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ABSTRACT

Hyperfunctions are one of the generalisations of generalized function, introduced by
Mikio Sato. Urs Graf applied Laplace transform, Fourier transform, Hilbert trans-
form, Mellin transform and Hankel transform to the hyperfunctions. In this study
Weierstrass transform, Stieltjes transform, £, transform, Fourier-Laplace transform,
Laplace-Stieltjes transform and Fourier-Stieltjes transform have been developed for
hyperfunctions and some properties of these transforms have also been investigated.
Abelian -Tauberian theorem is proved for Laplace transform, Stieltjes transform and
Laplace-Stieltjes transform of hyperfunctions. The sufficient condition for the exis-
tence of Two Dimensional Laplace transform of hyperfunctions in two variables with
separable defining function is investigated. Some order theoretic properties of the
linear space of hyperfunctions and norm convergence of the sequence of hyperfunc-
tions are also studied. The concept of completely monotonic hyperfunction has been
developed. A partial differential equation involving hyperfunction has been solved

using Weierstrass transform of hyperfunction.

Keywords: Hyperfunction, Laplace Transform,Fourier Transform,Weierstrass Trans-
form, Stieltjes Transform, £, Transform, Fourier-Laplace Transform, Laplace-Stieltjes
Transform, Fourier-Stieltjes Transform, Two dimensional Laplace Transform, Ordered

linear space, Norm convergence, Completely monotone functions.
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Notations Used

C : Complex plane

C, : the upper half plane of the complex plane C
C_ : the lower half plane of the complex plane C
N(I) : Complex neighbourhood of I

N, (I) : upper half complex neighbourhood of I

N_(I)

lower half complex neighbourhood of I
O(N(I)): Ring of holomorphic functions in the complex neighbourhood N (I) of I
O(N(I)\I): Ring of holomorphic functions in N(I)\/

F.(z) : upper component of F(z)
F_(2) : lower component of F(z)

[F(z)] : Equivalence class of F(z)

B(I) : Set of all hyperfunctions defined on the interval [
A(I) : Ring of all real analytic functions on I

d(z) : Delta function

u(z) : Unit step function

D" f(z) : n'™ derivative of the hyperfunction f(x)

fe(x) : Even hyperfunction

fo(z) : Odd hyperfunction



f(z): Conjugate of the hyperfunction f(x)

dn(x — a) :Generalised delta function of order N at a

f(z,a) : Hyperfunction f(z) depending on a continuous parameter «

PBo(J) : Set of all holomorphic hyperfunctions on J

[E : Linear space of entire hyperfunctions

BP(]) : Linear space of exponentially bounded hyperfunctions on the real

interval [

B o Set of all non-decreasing, non-negative, real valued, holomorphic, measurable,
exponentially bounded hyperfunctions of bounded variation defined on the closed
subset I < [0, o0)

Br([; x Iy) : Set of all real valued hyperfunction in I; x I

B (I x I) : Set of all hyperfunctions in Bgr(I; x I5) having bounded exponential
growth

Br(I) : Set of all real valued hyperfunction in /

BY(I) : Linear subspace of Bg(I) of hyperfunctions of bounded exponential growth
and has a complex measurable function as defining function

BE(I) : Set of all exponentially bounded hyperfunctions with compact support on I
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Abbreviations Used

supp f : support of the function f
kerf : kernel of f

imf . image of f

sing suppf(z) : singular support of f(z)
sing specf(z) : singular spectrum of f(z)
sgn : sign function

Rs : real part of s

I'ms : imaginary part of s

£ . Laplace transform

§ : Fourier transform

2, : Generalised Weierstrass transform
Res : Residue

S @ Stieltjes transform

£, . Ly transform

Sp(7y) : Support function

$£ : Fourier-Laplace transform

Ls : Laplace-Stieltjes transform

S5 : Fourier-Stieltjes transform
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Introduction

History

The basic idea of delta function came in the beginning of 19 century. It was
mainly used by Poisson, Fourier and Cauchy in the mathematical modelling of phys-
ical situations. Kirchhoff and Heaviside [28][35], first tried to give the mathematical
interpretation of delta function. Kirchhoff used the concept of delta function in the
fundamental solution of wave equation. Heaviside[45] used it in Operational Calculus.
Also he expressed delta function as the derivative of unit step function. Heaviside

expressed unit step function as

which is not differentiable at x = c.

In 1926, Paul Dirac[17] introduced the notation of delta function and established
some properties of it in his works on quantum field theory. The delta function is
defined as

rz—c)=0VY x+#c

viil



b 1, ce(a,b);
f dz —c)dx =

0, otherwise.

Physicists like Pauli, Heisenberg and Jordan widely used it for the development
of quantum field theory. Even though the uses of Dirac delta function by Physicists
increased, the classical mathematics fails to explain delta function mathematically,
because using classical integration theory, the integral of a function which is zero
everywhere except exactly at one point, has the integral value zero. Many mathe-
maticians started to think on how to define such singular functions mathematically.
They called such functions (functions like delta function) as ’distributions’ or 'gener-
alized functions’.

In 1932, Bochner S, developed the theory for such situations and in 1935, Sobolev
S.L.[54] gave the definition for distributions in terms of functionals.

Later in 1945, French mathematician Laurent Schwartz [51][52] developed, fur-
ther theory of distributions in an efficient way using the concept of test function
space. The book by L.Schwartz, " Theory of Distributions” became a foundation for
further development of distribution theory. Then onwards the theory of generalized
functions began to develop intensively. Mathematicians started to investigate this
area because of its wide applications in Mathematical Physics mainly for finding the
solutions of partial differential equations, boundary value problems and initial value
problems that appeared in physical problems.

In 1954, Schwartz[50] published a paper, showing the impossibility of product
of two arbitrary distributions. But, some physical problems required product of dis-
tributions. Hence mathematicians tried to define product of distributions by various

methods. J.F.Colombeau [11] proposed a theory to solve this impossibility through

1X



the introduction of the concept of new generalized functions.

Physics problems involving generalized functions expressed in terms of partial
differential equations or differential equations can be effectively solved using the
application of integral transforms to it. A.H. Zemanian [64] applied several inte-
gral transforms to distributions by the method of adjoints in his book. Also V.S.
Vladimirov [58],[57] developed many properties of integral transforms of generalized
functions and proved Tauberian theorems for the Laplace transform of generalized
functions.

Introduction

Mikio Sato[48], a Japanese mathematician, developed hyperfunctions, which is
more generalised than the concept of generalized functions. Sato applied classical
complex analysis function theory to generalize notion of function of a real variable.
Sato expressed the concept of generalized function in a less abstract way than that
by L.Schwartz. Schwartz defined a generalized function as the limit of sequences
of ordinary functions using the notion of equivalence classes. Sato defined a func-
tion of a real variable as the difference of the boundary values of a complex function,
which is holomorphic and call it a hyperfunction. Hyperfunctions are always infinitely
differentiable. The set of all distributions form a subspace of the linear space of hy-
perfunctions.

Mathematicians like A. Kaneko[32], Mitsuo Morimoto[40] and Isao Imai[30] did
immense work based on this hyperfunction theory. Isao Imai applied Sato’s hyper-
function theory in a non trivial concrete way and showed the computational power of
hyperfunction in his book ’Applied Hyperfunction theory’. Urs Graf]25] further de-
veloped Imai’s work and published a book ’'Introduction to Hyperfunctions and Their

Integral Transforms’. He applied Laplace transforms, Fourier transforms, Hilbert



transforms, Mellin transforms and Hankel transforms to hyperfunctions and used
them to solve integral equations. He focused more on the practical approach than
the theoretical way.
Research Motivation

Urs Graf’s approach to hyperfunction is the main motivation for this present
work titled ”Some integral transforms of hyperfunctions and their properties”. As
a continuation of the development of application of integral transforms on hyper-
functions by Urs Graf, in the background of no other study in this regard, in this
thesis we have applied the integral transforms such as Weierstrass transform, Stielt-
jes transform, £,-transform, Fourier-Laplace transform, Laplace-Stieltjes transform,
Fourier-Stieltjes transform and Two dimensional Laplace transform to hyperfunctions,
and have proved some Abelian - Tauberian theorems for the integral transforms of
hyperfunctions. In fact the notion of order theoretic and convergence aspects of hy-

perfunctions have been obtained through this present study.

The content of the thesis are organised in the following way.

Chapter 1 contains some preliminary definitions and results necessary to un-
derstand the study taken up in the thesis. Definition of Hyperfunctions and its

properties are included in it.

In chapter 2, the integral transforms like Weierstrass transform, Stieltjes trans-
form and £, transform are defined for hyperfunctions. Some properties of these
transforms are proved.

Weierstrass transform is applied to a class of hyperfunctions having bounded ex-

x1



ponential growth. We have established some properties of this background using the

relation connecting Weierstrass and Laplace transforms of hyperfunctions.

The following are the main results obtained.

If f(z) = [F(#)] is a hyperfunction with bounded exponential growth then,

W[ f(—2)l(=s) = =W f(x)](s)

for t > 0,

W[ f(2)](s) = W[ f ()](5)

for f(x) a real analytic hyperfunction and constant ¢

W[ f(x+)](s) = Wlf ()]s +¢), if o-(f) <R(s) <o (f).

The relation connecting Weierstrass and Laplace transform of hyperfunction is

—8 2

oW [e 7 (2)](s) = ( 57 )" Wile f@)](s)

The inverse Weierstrass transform is defined.
If f(s) = Q[f(x)](s) is the Weierstrass transform of f(z) = [F(z)], a hyper-

function of bounded exponential growth then

f(@) = [F(2)] = lim MAIH fi@‘(ﬁ?2 Flis)ds

x1i



There exist different methods for defining Stieltjes transform of distributions.
Here the Stieltjes transform of a hyperfunction is defined in the following way.
For a hyperfunction f(z) = [F(z)] of bounded exponential growth the Stieltjes trans-

form is defined by

) = stpane = | L e = f CEG),.

o T+t o 2+t
The following results are obtained

e The relation connecting Stieltjes and Laplace transform of hyperfunction is

ifo_(f) < Rs < o, (f)and o_(f) < Rt < o.(f)

o If f(x) =[F(2)] and g(z) = [G(2)] are any two hyperfunctions having bounded
exponential growth with the Stieltjes transform f(t) = S[f(z)](t) and §(t) =
S[g(x)](t) respectively, then

o0
0

) @i = [ g

e If f(x) = [F(z)] is areal valued hyperfunction with bounded exponential growth
and f(x) > 0for all z > 0 then the Stieltjes transform f(t) = S[f(z)](t) > 0

forallt > 0

o If f(z) = [F(2)] is a hyperfunction with bounded exponential growth, f(s) =

xiil



L[f(x)](s) exists, then

ndn

S @) = (=1)" = (Sl ($)](1),

foro (f) < Rs < o,(f) and U,(f) < Rt < U+(f)

o If f(x) = [F(2)] and g(y) = [G(z)] are two hyperfunctions of bounded expo-

nential growth. If support f(z) is a compact subset of (0,00) then

e}

e
| ere@neemieas - | smstr@im

A.Aghili, A.Ansari, A.Sadghi, David Brown, John Maceli, Osman Yurekli, Scott
Wilson etc[1],[10],[3],[62],[61] developed £, transform of ordinary functions and solved
differential and integral equations by applying £, transform. The £, transform of
hyperfunction is defined by imposing the convergence criterion for the integral of £,
transform.

If f(x) = [F(2)] is a hyperfunction having bounded exponential growth and
o_(f) < R(s*) < o.(f), the £, transform of f(z) is defined as

SN = [ ae e  fwde = [ e EEE

0 0
Found that the following results exists for £, transform of hyperfunctions also.

o If f(x) = [F(#)] is a hyperfunction having bounded exponential growth and
o-(f) < R(s*)< 0(f), then

Xiv



o If f(x) = [F(z)] is a holomorphic hyperfunction having bounded exponential
growth, f'(z) = [F'(2)] is also holomorphic and o_(f) < R(s?) < o, (f), then

lim f(z) = lim 252L,[f(x)](s)

x—0 S$—00

Also, lim f(z) = il_l)T(l] 2528, [f ()] (s)

Tr—00

e If L(y/s) is a holomorphic function of s (by assuming s = 0 having no branch
point) having finite number of poles which lies to the left side of the line Rs = a
and all F'(z) € [F(z)] has a common strip of convergence, £,[f(z)](s) = L(s),
then

1 a—+100

fl@) =& (L) = 5= | 2L(/s)e""ds

In chapter 3, combined transforms such as Fourier-Laplace, Laplace- Stieltjes and

Fourier-Stieltjes transforms and some of their properties are developed.

Mitusuo Morimoto in his book[40] mentioned about the Fourier-Laplace trans-

form of an entire function of exponential type. Laplace and Fourier transforms are

defined for hyperfunctions. The existence of the combined Fourier-Laplace transform

of hyperfunctions is studied using the convergence criteria for Fourier and Laplace

transform of hyperfunction. We have defined entire hyperfunctions of exponential

type and a norm for such hyperfunctions.

For a convex compact set P subset of C and for the hyperfunction f(z) = [F(Z)]

defined || f(x) ||(p) by

I f(2) llpy= sup{| F(2)]e™*"?) : 2 € C, F(2) € [F()]}

XV



For a convex compact set P, we let

Es(C, P) = {f(x) € E | f(2) [lp) <00}

and proved that it is a Banach space with respect to || f(x) /(). Fourier-Laplace

transform is defined for hyperfunction in Eg(C, P).

Laplace-Stieltjes transform is defined for Hyperfunctions with defining func-
tion having bounded variation property. The relation connecting Laplace-Stieltjes
transform and Laplace transform of hyperfunction is proved. The main results ob-

tained are as follows.

o If f(z) = [F(z)] be a hyperfunction of bounded exponential growth and
o_(f) < R(s) < o.(f) then

Lslf(@))(s) = sL[f(2)](s)

o If f(x) = [F(z)] be a hyperfunction of bounded exponential growth and
o_(f) < R(s) < o4(f) with Laplace-Stieltjes transform £s[f(x)](s), then

7

Es[f (@))(s) = ss[f()](s) — s£(0) = f (0)

o If f(z) = [F(z)] be a hyperfunction of bounded exponential growth and
o_(f) < R(s) < o.(f) then for any a € C,

Es[e* f(2)](s) = £[f (@)](s — ) + aL[f(2)](s — a),

Xvi



where o (f) + R(a) < R(s)< o.(f) + R(a)

e Let f(z) = [F(z)] be a hyperfunction of bounded exponential growth having

Laplace-Stieltjes transform £s[f(z)](s) with o (f) < R(s) < o,(f) then

Lslf"(@)](s) = " Ls[f(2)](s),

if the strip of convergence is same.

We could define inversion formula for the Laplace-Stieltjes transform of hy-
perfunction. Using the connection between Fourier and Laplace transform and by a

change of variable we have obtained Fourier-Stieltjes transform of hyperfunctions.

In Chapter 4, we proved some Abelian -Tauberian type theorems for some
integral transforms of hyperfunctions. Tauberian theory was first developed by Nor-
bert Wiener [63] in 1932. Various types of Abelian Tauberian theorems are proved by
many mathematicians for integral transforms. Using Wiener’s Tauberian theorem,
Shikao Ikehara proved a Tauberian theorem for Dirichlet series, which is known as
Wiener Ikehara Theorem. In 1980, using contour integration, Newmann invented
new method to prove Tauberian theorems. Korevaar further developed Newmann’s
method[36].

In this study, first we have proved Abelian Tauberian theorem for the integral of
Laplace transform for hyperfunction of bounded exponential growth using the Abelian
Tauberian theorem for Laplace transform of measure functions [20].

Secondly, we have proved Abelian -Tauberian theorem for Stieltjes transform
of hyperfunction and Abelian type and Tauberian type theorem for Laplace-Stieltjes

transform of hyperfunction separately.

XVvil



The main theorems are

e (Abelian -Tauberian Theorem for Laplace Transform of Hyperfunctions)
Let f(z) = [F(z)] be a measurable, holomorphic hyperfunction on (0, o) having
compact support and bounded exponential growth. If the Laplace transform
f(s) = [f(x)](s) is bounded for s > 0 then the following conditions are equiv-

alent.

L[f(x)](q) ~ f(p)a!, a« = 0 is an integer

e (Abelian -Tauberian Theorem for Stieltjes Transform of Hyperfunctions)
Let f(z) = [F(z)] be a holomorphic, measurable, non decreasing hyperfunction

of bounded exponential growth with compact support contained in (0, o) such

that the Stieltjes transform f(t) = S[f(z)](t) = o ];(—ft)dx =§ i(ft) dz exists for

allt > 0. Let p be a number with 0 < p < 1, then the following statements

are equivalent

fit) ~CtP ! as t — o

xviil
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e (Abelian theorem for Laplace-Stieltjes Transformation of Hyperfunctions)
For f(x) e By (1),if
M
lim _f(x) = —

z—w ™ n!

then
lim s" f*(s) = M,

s—0

where n is a non-negative number and M is a constant.

e (Tauberian theorem for Laplace-Stieltjes Transformation of Hyperfunctions)

Let f(x) € B; (1) with Laplace-Stieltjes transform

e = [,

0

which converges for some R(s) > 0 and

lim s" f*(s) = M,

s—0
for some constant M and n > 0, then

lim@:%

z—o0 ™ n!
In Chapter 5, Two-dimensional Laplace transform of hyperfunctions is defined

Xix



to hyperfunction in two variables. We defined it for hyperfunctions with a separable
defining function. As for the ordinary functions some operational properties of the
two dimensional Laplace transform of hyperfunction are established. In addition two
dimensional inverse transform of Laplace hyperfunction is defined.

The main definitions and results are

e If [} and I, are open intervals in R and N(I;) is a complex neighbourhood
of I; (i.e.N(I;) contains I; as a closed subset) for i = 1,2 then the open set
N(I) x N(I) in C? is called a complex neighbourhood of I x Iy, if I} x I is a
closed subset of N(I;) x N(I3).

e Two functions F(z1, 23) and G(z1, 22) in O((N(I1)\[1) x (N(I3)\I2)) are equiv-
alent, if for (z1, z5) € (N1(11) x N1(12)) N (Na(I1) x Na(Is)),

G(z1,20) = F(z1, 22) + ¢1(21, 22) + ¢2(21, 22)

with ¢1(z1, 22) € O((N(I)\I1) x N(I3)) and ¢o(21, 22) € O(N(11) x (N(I2)\12)).
Here Ni(I7) x Ni(l3) and Ny(I;) x No(I3) are the complex neighbourhoods of
Iy x Iy of F(z1,2) and G(z1, z2) respectively. We denoted it by F'(z1,z22) ~
G(z1, 29)

The relation ~ is an equivalence relation in O((N(1;)\[1) x (N(I2)\I2)) .

S x Ir) = O((N(I)\1) x (N(I2)\I2))

An equivalence class of functions F'(z1, z5) € F(I1 x I3) defines a hyperfunction



f(z,y) on I; x I5. Tt is denoted by

fx,y) = [F(21,2)]

F(z1, 29) is called defining or generating function of the hyperfunction f(z,y).
The set of all hyperfunctions on the set I; x I is denoted by B(I; x I5).

Then as a quotient space,

O((N(I\L) x (N(12)\5))

BUE) = SONETD) * N(1) + O (VT (V) 1)

The value of a hyperfunction f(x,y) = [F(z,y)] at a point (z,y) € I} x I is
defined as

f(z,y) = lm {F(x +ie,y + ie) — F(x — ie,y — i€)},

e—0+

provided the limit exists.

A point (z,y) € I x I, is called a regular point of the hyperfunction f(z,y) =
| F(21, 20)] if lir&{F(a:—i—ie, y+ie)—F(x—ie, y—ie)} exists. A point (z,y) € [} x I
is called a singular point if it is not a regular point. Hence at a regular point

the hyperfunction f(z,y) has a value as an ordinary function.

For f(z,y) = [F(z1, 22)], 9(x,y) = [G(21,29)] € Br(l1 x I) and ¢ € C defined

addition and scalar multiplication as
f(l’, y) + g(l’, y) = [F(Zlv 22) + G(Zlv ZQ)]?

cf(x,y) = [cF (21, 22)]
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Then Bz ([; x I3) is a linear space.

e A hyperfunction f(x,y) = [F(z1,22)] is called holomorphic on I; x I, if the
defining function [F'(z1, 22)] is holomorphic on U = N(I;) x N(I5). i.e
(i) For each point a = (ay,as) € U « C?, F(z1, 29) has a convergent power series

expansion on U ,

F(z1, 22) = 3cp,ny (21 — a1)™ (22 — ag)™

OR

(ii) If F(2,22) is continuous on U and for each variable z;,7 = 1,2, F(2, 22)

oF
— = (0 and =—— = 0 by the generalisation of Cauchy-
821” 62271

Riemann equations )

is holomorphic, (i.e.

e For a hyperfunction f(z,y) = [F(z1,22)] in Br(ly x L), sing suppf(z,y) <

suppf(x,y)

e A hyperfunction f(z,y) = [F(z1, 22)] on Br(l; x I) is said to be of bounded

exponential growth if there exist real constants M > 0,0 ,0 such that
|F (21, 22)| < Me? RA1To Rz oy

on every compact subset of N(I;) x N(I3) and for every equivalent defining
functions. BZP(I; x I) denotes the set of all hyperfunction in Br ([ x Iy)

having bounded exponential growth.

e A hyperfunction f(x,y) = [F(z1,22)] on BT (I x I,) is said to be separable if

F(21,22) = Fi(21) Fa(22),

xxi1



O(N(I)\)
A(lL)

O(N(I2)\I2)
A(l)

If f(x,y) = [F(z1,22)] € BZ"(I1 x I) be a separable hyperfunction with I; <

where Fi(z) € and Fy(z) €

[0,00) and I; < [0,00) the two dimensional Laplace transform of f(x,y) is

defined as

~

Flu.0) = &80l w0) = [ Cew | "o f (e, y)dady,

where u and v are complex numbers.
The image function f(u,v) = £,£.[f(x,y)](u,v) is a holomorphic function

If f(x,y) =[F(z1,22)] € BZ"(I1 x I) be a separable hyperfunction with I; <

[0,00) and I; < [0,0) then

Ly Lelf (2, )] (u, v) = £, L[ f (2, 9)](u, v)

If f(z,y) = [F(z1,22)], 9(x,y) = [G(21, 22)] € BR"([1 x 1) are two separable

hyperfunctions with I; < [0,00) and I; < [0,00) then

Lyl f (@, y) + 9@, 9)|(u, ) = £,8,[f(x, y)|(u, v) + £, L, [g(2, y)|(u, v)

If f(z,y) = [F(z1,22)] € BR"([1 x I3) be a separable hyperfunctions and ¢ be

a constant then

Ly Lalef (@, y)l(u,v) = € Lol f(, )] (u, v)

If f(x,y) = [F(21,22)] € BR" (11 x L) be a separable hyperfunctions and a and

xxiil



b are two constants then
Ly L™ fa, )] (u,v) = £,L.[f (2, 9)](u — a,v — b)

o If f(x,y) = [F(z1,22)] € BZP(I1 x I) be a separable hyperfunctions and a and

b are two constants then
L8[ [, y)](u,v) = L,L.[f (2, y)](u — a,v)

£, 8ol fa,y)](u,v) = £,L:[f (@, )] (u, v = b)

o If f(z,y) = [F(21, 22)] € BZ"(I1 x I1) be a separable hyperfunctions and a and

b are two non zero real constants then
1 U v
€y Lul flaz, by)l(u,v) = — £, L[ f(2. Y] (~. 7)

o If f(z,y) = [F(21, 22)] € BZ"(I1 x I1) be a separable hyperfunctions and a and

b are two constants then

&8l f(x + a,y +b)](u,v) = e 7L, L[ f (2,)](u, v)

o If f(x,y) = [F(21,22)] = [Fi(z1)Fa(22)] € BRP(I; x I3) be a separable hyper-

function, for positive integers m and n,

€L, [a™y" f (2, y)](u, ) = (1) (o (fu(w)) (= (f(0)),

Where fi(u) = §o e " Fy(21)dz and fo(v) = §o € U2 Fy(22)dzn
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o If f(z,y) = [F(z1,22)] = [Fi(21)Fa(22)] € BZP (11 x I3) be a separable hyper-

functions and f;(u) = J eIV (20)dz, fo(v) = J e "2 Fy(29)dzy then
0

(02,82 T 9))0,) = us() ()

~

(b)ﬂyﬁz[ﬁ—zf(x,y)](u,v) = ofi (u)falv)

(8, 8T ()]s v) = o Fi () (o)

ox?

2 ~

(@2, 8l f ()], 0) = 02 Fa(us) folv)

0y?
()82 F )] (1,0) = £y [ <o )] (1,0) = v i () o)
Y= oxoy Y ’ Y= oyox Y ’ ! 2

e Inverse of Two Dimensional Laplace Transform of Hyperfunctions
If f(x,y) = [F(z1,20)] = [Fi(z1)Fa(22)] € BRP(I1 x L) be a separable hyper-
function with two dimensional Laplace transform f(u,v) the inverse transform

is defined by
a0 Q0 R
flz,y) = J e”yf e f(u,v)dudv
0 0

In chapter 6, some order theoretic properties of hyperfunctions are investi-
gated. Order relation and norm convergence in the linear space of hyperfunctions are
studied. The concept of completely monotone hyperfunctions is defined and some of
their properties are proved.

H. H. Schaefer[49] and Anthony L. Peressini[43] studied the properties of or-
dered topological vector spaces. Using the concept of positive cones an order relation
was introduced. Here we are mainly considering hyperfunctions having bounded ex-

ponential growth and having defining function a complex measurable holomorphic
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function. An order relation is introduced among these types of hyperfunctions us-
ing the defining functions of hyperfunctions. A cone is defined in the linear space
of hyperfunctions and some properties of this cone are studied. An inductive limit
topology is defined on this ordered space and compares it with the order topology on
the space.

Stevan Pilipovic and Bogoljub Stankovic [44] discussed the convergence in the
space of Fourier Hyperfunctions. Using these ideas we defined norm to a subclass of
hyperfunctions and introduced the concept of norm convergence to that subclass of
the linear space of hyperfunctions

The main results are

o If f(x),g9(x) € Br(I) where f(z) = [F(z)], g(x) = [G(z)] defined the order
relation ' < by f < g if f(z) < g(zx) for all x € I. In terms of defining functions
(F(z +i0) — F(z —1i0)) < (G(x 4+ i0) — G(x —i0))) for all F(z) € [F(z)] and
G(z) € [G(2)].

The relation ’ < is a partial order on Bg(I).

With this order relation Bg(/) is an ordered linear space.

e If N(O,n) = {z€C:|z] <n},ie N(0,n)is a closed complex neighbourhood

of 0 and N a complex neighbourhood of I. For n = 1,2, ... defined
_ 1
K, =N(0,n)n{z: |z —w| > —,Vwe C\N}
n

Then {K,} has the following properties
i) K, is compact

iii)If K € N is compact then K < K, for sufficiently large n.
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On each K, and f(x) = [F(Z)] € B(!I) defined

m

Br,m(f(x)) = sup{|jz—mF(z)| :VF(2) e [F(2)],z€ K,},m=0,1,2, ...

BY k. m(I) denotes the subspace of B} (I), consisting of all hyperfunctions with
support contained in K,. Then {Bx, m}m_o is a multinorm on By . (I). The
defined set of multinorms generates a topology Tr, m on By . . (I).

BM(I) assigns the inductive limit topology 7 when K, varies over all compact

sets K1, Ko, ...
BY(I) is an ordered topological linear space.

The Cone, P of B¥ (I) is, when BY (I) restricted to the set of all non-negative
hyperfunctions in Bg(I). The Positive Cone in BY(I) is P + iP which is

denoted as P

The cone P in BY () has the following properties:
HDP+PcP
ii)cP < P for every real number ¢ > 0

iii)P ~ —P = {[0]}.
P is a convex set in BY ().

For f(x), g(x) € BY(I) with f < g, defined the order interval between f and
g by
[f.9] = {h(x) € By (1) : f(2) < M(z) < g(2)}
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A subset E of BY(I) is order bounded if there exists f(z), g(x) € BY (I)such
that E < [f,g]

The cone P in BY(I) is generating.

For E < BY(I) the full hull[E] of E is defined as
[E] = {h(z) € B (I) : f(z) < h(z) < g(), f(x), g(2) € E}

The cone P in BY(I) is normal
Every order bounded subset of B (1) is 7 bounded

If P is a normal cone in BY (1) then P n By, (1) is a normal cone in

BE(I) is a sub family of hyperfunctions having bounded exponential growth
with compact support on I < R

For f(z) = [F(2)] € BX(I) the function ||.||x is defined as

|| fl|x = sup{|G(x + i0) — G(x — i0)| : G(2) € |[F(2)],x € K, K is compact
Kcl
subset of T}

Then BE(I) is a normed linear space.

A sequence f,(x) = [F,(x)] is a Cauchy sequence in BE(I) if Ve >0 there

exists ng € N satisfying the condition ||f, — fu||x < € for n,m = ny.
BE(I) is a Banach space
BE(I) is separable.
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o If f(z) = [F(2)], g(z) = [G(2)] € BE(I) are non negative, real valued measur-
able hyperfunctions and if f(z) < g(x) i.e. F(2) < G(2) and it holds for every

functions in the equivalence classes of F(z) and G(z)) then
jf(x)dx < Jg(m)dm

o If fr(x) = [Fr(2)],k =1,2,3,... be a sequence of measurable hyperfunctions in

B (1) and f(z) = lim fy(2), f(z) = [F(2)] then

f||fk<as> )l lgdr — 0 as ko

in the sense of hyperfunctions.

e A positive real valued hyperfunction f(z) = [F(Z)] defined on (0, c0) is called

a completely monotone hyperfunction if it satisfies

(—l)nf(n)(g;) >0,Yz>0,n=0,1,2,...

e A positive real valued hyperfunction f(x) = [F(z)] defined on (0,00) is a com-
pletely monotone hyperfunction if there exists a positive valued hyperfunction

g(x) = [G(2)] on (0,00) with bounded exponential growth such that
f(s) = Llg(x)](s),Vs >0

o If f(x) = [F(z)] and g(x) = [G(z)] be two completely monotone hyperfunctions
then f(z)g(z) is a completely monotone hyperfunction whenever the product

is defined and f(s) = L[h(x)](s) and g(x) = L[j(z)](s) , where h(z) = [H(z)]
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and j(z) = [J(z)] are two hyperfunctions, s > 0

e If f(x) be a completely monotone hyperfunction and g(z) be a positive val-
ued hyperfunction defined on (0, c0) such that g/(x) is a completely monotone

hyperfunction then f o g is also a completely monotone hyperfunction.

In chapter 7, solved an initial value problem involving hyperfunction by applying
Weierstrass transform of hyperfunctions.

The last section consists of further possibilities of the present work.
All hyperfunction integral involved in this study are integrated over curves by taking

suitable curves in the region of integration.
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Chapter 1

Preliminaries

In this chapter some preliminary ideas on Hyperfunctions, Laplace transform of hy-
perfunctions, Fourier transform of hyperfunctions, Weierstrass transform, Stieltjes
transform, Ordered linear space, Topological vector space, Ordered topological vec-

tor space necessary for the coming chapters are included.

1.1. Introduction to Hyperfunctions

Let the upper half plane and lower half-plane of the complex plane C be denoted
by
Ci ={2eC: Iz >0},

C_.={zeC: Iz <0}
respectively.

Definition 1.1.1. [25] For an open interval I of the real line R, the open subset
N(I) < Cis called a complex neighbourhood of I, if I is a closed subset of N(I).



N(D)
I

Co—

Figure 1.1: Complex neighbourhood N(I)

A

WV

In the above figure the two endpoints of the interval I do not belong to N(I) since
the subset N(I)\/ is open in N(I). Because N(I) is open in C, the subset N (I)\I is
also open in C. The intersection of two or a finite number of complex neighbourhoods

of I, is again a complex neighbourhood of I.

Definition 1.1.2. [25] For any complex neighbourhood N(I) of I the two open sets

N.(I) = N(I) n C4 and N_(I) = N(I) A C_

are called upper half-neighbourhood and lower half-neighbourhood of I, respectively.

Definition 1.1.3. [25] O(N(I)) denotes the ring of all holomophic functions in the
complex neighbourhood N (I) of I.
O(N(I)\I) denotes the ring of holomophic functions in N(/)\I. For a given interval

I a function F'(z) € O(N(I)\I) can be written as

Fi(z) for ze Ny(I),
F(z) =

F_(z) forze N_(I)

where F.(z) € O(N,(I)) and F_(z) € O(N_(I)) are called upper and lower compo-

nent of F(z) respectively.



Remark. [25] In general the upper and lower component of F'(z) need not be related
to each other, i.e., they may be independent holomorphic functions. If the upper and
lower components are analytic continuations from each other we call F/(z) a global

analytic function on N(I) and we can write

Definition 1.1.4. [25] Two functions F(z) and G(z) in O(N(I)\I) are equivalent,
denoted by F(z2) ~ G(z) if for z € N1(I) n Ny(I),

G(z) = F(2) + 6(2),

with ¢(z) € O(N(I)), i.e., F(2) and G(z) differ by a holomorphic function on N([).

Here N;(I) and Ny(I) are complex neighbourhoods of I of F(z) and G(z) respectively.

Definition 1.1.5. [25] An equivalence class of functions F'(z) € O(N(I)\I) defines
a hyperfunction f(z) on I, which is denoted by f(z) = [F(z)]. If the upper and

the lower component of F'(z) should be emphasized, we also use the more explicit

notation f(x) = [F,(z), F_(z)]. The function

F.(2), zeN.(I),
b | PO (1

F (z), zeN_(I)

is called a defining or generating function of the hyperfunction f(z).

The set of all hyperfunctions defined on the interval I is denoted by B([).

B(I) = O(N(H\)/O(N(I))



i.e. the quotient space of all functions holomorphic in a complex neighbourhood

N(I)\I over the space of all holomorphic functions in N([).

Remark. [25] There is no reason to prefer a particular choice of neighbourhood N(I).
Indeed, if Ni(I) is another complex neighbourhood of I such that N(I) > Ny(I),
then O(N(I)\I)/O(N1(I)) works as well. This shows that what is essential to the
definition of hyperfunctions is the behaviour of the defining functions in a narrow
vicinity of I. Now in the above definition let N(I) become narrower and narrower.
Intuitively we then write as the inductive limit

B(I) = li O(NN)/O(N(T))

—=N(I)>I

and the definition of the space of hyperfunctions has become independent of any par-
ticular complex neighbourhood of I.
Using the intuitive idea of rendering the complex neighbourhoods narrower and nar-
rower around [, leads to another consequence.

A real analytic function ¢(x) on I is defined by the fact that ¢(x) can analyt-
ically be continued to a full neighbourhood U > I, i.e. we then have ¢(z) € O(U).

For any complex neighbourhood N (/) containing U we may then write

B(I) = O(N(D\)/A(D),

where A(I) denotes the ring of all real analytic functions on 7. Thus a hyperfunc-
tion f(x) € B(I), denoted by f(z) = [F(z)] is determined by a defining function
F(z) which is holomorphic in an adjacent(small) neighbourhood above and below the

interval I, but is only determined upto a real analytic function on I.



Definition 1.1.6. [25] If

F(x+i0) — F(x —i0) = lim {F (x +i€) — F_(z — ie)}

e—0t

exists for a point xg € Iy < I then xg is called a regular point of the hyperfunction.
At regular points, the given function F'(z) € O(N(I)\I) defines an ordinary function
x +— f(x). Where the function value f(z) is given by f(z) = F(x +i0) — F(x — i0),
i.e., the ordinary function is given by the difference of the boundary values of the two
holomorphic functions Fy(z) and F_(z)

At a regular point, a hyperfunction f(z) has a function value as an ordinary function.
The value of a hyperfunction f(z) = [F(z)] at a regular point z is

flz) = F(z +1i0) — F(z —i0) = lim {F|(z +ie) — F_(x —ie)}

e—0t

Definition 1.1.7. [25] The set of all points I\Ij, consisting of real points where one
or both of the limits F, (x + i0) and F_(z — i0) do not exists is called the singular

points of the hyperfunction.

Examples 1.1.8. [25] A given ordinary function may have more than one hyperfunc-
tion representation
The ordinary constant function x — 1,z € Iy = R represented by the hyperfunction

f(z) has three defining functions.



Since 14(2) ~ 1(z) ~ 1_(2),

flx)=1 = [1.(z)] = [1(z)] = [1-(2)]

= [1,0] =[1/2,—1/2] = [0, —1]

Remark. [25] Using the previous example the notation f(x) = [F.(z), F_(z)] can be
change to f(z) = [F(z)] by defining

F(z) = 14(2)Fi(2) = 1-(2) F_(2)

Definition 1.1.9. [25] Any real analytic function ¢(z) € A(R), interpreted as a

hyperfunction again denoted by ¢(x)

¢(x) = [0(2),0] = [¢(2)1.(2)]

Also




Examples 1.1.10. [25] Dirac delta function at x = 0 is represented in terms of

hyperfunction as

-1
o(x) = .
(@) = [5—]1
Here the defining function is
-1
F =
(2) 2miz

F(z) is defined except at z = 0. At z =0, F(z) has an isolated singularity, which is a
pole of order 1. For every real number x # 0, the limit lim {F,(z +i€e) — F (x — i€)}
e—0

exists and equal to 0

Remark. [25] Let f(x) = [F(2), F_(z)] be a specified hyperfunction. The sequence
of ordinary functions
?

fule) = lim (Fo(e+ 1) = Pz - 1))

n—00 n

is always defined for sufficiently large n. The family of these functions yields, for

increasing n, an intuitive picture of the hyperfunction f(z).

For the Dirac’s impulse hyperfunction 6(z) = [—52—] we have
Su(a) = P+ D) - P 1)
1 1
= lim{— + —1

n—o' 2mi(x+ L) 2mi(e — L)

n
(1 + n2x2)



Examples 1.1.11. [25] The representation of ordinary unit-step function or Heavi-

side function Y (x) as hyperfunction is

which 1s vanishing on the negative part of the real axis, and has the constant value 1

on the positive part. In this case we consider only the principal branch. Hence with

F(z) = —5=log(—=), for every real number x # 0,
u(zr) = 1ir51+{F+ (x +i€) — F_(z —ie)}
0 ifz<0
1 ifx>0

For x = 0 this hyperfunction has no value, it is a singular point of the hyperfunction.

Remark. [25] By a real analytic function ¢(x) we mean a function which is holomor-
phic in a full neighbourhood of the entire real axis, i.e., ¢(z) € A(R). The function e®
is real analytic, for it can be analytically continued to the entire function e* holomor-
phic in the entire complex plane. The same holds for functions such as sinx, cos x,

polynomials and all rational functions having no poles on the real axis.

Definition 1.1.12. [25] The hyperfunction f(z) = [¢(z)], where ¢(x) € A(R) is
any real analytic function, represents the zero hyperfunction. We denote the zero

hyperfunction by 0 since it can be identified with the ordinary zero function.

Definition 1.1.13. [25] For f(x), g(x) € B(I) with f(x) = [F(2)], g(z) = [G(2)],

f(@) +g(x) = [F(z) + G(2)]
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Also for any complex constant c,

Proposition 1.1.14. [25] B(I) is a linear space.

Definition 1.1.15. [25] If f(x) = [F(2)] € B(I) is a hyperfunction and ¢(x) € A(I)

is a real analytic function on I, the product is defined as

The product is again a hyperfunction, i.e. ¢(z)f(x) € B(I)

Remark. [25] We can multiply hyperfunctions with polynomials and functions such

as sinx, cosr,e” and so on and the result is again a hyperfunction.

Definition 1.1.16. [25] Let f(z) = [F}(z), F_(2)] be a hyperfunction then the hy-

perfunction f(ax + b), with a,b € R is defined by

[Fy(az +b), F_(az + )] ifa>0
flax +b) =

|-F_(az +b), —F,(az +b)] ifa<0

For the special case where the upper and lower components of the defining function
are function elements of the same global analytic function. i.e., f(z) = [F(2)] =

[F(z), F(2)] then the above definition can be written as

flax +b) = [sgn(a)F(az + b)]

Where sgn(a) denotes the sign function of a, it has value —1 for a < 0 and value 1

9



for a >0

Definition 1.1.17. [25] For any given hyperfunction f(z) = [F(2), F_(z)] its deriva-

tive in the sense of hyperfunction is defined and denoted as

, dF, dF-

Df(x) = f(x) = [E’W]
d*F, d"F_
D f(z) = f™(x) = [ dzn+7 T ]

Proposition 1.1.18. [25] Hyperfunctions are always infinitely differentiable.

Examples 1.1.19. [25] The derivative of unit- step hyperfunction is Dirac’s delta

function
u(z) = [%(—%109(_2))]
1 -1
= Foniy!
- 5]
~ 3(2)
Also,

!

u(x—a)=0(x—a)

Proposition 1.1.20. [25] For any hyperfunction f(x) and any real analytic function
¢(z),

7

D(é(x)f(x)) = ¢ (2)f(z) + ¢(2) f (x)

Remark. [25] Generally product of two hyperfunctions cannot be defined without

some restrictions.
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Definition 1.1.21. [25] For a given hyperfunction f(x) = [F(2), F_(2)], f(—x) is
defined by

f(=z) = [=F_(2), = F.(2)]

Definition 1.1.22. [25] If f(—xz) = f(x), the hyperfunction f(z) = [F}(z), F_(2)] is

said to be an even hyperfunction. If f(—x) = — f(x), it is called an odd hyperfunction.

Remark. [25] If the upper and lower component of the defining function are restrictions
of one global analytic function, i.e., f(z) = [F(z), F(2)] = [F(z)], an odd defining
function defines an even hyperfunction and an even defining function defines an odd

one.
Proposition 1.1.23. [25] Any hyperfunction f(z) = [F}(z), F-(2)] can be decom-

posed into an even and an odd hyperfunction

fx) = fe(x) + folx)

where fo(z) is even and f,(x) is odd.

Definition 1.1.24. [25] If f(z) = [F,(2), F_(2)] is a given hyperfunction, the com-

plex conjugate hyperfunction of f(x) is defined and denoted by

f(x) = [-F-(2), - F. ()]

Definition 1.1.25. [25] A hyperfunction f(z) = [F(2), F_(2)] is real, if f(z) = f(z)

and is pure imaginary if f(x) = —f(x)
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Definition 1.1.26. [25] A linear combination with arbitrary coefficients of Dirac’s

impulses and their derivatives at x = a,
dovy(x —a) = ijzocjé(j)(;v —a), NeN

is called a generalized delta-hyperfunction of order N at a.

Proposition 1.1.27. [25] If the hyperfunction fi(x) is any particular solution of

equation

W(x) # 0, and real analytic, h(x) is a given hyperfunction then the hyperfunction
f(x) = fi(x) + Sm-1)(x — a) is also a solution

Definition 1.1.28. [25] A hyperfunction f(x) is called holomorphic at x = a, if the
lower and upper component of the defining function can analytically be continued
to a full (two- dimensional) neighbourhood of the real point a i.e. the upper/ lower

component can analytically be continued across a into the lower/upper half-plane.

Definition 1.1.29. [25] Let f(x) = [F(2), F_(%)] be a hyperfunction, holomorphic
at both end points of the finite interval [a, b], then the (definite)integral of f(x) over

[a,b] is defined and denoted by
b
J f(z)dz = f F,(z)dz — J- F (2)dz = — jg F(z)dz
a Vab Ya,b
’ ’ (a,b)

where the contour +, runs in N, from a to b above the real axis, and the contour

Vo s in N_ from a to b below the real axis.
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D.

A

Figure 1.2: Contours v,, and 7,

Examples 1.1.30. [25]

Proposition 1.1.31. [25] Let f(x) = [F}(z), F—(2)] be a hyperfunction, holomorphic

at the finite real points a and b. Then,

j £ (2)dx = f(b) - (a)

1.2. Analytic Properties of Hyperfunctions

Definition 1.2.1. [25] Consider hyperfunctions depending on a continuous parameter
« or an integral parameter k. The continuous parameter o varies in some open region
Q) of the complex plane and «y is a limit point of €2. In the case of integral parameter

k may vary in N or Z. Hence,
f(z,0) = [F(z,)], a € fu(x) = [Fu(2)], keN or ke Z.

We say that a family of holomorphic functions F'(z, a), or a sequence of holomorphic
functions Fi(z) defined on a common domain N < C converges uniformly in the

interior of N to F'(z) as a — g, or k — o0, respectively if F'(z, a) or Fj(z) converges

13



uniformly to F'(z) in every compact sub domain of N. This uniform convergence in

the interior of N is also called compact convergence in N.

Definition 1.2.2. [25] Let f(x) = [F}(z), F_(2)] be a hyperfunction and f(z,a) =
[F(z,a)] a family of hyperfunctions depending on the parameter . Assume that for
every « an equivalent defining function G(z, ) of F(z,a) exists, such that G, (z, «)
and G_(z,«a) converge uniformly in the interior of N, (I) and N_(I) to F,(z) and

F_(z), respectively. Then we write

f(z) = lim f(z,«a)

a—Q0

and say that the family of hyperfunctions f(x, ) converges in the sense of hyper-

functions to f(z).

Definition 1.2.3. [25] Let f(z) = [Fy(2), F_(z)] be a hyperfunction defined on I
such that, for every k, equivalent defining functions Gy(z) of Fy(z) exists, such that
G+ (z) and Gi_(z) are uniformly convergent in the interior of N, (I) and N_(I) to

F,(z) and F_(z) respectively. Then we write

fla) = Jim fi(w)

and say that the sequence of hyperfunctions fi(z) converges in the sense of hyper-

functions to f(z).

Definition 1.2.4. [25] We write

f(x) = 3o fu()

if the sequence of partial sums converges in the sense of hyperfunctions to f(x).

14



Proposition 1.2.5. [25] If a limit in the sense of hyperfunctions exists, it is unique.

Definition 1.2.6. [25] A full (two-dimensional) neighbourhood of a real point a € I
is a subset of the form {z € C: |z —a| <¢,e > 0}

A real neighbourhood of a is a subset of the form {x e R: |z — a| <€, e > 0}

Definition 1.2.7. [25] Let the hyperfunction f(z) = [F(z)] be specified on the
interval I. i.e., there is a complex neighbourhood N containing I such that F'(z) €
O(N\I). Then we say that the hyperfunction f(x) = [F(2)] is holomorphic at x =
a € I, if the upper and the lower component F,(z) and F_(z) can analytically be
continued across the real axis to a full neighbourhood of a. A hyperfunction is called
holomorphic or analytic in an open interval J = (a,b) < I, denoted by f(x) € B (J),
if it is holomorphic at all = € (a, b).

This definition implies that if f(x) is a holomorphic hyperfunction at x = a, there

exists a real neighbourhood of a where f(x) is holomorphic.

Definition 1.2.8. [25] A hyperfunction f(x) = [F(z)] is entire if the upper and lower

component of the defining function F(z) are both entire functions.

Definition 1.2.9. [25] A hyperfunction f(x) = [F(z)] is called meromorphic if the
upper and lower component of the defining function F(z) are both meromorphic

functions (having poles on the real axis)

Definition 1.2.10. [25] Let f(z) is a hyperfunction having a compact support |a, b].
Then it’s defining function F'(z) € O(N\[a,b]). It’s upper and lower components are
analytic continuations from each other i.e. we have F (z) = F (z) = F(z). Such a

hyperfunction is called a perfect hyperfunction.
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Definition 1.2.11. [25] Standard defining function of a perfect hyperfunction f(z)

is defined as

Flz) = — - jg )

271 t—z
(a,b)

Definition 1.2.12. [25] The hyperfunction f(z) = [F(2), F_(z)] is micro-analytic
from above at x = a € I, if the upper component F(z) can analytically be continued
across the real axis to a full neighbourhood of a. Similarly, f(z) is micro-analytic
from below at x = a € I, if the lower component F' (z) can analytically be continued

across the real axis to a full neighbourhood of a.

Definition 1.2.13. [25] Let ¥ be the largest open subset of the real line where the
hyperfunction f(z) = [F(z)] is vanishing. Its complement K, = R\ is said to be
the support of the hyperfunction f(x) denoted by suppf(x).

Definition 1.2.14. [25] Let ¥, be the largest open subset of the real line where the

hyperfunction f(z) = [F(z)] is holomorphic. Its complement K; = R\ is said to

be the singular support of the hyperfunction f(x) denoted by sing suppf(x).

Definition 1.2.15. [25] Let X5 be the largest open subset of the real line where
the hyperfunction f(x) = [F(z)] is micro-analytic (from above or from below). Its
complement Ky = R\, is said to be the singular spectrum of the hyperfunction f(z)

denoted by sing spec f(z).

Proposition 1.2.16. [25] For a hyperfunction f(x) we have

sing spec f(x) < sing supp f(x) < supp f(x)

Proposition 1.2.17. [25] (Theorem of identity for hyperfunctions) If two hyperfunc-

tions f1(x) and fy(x) defined on an open interval I have the same singularities, and
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if there is an open subinterval (a,b) < I where fi(x) = fo(x), then fi(x) = fo(x)
holds on I

Proposition 1.2.18. [25] (Theorem of analytic continuation of hyperfunctions) Let
fi(z) and fo(x) be hyperfunctions defined on (ai,b1) and (asz,bs) with a non-void
overlap S = (a1,b1) N (ag, by) # ¢. If for any 6>0

(i) fi(x) is holomorphic in (a1 +0,b1 —9), and fo(x) is holomorphic in (asy + 9§, by —0)
(i1) they are equal in the overlap S

then there exists a unique hyperfunction f(x) such that

fi(z), x € (ay,b),
f(z) =

fo(z), x € (ag, by).

which is called analytic continuation of fi(x) to fo(x). The given fi(x) and fo(x) are

said to be the analytic continuation of each other.

Definition 1.2.19. [25] Product of hyperfunctions in the case of disjoint singular
supports:

We assume that the two hyperfunctions f(x) = [F(2)] = [F,(2), F_(2)] and g(z) =
[G(2)] = [G+(2), G_(z)] satisfy the condition sing suppf(x) N sing suppg(z) = ¢.
Thus, for any z € R at least one of the two hyperfunctions is holomorphic at x.

For definiteness, let I be a real interval where f(x) is holomorphic. i.e., f(z) € Bo(I)

then

f(@).g(x) = {F.(2) - F_(2)}[G(2)]

= [{F(2) = FL(2)}G1(2), {Fy(2) — F-(2)}G-(2)]
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where the order of the factors is important owing to the lack of symmetry of the
situation. In the above formula the left factor is the holomorphic hyperfunction. In

the event the right factor is the assumed holomorphic hyperfunction, we have

f(@).g(x) = {Gi(2) - G_(2)}F(2)]

= [{G(2) = G_()}Fi(2),{G4(2) = G_(2)}F(2)]

Proposition 1.2.20. [25] If f(z), g(z) € Bo(I), i.e., both factors f(x) and g(x) are

holomorphic hyperfunctions on I, then the defined product becomes commutative, i.e.,

f(2).g(x) = g(z).f(x)

1.3. Laplace Transform of Hyperfunctions

Definition 1.3.1. [25] Let ¢ — f(t) be an ordinary function defined on the entire

real axis, and s a complex variable. The two-sided Laplace transform is defined by

fo) - | C e 0t

—0o0
provided that the improper integral is convergent for some s.

Definition 1.3.2. [25] Consider open sets J = (a,0) u (0,b) with some a <0 and
some b > (0 and compact subsets K = [a/,a"] U [b’, b"] with a <ad < a" <0 and
0<b < b <b. Also consider the following open neighbourhoods [—6, ) + i.J and
(—o0,d] + iJ of Ry and R_ respectively for some ¢ > 0

Introduce the subclass O (R, ) of hyperfunctions f(x) = [F(z)] on R satisfying

(i) The support suppf(x) is contained in [0, )

(ii) Either the support suppf(z) is bounded on the right by a finite number g > 0 or
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we demand that among all equivalent defining functions, there is one, F'(z) defined in
[0, 00) +1iJ such that for any compact subset K < J there exist some real constants
M’ >0 and ¢ such that |F(z)| < M'e” ™ holds uniformly for all = € [0,00) +iK
Because suppf(x) < R, and since the singular support sing suppf is a subset of
the support, we have sing suppf< R, . Therefore f(x) is a holomorphic hyperfunction
for all © < 0. Moreover, the fact that F'y (z +i0) — F__(z —i0) = 0 for all z < 0 shows
that F'(z) is real analytic on the negative part of the real axis. Hence f(x) € O(R})
implies that X(_cw)f(x) = f(x) for any € > 0.
We call the subclass of hyperfunctions O (R ) the class of rightsided originals.
In the case of an unbounded support suppf(z), let o_ = inf o’ be the greatest
lower bound of all ¢ where the infimum is taken over all " and all equivalent defining
functions satisfying (ii). This number o = o_(f) is called the growth index of
f(z) € Ry. It has the following properties
(iJo. < o
(ii) For every € > 0 there is a ¢’ with o_ < o < o_ + € and an equivalent defining
function F'(z) such that |F(z)| < M e uniformly for all z € [0,00) + i K.

In the case of a bounded support suppf(x), we set o_(f) = —o0

Definition 1.3.3. [25] The Laplace transform of a right-sided original f(z) = [F(z)] €
O(R, ) is defined by

. (0+)
fo) = £l @) = = [ P (apa

0

~

Proposition 1.3.4. [25] The image function f(s) of f(x) € O(R,) is holomorphic
in the right half-plane Rs > o_(f)
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Definition 1.3.5. [25] Similarly, we introduce the class O(R_) of hyperfunctions
specified by

(i) The support suppf(x) is contained in R_ = (—o0, 0]

(ii) Either the support suppf(z) is bounded on the left by a finite number « <0,
or we demand that among all equivalent defining functions there is one, denoted by
F(z) and defined in (—o0, d] + iJ such that for any compact subset K < J there are
some real constants M >0 and ¢ such that |F(z)] < M """ R holds uniformly for
z € (—0,0] +iK.

The set O(R_) is said to be the class of left-sided originals.

In the case of an unbounded support let o, = supo’ be the least upper bound
of all ", where the supremum is taken over all ¢ and all equivalent defining functions
satisfying (ii). The number o, = o, (f) is called the growth index of f(z) e O(R_).
It has the properties
(i) o < o,.

n

(ii) For every € > 0 there is a o such that o, —¢ < ¢ < o, and a defining function
F(z) such that |F(2)| < M'eo %2 uniformly for all z € (—o0,0] + i K.

(
If the support suppf(z) is bounded, we set o, (f) = +o©

Definition 1.3.6. [25] The Laplace transform of a left-sided original f(z) = [F(z)] €
O(R_) is defined by

~

Proposition 1.3.7. [25] The image function f(s) of f(x) € O(R_) is holomorphic
in the left half-plane Rs < o, (f)
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Examples 1.3.8. [25] 5(z) € O(R_) n O(R,) and o_(6) = —o0 and o, (8) = +oo.
For f(z) = u(z)e ™ we have f(z) € ORy) and o_(f) = —1. Similarly, for f(z) =
u(~z)e* we have f(z) € O(R_) and o4 (f) = +1. Let g(x) be any polynomial, then
ha(2) = u(z)g(z) € O(R,) with o_(hy) = 0, also hn(z) = u(—z)g(x) € O(R_) with
o-(hy) = 0.

Remark. [25] With a left-sided original g(z) € O(R_) with growth index o (g)
and a right-sided original f(z) € O(R,) with growth index o_(f) we form the

hyperfunction h(z) = g(x) + f(x) whose support is now the entire real axis. If

~

9(s) = Llg(@)](s), Rs <o4(g) and f(s) = L[f(2)](s), Rs >o_(f) we may add

the two image functions, provided they have a common strip of convergence, i.e.

o (f) <o.(g) holds.

Definition 1.3.9. [25] With g(x) € O(R_), f(z) € O(Ry), h(x) = g(x) + f(z),

provided o_(f) <o (g).

Definition 1.3.10. [25] Hyperfunctions of the subclass O(R,) are said to be of
bounded exponential growth as © — oo and hyperfunctions of the subclass O(R ) are

said to be of bounded exponential growth as x — —oo.

Definition 1.3.11. [25] An ordinary function f(x) is called of bounded exponential
growth as x — oo, if there are some real constants M > 0 and ¢ such that |f(z)| <
M'e”® for sufficiently large x. It is called of bounded exponential growth as © —
—o0, if there are some real constants M" > 0 and ¢ such that |f(z)] < M "e"ﬂx, for

sufficiently negative large x.
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Definition 1.3.12. [25] A function or a hyperfunction is of bounded exponential
growth, if it is of bounded exponential growth for x — —oo as well as for x — o0 .
Thus a hyperfunction or ordinary function f(x) has a Laplace transform, if it is of

bounded exponential growth, and if o (f) < o, (f)

Proposition 1.3.13. [25] If f(x) = [F(2)] is a hyperfunction of bounded exponential

growth which is holomorphic at x = c, then

—0

_ f “ e~ F(2)dz = LO ¢~ f(w)dz,

_ J(CH e F(2)dz = foo e ™ f(z)dx

Q0 [

thus,

—{J(CH e PF(z)dz + J(CH e PF(z)dz} = foo e f(x)dx

—0 o0 —0o0
Proposition 1.3.14. [25] Let f(x) = [F(z)] be a hyperfunction of bounded exponen-
tial growth with an arbitrary support and holomorphic at some point x = c. If in

addition

o_=0_(X0,m)f () <04 = 01 (X(=,0)f(x)), then its Laplace transform is given by

LIF@)](s) = LIX(=wa)f (@)](5) + LIX(eaw) [ (2)](5)

0

_ jcwe_szf(x)dx—i— J e " f(z)dx

C

_ f s ()

—0
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Proposition 1.3.15. [25] If f(z) = [F(2)] is a hyperfunction with bounded exponen-
tial growth, having arbitrary support and holomorphic at x;,
— w0 <@ < Ty < ... <k, < 0 and such that L[f(x)](s) = f(s) has the strip of

convergence o_ < Rs < o, then its Laplace transform is

e8]

e *f(x)dx + f e f(x)dx

Tn

T Tk+1

e " f(z)dr + X7} f

Ty

2@l - |

—0

Proposition 1.3.16. [25] If f(x) = [F(2)] be a hyperfunction with an arbitrary
support and which is holomorphic at & = 0, fi1(x) = X(—w,0)f(z) € O(R_) and fo(z) =
X000 f () € O(Ry) with o_ = o_(fa(x)) and 04 = o..(f1(x)), o— < oy then

Lf(@)](s) = LLA(=0)](=s) + £[f2(2)](s)

with —o, < Rs,0_ < Rs

Definition 1.3.17. [25] (Canonical splitting)
A given hyperfunction f(z) = [F(z)] can be split into a sum of two hyperfunctions
f1(2) = [Fi(2)] € DR ) and fo(a) = [F3(2)] € DR, ) such that f(z) = f;(x)+ fo(),
Fi(z) + Fy(z) ~ F(z) and 0_(fs) < 04 (f1). This is achieved by taking if 0 is not an
element in sing supp(f), by forming the projections fi(z) = X(—uw,0)f(z) and fo(x) =
X(0,00).f (). So if the Laplace transform f(s) of f(z) exists with strip of convergence
o (f2) < Rs < 0.(fi) and (fi1)(s) = LIfi(@)](s) and (f2)(s) = L[f2()](5) then
f(s) = (F)(s) + (f2)(s)-

But the decomposition f(z) = fi(z) + fo(z) need not be unique and is only
determined upto hyperfunctions concentrated at the point = 0. Regardless of the
fact that the Laplace transform of a hyperfunction concentrated at a point is not

zero, this arbitrariness generally does not harm for the Laplace transforms.
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Definition 1.3.18. [25] Convolution of hyperfunctions : Let f(z) = [F(z)] and

g(x) = [G(2)] be two given hyperfunctions, their convolution is

if exists, where

Ho(2) = JOO Fo(z — t)g(t)dt, T>> 0

H_(2) = f F_(= = t)g(t)dt, T= <0

Proposition 1.3.19. [25] Let the Laplace transforms f(s) and §(s) of the hyperfunc-
tions f(x) and g(z) have a non-void common strip of convergence o <Rs <oy,
and assume further that the convolution h(z) = (f = g)(x) exists and has the Laplace

transform h(s), then

h(s) = f(5)g(s)-

1.4. Fourier Transform of Hyperfunctions

Definition 1.4.1. [25] Let f(x) = fi(z) + f2(x) be a hyperfunction with f(z) =
[Fi(2)] € OR), faz) = [Fa(z)] € O(R;). Moreover, assume —o,(f;) < 0 <
—o_(f2) holds, then, the Fourier transform of f(x) is defined as being the hyperfunc-
tion f(w) = F[f(x)](w) = [H4(C), H_(¢)], w € R where the two components of the

defining function are

0+

H,(C) = SLA@)]C) = — f eI By (2)dz,

—Q0
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0+

H_(0) = —Llfa@)](iC) = f e Fy(2) dz

ee}

1.5. Some Preliminary Definitions

Definition 1.5.1. [36] A function A : (0,00) — (0, 0) is said to be slowly varying at

infinity if

lim h(pz)

=1, V>0
p—>00 h,(p) ’ g

Definition 1.5.2. [25] The conventional generalized Weierstrass transform of f(x)

with parameter ¢ is defined by

,(S z)

9(s,t) m

Definition 1.5.3. [2] Stieltjes transform of a function f(¢) is defined as

© f()dt

o t+y

p{f(t),y} =

Definition 1.5.4. [10] £,-transform of f(x) is

ee}

L Af(x);y) = J ze ¥V f(x)dx

0

Definition 1.5.5. [4] The two dimensional Laplace transform of an ordinary function

f(z,t) is defined as

oo e}
LLf(e.)(009) = Flpos) = | e | e fast)dode (11)
0 0
whenever the integral converges, where x,t > 0 are two independent variables and p, s

25



are complex numbers.

x,t
If f(z,t) is a continuous function in [0, 00) and  sup il +bt)| < oo for some a,b e R
z>0t>0 €%
then equation (1.1) exists V p > a and s > b.
The inverse Laplace integral is
c+100 d+zoo 3
f(z,t) f f s)eP* tdsdp
27rz

where ¢ and d are real constants, ¢ > a and d > b

Definition 1.5.6. [40] The space of hyperfunctions in two variables is defined as

lle

, O((C\R) x (C\R))
B(R%) O((C\R) x C) x O(C x (C\R))

Definition 1.5.7. [43] An ordered vector space is a real vector space E equipped with

a transitive, reflexive, antisymmetric relation < satisfying the following conditions:
o If z,y, z are elements of F and r <y, thenx +2 < y+ =z

o If x,y are elements of F and « is a positive real number, then x < y implies
<oy
Definition 1.5.8. [43] The Positive cone (or simply the cone) K in an ordered vector

space E is defined by K = {z € E': x = 0}, where 0 denotes the zero element in FE.

Definition 1.5.9. [43] A topological vector space E(7) is a vector space E equipped
with a topology 7 for which the operations of addition and scalar multiplication in

are jointly continuous

Definition 1.5.10. [43] An ordered vector space which is also a topological vector

space is called an ordered topological vector space.

26



Definition 1.5.11. [43] If A is a subset of a vector space E ordered by a cone K,
the full hull [A] of A is defined by

[A] ={zeE:x<z<yforze A ye A}

Definition 1.5.12. [43] Suppose that E(7) is an ordered topological vector space
and that K is the positive cone in E(7). K is normal for the topology 7 if there is a

neighbourhood basis of 0 for 7 consisting of full sets.

1.6. Supporting Theorems

Note: In the following theorems s(r) denotes the Stieltjes transform of the function

F(t)

Theorem 1.6.1. [36] Let s(v) vanish for v <0, be a non decreasing, continuous from

the right and such that
0— oo
F(t) = J e "ds(v) = f e "ds(v)
exists for t > 0. Suppose that for some constant a > 0,
A
F(t) ~ o 08 t—0 [or as t — 0]

Then

A
s(u) ~ m as u— o [or as u— 0,respectively].
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Theorem 1.6.2. [30] Let s(v) vanish for v <0, be non decreasing, continuous from

= d
the right and such that the Stieltjes transform g(z) = J # exists for x > 0.
_ x+v
Suppose that for some number « € [0, 1),
g(x) ~ Az*tas v — o
Then
A «
s(u) ~ u® as u — .

Theorem 1.6.3. [36] Let s(v) vanish for v <0, be non decreasing, continuous from
*ds(v)
_(z+uv)

x> 0. Let L(x) be slowly varying and 0 < « < p. Then for x — o0,

the right and such that the Stieltjes transform F,(x) = f exists for every

s(x) ~ Ax“L(zx) if and only if

Y go-rr (x)
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Chapter 2

Weierstrass, Stieltjes and £,

Transforms of Hyperfunctions

In this chapter integral transforms like Weierstrass transform, Stieltjes transform
and £,-transform are defined for hyperfunctions. Some operational and theoretic

properties are established.

2.1. Weierstrass Transform of Hyperfunctions

The Weierstrass transform of Sato’s hyperfunctions and some of its properties are
studied here using the concept of defining function of hyperfunctions and the Laplace
transform of hyperfunctions.

In this study we consider hyperfunctions of bounded exponential growth.

Definition 2.1.1. Let f(z) = [F(z)] be a hyperfunction of bounded exponential

growth. The generalized Weierstrass transform of f(z) with parameter ¢ > 0 is defined
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W) - = [ '“”@m=¢@fkﬁﬁﬂm4

if it exists in the sense of hyperfunction.

Proposition 2.1.2. The image function 20:[f(x)]|(s) is a holomorphic function.

Proof. The Kernel of the transformation e “F s holomorphic for all £ > 0. Hence
the integrand becomes a well defined hyperfunction whose integral is a number de-

pending on s holomorphically. ]
Proposition 2.1.3. The Weierstrass transform of hyperfunction is injective.

Proof. Suppose that f(x) = [F(z)] and ¢g(z) = [G(z)] are two hyperfunctions of
bounded exponential growth with 20,[f(z)](s) = W[g(x)](s)

W7 N) = Wda()ls) = ;deﬁ?wm—ﬂw T g (o

| R =l )2

= \/m‘jiwe i F(z)dz = \/R G(z)dz
| e

= ﬁJ_we i (F(z) —G(2)dz=0

= F(z2)—G(2)=0

= [F(2)] = [G(2)]

= fla) =g(x)

[

Remark. The following proposition establishes the relation between Weierstrass trans-

form and Laplace transform of a hyperfunction of bounded exponential growth.
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Proposition 2.1.4. Let f(x) = [F(2)] is a hyperfunction with bounded exponential
growth. If o_(f) <R(3) <o (f) then

WS (@)(6) = T Ll S50 >0
Proof.
W) = [T e
_ \/i%fweuf%:ﬁ)f(x)dx
_ \‘B/R OOOO =S (e f(2))de
e s

= Tl @) i 0 (f) < R(G) <o), >0

Proposition 2.1.5. Let f(x) = [F(2)]| is a hyperfunction, holomorphic at x = c

having bounded exponential growth with an arbitrary support, t > 0, satisfies

2

—x

o_=0_(Xowe f(z) <op =04 (X(_@,O)e_Tff(:c)) then
W[ f(2)](5) = WilX(-e0.0) (2)](5) + Wil X(e.0) [ ()](5)

e o2
Proof. f o_ = 0_(X(07@)6Tt2f(x)) <04 = 01 (X (=) 3 f(x)) then by 1.3.14

we have

—S

)+ £ T S @)

—a? —S —22 —S

L S@N50) = Shximne T T
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Applying this result and the proposition 2.1.4 we get

2

—s

W) = Ll @5
- %[S[X(w,c)eff@)](;—;) + Sxeme T 1G]
- j;s:[ch)eff(x)](;—f) + %ﬂxm@efﬂxﬂ(;—j)
= Wi[X(-0.0).f (2)](5) + Wi[X(c00).f (2)](5)
O

Proposition 2.1.6. Let f(x) = [F(z)] is a hyperfunction with bounded exponen-
tial growth, holomorphic at x;, —00 < 11 < Ty <...< 1, < 00, with an arbitrary support

and such that £(f(x)) = f(s) has the strip of convergence o_(f) < R(35;) < o4 (f),

fort > 0, then the Weierstrass transform

1 T (o) T2 _(s—a)? © (o)
20 = e % T d:}:—i—f e @ T dx—i—...—i—f e @ x)dx
VN = =l e [ e [ @
Proof. By proposition 1.3.15
—a? —S o1 =s —z2 Th+1 =s —z2 ®© —s —z2
Q[eTf(:E)](Q—t) = J e_(?)xeTf(x)dafikEZ;ll J e_(%)xeuf(x)dxikf e_(f)xeTf(:v)d:v
—00 T In

Then using proposition 2.1.4,
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_s2

e 4t

o . 7(;‘9)33 ;172
- e ‘2 Pemar f(x)dx +
= f(a)
Th41 0 s a2
EZ_%J e~ (F)Te T f( Ydx —i—J e_(Tt)“”eth(x)dx]

T Tn

1 1 —(s—x)? T2 —(s—x)2
= \/ﬂ[f e f(:v)d:v—i—J e flx)de + ... +
m

—0 1

Proposition 2.1.7. Let f(x) = [F(2)] is a hyperfunction with bounded exponential

growth. Then
Wil f(=2)](=s) = =W f(z)](s)

Proof.

Do) = = [

! : =g F(—z)dz
e (& t —
Vart J_

By putting —z = (, we have

W[ (a)l(—s) = m HEF(Q)C

—(s <)2

— _Qﬁt[f( )]( )
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Proposition 2.1.8. Let f(x) = [F(2)] is a hyperfunction with bounded exponential

growth, holomorphic at x = 0 having an arbitrary support. Let

2

fil@) = X(we  f@) € OR.) and fo(x) = xoumpe ¥ f(z) € O(R,)

with o = o_(fo(z)) and o = o, (fi(x)). If o (f) < o.(f) then the Weierstrass

transform

WS ()]() = WA )+ WIL()](s) with —or(f) < R(5)0- < R(5),t >0

Proof. By proposition 1.3.16 we have

—z2 —S —z2 —S

LI F @G = LT A=) + Ll fa()(5)
Using proposition 2.1.4 we get,
W @](s) = ej;ﬁ[eff@)](;—f)
- m[ [ fi(=a)](5) + LI L@
: «m Ll (- ”@*% LI fa@))(5)
= WA (=))(=s) + Wl @))

Proposition 2.1.9. If f(z) = [F(z)] is a hyperfunction having bounded exponential

growth, then fort > 0,
W[ f(x)](s) = W[ f(2)](5)
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Proof. By Proposition 3.7[25], £[f(z)](s) = £[f(z)(5)]. Then

Lle F@l(5;) = Ll S@)(5)
Hence
— 1
W) = | (0)ds
= e Tl
= T @)
- WG

O

Examples 2.1.10. Weierstrass transform of Dirac’s delta function as a hyperfunc-

tion

W3(x)](s) = m 5 g(a)de
~s=x? —1

= e 4 —dz
Vart J_o 2z
— 1 © 7(5 z) 1
= — —dz
2min/4nt J_

—1
= —Res,_
2miN/ 4t O[

1 7(572)2
4

B Qﬂlm[ " =0

_s2

= — 4

27m\/ 47t

—(s—z)2
e 4t

]
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Remark. The classical Laplace transform of a negative integral power does not exist,
but the Laplace transform of negative integral power of a hyperfunction exist. Hence
we can find Weierstrass transform of the negative integral power of a hyperfunction
using the relation connecting Weierstrass and Laplace transform. Also the classical
Laplace transform of a non-integral power of unit step function u(¢)t* exists only for
« > —1, but the Laplace transform of that hyperfunction exists for any non-integral

power «

2.1.1 Operational Properties

Proposition 2.1.11. Let fi(z) = [Fi(2)] and fo(x) = [Fy(2)] are any two hyperfunc-
tions having bounded exponential growth with Weierstrass transforms 20 f1(x)](s),
W[ f2(x)]|(s). If the two image functions have a non empty intersection then for

constants ci, Ca,

Wile1 fi(x) + cafol)](s) = i f1(2)](s) + W[ f2(x)](s),

where s belongs to the common strip of convergence.

Proof.

Wier fi(x) + 2fa(@)(s) = m ST i) + (@)
—(s )2

- (1 F1(2) + coFs(2))dz
\/ﬂ 1F1(2) + 2 Fy(2))
= L (JOO 67<S4t2) cFi(z )dz—l-joo 67(5422)20 Fy(z)dz)
ety I 1F1 . 2 Fy
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1 2 2

= m(f—w e~ T c1fi(@)dz + f_oo e~ T ¢ f2(z)dz)

1 R
= \/ﬁ —w f1 (x)dz + co it JOO e % foz)dx
= aWfi(z )]( ) + W f1(2)](s)

]

Proposition 2.1.12. [f the hyperfunction f(x) = [F(z)] has the Weierstrass trans-

form Q[ f(x)](s) and has the canonical splitting f(x) = fi(x) + fo(z), then

W[ f(2)](s) = W[ f1(2)](s) + Wil f2(2)](s),

if o_(fo) <R(3) <o+(f1)

Proof. 1f the hyperfunction f(x) = [F'(2)] has the canonical splitting,
fx) = fi(z) + f2(z) then

Llf(@)1(s) = LLA(@)](s) + Llf2(2)](s), if 0-(f2) <Rs <04(f1)

Hence
WS ()](s) = m LI f@)(5)
- j%{c[efﬁ( NG + L L))
= Ll hGe >]<Qj>+j44% £l A@)(5)

= W (2)](s) + W fa(2)](s), ifo_ (f2)<R( )<0+(f1)
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Proposition 2.1.13. Let f(x) = [F(z)] is a real analytic hyperfunction having

bounded exponential growth and ¢ be a constant, then

Wi[f(x + )](s) = Wl f(2)](s + ¢),

if o (f) <RAs) <o (f)-

Proof.
1 © -
Wil f(x+c)](s) = o e  f(z+c)dx
_ J e T F(z +c)dz
4t J_

By putting z + ¢ = ¢, we have

WL +ols) = [ TR

= WS (@)](s +¢)

]

Proposition 2.1.14. Let f(x) = [F(2)] is a hyperfunction of bounded exponential

growth and the Weierstrass transform 20 f(x)](s) exists. Then

W f@)(s) = L))

Proof.




]

Proposition 2.1.15. Let f(z) = [F(2)] is a hyperfunction having bounded exponen-

tial growth with Weierstrass transform 20 f(x)](s). Then

Proof.

W[ [7(2)](s)

W [e ¥ f7(2)](s)

—8 22

= (5;)"Wile T f(2)](s)

22

1 ® —(54—2)2 &)
e 4 e 2)dz
Vart J_
\ 0

=8
e 4t

Vant J_»
2

e~ G E(2)dz

39



]

Proposition 2.1.16. Let f(x) = [F(2)] is a hyperfunction with bounded exponential

growth. Then

W [e 5o f(@))(s) = (1) (R f(r))(5)]
Proof.
12 1 (‘CD —(8—2)2 22
Wilewa"f(x)](s) = T e~ @ ewZ"F(z)dz
it J_
1 Jr‘ww —S +SZ
— a T2y [ d
Tﬂ‘kwe 2"F(z)dz
e [
= e G2 F(2)dz

- St )
e L d" —5
- U@
e_4st2 e 2
- S e ()] (s) Ve )
= (e e f(@)](s)]

2.1.2 Inverse Weierstrass Transform of Hyperfunctions

In [33] V.Karunakarn and T.Venugopal gave inversion formula for Weier-
strass Transform for a class of generalized functions. In this study, the inversion

formula for Weierstrass transform of Hyperfunction can be defined as follows:
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Definition 2.1.17. If f(s) = 20[f(z)](s) is the Weierstrass transform of f(z) =

[F(2)], a hyperfunction of bounded exponential growth then

f(@) = [F(2)] = lim wlﬁ f_ooooe(SIf”2 F(is)ds

2.2. Stieltjes Transform of Hyperfunctions

We define Stieltjes transform for hyperfunctions having bounded exponential growth.

Some properties of Stieltjes transform of hyperfunctions are proved.

2.2.1 Stieltjes Transformation of Hyperfunctions

Definition 2.2.1. For a hyperfunction f(x) = [F(z)] of bounded exponential growth

the Stieltjes transform is defined by

: [ g [

ft) =S[f(x)](®) ot . z—i—tdz’ wheret € R

if it exists.

Remark. As for the normal functions, the Stieltjes transform of hyperfunction is also
the second iterate of Laplace transform of hyperfunction if it is of bounded exponential

growth.

Proposition 2.2.2. Let f(x) = [F(2)] is a hyperfunction with bounded exponential

growth then

ifo (f) < Rs < o, (f) ando _(f) < Rt < o,(f)
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Proof. Let f(z) = [F(z)] is a hyperfunction with bounded exponential growth and
o_(f) < Rs < o (f)and o_(f) < Rt < o.(f).

SN ~ [ e el
_ L T ets [f:) e~ f (2)dar]ds
_ L N L " et f (o) da
_ L "l L " @] f () do
- L oo[ L - e CHCACIF(2)dz
- | Cre,,

" j)

o T+t

S (@)1

Examples 2.2.3. Consider the delta function as a hyperfunction 6(z) = [5==]

2miz

Also

Proposition 2.2.4. Let f(x) = [F(2)] is a hyperfunction with bounded exponential

growth then the Stieltjes transform f(t) = S[f(x)](t) is a holomorphic function



Proof. Since the image of Laplace transform of a hyperfunction is a holomorphic func-
tion the double Laplace transform is again a holomorphic function. Hence S|f(x)|(?)

is a holomorphic function of ¢. O

Proposition 2.2.5. Let f(x) = [F(2)] and g(z) = [G(2)] are any two hyperfunctions
having bounded exponential growth with the Stieltjes transform f(t) = S[f(z)](t) and

g(t) = S[g(x)](t) respectively, then

Proof.

[rwswie = [ o] 2 ana

0 o T+

_ Fg(t)( REACO

0 0o T+t

- " g

0

]

Proposition 2.2.6. Let f(z) = [F(2)] is a real valued hyperfunction with bounded

exponential growth and f(x) >0 for all x > 0 then the Stieltjes transform

for allt>0

Proof. Since the integral of a positive valued function in (0, 00) is always positive we

have f(t) = S[f(z)](t) >0 for all t >0 . O
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2.2.2 Operational Properties

Proposition 2.2.7. Let f(x) = [F(2)] is a hyperfunction with bounded exponential

growth and ¢ > 0 be a constant then

S[f(ca)](t) = eS[f (2)](et)

Proof.

St = ;ng%gdx

_ J”Mdz
0o 2+t
) JwF«>
0 %—i—t
N (9,
B CL C—i—ctd<
iGN

0o X +ct

cS[f(x)](ct)

d¢, by letting ¢ = cz

[
Proposition 2.2.8. Let f(z) = [F(z)] and g(x) = [G(2)] are two hyperfunctions

having bounded exponential growth then

SLf(@) + g(@)](t) = S[f(@)](t) + Slg(x)](t)
Proof.

T

S + gy = [ LA,

0 T+t
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]

Proposition 2.2.9. Let f(x) = [F(2)] is a hyperfunction with bounded exponential

growth and ¢ > 0 be a constant then

Slf(z + () = S[f ()] = ¢)

Proof.

x—i—c
T+t
z+c
z+t

Slf(x+o)t) =

[
[
[
[~

d( by putting z 4+ c = (

t—c

)](t —0)

]

Proposition 2.2.10. Let f(x) = [F(2)] is a hyperfunction with bounded exponential

growth, f(s) = £[f(x)](s) exists and ¢ be a constant then

Sle f(@)](t) = £Lf (s — 9](®)
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A

ifo_(f)+Re < Rs < o (f)+Re and o_(f) < Rt < o.(f)

Proof. Suppose that o_(f) + Re < Rs < o.(f) + Re and o_(f) < Rt < o.(f).
Then

Sle“f(@)](t) = L[L[e™ f(2)](s)](F)

O

Proposition 2.2.11. Let f(x) = [F(2)] is a hyperfunction with bounded exponential
growth, f(s) = L[f(x)](s) exists, then

SLFD@0) = (1) (L))

ifo_(f) < Rs < oy (f) and o_(f) < Rt < o..(f)

A

Proof. Suppose that o_(f) < Rs < o.(f) and o_(f) < Rt < o.(f). Then

S @) = Llelf" (@)](s)](2)

]

Proposition 2.2.12. Let f(x) = [F(2)] and g(y) = [G(2)] are two hyperfunctions

of bounded exponential growth. If support f(x) is a compact subset of (0,00) then

f:o LLf()](s)£[g(y)](s)ds = LOO 9(y)S[f (@)](y)dy
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Proof.

]

Proposition 2.2.13. Let f(x) = [F(2)] and g(y) = [G(z)] are two hyperfunctions
of bounded exponential growth and support f(x) is a compact subset of (0,00). If the
Laplace transforms £[f(z)](s) and £lg(y)](s) of f(x) and g(x) have a common strip

of convergence, then

[ 1t - oeneas = [ sty

Proof. 1f the Laplace transforms £[f(z)](s) and £[g(y)](s) of f(z) and g(x) have a
common strip of convergence, then £[f(x)]|(s)£lg(y)](s) = £[(f * g)(z)](s)

Then using previous proposition we have,

Loo,ﬂ[(f + g)(2)](s)ds = J LI ()](5)£[g(v)](s)ds
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2.2.3 Inverse Stieltjes Transform of Hyperfunctions

A complex inversion formula for Stieltjes transform is defined by A. Aghili and A.
Ansari in [2]. In this study we see that the inverse formula exists for Stieltjes transform

of hyperfunction.

Definition 2.2.14. If f(z) is a hyperfunction of bounded exponential growth, with

Stieltjes transform f(¢) then

a+100 b+zoo ~
fla) = SO = 3= | (| Foeaneray
T

Where a and b are two positive constants chosen suitably.
The above integral is an improper integral which can be evaluated as a contour
integral. It can be integrated along vertical lines t = b+ i and y = a + i« in the

complex plane.

If f(x) is a hyperfunction of bounded exponential growth inverse Stieltjes trans-
form of a hyperfunction can also be defined in terms of the inverse Laplace transform

as

2.3. £,— Transform of Hyperfunctions

O.Yurekli and I.Sadek in 1991 introduced the Laplace transform like £,-transform
for solving partial differential equations and integral equations. Here we define £,
transform for Hyperfunctions having bounded exponential growth. Since the £, -

transform integral converges for hyperfunctions of bounded exponential growth.
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2.3.1 £, Transform of Hyperfunctions

Definition 2.3.1. Let f(z) = [F(z)] is a hyperfunction having bounded exponential

growth, the £, transform of f(z) is defined as

N = [ ae e = [ R

0
if o_(f) <R(s?) <0+(f)
Proposition 2.3.2. The image function £,|f(z)](s) is holomorphic

Proof. Since the kernel of the transform is a holomorphic function and the defining

function F'(z) is holomorphic, £,[f(x)](s) is holomorphic. O

As for ordinary function the relation connecting £, transform and Laplace trans-

form of hyperfunction exists.

Proposition 2.3.3. If f(z) = [F(z)] is a hyperfunction having bounded exponential
growth and o_(f) < R(s*) <o, (f), then

Proof. Let f(x) = [F(z)] is a hyperfunction having bounded exponential growth and
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8

ze " f(x)da

)
N
S
~
&
=~
W
SN—

I

S—

[e=]

2e " F(2)dz

f Sty (\/Q)d¢, by putting 22 = ¢

|
N | — wlwﬁ

&
s
~—~
B
=
~—~
w

[\

S~—

Examples 2.3.4.

S.[6()](s) — fooxe_$2525(x)dx

0

\I\OO 72282 _1
= ze (——)dz

0 2miz
—1 [
= — 672282d2
2mi Jo
-1 (* 1q - . 2 -2
= , u2” e “du, by putting 2°C° =u
4mis )
-1 1
e —F —
dmis (2)

(4

4ﬁ5

Examples 2.3.5.
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Remark. We show that the initial value and final value type theorem also exist for

£,-transform of hyperfunctions

Proposition 2.3.6. If f(x) = [F(2)] is a holomorphic hyperfunction having bounded
exponential growth, f (x) = [F'(2)] is also holomorphic and o_(f) < R(s?) < o4 (f),
then

lim f(z) = lim 2s*L,[f(z)](s)

x—0 S$—00

Also, lim f(x) = LI_I% 252 L,[f(2)](s)

Tr—0

Proof. We have

JOO e f(2)de = JOO e T F (2)dz

0

= 25°S,[f(2)](s) — f(0)

But

@ 2.2 ./
lim | e ¥ f(z)dr =0

5—00 0

Therefore

lim 2528, [ f(2)](s) — £(0) = 0

S§—00
Since f(x) is holomorphic,

f(0) = lim f(z)

z—0
Thus,

lim 25%L,[f(2)](s) = £(0) = lim f(x)

§—0 z—0

o1



Q0
Letting s — 0 in J ¢ %" ' (x)dx we have
0

o0

lin%j e f2)de = f(2)dx
S—> 0

= LOO F'(2)dz
~ lim f(z)— £(0)

T—0

Thus
lim (258, [f(2)](s) = f(0)) = lim f(z) — f(0)

Tr—0

i.e. £i£1(1)252£2[f(x)](s) = lim f(z)

T—>00

]

Proposition 2.3.7. If f(x) = [F(z)] and g(x) = [G(2)] are hyperfunctions of

bounded exponential growth and o_(f + g) < R(s*) <o (f + g) then

L.[f (@) + 9(2)I(s) = L.l f(2)](5) + L.[g(2)](s),

Proof.

L) +g@)e) = [ e @) + gl
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Proposition 2.3.8. Let f(z) = [F(2)] is a hyperfunctions of bounded exponential

growth and c be a non zero constant. If o_(f) < R(i—z) < o.(f) then

Proof.

L)) = f

_ f 2 o2 d
1
=)

J Ce O’ R F(¢)d¢, by putting ¢z = (
2

‘”fca: x

(@) )

2.3.2 Inverse £, Transform of Hyperfunctions

A. Aghili, A. Ansari and A. Sedghi defined a complex inversion formula for £, trans-
form in [3]. The inverse formula for £,- transform of hyperfunctions exist only when

the inverse Laplace transform of £[f(y/z)](s?) exist.

Definition 2.3.9. If L(4/s) is a holomorphic function of s (by assuming s = 0 having
no branch point) having finite number of poles which lies to the left side of the line
Rs = aand all F(2) € [F(z)] has a common strip of convergence, £,| f(z)](s) = L(s),
then
1 a+100 9
fla) =871 (L(s) = 5— 2L(Vs)e” “ds

211 Jy—ioo

The above complex integral can be evaluated using the residue method.
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Chapter 3

Fourier-Laplace, Laplace-Stieltjes
and Fourier-Stieltjes Transforms of

Hyperfunctions

In this chapter combined transforms like Fourier-Laplace transform, Laplace-Stieltjes

transform and Fourier-Stieltjes transform of hyperfunctions are studied.

3.1. Fourier-Laplace Transform of Hyperfunctions

Laplace and Fourier transforms exist for hyperfunctions. Here we have studied the
existence of Fourier- Laplace transform of entire hyperfunction with exponential type
defining function.

Mitusuo Morimoto in his book[40]has mentioned about the Fourier-Laplace
transform of an entire function of exponential type. The existence of the combined

Fourier-Laplace transform of hyperfunctions is studied using the convergence criteria

o4



for Fourier and Laplace transform of hyperfunction.

Definition 3.1.1. A hyperfunction f(z) = [F(z)] € B(R) is called an entire hyper-
function if the defining function of the hyperfunction F'(z) is an entire function

in C.

Definition 3.1.2. An entire hyperfunction f(z) = [F(z)] € B(R) is called an entire
hyperfunction of exponential type if there exists M = 0 and n > 0 such that
|F(2)| < Me™ for all F(z) e [F(2)].

Definition 3.1.3. For a convex compact set P subset of C support function Sp of P
is defined by

Sp(y) = sup{Re(z7y) : z€ P},ye C

Note:Let E denotes the linear space of entire hyperfunctions of exponential type

with compact support.

Definition 3.1.4. For a convex compact set P subset of C and for the hyperfunction

f(z) = [F(Z)] define || f(z) [|(p) by
| f(@) [lpy= sup{|F(2)]e™*r® : 2 € C, F(2) € [F()]}
Definition 3.1.5. For a convex compact set P define

&s(C, P) = {f(x) e E | f(2) [l(p) <00}

Proposition 3.1.6. £3(C, P) is a Banach space with respect to the norm || f(z) ||(p).

Proof. Clearly Eg(C, P) is a normed linear space.

Suppose that sequence (f,,(z)) is a Cauchy sequence in Eg(C, P).
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Then || fu(2) [|(p) <o0,Vn =1,2,3...

Let fo(x) = [Fn(2)], for n =1,2,3...

Let ex>0

Since (f,(z)) is a Cauchy sequence in Eg(C, P) for e>0 there exists N € N such that
| folx) = fi(2) ||(py <€ for all n,m > N.

i.e. sup |E,(2) — F(2)le™%7#) <e for all n,m = N.

So we get (F,(z)) is a Cauchy sequence in C. But C is complete.

Hence F,(z) — F(z) as n — oo.

Let f(xz) = [F(z)]. Then f(z) € Eg(C, P) and f,(z) — f(x) with respect to

| f(z) ||(py in the sense of convergence of hyperfunctions. O

Definition 3.1.7. For v € C, with |y| = 1 define

V(v) = {z € C: Sp(y)<Re(27)}

Then V() is an open half plane in C.
For a given f(z) = [F(2)] € E5(C, P) and n>0 there exists M, > 0 such that

|F(7)] < M,eSr+l for ~ e C.

Hence if f(x) € E(C, P), o, (f) and o_(f) always exists.

Remark. We are going to define Fourier-Laplace transform for entire hyperfunctions

of exponential type.

Definition 3.1.8. Let f(z) = fi(x) + fa(x) € E5(C, P) be an entire hyperfunction
of exponential type with fi(z) = [Fi(z)] € O(R.), fo(x) = [Fo(2)] € O(R,) and if
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—0.(f1) <0< —0_(f2) then Fourier-Laplace transform of f(x) is defined as

SELf(0)](z,7) =[G4 (2,7), G (2,7)]

where
-1 -1 [*
Gi(z,7) = i ), e T (T)dT = 31 ), eV (ty)ydt, R_vy = {ty:t <0},
-
and
—1 -1 [~
G_(z,7) = — e TRy (T)dr = — | e Ey(ty)ydt, Roy = {ty:t >0},
21 g, 21t Jy
for z € V(v)

Proposition 3.1.9. For a fized y the function h(z) = FL[f(x)](z,7) is holomorphic
on V(7)

Proof. Let f(x) = [F(2)].
For n > 0, take

V,(v) ={z € C: Sp(y) +n < Re(27)}
Then for z € V,;(’y) we have

F(ty)e *y| < Mpe 2
|F'(ty ¥ n
2

Hence the integral in the above definition converges absolutely and uniformly Vz e V;;

But V(v) = UV, (7).
Therefore FL[f(x)](z,v) is holomorphic on V(7). O
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Proposition 3.1.10. For z € V(y) n V((), FL[f(x)](z,7v) = FL[f(x)](z, )

Proof. Applying Cauchy’s integral theorem for the Fourier-Laplace integral of hyper-

functions we get the required result. O]

Proposition 3.1.11. If f(z) = [F(2)] € Es(C, P) is a measurable hyperfunction
then there exists a unique G(Z) € O(C\P) such that G(z) = FL[f(x)](2,7) on V(v),

where G(z) vanishes at infinity.

Proof. Since P is convex and compact, U| Jl=1 V(y)=C\P.
Then using proposition 3.1.9,3.1.10 and Lebesgue convergence theorem the result

follows. L

Proposition 3.1.12. For fi(x), f2(x) € E5(C, P),
SLlerfi(x) + cafo(2)](2,7) = aFllfi(x)](z,7) + 25 L] f2(x)](2,7) provided the two

integrals on the left has a common strip of convergence.
Proof. Follows from definition. ]

Proposition 3.1.13. Let f(z) = [F(z)] € E(C, P), holomorphic at x = d and

01 = 02 (X () <0 < — 0 (f) = 0—(x0u) (@), then
B (@)](27) = T/ (@)](27) + T (a0 (@)](2.7)

Proof. Follows from proposition 1.3.14. ]

3.2. Laplace-Stieltjes Transform of Hyperfunctions

We define Laplace-Stieltjes transform for Hyperfunctions with defining function hav-

ing bounded variation property.
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3.2.1 Laplace-Stieltjes Transform of Hyperfunctions

Definition 3.2.1. A hyperfunction f(z) = [F(z)] € B(I), where I is a closed subset
of R is said to be of bounded variation if all the functions G(z) € [F(z)] are of

bounded variation (i.e. ReG(z) and ImG(z) are real functions of bounded variation)

Definition 3.2.2. Let f(z) = [F(z)] € B(I), where I < [0,00) is a closed , be a
measurable, non decreasing, exponentially bounded hyperfunction and of bounded

variation. For the complex variable s the Laplace-Stieltjes transform is defined as

SN = 1) = [ " e () = | " e dr(2),

0 0

provided the integral converges at some point sg. Then it converges Vs with Rs > Rsq

(Here the integral is Stieltjes Integral)
Proposition 3.2.3. £5[f(x)](s) is strictly positive.
Proof. If f(x) > 0, clearly £s[f(x)](s) > 0. O

Examples 3.2.4. Consider the hyperfunction f(x) = x™. In terms of the defining
function f(x) = [F(2)], where F(z) = 2". Then

f7(s) = Lslf(@)](s)
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Remark. Next proposition is the relation connecting Laplace-Stieltjes transform and

the Laplace transform of a hyperfunction

Proposition 3.2.5. Let f(x) = [F(z)] be a hyperfunction of bounded exponential
growth and o_(f) < R(s) <o (f). Then

Ls[f(2)1(s) = L[ (@)](s)

Proof. Suppose that f(z) = [F(z)] be a hyperfunction of bounded exponential growth
and o_(f) <R(s) <oy (f).

Lslf(@)](s) = | e™df(x)

]

Proposition 3.2.6. Let f(z) = [F(2)] and g(z) = [G(2)] be a hyperfunction of
bounded exponential growth with Laplace-Stieltjes transforms f*(s) and g*(s) respec-

tively. Then
Lslf (@) + g(x)](s) = Ls[f(x)](s) + Lslg(z)](s)

Also for some constant c,

Lslef(@)](s) = cLsf(2)](s)
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Proof. Suppose that f(z) = [F(z)] and g(x) = [G(z)] be a hyperfunction of bounded

exponential growth with Laplace-Stieltjes transforms f*(s) and ¢g*(s) respectively.

Ls[f(x) + g(x)](s)

Also for any constant c,

Lslef(@)](s)

00

. e *d(f(x) + g())

e Pd(F(z) + G(2))

e (F (2) + G'(2))dz

e *d(cf(x))
e~ 7d(cF(2))
e~ cF (2)dz

CJ
0

cLs[f(x)](s)

e F (2)dz

]

Proposition 3.2.7. Let f(x) = [F(z)] be a hyperfunction of bounded exponential

growth and o_(f) < R(s) < o, (f) with Laplace-Stieltjes transform £s|f(x)](s). Then

!

Lslf

(@)](s) = sLs[f(@)](s) = s£(0) = f (0)

Proof. Suppose that f(z) = [F(z)] be a hyperfunction of bounded exponential growth
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and o _(f) < R(s) < o(f) with Laplace-Stieltjes transform Lg|f(z)](s).

IO el (@)

[
Proposition 3.2.8. Let f(x) = [F(z)] be a hyperfunction of bounded exponential

growth and o_(f) < R(s) <o(f). Then for any a € C,

Ese™ f(2)](s) = LLf (@)](s — a) + aLlf(x)](s — a),

where o_(f) + R(a) < R(s) <o (f) + R(a)

Proof. Let f(z) = [F(z)] be a hyperfunction of bounded exponential growth and

o-(f) <R(s) <o (f)-
Also let a € C be a constant with o_(f) + R(a) < R(s) < o.(f) + R(a)

[~00

Lsle™f(@)(s) = | ed(e™f(x))
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Q0

f e F (2)dz + aJ e eV F(z)dz
OOO

f (s=02 F'(2)dz + aj e~V P(2)dz

0

(@)](s — a) + aLlf(2)](s — a)

O

Proposition 3.2.9. Let f(x) = [F(z)] be a hyperfunction of bounded exponential
growth having Laplace-Stieltjes transform Ls|f(z)](s) with o_(f) <R(s) < oy(f).
Then

Lsl " (@)](s) = " Ls[f(2)](s),

if the strip of convergence is same.

Proof. Let f(z) = [F(z)] be a hyperfunction of bounded exponential growth having
Laplace-Stieltjes transform £s[f(z)](s) with o_(f) < R(s) < o+(f).

00

Lslf"(@)(s) = J, et d(f"(x))

=), e Zd(F"(2))

= e F" M (2)dz
Jo

= L[ @)](s)
= s"L[f(2)](s)
= s"Ls[f(@)](s)

O

Remark. We prove the existence Laplace-Stieltjes transform for convolution of hyper-

functions
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Proposition 3.2.10. Let f(x) = [F(z)] and h(x) = [H(z)] be two hyperfunctions
having bounded exponential growth with compact support |a,b] and |c,d| respectively.
If f*(s) = Ls[f(x)](s) and h*(s) = Ls[h(x)](s) exists then the Laplace-Stieltjes

transform of the convolution f(x) = h(x) exists.

Lsf(x) = h(@)](s) = éﬁs[f (2)](s) Es[h(2)](s)

Proof. Suppose that f(z) = [F(z)] and h(x) = [H(z)] be two hyperfunctions having
bounded exponential growth with compact support [a,b] and [¢, d] respectively.
Then the convolution f(x) = h(x) of f(x) and h(zx) is exists as a hyperfunction with
compact support contained in [a + ¢, b + d].

In general,

Hence

Ls[f(z) = M2)](s) = Ss[f F(z = 7)H(7)dr](s)

= el FG-nHer)

_ ro eSZ(fo F( — 1) H(r)dr)dz
_ F H(r)dr F e B (s — 1)z

0

Putting 2 — 7 = p we get

&/ - h) = s | " H(r)dr | " e B (p)dp

0
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= s LOO e “TH(r)dr JOO e *PF(p)dp
= sLF(0)](s).L[n(2)](s)
= s Ls[f(2)](s)- Ls[h(2)](s)

= L Sslf@)(s)Ls[n(@)](s)

3.2.2 Inversion formula for Laplace-Stieltjes Transform of

Hyperfunction

D. Salltz[46] defined an inversion formula for the Laplace-Stieltjes transform of ordi-
nary functions. The inversion formula for Laplace-Stieltjes transform of a hyperfunc-

tion we defined as follows.

Definition 3.2.11. The inversion formula for the Laplace-Stieltjes transform of the

hyperfunction of bounded exponential growth is defined as

a+1ib est

f(z) = lim ?f*(s)ds

b—o0 a—ib

where a > 0 is greater than the radius of convergence.

3.3. Fourier- Stieltjes Transform of Hyperfunctions

Using the relation connecting Fourier transform and Laplace transform of hyperfunc-

tions, the Fourier-Stieltjes transform of hyperfunction can be defined as follows.

Definition 3.3.1. Let f(z) = [F(z)] € B(I), where I < [0,00) is a closed , be a
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measurable, non decreasing, exponentially bounded hyperfunction and of bounded

variation. For the complex variable s the Fourier-Stieltjes transform is defined as

Sslf(@)](s) = Ls[f(x)](is),s € R

The operational properties of Fourier-Stieltjes transform of hyperfunctions can be
established using the operational properties of Laplace-Stieltjes transform of hyper-

functions.
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Chapter 4

Abelian - Tauberian Theorems for
Some Integral Transforms of

Hyperfunctions

In this chapter we have proved Abelian - Tauberian theorem for Laplace transform of
Hyperfunctions, Abelian - Tauberian theorem for Stieltjes transform of Hyperfunc-
tions and Abelian - Tauberian theorem for Laplace-Stieltjes transform of Hyperfunc-

tions.

4.1. Abelian -Tauberian theorem for Laplace Trans-
form of Hyperfunctions

We first develops the background for deriving the Continuity theorem of Hy-

perfunctions which then leads to the Abelian -Tauberian theorem for Hyperfunctions.
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4.1.1 Measurable Hyperfunctions

Definition 4.1.1. A hyperfunction f(z) = [F(Z)] = [F\(z), F_(z)] is said to be
a measurable hyperfunction if the defining function F(z) € [F(z)] are all complex

Lebesgue measurable functions.

Remark. We consider sequence of hyperfunctions (f,(z)) = ([F.(2)]), where the se-
quence of defining functions (F,(z)) are defined on a common domain N < C for the

following theorems.

Lemma 4.1.2. Let (f,(x)) = ([Fn(2)]) be a sequence of non-negative, real valued,
holomorphic, measurable hyperfunctions with compact support and having bounded

exponential growth. Then

lim infffn(:c)d:c > Jlim inf f,,(z)dz

Proof. Applying Fatou’s lemma for measurable functions to the sequence of defining

functions of (f,(z)) we have
lim inf f F.(2)dz = Jlim inf F,(2)dz

Also it holds for every G, (z) € [F,(2)].

Hence the result follows. O

Theorem 4.1.3. Let (f,(z)) = ([F..(2)]) be a sequence of non-negative, real valued,
holomorphic, measurable hyperfunctions with compact support and having bounded
exponential growth. If (f.(x)) is monotonic increasing and (f,(x)) — f(x), where
f(x) = [F(z)] then
ff(x)dx = limjfn(x)dx
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Proof. Let f(x) = lim f,(x). Then by Lemma (4.1.2) we have
n—o0

J~f(x)dx _ J~hn1jg(x)dx
::ﬁmmnmm
:fmma@@
<1mmfm@w

= lim infjfn(a:)da:

Since (f,(x)) is monotonic increasing and (f,(z)) — f(z) in the sense of hyperfunc-

tion we have f,(z) < f(z).

Hence
fﬁ@ﬂx<[f@ﬂx
Then
lim supffn(x)dx < Jf(x)dx
So
fﬂ@m<mmﬁfM@M<Mwah@m<Jﬂ@m
Thus

ff@ﬂxzmnjhmﬂx
O

Theorem 4.1.4. Let (f,(z)) = ([FL.(2)]) be a sequence of non-negative, real valued,
holomorphic, measurable hyperfunctions with compact support and having bounded ex-

ponential growth. If | fn(x)| < g(x), where g(z) = |G(2)] is a real valued hyperfunction
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and

lim f,(x) = f(z), f(z) = [F(2)]

n—aoo

then f(x) is integrable and

hth@szfﬂ@m

Proof. Applying Dominated convergence theorem for measurable functions to the

sequence (F,,(2)) of defining functions of (f,(z)) we have F(z) is integrable and

1mfm@m:JF@@

Then using the convergence in the sense of hyperfunctions we get f(x) is integrable

and

limjfn(:v)d:c = ff(x)dx
O
Theorem 4.1.5. Let (f,(z)) = ([F(2)]) be a sequence of non-negative, real valued,
holomorphic, measurable hyperfunctions with compact support and having bounded
exponential growth, defined on (0,00). If |fn(x)] < P and lim f,(x) = f(z), f(z) =
n—0o0

[F(z)] then

e} 0

limf fo(x)de = J f(x)dz
0 0

Proof. Follows from Bounded convergence theorem for real valued measurable func-

tions and using the convergence in the sense of hyperfunctions. O
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4.1.2 Continuity Theorem for Hyperfunction

Lemma 4.1.6. Let f(x) = [F(2)] and g(x) = |G(2)] are two holomorphic hyper-
functions of bounded exponential growth with Laplace transforms f(s) = L[f(2)](s)

and §(s) = L[g(x)](s). If they have a common vertical strip of convergence then
f(s) = §(s) implies f(x) = g(x)

Proof. Suppose that f(s) = g(s).

Theorem 4.1.7. (Continuity theorem for Hyperfunctions)

Let (fn(x)) = ([F(2)]) be a sequence of non-negative, real valued, holomorphic, mea-
surable hyperfunctions with compact support and having bounded exponential growth,
defined on (0, 00).

(a) Let f(x) = [F(2)] be a measurable hyperfunction with support contained in (0, 0)
such that f,(x) — f(z) for all points x at which f,’s and f are holomorphic. If there

exists t = 0 such that sup L[ f,,(x)](t) < oo then

nz1

LIfa(@)]1(s) = LLf (2)](s)
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asn — o for all s>t
(b) Suppose there exists t = 0 such that L|f,(z)](s) = L[f(z)](s) as n — o for all

s>t then

for all points x at which f,’s and f are holomorphic if the Laplace transforms of f,’s

and f have a common vertical strip of convergence.

Proof. (a) Let
M = sup L[ fn(x)](t) < o0.

n=1

Then for any s >t and = € (0, o),

JOO e fo(x)dr — LOO e *f(x)dx

0

by proposition 4.1.5.

Let s >t and € > 0 such that f is holomorphic at y € (0,00) with Me DY < e.

fe—swfnmdx < L[fa(2)])(s)

0

Yy Q0
< J e 5 fy(v)de + e J e " fu(x)dx

0 y

Yy
< J e Tl (x)dr + €

0

Then

[[ewstans < mmat @l
< limsup L[ f.(2)](s)

n—ao0
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< Jy e f(x)dxr + €

0

Letting y — oo along holomorphic points of f(x) = [F(2)]

fooo e f(@)de < liminf £[f(2)](s)

n—aoo

< limsup L[ fn(2)](s)

n—aco

< f e f(x)dx + €
0

i.e.L[f(x)](s) < liminf L[ fn(2)](s) < limsup L[fn(2)](s) < L[f(2)](s) + €

n—00 n—o0

Since € > 0 is arbitrary,
L[fn(x)](s) = L[ f(x)](s), as n > for all s>t

(b) Suppose that
LLfa(@)]1(s) = LIf (2)](s)

as n — oo for all s >¢ and the Laplace transforms of f,’s and f have a common

vertical strip of convergence. By Lemma (4.1.6) and proposition (4.1.5)

fule) = fe“c[fm)](s)ds

- [ " LU (@) (s)ds
_ @)
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4.1.3 Abelian -Tauberian Theorem for Laplace Transform of

Hyperfunctions

We now prove Abelian -Tauberian theorem for the Laplace transform of hy-
perfunctions. To avoid formulas consisting of reciprocals we introduce two positive

variables p and ¢ such that pg = 1. Then ¢ — 0 when p —

Theorem 4.1.8. Let f(x) = [F(2)] be a measurable, holomorphic hyperfunction
on (0,00) having compact support and bounded exponential growth. If the Laplace
transform. f(s) = [f(x)](s) is bounded for s >0 then the following conditions are

equivalent.

LLf ()](gs)

Y L@l e

as q— 0

f(pz)

(b) ———= — 2% as p > ©

f(p)

Also L[f(x)](q) ~ f(p)a!,a = 0 is an integer

Proof. (a)= (b)

Suppose
Ll@as)
LIf@)](q) — sot

Then by Continuity theorem for hyperfunctions

as q — 0.
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Letting x = 1, we have

/() 1
271 o (1)
Hence
alf(p) o’
Ll
Thus

Substituting (2) in (1)

flpz) — =°
flpyal ~al P
ff(@x)) —x% as p —> ©
(b)= (a)
Suppose
f(pz)

—x% as p —> ©

f(p)

Then by again by Continuity theorem for hyperfunctions,




But

Substituting (4) in (3)

We can express the above theorem in terms of slowly varying function also.

Theorem 4.1.9. Let f(x) = [F(2)] be a measurable, holomorphic hyperfunction
on (0,00) having compact support and bounded exponential growth. If the Laplace

transform f(s) = [f(x)](s) is bounded for s> 0 then the following conditions are

equivalent.

(a) LLf(2)](s) ~ @=h(3) as s — 0+

s

anrl

(b)f(x) ~ = h(z) as z — oo

where h : (0,00) — (0,00) is a slowly varying function at infinity and o = 0 is

an integer
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Proof. (a)= (b)

Suppose

1

Sa+1

1
h(g) as s — 0+.

Then

?) 1 h(%)
L[f(x)](3) s>+ h(t)

as t — o

Sa+1

Using previous theorem and putting ¢ = % we have

Similarly we can prove (b)= (a) O

4.2. Abelian -Tauberian Theorem for Stieltjes Trans-
form of Hyperfunctions

In the case of hyperfunctions we prove an Abelian -Tauberian type theorem for
Stieltjes transform of hyperfunction by imposing certain additional conditions in

Karamata’s[36] Abelian -Tauberian theorem for the Stieltjes transform.

Proposition 4.2.1. Let f(z) = [F(z)] be a holomorphic, measurable, non decreasing

hyperfunction of bounded exponential growth with compact support contained in (0, c0)
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such that the Stieltjes transform

i) = st = [ L% - [ TEE),,

o T+t 0o 2+t

exists for all t > 0. Let p be a number with 0 < p < 1. Then the following statements

are equivalent

f@t)~Ctr~t as t — oo

¢ p
flz) ~ F(l—i—p)F(l—p)z as r — oo

Proof. Suppose that

ft)~Ctr ! as t - o

Using the result

* 1
J 6—(m+t)udu _
0 T+t

we have

f B Mdaz

Jo T+t

0 e 0}
= (J e~ @y f(z)da
(0 ° ©

= e " g(u)du, where g(u) = f e~ f(x)dx

JO 0

Since g = 0, the integral of g will be non-decreasing. So by theorem 1.6.1 we get

* c
dv ~ - —0
L g(v)dv F(—p—l—l—l—l)x as

N c
ie. | gW)dy ~ ———a2 " as . — 0
Jo ) I'(2-p)
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Differentiating with respect to x,

¢ _ 1—p—1
I'(2-p)

g(x) ~ as © — 0

i.e.g(x) ~ ——x " as © -0

Applying theorem 1.6.1, we have

Conversely suppose that

¢ P
MO~ g™ @0

Then by letting L(x) = 1 in theorem 1.6.3 we get

f@t)~Ctrt as t - oo

4.3. Abelian -Tauberian Theorem for Laplace-Stieltjes
Transform of Hyperfunctions

Let By (I) denote the set of all non-decreasing, non-negative, real valued, holomor-
phic, measurable, exponentially bounded hyperfunction of bounded variation defined

on the closed subset I < [0, 0)
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Lemma 4.3.1. Let f(z) = [F(2)], g(x) = [G(2)] are in By (I) with Laplace-Stieltjes
transforms f*(s) = Ls|f(x)](s) and g*(s) = Lslg(x)|(s). If they have a common

vertical strip of convergence and if f*(s) = g*(s) then f(x) = g(z)

Proof. Suppose that f*(s) = g*(s).

fH(s) = g"(s) = Lslf(@)](s) = Lslg(a)](s)

]

Theorem 4.3.2. Let (f,(x)) = ([F.(2)]) be a sequence of hyperfunction in B (1)

with compact support.

(a) Let f(x) = [F(z)] be a measurable hyperfunction with support contained in
(0,00) such that f,(x) — f(x) for all points x at which f,’s and f are holomorphic.
If there exists t = 0 such that sup £s[fn(2)](t) < o then Ls[fn(x)](s) = Ls[f(x)](s)

nz=1

asn — o for all s>t

(b) Suppose there exists t = 0 such that Ls[fn(x)](s) = Ls[f(x)](s) as n — ©
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for all s >t then f,(x) — f(x) for all points x at which f,’s and f are holomorphic,

if the Laplace-Stieltjes transforms of f,’s and f have a common vertical strip of

Convergence.

Proof. (a) Let

A = sup Ls| fn(2)](t) < o0.

n=1

Then for any s >t and x € (0, c0),

fo 5 df (1) — f:o =5 df ()

0

by proposition (4.1.4).

Let s >t and € > 0 such that f is holomorphic at y € (0,00) with Ae~ v <.

Jye‘”dfn(x) < Ss[fal@)](s)

0

< fy e v df,(z) + e Y foo e df,(x)

0 v
v
< f e df,(z) + €

0

Then

J e maf(z) < liminf £s[fa(2)](s)

0 n—o0

< limsup Ls[fn(2)](s)

n—aoo

< Jy e df (x) + €

0
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Letting y — oo along holomorphic points of f(x) = [F(2)]

[em ) < e estane

< limsup Ls[fn(2)](s)

n—aoo

< JOO e **df (x) + €

0

i.e.Ls[f(z)](s) < liminf £s[f.(x)](s) < limsup Ls[fn(x)](s) < Ls[f(x)](s) + €

n— n—a0

Since € > 0 is arbitrary,

Ls[fu(@)1(s) = Lsf (2)](s)

asn — oo for all s > ¢

(b) Suppose that
Ls[fu(@)1(s) = Lsf(2)](s)

as n — oo for all s>t and the Laplace-Stieltjes transforms of f,’s and f have a
common vertical strip of convergence.
By previous Lemma and proposition (4.1.4)

Re) = [ essln@les

. fo " e[ F(2)](s)ds
= f(z)
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Proposition 4.3.3. (Abelian theorem for Laplace-Stieltjes Transformation of Hyper-
functions)

For f(x) € B (1), if
LI M

z—oo " n!

then

lim s" f*(s) = M,

s—0

where n is a non-negative number and M is a constant.

Proof. Let f(z) € By (I), n is a non-negative number and M be a constant.

Suppose that

im 4@ M
z—w " n!
Then
M n
f(z) — nf as T — o0

Hence by the previous proposition 4.3.2

M n!
f(s) — L s 50
n! sm

ies"f*(s) > M as s —0

Hence lim s" f*(s) = M O

s—0

Proposition 4.3.4. (Tauberian theorem for Laplace-Stieltjes Transformation of Hy-

perfunctions)
ee]

Let f(x) € By 1 (1) with Laplace-Stieltjes transform f*(s) = f e~ df (x), which con-
0
verges for some R(s) >0 and hH(l) s"f*(s) = M, for some constant M and n > 0.
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Then
fl@) M

lim —= = —
Tz gl n!

0

Proof. Let f(x) € ByF(I) with Laplace-Stieltjes transform f*(s) = f e *df (),
0

which converges for some R(s) > 0 and hII(l] s"f*(s) = M, for some constant M and

n > 0.

i.es"f*(s) > M as s —0

f*(s)_)_ as s — 0

1.€.
M s"

Then by proposition 4.3.2 we have

% — % as T — oo
Lx) — M as T — oo
" n!
Hence
lim _f(x) = M
z—w " n!
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Chapter 5

Two Dimensional Laplace

Transform of Hyperfunctions

Urs Graf applied Laplace transform to Sato’s hyperfunctions. In this chapter we have
applied two dimensional Laplace transform to hyperfunctions in two variables. We

have established some properties of this transform and defined the inverse transform.

5.1. Hyperfunctions in Two Variables

Definition 5.1.1. Let I; and I, are open intervals in R and N(I;) is a complex
neighbourhood of I; (i.e.N(I;) contains I; as a closed subset) for i = 1,2 then the
open set N(I;) x N(Iy) in C? is called a complex neighbourhood of I x Iy, if I} x I

is a closed subset of N(I;) x N(Is).

Definition 5.1.2. Two functions F'(z1, z2) and G (21, 22) in O((N (11)\1) x (N (I2)\]2))
are equivalent, if for (21, 22) € (N1(I1) x N1(I2)) n (No(I1) x No(l3)),
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Figure 5.1: Complex neighbourhood N (/X 15)

G(21,22) = F(21, 22) + ¢1(21, 22) + ¢2(21, 22)

with ¢1(21, 22) € O((N(I1)\[1) x N(I2)) and ¢2(z1,22) € O(N([1) x (N (I2)\I2)). Here
Ni(I1) x Ni(Iy) and Ny(I;) x Na(I) are the complex neighbourhoods of Iy x Iy of

F(z1, z0) and G(z1, 2z2) respectively. We denoted it by F(z1, z2) ~ G(21, 22)

Proposition 5.1.3. The relation ~ defined above is an equivalence relation

Proof. Since the zero function is a holomorphic function in O((N(I;)\I1) x N(l2))
and O(N (1) x (N(I3)\I2)) we have F(z1, z3) ~ F(21,22). Hence ~ is reflexive.
Suppose

G(21,22) = F(21, 22) + ¢1(21, 22) + ¢2(21, 22).

If ¢1(z1,22) € O((N(I1)\[1) x N(I2)) and ¢2(z1,22) € O(N([1) x (N(I2)\I2)) then
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—¢1(21,22) € O((N(L1)\I1) x N(I3)) and —pa(z1, 22) € O(N(I1) x (N(Ix)\I2)).

Hence

F(z1,20) = G(21, 22) — ¢1(21, 22) — Pa(21, 22).

Thus F(z1, 22) ~ G(21,20) = G(z1, 20) ~ F(21, 29).
Therefore ~ is symmetric.

Suppose that F(z1, 22) ~ G(z1, 22) and G(z1, 22) ~ H(21, 22).Then

G(21,22) = F(21, 22) + ¢1(21, 22) + ¢2(21, 22),

H(z1, z) = G(21, 22) + ¢11(21, 29) + ¢,2(21, 22)

where ¢1 (21, 22), ¢y (21, 22) are in O((N(1)\1) x N(I2)) and ¢a(21, 22), ¢ (21, 22) are
in O(N(11) x (N(Ix)\I2)).

Since the sum of two holomorphic functions is again holomorphic,

d1(21, 22) + ¢ (21, 22) € O(N(I1)\[1) x N(I2)),

B2(21,22) + Py(21, 22) € O(N(I1) x (N(I)\I2))

Hence

H(z1,20) = G(21,22)+ ¢11(21722) —+ ¢;(21, 22)
= F(21,2) + ¢1(21, 22) + P2(21, 22) + ¢11(21,22) + ¢12(21’22)

= F(z1,2) + (d1(21, 22) + by(21, 22)) + (ha(21, 22) + Pp(21, 22))

So F(z1,29) ~ H(z1, 22).
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Hence ~ is transitive.

Therefore ~ is an equivalence relation. ]

Definition 5.1.4. Define

S(1 x Ir) = O((N(I1)\[1) x (N(I2)\I2))

Definition 5.1.5. An equivalence class of functions F'(z1, z2) € §(I; x I3) defines a

hyperfunction f(x,y) on I; x I. It is denoted by

f(z,y) = [F(21, 2)]

F(z1, 29) is called defining or generating function of the hyperfunction f(z,y).

The set of all hyperfunctions on the set I; x I is denoted by B(I; x I5).

Then as a quotient space,

O((N(I)\1) x (N(I2)\]2))
O((N(I)\[1) x N(I2)) + O(N () x (N(Ix)\I))

%(]1 X 12) =

There is no importance in the choice of neighbourhood N(I,) x N(Iy). If N'(I) x
N'(I) is any other complex neighbourhood of I x I such that N'(I;) x N'(I3) <
N(I) x N(I). Then

D((N/([l)\ll) x (Ni(I2)\12))
O((N'(I)\1) x N'(L2)) + O(N'(11) x (N'(12)\I2))

works as well. This means that the behaviour of the hyperfunction depends on the

defining function in a small neighbourhood of I; x I, in C2.
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As an inductive limit

T O((N)\I1) x (N(Ix)\I2))
B(I, x I) = h—>N(Il)><N(IQ)DhXIQD((N(]I)\]I) X N(I)) + O(N(L) x (N(L)\I2))

By making complex neighbourhoods smaller and smaller around I; x I leads to the
following concept:

A real analytic function ¢(x, y) on I x I5 is defined with the understanding that ¢(z, y)
can analytically be continued to a full complex neighbourhood € in C%, Q > I; x I,.
So if any complex neighbourhood N (I;) x N(I3) containing 2. Then ¢(z,y) € O(Q).

Let
O((N(IL)\1) x (N(I2)\I2))

%R(Il X [2) = A([l N 12)

Where A(I; x I3) denotes the ring of real analytic functions on Iy x I5.

Thus as in the case of hyperfunction of one variable here also f(x,y) =
[F(z1, 20)] € Br(I1 x I,) is determined by the defining function F(z1, z5), holomorphic
in an adjacent complex neighbourhood of I; x I. It is determined only upto a real
analytic function on I; x I5.

Note:Now by a hyperfunction we mean a hyperfunction in Bz ([ x I)

Definition 5.1.6. The value of a hyperfunction f(z,y) = [F(z,y)] at a point (z,y) €
I, x I is defined as

flz,y) = 1ir51+{F(x + i€,y + i€) — F(x — i€,y — i€)},

provided the limit exists.

The above definition is well defined.

Consider G(z1, 22) € [F(21, 22)]. Then

89



1i%1+{G(QZ + i€,y + i€) — Gz — i,y —i€)}

= 1ir51+{F(:c + i€,y +i€) + ¢(x + i€,y + ie) — F(x —ie,y — ie)} — ¢p(x — i€,y — i)

= 1ir51+{F(a: + i€,y +i€) — F(x —ie,y —i€e)} + 111&{(;5(1: + i€,y +i€) — P(x — i€,y — i€)}

= lirg1+{F(a:+ie,y+ie) — F(x —ie,y —ie)} +0

= f(z,y),where ¢(z1,22) € A(l1 x I5)

Definition 5.1.7. A point (z,y) € I; x I, is called a reqular point of the hyperfunction
flz,y) = [F(21,29)] if lirélJr{F(ﬂi + i€,y + i€) — F(x — ie,y — i€)} exists. A point
(x,y) € I; x Iy is called a singular point if it is not a regular point.

Hence at a regular point the hyperfunction f(z,y) has a value as an ordinary function.

Examples 5.1.8. The Dirac’s delta function in two dimension is 6(x,y) = 0 for

x #0 andy # 0, and has value 1 otherwise.

fjé(a:,y)d:cdy 1

Then 6(z,y) = 0(x)d(y).

In terms of the defining function

—1

47T22’1 29

(5($,y) = [

Then
© e —1 1 1
Sz, y)dedy = —= | —dzy | —dzo =1
foo foo (z,y)dxdy prcl z1JZ2 z9 =1,

considering z1, za as two independent variables.
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Definition 5.1.9. The hyperfunction f(z,y) = [¢(z21,22)], ¢(z,y) € A(R?), repre-
sents the zero hyperfunction in two variables. ¢(z,y) € [O], where O denotes the zero

function.

Definition 5.1.10. For f(x,y) = [F (21, 22)], 9(x,y) = [G(21, 22)] € Br([; x I3) and
c € C define

f(l’,y) + g(x,y) = [F(Zlsz) + G(ZhZ?)]v
cf (,y) = [cF (21, 22)]

We can prove the definition of addition and scalar multiplication on Bz (I x I)

is well defined by taking representatives from the corresponding equivalence classes.

Let F'(z1, 22) € [F(21, 22)] and G'(21, 22) € [G(21, 22)]. Then

F'(21,29) = F(z1, 22) + ¢1(21,21) and

G'(z1,22) = G(21,22) + Pa(21,21)

Then

[ (21, 22) + G' (21, 22)] = [F(21,22) + ¢1(21,21) + G(21, 22) + 221, 21)]
= [F(z1,2) + G(21, 22) + ¢1(21, 21) + d2(21, 21)]
= [F(z1, %)+ G(21, 2) + O]
= [F(z1,22) + G(21, 22)]

= flz,y) +g(z,y)
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Also

[cF"(z1,2)] = [e(F(z1,22) + 61(21, 21))]
= [cF(z1,2) + cdi(21, 21)]
= [cF(z1,2) + O]
= [cF(z1,2)]

= Cf(.l’,y)

Proposition 5.1.11. By ([, x I3) is a linear space.

Proof. With the addition and scalar multiplication defined on Bx(I; x I3) as above

all the properties required for a linear space can be verified. n

Definition 5.1.12. A hyperfunction f(x,y) = [F(z1, 22)] is called holomorphic on
I x I, if the defining function [F'(21, 22)] is holomorphic on U = N(I;) x N(I). i.e
(i) For each point a = (aj,as) € U < C?* F(z1,22) has a convergent power series
expansion on U ,

F(z1,22) = 3cpymy (21 — a1)" (22 — a2)™

OR

(ii) If F(z1,22) is continuous on U and for each variable z;,j = 1,2, F(z, %) is
oF oF

holomorphic, (i.e.? = 0 and FETi 0 by the generalisation of Cauchy-Riemann
Zln Zgn

equations )

Definition 5.1.13. Let S; be the largest open subset of R? where the hyperfunction
f(z,y) = [F (21, 22)] has zero value. Then the support of the hyperfunction f(z,y) is

R*\Sy. It is denoted by suppf(z,y)
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Definition 5.1.14. Let S; be the largest open subset of R? where the hyperfunction
f(z,y) = [F(z1, 22)] is holomorphic. Then the singular support of the hyperfunction

f(x,y) is R?\S,. Tt is denoted by sing supp f(x,y)

Proposition 5.1.15. For a hyperfunction f(x,y) = [F(z1,22)], sing suppf(x,y)

suppf(z,y)

Proof. Since Sy < Sy, we have (S;)¢ < (Sp)¢

Hence sing supp f(z,y) < suppf(x,y) ]

5.2. Two Dimensional Laplace Transform of Hy-
perfunctions

Definition 5.2.1. We say that a hyperfunction f(z,y) = [F(21, 22)] on Br([; x I3)
is said to be of bounded exponential growth if there exist real constants M > 0,0 ,0"
such that

|F(z1, 29)] < Meo Rate R oy

on every compact subset of N(I1) x N(I3) and for every equivalent defining functions.
Let BZ*(I; x I5) denotes the set of all hyperfunction in Bx(I; x I) having bounded

exponential growth.

Definition 5.2.2. A hyperfunction f(x,y) = [F(z1,22)] on BL"(I; x I) is said to
be separable if
F(Zl, Zg) = Fl(Zl)FQ(Zz),

O(N(I)\N)
A(lL)

O(N(Io)\I>)

and Fy(z9) € A(L)

where Fi(z) €
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Now we define the two dimensional Laplace transform of hyperfunction in two

variables.

Definition 5.2.3. Let f(x,y) = [F(z1,22)] € B%" (11 x I5) be a separable hyperfunc-
tion with I; < [0,00) and I; < [0,00). The two dimensional Laplace transform of

f(z,y) is defined as

~

Flu.) = £, = | Cew | "o f s y)dady,

where v and v are complex numbers.

The above integral can be evaluated in the following way.

f(uv U) = ngz[f(x, y)] (U, U)
= LOO e~ LOO e " f(x,y)dzdy

0 o)
= J e v J e_ule(Zl, ZQ)ledZQ
0 0

o0 0
= J e U2 J e LF (1) Fy(22)dz1dzy
0 0

— ([T e REE( R,

. ’ n
exists for all Ru> o, Rv > o
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Examples 5.2.4.

8,5l 0) = [ e | e s ydedy =1
0 0

Proposition 5.2.5. The image function f(u,v) = £,&.[f(z,y)](u,v) is a holomor-

phic function

Proof. We have

0

Fluv) = ( f " e R () de) f 2 By (29)d2)

0

Since f(z,y) is hyperfunction of bounded exponential growth Fj(z;) and Fj(z;) are
bounded exponential holomorphic functions in one variable. Hence the Laplace trans-
form F(z1) and Fj(z1) are holomorphic. Also the product of two holomorphic func-

tion is holomorphic. Therefore f (u,v) is a holomorphic function. O

Proposition 5.2.6. Let f(z,y) = [F(z1,22)] € BR"([; x L) be a separable hyper-

function with I, < [0,00) and I, < [0,00) then

Ly f (2, y)](u, v) = £,L[f (2, y)](w, v)

Proof.

&L @l = [ e f Tl g dudy

JO 0

OO

o0
= e U f e 1F (21, z9)dz1dzo

JO 0
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¢ e
= f GUZQJ e*“ZIFl(zl) FQ(ZQ)ledZQ
0 0

o8] . o0 -
- f e “UF(z)dz f e "2 Fy(29)dzo
0 0

0 0
= J G_EZIFl(Zl)dzlj 6_622F2(22)d22,

0 0

Since by proposition 3.7 [25] £[f(x)](s) = £[f(x)](5)

0 0
= J e~V J e~ vz By (Zl)FQ(ZQ)d,ZleQ
0 0

= J e”yf e~ f(x,y)dedy
0 0

= LyL[f(z,9)](w,0)

5.3. Operational Properties

Proposition 5.3.1. Let f(z,y) = [F (21, 22)], 9(z,y) = [G(21, 22)] € BR (L1 x I5) are

two separable hyperfunctions with I; < [0,00) and I; < [0,0) then

L8[ (@) + g(z,9)](uw,v) = L,8[f (2, 9)](w, ) + £,L:[g(z, y)](u, v)
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Proof.

8.1 (0 y) + gl y)](w,v) = j f e (f () + 9(e,y))dudy
= JOO e v*2 (” e (F(21, 29) + G(21, 22))dz1d 2o

= eV e F (21, 29)dz1dzo

—i—J e”ZQJ e "1G(21, z9)dz1dzg

= £L5[f (=, 9)](u,v) + £,L:9(z, y)](u, v)

]

Proposition 5.3.2. Let f(z,y) = [F(z1,22)] € BR"(I; x I1) be a separable hyper-

functions and ¢ be a constant then

Ly Lalef (@, y)l(u,v) = € Lol f(, )| (u, v)

Proof.

Ly Lalef (x,y)(u,v) = e J ) e “(cf(x,y))dedy

J0O 0

~C0 Q0
= e vz J e Y cF (21, 22))dz1dz

JO 0

(e 0] o8]
= CJ e”zQJ e “LF (21, z9)dz1dzy



= & L[f(z,y)](u,v)

]

Proposition 5.3.3. Let f(z,y) = [F(z1,22)] € BR"(I; x I1) be a separable hyper-

functions and a and b are two constants then

L, Lule ™ f(w,y)l(u,v) = £,Lu[f (. 9)](u — a,v = D)

Proof.

Sl ) = [ e [T e e, oy

o0 e8]
— J 6_U226b22f e eV (21, 29)dz1d 2o

0 0
= J e(”b)zzf e’(“’“)le(zl,ZQ)dzleQ

]

Corollary 5.3.4. Let f(x,y) = [F(z1,22)] € BRT(I1 x Iy) be a separable hyperfunc-
tions and a and b are two constants then
(a)

Ly Lale f(x, y)](u, v) = £,Le[f(z, y)](u — a,v)
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(b)
£, Lule™ f(a,y)](u,v) = L, Lal f (2, )] (u, v — b)

Proposition 5.3.5. Let f(z,y) = [F(z1,22)] € BR"(I1 x I2) be a separable hyper-

functions and a and b are two non zero real constants then

£, 8.l e, b)) = 8, &l )5 )

Proof.

L£,8,[faz, by)|(u,v) = [ e JOO e " flax,by)dxdy

JO 0

~OO 0
= e U2 J e 'F(az,bz)dz1dzy

JO 0

(o0 ©

— eMJ e " Fy(az) Fy(bzy)dzidz
Jo 0
[ *

_ e "1 Fy(az)dz J e "2 Fy(bze)dzy
JO 0
0 ¢ 1 * S 1

- | R | e PR
JO “ 0 ’

by putting az; = (4 and bz = (s

L[ oy, [P _(u
= — e_(b)@J e~ B (&) Fo(G)dCidG,
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1

= %Sysw[f(xv y)](ga 5)

]

Proposition 5.3.6. Let f(z,y) = [F(z1,22)] € BR"(I; x L) be a separable hyper-

functions and a and b are two constants then
£,L.[f(x +a,y +b)](u,v) =™ L[ f(z,y)](u,v)
Proof.

L8 f(x+a,y+b)(u,v) = foo e v foo e “f(x+a,y+b)dxdy
0 0

9] e
_ J e V%2 f e Uz F(Zl +a, 2o + b)dzleQ
0 0

[e'e] [o'e]
_ j ) f e P(¢y, o)A,
0

0
By putting 2z +a=( and 25 +b=(

_ J ebve—v@ f eaue—uCl F(gl’ CQ)dCIdCQ

0 0

_ 6au+bv J e_v@ J e_uch(Ch <2)d61d62

0 0

= "L L f (2, )] (u,v)
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Proposition 5.3.7. Let f(x,y) = [F(z1,22)] = [Fi(z1)F2(22)] € BR (L1 x I2) be a

separable hyperfunction. For positive integers m and n,

o

2,82y F (), 0) = (~1)" (2 (Fi() (G (Fa(0),

Where fi(u) = § e 1 Fy(21)dz and fo(v) = §°

o € P Fy(20)dzy

Proof.

L[y f )] (w0) = f f ey (2, y)dedy

O

Proposition 5.3.8. Let f(x,y) = [F (21, 22)] = [F1(z1)F2(22)] € BZP (L1 x 1) be a

separable hyperfunctions and f(u) = e (20)dz, fo(v) = J e "2 Fy(29)dzy
0 0
Then
0 A
(@) Lul o (2. y)](u, v) = ufi(u) f2(v)
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(b)sysx[%f@, () = i) folv)

2

()8, 8. ), 0) = w2 o) (o)

2

(2,812 Fl, )] (0) = 0 Fi(u) folw)

oy?

& > fi(u) f
(e)gysx[mf(x’ y)](u’ ’U) = Sygx[ayaxf(x7 y)](u7 U) = uvfl(u)fZ(U)
Proof. (a)

et lswomn = [ [Ce L
yel gy T\ Y, b 0 0x N ’
[~ —vz [ —uz a
— Jo € JO a_Zl(F(Zl7Z2))dzle2
o0 [ d
_ e~V 6_"Z1d_(F1 (21)F2(22))dz1dz
Jo <0 1
o0 = d
_ V22 e U d_ (Fl (Zl))F2 (Zg)dzleQ
Jo JO 1

— (| e e[ e e
- L g (zl)dzl)(Loo e V2 Fy(29)dz)

= Ufl(u)ﬁ(’lf)
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N

2

ox?

f (@, 9)](u,

v)

e f 6“$§(f (x,y))dxdy

et —(F(21, 22))dz1dzo

eel ~ 00 d
e V2 e A — (Fl (Zl)FQ(ZQ))dzleQ
Jo Jo dzy

0 oo d
J e v f e " Fl(zl)E(F2(Z2))dzld22
2

("= R e (E)iz)

U(LOO e Fl(zl)dzl)(Loo e "2 Fy(2z9)dzo)
vfi(u) f2(v)

[z, y))dzdy

—vzz

—uz1 F1 Zl)FQ(Zg))dzleQ

e e
L . J Uz 621 F(z1, 22))dz1dzs
=
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£,L:(

52

0y?

[, 9)](u, v)

2

d
e W —— (F1 (Zl))F2 (22)d21d22

2
dzy

d (Fl(zl))dzl)(f €% By (29)d2s)

‘ 0
)

3 (f(x,y))dzdy

52
ﬁ (F(Zl, ZQ))ledZQ
2

—uz
e 1

2

d
6_uzl F (Fl (Zl)Fg (ZQ))ledZQ
%

2

d
e A F1 (Zl) — (F2 (ZQ))ledZQ

2
dzs

(" ne e R

0

o f " e (21 d ) f e~ By (29)d2)



52 0 0 52
_ —vy —ux
&8l faal) = | e et (g
[e6) 3 0 3 52
= JO e ), e 5Z1522 (F(Zl, ZQ))ledZQ
0 3 [0 3 02
= J;) e 1, e 62’152’2 (Fl(zl)Fg(ZQ))dzleQ

o0
—uz
e 1

CE D) e (Ful)d)

21 0 <2

~

uvfl (u) fo(v)

2 ~

Similarly, sysx[ag% £ )], 0) = wofu(w) fo(v)

5.4. Inverse of Two Dimensional Laplace Trans-
form of Hyperfunctions

If f(z,y) =[F(z1,22)] = [F1(z1)F2(22)] € BRP (I x I3) be a separable hyperfunction

with two dimensional Laplace transform f (u,v) the inverse transform is defined by

flz,y) = L evyL e”xf(u,v)dudv
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Chapter 6

Ordered Linear Space of
Hyperfunctions, Norm
Convergence and Completely

Monotone Hyperfunctions

In this chapter some order theoretic properties of hyperfunctions are investigated.
Order relation and norm convergence in the linear space of hyperfunctions are stud-
ied. The concept of completely monotone hyperfunctions is defined and some of its

properties are proved.

6.1. Ordered Linear Space of Hyperfunctions

We establish an order relation in the linear space of hyperfunctions by defining a

cone in it. Some properties of this cone are studied by introducing a topology to it.
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Let the set of all real valued hyperfunctions be denoted by Bgr(I). Then Bg([)

is a linear space over R and it is a subspace of B(I).

Definition 6.1.1. Let f(z),g(z) € Br(I) where f(z) = [F(2)], g(z) = [G(2)].
Define the order relation ' <’ by f < ¢ if f(x) < g(x) for all x € I. In terms
of defining functions (F(z + i0) — F(z — i0)) < (G(z + i0) — G(z — i0))) for all
F(2) € [F(2)] and G(2) € [G(2)].

Proposition 6.1.2. The above defined relation’ <’ is a partial order on Bg(I).

Proof. Using the above definition of / <', for f(z) = [F(2)], ¢(z) = [G(2)],
and h(z) = [H(z)] € Bg(I)

(1)f(z) < f(x), the relation is reflexive

(2)f(z) < g(x) and g(z) < f(z) implies f(z) = g(z). It is symmetric
(3)f(z) < g(z) and g(x) < h(x) implies f(z) < h(x). It is transitive

Thus the relation ’ <’ is a partial order relation on Bg([). O
Proposition 6.1.3. Bg(I) is an ordered linear space

Proof. Clearly Bg() is a linear space on R with respect to the addition and scalar

!

multiplication defined on B(/). Also by the previous proposition ' <’ is a partial

order on Br(I). Hence it is an ordered linear space. ]

Note: For the following results, consider I as a subset of R. = (0, o).
Let B (1) denotes the linear subspace of Bg(I) of hyperfunctions of bounded ex-

ponential growth and has a complex measurable holomorphic function as defining

function .
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Let

N(0,n) = {z€C:|z| <n},
i.e. N(0,n) is a closed complex neighbourhood of 0.

Definition 6.1.4. Let N be a complex neighbourhood of I. For n = 1,2, ... define
_ 1
K,=NO,n)n{z:|z—w| = —,Ywe C\N}
n
Then {K,} has the following properties
i) K, is compact
i) K, € K1
iii)If K € N is compact then K < K, for sufficiently large n.
On each K, and f(z) = [F(Z)] € B(I) define

Br,m(f(x)) = sup{|cilmF(z)| VF(2) e |F(2)],z€e K,},m=0,1,2,...

Let B . . (I) denotes the subspace of B3 (1), consisting of all hyperfunctions with
support contained in K,. Then {8k, m}m_o is a multinorm on By (I). The
defined set of multinorms generates a topology 7, .m on BY k. .. ().

BY(I) assigns the inductive limit topology 7 when K, varies over all compact sets

Ky, Ky, ...
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Proposition 6.1.5. BY (1) is an ordered topological linear space.

Proof. Since BY(I) is a subspace of the ordered linear space Bg([), it is also an
ordered linear space. By the above definition B¥ (I) assigns the inductive limit
topology generated by multinorms. Hence BY(I) is an ordered topological linear

space. ]

Definition 6.1.6. The Cone, P of BY (1) is, when BY (I) restricted to the set of all
non-negative hyperfunctions in Bg(I). The Positive Cone in BY (I) is P + iP which

is denoted as P

Proposition 6.1.7. The cone P in BY(I) has the following properties:

i)P+PcP

ii)cP < P for every real number ¢ >0

iii)P ~ —P = {[0]}.

Proof. (i) Since the sum of two non-negative hyperfunction is again non-negative we
have P+ P < P

(ii) Let f(x) € P and ¢> 0. Then the hyperfunction c¢f(x) is clearly non negative.
Hence ¢P < P for every real number ¢ > 0

(iii) All real functions belonging to the equivalence class of zero in the sense of hy-

perfunction is P n —P 0
Proposition 6.1.8. P is a convez set in BY (I).

Proof. Let f(x) = [F(z)], g(x) = [G(2)] € P and choose v with 0<~ < 1. Then

vf(z) + (1 —v)g(x) is again a non negative hyperfunction in B (I). O
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Definition 6.1.9. For f(z), g(x) € BY(I) with f < g, define the order interval

between f and g by

Lf 9] = {h(z) € BE () : f(2) < h(z) < g(x)}
Definition 6.1.10. A subset E of B¥ () is order bounded if there exists f(z), g(z) €
BY (Isuch that E < [f, g]
Proposition 6.1.11. The cone P in BY(I) is generating.

Proof. Since every complex measurable function F' = F* — F—,

we have P — P = BY (1) O

Definition 6.1.12. For E < B¥(I) the full hull[E] of E is defined as

[E] = {h(x) € By (1) : f(2) < h(z) < g(x), f(2), () € E}

Proposition 6.1.13. The cone P in B¥(I) is normal

Proof. The neighbourhood basis of 0 for 7 consisting of real holomorphic hyperfunc-
tions is a neighbourhood basis of 0 consisting of full sets. Hence the cone P is a

normal cone. L
Proposition 6.1.14. Every order bounded subset of B (I) is T bounded

Proof. Proposition 1.4 in [43] states that if the cone K in an ordered topological vector

space E(7) is normal for 7, then every order bounded subset of E is 7— bounded. [

Proposition 6.1.15. If P is a normal cone in By (I) then P n By (1) is a

normal cone in BY ;. (I)
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Proof. Proposition 1.8 in [43] is: if K is a normal cone in an ordered topological
vector space E(7) and M is a linear subspace of E then K n M is a normal cone in

M for the subspace topology. The result follows from this proposition. O

6.2. Norm Convergence in the Linear Space of Hy-
perfunctions

We define a norm to a subfamily of hyperfunctions having bounded exponential
growth with compact support. We have established some properties of this conver-
gence using the defining function of such hyperfunctions.

We consider a sub family of hyperfunctions having bounded exponential growth

with compact support on I = R. We denote it by B%(I)
Definition 6.2.1. For f(z) = [F(z)] € BE(I) the function ||.||x is defined as

|| fllx = sup{|G(z +i0) — G(z —i0)| : G(2) € [F(2)],z € K, K is compact subset of
Kcil
1}

Proposition 6.2.2. BE(I) is a normed linear space.

Proof. Let f(x) = [F(2)], h(z) = [H(z)] € B (1)
For f(z) = [F(z)] € B5(I), [|fllx = 0

|fllk =0 < sup{|G(z +i0) — G(z —i0)| : G(2) € [F(2)],x € K, Kis compact subset of[} =0
Kcl
< |Gz +10) — G(xz —1i0)| = 0,YVG(2) € [F(2)]

< G(r+1i0) — G(x —i0) = 0,YVG(2) € [F(2)]

111



< G(z)is a real analytic function,VG(z) € [F(2)]
< G(z) € [0]

< flz)=[0]

Let ¢ be a constant. Then

llef 1k

= sup{|cG(z +1i0) — cG(x —i0)| : G(2) € [F(2)],z € K, K is compact subset of I}
Kcl

= |c| sup{|G(x +i0) — G(x —i0)| : G(2) € [F(2)],z € K, K is compact subset of 1}
Kcl

= el | /]|
Also for all F'(z) € [F(z)] and G(z) € [G(2)],

|F(x4i0)—F (x—10)+H (24i0)— H (z—1i0)| < |F(2+4i0)—F (x—10)|+|H (x+10)—H (x—i0)|
Hence we have
1f + Dl < [|fllx + [I7][x

Thus ||.||x is a norm on BE(I). O

Definition 6.2.3. A sequence f,(z) = [F,(z)] is a Cauchy sequence in B%(I) if

V € > 0 there exists ng € N satisfying the condition || f,, — fin||x < € for n,m = ny.
Proposition 6.2.4. BE(I) is a Banach space

Proof. Let sequence (f,(z)) is a Cauchy sequence in BE(I) where f,(z) = [F.(2)].
Let € > 0.

There is ng € N satisfying || f, — finl|lx <€, for n,m = ny.
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Then

|F(z +40) — F,(x —i0) — Fi(x 4+ 10) + Fo(z —i0)] < ||fu — fullx

< €,Yn,m = ng, and for all

F.(z) € [Fu.(2)]andF,,(z) € [Fn(2)]

From this relation we have (F),(x +10)) and (F,(z —i0)) are Cauchy sequences in C.
But C is complete. Hence we get F),(x +i0) — F(x +1i0) and F,,(x —i0) — F(x —i0)
in C.

Define f(x) = [F(z)]

Then f,(x) — f(z) as n — oo in the sense of hyperfunction.

Hence BE (1) is a Banach space. O
Proposition 6.2.5. BE(I) is separable.

Proof. Set of all hyperfunction in B% (I) taking rational points values will be a count-

able dense subset of BE(I) O

Proposition 6.2.6. Let f(z) = [F(2)], g(z) = [G(2)] € BE(I) are non negative,
real valued measurable hyperfunctions and if f(x) < g(z) i.e. F(z) < G(z) and it

holds for every functions in the equivalence classes of F(z) and G(z)) then

Jf(:c)d:c < fg(a:)da:

Proof.
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]

Proposition 6.2.7. Let fi(z) = [Fx(2)],k = 1,2,3,... be a sequence of measurable
hyperfunctions in B (I) and f(x) = lim fi.(x), f(z) = [F(2)]. Then

Jka(x) — f(@)||kdx — 0 as k — o

in the sense of hyperfunctions.

Proof. Let fy(z) = [Fr(2)],k = 1,2,3,... be a sequence functions in BE(I) and

f(x) =lim fi(z), f(z) = [F(2)].
Then || fx(x) — f(z)||x — 0 as k — oo

Applying the properties of integrals of measurable functions we get the result. O]

6.3. Completely Monotone Hyperfunctions

Definition 6.3.1. A positive real valued hyperfunction f(x) = [F(Z)] defined on

(0,00) is called a completely monotone hyperfunction if it satisfies
(=D)"f™(z) = 0,Yz>0,n=0,1,2, ...

Proposition 6.3.2. A positive real valued hyperfunction f(x) = [F(z)] defined on

(0,00) is a completely monotone hyperfunction if there exists a positive valued hyper-
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function g(x) = [G(2)] on (0,00) with bounded exponential growth such that

f(s) = Llg(x)](s),Vs > 0

Proof. Suppose there exists a positive valued hyperfunction g(z) = [G(z)] on (0, c0)

with bounded exponential growth such that f(s) = L[g(z)](s),Vs > 0. Then

n n n dn
(' FO0s) = () Llg@)(s)
e}
= f e " g(x)dx
0
= 0,Vs>0
Hence f(x) is a completely monotone hyperfunction. O

Proposition 6.3.3. Let f(z) = [F(z)] and g(z) = [G(x)] be two completely mono-
tone hyperfunctions. Then f(x)g(x) is a completely monotone hyperfunction when-
ever the product is defined and f(s) = L[h(z)](s) and g(x) = L[j(x)](s) , where
h(z) = [H(z)] and j(x) = [J(2)] are two hyperfunctions, s > 0

Proof. Product of f(x) and g(z) is defined when sing supp f(z)n sing supp g(z) = ¢

If s is not an element in sing supp f(x) N sing supp g(x) then

f(s)g(s) = Llh(@)](s)L]5(x)I(s)

Then by previous proposition the result follows. O

Proposition 6.3.4. Let f(x) be a completely monotone hyperfunction and g(x) be a

positive valued hyperfunction defined on (0,00) such that g/(x) is a completely mono-

115



tone hyperfunction. Then f o g is also a completely monotone hyperfunction.

Proof. We are going to prove the result using mathematical induction

Clearly (fog)(xz) =0 for x >0

(fog) =(fog)gd <0, since (=1)f' =0 and ¢ =0

Hence the result true for k = 1
Suppose that the result is true for k = n
ie. (=1)*(fog)f=0forallk=0,1,2,...,n

Since — f" and ¢’ are completely monotone

(=)™ (fog)™ = (=1)"[((—f)og)g1™
= (—1)"Sgner((—f) 0 g) (g P
— Spnal(-DH(—F) 0 V(-1 H ) )

0

A\

Hence the result is true for k = n 4+ 1 also.
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Chapter 7

Application

In this chapter we find solutions of partial differential equations involving hyperfunc-

tions using the Weierstrass transforms defined in the previous chapter.

7.1. Application of Weierstrass Transform of Hy-
perfunction

Weierstrass transform can be used to find the solution of partial differential equation
problems having hyperfunction solution and also for initial value problems having
initial value a hyperfunction.

We can see from the following problem how Weierstrass transform can be used to find

the solution of initial value problems having initial value a hyperfunction.

Examples 7.1.1. Consider the equation (D? — Dy){(x,t) =0, —00 < x < o0,
t > 0 with initial condition (x,0) = f(x) + ¢ where the initial value function f(x) is
a hyperfunction.

Solution:
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Let the Fourier transform with respect to x of 1 and f denoted by

~

(1) = F[W (2, )](Q), F(¢) =SLF(@)]()

respectively.

Applying Fourier transform with respect to x to the given differential equation we have
(i)* — Dy = 0

i.e.(Dt + CQ)'@ =0

Then the general solution is

D¢, t) = B(Q)e

Applying the initial condition 1(¢,0) = ¢(¢) = f(¢)

Hence

D) = F(Qe

by convolution property.
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Taking inverse Fourier transform on both sides

ba,t) = fla)s wi?t
= \/éﬁ @ f(z)dx
= W[f(x )]( )
If
(b)) = QHt[5(9€— D1(s)
=l
= \/H )z — 1)dx
1 72
- 47rt€ ol —1)
B 1 —(m4—tl>2
= \/me

Also for x # 1,¢(2,0) =0=0(z — 1)

Hence f(x) = §(x — 1) is a hyperfunction satisfying ¢ (x,0) = 0 = f(xz). Thus the

solution is

P(x,t) = e~ ,—w<zr<o,t>0
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Conclusion

The concept of hyperfunction is the contribution by the Japanese mathemati-
cian Mikio Sato. Hyperfunctions are the generalisation of generalized functions or
distributions. The space of distributions forms a subspace of the linear space of hy-
perfunctions. The mathematical impossibility of explaining the concept of integration
of certain generalized functions can be overcome through the introduction of hyper-
functions with the help of classical complex analysis.

Sato focused more on developing the theoretical concept of hyperfunctions. But
Iso Imai discovered the computational power of hyperfunctions in solving partial dif-
ferential equations. Inspired by Iso Imai’s work, Urs Graf in his book ’Introduction to
hyperfunctions and their integral transforms’, extended different integral transforms
like Laplace transform, Fourier transform, Mellin transform, Hilbert transforms and
Hankel transforms to the linear space of hyperfunctions. He investigated on the prac-
tical approach than the theoretical concepts of hyperfunctions. The work in this
thesis contains application of more different and combined integral transforms on hy-
perfunctions and their properties.

Chapter 1, consists of some preliminary definitions.

In Chapter 2, new integral transforms are applied to hyperfunctions. Integral

transforms such as Weierstrass transform, Stieltjes transform and £, are extended to
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the subclasses of hyperfunctions. The inverse transforms are also obtained. Various

operational properties of these transforms are also studied.

In Chapter 3, the combined transforms for hyperfunctions are investigated. The
concepts of Fourier-Laplace transform, Laplace-Stieltjes transform and Fourier-Stieltjes
transform are defined for hyperfunctions satisfying certain properties. Operational
properties of these transforms are also obtained. The inverse transforms for Laplace-
Stieltjes transform and Fourier-Stieltjes transform of hyperfunctions have been estab-
lished.

In Chapter 4, Abelian - Tauberian type theorems are proved for Laplace trans-
form of hyperfunctions, Stieltjes transform of hyperfunctions and Laplace- Stieltjes
transform of hyperfunctions. Some supporting results are also proved for proving
these theorems.

In Chapter 5, the concept of two dimensional Laplace transform of hyperfunc-
tions is introduced. The idea of hyperfunctions in two variables are developed as in
the case of hyperfunctions of one variable introduced by Urs Graf. Two dimensional
Laplace transform is defined for hyperfunctions in two variables having a separable
defining function. Some operational properties of this two dimensional transforms
are obtained. Also the two dimensional inverse Laplace transform of hyperfunctions
is defined. Using this two dimensional Laplace transform of hyperfunctions second
order partial differential equations involving hyperfunctions can be solved without
reducing it into first order equations.

In Chapter 6, the order relation in the linear space of real hyperfunctions has
been studied. Also the concept of multinorm and cone are defined for the linear

space of hyperfunctions. It is proved that every order bounded subset of the linear
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space of hyperfunctions having bounded exponential growth and compact support is
topologically bounded with the topology generated by the set of multinorms. Some
properties of these concepts are proved. The concept of completely monotone hyper-
functions is also defined.

In Chapter 7, as an application, an initial value problem involving hyperfunction
is solved by applying Weierstrass transform for hyperfunction.
Future Study

In this present study only some basic concepts of these newly defined integral
transforms for hyperfunctions have been established. Since hyperfunctions are in-
finitely differentiable we can establish many more results based on these integral
transforms.

The following investigations are possible.

e Theoretical concepts of the above transforms can be developed through the

Sheaf theoretic approach to hyperfunctions

e Support Kernel type theorems can be proved for these integral transforms with

the help of Sheaf theory

e Application of numerical methods to the integral transform of hyperfunctions

to solve partial differential equations and integral equations

e The existence of Abelian - Tauberian theorems for other transforms of hyper-

functions can be investigated
e Connection between hyperfunctions and Colombeau’s generalized functions

e Embedding the space of Fourier distribution in the space of Fourier hyperfunc-

tion
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Mellin-Stieltjes transform of hyperfunctions

Wavelet transform of hyperfunctions

Existence of transforms in hyperfunctions in several variables

Application of hyperfunctions in signal and image processing
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