C 2076

(Pages: 2)

••

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION MARCH 2021

(CBCSS)

Polymer Chemistry

PCH 4E 03 2—POLYMER NANOTECHNOLOGY

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section/Part that is equivalent to the maximum weightage of the Section/Part.

Part A

Answer any eight questions.

Each question carries a weightage of 1.

- 1. What is the meant by biomimetic nano composites? Give one example.
- 2. Why it is not possible to image nano objects with X-rays?
- 3. Give one example of nanomaterials used for DLC coatings.
- 4. What is meant by nanotechnology?
- 5. Give two examples of nano materials used in structural and civil applications.
- 6. Explain the basic principle of AFM?
- 7. What are the three main requirements for an X-ray diffraction experiment?
- 8. What are the different types of CNT's?
- 9. What is TEN in nano chemistry?
- 10. What are dendrimers? Mention its important application.
- 11. What is PNC? Give its applications.
- 12. Mention any two applications of nanocomposites in the field of defense.

 $(8 \times 1 = 8 \text{ weightage})$

C 2076

Part B

2

Answer any four questions.

Each question carries a weightage of 3.

- 13. Discuss the stress-strain relationship with respect to mechanical properties of nanocomposites.
- 14. What are nano fillers? Discuss its classification.
- 15. Differentiate hot melt impregnation and solution impregnation methods.
- 16. Discuss the Joslin-Oliver method of nano indentation.
- 17. Differentiate direct and layer by layer self assembly.
- 18. Discuss the principle and working of scanning tunneling microscope.
- 19. Write short note on the applications of nanocomposites in the field of catalysis and health care.

 $(4 \times 3 = 12 \text{ weightage})$

Part (

• Answer any **two** questions.

Each question carries a weightage of 5

- 20. What are nanocomposites? Discuss its classification with examples.
- 21. Write an essay on the various electron microscopies for the characterization of nanomaterials.
- 22. Discuss the various methods for the synthesis of nanocomposite materials.
- 23. Write an essay on the different processing techniques of nanocomposites.

 $(2 \times 5 = 10 \text{ weightage})$

	2074	
v	4 074	:

(Pages: 2)

Name		
Reg. No		

FOURTH SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION MARCH 2021

(CBCSS)

Polymer Chemistry

PCH 4E 02—TESTING AND CHARACTERISATION OF POLYMERS

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section/Part that is equivalent to the maximum weightage of the Section/Part.

Part A

Answer any eight questions.

Each question carries a weightage of 1.

- What is glass transition temperature?
- 2. What is meant by tensile strength?
- 3. Explain X-ray diffraction technique of polymers.
- 4. What is shear stress and shear rate?
- 5. Short note on impact testing of polymers.
- 6. Explain heat ageing of rubbers.
- 7. How FT-IR analysis is useful for polymer identification?
- 8. Role of raman spectroscopy in polymers.
- 9. What is storage modulus with respect to polymers?
- 10. Mention about the optical properties of polymers.
 - 11. Discuss about light scattering method.
- 12. Explain molecular weight determination of polymers.

Part R

Answer any four questions.

Each question carries a weightage of 3.

- 13. How NMR spectrum useful for the structural determination of polymers?
- 14. Define Scorch. How is it useful to a processor?
- 15. Write a short note on the rheology of polymers.
- 16. Enlist the changes after vulcanization of rubber.
- 17. Discuss about dielectric loss and dissipation factor.
- 18. Explain about the tribology of polymers.
- 19. Explain environmental impact of polymers.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 5.

- 20. Explain Gel permeation chromatography
- 21. What is the difference between DTA and DSC? With the neat sketch explain how the analysis of polymers is done with a DSC, giving a typical thermogram.
- 22. How do you measure the visco-elastic properties of Polymers?
- 23. Distinguish between TEM and SEM. Describe the method of studying the morphological properties of polymeric materials using SEM.

 $(2 \times 5 = 10 \text{ weightage})$

C 2073	(Pages: 2)	Name

Reg.	No

FOURTH SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION MARCH 2021

(CBCSS)

Polymer Chemistry

PCH 4C 12—PHYSICAL CHEMISTRY OF POLYMERS

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any eight questions.

Each question carries a weightage of 1.

- 1. What is meant by configuration of a polymer chain? Give examples.
- 2. What are theta conditions?
- 3. What are the merits and demerits of Rouse-Bueche theory.
- 4. Why Is it not possible to prepare perfectly crystalline polymers?
- 5. What are the different ways of constructing liquid crystalline polymers?
- 6. What are mesogens and mesophases?
- 7. Define glass transition temperature? Why is it considered as a second order transition?
- 8. Write briefly on the thermodynamic theory of glass transition.
- 9. What are the advantages and disadvantages of free volume theory?
- 10. Differentiate between creep and stress relaxation.
- 11. What are the importatit pheribmena involved in the rheological properties of polymers?
- 12. Write down the thermodynamic equation of state for rubber elasticity and explain the terms.

 $(8 \times 1 = 8 \text{ weightage})$

C 2073

Part B

2

Answer any four questions.

Each question carries a weightage of 3.

- 13. Explain the different stages in polymer dissolution.
- 14. Write a short note on the conformation of polymer chains.
- 15. Derive Avrami equation.
- 16. Mention the significance of time-temperature superposition principle for viscoelastic materials.
- 17. Explain the firinged micelle and spherulitic models.
- 18. Explain the different stages in polymer dissolution.
- 19. What are the molecular bases of creep and stress relaxation?

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 5.

- 20. (a) Derive Flory Huggins Equation.
 - (b) How Flory-Krigbaum theory is applied to polymer solutions.
- 21. Give a detailed account of side chain liquid crystalline polymers.
- 22. Illustrate the Maxwell and Voigt models suggested for the viscoelastic behavior of polymers.
- 23. (a) What are the factors that influence the T_g of a polymer?
 - (b) Explain any one method for the determination of glass transition temperature.

 $(2 \times 5 = 10 \text{ weightage})$