Reg. No.....

FIRST SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2020

Instrumentation

INS 1B 01—APPLIED MATHEMATICS

Time: Two Hours and a Half

Maximum : 80 Marks

1. Find
$$\lim_{x \to 0} \frac{e^{3x} - 1}{x}$$
.

2. Find
$$\int (3x+5)^4 dx$$

3. Evaluate
$$\int_0^a \frac{x^2}{\sqrt{a^2 - x^2}} dx$$

4. Find
$$\frac{dy}{dx}$$
, if $y = \sqrt{1-x^3}$.

5. Solve
$$\frac{dy}{dx} = 4x^2$$
 with $y(1) = 2$.

7. The range of the real valued function
$$f(x) = \sqrt{9-x^2}$$
 is ?

8. Find
$$\frac{dy}{dx}$$
, if $y = 2 \csc^2(x)$.

10. Does the function
$$f(x) = \sin(x)$$
 is continuous for every values of x?

11. Does the curve
$$y = x^4 - 2x^2 + 2$$
 have any horizontal tangent? If so, where?

12. Evaluate
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$$
.

- 13. Find the absolute maximum and minimum values of $f(x) = \sin x + \cos x$ in $(0, \pi)$.
- 14. Find the slope of the curve $x^3y^3 + y^2 = x + y$ at the point (1, 1).
- 15. Find $\frac{dy}{dx}$, if $x^2 = y^2 + y \sin(x)$.

 $(10 \times 3 = 30 \text{ marks})$

Section B (Paragraph Type Questions)

Answer at least **five** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

- 16. Evaluate $\lim_{x \to 0} \left(\frac{4 \sqrt{16 + x}}{x} \right)$.
- 17. Verify Rolle's theorem for the function $f(x) = \cos x + \sin x$ in the interval $[0, 2\pi]$.
- 18. Does the graph of $f(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$ have a vertical tangent at the point (0, 1)?

Give reason for your answer:

- 19. Find $\frac{dy}{dx}$, if $y = \frac{2x+5}{3x-2}$.
- 20. If x = 2t + 3 and $y = t^2 1$, find the value of $\frac{dy}{dx}$ at t = 6.
- 21. Find the probability of getting an even number with an ordinary six faced die.

22. If
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2}$$
, when $x < 0$, find the value of 'a', if $f(x)$ is continuous at $\frac{a}{\sqrt{x}}$, when $x > 0$, when $x > 0$

23 If
$$y = x^{\cos x}$$
, find $\frac{dy}{dx}$.

 $(5 \times 6 = 30 \text{ marks})$

Section C

3

Answer any **two** questions. Each question carries 10 marks.

- Find for what values of x, the following expression is maximum and minimum respectively. $2x^3 21x^2 + 36x 20$. Find also the maximum and minimum value.
- 25 Find $\lim_{x \to \infty} \frac{5x^2 + 8x 3}{3x^2 + 2}$.
- 26 Find the area of the region enclosed by the parabolas $y^2 = 4x$ and $x^2 = 4y$.
- 27 Find the mean and standard deviation for the following data:

Size of item	:	4	5	6	7	8	9	10	
Frequency		6	12	15	C 28	20	14	5	
								$(2 \times 10 =$	20 marks)
				16,					
				1					
			16						
		1	O.						
		1							
	25	, [*]							
.0									
1///									