.5

Let X = {a, b, c}, τ∗ = {X,φ, {a}, {b}, {a, b}}. Then Supra rCl ({a})= {a,c}.

Definition 1.9.3

Supra r-interior of a set A denoted by Supra rInt (A) is the union of all supra r-open sets

contained in A.

Example 1.9.6

Let X = {a, b, c}, τ∗ = {X,φ, {a}, {b}, {a, b}}.

Then Supra rInt ({a})= {a}.

Remark 1.9.6:

(i) Supra rInt (A) is a supra r-open set.

(ii) Supra rCl (A) is a supra r-closed set.

Theorem 1.9.7

(i) Supra rInt(A) ⊆ A and equality holds if and only if A is a supra r-open set.

15



(ii) A ⊆ Supra rCl(A) and equality holds if and only if A is a supra r-closed set.

Theorem 1.9.8

(i) X − Supra rInt(A) = Supra rCl (X − A).

(ii) X − Supra rCl(A) = Supra rInt (X − A).

Theorem 1.9.9

(i) Supra rInt(A ∩B) = Supra rInt (A) ∩ Supra rInt (B).

(ii) Supra rCl (A ∪B) = Supra rCl(A) ∪ Supra rCl(B).
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CHAPTER 2

Separation axioms in terms of regular open sets

2.1 Introduction

In this chapter, we define separation axioms using regular open sets. Spaces like rTmin, rTmax

and rTweak are introduced and their properties are studied. Also relation between the

spaces rTmin, rTmax and rTweak and some other spaces like r-door, rT 1
2

etc. are stud-

ied. Section 2 contains preliminary ideas on separation axioms. In section 3, more sepa-

ration axioms in terms of regular open sets are given. Section 4, introduces quasi reg-

ular components. Submaximal regular, r-door and rT 1
2

spaces are introduced in section

5. Section 6 contain discussion on regular open and regular closed functions. Properties

of rT2, r-regular and r-normal spaces are studied in section 7. Relation between various

spaces is the topic of section 8. In section 9, rTmin, rTmax and rTweak spaces are introduced

and their properties are studied.

2.2 Preliminary ideas on separation axioms

Definition 2.2.1

A topological space X is said to be

(i.) δT0 [13], if for each pair of distinct points x and y in X, there exists a regular open
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set which contains one of the points x and y, but not the other.

(ii.) δT1 (respectively clopen T1)([15],[10]), if for each pair of distinct points x and y in

X, there exists regular open sets (respectively clopen sets) U and V containing x

and y respectively such that x ∈ U , y /∈ U and y ∈ V ,x /∈ V .

2.3 More about separation axioms in terms of regular open sets.

Definition 2.3.1

A topological space X is said to be

(i.) rT2, if every two distinct points of X can be separated by disjoint regular open sets.

(ii.) r-regular, if for each closed set F of X and a point x /∈ F , there exist disjoint

regular open sets U and V such that F ⊂ U and x ∈ V .

(iii.) r-normal, if each pair of non empty disjoint closed sets can be separated by disjoint

regular open sets.

(iv.) ultra Hausdorff, if every two distinct points of X can be separated by disjoint clopen

sets.

(v.) ultra regular, if for each closed set F of X and a point x /∈ F , there exist disjoint

clopen sets U and V such that F ⊂ U and x ∈ V .

(vi.) ultra normal, if each pair of non empty disjoint closed sets can be separated by

disjoint clopen sets.

(vii.) ro-regular, if for each regular closed set F of X and a point x /∈ F , there exist
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disjoint regular open sets U and V such that F ⊂ U and x ∈ V .

(viii.) ro-normal, if for each pair of disjoint regular closed sets U and V of X, there exist

disjoint regular open sets G and H such that U ⊂ G and V ⊂ H.

(ix.) clopen regular, if for each clopen set F of X and a point x /∈ F , there exist disjoint

open sets U and V such that F ⊂ U and x ∈ V .

(x.) clopen normal, if for each pair of disjoint clopen sets U and V of X, there exist

disjoint open sets G and H such that U ⊂ G and V ⊂ H.

2.4 Quasi regular components

Definition 2.4.1

Let X be a topological space and x ∈ X. Then the set of all points y in X such that

x ∈ U , y ∈ V and U ∩ V 6= φ, where U and V are regular open sets or regular closed sets

of X is said to be quasi regular component of x.

Theorem 2.4.1

If a space has quasi regular components, then it cannot be rT2.

Proof:

Proof follows from the definition of quasi regular component and rT2. 2

19



2.5 r-door, rT 1
2

and submaximal regular space.

Definition 2.5.1

A topological space (X, τ) is called an r−door space, if every subset is either regular closed

or regular open in (X, τ).

Example 2.5.1

Let X = {a, b, c}, τ = {X, φ, {a}, {b, c}}. Then X is an r − door space.

Definition 2.5.2

A ⊂ X is called r − dense if rCl(A) = X.

Definition 2.5.3

A topological space (X, τ) is called a submaximal regular space if every r− dense subset

of (X, τ) is regular open.

Example 2.5.2

Let X = {a, b, c}, τ = P (X). Then X is a submaximal regular space

Definition 2.5.4

A topological space (X, τ) is called an rT 1
2

space, if every closed subset of (X, τ) is regular

closed in (X, τ) .

Example 2.5.3

Let X = {a, b, c}, τ = {X, φ, {a}, {b, c}}. Then X is an rT 1
2

space.
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2.6 Regular open and regular closed functions.

Definition 2.6.1

A function f : X → Y is

(i.) regular open, if f(U) is a regular open set in Y , for every open set U in X.

(ii.) regular closed, if f(F ) is a regular closed set in Y , for every closed set F in X.

2.6.1 Properties of regular open and regular closed functions

Theorem 2.6.1

Every regular open function is an open function and every regular closed function is a

closed function.

Remark 2.6.1:

Converse of the above theorem need not be true.

Example 2.6.1

Let X = Y = {a, b, c}, τ = σ = {X, φ, {a}, {b}, {a, b}}. Let f : X → Y be the identity

function. Then f is an open and closed function. But f is not a regular open and regular

closed function.

Theorem 2.6.2

If X is T2 and f : X → Y is a bijective regular open function, then f(X) is rT2.

Proof:

Let y1 and y2 be distinct points of f(X). Since f is surjective, there exists x1 and x2 in
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X such that f(x1) = y1 and f(x2) = y2. Since X is T2, there exists open sets U and V

such that x1 ∈ U , x2 ∈ V and U ∩ V = φ. Then y1 ∈ f(U) and y2 ∈ f(V ). Also since

f is injective, f(U) ∩ f(V ) = f(U ∩ V ) = φ. Since f is regular open, f(U) and f(V ) are

regular open sets. So f(X) is rT2. 2

2.7 Properties of rT2, r-regular and r-normal spaces

Theorem 2.7.1

Every rT2 space is T2.

Proof:

Proof follows from the result that every regular open set is open. 2

Theorem 2.7.2

For a topological space X, the following statements are equivalent.

(i.) X is r-regular.

(ii.) For any x ∈ X and any open set G containing x, there exists a regular open set U

in X such that x ∈ U and rcl U ⊂ G.

Proof:

(i)⇒ (ii)

Suppose X is r-regular,x ∈ X and G be any open set containing x. Then X −G is closed

in X and x /∈ X−G. So by r-regularity, there exists regular open sets U and V containing

x and X −G such that x ∈ U ,X −G ⊂ V and U ∩ V = φ. Then U ⊂ X − V and hence

22



rcl U ⊂ X − V ⊂ G.

(ii)⇒ (i)

Suppose (ii) holds. Let x ∈ X and C be a closed set not containing x. Then X−C is open

in X. So by (ii), there exists a regular open set U containing x such that rcl U ⊂ X − C

That is C ⊂ V = X − rcl U , a regular open set. Also U ∩ V = φ. Hence (i) holds. 2

Theorem 2.7.3

r-regularity is a hereditary property.

Proof:

Suppose X is an r-regular space and Y is a subspace of X. Let y ∈ Y and D be a closed

subset of Y not containing y. Then D is of the form D = C ∩ Y , where C is a closed

subset of X. Also y /∈ C. Hence by r-regularity of X, there exist regular open sets U and

V containing y and C such that y ∈ U ,C ⊂ V and U ∩ V = φ. Let G = U ∩ Y and

H = V ∩ Y . Then G and H are regular open in Y in the relative topology on Y . Also

y ∈ G,D ⊂ H and G ∩H = φ. So Y is also r-regular. 2

Theorem 2.7.4

For a topological space X, the following statements are equivalent.

(i.) X is r-normal.

(ii.) For any closed set C and any open set G containing C, there exists a regular open

set H such that C ⊂ H and rcl H ⊂ G.

(iii.) For any closed set C and any open set G containing C, there exists a regular open

set H and a regular closed set K such that C ⊂ H ⊂ K ⊂ G.
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Proof:

(i)⇒ (ii).

Suppose that X is r-normal. Let C and X − G be any two closed sets. Then there exists

regular open sets U and V such that C ⊂ U and X −G ⊂ V and U ∩ V = φ.X −G ⊂ V

implies X − V ⊂ G. But U ⊂ X − V ⊂ G. This implies rcl U ⊂ G.

(ii)⇒ (iii)

Put K = rCl H in (ii). Then C ⊂ H ⊂ K ⊂ G.

(iii)⇒ (i)

Let C and D be two closed sets. Then by (iii), for C and X −D, there exists regular open

set H and regular closed set K such that C ⊂ H ⊂ K ⊂ X − D. That is C ⊂ H and

X −K ⊃ D. Hence X is r-normal. 2

Theorem 2.7.5

r-normality is a weakly hereditary property.

Proof:

Let X be an r-normal space and Y be a closed subspace of X. Let C and D be two disjoint

closed subsets of Y . Since Y is closed,C and D are closed in X. Since X is r-normal, there

exists regular open sets U and V in X such that C ⊂ U ,D ⊂ V and U ∩ V = φ. Also

U ∩ Y and V ∩ Y are regular open in Y and C ⊂ U ∩ Y and D ⊂ V ∩ Y . Hence Y is

r-normal. 2
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2.8 Relation between various spaces

Theorem 2.8.1

Every ultra Hausdorff space is rT2.

Proof:

Result holds since clopen sets are regular open. 2

Theorem 2.8.2

Every locally indiscrete rT2 space is ultra Hausdorff.

Proof:

Result holds since regular open sets in a locally indiscrete space are clopen. 2

Theorem 2.8.3

Every r-normal space is ro-normal.

Proof:

Result holds since regular closed sets are closed. 2

Theorem 2.8.4

Every ro-normal, locally indiscrete space is r-normal.

Proof:

Result holds since closed sets in a locally indiscrete space are clopen and clopen sets are

regular closed. 2
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Theorem 2.8.5

Every r-regular space is ro-regular.

Proof:

Result holds since regular closed sets are closed. 2

Theorem 2.8.6

Every ro-regular, locally indiscrete space is r-regular.

Proof:

Result holds since closed sets in a locally indiscrete space are clopen and clopen sets are

regular closed.. 2

Theorem 2.8.7

Every ultra regular space is r-regular.

Proof:

Result holds since clopen sets are regular open. 2

Theorem 2.8.8

Every r- regular, locally indiscrete space is ultra regular.

Proof:

Result holds since regular open sets in a locally indiscrete space are clopen. 2

Theorem 2.8.9

Every ultra normal space is r-normal.
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Proof:

Result holds since clopen sets are regular open . 2

Theorem 2.8.10

Every r-normal, locally indiscrete space is ultra normal.

Proof:

Result holds since regular open sets in a locally indiscrete space are clopen. 2

2.9 rTmin, rTmax and rTweak spaces

Definition 2.9.1

A topological space (X, τ) is said to be an rTmin space, if every non empty proper regular

open subset of X is a minimal regular open set.

Definition 2.9.2

A topological space (X, τ) is said to be an rTmax space, if every non empty proper regular

open subset of X is a maximal regular open set.

Definition 2.9.3

A topological space (X, τ) is said to be an rTweak space, if every non empty proper open

subset of X is a weakly regular open set.
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2.9.1 Properties of rTmin, rTmax and rTweak spaces

Remark 2.9.0:

(i.) rTmin and rTmax spaces will contain regular open sets of the form A,X − A along

with other open sets.

(ii.) rTweak spaces will be of the form {φ, A, X}.

Theorem 2.9.1

A topological space (X, τ) is an rTmin(respectively rTmax) space if and only if every non

empty proper regular closed subset of X is a maximal regular closed (respectively minimal

regular closed) set in X.

Proof:

The proof follows from the definition of rTmin (rTmax) space and from the fact that

complement of every minimal regular open (respectively maximal regular open) set is a

maximal regular closed (respectively minimal regular closed) set. 2

Theorem 2.9.2

Every distinct minimal regular open (respectively maximal regular open) sets in rTmin

(respectively rTmax) space are disjoint.

Theorem 2.9.3

Union of any two distinct maximal regular open sets in an rTmax space is whole set.

Theorem 2.9.4

Intersection of any two distinct minimal regular open sets in an rTmin space is empty.
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Theorem 2.9.5

Let X be an rTmin space and Y be a regular open subspace of X. Then Y is also an rTmin

space.

Proof:

Let Y be a regular open subspace of an rTmin space X. Suppose U is a minimal regular

open set in X and not a minimal regular open subset of Y . Then there exists a regular

open set V 6= φ in Y such that V ⊂ U ⊂ Y .V is regular open in Y implies that V is

regular open in X, a contradiction to the fact that U is a minimal regular open set in

X. So U is a minimal regular open set in Y and therfore Y is an rTmin space. 2

Remark 2.9.5:

rTmin (respectively rTmax) space need not be δT0 (respectively δT1, rT2) and vice-versa.

Example 2.9.1

(i.) Let X = {a, b, c}, τ = {φ, {a}, {b, c}, X}. (X, τ) is an rTmin(respectively rTmax)

space; but it is not a δT0 (respectively δT1, rT2) space.

(ii.) Let X = {a, b, c}, τ = P (X). Then X is not an rTmin space(resp.rTmax), but it is a

δT0 (respectively δT1, rT2) space.

Remark 2.9.5:

rTmin (respectively rTmax) space need not be rT 1
2

space and vice-versa.

Example 2.9.2

(i.) Let X = {a, b, c}, τ = {φ, {a}, {b}, {a, b}, X}. Then (X, τ) is an rTmin and rTmax
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space, but it is not an rT 1
2

space.

(ii.) Let X = {a, b, c}, τ = P (X). Then X is not an rTmin (respectively rTmax) space, but

it is an rT 1
2

space.

Remark 2.9.5:

rTmin (respectively rTmax) space need not be an r-door space and vice-versa.

Example 2.9.3

(i.) Let X = {a, b, c}, τ = {φ, {a}, {b}, {a, b}, X}. (X, τ) is an rTmin and rTmax space;

but it is not an r-door space.

(ii.) Let X = {a, b, c}, τ = P (X). Then X is not an rTmin and rTmax space, but it is an

r-door space.

Remark 2.9.5:

rTmin and rTmax spaces need not be submaximal regular space and vice-versa.

Example 2.9.4

(i.) Let X = {a, b, c}, τ = {φ, {a}, {b}, {a, b}, X}. Then (X, τ) is an rTmin and rTmax

space, but it is not a submaximal regular space.

(ii.) Let X = {a, b, c}, τ = P (X). Then X is not an rTmin and rTmax space, but it is a

submaximal regular space.
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CHAPTER 3

Various functions and their properties

3.1 Introduction

This chapter contains discussion about almost perfectly continuous function, somewhat

r-continuous function, minimal & maximal r-continuous function, minimal-maximal and

maximal-minimal r-continuous function, minimal & maximal r-irresolute function. Main

topic of discussion is restriction, extension and composition of such functions. Throughout

the chapter,X and Y denote topological spaces with topologies τ and σ respectively. Section

2 is on preliminary ideas. In section 3, properties of almost perfectly continuous functions

are discussed. Somewhat r-continuous function and its properties are given in section

4. Section 5, is on minimal r-continuous and maximal r-continuous functions and their

properties. Supra r-continuous functions and their properties are discussed in section 6.

3.2 Preliminary ideas

Definition 3.2.1

A function f : X → Y is said to be

1. totally continuous [13], if inverse image of every open set of Y is clopen in X.
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2. completely continuous [3], if inverse image of every open set of Y is regular open

in X.

3. almost completely continuous [10], if inverse image of every regular open set of Y

is regular open in X.

4. almost perfectly continuous [28], if inverse image of every regular open set of Y is

clopen in X.

5. strongly continuous [16], if f(Cl(A)) ⊂ f(A) for every A ⊂ X.

6. somewhat continuous [11], if for U ∈ σ and f−1(U) 6= φ, there exists an open set

V in X such that V 6= φ and V ⊂ f−1(U).

7. cl-super continuous [14 ] (≡ clopen continuous [10]), if for each x ∈ X and for

each open set V containing f(x), there exists a clopen set U containing x such that

f(U) ⊂ V .

8. δ-continuous [24], if for each x ∈ X and for each regular open set V containing

f(x), there exists a regular open set U containing x such that f(U) ⊂ V .

9. almost continuous [27], if f−1(V ) is an open set in X, for every regular open set

V of Y .

Definition 3.2.2

A space X is said to be r-connected, if X is not the union of two non empty disjoint

regular open sets of X.
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3.3 Properties of almost perfectly continuous functions

Theorem 3.3.1

A function f : X → Y is almost perfectly continuous if and only if the inverse image of

every regular closed subset of Y is clopen in X.

Proof:

Let f : X → Y be almost perfectly continuous. Let F be a regular closed subset of

Y . Then Y −F is regular open in Y . Since f is almost perfectly continuous, f−1(Y −F ) =

X − f−1(F ) is clopen in X.

Conversely suppose that inverse image of every regular closed subset of Y is clopen in

X. Let V be regular open in Y . Then Y − V is regular closed in Y . Since inverse image of

regular closed set is clopen in X, f−1(Y − V ) is clopen in X. Hence X − f−1(V ) is clopen

in X. So f is almost perfectly continuous. 2

Theorem 3.3.2

Let f : X → Y be a function, where X and Y are topological spaces and X is finite. Then

the following are equivalent.

(i.) f is almost perfectly continuous.

(ii.) For each x ∈ X and each regular open set V in Y with f(x) ∈ V , there exists a

clopen set U in X such that x ∈ U and f(x) ∈ V .
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Proof:

(i)⇒ (ii)

Follows by taking U = f−1(V ).

(ii)⇒ (i)

Suppose (ii) holds. Let V be a regular open set in Y and x ∈ f−1(V ). Then by (ii), there

exist clopen set Ux in X such that x ∈ Ux and f(Ux) ⊂ V . Hence f−1(V ) is a clopen neigh-

bourhood of each of its points. Since X finite, f−1(V ) is clopen. So f is almost perfectly

continuous. 2

Theorem 3.3.3

Let f : X → Y be an almost perfectly continuous function from an r-connected space X

onto any space Y . Then Y is an indiscrete space.

Proof:

Let f : X → Y be almost perfectly continuous. Suppose Y is not indiscrete. Let A be a

proper non empty regular open subset of Y . Since f is almost perfectly continuous, f−1(A)

is a proper non empty clopen subset of X. Since clopen sets are regular open, this is a

contradiction to the fact that X is r-connected. So Y is an indiscrete space. 2

Theorem 3.3.4

Every strongly continuous function is almost perfectly continuous.

Proof:

Let f : X → Y be strongly continuous. Let V be a regular open subset of Y . Since f is

strongly continuous, f−1(V ) is clopen in X. So f is almost perfectly continuous. 2
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Remark 3.3.4:

Converse of the above theorem need not be true.

Example 3.3.1

Let X = Y = {a, b, c}, τ = {X,φ, {a}, {b, c}},σ = {Y, φ, {b, c}, {c}, {a}, {a, c}}.

Let f : X → Y be the identity function. Then f is almost perfectly continuous, but not

strongly continuous.

Theorem 3.3.5

Every almost perfectly continuous function into a discrete space is strongly continuous.

Proof:

Suppose f : X → Y is almost perfectly continuous. Let A be a subset of Y . Then A is

clopen and hence regular open. Since f is almost perfectly continuous, f−1(A) is clopen. So

f is strongly continuous. 2

corollary 3.3.6

Every almost perfectly continuous function into a finite T1 space is strongly continuous.

Proof:

Result holds since every open set in a finite T1 space is clopen. 2

Theorem 3.3.7

Every almost perfectly continuous function is almost completely continuous.

Proof:

Proof follows from the result that clopen sets are regular open. 2
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Remark 3.3.7:

Converse of the above theorem need not be true.

Example 3.3.2

Let X = Y = {a, b, c}, τ = {X,φ, {b}, {a}, {a, b}},σ = {Y, φ, {a}, {b}, {a, b}}.

Let f : X → Y be defined by f(a) = b, f(b) = a, f(c) = c. Then f is almost completely

continuous, but not almost perfectly continuous.

Theorem 3.3.8

Let f : X → Y be almost completely continuous and X be locally indiscrete. Then f is

almost perfectly continuous.

Proof:

Let V ⊂ Y be regular open in Y . Since f is almost completely continuous, f−1(V ) is

regular open and hence open in X. Since X is locally indiscrete, f−1(V ) is closed. So f is

almost perfectly continuous. 2

Theorem 3.3.9

Let f : X → Y be almost perfectly continuous, where Y is locally indiscrete. Then f is

completely continuous.

Proof:

Proof follows from the result that ‘open sets of locally indiscrete space are clopen and

clopen sets are regular open’. 2
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Theorem 3.3.10

If f is completely continuous and X is locally indiscrete, then f is almost perfectly con-

tinuous.

Proof:

Let V ⊂ Y be regular open. Since f is completely continuous, f−1(V ) is regular open. Since

X is locally indiscrete, f−1(V ) is clopen. Hence f is almost perfectly continuous. 2

Theorem 3.3.11

Every totally continuous function is almost perfectly continuous.

Proof:

Let f : X → Y be totally continuous and V ⊂ Y be regular open. Since f is totally

continuous, f−1(V ) is clopen. Hence f is almost perfectly continuous. 2

Remark 3.3.11:

Converse of the above theorem need not be true.

Example 3.3.3

Let X = Y = {a, b, c}, τ = {X,φ, {a}, {b, c}},σ = {Y, φ, {a}, {c}, {a, c}, {b, c}}.

Let f : X → Y be the identity function. Then f is almost perfectly continuous, but not

totally continuous.

Theorem 3.3.12

Let f : X → Y be almost perfectly continuous and Y be locally indiscrete. Then f is totally

continuous.
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Proof:

Let V ⊂ Y be open. Since Y is locally indiscrete,V is clopen and hence regular open. Since

f is almost perfectly continuous, f−1(V ) is clopen. So f is totally continuous. 2

Remark 3.3.12:

The following diagram shows the relationship between various functions and almost per-

fectly continuous function.

Strongly continuous

↓

Totally continuous → Completely continuous

↓ ↓

Almost perfectly

continuous →
Almost completely

continuous

Theorem 3.3.13

Composition of two almost perfectly continuous functions is almost perfectly continuous.

Proof:

Let f : X → Y and g : Y → Z be almost perfectly continuous. Let V ⊂ Z be regular

open. Since g is almost perfectly continuous, g−1(V ) is clopen and hence regular open. Since

f is almost perfectly continuous, f−1(g−1(V )) is clopen in X. So g ◦ f is almost perfectly

continuous. 2
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Theorem 3.3.14

Composition of almost perfectly continuous function and almost completely continuous

function is almost perfectly continuous.

Proof:

Let f : X → Y be almost perfectly continuous and g : Y → Z be almost completely

continuous. Let V ⊂ Z be regular open. Since g is almost completely continuous, g−1(V )

is regular open in Y . Since f is almost perfectly continuous, f−1(g−1(V )) is clopen in X. So

g ◦ f is almost perfectly continuous.

2

Theorem 3.3.15

Composition of almost perfectly continuous function and completely continuous function

is totally continuous.

Proof:

Let f : X → Y be almost perfectly continuous and g : Y → Z be completely contin-

uous. Let V ⊂ Z be open. Since g is completely continuous, g−1(V ) is regular open in

Y . Since f is almost perfectly continuous, f−1(g−1(V )) is clopen in X. So g ◦ f is totally

continuous. 2

Theorem 3.3.16

Let f : X → Y be almost perfectly continuous and g : Y → Z be any function. Then g ◦f :

X → Z is almost perfectly continuous if and only if g is almost completely continuous.
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Proof:

Suppose g ◦ f : X → Z is almost perfectly continuous. Let V ⊂ Z be regular open. Then

(g ◦ f)−1(V ) is clopen in X. Since f is almost perfectly continuous, this is possible only

if g−1(V ) is regular open. So g is almost completely continuous. g ◦ f almost perfectly

continuous follows from theorem 3.3.14.

2

Theorem 3.3.17

If a function f : X →
∏
Yλ is almost perfectly continuous, then πλ ◦ f : X → Yλ is almost

perfectly continuous for each λ ∈ Λ, where πλ is the projection of
∏
Yλ onto Yλ.

Proof:

For each λ ∈ Λ, suppose Vλ is regular open in Yλ. Then π−1
λ (Vλ) is regular open in∏

Yλ. Since f : X →
∏
Yλ is almost perfectly continuous, f−1(π−1

λ (Vλ)) is clopen in

X. Hence πλ ◦ f : X → Yλ is almost perfectly continuous for each λ ∈ Λ. 2

Theorem 3.3.18

Restriction of an almost perfectly continuous function onto a clopen set is almost perfectly

continuous.

Proof:

Let f : X → Y be almost perfectly continuous and A is a clopen subset of X. Consider

f/A : A → Y . Let V be a regular open subset of Y . Since f is almost perfectly continu-

ous, f−1(V ) is clopen in X. Since A is clopen, (f/A)−1(V ) = A∩f−1(V ) is clopen in A. So

f/A is almost perfectly continuous. 2
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3.4 Somewhat r-continuous function and its properties

Definition 3.4.1 Let X and Y be any two topological spaces. A function f : X → Y

is said to be somewhat r-continuous, if U ∈ σ and f−1(U) 6= φ, then there exists a regular

open set V in X such that V 6= φ and V ⊂ f−1(U).

Example 3.4.1

Let X = Y = {a, b, c}, τ = {X,φ, {a}, {b, c}},σ = {X,φ, {b, c}}.

Define f : X → Y by f(a) = a, f(b) = c, f(c) = b. Then f is somewhat r-continuous.

Definition 3.4.2

Let M be a subset of a topological space (X, τ). Then M be said to be r-dense in X, if

there is no regular closed set C in X such that M ⊂ C ⊂ X.

Theorem 3.4.1

Let f : X → Y be an injective function. Then the following are equivalent.

(i.) f is somewhat r-continuous.

(ii.) If C is a closed subset of Y such that f−1(C) 6= φ, then, there is a proper regular

closed subset D of X such that D ⊃ f−1(C).

(iii.) If M is an r-dense subset of X, then f(M) is a dense subset of Y .
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Proof:

(i)⇒ (ii)

Let C be a closed subset of Y such that f−1(C) 6= φ. Then Y −C is open in Y such that

f−1(Y − C) = X − f−1(C) 6= φ. Since f is somewhat r-continuous, there exists regular

open set V such that V ⊂ X − f−1(C). This implies f−1(C) ⊂ X − V . Since V is regular

open,X − V = D is regular closed.

(ii)⇒ (iii)

Let M be an r-dense subset of X. Suppose f(M) is not dense in Y . Then there exists

a proper closed set C in Y such that f(M) ⊂ C ⊂ Y . Clearly f−1(C) 6= φ. Hence by

(ii), there exists proper regular closed set D such that D ⊃ f−1(C). That is M ⊂ f−1(C) ⊂

D ⊂ X. This contradicts the fact that M is r-dense in X. So f(M) is dense in Y .

(iii)⇒ (ii)

Suppose (ii) is not true. Then for closed set C with f−1(C) 6= φ, there is no proper regular

closed set D in X such that f−1(C) ⊂ D. This means f−1(C) is r-dense in X. But by

(iii), f(f−1(C)) = C must be dense in Y , a contradiction to the choice of C. So (ii) is true.

(ii)⇒ (i)

Let U be an open set in Y and f−1(U) 6= φ. Then Y −U is closed in Y and f−1(Y −U) =

X − f−1(U) 6= φ. So by (ii), there exists a proper regular closed subset D of X such that

D ⊃ f−1(Y − U) = X − f−1(U). That is X − D ⊂ f−1(U) and X − D is a non empty

regular open subset. So f is somewhat r-continuous. 2

Definition 3.4.3

If X is a set and τ and σ are topologies for X, then τ is said to be r-weakly equivalent to

σ, if for every non empty U in τ , there is a non empty regular open set V in σ such that
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V ⊂ U and for every non empty set U in σ, there is a non empty regular open set V in τ

such that V ⊂ U .

Theorem 3.4.2

Let f : X → Y be a somewhat r-continuous function. Let σ∗ be a topology for Y which is

weakly equivalent to σ. Then f : (X, τ)→ (Y, σ∗) is somewhat r-continuous.

Proof:

Let U be an open set in (Y, σ∗) such that f−1(U) 6= φ. Then U 6= φ. Since σ and σ∗ are

weakly equivalent, there exists an open set W in (Y, σ) such that W 6= φ and W ⊂ U . Then

f−1(W ) 6= φ. Since f is somewhat r-continuous, there exists regular open set V 6= φ such

that V ⊂ f−1(W ). Then V ⊂ f−1(W ) ⊂ f−1(U). So f : (X, τ) → (Y, σ∗) is somewhat

r-contnuous. 2

Theorem 3.4.3

Every somewhat r-continuous function is somewhat continuous.

Proof:

Proof follows from the result that ‘regular open sets are open’. 2

Remark 3.4.3:

Converse of the above theorem does not hold.

Example 3.4.2 Let X = {a, b, c, d}, Y = {p, q, r}

τ = {X,φ, {a, c}, {d}, {c}, {c, d}, {a, c, d}}.

σ = {Y, φ, {r}, {q}, {r, q}}. Define f : X → Y by f(a) = f(d) = q, f(c) = f(b) = r. Then

f is somewhat continuous, but not somewhat r-continuous.
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Theorem 3.4.4 If f : X → Y is somewhat continuous and X is locally indiscrete, then

f is somewhat r-continuous.

Proof:

The proof follows from the result that open sets in a locally indiscrete space are clopen

and clopen sets are regular open. 2

Theorem 3.4.5

Every cl-super continuous function is somewhat r-continuous.

Proof:

The proof follows from the result that clopen sets are regular open. 2

Remark 3.4.5:

Converse of the above theorem does not hold.

Example 3.4.3

Let X = {a, b, c, d}, Y = {a, b, c}, τ = {X,φ, {a, b}, {a}, {b}, {a, b, d}}.

σ = {Y, φ, {a}, {b}, {a, b}}. Let f : X → Y be the identity function. Then f is somewhat

r-continuous, but not cl-supercontinuous.

Theorem 3.4.6

Let f : X → Y be somewhat r-continuous and X be locally indiscrete. Then f is cl-super

continuous.

Proof:

The proof follows from the result that, regular open set is open and open set in a locally

indiscrete space is clopen. 2
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Theorem 3.4.7

Every completely continuous function is somewhat r-continuous.

Remark 3.4.7:

Converse of the above theorem does not hold.

Example 3.4.4

Let X = Y = {a, b, c}, τ = {X,φ, {a}, {b, c}},σ = {Y, φ, {a, b}}.

Let f : X → Y be the identity function. Then f is somewhat r-continuous, but not com-

pletely continuous.

Theorem 3.4.8

If X is a discrete space and f : X → Y is somewhat r-continuous, then f is completely

continuous.

Proof:

The proof follows from the result that finite union of regular open sets in a discrete space

is regular open. 2

corollary 3.4.9

If X is finite,T1 and f : X → Y is somewhat r-continuous, then f is completely continu-

ous.

Proof:

Proof follows from the result that finite union of regular open sets in a finite T1 space is

regular open. 2
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Theorem 3.4.10

Every somewhat r-continuous function is δ − continuous.

Proof:

Let f : X → Y be somewhat r-continuous. Let V be non empty regualr open set in

Y . Then it is open. Since f is somewhat r-continuous, there exists a regular open set U

such that f(U) ⊂ V . So f is δ − continuous. 2

Remark 3.4.10:

Converse of the above theorem does not hold.

Example 3.4.5

Let X = Y = {a, b, c}, τ = {X,φ, {a, b}, {c}},σ = {Y, φ, {a}, {b}, {a, b}, {b, c}}. Define

f : X → Y by f(a) = b, f(b) = c, f(c) = a. Then f is δ − continuous, but not somewhat

r-continuous.

Theorem 3.4.11 If f : X → Y is δ-continuous and Y is locally indiscrete, then f is

somewhat r-continuous.

Proof:

Let V be open in Y . Since Y is locally indiscrete,V is clopen and so regular open. Since f

is δ − continuous, there exists regular open set U such that f(U) ⊂ V . So f is somewhat

r-continuous. 2

Theorem 3.4.12

If f : X → Y is almost completely continuous and Y is locally indiscrete, then f is

somewhat r-continuous.
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Proof:

Let V be open in Y . Since Y is locally indiscrete,V is clopen and so regular open. Since f is

almost completely continuous, f−1(V ) = U is regular open. So f is somewhat r-continuous.

2 2

Theorem 3.4.13

If f : X → Y is somewhat r-continuous and X is a discrete space, then f is almost

completely continuous.

Proof:

Proof follows from the result that finite union of regular open sets in a discrete space is

regular open. 2

corollary 3.4.14

If f : X → Y is somewhat r-continuous,X is finite and T1, then f is almost completely

continuous.

Proof:

Proof follows from the result that finite union of regular open sets in a finite T1 space is

regular open. 2

Theorem 3.4.15

Let f : X → Y be somewhat continuous and τ ∗ be a topology for X which is r-weakly

equivalent to τ . Then the function f : (X, τ ∗)→ (Y, σ) is somewhat r-continuous.

Proof:

Let U be any open set in (Y, σ) such that f−1(U) is non empty. Since f is somewhat
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continuous, there exists a non empty open set V in X such that V ⊂ f−1(U). Since τ

is r-equivalent to τ ∗, there exists a non empty regular open set V1 in (X, τ ∗) such that

V1 ⊂ V ⊂ f−1(U). So f is somewhat r-continuous. 2

Remark 3.4.15:

The following diagram shows the relationship between various functions and somewhat r-

continuous function.

cl − super continuous

↓
completely
continuous → somewhat r- continuous →

somewhat
continuous

↓ ↓
almost completely

continuous → δ − continuous

Theorem 3.4.16

Composition of a continuous function and a somewhat r-continuous function is somewhat

r-continuous.

Proof:

Consider the continuous function g : Y → Z and the somewhat r-continuous function

f : X → Y . Let V ⊂ Z be open. Since g is continuous, g−1(V ) is open in Y . Since f is

somewhat r-continuous, there exists regular open set U such that U ⊂ f−1(g−1(V )). Hence

g ◦ f is somewhat r-continuous. 2

Theorem 3.4.17

Composition of a somewhat r-continuous function and a continuous function is somewhat
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r-continuous.

Proof:

Consider the somewhat r- continuous function g : Y → Z and the continuous function

f : X → Y . Let V ⊂ Z be open. Since g is somewhat r-continuous, there exists regular

open set U such that U ⊂ g−1(V ). Then U is open and by continuity of f , f−1(U) is

open. Now f−1(U) ⊂ f−1(g−1(V )). So g ◦ f is continuous. 2

Theorem 3.4.18

Let X and Y be any two topological spaces. Let A be a regular open set of X and

f : (A, τ/A) → (Y, σ) be somewhat r-continuous such that f(A) is dense in Y . Then any

extension F of f is somewhat r-continuous.

Proof:

Let U be any open set in Y such that F−1(U) 6= φ. Since f(A) is dense in Y ,U ∩ f(A) 6=

φ. So F−1(U) ∩ A 6= φ. Hence f−1(U) ∩ A 6= φ. Since f is somewhat r-continuous, there

exists a regular open set V such that V ⊂ f−1(U) ⊂ F−1(U). Hence F is somewhat

r-continuous. 2

Theorem 3.4.19

Let X and Y be any two topological spaces. If Z = A ∩ B where A and B are regular

open subsets of X and if f : Z → Y is a function such that f/A and f/B are somewhat

r-continuous, then f is somewhat r-continuous.

Proof:

Let V be any open set in Y such that f−1(V ) 6= φ. Then either (f/A)−1(V ) 6= φ or
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(f/B)−1(V ) 6= φ or both.

Case (i): (f/A)−1(V ) 6= φ.

Since f/A is somewhat r-continuous, there exists a non empty regular open set V1 in A

such that V1 ⊂ (f/A)−1(V ) ⊂ f−1(V ). Since V1 is regular open in A and A is regular open

in X,V1 is regular open in X. So f is somewhat r-continuous.

Case (ii): (f/B)−1(V ) 6= φ.

This can be proved by using the same argument as in (i).

Case (iii):(f/A)−1(V ) 6= φ and (f/B)−1(V ) 6= φ

The proof follows from the proofs of case(i) and case(ii). 2

3.5 Minimal r-continuous function, maximal r-continuous function and their

properties.

Definition 3.5.1

Let X and Y be topological spaces. A function f : X → Y is called

1. minimal r-continuous, if f−1(M) is a regular open set in X, for every minimal

regular open set M in Y .

2. maximal r-continuous, if f−1(M) is a regular open set in X, for every maximal

regular open set M in Y .

3. minimal r-irresolute, if f−1(M) is a minimal regular open set in X, for every min-

imal regular open set M in Y .

4. maximal r-irresolute, if f−1(M) is a maximal regular open set in X, for every max-
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imal regular open set M in Y .

5. minimal - maximal r-continuous, if f−1(M) is a maximal regular open set in X, for

every minimal regular open set M in Y .

6. maximal- minimal r-continuous, if f−1(M) is a minimal regular open set in X, for

every maximal regular open set M in Y .

Theorem 3.5.1

Let X and Y be topological spaces. A function f : X → Y is minimal r-continuous if and

only if the inverse image of each maximal regular closed set in Y is a regular closed set

in X.

Proof:

Proof holds from the definition of minimal r-continuous function and the result that a set

is minimal regular open if and only if it is maximal regular closed. 2

Theorem 3.5.2

Let X and Y be topological spaces. A function f : X → Y is maximal r-continuous if and

only if the inverse image of each minimal regular closed set in Y is a regular closed set in

X.

Proof:

Proof holds from the definition of maximal r-continuous function and the result that a

set is maximal regular open if and only if it is minimal regular closed. 2

Theorem 3.5.3

Let X and Y be topological spaces. A function f : X → Y is minimal r-irresolute if and
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only if the inverse image of each maximal regular closed set in Y is a maximal regular

closed set in X.

Proof:

Proof holds from the definition of minimal r-irresolute function and the result that a set

is minimal regular open if and only if it is maximal regular closed. 2

Theorem 3.5.4

Let X and Y be topological spaces. A function f : X → Y is maximal r-irresolute if and

only if the inverse image of each minimal regular closed set in Y is a minimal regular

closed set in X.

Proof:

Proof holds from the definition of maximal r-irresolute function and the result that a set

is maximal regular open if and only if it is minimal regular closed. 2

Theorem 3.5.5

Let X and Y be topological spaces. A function f : X → Y is maximal-minimal r-

continuous if and only if the inverse image of each minimal regular closed set in Y is

a maximal regular closed set in X.

Proof:

Proof holds from the definition of maximal-minimal r-continuous function and the result

that a set is minimal regular open if and only if it is maximal regular closed and is maximal

regular open if and only if it is minimal regular closed. 2
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Theorem 3.5.6

Let X and Y be topological spaces. A function f : X → Y is minimal-maximal r-

continuous if and only if the inverse image of each maximal regular closed set in Y is

a minimal regular closed set in X.

Proof:

Proof holds from the definition of minimal - maximal r-continuous function and the result

that a set is minimal regular open if and only if it is maximal regular closed and is maximal

regular open if and only if it is minimal regular closed. 2

Theorem 3.5.7

Every almost completely continuous function is minimal r-continuous.

Proof:

Let V ⊂ Y be minimal regular open and f : X → Y almost completely continuous. Then

as minimal regular open set is regular open,V is regular open. f is almost completely

continuous implies f−1(V ) is regular open. Hence f is minimal r-continuous. 2

Remark 3.5.7:

Converse of the above theorem need not be true.

Theorem 3.5.8

If Y is an rTmin space and f : X → Y is a minimal r-continuous onto function, then f is

almost completely continuous.

Proof:

Let V ⊂ Y be regular open. Since Y is an rTmin space,V is minimal regular open in Y .
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f : X → Y is a minimal r-continuous onto function implies f−1(V ) is regular open. Hence

f is almost completely continuous. 2

Theorem 3.5.9

Every almost completely continuous function is maximal r-continuous.

Proof:

Let V ⊂ Y be maximal regular open and f : X → Y almost completely continuous. Then

as maximal regular open set is regular open,V is regular open. f is almost completely

continuous implies f−1(V ) is regular open. Hence f is maximal r-continuous. 2

Remark 3.5.9:

Converse of the above theorem need not be true.

Theorem 3.5.10

If Y is an rTmax space and f : X → Y is a maximal r-continuous onto function, then f

is almost completely continuous.

Proof:

Let V ⊂ Y be regular open. Since Y is an rTmax space,V is maximal regular open in Y .

f : X → Y is a maximal r-continuous onto function implies f−1(V ) is regular open. Hence

f is almost completely continuous. 2

Theorem 3.5.11

Every strongly continuous function is minimal r-continuous.

Proof:

Proof follows from the fact that minimal regular open sets are open and clopen sets are
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regular open. 2

Remark 3.5.11:

Converse of the above theorem need not be true.

Example 3.5.1

Let X = Y = {a, b, c}, τ = {X,φ, {a, b}, {a}, {b}}.

σ = {Y, φ, {a}, {c}, {a, c}}. Define f : X → Y by f(a) = a, f(b) = c, f(c) = b. Then f is

minimal r-continuous, but not strongly continuous.

Theorem 3.5.12

Let f : X → Y be minimal r-continuous, where X is locally indiscrete,Y is discrete and

rTmin, then f is strongly continuous.

Proof:

Let A ⊂ Y . Since Y is a discrete space,A is clopen and so regular open.Y is rTmin implies

A is minimal regular open. Since f : X → Y is minimal r-continuous, f−1(A) is regular

open. Since X is locally indiscrete, f−1(A) is clopen. Hence f is strongly continuous. 2

Theorem 3.5.13

If f : X → Y is minimal r-continuous, where Y is an rTmin space, then f is almost

continuous.

Proof:

Let V ⊂ Y be regular open. Since Y is an rTmin space,V is minimal regular open.

f : X → Y is minimal r-continuous implies that f−1(V ) is regular open and so open. Hence

f is almost continuous. 2
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Theorem 3.5.14

If f : X → Y is almost continuous, where X is locally indiscrete, then f is minimal

r-continuous.

Proof:

Let V ⊂ Y be minimal regular open. Then V is regular open. f : X → Y is almost

continuous implies f−1(V ) is open . Since X is locally indiscrete,V is clopen and so regular

open. Hence f is minimal r-continuous. 2

Theorem 3.5.15

Every completely continuous function is minimal r-continuous.

Proof:

Let V ⊂ Y be minimal regular open. Then V is open. f : X → Y completely continuous

implies that f−1(V ) is regular open. Hence f is minimal r- continuous. 2

Remark 3.5.15:

Converse of the above theorem need not be true.

Example 3.5.2

Let X = Y = {a, b, c}, τ = {X,φ, {a, b}, {a}, {b}}.

σ = {Y, φ, {a}, {c}, {a, c}}. Define f : X → Y by f(a) = a, f(b) = c, f(c) = b. Then f is

minimal r-continuous, but not completely continuous.

Theorem 3.5.16

Every minimal r-continuous function onto a locally indiscrete rTmin space is completely

continuous.
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Proof:

Let V ⊂ Y be open. Since Y is locally indiscrete rTmin space,V is minimal regular

open. Since f : X → Y is minimal r- continuous, f−1(V ) is regular open. Hence f is

completely continuous. 2

Theorem 3.5.17

Every completely continuous function is maximal r-continuous.

Proof:

Let V ⊂ Y be maximal regular open. Then V is open. f : X → Y is completely continuous

implies that f−1(V ) is regular open. Hence f is maximal r- continuous. 2

Remark 3.5.17:

Converse of the above theorem need not be true.

Example 3.5.3

Let X = Y = {a, b, c}, τ = {X,φ, {a, b}, {a}, {b}}.

σ = {Y, φ, {a}, {c}, {a, c}}. Define f : X → Y by f(a) = a, f(b) = c, f(c) = b. Then f is

maximal r-continuous, but not completely continuous.

Theorem 3.5.18

Every almost perfectly continuous function is minimal r-continuous.

Proof:

Let V ⊂ Y be minimal regular open. Then V is regular open. f : X → Y is almost
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perfectly continuous implies that f−1(V ) is clopen and hence regular open. Hence f is

minimal r- continuous. 2

Remark 3.5.18:

Converse of the above theorem need not be true.

Example 3.5.4

Let X = Y = {a, b, c}, τ = {X,φ, {a, b}, {a}, {b}}.

σ = {Y, φ, {a}, {c}, {a, c}}. Define f : X → Y by f(a) = a, f(b) = c, f(c) = b. Then f is

minimal r-continuous, but not almost perfectly continuous.

Theorem 3.5.19

If f : X → Y is minimal r-continuous, where X is locally indiscrete and Y is rTmin, then

f is almost perfectly continuous.

Proof:

Let V ⊂ Y be regular open. Since Y is rTmin,V is minimal regular open. f : X → Y is

minimal r-continuous implies that f−1(V ) is regular open.X is locally indiscrete implies

that f−1(V ) is clopen. Hence f is almost perfectly continuous. 2

Theorem 3.5.20

If f : X → Y is maximal r-continuous, where X is locally indiscrete and Y is rTmax, then

f is almost perfectly continuous.

Proof:

Let V ⊂ Y be regular open. Since Y is rTmax,V is maximal regular open. f : X → Y
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is maximal r-continuous implies f−1(V ) is regular open.X is locally indiscrete implies

f−1(V ) is clopen. Hence f is almost perfectly continuous. 2

Theorem 3.5.21

Every totally continuous function is minimal r-continuous.

Proof:

Let V ⊂ Y be minimal regular open. Then V is open. f : X → Y is totally continuous

implies that f−1(V ) is clopen and so regular open. Hence f is minimal r-continuous. 2

Remark 3.5.21:

Converse of the above theorem need not be true.

Example 3.5.5

Let X = Y = {a, b, c}, τ = {X,φ, {a, b}, {a}, {b}},σ = {X,φ, {a, c}, {a}, {c}}.

Define f : X → Y by f(a) = c, f(b) = a, f(c) = b. Then f is minimal r-continuous, but

not totally continuous.

Theorem 3.5.22

If f : X → Y is minimal r-continuous, where X and Y are locally indiscrete and Y is

rTmin, then f is totally continuous.

Proof:

Let V ⊂ Y be open. Since Y is rTmin and locally indiscrete,V is clopen and minimal

regular open. f : X → Y is minimal r-continuous implies that f−1(V ) is regular open.X

is locally indiscrete implies that f−1(V ) is clopen. Hence f is totally continuous. 2
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Theorem 3.5.23

Every totally continuous function is maximal r-continuous.

Proof:

Let V ⊂ Y be maximal regular open. Then V is open. f : X → Y is totally continuous

implies that f−1(V ) is clopen and so regular open. Hence f is maximal r-continuous. 2

Remark 3.5.23:

Converse of the above theorem need not be true.

Example 3.5.6

Let X = Y = {a, b, c}, τ = {X,φ, {a, b}, {a}, {b}},σ = {X,φ, {a, c}, {a}, {c}}.

Define f : X → Y by f(a) = c, f(b) = a, f(c) = b. Then f is maximal r-continuous, but

not totally continuous.

Theorem 3.5.24

If f : X → Y is maximal r-continuous, where X and Y are locally indiscrete and Y is

rTmax, then f is totally continuous.

Proof:

Let V ⊂ Y be open. Since Y is rTmax and locally indiscrete,V is clopen and maximal

regular open. f : X → Y is maximal r-continuous implies that f−1(V ) is regular open.X

is locally indiscrete implies that f−1(V ) is clopen. Hence f is totally continuous. 2

Theorem 3.5.25

Every minimal r-irresolute function is minimal r-continuous.
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Proof:

Proof follows from the definition of minimal r-irresolute function, minimal r-continuous

function and the property that minimal regular open set is regular open. 2

Remark 3.5.25:

Converse of the above theorem need not be true.

Example 3.5.7

Let X = Y = {a, b, c}, τ = {X,φ, {a, b}, {a}, {b}, {a, c}, {b, c}, {c}}

σ = {Y, φ, {a}, {c}, {a, c}, {b}, {a, b}, {b, c}}.

Define f : X → Y by f(a) = b, f(b) = b, f(c) = c. Then f is minimal r-continuous, but

not minimal r-irresolute.

Theorem 3.5.26

Let f : X → Y be minimal r-continuous(respectively maximal r-continuous) where X is

an rTmin (respectively rTmax) space. Then f is minimal r-irresolute (respectively maximal

r-irresolute).

Proof:

Proof holds from the definition of rTmin space (respectively rTmax space ) and minimal

r-irresolute function(respectively maximal r-irresolute function). 2

Theorem 3.5.27

Every minimal r-irresolute function onto an rTmin space is almost completely continuous.
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Proof:

Let V ⊂ Y be regular open. If Y is rTmin, then V is minimal regular open. If f : X → Y is

minimal r-irresolute, then f−1(V ) is minimal regular open and hence regular open. Hence

f is almost completely continuous. 2

Theorem 3.5.28

Every maximal r-irresolute function onto an rTmax space is almost completely continuous.

Proof:

Let V ⊂ Y be regular open. If Y is rTmax, then V is maximal regular open. If f : X → Y is

maximal r-irresolute, then f−1(V ) is maximal regular open and hence regular open. Hence

f is almost completely continuous. 2

Remark 3.5.28:

Converse of the above theorem need not be true.

Example 3.5.8

Let X = Y = {a, b, c}, τ = {X,φ, {a, b}, {a}, {b}, {a, c}, {b, c}, {c}}

σ = {Y, φ, {a}, {c}, {a, c}, {b}, {a, b}, {b, c}}.

Define f : X → Y by f(a) = b, f(b) = b, f(c) = c. Then f is almost completely continu-

ous, but not minimal r-irresolute.

Theorem 3.5.29

If X is an rTmin space, then every almost completely continuous function f : X → Y is

minimal r-irresolute.
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Proof:

Let V ⊂ Y be minimal regular open. Then V is regular open. If f : X → Y is almost

completely continuous, then f−1(V ) is regular open. If X is an rTmin space, then f−1(V )

is minimal regular open. Hence f is minimal r-irresolute. 2

Theorem 3.5.30

If X is an rTmax space, then every almost completely continuous function f : X → Y is

maximal r-irresolute.

Proof:

Let V ⊂ Y be maximal regular open. Then V is regular open. If f : X → Y is almost

completely continuous, then f−1(V ) is regular open. If X is an rTmax space, then f−1(V )

maximal regular open. Hence f is maximal r-irresolute. 2

Theorem 3.5.31

Every minimal - maximal r-continuous function is minimal r-continuous.

Proof:

Let V ⊂ Y be minimal regular open. Since f : X → Y is minimal-maximal r-continuous,

f−1(V ) is maximal regular open and hence regular open. Hence f is minimal r-continuous.

2 2

Theorem 3.5.32

Every minimal r-continuous function from an rTmax space is minimal- maximal r-continuous.

Proof:

Let V ⊂ Y be minimal regular open. Since f : X → Y is minimal r-continuous, f−1(V )
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is regular open. Since X is an rTmax space, f−1(V ) is maximal regular open. Hence f is

minimal-maximal r-continuous. 2

Theorem 3.5.33

Every maximal- minimal r-continuous function is maximal r-continuous.

Proof:

Let V ⊂ Y be maximal regular open. Since f : X → Y is maximal- minimal r-continuous,

f−1(V ) is minimal regular open and hence regular open. Hence f is maximal r-continuous.

2 2

Theorem 3.5.34

Every maximal r- continuous function from an rTmin space is maximal - minimal r-

continuous.

Proof:

Let V ⊂ Y be maximal regular open. Since f : X → Y is maximal r-continuous, f−1(V )

is regular open. Since X is an rTmin space, f−1(V ) is minimal regular open. Hence f is

maximal-minimal r-continuous.

2 2

Theorem 3.5.35

Composition of an almost completely continuous function and a minimal r- continuous

function is minimal r- continuous.

Proof:

Let f : X → Y be almost completely continuous and g : Y → Z be minimal r-
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continuous. Let V ⊂ Z be minimal regular open. Since g is minimal r-continuous, g−1(V )

is regular open in Y . Since f is almost completely continuous, f−1(g−1(V )) is regular open

in X. So g ◦ f is minimal r-continuous. 2

Theorem 3.5.36

Composition of an almost completely continuous function and a maximal r- continuous

function is maximal r- continuous.

Proof:

Let f : X → Y be almost completely continuous and g : Y → Z be maximal r-

continuous. Let V ⊂ Z be maximal regular open. Since g is maximal r-continuous, g−1(V )

is regular open in Y . Since f is almost completely continuous, f−1(g−1(V )) is regular open

in X. So g ◦ f is maximal r-continuous. 2

Theorem 3.5.37

Composition of maximal r-irresolute functions is maximal r- irresolute.

Proof:

Let f : X → Y and g : Y → Z be maximal r-irresolutes. Let V ⊂ Z be maximal regular

open. Since g is maximal r-irresolute, g−1(V ) is maximal regular open in Y . Since f is

maximal r-irresolute, f−1(g−1(V )) is maximal regular open in X. So g ◦ f is maximal r-

irresolute. 2

Remark 3.5.37:

Composition of minimal - maximal r-continuous functions need not be minimal - maximal

r-continuous.
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Example 3.5.9

Let X = Y = {a, b, c}, τ = {X,φ, {a, c}, {b}, {a}, {a, b}}} and

σ = {Y, φ, {a, b}, {a}, {b}, {b, c}}.

Suppose f : X → Y is defined by f(a) = b, f(b) = a, f(c) = c. Then f is minimal-maximal

r-continuous, but f ◦ f is not minimal-maximal r-continuous.

Theorem 3.5.38

If f : X → Y and g : Y → Z are minimal- maximal r-continuous and if Y is an rTmin

space, then g ◦ f : X → Z is minimal - maximal r- continuous..

Proof:

Let V ⊂ Z be minimal regular open. Since g : Y → Z is minimal- maximal r-continuous,

g−1(V ) is maximal regular open.Y is an rTmin space implies that g−1(V ) is minimal

regular open. Also since f : X → Y is minimal-maximal r-continuous f−1(g−1(V )) is

maximal regular open. Hence g ◦ f : X → Z is minimal- maximal r-continuous. 2

Theorem 3.5.39

If f : X → Y is maximal r-irresolute and g : Y → Z is minimal - maximal r-

continuous, then g ◦ f : X → Z is minimal- maximal r- continuous.

Proof:

Let V ⊂ Z be minimal regular open. Since g : Y → Z is minimal-maximal r-continuous,

g−1(V ) is maximal regular open. Since f : X → Y is maximal r-irresolute, f−1(g−1(V )) is

maximal regular open. Hence g ◦ f : X → Z is minimal-maximal r-continuous. 2
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Theorem 3.5.40

If f : X → Y is maximal r-continuous and g : Y → Z is minimal- maximal r-

continuous, then g ◦ f : X → Z is minimal r- continuous.

Proof:

Let V ⊂ Z be minimal regular open. Since g : Y → Z is minimal- maximal r-continuous,

g−1(V ) is maximal regular open. Since f : X → Y is maximal r-continuous, f−1(g−1(V ))

is regular open. Hence g ◦ f : X → Z is minimal r-continuous. 2

Remark 3.5.40:

Composition of maximal- minimal r-continuous functions need not be maximal- minimal

r-continuous.

Example 3.5.10

Let X = Y = {a, b, c}, τ = {X,φ, {a, c}, {a}, {b}, {a, b}} and

σ = {Y, φ, {a}, {b}, {b, c}, {a, b}}.

Suppose f : X → Y is defined by f(a) = b, f(b) = a, f(c) = c. Then f is maximal-minimal

r-continuous, but f ◦ f is not maximal- minimal r-continuous.

Theorem 3.5.41

Composition of a minimal r-irresolute function and a maximal- minimal r-continuous

function is maximal - minimal r- continuous.

Proof:

Let f : X → Y be minimal r-irresolute and g : Y → Z be maximal- minimal r-

continuous. Let V ⊂ Z be maximal regular open. Since g is maximal-minimal r-continuous,
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g−1(V ) is minimal regular open in Y . Since f is minimal r-irresolute, f−1(g−1(V )) is min-

imal regular open in X. So g ◦ f is maximal- minimal r-continuous. 2

Theorem 3.5.42

Composition of a minimal r-continuous function and a maximal- minimal r-continuous

function is maximal r- continuous.

Proof:

Let f : X → Y be minimal r-continuous and g : Y → Z be maximal- minimal r-

continuous. Let V ⊂ Z be maximal regular open. Since g is maximal- minimal r-continuous,

g−1(V ) is minimal regular open in Y . Since f is minimal r-continuous, f−1(g−1(V )) is reg-

ular open in X. So g ◦ f is maximal r-continuous. 2

Theorem 3.5.43

If f : X → Y and g : Y → Z are maximal- minimal r-continuous and if Y is an rTmax

space, then g ◦ f : X → Z is maximal- minimal r- continuous.

Proof:

Let V ⊂ Z be maximal regular open. Since g is maximal-minimal r-continuous, g−1(V ) is

minimal regular open in Y . Since Y is an rTmax space, g−1(V ) is maximal regular open

in Y .Ṡince f is maximal- minimal r-continuous, f−1(g−1(V )) is minimal regular open in

X. So g ◦ f is maximal- minimal r-continuous. 2

Theorem 3.5.44

Let X and Y be topological spaces and A be a non empty regular open subset of X. If
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f : X → Y is minimal r-continuous, then the restriction function f/A : A → Y is

minimal r-continuous.

Proof:

Let V be a minimal regular open subset of Y . Since f is minimal r-continuous, f−1(V ) is

regular open in X. Since A is regular open, (f/A)−1(V ) = A ∩ f−1(V ) is regular open in

A. So f/A is minimal r-continuous. 2

Remark 3.5.44:

The following diagram shows the relationship between various functions and various types

of minimal and maximal r-continuous functions.

Minimal- maximal
r-continuous

Maximal- Minimal
r-continuous

↓ ↓

Minimal
r-continuous ←

Almost
completely
continuous →

Maximal
r-continuous

↑ ↑
Minimal

r-irresolute
Maximal

r-irresolute

3.6 Supra r-continuous function and its properties.

Definition 3.6.1

Let (X, τ) and (Y, σ) be topological spaces and τ ∗ be an associated supra topology with

τ(Refer section 8 of chapter 1). A function f : (X, τ ∗) → (Y, σ) is said to be supra r-

continuous, if inverse image of each open set of Y is supra r-open in X.
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Example 3.6.1

Let X = {a, b, c}, τ = {X,φ, {a}}, τ ∗ = {X,φ, {a}, {b}, {a, b}}.

Let f : (X, τ ∗) → (X, τ) be defined by f(a) = b, f(b) = a, f(c) = b. Then f is supra

r-continuous.

Theorem 3.6.1

Let (X, τ) and (Y, σ) be topological spaces and τ ∗ be an associated supra topology with

τ . Let f : (X, τ ∗)→ (Y, σ) be a function. Then the following are equivalent:

(i) f is supra r-continuous.

(ii) Inverse image of a closed set in Y is supra r-closed in X.

(iii) Supra rCl(f−1(A)) ⊂ f−1(Cl(A)) for every A ⊂ Y .

(iv) f(Supra rCl(A)) ⊂ Cl(f(A)) for every A ⊂ X.

(v) f−1(Int(B)) ⊂ Supra rInt(f−1(B)) for every B ⊂ Y .

Proof:

(i)⇒ (ii)

Let V be closed in Y . Then Y − V is open. Since f is supra r-continuous, f−1(Y − V ) is

supra r-open. That is f−1(V ) is supra r-closed in X.

(ii)⇒ (iii)

Let A ⊂ Y . Then Cl(A) is closed in Y . By (ii), f−1(Cl(A)) is supra r-closed.

So Supra rCl(f−1(Cl(A))) = f−1(Cl(A)).

Now f−1(A) ⊂ f−1(Cl(A)).

So Supra rCl(f−1((A))) ⊂ Supra rCl(f−1(Cl(A))) = f−1(Cl(A)).
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That is Supra rCl(f−1(A)) ⊂ f−1(Cl(A)).

(iii)⇒ (iv)

Let A ⊂ X. Then f(A) ⊂ Y .

By (iii), Supra rCl(f−1(f(A))) ⊂ f−1(Cl(f(A))).

That is Supra rCl(A) ⊂ f−1(Cl(f(A)).

Hence f(Supra rCl(A)) ⊂ Cl(f(A)).

(iv)⇒ (v)

Let B ⊂ Y . Then f−1(B) ⊂ X.

By (iv), f(supra rCl(f−1(B))) ⊂ Cl(f(f−1(B))) for everyf−1(B) ⊂ X.

That is supra rCl(f−1(B)) ⊂ f−1(Cl(f(f−1(B)))).

That is supra rCl(f−1(B)) ⊂ f−1(Cl(B)) .

Then X − supra rCl(f−1(B)) ⊃ X − f−1(Cl(B)).

Hence Supra rInt(X − f−1(B)) ⊃ f−1(Int(Y −B)).

So X − Supra rInt(f−1(B)) ⊃ X − f−1(Int(B)).

That is f−1(Int(B)) ⊂ Supra rInt(f−1(B)).

(v)⇒ (i)

Let A be open in Y . Then by (v), Supra rInt(f−1(A)) ⊃ f−1(Int(A)).

This implies that Supra rInt(f−1(A)) ⊃ f−1(A), since A is open.

But Supra rInt(f−1(A)) ⊂ f−1(A).

Hence Supra rInt(f−1(A)) = f−1(A). So f−1(A) is supra r-open.

So (i) holds. 2

Theorem 3.6.2

Let (X, τ) and (Y, σ) be topological spaces and τ ∗ be associated supra topology with τ . Then
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f : (X, τ ∗)→ (Y, σ) is supra r-continuous, if one of the following holds:

(i) f−1(Supra rInt(B)) ⊂ rInt(f−1(B)) for every B ⊂ Y .

(ii) rCl(f−1(B)) ⊂ f−1(Supra rCl(B)) for every B ⊂ Y .

(iii) f(rCl(A)) ⊂ Supra rCl(f(A)) for every A ⊂ X.

Proof:

Let V be any open set of Y .

If (i) holds, f−1(Supra rInt(V )) ⊂ rInt(f−1(V )).

Since Supra rInt(V ) ⊂ V , f−1(Supra rInt(V )) ⊂ f−1(V ) ⊂ rInt(f−1(V )).

But rInt(f−1(V )) ⊂ f−1(V ). So f−1(V ) is regular open and so supra r-open. Hence f is

supra r-continuous.

If (ii) holds, rCl(f−1(V ) ⊂ f−1(supra rCl(V )) for every V ⊂ Y .

Then rInt f−1(Y − V ) ⊃ f−1(Supra rInt(Y − V )).

Then by (i), f is supra r-continuous.

If (iii) holds, f(rCl(f−1(V )) ⊂ Supra rCl(V ).

Then by (ii), f is supra r-continuous. 2

Theorem 3.6.3

Every completely continuous function is supra r-continuous.

Proof:

Proof follows from the definition of completely continuous function and the result that

regular open sets are supra r-open. 2
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Theorem 3.6.4

Every totally continuous function is supra r-continuous.

Proof:

Proof follows from the definition of totally continuous function and the result that clopen

sets are regular open and regular open sets are supra r-open. 2

Remark 3.6.4:

Converse of the above theorem need not be true.

Example 3.6.2

Let X = {a, b, c}, τ = {X,φ, {a}}, τ ∗ = {X,φ, {a}, {b}, {a, b}}.

Let f : (X, τ ∗) → (X, τ) be defined by f(a) = b, f(b) = a, f(c) = c. Then f is supra

r-continuous, but not totally continuous.

Theorem 3.6.5

If X is a discrete space, then every supra r-continuous function is totally continuous.

Theorem 3.6.6

Every almost perfectly continuous function into a discrete space is supra r-continuous.

Theorem 3.6.7

Every almost completely continuous function into a discrete space is supra r-continuous.

Theorem 3.6.8

Let (X, τ), (Y, σ) and (Z, ν) be topological spaces. Let τ ∗ be a supra topology associated

with τ . If a function f : (X, τ ∗) → (Y, σ) is supra r-continuous and g : (Y, σ) → (Z, ν) is

continuous, then gof : (X, τ ∗)→ (Z, ν) is supra r-continuous.
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Proof:

Let V ⊂ Z be open. Since g is continuous, g−1(V ) is open in Y . Since f is supra r-

continuous, f−1(g−1(V )) = (g ◦ f)−1(V ) is supra r-open in X. Hence g ◦ f is supra r-

continuous. 2

Theorem 3.6.9

Composition of a supra r-continuous function and a totally continuous function is supra

r-continuous.

Proof:

Let (X, τ), (Y, σ) and (Z, ν) be topological spaces. Let τ ∗ be the supra topology associated

with τ . Let f : (X, τ ∗) → (Y, σ) be supra r-continuous, g : (Y, σ) → (Z, ν) be totally

continuous and V ⊂ Z be open. Since g is totally continuous, g−1(V ) is clopen in Y . Since

f is supra r-continuous, f−1(g−1(V )) = (g ◦ f)−1(V ) is supra r-open in X. Hence g ◦ f is

supra r-continuous. 2

Theorem 3.6.10

Composition of a supra r-continuous function and a completely continuous function is

supra r-continuous.

Proof:

Let (X, τ), (Y, σ) and (Z, ν) be topological spaces. Let τ ∗ be the supra topology associated

with τ . Let f : (X, τ ∗) → (Y, σ) be supra r-continuous, g : (Y, σ) → (Z, ν) be completely

continuous and V ⊂ Z be open. Since g is completely continuous, g−1(V ) is regular open in

Y . Since f is supra r-continuous, f−1(g−1(V )) = (g ◦ f)−1(V ) is supra r-open in X. Hence

g ◦ f is supra r-continuous. 2
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CHAPTER 4

Various functions on certain special spaces.

4.1 Introduction

In this chapter properties of almost perfectly continuous function and somewhat r-continuous

function on certain special spaces is discussed. Discussion is also done on regular totally

open function, somewhat r-open function, supra r-open function, supra r-closed function

and minimal r-open function. In section 2, properties of almost perfectly continuous func-

tion and somewhat r-continuous function on certain special spaces is studied. Regular

totally open function on special spaces is discussed in section 3. Section 4, is on somewhat

r-open function. Supra r-open function and supra r-closed function is the topic of section

5. Minimal r-open function and their properties are introduced in section 6. Properties of

graph function of various function is given in section 7.

4.2 Almost perfectly continuous and somewhat r-continuous function

Theorem 4.2.1

Let f : X → Y be an almost perfectly continuous function from a space X into a δ T1

space Y . Then f is constant on each quasi component of X.

75



Proof:

Suppose f is not constant on each quasi component of X. Let a, b be two points of X

that lie in the same quasi component of X such that f(a) 6= f(b). Since Y is δ T1, there

exists regular open sets U and V such that α =f(a)∈ U and β = f(b) ∈ V . Since Y is

δ T1, {α} is regular closed in Y . Therefore Y − {α} is regular open. Since f : X → Y is

almost perfectly continuous, f−1(Y − {α}) and f−1({α}) are disjoint clopen sets of X.

Further a ∈ f−1({α}) and b ∈ f−1(Y − {α}), different quasi components, which is a

contradiction to the assumption that b belongs to the quasi component of a. Therefore f

is constant.

2

Theorem 4.2.2

If f : X → Y is a totally continuous, injective, regular open function from a clopen regular

space X onto a space Y , then Y is r-regular.

Proof:

Let F be a closed set in Y and y/∈ F. Take y = f(x). Since f is totally continuous, f−1(F)

is clopen in X. Let G = f−1(F ). Then x /∈ G. Since X is a clopen regular space, there

exists disjoint open sets U and V such that G ⊂ U and x ∈ V . This implies f(G) ⊂ f(U)

and y = f(x) ∈ f(V ). Since f is injective and regular open, f(U) and f(V ) are regular

open in Y and f(U)∩f(V ) = φ. Thus for each closed set F and a point y /∈ F , there exists

disjoint regular open sets f(U) and f(V ) such that F ⊂ f(U) and y ∈ f(V ). Therefore Y

is r-regular. 2
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Theorem 4.2.3

If f : X → Y is almost perfectly continuous, injective, regular open function from a clopen

regular space X onto a space Y , then Y is ro-regular.

Proof:

Let F be a regular closed set in Y and y /∈ F . Take y = f(x). Since f is almost perfectly

continuous, f−1(F) is clopen in X. Let G = f−1(F ). Then x /∈ G. Since X is a clopen

regular space, there exists disjoint open sets U and V such that G ⊂ U and x ∈ V . This

implies F = f(G) ⊂ f(U) and y = f(x) ∈ f(V ). Since f is injective and regular open

f(U) and f(V ) are regular open in Y and f(U) ∩ f(V ) = φ. Thus for each regular closed

set F and a point y /∈ F , there exists disjoint regular open sets f(U) and f(V ) such that

F ⊂ f(U) and y ∈ f(V ). So Y is ro-regular. 2

Theorem 4.2.4

If f : X → Y is a totally continuous, injective, regular open function from a clopen normal

space X onto a space Y , then Y is r-normal.

Proof:

Let F1,F2 be two disjoint closed subsets of Y . Since f is totally continuous, f−1(F1) and

f−1(F2) are clopen in X. Since X is clopen normal, there exists open sets V1 and V2

such that f−1(F1)⊂ V1 and f−1(F2)⊂ V2 and V1 ∩ V2=φ. Since f is regular open and

injective, f(V1) and f(V2) are regular open and f(V1) ∩ f(V2) = φ. So Y is r-normal. 2

Theorem 4.2.5

If f : X → Y is an almost perfectly continuous, injective, regular open function from a

clopen normal space X onto a space Y , then Y is ro-normal.
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Proof:

Let F1,F2 be disjoint regular closed subsets of Y . Since f is almost perfectly continu-

ous, f−1(F1) and f−1(F2) are clopen in X. Since X is clopen normal, there exists open

sets V1 and V2 such that f−1(F1) ⊂ V1 and f−1(F2) ⊂ V2 and V1 ∩ V2 = φ. Since f is

regular open and injective, f(V1) and f(V2) are regular open and f(V1)∩ f(V2) = φ. So Y

is ro-normal. 2

Definition 4.2.1

A topological space X is said to be r-separable, if there exists a countable subset B of X

which is r-dense in X.

Example 4.2.1

Let X = Y = {a, b, c}, τ = {X,φ, {b, c}}. Then {b, c} is r-dense in X. So X is r-separable.

Theorem 4.2.6

If f is a somewhat r-continuous function from X onto Y and if X is r-separable,Y is

separable.

Proof:

Let f : X → Y be somewhat r-continuous function such that X is r-separable. Then there

exists a countable set B of X which is r-dense in X. Then f(B) is dense in Y by theorem

3.4.1. Since B is countable and f is onto, f(B) is countable. So Y is separable. 2
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4.3 Regular totally open function

Definition 4.3.1

A function f : X → Y is said to be regular totally open, if the image of every regular open

set in X is clopen in Y .

Example 4.3.1

Let X = Y = {a, b, c}, τ = {X,φ, {a}, {b, c}},σ = {Y, φ, {a},{b, c}}.

Let f : (X, τ)→ (Y, σ) be the identity function. Then f is a regular totally open function.

Theorem 4.3.1

If a bijective function f : X → Y is regular totally open, then image of each regular closed

set in X is clopen in Y .

Proof:

Let F be a regular closed set in X. Then X − F is regular open in X. Since f : X → Y

is regular totally open, f(X − F ) is clopen in Y . Since f is bijective, f(X − F ) = f(X)−

f(F ) = Y − f(F ). So Y − f(F ) is clopen in Y . Hence f(F ) is clopen. 2

Theorem 4.3.2

A surjective function f : X → Y is regular totally open if and only if for each subset B of

Y and for each regular closed set U containing f−1(B), there is a clopen set V of Y such

that B ⊂ V and f−1(V ) ⊂ U .

Proof:

Suppose f : X → Y is a surjective, regular totally open function. Let B ⊂ Y and U be
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any regular closed set of X such that f−1(B) ⊂ U . Then B ⊂ f(U). Since f is regular

totally open, f(X − U) is clopen. So V = Y − f(X − U) is a clopen subset of Y . Also it

contains B and f−1(V ) ⊂ U .

Conversely, let F be a regular open set of X. Let B = Y − f(F ). Then f−1(B) =

f−1(Y − f(F )) ⊂ X − F and X − F is regular closed. By assumption, there exists clopen

set V of Y containing B = Y − f(F ) such that f−1(V ) ⊂ X − F . Therefore F ⊂ X −

f−1(V ). Now since Y − f(F ) ⊂ V ,Y − V ⊂ f(F ) ⊂ f(X − f−1(V )) ⊂ Y − V . That is

f(F ) = Y − V is clopen. So f is regular totally open. 2

Theorem 4.3.3

For any bijective function f : X → Y , the following statements are equivalent.

(i.) Inverse of f is almost perfectly continuous

(ii.) f is regular totally open

Proof:

(i)⇒ (ii)

Suppose (i) holds. Let U be regular open in X. Since f−1 is almost perfectly continu-

ous, (f−1)−1(U) = f(U) is clopen in X. so (ii) holds.

(ii)⇒ (i)

Suppose f is regular totally open and U is a regular open set in X. Since f is regular

totally open, f(U) is clopen in Y . But f(U) = (f−1)−1(U). So f−1 is almost perfectly

continuous. 2
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Theorem 4.3.4

The composition of two regular totally open functions is regular totally open.

Proof:

Let f : X → Y and g : Y → Z be two regular totally open functions. Consider the

composition g ◦ f : X → Z. Let V ⊂ X be regular open. Since f is regular totally

open, f(V ) is clopen in Y . Since g : Y → Z is regular totally open, g(f(V )) is clopen in

Z. Hence g ◦ f : X → Z is regular totally open. 2

Theorem 4.3.5

If f : X → Y is an almost perfectly continuous, regular totally open bijection from an

r-normal space X to a space Y , then Y is ro-normal.

Proof:

Let A, B be two disjoint regular closed subsets of Y . Since f : X → Y is an almost per-

fectly continuous function, f−1(A) and f−1(B) are clopen inX. Hence they are closed. Since

X is an r-normal space, there exists disjoint regular open sets U and V such that f−1(A) ⊂

U , f−1(B) ⊂ V . Then A ⊂ f(U) and B ⊂ f(V ). Since f is a regular totally open func-

tion, f(U) and f(V ) are clopen and so regular open. Also f(U) ∩ f(V ) = f(U ∩ V ) =

φ. Thus disjoint regular closed sets are separated by disjoint regular open sets. Hence Y

is ro-normal. 2

Theorem 4.3.6

If f : X → Y is a bijective, regular totally open function and X is clopen T1, then Y is

δT1.
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Proof:

Let y1, y2 ∈ Y with y1 6= y2. Since f is bijective, there exist distinct x1,x2 ∈ X such that

f(x1) = y1, f(x2) = y2. Since X is clopenT1, there exists disjoint clopen sets Ux1 and Ux2

such that x1 ∈ Ux1 ,x1 /∈ Ux2 and x2 ∈ Ux2 ,x2 /∈ Ux1 . Then y1 ∈ f(Ux1), y1 /∈ f(Ux2) and

y2 ∈ f(Ux2), y2 /∈ f(Ux1) and f(Ux1) ∩ f(Ux2) = φ. Since f is regular totally open, f(Ux1)

and f(Ux2) are clopen and hence regular open in Y . So Y is δT1. 2

Theorem 4.3.7

If f : X → Y is a bijective, regular totally open function and X is ultra Hausdorff, then

Y is δT2.

Proof:

Let y1, y2 ∈ Y with y1 6= y2. Sincef is bijective, there exist distinct x1,x2 ∈ X such that

f(x1) = y1, f(x2) = y2. Since X is ultra Hausdorff, there exists disjoint clopen and hence

regular open sets Ux1 and Ux2 such that x1 ∈ Ux1 , x2 ∈ Ux2 . Since f is a regular totally

open, injective function, f(Ux1) and f(Ux2) are disjoint clopen and hence regular open sets

containing y1, y2 respectively. So Y is δT2. 2

Theorem 4.3.8

If f : X → Y is a bijective, closed, regular totally open function from an ultra regular space

X, then Y is r-regular.

Proof:

Let F be a closed subset of Y with y /∈ F . Since f : X → Y is bijective and closed, there

exist x and a closed set G such that x /∈ G and f(G) = F . Since X is an ultra regular
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space, there exists clopen sets Ux and UG such that x ∈ Ux,G ⊂ UG and Ux∩UG = φ. Then

f(Ux) ∩ f(UG) = φ. That is y = f(x) ∈ f(Ux), f(x) /∈ f(UG),F = f(G) ⊂ f(UG). Since f

is regular totally open, f(Ux) and f(UG) are clopen and hence regular open in Y . So Y is

r-regular. 2

Theorem 4.3.9

If f : X → Y is a bijective, closed, regular totally open function from an ultra normal

space X, then Y is r-normal.

Proof:

Let A, B be two disjoint closed subsets of Y . Since f : X → Y is bijective and closed, there

exists disjoint closed sets G1 and G2 such that f(G1) = A and f(G2) = B. Since X is

ultra normal, there exists disjoint clopen and hence regular open sets U and V such that

G1 ⊂ U ,G2 ⊂ V . Since f is regular totally open, f(U) and f(V ) are clopen and hence

regular open in Y such that f(G1) ⊂ f(U), f(G2) ⊂ f(V ) with f(U) ∩ f(V ) = φ. Hence

Y is r-normal. 2

Theorem 4.3.10

Let f : X → Y and g : Y → Z be two functions such that g ◦ f : X → Z is regular totally

open. Then the following holds.

(i.) If f is almost completely continuous and surjective, then g is regular totally open.

(ii.) If g is totally continuous and injective, then f is regular totally open.

Proof:

(i.) Let U be a regular open set in Y . Since f is almost completely continuous, f−1(U) is
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regular open in X. Since g ◦f : X → Z is regular totally open, (g ◦f)(f−1(U)) is clopen in

Z. Since f is surjective, g(ff−1(U)) = g(U) is clopen in Z. So g : Y → Z is regular totally

open.

(ii.) Let U be a regular open set in X. Since g ◦ f is regular totally open, (g ◦ f)(U) is

clopen in Z. Since g is totally continuous, g−1(g ◦f)(U) is clopen in Y . Since g is injective,

g−1(g ◦ f)(U) = f(U) is clopen in Y . So f is regular totally open. 2

4.4 Somewhat r-open function

Definition 4.4.1

A function f : (X, τ) → (Y, σ) is said to be somewhat open [11], if for U ∈ τ with

U 6= φ, there exists an open set V in Y such that V 6= φ and V ⊂ f(U).

Definition 4.4.2

A function f : (X, τ)→ (Y, σ) is said to be somewhat r-open, if for U ∈ τ with U 6= φ, there

exists a regular open set V in Y such that V 6= φ and V ⊂ f(U).

Example 4.4.1

Let X = Y = {a, b, c}, τ = {X,φ, {a}, {a, b}},σ = {Y, φ, {b}, {c}, {b, c}}.

Define a function f : (X, τ)→ (Y, σ) by f(a) = c, f(b) = a, f(c) = b. Then f is somewhat

r-open.

Definition 4.4.3

A function f : (X, τ)→ (Y, σ) is said to be somewhat clopen, if for U ∈ τ with U 6= φ, there

exists a clopen set V in Y such that V 6= φ and V ⊂ f(U).
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Example 4.4.2

Let X = Y = {a, b, c}, τ = {X,φ, {a}, {a, b}},σ = {Y, φ, {b}, {a, c}}. Define a function

f : (X, τ)→ (Y, σ) by f(a) = b, f(b) = c, f(c) = a. Then f is somewhat clopen.

Theorem 4.4.1

Every somewhat clopen function is somewhat r-open.

Proof:

The proof follows from the result that clopen sets are regular open . 2

Remark 4.4.1:

Converse of the above theorem need not be true.

Example 4.4.3

Let X = {a, b, c},Y = {a, b, c}, τ = {X,φ, {a}},σ = {Y, φ, {b}, {c}, {b, c}}.

Define a function f : (X, τ)→ (Y, σ) by f(a) = c, f(b) = a, f(c) = b. Then f is somewhat

r-open, but not somewhat clopen.

Theorem 4.4.2

If f : X → Y is somewhat r-open, where Y is locally indiscrete, then f is somewhat clopen.

Proof:

Let U be open in X. Since f is somewhat r-open, there exists a regular open set V in Y

such that V ⊂ f(U). But regular open sets in a locally indiscrete space are clopen. Hence

V is clopen and so f is somewhat clopen. 2

Theorem 4.4.3

Every somewhat r-open function is somewhat open.
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Proof:

The proof follows from the result ‘regular open sets are open’. 2

Remark 4.4.3:

Converse of the above theorem need not be true.

Example 4.4.4

Let X = Y = {a, b, c}, τ = {X,φ, {a}, {a, b}},σ = {Y, φ, {c}, {b, c}}.

Define f : (X, τ)→ (Y, σ) by f(a) = c, f(b) = a, f(c) = b. Then f is somewhat open, but

not somewhat r-open.

Theorem 4.4.4

If f : X → Y is somewhat open and Y is locally indiscrete, then f is somewhat r-open.

Proof:

Let U ∈ τ and U 6= φ. Since f is somewhat open, there exists a non empty open set V such

that V ⊂ f(U). Since Y is locally indiscrete,V is clopen and hence regular open. Hence f

is somewhat r-open. 2

Theorem 4.4.5

If f : (X, τ)→ (Y, σ) is open and g : (Y, σ)→ (Z, η) is somewhat r-open, then

g ◦ f : (X, τ)→ (Z, η) is somewhat r-open.

Proof:

Let U ∈ τ and U 6= φ. Since f is an open map f(U) is open. Also f(U) 6= φ. Since g is

somewhat r- open and f(U) ∈ σ with f(U) 6= φ, there exists a regular open set V in η

such that V ⊂ g(f(U)). So g ◦ f is somewhat r-open. 2
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Theorem 4.4.6

If f : (X, τ)→ (Y, σ) is a bijection, then the following are equivalent.

(i.) f is somewhat r-open.

(ii.) If C is a proper closed subset of X such that f(C) 6= Y , then there is a regular

closed subset D of Y such that D 6= Y and D ⊃ f(C).

Proof:

(i)⇒(ii)

Let C be a proper closed subset of X such that f(C) 6= Y . Then X − C is open in X

and X − C 6= φ. Since f is somewhat r-open, there exists a regular open set V 6= φ such

that V ⊂ f(X − C). Put D = Y − V . Clearly D is regular closed in Y . We claim that

D 6= Y ; for if D = Y ,V=φ, a contradiction. Also V ⊂ f(X−C) implies that D = Y −V ⊃

Y − [f(X − C)] = f(C).

(ii)⇒(i)

Let U be a non empty open set in X. Put C = X−U . Then C is a closed subset of X and

f(C) = f(X − U) = Y − f(U). This implies f(C) 6= Y . So by (ii), there exists a regular

closed subset D of Y such that D 6= Y and D ⊃ f(C). Let V = Y −D. Then V is regular

open and non empty. Also V = Y − D ⊂ Y − f(C) = Y − (Y − f(U)) = f(U). So f is

somewhat r-open. 2

Theorem 4.4.7

Let f : (X, τ) → (Y, σ) be a somewhat r-open function and A be any open subset of

X. Then f/A : (A, τ/A)→ (Y, σ) is also somewhat r-open.
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Proof:

Let U ∈ τ/A and U 6= φ. Since U is open in A and A is open in X,U is open in X. Since

f : (X, τ)→ (Y, σ) is somewhat r-open, there exists a non empty regular open set V in Y

such that V ⊂ f(U). Thus for any non empty open set U in τ/A, there exists a non empty

regular open set V in Y such that V ⊂ (f/A)(U). So f/A is somewhat r-open. 2

Theorem 4.4.8

Let (X, τ) and (Y, σ) be any two topological spaces and X = A ∪ B where A and B are

open subsets of X. Let f : (X, τ) → (Y, σ) be a function such that f/A and f/B are

somewhat r-open. Then f is also somewhat r-open.

Proof:

Let V be any open set in X such that V 6= φ. Then either (f/A)(V ) 6= φ or (f/B)(V ) 6= φ

or both.

Case (i): (f/A)(V ) 6= φ.

Since f/A is somewhat r-open, there exists a non empty regular open set V1 in A such that

V1 ⊂ (f/A)(V ). Since V1 is regular open in A and A is regular open in X,V1 is regular

open in X. So f is somewhat r-open.

Case (ii): (f/B)(V ) 6= φ.

This can be proved by using the same argument as in (i).

Case (iii):(f/A)(V ) 6= φ and (f/B)(V ) 6= φ

The proof follows from the proofs of case(i) and case(ii). 2
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4.5 Supra r-open function and supra r-closed function

Definition 4.5.1

Let (X, τ) and (Y, σ) be topological spaces and σ∗ be supra topology associated with σ. The

function f : (X, τ) → (Y, σ∗) is supra r-open (resp. supra r-closed) if the image of each

open (resp.closed) set in (X, τ) is supra r-open (resp.supra r-closed) in (Y, σ∗).

Example 4.5.1

Let X = {a, b, c}, τ = {X,φ, {a}}, τ ∗ = {X,φ, {a}, {b}, {a, b}} and f : (X, τ) → (X, τ ∗)

be defined by f(b) = a, f(a) = b, f(c) = c. Then f is supra r-open.

Theorem 4.5.1

A map f : (X, τ) → (Y, σ∗) is supra r-open if and only if f(IntA) ⊂ Supra rInt(f(A))

for each A ⊂ X.

Proof:

Suppose f is supra r-open. Then f(IntA) is a supra r-open set. f(IntA) is a supra r-open

set contained in f(A) and Supra rInt(f(A)) is the largest regular open set contained in

f(A) implies that f(IntA) ⊂ Supra rInt(f(A)), for each set A ⊂ X.

Conversely, suppose that A is an open subset of X andf(IntA) ⊂ Supra rInt(f(A)). Then

Int(A) = A and f(A) ⊂ Supra rInt(f(A)). Also since Supra rInt(f(A)) is the largest

supra r-open set contained in f(A),Supra rInt(f(A)) ⊂ f(A). Hence Supra rInt(f(A)) =

f(A) and f(A) is a supra r-open set. So f is supra r-open. 2

Theorem 4.5.2

A function f : (X, τ) → (Y, σ∗) is supra r-closed if and only if Supra rCl(f(A)) ⊂
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f(Cl(A)) for each A ⊂ X

Proof:

Suppose f is supra r-closed. Since f(Cl(A)) is a supra r-closed set containing f(A) and

Supra rCl(f(A)) is the smallest supra r-closed set containing f(A), Supra rCl(f(A)) ⊂

f(Cl(A)), for each A ⊂ X. Conversely suppose that A is a closed subset of X and

Supra rCl(f(A)) ⊂ f(Cl(A)). Then Cl(A) = A and Supra rCl(f(A)) ⊂ f(A). Since

Supra rCl(f(A)) is the smallest supra r-closed set containing f(A), f(A) ⊂ Supra rCl(f(A)).

Hence Supra rCl(f(A)) = f(A). So f(A) is a supra r-closed set and so f is supra r-closed.

2 2

Theorem 4.5.3

Let (X, τ), (Y, σ) and (Z, ν) be topological spaces. Let σ∗ and ν∗ be supra topologies asso-

ciated with σ and ν respectively. Let f : (X, τ)→ (Y, σ) and g : (Y, σ)→ (Z, ν). Then,

(i) if g ◦ f : (X, τ) → (Z, ν∗) is supra r-open and f : (X, τ) → (Y, σ) is a continuous

surjection, then g : (Y, σ)→ (Z, ν∗) is supra r-open.

(ii) if g ◦ f : (X, τ) → (Z, ν) is open and g : (Y, σ) → (Z, ν∗) is supra r-continuous

injection, then f : (X, τ)→ (Y, σ∗) is supra r-open.

Proof:

(i) Let A be an open subset of Y . Since f is a continuous surjection, f−1(A) is open in

X. Since g ◦ f is supra r-open, (g ◦ f)(f−1(A)) = g(A) is supra r-open in Z. Hence

g is a supra r-open function.
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(ii) Let A be an open subset of X. Since g ◦ f is open, (g ◦ f)(A) is open in Z. Since g

is a supra r-continuous injection, g−1(g ◦ f)(A) = f(A) is supra r-open in Y . Hence

f is supra r-open.

2

Theorem 4.5.4

Let (X, τ) and (Y, σ) be two topological spaces and σ∗ be supra topology associated with

σ. Let f : (X, τ)→ (Y, σ∗) be a bijection. Then the following are equivalent:

(i) f is supra r-open.

(ii) f−1 is supra r-continuous.

Proof:

(i)⇒ (ii)

Suppose U is an open set in X. Since f is supra r- open, f(U) = (f−1)−1(U) is supra

r-open in Y . So f−1 supra r- continuous.

(ii)⇒ (i)

Suppose (ii) holds. Let U be open in X. Since f−1 is supra r-continuous, (f−1)−1(U) =

f(U) is supra r-open in X. so (i) holds.

2 2

Theorem 4.5.5

Let (X, τ) and (Y, σ) be two topological spaces and σ∗ be supra topology associated with

σ. Let f : (X, τ)→ (Y, σ∗) be a bijection. Then the following are equivalent:
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(i) f is supra r-closed.

(ii) f−1 is supra r-continuous.

2

Theorem 4.5.6

If f : (X, τ)→ (Y, σ∗) is a bijective supra r-open map and X is T2, then Y is Supra rT2.

Proof:

Let y1, y2 ∈ Y with y1 6= y2. Since f is bijective, there exist distinct points x1,x2 inX

such that f(x1) = y1, f(x2) = y2. Since X is T2, there exists disjoint open sets U1 and U2

such that x1 ∈ U1, x2 ∈ U2. Since f is a bijective supra r-open map, f(U1) and f(U2) are

disjoint supra r- open sets containing y1, y2 respectively. So Y is Supra rT2. 2

4.6 Minimal r-open function

Definition 4.6.1

A function f : (X, τ)→ (Y, σ) is minimal r-open if the image of each regular open set in

X is minimal regular open in (Y, σ).

Theorem 4.6.1

If a bijective function f : X → Y is minimal r-open, then image of each regular closed set

in X is maximal regular closed in Y .

Proof:

Let F be a regular closed set in X. Then X −F is regular open in X. Since f : X → Y is
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minimal r-open, f(X − F ) is minimal regular open in Y . Since f is bijective, f(X − F ) =

f(X)−f(F ) = Y −f(F ), a minimal regular open set in Y . Hence f(F ) is maximal regular

closed in Y . 2

Theorem 4.6.2

Composition of two minimal r-open functions is minimal r-open.

Proof:

Let f : X → Y and g : Y → Z be minimal r-open functions. Consider the composition

g ◦ f : X → Z. Let V ⊂ X be regular open. Since f is a minimal r-open function, f(V )

is minimal regular open in Y . Since g : Y → Z is minimal r-open, g(f(V )) is minimal

regular open in Z. Hence g ◦ f : X → Z is minimal r-open. 2

4.7 Graph function

4.7.1 Preliminary ideas

Definition 4.7.1

Let f : X → Y be a function. Then the graph function of f is defined by g(x) =

(x, f(x)), for all x ∈ X.

4.8 Properties of graph function of various functions

Theorem 4.8.1

A function f : X → Y is almost perfectly continuous if its graph function is almost

perfectly continuous.
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Proof:

Let g : X → X × Y be the graph function of f : X → Y and g be almost perfectly

continuous. Let V ⊂ Y be regular open in Y . Then X ×V is regular open in X ×Y . Since

g is almost perfectly continuous, g−1(X × V)=f−1(V ) is clopen in X. Therefore f is almost

perfectly continuous. 2

Definition 4.8.1

A subset A of the product space X × Y is supra r-closed in X × Y if for each (x, y) in

(X × Y )-A there exists two supra r-open sets U and V containing x and y respectively

such that (U ×V )∩A = φ. A function f : (X, τ ∗)→ (Y, σ∗) has a supra r-closed graph, if

the graph G(f) = {(x, f(x)) : x ∈ X} is supra r-closed in X × Y .

Theorem 4.8.2

A function f : (X, τ ∗) → (Y, σ∗) has a supra r-closed graph if and only if for each

x ∈ X, y ∈ Y such that y 6= f(x), there exists supra r-open sets U and V containing x

and y respectively such that f(U) ∩ V = φ.

Proof: Suppose that f : X → Y has a supra r-closed graph. Then G(f) is supra r-closed

in X×Y . This implies for each (x, y) ∈ (X×Y )−G(f), there exists two supra r-open sets

U and V containing x and y respectively such that (U × V ) ∩G(f) = φ. That is for each

(x, y) /∈ G(f), (U ×V )∩G(f) = φ, where U and V are supra r-open sets containing x and

y respectively. (x, y) /∈ G(f) implies y 6= f(x) and so f(x) /∈ V . Hence f(U) ∩ V = φ.

Conversely, suppose that for each x ∈ X, y ∈ Y such that y 6= f(x), there exists supra

r-open sets U and V containing x and y respectively such that f(U) ∩ V = φ. Then

y /∈ f(U) and so (x, y) /∈ G(f). Also (U × V )∩G(f) = φ. Hence G(f) is supra r-closed. So
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f : X → Y has a supra r-closed graph. 2

Definition 4.8.2 Let (X, τ) and (Y, σ) be two topological spaces and τ ∗ and σ∗ be supra

topologies associated with τ and σ respectively. Then f : (X, τ ∗) → (Y, σ∗) is supra∗ r-

continuous, if inverse image of each supra r-open set is supra r-open.

Theorem 4.8.3

If a function (X, τ ∗) → (Y, σ∗) is supra ∗r − continuous and Y is Supra rT2, then f has

a supra r-closed graph.

Proof:

Let (x, y) ∈ (X × Y ) - G(f). Then y 6= f(x). Since Y is supra rT2, there exists supra

r-open sets U and V such that f(x) ∈ U , y ∈ V and U ∩ V = φ. Since f is supra∗ r −

continuous, there exists supra r-open neighbourhood W of x such that f(W ) ⊂ U . Hence

f(W ) ∩ V = φ. This implies f has a supra r-closed graph. 2

Definition 4.8.3

A function f : (X, τ ∗) → (Y, σ∗) has a strongly supra r-closed graph, if for each (x, y) /∈

G(f), there exists two supra r-open sets U and V containing x and y respectively such that

((U × Supra rCl(V )) ∩G(f) = φ.

Theorem 4.8.4

A function f : (X, τ ∗) → (Y, σ∗) has a strongly supra r-closed graph, if for each (x, y) /∈

G(f), there exists two supra r-open sets U and V containing x and y respectively such that

f(U) ∩ Supra rCl(V ) = φ.
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Theorem 4.8.5

If f : X → Y be a surjective function with a strongly supra r-closed graph, then Y is a

supra rT2 space.

Proof:

Let y1 and y2 be two distinct points of Y . Then there exists x1 in X such that f(x1) =

y1. Then (x1, y2) /∈ G(f). Since f has a strongly supra r-closed graph, there exists two supra

r-open sets U and V containing x1 and y2 respectively such that f(U)∩Supra rCl(V ) =

φ. Consequently y1 /∈ V . So Y is a Supra rT2 space. 2

Theorem 4.8.6

A function f : X → Y is somewhat r-continuous, if its graph function is somewhat r-

continuous.

Proof:

Let g : X → X × Y be the graph function of f : X → Y . Suppose g is somewhat r-

continuous. Let V ⊂ Y be open in Y . Then X × V is open in X × Y . Since g is somewhat

r-continuous, there exists a regular open set U ⊂ g−1(X × V ) = f−1(V ). Therefore f is

somewhat r-continuous. 2

Definition 4.8.4

A subset A of the product space X ×Y is somewhat r-closed in X ×Y if for each (x, y) ∈

(X × Y ) − A, there exists regular open set U and an open set V containing x and y

respectively such that (U × V ) ∩ A = φ. A function f : X → Y has a somewhat regular

closed graph, if the graph G(f) = {(x, f(x)) : x ∈ X} is somewhat regular closed in X×Y .
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Theorem 4.8.7

A function f : X → Y has a somewhat regular closed graph if and only if for each

x ∈ X, y ∈ Y such that y 6= f(x), there exists regular open set U and an open set V

containing x and y respectively such that f(U) ∩ V = φ.

Theorem 4.8.8

If a function f : X → Y is somewhat r-continuous and Y is T2, f has a somewhat regular

closed graph.

Proof:

Let (x, y) ∈ (X×Y )−G(f). Then y 6= f(x). Since Y is T2 there exists open sets U and V

such that f(x) ∈ U , y ∈ V and U ∩ V = φ. Since f is somewhat r-continuous, there exists

regular open set W of x such that f(W ) ⊂ U . Hence f(W )∩ V = φ. This implies f has a

somewhat regular closed graph. 2
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CONCLUSION

Through this thesis we were able to derive properties of various types of regular open sets

and also to compare various types of functions and study their properties.

CHAPTER 1

Chapter 1, was on types of regular open sets. We got the following important re-

sults through the discussions of first chapter.

Properties of minimal regular open sets and maximal regular open sets

1. Intersection of a minimal regular open set and a regular open set is either empty

or that minimal regular open set itself.

2. Intersection of two minimal regular open sets is either empty or both are equal.

3. Union of a maximal regular open set and a regular open set is either the whole set

or that maximal regular open set itself.

4. Union of two maximal regular open sets is either the whole set or both are equal.

Properties of maximal regular closed sets and minimal regular closed sets

1. Intersection of a minimal regular closed set and a regular closed set is either empty

or that minimal regular closed set itself.

2. Intersection of two minimal regular closed sets is either empty or both are equal.
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3. Union of a maximal regular closed and a regular closed set is either the whole set

or that maximal regular closed set itself.

4. Union of two maximal regular closed sets is either the whole set or both are equal.

Properties of weakly regular open sets

1. Union of two proper regular open sets is either weakly regular open or the whole

set.

2. Intersection of two proper regular closed sets is either weakly regular closed or

empty.

3. Intersection a weakly regular open set and a proper regular open set is regular open.

4. Union of a weakly regular closed set and a proper regular closed set is regular

closed.

5. Union of two weakly regular open sets is either a weakly regular open set or the

whole set.

6. Intersection of two weakly regular closed sets is either a weakly regular closed set

or empty.

7. Union of two weakly regular closed sets is either a closed set or the whole set.

8. Intersection of two weakly regular open sets is either an open set or empty.

Properties of Supra r- open sets

1. Union of a Supra r-open set and a supra open set is a supra open set.
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2. Intersection of a Supra r-open set and a supra open set need not be a supra open

set.

3. Finite intersection of supra r-open sets is supra r-open.

4. Finite union of supra r-closed sets is supra r-closed.

5. Finite union of supra r-open sets may fail to be supra r-open.

6. Finite intersection of supra r-closed sets may fail to be supra r-closed.

CHAPTER 2

Separation axioms in terms of regular open sets was the topic of Chapter 2. We

were able to derive properties of certain special spaces like rTmin, rTmax and rTweak and

some other spaces like r − door, rT 1
2

etc. Important results are listed below.

Hereditary and weakly hereditary properties

1. r-regularity is a hereditary property.

2. r-normality is a weakly hereditary property.

Properties of rTmin, rTmax and rTweak spaces

1. rTmin and rTmax spaces will contain regular open sets of the form A,X − A along

with other open sets.

2. rTweak spaces are of the form {φ, X,A}.
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3. Every pair of different minimal regular open (respectively maximal regular open)

sets in rTmin (respectively rTmax) space are disjoint.

4. Union of every pair of different maximal regular open sets in an rTmax space is the

whole space.

5. Intersection of every pair of different minimal regular open sets in an rTmin space

is empty.

6. Every regular open subspace of an rTmin space is also an rTmin space.

Properties of spaces-rTmax, r-door, rT 1
2

etc

1. rTmin (respectively rTmax) spaces need not be δT0 (respectively δT1, rT2) and vice-

versa.

2. rTmin (respectively rTmax ) space need not be rT 1
2

space and vice-versa.

3. rTmin (respectively rTmax ) space need not be r-door space and vice-versa.

4. rTmin and rTmax space need not be submaximal regular space and vice-versa.

CHAPTER 3

Various functions were introduced and properties were studied in chapter 3. Comparison

between the functions was also done. We got the following important results after the

discussions.

Properties of almost perfectly continuous functions

1. Almost perfectly continuous functions from an r-connected space X onto any spce

Y , make Y an indiscrete space.
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2. If a function f : X →
∏
Yλ is almost perfectly continuous, then πλ ◦ f : X → Yλ is

almost perfectly continuous for each λ ∈ Λ,where πλ is the projection function.

3. Restriction of an almost perfectly continuous function onto a clopen set is almost

perfectly continuous.

4. Composition of an almost perfectly continuous function and an almost completely

continuous function is almost perfectly continuous.

5. Composition of two almost perfectly continuous functions is almost perfectly con-

tinuous.

6. Composition of an almost perfectly continuous function and a completely continu-

ous function is totally continuous.

7. The following diagram shows the relationship between various functions and almost

perfectly continuous function.

Strongly continuous

↓

Totally continuous → Completely continuous

↓ ↓

Almost perfectly

continuous →
Almost completely

continuous

Properties of somewhat r-continuous function

1. Composition of a continuous function and a somewhat r-continuous function is

somewhat r-continuous.
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2. Composition of a somewhat r-continuous function and a continuous function is

somewhat r-continuous.

3. If Z = A ∩ B and f : Z → Y is a function such that f/A and f/B are somewhat

r-continuous, then f is somewhat r-continuous.

4. If X and Y are any two topological spaces,A a regular open set of X and

f : (A, τ/A)→ (Y, σ) be somewhat r-continuous such that f(A) is dense in Y , then

any extension F of f is somewhat r-continuous.

5. If X and Y are topological spaces and M is an r-dense subset of X under somewhat

r-continuous injective map f : X → Y , then f(M) is dense in Y .

6. The following diagram shows the relationship between various functions and some-

what r- continuous function.

Cl − super continuous

↓
Completely
continuous → Somewhat r- continuous →

Somewhat
continuous

↓ ↓
Almost completely

continuous → δ − continuous

Properties of minimal r-continuous function and maximal r-continuous function

1. Restriction of a minimal r-continuous function on to a regular open set is a minimal

r-continuous function.

2. Restriction of a maximal r-continuous function on to a regular open set is a maximal

r-continuous function.
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3. Composition of an almost completely continuous function and a minimal r-continuous

function is minimal r- continuous.

4. Composition of an almost completely continuous function and a maximal r-continuous

function is maximal r- continuous.

5. Composition of maximal r-irresolute functions is maximal r- irresolute.

6. Composition of minimal- maximal r-continuous functions need not be minimal-

maximal r-continuous.

7. Composition of maximal- minimal r-continuous functions need not be maximal-

minimal r-continuous.

8. Composition of a minimal r-irresolute function and a maximal-minimal r-continuous

function is maximal- minimal r- continuous.

9. Composition of a minimal r-continuous function and a maximal- minimal r-continuous

function is maximal r- continuous.

10. If f : X → Y and g : Y → Z are minimal-maximal r-continuous and if Y is an

rTmin space, then g ◦ f : X → Z is minimal-maximal r- continuous..

11. If f : X → Y is maximal r-irresolute and g : Y → Z is minimal- maximal r-

continuous, then g ◦ f : X → Z is minimal-maximal r- continuous.

12. If f : X → Y is maximal r-continuous and g : Y → Z is minimal- maximal

r-continuous, then g ◦ f : X → Z is minimal r- continuous.

13. If f : X → Y and g : Y → Z are maximal- minimal r-continuous and if Y is an

rTmax space, then then g ◦ f : X → Z is maximal- minimal r- continuous.
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14. Restriction of a minimal r-continuous function onto a non empty regular open

subset A of a topological spce X is minimal r-continuous.

15. Restriction of a maximal r-continuous function onto a non empty regular open

subset A of a topological spce X is maximal r-continuous.

16. The following diagram shows the relationship between various functions and vari-

ous types of minimal and maximal r-continuous functions.

Minimal- maximal
r-continuous

Maximal- Minimal
r-continuous

↓ ↓

Minimal
r-continuous ←

Almost
completely
continuous →

Maximal
r-continuous

↑ ↑
Minimal

r-irresolute
Maximal

r-irresolute

Properties of supra r-continuous function

1. If X and Y be topological spaces, τ ∗ is the supra topology associated with τ and

f : (X, τ ∗)→ (Y, σ) is a function then the following are equivalent:

(i) f is supra r-continuous.

(ii) Inverse image of a closed set in Y is supra r-closed in X.

(iii) Supra rCl(f−1(A)) ⊂ f−1(Cl(A)) for every A ⊂ Y .

(iv) f(Supra rCl(A)) ⊂ Cl(f(A)) for every A ⊂ X.

(v) f−1(Int(B)) ⊂ Supra rInt(f−1(B)) for every B ⊂ Y .
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2. If (X, τ) and (Y, σ) are topological spaces, τ ∗ is the supra topology associated with

τ , then f : (X, τ ∗)→ (Y, σ) is supra r-continuous, if one of the following holds:

(i) f−1(Supra rInt(B)) ⊂ rInt(f−1(B)) for every B ⊂ Y .

(ii) rCl(f−1(B)) ⊂ f−1(Supra rCl(B)) for every B ⊂ Y .

(iii) f(rCl(A)) ⊂ Supra rCl(f(A)) for every A ⊂ X.

3. Composition of a supra r-continuous function and a totally continuous function is

supra r-continuous.

4. Composition of a supra r-continuous function and a completely continuous function

is supra r-continuous.

CHAPTER 4

Chapter 4 , was on various functions like regular totally open, somewhat r-open

etc. on certain special spaces. Through the study, following results were obtained.

Properties of almost perfectly continuous function and somewhat r-continuous function

1. Image of r-separable space under somewhat r-continuous function is separable.

2. If f : X → Y is a totally continuous, injective, regular open function from a clopen

regular space X onto a space Y , then Y is r-regular.

3. If f : X → Y is an almost perfectly continuous, injective, regular open function

from a clopen regular space X onto a space Y , then Y is ro-regular.

4. If f : X → Y is a totally continuous, injective, regular open function from a clopen

normal space X onto a space Y , then Y is r-normal.
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5. If f : X → Y is an almost perfectly continuous, injective, regular open function

from a clopen normal space X onto a space Y , then Y is ro-normal.

6. If f is a somewhat r-continuous function from X onto Y and if X is r-separable,Y

is separable.

Properties of regular totally open function

1. Composition of regular totally open functions is regular totally open.

2. A function f : X → Y is regular totally open if and only if f−1 : Y → X is almost

perfectly continuous.

3. For any bijective function f : X → Y the following statements are equivalent.

(i.) Inverse of f is almost perfectly continuous

(ii.) f is regular totally open

4. If f : X → Y and g : Y → Z are two functions such that g ◦ f : X → Z is regular

totally open, then the following holds.

(i.) If f is almost completely continuous and surjective, g is regular totally open.

(ii.) If g is totally continuous and injective, f is regular totally open.

Properties of somewhat r-open function

1. Composition of an open map and a somewhat r-open map is somewhat r-open map.

2. Restriction of a somewhat r-open map to an open set is somewhat r-open.
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3. If (X, τ) and (Y, σ) are any two topological spaces,X = A ∪B where A and B are

open subsets of X and f : (X, τ) → (Y, σ) be a function such that f/A and f/B

are somewhat r-open, then f is also somewhat r-open.

Properties of supra r-open function

1. A function f : X → Y is supra r-open if and only if if f−1 : Y → X is supra

r-continuous.

2. Let (X, τ), (Y, σ) and (Z, ν) be topological spaces. Let σ∗ and ν∗ be supra topologies

associated withσ and ν respectively. Let f : (X, τ) → (Y, σ) and g : (Y, σ) →

(Z, ν). Then,

(i) if g◦f : (X, τ)→ (Z, ν∗) is supra r-open and f : (X, τ)→ (Y, σ) is a continuous

surjection, then g : (Y, σ)→ (Z, ν∗) is supra r-open.

(ii) if g ◦ f : (X, τ)→ (Z, ν) is open and g : (Y, σ)→ (Z, ν∗) is supra r-continuous

injection, then f : (X, τ)→ (Y, σ∗) is supra r-open.

3. Let (X, τ) and (Y, σ) be two topological spaces. Let f : (X, τ) → (Y, σ) be bijec-

tion. Then the following are equivalent:

(i) f is supra r-open.

(ii) f−1 is supra r-continuous.

Properties of minimal r-open function

1. A map f : (X, τ)→ (Y, σ) is minimal r-open if image of each regular open set in X

is minimal regular open in (Y, σ).
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2. If a bijective function f : X → Y is minimal r-open, then image of each regular

closed set in X is maximal regular closed in Y .

3. Composition of minimal r-open functions is minimal r-open.

4. If f−1 : (Y, σ)→ (X, τ) is minimal r-continuous and X is rTmin , then f : (X, τ)→

(Y, σ) is minimal r-open.

Properties of graph function of various functions

1. A function f : X → Y is almost perfectly continuous if its graph function is almost

perfectly continuous.

2. A function f : X → Y is somewhat r-continuous if its graph function is somewhat

r-continuous.
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