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CHAPTER 1

Introduction

1.1 History

In the year 1736, the brilliant Swiss mathematician Leonhard Euler introduced

the idea of graph made up of a set of objects called vertices and another set of

objects called edges, which are made up of pairs of vertices. In order to traverse the

seven bridges over the Pregel River, a well-known folklore problem known as the

Königsberg Bridge Problem, he developed the concept of graphs[16]. The concept of

graphs was effectively applied in many domains, after Euler. Recent years have seen

an unparalleled rise in graph theory research. Even though graph theory was initially

associated with recreational math problems, it is usually applicable to many areas

of mathematics, including algebra, algebraic topology, number theory, algebraic

geometry, numerical analysis, matrix theory, operations science, etc. Additionally, it

promoted the development of other scientific fields, such as the physical, chemical,

computer, and life sciences, as well as sociology, economics, and social sciences,

as well as geography, genetics, architecture, electrical engineering and other fields.

Numerous studies are being conducted in the area of graph theory, particularly in

the area of domination.
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Chapter 1. Introduction

1.2 Basic definitions

This section handles the basic terminology relevant to the work about graphs. We

start by definition of graphs.

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a

relation that associates with each edge two vertices called its end vertices[81]. A

graph having finite number of vertices and edges is called finite graph [18]. The

number of vertices and number of edges of a finite graph G are called the order and

size of G respectively [81]. When vi is an end vertex of some edge ej, vi and ej are

said to be incident with each other[50]. When u and v are end vertices of an edge,

they are adjacent and are neighbours[81].

An edge having the same vertex as both its end vertices is called loop[50]. More

than one edge associated with a given pair of vertices are called parallel edges[50].

Two nonparallel edges are said to be adjacent if they are incident on a common

vertex[50]. A graph that has neither loops nor parallel edges is called a simple

graph[50]. A graph of size zero is called an empty graph.

The number of edges incident on a vertex vi is called the degree, d(vi) of vertex

vi[50]. The maximum and minimum degrees of a graph G are denoted by ∆(G)

and δ(G) respectively[18]. A vertex having no incident edge is called an isolated

vertex[50]. A vertex of degree one is called a pendant vertex[50]. A vertex adjacent

to a pendant vertex is called a support vertex[9]. An edge incident with a pendant

vertex is called a pendant edge.

The distance between two vertices u and v of a graph G written d(u, v), is the

shortest length of a u − v path in G. If G has no such path, then d(u, v) = ∞.

The eccentricity e(v) of a vertex v is max{d(u, v) : u ∈ V (G)}. Maximum of the

eccentricities of the vertices of G is called the diameter of G. The radius of G is the

minimum of the eccentricities of its vertices, radius(G) = min{e(u) : u ∈ V (G)}.

To denote the diameter and radius of a graph G, the abbreviations diam(G) and

rad(G) are used respectively. The center of a graph G, c(G) is the subgraph induced
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Chapter 1. Introduction

by the vertices of minimum eccentricity[81].

The complement G of a simple graph G is the simple graph with vertex set

V (G) defined by uv ∈ E(G) if and only if uv /∈ E(G)[18].

A graph H is a subgraph of G written H ⊂ G if V (H) ⊂ V (G) and E(H) ⊂
E(G). A spanning subgraph of G is a subgraph H with V (H) = V (G). If V 1 is a

nonempty subset of V (G). The subgraph of G whose vertex set is V 1 and whose edge

set is the set of those edges of G that have both ends in V 1 is called the subgraph

induced by V 1 and is denoted by < V 1 >[18].

A walk is defined as a finite sequence of vertices and edges, beginning and

ending with vertices, such that each edge is incident with the vertices preceding

and following it. Vertices with which a walk begins and ends are called its terminal

vertices. A walk which begins and ends at the same vertex is called a closed walk.

A walk that is not closed is called an open walk. An open walk in which no vertex

appears more than once is called a path[50]. A path with u and v as terminal

vertices is called a u− v path. A closed walk in which no vertex, except the initial

and final vertex, appears more than once is called a cycle[50]. A graph with no cycle

is called acyclic.

A graph G is said to be connected if there is at least one path between every

pair of vertices in G. A disconnected graph is a graph which is not connected[50].

A connected acyclic graph is called a tree. The Components of a graph G are its

maximal connected subgraphs[81].

A vertex cut of G is a subset V 1 of V (G) such that G− V 1 is disconnected. k-

vertex cut is a vertex cut of k-elements. The connectivity κ(G) of G is the minimum

k for which G has a k-vertex cut. A graph G is said to be k-connected if κ(G) ≥ k.[18]

If a graph can be disconnected by the deletion of one vertex, that vertex is called

cut vertex. A connected graph that has no cut vertices is called a block. A block of

a graph is a subgraph that is a block and is maximal with respect to this property[18].

3



Chapter 1. Introduction

The path with n vertices is denoted by Pn[81]. The cycle with n vertices is

denoted by Cn[81].

A graph is bipartite if its vertex set can be partitioned into two subsets X and

Y so that any edge of G has one end vertex in X and the other end in Y ; such

(X, Y ) is called a bipartition of the graph G. A complete bipartite graph is a simple

bipartite graph with bipartition (X, Y ) in which each vertex of X is joined to each

vertex of Y . If |X| = m and |Y | = n it is denoted by Km,n[18].

A complete graph is a simple graph whose vertices are pairwise adjacent. The

complete graph with n vertices is denoted by Kn[81].

The open neighborhood of v denoted by N(v) is the set of vertices adjacent to

v, N(v) = {u ∈ V (G) : uv ∈ E(G)}. The closed neighborhood of v denoted by N [v]

is the set N(v) ∪ {v}[69]. For a set S ⊂ V of vertices in a graph G = (V,E) and

u ∈ S, v is said to be a private neighbour of u if (with respect to S)N [v]∩S = {u}[69].

Coloring all the vertices of a graph with colors so that no two adjacent vertices

have the same color is called the proper coloring. The chromatic number of a graph

G, written χ(G), is the minimum number of colors needed for proper coloring of

graph G[50].

A subset M of E(G) is called a matching in G if no two elements of M are

adjacent in G. A matching M saturates a vertex v, and v is said to be M -saturated,

if some edge of M is incident with v. If every vertex of G is M -saturated, then the

matching M is perfect[18].

A property P of sets of vertices is said to be hereditary if whenever a set has

property P , so does every subset S1 ⊂ S. A property P of sets of vertices is said

to be superhereditary if whenever a set has property P , so does every superset

S1 ⊃ S[69].
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Chapter 1. Introduction

Investigating various graph parameters in various classes of graphs is a chal-

lenging problem. Various classes of graphs were constructed from standard graphs.

Some of them given below.

From a simple graph G, Mycielski’s construction produces a simple graph G1

containing G. Beginning with G having vertex set {v1, v2, ..., vn}, add vertices

U = {u1, u2, ..., un} and one more vertex w. Add edges to make ui adjacent to all of

neighbours of vi in G, and finally let N(w) = U [81].

A subdivision of an edge uv is obtained by removing edge uv, adding a new

vertex w, and adding edges uw and wv[69]. A wounded spider is the graph formed

by subdividing at most n− 2 of edges of a star K1,n−1 for n− 1 ≥ 0[69].

Given a graph G, Trestled graph of index k denoted by Tk(G), is the graph

obtained from G by adding k copies K2 for each edge uv of G and joining u and v

to the respective end vertices of each K2[69].

Let G and H be two graphs with disjoint vertex sets. Their union G ∪H has

V (G ∪ H) = V (G) ∪ V (H) and E(G ∪ H) = E(G) ∪ E(H). Then their join is

denoted G + H and consists of G ∪ H and all edges joining V (G) and V (H)[45].

The wheel Wn is defined to be the join of K1 + Cn. The vertex corresponding to

K1 is known as apex and vertices corresponding to cycle are known as rim vertices

while the edges corresponding to cycle are known as rim edges[72]. The helm Hn is

the graph obtained from wheelWn by attaching a pendant edge to each rim vertex[72].

The friendship graph Fn can be constructed by joining n copies of the cycle

graph C3 with a common vertex, which becomes a universal vertex for the graph.[66]

There are standard graph products, each with its own applications and theoreti-

cal interpretations.

The Cartesian product of G and H is a graph, denoted as G2H, whose ver-

tex set is V (G) × V (H). Two vertices (u1, v1) and (u2, v2) are adjacent precisely

5



Chapter 1. Introduction

if u1 = u2 and v1v2 ∈ E(H), or v1 = v2 and u1u2 ∈ E(G). Thus, V (G2H) =

{(u, v) : u ∈ V (G) and v ∈ V (H)}, E(G2H) = {(u1, v1)(u2, v2) : u1 = u2, v1v2 ∈
E(H) or u1u2 ∈ E(G), v1 = v2}[62].

The strong product of G and H is the graph denoted as G⊠H, and defined by[62]

V (G⊠H) = {(u, v) : u ∈ V (G) and v ∈ V (H)},
E(G⊠H) = {(u1, v1)(u2, v2) : u1 = u2, v1v2 ∈ E(H) or u1u2 ∈ E(G), v1 = v2}∪

{(u1, v1)(u2, v2) : u1u2 ∈ E(G) and v1v2 ∈ E(H)}

The composition G[H] is defined as [45],

V (G[H]) = {(u, v) : u ∈ V (G) and v ∈ V (H)},
E(G[H]) = {(u1, v1)(u2, v2) : u1u2 ∈ E(G) or u1 = u2, v1v2 ∈ E(H)}

.

Corona of graphs is defined by Frucht and Harary[45]. Later the concept of

neighbourhood corona and edge corona of graphs were developed. Corona G ◦H, of

two graphs G and H is obtained by taking one copy of G (which has n1 vertices)

and n1 copies of H (which has n2 vertices), and then joining the ith vertex of G to

every vertex in the ith copy of H[45].

Let G and H be two graphs on n1 and n2 vertices, m1 and m2 edges respectively.

Then the neighborhood corona, G⋆H is the graph obtained by taking n1 copies of H

and for each i, making all vertices in the ith copy of H adjacent with the neighbors

of vi, i = 1, 2, ..., n1[40].

Let G and H be two graphs on disjoint sets of n1 and n2 vertices, m1 and m2

edges, respectively. The edge corona G ⋄ H of G and H is defined as the graph

obtained by taking one copy of G and m1 copies of H, and then joining two end-

vertices of the ith edge of G to every vertex in the ith copy of H[80].

So many graph parameters like Vertex connectivity, matching number, chro-

matic number, and independence number are developed to meet real life applications.

Concept of domination is one among them in which extensive research work is going

on. In the book, domination in Graphs ; Advanced topics[70], surveys of recent

developments are provided.
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Chapter 1. Introduction

A set S ⊂ V of vertices in a graph G = (V,E) is called a dominating set if every

vertex v ∈ V is either an element of S or is adjacent to an element of S[69]. The

cardinality of a minimum dominating set of graph G is called domination number

and it is denoted by γ(G)[69].

The set of all minimal dominating sets of a graph G is denoted by MDS(G).

Upper domination number Γ(G) is the maximum cardinality of a set in MDS(G)[69].

Cockayne introduced the concept of irredundance in [29].

For a subset S ⊂ V (G) and v ∈ S , private neighbour of v in S, pn[v, S] is

defined as N [v]−N [S−{v}]. A set S is irredundant if for every v ∈ S, pn[v, S] ̸= ϕ.

The minimum cardinality of a maximal irredundant set of a graph G is called the

irredundance number and it is denoted by ir(G). The maximum cardinality of an

irredundant set is called the upper irredundance number and denoted by IR(G)[69].

An independent set in a graph is a set of pairwise nonadjacent vertices.[81].The

independence number, β◦(G) is the maximum cardinality of an independent set in

G[69].

The minimum cardinality of an independent dominating set is called the inde-

pendent domination number and it is denoted by i(G)[69].

A dominating set S in a graph G is said to be a perfect dominating set if for

every vertex u ∈ V (G) − S, |N [u] ∩ S| = 1. The cardinality of a minimum perfect

dominating set is called perfect domination number and it is denoted by γp(G)[69].

A chain named domination chain which is obtained by connecting a chain of

inequalities is given in [29].

ir(G) ≤ γ(G) ≤ i(G) ≤ βo(G) ≤ Γ(G) ≤ IR(G)

7



Chapter 1. Introduction

This inequality chain is one of the most powerful focuses of research of domina-

tion.

So many bounds were found for domination number. Bound using the degree

and order is a significant result among them. The upperbound was obtained by

berge and lowerbound was obtained by Walikar, Acharya and Sampathkumar.[77, 12]

For any graph G of order n, ⌈ n
1+∆(G)

⌉ ≤ γ(G) ≤ n− ∆(G).

It is proved in [12] that every maximal independent set is a minimal dominating

set. Since then comparing various domination parameters is a focal point in domi-

nation theory.

Nordaus and Gaddum established the following inequalities for chromatic num-

ber 2
√
n ≤ χ(G) + χ(G) ≤ n + 1 and n

√
n ≤ χ(G)χ(G) ≤ (n+1)2

n
. Results related

to sum (product) of a parameter of a graph G and the same parameter of its

complement G is known as Nordaus-Gaddum type results[69].

The concept of P3-convexity, which is more similar to domination, is also studied

in this thesis.

A family C of subsets of a nonempty set X is called a convexity on X if

� ϕ ∈ C,X ∈ C

� C is stable for intersections, and

� C is stable for nested unions

(X,C) is called a convexity space and members of C are called convex sets[53].

Here union of nested family of sets is nested union.

If (X,C) is a convexity space, then for a set S ⊂ X convex hull of S, HG(S) is

the smallest convex set containing S.

For a graph G, Given two vertices v1, v2 ∈ V (G), the P3- interval

8



Chapter 1. Introduction

I[{v1, v2}] = {v ∈ V : v adjacent to both v1 and v2}
∪{v1, v2}.

I[S] = ∪v1,v2∈SI[v1, v2]

S is a P3- convex set, if I[S] = S.

A graph G together with P3-convex sets in G form P3-convexity C in G [36].

The P3- convex hull can be formed from a sequence Ip[S], where p is a non-

negative integer, I0[S] = S, I1[S] = I[S], and Ip[S] = I[Ip−1[S]], for every p ≥ 2.

Let p ∈ N ∪ {0} for which Ip[S] = Ip+1[S], for all , then Ip[S], is a convex set and

S ⊂ Ip[S]. Hence Ip[S] is the convex hull of S[36].

If HG(S) = V (G) then S is a P3-hull set of G. The cardinality h(G) of a mini-

mum P3-hull set in G is called the P3-hull number of G[36]. In this thesis we are

using hull number of G instead of P3-hull number of G.

Convexity C on G is joint hull commutative provided that for each nonempty convex

set S in C and for each vertex p ∈ V (G), HG(S ∪ {p}) = ∪u∈SHG({p, u})[74].

The caratheodory number is the smallest integer c such that for every set S of

vertices of G and every vertex u in HG(S), there is a set F ⊂ S with |F | ≤ c and

u ∈ HG(F )[35]. In this thesis we are using c(G) instead of c. A Radon partition of

R is a partition of R into two disjoint sets R1 and R2 with HG(R1) ∩HG(R2) ̸= ϕ.

The Radon number r(G) of G is the minimum integer r such that every set of r

vertices of G has a Radon partition [48].

The following significant results are given in [36].

� Let G and H be nontrivial graphs. If G is connected, then h(G[H]) = 2.

� h(G2H) ≥ max{h(G), h(H)}.

� Let G and H nontrivial connected graphs. Then, h(G⊠H) = 2.

Caratheodory number and radon number in P3-convexity were studied in [48, 35]

1.3 Background of the work

A well-researched graph parameter, domination is a classic subject in graph theory.

According to the rules of chess, the queen is the player’s most powerful piece because

9



Chapter 1. Introduction

of its freedom or mobility. Since the queen is free to travel across any number of

squares in any direction, the opposition player is constantly watchful about the

moves in the directions dominated by the queen. The study of domination in graphs

started by De Jaenisch in 1850 with a problem of finding the minimum number of

queens that are needed to place on a Chess board such that each field not occupied

by queen can be attacked by at least one[31]. It was proved in 1850’s that, in an 8×8

chessboard five queens are required to completely dominate all of the squares[69].

Watkins provides a very thorough overview of the evolution and ongoing growth of

this promising field of domination theory from the chessboard puzzles in [79]. The

study of domination in graphs was further studied in the late 1950s and early 1960s.

In his book [12]on graph theory, Berge introduced the concept coefficient of external

stability, which is today known as the domination number. The phrases dominating

set and domination number were first used by Oystein Ore [52] in his book on graph

theory in 1962. In a survey published by Cockayne and Hedetniemi[28], the notation

γ(G) for the domination number of a graph G was first used.

Ore presented the first three theorems of dominating sets in his book ”Theory

of Graphs”[52].

� A dominating set S is a minimal dominating set if and only if, for each u ∈ S,

one of the following condition holds

– u is an isolate of S.

– there exists a vertex v ∈ V − S for which N(v) ∩ S = {u}

� Every connected graph G of order n ≥ 2 has a dominating set S whose

compliment V − S is also a dominating set.

� If a graph G is a graph with no isolated vertices, then the compliment V − S

of every minimal dominating set S is also a dominating set.

Ore gave an upperbound for domination number γ(G). Cockayne, Haynes and

Hedetniemi characterized the graph forwhich γ(G) = ⌈n
2
⌉[27] . Later the bounds for

γ(G) in terms of degree and order are obtained[12, 67, 77]. Refining the bound, a

domination chain ir(G) ≤ γ(G) ≤ i(G) ≤ βo(G) ≤ Γ(G) ≤ IR(G) was given in [69].

10



Chapter 1. Introduction

Numerous applications in real life situations have led to the introduction of

numerous domination parameters. Total domination number, Roman domination

number and fractional domination number are some of them. A beautiful survey on

topic of domination is given in book Fundamentals of Domination in Graphs done

by Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater[69]. If we can

extend the domination chain using a new domination parameter that will be a a

significant contribution.

One of the famous open problems in Mathematics is Vizing’s conjecture. Vizing’s

conjecture proposed by V. G. Vizing in 1968 leads to the development of studies in

domination number of cartesian product of graphs[76]. Bound for the domination

number of grid graph is obtained by Jacobson and Kinch[46]. The domination

number of cartesian product of specific graphs is an area in which developments

are being made. Thus we are motivated to study domination number of cartesian

product of some specific graphs.

In some reservation systems, reservations from particular special classes are

required. We defined the Reserved Domination Number of Graph in light of the

same motivation. Domination number of cartesian product of graphs is studied

using reserved domination number.

We introduced a particular domination known as α-stable domination for the

purpose of exploring the area of instability of domination in graphs.

In order to solve the problems like spreading a virus, disseminating ideas, and

marketing strategies, we studied P3-convexity which is more similar to domination

in graphs. The concept of P3-convexity was initially investigated, for directed

graphs [34, 49]. Later P3-convexity was studied in undirected graphs[24, 25, 26,

33, 11]. Radon number on P3-convexity was well studied by Mitre C. Dourado,

Dieter Rautenbach, Vinicius Fernandes dos Santos, Philipp M. Schaffer, Jayme L.

Szwarcfiter and Alexandre Tomana in 2012[48]. P3-convexity in different product

of graphs was well studied by Erika M.M. Coelho, Hebert Coelho, Julliano R.

Nascimento and Jayme L. Szwarcfiter in 2018[36], and caratheodory number in

11



Chapter 1. Introduction

P3-convexity was well studied by Erika M.M. Coelho, Mitre C. Dourado, Dieter

Rautenbach and Jayme L. Szwarcfiter in 2014[35]. Here we study some properties

of P3-convexity. Radon number, caratheodory number and hull number of product

graphs is also studied.

1.4 Organization of the Thesis

This thesis is arranged in six chapters. The following provides a chapter-by-chapter

summary of the thesis.

The first chapter is an introductory chapter. A brief introduction, thesis sum-

mary and preliminary concepts are discussed in this chapter. The terminologies and

notations used in the next chapters are described in the section preliminaries.

In the second chapter, the lower bound for domination number of cartesian

product of G and Pn is obtained. It is studied for the cartesian product of G and Cn.

Upperbound for γ(G2H), when H = Pn or H = Cn for which G has a minimum

dominating set D such that D = D1 ∪ D2, D1 ∩ D2 = ϕ and every vertex not in

D has a neighbour in D1 and a neighbour in D2, is obtained. These results are

published in [59]

A- Reserved domination number of graph G, which would be useful in reser-

vation systems is defined in the third chapter. A- Reserved domination number of

various product graphs are studied. Generalized concept of A- Reserved domination

number, [A1, A2, ...., An]-reserved domination number is defined and studied. The

reserved domination number is used to study the domination number of cartesian

product of graphs. Some of its results are published in [60]

α-d- stable domination number, α-a- stable domination number and α-stable

domination, are introduced in fourth chapter with the aim of studying the stability

of domination in graphs. Its properties are also studied. α-stable domination in

product graphs are studied.

12



Chapter 1. Introduction

In fifth chapter, one section deals with general properties in P3-convexity. P3-

convex invariants, P3-hull number, radon number and caratheodory number of some

classes of graphs are obtained. P3-convexity in strong product, cartesian product

and composition of graphs are studied. P3-convexity in corona related graphs are

also studied. Some of its results are published in [61].

Sixth chapter is a concluding chapter, consisting of summary and scope for

further studies.

13



CHAPTER 2

Bounds of Domination Number of

Cartesian Product of Graphs

2.1 Introduction

How a graph works on graph products is an important problem that is being dis-

cussed in detail. It is logical to assume that the value of the invariant on the product

of two graphs G and H will relate to the value of G and H. This type of problems

are well studied and simple for some invariants and products. The chromatic number

of the Cartesian product of two graphs is maximum of their chromatic numbers is

an illustration of this circumstance. There are still a number of invariants which

has a conjectured behaviour, but not yet been determined. The domination number

on a Cartesian product is an example of same. V. G. Vizing proposed the following

conjecture in 1968 after posing it as a question in [76] γ(G2H) ≥ γ(G)γ(H).

In this chapter bounds for domination number of cartesian product of certain

types of graphs and path are obtained. Bounds of domination number of cartesian

product of some classes of graphs and cycle are also obtained. Examples that tighten

the upper bound are obtained.

14



Chapter 2. Bounds of Domination Number of Cartesian Product of Graphs

2.2 Bounds of domination number of cartesian product of a

graph and path

Bounds of domination number of G2Pn, for which G satisfy certain conditions, is

obtained in this section.

Theorem 2.2.1. Let G be any graph and Pn be a path having n vertices. Then

n
3
γ(G) < γ(G2Pn).

Proof. Let Pn be the path with V (Pn) = {v1, v2, ......, vn}.

Let D be a dominating set of G2Pn . Then, let Di = D ∩ (V (G) × {vi}).

Take π1(Di) = {u ∈ V (G) : (u, vi) ∈ Di}.

If u ∈ V (G) − (π1(D1) ∪ π1(D2)) then (u, v1) /∈ D and (u, v2) /∈ D. Since D is a

dominating set (u, v1) must be adjacent to a vertex (w, v1) ∈ D. Then w ∈ π1(D1).

Hence u has a neighbour, w ∈ π1(D1). Thus π1(D1) ∪ π1(D2) is a dominating set of

G. Thus γ(G) ≤ |π1(D1) ∪ π1(D2)|.
Hence γ(G) ≤ |D1 ∪D2|.

If u ∈ V (G) − (π1(Dn−1) ∪ π1(Dn)) then (u, vn−1) /∈ D and (u, vn) /∈ D. Since

D is a dominating set (u, vn) must be adjacent to a vertex (w, vn) ∈ D. Then

w ∈ π1(Dn). Hence u has a neighbour, w ∈ π1(Dn). Thus π1(Dn−1) ∪ π1(Dn) is a

dominating set of G. Thus γ(G) ≤ |π1(Dn−1) ∪ π1(Dn)|.
Hence, γ(G) ≤ |Dn−1 ∪Dn|.

If i ∈ 2, 3, ...., n − 1 and u ∈ V (G) − (π1(Di−1) ∪ π1(Di) ∪ π1(Di+1)), then

(u, vi−1) /∈ D, (u, vi) /∈ D and (u, vi+1) /∈ D. Then there is a vertex(w, vi) ∈ D such

that (w, vi) is adjacent to (u, vi). Hence w ∈ π1(Di) and w is adjacent to u in G.

Thus π1(Di−1) ∪ π1(Di) ∪ π1(Di+1) is a dominating set of G.

Hence γ(G) ≤ |Di−1 ∪Di ∪Di+1|.
Thus we can see that

γ(G) ≤ |D1 ∪D2|
γ(G) ≤ |Dn−1 ∪Dn|
γ(G) ≤ |Di−1 ∪Di ∪Di+1|,∀i = 2, ...., n− 1

Summing up all these inequalities we can see that
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Chapter 2. Bounds of Domination Number of Cartesian Product of Graphs

nγ(G) ≤ 2|D1| + 2|Dn| + 3
∑n−1

i=2 Di = 2|D| + |D2| + |D3| + ........+ |Dn−1|.

Hence, nγ(G) + |D1| + |Dn| ≤ 3|D|.
Then two cases arise.

Case 1 |D1| ≠ 0 or |Dn| ≠ 0

nγ(G) < 3|D|

Case 2 |D1| = 0

Then D2 = V (G) and since γ(G) ≤ |V (G)|
2

2γ(G) ≤ |D1 ∪D2|
Then D2 ∪D3 = V (G) and since γ(G) ≤ |V (G)|

2

2γ(G) ≤ |D1 ∪D2 ∪D3|
γ(G) ≤ |Dn−1 ∪Dn|
γ(G) ≤ |Di−1 ∪Di ∪Di+1|,∀i = 2, ...., n− 1

Summing up all these inequalities we can see that

nγ(G) + 3γ(G) ≤ 3
∑n

i=1Di

Hence, |D| ≥ n
3
γ(G) + γ(G).

Thus |D| > n
3
γ(G).

Thus if D is a dominating set of G2Pn then |D| > n
3
γ(G). Hence, γ(G2Pn) > n

3
γ(G)

.

Theorem 2.2.2. Let G be any graph and Pn be a path having n vertices. If G has

a minimum dominating set D such that D = D1 ∪ D2, D1 ∩ D2 = ϕ and every

vertex not in D has a neighbour in D1 and a neighbour in D2, and if n is even then

γ(G2Pn) ≤ n
2
γ(G).

Proof. Let D be a minimum dominating set of G such that D = D1∪D2, D1∩D2 = ϕ

and every vertex not in D has a neighbour in D1 and a neighbour in D2 and

V (Pn) = {v1, v2, ......, vn}, n is even.

Then D1 = (D1 ×{v1})∪ (D2 ×{v2})∪ (D1 ×{v3})∪ (D2 ×{v4}).....∪ (D2 ×{vn})

16



Chapter 2. Bounds of Domination Number of Cartesian Product of Graphs

is a dominating set of G2Pn.

For, if (u, vi) ∈ G2Pn and i is odd. Then, there are three possibilities.

Case 1 If u ∈ D1, then (u, vi) ∈ D1

Case 2 If u ∈ D2, then (u, vi) is adjacent to (u, vi+1) ∈ D1

Case 3 If u /∈ D1 ∪D2, then u is adjacent to w1 ∈ D1. Therefore (u, vi) is adjacent to

(w1, vi) ∈ D1 in G2Pn.

Thus D1 can dominate (u, vi).

If (u, vi) ∈ V (G2Pn) and i is even. Then, there are three possibilities.

Case 1 If u ∈ D2, then (u, vi) ∈ D1

Case 2 If u ∈ D1, then (u, vi) is adjacent to (u, vi−1) ∈ D1

Case 3 If u /∈ D1 ∪ D2, then u is adjacent to w2 ∈ D2. Thus (u, vi) is adjacent to

(w2, vi) ∈ D1 in G2Pn.

Thus D1 can dominate (u, vi).

Therefore D1 is a dominating set of G2Pn.

Also

|D1| = |(D1 × {v1}) ∪ (D2 × {v2}) ∪ ............ ∪ (Dn × {vn})|
= |D1 ∪D2| + .........|D1 ∪D2|︸ ︷︷ ︸

n
2
times

= n
2
γ(G)

Hence, γ(G2Pn) ≤ n
2
γ(G).

Corollary 2.2.3. Let G be any graph and Pn be a path having n vertices. If G

has a minimum dominating set D such that D = D1 ∪D2, D1 ∩D2 = ϕ and every

vertex not in D has a neighbour in D1 and a neighbour in D2, and if n is even then

n
3
γ(G) < γ(G2Pn) ≤ n

2
γ(G)

Remark 2.2.1. There are graphs G which attains sharp upper bound in 2.2.2. For

the graph G in 2.1, γ(G2Pn) = n
2
γ(G).
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v1

v2

v3

u1

u2

Figure 2.1

The sequential join G1 +G2 + ....+Gn is obtained by joining all vertices of Gi

to all the vertices of Gi+1 for i = 1, 2, ..., (n− 1)[53].

Definition 2.2.4. Define Wave graph,

W (n,m) = K1 +Km +K1 +K1 +K1 +Km−1 +K1 +Km−1 + ...︸ ︷︷ ︸
(n−2)times

+K1 +K1 +K1 +

Km +K1 for n ≥ 3, m ≥ 2. Then G = W (4, 3) is the graph described in the figure

2.2

u18
u19

u17

u16u15u14u13u12u11u10u9u8u7u6u5

u4u3u2u1

Figure 2.2

Remark 2.2.2. Strict inequality may occur in upper bound of 2.2.2. For the graph

18



Chapter 2. Bounds of Domination Number of Cartesian Product of Graphs

G = W (4, 3), γ(G2P6) < 3γ(G).

Proof. Here D = {u1, u2, u3, u4, u17, u18, u19} is a minimum dominating set of G. If

D1 = {u1, u2, u3, u4}, D2 = {u17, u18, u19} then D = D1∪D2 is a minimum dominat-

ing set, D1∩D2 = ϕ and every vertex not in D has a neighbour in D1 and a neighbour

in D2. Then D1 = (D2×{v1})∪(D1×{v2})∪(D2×{v4})∪(D1×{v5})∪(D2×{v6})

is a dominating set of G2P6 .

For if (u, v) ∈ G2P6, then consider the possiblity v = v1. Then if u ∈ D2

then (u, v) ∈ D1. If u ∈ V − D then there is a w ∈ D2 such that w is adjacent

to u in G. Then (w, v1) ∈ D1is adjacent to (u, v) in G2P6. If v ∈ D1 then,

(u, v2) ∈ D1×{v2} ⊂ D1. And (u, v) is adjacent to (u, v2) ∈ D1. Hence D1 can dom-

inate all the vertices in G2{v1} . Similarly D1 can dominate G2{vi}, ∀i = 1, 2, ......6.

Thus D1 is a dominating set of G2P6.

|D1| = 20

But γ(G).n = 3 × 7 = 21

Hence, γ(G2P6) < |D| ≤ 21 = γ(G)n.

Corollary 2.2.5. Let G be any graph and Pn be a path having n vertices. If G has

a minimum dominating set D such that D = D1 ∪D2, D1 ∩D2 = ϕ and every vertex

not in D has a neighbour in D1 and a neighbour in D2, then
n
3
γ(G) < γ(G2Pn) ≤⌈

n
2

⌉
γ(G).

2.3 Domination number of cartesian product of a graph and

cycle

Bounds of domination number of G2Cn, for which G satisfy certain conditions, is

obtained in this section.

Theorem 2.3.1. Let G be a graph having a minimum dominating set D which can

be partitioned into two nonempty sets D1 and D2 with the property every vertex not

in D is adjacent with atleast one vertex in D1 and atleast one vertex in D2. Then

γ(G2C4) ≤ 2γ(G).
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Proof. Let G be a graph having a minimum dominating set D which can be par-

titioned into two nonempty sets D1 and D2 with the property every vertex not in

D is adjacent with atleast one vertex in D1 and atleast one vertex in D2. Let the

vertices of C4 be v1, v2, v3, v4 with vi adjacent to vi+1 ( addition is with respect to

addition modulo 4).

If D1 = (D1 × {v1}) ∪ (D2 × {v2}) ∪ (D1 × {v3}) ∪ (D2 × {v4}), then we claim that

D1 is a dominating set of G2C4. For, if (u, v) ∈ V (G2C4), then we distinguish into

four cases.

Case 1 If v = v1,

If u ∈ D1 then (u, v) ∈ D1

If u ∈ D2 then (u, v2) ∈ D1 and adjacent to (u, v).

If u /∈ D then there is some u1 in D1 which is adjacent to u. Then (u1, v1) ∈ D1

is adjacent to (u, v).

Similarly we can prove in all other cases that (u, v) is adjacent to atleast one

vertex in D1.

Thus D1 is a dominating set of G2C4 with |D1| = 2γ(G). Hence γ(G2C4) ≤ 2γ(G).

This theorem can be generalized as follows.

Theorem 2.3.2. Let G be any graph and Cn be a cycle having n vertices. If G has

a minimum dominating set D such that D = D1∪D2, D1∩D2 = ϕ and every vertex

not in D has a neighbour in D1 and a neighbour in D2, then γ(G2Cn) ≤
⌈
n
2

⌉
γ(G).

Proof. Let D be a minimum dominating set of G such that D = D1∪D2, D1∩D2 = ϕ

and every vertex not in D has a neighbour in D1 and a neighbour in D2 and

V (Cn) = {v1, v2, ......, vn}, n is even.

Then D1 = (D1 × {v1}) ∪ (D2 × {v2}) ∪ (D1 × {v3}) ∪ (D2 × {v4}).... ∪ (D2 × {vn})

is a dominating set of G2Cn.

For, if (u, vi) ∈ V (G2Cn) and i is odd. Then ,there are three possibilities.

Case 1 If u ∈ D1, then (u, vi) ∈ D1
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Case 2 If u ∈ D2, then (u, vi) is adjacent to (u, vi+1) ∈ D1

Case 3 If u /∈ D1 ∪D2, then u is adjacent to w1 ∈ D1. Therefore (u, vi) is adjacent to

(w1, vi) ∈ D1 in G2Cn.

Thus D1 can dominate (u, vi) .

If (u, vi) ∈ V (G2Cn) and i is even. Then, there are three possibilities.

Case 1 If u ∈ D2, then (u, vi) ∈ D1

Case 2 If u ∈ D1 ,then (u, vi) is adjacent to (u, vi−1) ∈ D1

Case 3 If u /∈ D1 ∪ D2 , then u is adjacent to w2 ∈ D2. Thus (u, vi) is adjacent to

(w2, vi) ∈ D1 in G2Cn.

Thus D1 can dominate (u, vi) .

Hence D1 is a dominating set of G2Cn.

|D1| = |(D1 × {v1}) ∪ (D2 × {v2}) ∪ ............ ∪ (Dn × {vn})|
= |D1 ∪D2| + .........|D1 ∪D2|︸ ︷︷ ︸

n
2
times

= n
2
γ(G)

Hence, γ(G2Cn) ≤ n
2
γ(G).

Similarly, if n is odd γ(G2Cn) ≤
⌈
n
2

⌉
γ(G).

Theorem 2.3.3. Let G be any graph and Cn be a cycle having n vertices, then

n
3
γ(G) ≤ γ(G2Cn).

Proof. Let Cn be the cycle with V (Cn) = {v1, v2, ......, vn}.

Let D be a dominating set of G2Cn. Then, let Di = D ∩ (V (G) × {vi}).

Take π1(Di) = {u ∈ V (G) : (u, vi) ∈ Di}.

If i ∈ 2, 3, ...., n − 1 and u ∈ V (G) − (π1(Di−1) ∪ π1(Di) ∪ π1(Di+1)), then

(u, vi−1) /∈ D, (u, vi) /∈ D and (u, vi+1) /∈ D. Then there is a vertex(w, vi) ∈ D such

that (w, vi) is adjacent to (u, vi). Hence w ∈ π1(Di) and w is adjacent to u in G.

Thus π1(Di−1) ∪ π1(Di) ∪ π1(Di+1) is a dominating set of G.
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Hence, γ(G) ≤ |Di−1 ∪Di ∪Di+1|, ∀i = 2, ...., n− 1.

Similarly, γ(G) ≤ |Dn−1 ∪Dn ∪D1|.
γ(G) ≤ |Dn ∪D1 ∪D2|.

Summing up all these inequalities we can see that

nγ(G) ≤ 3
∑n

i=1 |Di|

Hence, nγ(G) ≤ 3|D| for a dominating set D of G2Cn.

Thus, γ(G2Cn) ≥ n
3
γ(G).

Corollary 2.3.4. Let G be any graph and Cn be a cycle having n vertices. If

G has a minimum dominating set D such that D = D1 ∪ D2, D1 ∩ D2 = ϕ

and every vertex not in D has a neighbour in D1 and a neighbour in D2, then

n
3
γ(G) ≤ γ(G2Cn) ≤

⌈
n
2

⌉
γ(G).

Remark 2.3.1. Converse of theorem 2.3.2 is not true. There exists graphs G with

γ(G2Cn) ≤
⌈
n
2

⌉
γ(G) but G has no minimum dominating set D with the property,

D can be partitioned such that D = D1 ∪ D2, D1 ∩ D2 = ϕ and every vertex not

in D has a neighbour in D1 and a neighbour in D2. In 2.3 G has no minimum

dominating set D with the property, D can be partitioned as such that D = D1 ∪D2,

D1 ∩D2 = ϕ and every vertex not in D has a neighbour in D1 and a neighbour in

D2 but γ(G2Cn) ≤
⌈
n
2

⌉
γ(G).

v1

v2

v1

v2

v3

v5

v4

Figure 2.3

Remark 2.3.2. In [69] we can see that if D is a minimum dominating set of a

graph G, then at least one vertex in V −D is dominated by no more than two vertices
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in D. Hence, it is not possible to partition, a minimum dominating set D into more

than three disjoint sets each vertex not in D has atleast one neighbour in each sets.

2.4 Conclusion

In this chapter the lower bound for domination number of cartesian product of G

and Pn is obtained. It is studied for the cartesian product of G and Cn. Upperbound

for γ(G2H), when H = Pn or H = Cn for which G has a minimum dominating set

D such that D = D1 ∪D2, D1 ∩D2 = ϕ and every vertex not in D has a neighbour

in D1 and a neighbour in D2, is obtained.
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CHAPTER 3

Reserved Domination in Graphs

3.1 Introduction

The variety of applications to ’coverage’ or ’location’ problems in mathematics and

in the real world causes for the majority of the sudden increase in the number

of domination parameters. Recently many new domination parameters have been

developed.

In certain reservation systems allocations are compulsorily made from some

special classes. Motivated from the same, Reserved domination number of graph G

is defined in this chapter. This chapter is divided into seven sections. A-reserved

domination number is introduced in the second section of this chapter. In the

third Section, A-reserved domination number in various product graphs are studied.

A-reserved domination number in corona of graphs are studied in the fourth section.

In the fifth section, [A1, A2, ...., An]-reserved domination number is defined and

studied. In the sixth section, the reserved domination number is used to study the

domination number of cartesian product of graphs. Seventh section is a concluding

section
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3.2 A-Reserved domination number

In this section, A-reserved domination is introduced and characterization of minimal

A-reserved dominating set is obtained. The special cases for which the A-reserved

domination domination number exceeds domination number is obtained. Calculating

the precise value of A- reserved domination number is a hard problem for specific

classes of graphs. Here A- reserved domination number for some classes of graphs

are obtained.

3.2.1 A-reserved domination

Definition 3.2.1. Let A ⊂ V (G), A ̸= ϕ, a dominating set D of a graph G is an

A- reserved dominating set, if D ∩A ̸= ϕ. The A-reserved domination number of G,

rγA(G) is the cardinality of a minimum A-reserved dominating set.

u v1

v2

v3

v4

v5

Figure 3.1

For illustration , consider the graph G in 3.1

If A = {v1, v2, v3}, then {u, v1} is a minimum A- reserved dominating set .

Hence, rγA(G) = 2 = γ(G) + 1.

If B = {u, v1, v2, v3}, then {u} is a minimum B- reserved dominating set .

Hence, rγB(G) = 1 = γ(G).

Remark 3.2.1. There are graphs with rγA(G) = γ(G) for any A ⊂ V (G). For any

symmetric graph rγA(G) = γ(G) for every A ⊂ V (G). For Petersen graph G and

for every A ⊂ V (G), rγA(G) = 3 = γ(G).
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Proof. Let A ⊂ V (G). Choose any v ∈ A, and choose two vertices u and w so that

D = {u, v, w} is an independent set. Then D is a minimum A-reserved dominating

set. Hence rγA(G) = 3 = γ(G).

v1

v2
v3

v4
v5

v6

v7

v8

v9

v10

Figure 3.2

Theorem 3.2.2. For any Graph G and A ⊂ V (G),

γ(G) ≤ rγA(G) ≤ γ(G) + 1

Proof. Every A-reserved dominating set is a dominating set of G. Thus γ(G) ≤
rγA(G). A minimum dominating set together with an element in A form an A-

reserved dominating set. Hence G has an A-reserved dominating set with cardinality

γ(G) + 1. Thus rγA(G) ≤ γ(G) + 1.

Theorem 3.2.3. An A-reserved dominating set D is a minimal A-reserved dom-

inating set if and only if for each vertex v in D one of the following conditions

holds

1. v is an isolate of D.

2. v has a private neighbour u in V −D.

3. D ∩ A = {v}.

Proof. If an A-reserved dominating set D is minimal, then D is an A-reserved

dominating set and for each vertex v in D, D−{v} is not an A-reserved dominating
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set. This means that some vertex u in (V −D) ∪ {v} is not dominated by D − {v}
or (D − {v}) ∩ A = ϕ.

Now if some vertex u in (V −D)∪{v} is not dominated by any vertex in D−{v},

either u = v, means v is an isolate of D or u ∈ V −D. If u is not dominated by

D − {v}, then u is adjacent only to vertex v in D. ie, v has a private neighbour u

in V −D.

If (D − {v}) ∩ A = ϕ, since D is an A-reserved dominating set, D ∩ A ̸= ϕ.

Hence D ∩ A = {v}.

Conversely, suppose that D is an A-reserved dominating set and for each vertex

v ∈ D, one of the three statements holds. We show that D is a minimal A-reserved

dominating set. If D is not a minimal A-reserved dominating set, then there exists a

vertex v ∈ D such that D − {v} is an A-reserved dominating set. Then each vertex

u in (V −D) ∪ {v} is adjacent with atleast one vertex in D − {v}. Then v is not

an isolate of D and condition 1 does not hold. And v has no private neighbour in

V − D and condition 2 does not hold. D − {v} is an A-reserved dominating set

implies (D− {v}) ∩A ̸= ϕ. Hence condition 3 does not hold. Hence D is a minimal

A-reserved dominating set.

Theorem 3.2.4. If A ⊂ B, then rγA(G) ≥ rγB(G).

Proof. If A ⊂ B, then every A-reserved dominating set is a B-reserved dominating

set. Thus rγA(G) ≥ rγB(G).

Remark 3.2.2. rγA(G) = 1 if and only if A contains a universal vertex of G.

Remark 3.2.3. rγA(G) = n if and only if G = Kn.

Proof. If G has atleast one edge uv, choose any w ∈ A. If {w} ∩ {u, v} = ϕ, then

D = (V (G) − {u}) is an A-reserved dominating set. If {w} ∩ {u, v} = {v}, then
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D = (V (G) − {u}) is an A-reserved dominating set. Hence rγA(G) < n. Thus

rγA(G) = n if and only if G = Kn.

Definition 3.2.5. [73] core(G) is defined as the set of all vertices belonging to all

γ-set of G. core(G) = ∩{S : S ∈ Ω(G)}, where Ω(G) is the family of all γ-sets of

G.

Definition 3.2.6. [73] anticore(G) is defined as the set of all vertices not belonging

to any γ-set of G. anticore(G) = V (G) − ∪{S : S ∈ Ω(G)}, where Ω(G) is the

family of all γ-sets of G..

Definition 3.2.7. [73] Given G = (V,E), Gv + u for u /∈ V and v ∈ V , is defined

as Gv + u = (V 1, E1), where V 1 = V ∪ {u} and E1 = E ∪ {uv}.

Theorem 3.2.8 ([73]). v ∈ anticore(G) if and only if γ(Gv + u) = γ(G) + 1.

Remark 3.2.4. For a graph G and A ⊂ V (G),

� rγA(G) = γ(G) + 1 if and only if A ⊂ anticore(G).

� rγA(G) = γ(G) if and only if A ∩ (anticore(G)) ̸= phi.

Remark 3.2.5. For graph G, rγA(G) = γ(G) for every A ⊂ V (G) if and only if

every vertex of G can be a part of a minimum dominating set. Thus rγA(G) = γ(G)

for every A ⊂ V (G) if and only if anticore(G) = ϕ.

Theorem 3.2.9. For a graph G and A ⊂ V (G),

� rγA(G) = γ(G) + 1 if and only if γ(Gv + u) = γ(G) + 1 for every v ∈ A.

� rγA(G) = γ(G) if and only if ∃v ∈ A satisfying γ(Gv + u) ̸= γ(G) + 1.

Proof. From theorem 3.2.4, rγA(G) = γ(G) + 1 if and only if A ⊂ anticore(G).

From theorem 3.2.8, v ∈ anticore(G) if and only if γ(Gv + u) = γ(G) + 1. Hence

rγA(G) = γ(G) + 1 if and only if γ(Gv + u) = γ(G) + 1 for every v ∈ A.

From theorem 3.2.4, rγA(G) = γ(G) if and only if A∩(anticore(G)) ≠ ϕ. Hence

rγA(G) = γ(G) if and only if ∃v ∈ A ∩ (anticore(G)). Thus rγA(G) = γ(G) if and

only if there exists v ∈ A satisfying γ(Gv + u) ̸= γ(G) + 1.
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Theorem 3.2.10. For cycle Cn and any A ⊂ V (Cn), rγA(Cn) = ⌈n
3
⌉ = γ(G).

Proof. If A ⊂ V (Cn) and u ∈ A, then D = {v ∈ V (Cn) : d(u, v) = 3k, k ∈ N} is an

A-reserved dominating set with |D| = ⌈n
3
⌉ = γ(G). Hence, rγA(Cn) = ⌈n

3
⌉ = γ(G).

Theorem 3.2.11. For complete graph Kn and any A ⊂ V (Kn), rγA(Kn) = 1.

Proof. If A ⊂ V (Kn), then choose any u ∈ A. Then D = {u} is an A-reserved

dominating set with |D| = 1. Hence rγA(Kn) = 1.

Theorem 3.2.12. For complete bipartite graph Km,n with 2 ≤ m,n and any A ⊂
V (Km,n), rγA(Km,n) = 2.

Proof. Let X, Y be the bipartition of Km,n. Let A ⊂ V (Km,n), u ∈ A, if u ∈ X

choose any vertex v from the other partition Y . Then D = {u, v} is an A-reserved

dominating set with |D| = 2. Hence rγA(Km,n) = 2.

Theorem 3.2.13. If n ≡ 1(mod3) and A ⊂ V (Pn), then rγA(Pn) = ⌈n
3
⌉ = γ(Pn).

Proof. Let V (Pn) = {v1, v2, ..., vn}, A ⊂ V (Pn) and choose any u ∈ A.

Case 1 u = v3l+1, l ∈ N, 0 ≤ l ≤ ⌊n
3
⌋.

Then let D = {v ∈ V (Pn) : d(u, v) = 3k, k ∈ N} ∪ {u}. Then D is an

A-reserved dominating set and |D| = ⌈n
3
⌉ = rγA(Pn).

Case 2 u = v3l, l ∈ N , 0 ≤ l ≤ ⌊n
3
⌋.

Then let D1 = {v ∈ V (Pn) : d(u, v) = 3k, k ∈ N}. Then |D1| = ⌈n
3
⌉− 2. Then

D = {v ∈ V (Pn) : d(u, v) = 3k, k ∈ N} ∪ {u, u1} is an A-reserved dominating

set and |D| = ⌈n
3
⌉ = rγA(Pn).

Case 3 u = v3l+2, l ∈ N , 0 ≤ l ≤ ⌊n
3
⌋.

Then let D1 = {v ∈ V (Pn) : d(u, v) = 3k, k ∈ N}. Then |D| = ⌈n
3
⌉ − 2. Then

D = {v ∈ V (Pn) : d(u, v) = 3k, k ∈ N} ∪ {u, un} is an A-reserved dominating

set and |D| = ⌈n
3
⌉ = rγA(Pn).
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Hence rγA(Pn) = ⌈n
3
⌉ = γ(Pn).

Theorem 3.2.14. If n ≡ 0(mod3) and A ⊂ V (Pn), then

rγA(Pn) =

{
n
3

ifA ∩ {vi : i ≡ 2(mod3)} ≠ ϕ

n
3

+ 1 Otherwise

Proof. Let A ⊂ V (Pn)

Case 1 A ∩ {vi : i ≡ 2(mod3)} ≠ ϕ

Let u ∈ A ∩ {vi : i ≡ 2(mod3)}, then D = {vi ∈ V (Pn) : i ≡ 2(mod3)} is

minimum dominating set of Pn and u ∈ D ∩ A. Then D is an A-reserved

dominating set and |D| = ⌈n
3
⌉ = rγA(Pn).

Case 2 A ∩ {vi : i ≡ 2(mod3)} = ϕ

D = {vi ∈ V (Pn) : i ≡ 2(mod3)} is the unique minimum dominating set of Pn

and D ∩ A = ϕ. Hence rγA(Pn) = ⌈n
3
⌉ + 1.

Theorem 3.2.15. If n ≡ 2(mod3) and A ⊂ V (Pn), then

rγA(Pn) =

{
⌈n
3
⌉ ifA ∩ {vi : i ≡ 1, 2(mod3)} ≠ ϕ

⌈n
3
⌉ + 1 Otherwise

Proof. Let A ⊂ V (Pn)

Case 1 A ∩ {vi : i ≡ 1, 2(mod3)} ≠ ϕ

Let u ∈ A ∩ {vi : i ≡ 1(mod3)}, then D = {vi ∈ V (Pn) : i ≡ 1(mod3)} is

a minimum dominating set of Pn and u ∈ D ∩ A. Then D is an A-reserved

dominating set and |D| = ⌈n
3
⌉ = rγA(Pn).

Let u ∈ A ∩ {vi : i ≡ 2(mod3)}, then D = {vi ∈ V (Pn) : i ≡ 2(mod3)} is

minimum dominating set of Pn and u ∈ D ∩ A. Then D is an A-reserved

dominating set and |D| = ⌈n
3
⌉ = rγA(Pn).

Case 2 A ∩ {vi : i ≡ 1, 2(mod3)} = ϕ

D = {vi ∈ V (Pn) : i ≡ 2(mod3)} and D1 = {vi ∈ V (Pn) : i ≡ 1(mod3)} are

the minimum dominating sets of Pn and D ∩ A = ϕ, D1 ∩ A = ϕ. Hence

rγA(Pn) = ⌈n
3
⌉ + 1.
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Remark 3.2.6. rγA∪B(G) = min {rγA(G), rγB(G)}.

Proof. Every A- reserved dominating set is an A ∪B- reserved dominating set too.

Hence, rγA∪B(G) ≤ rγA(G).

Similarly, rγA∪B ≤ rγB(G).

If D is a minimum A∪B- reserved dominating set. Then it is an A-reserved domi-

nating set or a B-reserved dominating set. Hence rγA∪B(G) ≥ min {rγA(G), rγB(G)}.

Thus, rγA∪B(G) = min {rγA(G), rγB(G)}.

3.3 A-Reserved domination in graph products

A-reserved domination in cartesian products is studied in the first section. A-reserved

domination in strong products is studied in the second section.

3.3.1 A-Reserved domination in cartesian products

Theorem 3.3.1. Let G and H be two graphs of order n1 and n2, then for any

A ⊂ V (G) and B ⊂ V (H), rγA×B(G2H) ≤ min{n1rγB(H), n2rγA(G)}.

Proof. Let SH be a minimum B-reserved dominating set of H. Let us see that

S = V (G) × SH is an A×B-reserved dominating set of G2H. If (u, v) ∈ (V (G) ×
V (H))−S. Then (u, v) is adjacent to atleast one vertex in S. And since B∩SH ̸= ϕ

and V (G) ⊃ A, (A × B) ∩ (V (G) × SH) ̸= ϕ. Hence S is an A × B-reserved

dominating set of G2H.

Similarly, if SG is a minimum A-reserved dominating set of G, then S =

SG × V (H) is an A×B-reserved dominating set of G2H.

Thus,

rγA×B(G2H) ≤ min{n1rγB(H), n2rγA(G)}.

Remark 3.3.1. The bound in theorem 3.3.1 is tight. For example for the graphs

G and H given in figure 3.3 with A = {v1}, B = {u1}, rγA×B(G2H) = 2 =

min{n1rγB(H), n2rγA(G)}.

31



Chapter 3. Reserved Domination in Graphs

And the strict inequality in theorem 3.3.1 attains for the graphs G and H given in fig-

ure 3.3 with A = {v3}, B = {u1}, rγA×B(G2H) = 3 < min{n1rγB(H), n2rγA(G)}.

v1

v2v3

v4 v5 u2

u1

(u1, v1)

(u1, v2)(u1, v3)

(u1, v4) (u1, v5)

(u2, v1)

(u2, v3)

(u2, v4) (u2, v5)

(u2, v2)

Figure 3.3

A graph G satisfies Vizing’s conjecture, if the inequality γ(G2H) ≥ γ(G)γ(H)

is true for arbitrary graph H. [19]

Theorem 3.3.2. If a graph G satisfy the inequality rγA×B(G2H) ≥ rγA(G)rγB(H),

for every graph H and for A×B = {(u, v)} where (u, v) is an element in a minimum

dominating set of G2H. Then G satisfies Vizing’s inequality.

Proof. If a graph G satisfy the inequality rγA×B(G2H) ≥ rγA(G)rγB(H), for every

graph H and for A×B = {(u, v)} where (u, v) is an element in a minimum domi-

nating set of G2H. Then,

γ(G2H) = rγA×B(G2H)

≥ rγA(G)rγB(H)

≥ γ(G)γ(H).

.

Thus, γ(G2H) ≥ γ(G)γ(H) for every graph H and G satisfies Vizing’s conjec-

ture.

We can see graphs G and H and A ⊂ V (G), B ⊂ V (H) satisfy the inequality

rγA×B(G2H) < rγA(G)rγB(H). For example in figure 3.3 if A = {v1}, B = {u1},
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then rγA×B(G2H) < rγA(G)rγB(H).

There are graphs G and H so that rγA×B(G2H) = rγA(G)rγB(H), for every

A ⊂ V (G) and B ⊂ V (H).

For example, if G = C4 and H = K2, then for every A ⊂ V (G) and B ⊂ V (H),

rγA(G) = 2, rγB(H) = 1 and rγA×B(G2H) = 2 = rγA(G)rγB(H).

We can see graph G , H , A ⊂ V (G) and B ⊂ V (H) for which rγA×B(G2H) >

rγA(G)rγB(H) .

For example, if G = K1,4 and H = K2 as given in figure 3.3, then for A = {v3} and for

any B ⊂ V (H), rγA(G) = 2, rγB(H) = 1 and rγA×B(G2H) = 3 > rγA(G)rγB(H).

Theorem 3.3.3. Let G be a graph that satisfies rγA×B(G2H) ≥ rγA(G)rγB(H),

for every A ⊂ V (G) and for every graph H and B ⊂ V (H), and let G1 be a

spanning subgraph of G such that rγA(G) = rγA(G1). Then G1 also satisfies

rγA×B(G12H) ≥ rγA(G1)rγB(H), for every A ⊂ V (G) and for every graph H and

B ⊂ V (H).

Proof. Let A ⊂ V (G) and B ⊂ V (H), then

rγA×B(G12H) ≥ rγA×B(G2H)

≥ rγA(G)rγB(H)

≥ rγA(G1)rγB(H)

Theorem 3.3.4. If n is an odd integer and x1, x2, ....., xn be the vertices in the first

copy of Pn in Pn2P2 and y1, y2, ....., yn be the vertices in the second copy of Pn in

Pn2P2, then for any A ⊂ V (Pn2P2),

rγA(Pn2P2) =

{
⌈n+1

2
⌉ ifA ∩ {xi, yi : i = 2k + 1, 1 ≤ i ≤ n} ≠ ϕ

⌈n+2
2
⌉ Otherwise

.

Proof. Let A ⊂ V (Pn2P2)

Case 1 If A ∩ {xi, yi : i = 2k + 1, 1 ≤ i ≤ n} = ϕ

Choose any x2k ∈ D ∩ A. Then D = {xi : i ≡ 1(mod4)} ∪ {yj : j ≡
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3(mod4)} ∪ {x2k} is an A-reserved dominating set with |D| = ⌈n+2
2
⌉. Thus

rγA(Pn2P2) ≤ ⌈n+2
2
⌉.

Let D be a minimum A-reserved dominating set. Then u ∈ D∩A and u = x2k

or y2k, 2 ≤ k ≤ n+1
2

.

If x2k ∈ D ∩ A, then removing x2k ∪ {xi, yi, i ≥ 2k} from D and if necessary,

replacing y2k−1 by y2k−2 the resulting set D1 would dominate the induced sub-

graph < {x1, y1, x2, y2....., x2k−2, y2k−2} >. Since γ(P2k−22P2) = ⌈2k−2+1
2

⌉ = k,

|D1| ≥ k.

And removing x2k ∪ {xi, yi, i ≤ 2k} from D and if necessary, replacing

y2k+1 by y2k+2 the resulting set D11 would dominate the induced subgraph

< {x2k+2, y2k+2, ....., xn, yn} >. Since γ(Pn−(2k+1)2P2) = ⌈n−2k−1+1
2

⌉ = ⌈n−2k
2

⌉,
|D11| ≥ ⌈n−2k

2
⌉.

Hence,

|D| ≥ |D1| + |D11| + 1

≥ k + ⌈n−2k
2

⌉ + 1

= n+1
2

+ 1

≥ ⌈n+2
2
⌉

Thus rγA(Pn2P2) ≥ ⌈n+2
2
⌉.

Hence rγA(Pn2P2) = ⌈n+2
2
⌉.

Case 2 If A ∩ {xi, yi : i = 2k + 1, 1 ≤ i ≤ n} ≠ ϕ

Choose any u ∈ A ∩ {xi, yi : i = 2k + 1, 1 ≤ i ≤ n}.

If u = x2k+1, 3 ≤ k ≤ n−1
2

, then let D = {xi : 1 ≤ i ≤ 2k, d(xi, x2k+1) ≡
0(mod4)} ∪ {yi : 1 ≤ i ≤ n, d(y2k−1, yi) ≡ 0(mod4)} ∪ {x2k+1, y2k−1}.

If u = x1, then let D = {xi : i ≡ 1(mod4)} ∪ {yj : j ≡ 3(mod4)}.

If u = y2k+1, 3 ≤ k ≤ n−1
2

, then let D = {yi : 1 ≤ i ≤ 2k, d(yi, y2k+1) ≡
0(mod4)} ∪ {yi : 1 ≤ i ≤ n, d(x2k−1, xi) ≡ 0(mod4)} ∪ {y2k+1, x2k−1}.

If u = y1, then let D = {yi : i ≡ 1(mod4)} ∪ {xj : j ≡ 3(mod4)}.

ThenD is anA-reserved dominating set with |D| = ⌈n+1
2
⌉. Thus rγA(Pn2P2) ≤

⌈n+1
2
⌉. Since γ(Pn2P2) = ⌈n+1

2
⌉, rγA(Pn2P2) ≥ ⌈n+1

2
⌉.

Hence rγA(Pn2P2) = ⌈n+1
2
⌉.
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Theorem 3.3.5. If n is an even integer , then for any A ⊂ V (Pn2P2),

rγA(Pn2P2) = ⌈n+ 1

2
⌉

Proof. Let A ⊂ V (Pn2P2)

Case 1 If A ∩ {xi, yi : i = 2k + 1, 1 ≤ i ≤ n} ≠ ϕ

Choose any u ∈ A ∩ {xi, yi : i = 2k + 1, 1 ≤ i ≤ n}.

If u = x2k+1, 3 ≤ k ≤ n
2
, then let D = {xi : 1 ≤ i ≤ n, d(xi, x2k+1) ≡

0(mod4)} ∪ {yi : 1 ≤ i ≤ n, d(y2k−1, yi) ≡ 0(mod4)} ∪ {x2k+1, y2k−1, xn}.

If u = x1, then let D = {xi : i ≡ 1(mod4)} ∪ {yj : j ≡ 3(mod4)} ∪ {xn}.

If u = y2k+1, 3 ≤ k ≤ n
2
, then let D = {yi : 1 ≤ i ≤ 2k, d(yi, y2k+1) ≡

(0mod4)} ∪ {yi : 1 ≤ i ≤ n, d(x2k−1, xi) ≡ (0mod4)} ∪ {y2k+1, x2k−1, xn}.

If u = y1, then let D = {yi : i ≡ 1(mod4)} ∪ {xj : j ≡ 3(mod4)} ∪ {xn}.

ThenD is anA-reserved dominating set with |D| = ⌈n+1
2
⌉. Thus rγA(Pn2P2) ≤

⌈n+1
2
⌉. Since γ(Pn2P2) = ⌈n+1

2
⌉, rγA(Pn2P2) ≥ ⌈n+1

2
⌉. Hence rγA(Pn2P2) =

⌈n+1
2
⌉.

Case 2 If A ∩ {xi, yi : i = 2k + 1, 1 ≤ i ≤ n} = ϕ

Choose any u ∈ D ∩ A.

If u = x2k, 2 ≤ k ≤ n
2

, then let D = {xi : 1 ≤ i ≤ n, d(xi, x2k) ≡
0(mod4)} ∪ {yi : 1 ≤ i ≤ n, d(y2k−2, yi) ≡ 0(mod4)} ∪ {x2k, y2k−2, x1}.

If u = x2, then let D = {xi : 1 ≤ i ≤ n, i ≡ (2mod4)} ∪ {yi : 1 ≤ i ≤ n, i ≡
0(mod4)} ∪ {x1}.

If u = y2k, 2 ≤ k ≤ n
2

, then let D = {yi : 1 ≤ i ≤ n, d(yi, y2k) ≡
0(mod4)} ∪ {xi : 1 ≤ n, d(x2k−2, xi) ≡ 0(mod4)} ∪ {xy2k, x2k−2, x1}.

If u = y2, then let D = {yi : 1 ≤ i ≤ n, i ≡ 2(mod4)} ∪ {xi : 1 ≤ i ≤ n, i ≡
0(mod4)} ∪ {x1}.

ThenD is anA-reserved dominating set with |D| = ⌈n+1
2
⌉. Thus rγA(Pn2P2) ≤

⌈n+1
2
⌉. Since γ(Pn2P2) = ⌈n+1

2
⌉, rγA(Pn2P2) ≥ ⌈n+1

2
⌉. Hence rγA(Pn2P2) =

⌈n+1
2
⌉.
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Theorem 3.3.6. If A ⊂ V (Pn2P3),

n− ⌊n− 1

4
⌋ ≤ rγA(Pn2P3) ≤ n+ 1 − ⌊n− 1

4
⌋

.

Proof. From [46], γ(Pn2P3) = n− ⌊n−1
4
⌋. Using 3.2.2, n− ⌊n−1

4
⌋ ≤ rγA(Pn2P3) ≤

n+ 1 − ⌊n−1
4
⌋.

Theorem 3.3.7. If A ⊂ V (Pn2P4),

n+ 1 ≤ rγA(Pn2P4) ≤ n+ 2 if n=1,2,3,4,5,6 or 9

n ≤ rγA(Pn2P4) ≤ n+ 1 Otherwise

.

Proof. From [46],

γ(Pn2P4) = n+ 1 if n=1,2,3,4,5,6 or 9

γ(Pn2P4) = n Otherwise

Using 3.2.2,

n+ 1 ≤ rγA(Pn2P4) ≤ n+ 2 if n=1,2,3,4,5,6 or 9

n ≤ rγA(Pn2P3) ≤ n+ 1 Otherwise

Theorem 3.3.8. For any A ⊂ V (Km) and B ⊂ V (Kn),m ≤ n, rγA×B(Km2Kn) =

m.

Proof. Let u1, u2, ...., um be the vertices of Km and v1, v2, ...., vn be the vertices of Kn.

Choose any (ui, vj) ∈ A×B, thenD = {(u1, vj), (u2, vj), (u3, vj), ...., (ui, vj), ....(um, vj)}
is an (A×B)-reserved dominating set with |D| = m. Hence rγA×B(Km2Kn) ≤ m.

Since γ(Km2Kn) = m, rγA×B(Km2Kn) ≥ m. Thus rγA×B(Km2Kn) = m.

Theorem 3.3.9. For any A ⊂ V (Pm) and B ⊂ V (Kn),m, n > 2 ∈ N , rγA×B(Pm2Kn) =

m.
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Proof. Let u1, u2, ...., um be the vertices of Pm and v1, v2, ...., vn be the vertices of Kn.

Choose any (ui, vj) ∈ A×B, thenD = {(u1, vj), (u2, vj), (u3, vj), ...., (ui, vj), ....(um, vj)}
is an (A×B)-reserved dominating set with |D| = m. Hence rγA×B(Pm2Kn) ≤ m.

Since γ(Pm2Kn) = m, rγA×B(Pm2Kn) ≥ m. Thus rγA×B(Pm2Kn) = m.

Theorem 3.3.10. For any A ⊂ V (Cm) and B ⊂ V (Kn),m, n > 2 ∈ N , rγA×B(Cm2Kn) =

m.

3.3.2 Reserved domination in strong products

Theorem 3.3.11. For any two nontrivial graphs G and H and for every A ⊂ V (G)

and B ⊂ V (H), rγA×B(G⊠H) ≤ rγA(G)rγB(H).

Proof. Let D1 be the minimum A-reserved dominating set of G and D2 be the

minimum B-reserved dominating set of H.

Then there are vertices u, v such that u ∈ D1 ∩ A and v ∈ D2 ∩ B. Hence

(u, v) ∈ (D1 ×D2) ∩ (A×B)

Let (u1, v1) ∈ V (G⊠H) so that (u1, v1) /∈ D1 ×D2, then

Case 1 u1 ∈ D1 and v1 /∈ D2,

then v1 is dominated by v2 ∈ D2. Hence (u1, v1) is dominated by (u1, v2) ∈
D1 ×D2.

Case 2 u1 /∈ D1 and v1 ∈ D2,

then u1 is dominated by u2 ∈ D1. Hence (u1, v1) is dominated by (u2, v1) ∈
D1 ×D2.

Case 3 u1 /∈ D1 and v1 /∈ D2,

then u1 is dominated by u2 ∈ D1 and v1 is dominated by v2 ∈ D2. Hence

(u1, v1) is dominated by (u2, v2) ∈ D1 ×D2.

Thus D1 × D2 is an (A × B)-reserved dominating set and rγA×B(G ⊠ H) ≤
rγA(G)rγB(H).
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We can see graphs for which rγA×B(G⊠H) = rγA(G)rγB(H),∀A ⊂ V (G),∀B ⊂
V (H). IfG = C4 andH = K2, then for every A ⊂ V (G) andB ⊂ V (H), rγA(G) = 2,

rγB(G) = 1 and rγA×B(G⊠H) = 2 = rγA(G)rγB(H).

We can see graphs G and H and A ⊂ V (G), B ⊂ V (H) for which rγA×B(G⊠

H) < rγA(G)rγB(H),∀A ⊂ V (G),∀B ⊂ V (H). If G = P3 and H = P3 , A = {v1}
and B = {u1} the pendant vertices of G and H respectively, then rγA(G) = 2,

rγB(G) = 2 and rγA×B(G⊠H) = 3 < rγA(G)rγB(G).

3.4 Reserved domination in the corona of graphs

Theorem 3.4.1. Let G be a graph order n and H be a graph order m and Hi be

the copy of H corresponding to vi ∈ G, then for A ⊂ V (G ◦H),

rγA(G ◦H) =

{
n if A ∩ (V (G) ∪ {v : v is a universal vertex of Hi}) ̸= ϕ

n+ 1 Otherwise

.

Proof. Let A ⊂ V (G ◦H)

Case 1 If A ∩ (V (G) ∪ {v : v is a universal vertex of Hi}) = ϕ,

Let D be an A-reserved dominating set of G ◦H. Since D is a dominating set

of G ◦H, |D ∩ (V (Hi) ∪ {vi})| ≥ 1, ∀i = 1, 2, ...., n.

And if |D ∩ (V (Hi)∪ {vi})| = 1, ∀i = 1, 2, ...., n, then wi ∈ D ∩ (V (Hi)∪ {vi})

dominates V (Hi) and there exist a vertex wk ∈ A ∩ (Hk ∪ {vk}) for some

k ∈ {1, 2, ...n} and wk dominates Hk. Then, either wk = vk or wk is a universal

vertex of Hk, which is not possible. Hence |D ∩ (V (Hj) ∪ {vj})| > 1 for some

j ∈ {1, 2, ...., n}. Thus |D| ≥ n+ 1 and rγA(G ◦H) ≥ n+ 1.

Choose any w ∈ A, then {v1, v2, ...., vn}∪ {w} is an A-reserved dominating set

of GoH. Hence rγA(GoH) ≤ n+ 1.

Thus rγA(GoH) = n+ 1.
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Case 2 If A ∩ (V (G) ∪ {v : v is a universal vertex of Hi}) ̸= ϕ,

Let w ∈ A∩ (V (G)∪{v : v is a universal vertex of Hi} and w ∈ V (Hk)∪{vk},

k ∈ {1, 2, ...n}. Let D be an A-reserved dominating set of GoH. Since D is

a dominating set of G ◦H, |D ∩ (V (Hi) ∪ {vi})| ≥ 1, ∀i = 1, 2, ...., n. Hence

|D| ≥ n and rγA(G ◦H) ≥ n

Hence {w}∪({v1, v2, ....., vn}−{vk}) is an A- reserved dominating set of G◦H.

Hence rγA(G ◦H) ≤ n

Thus rγA(GoH) = n

3.5 [A1, A2, ....., Ak]-reserved domination

[A1, A2, ...., Ak]-reserved domination as a generalized concept of A-reserved nomina-

tion number is defined in this section and studied it.

Definition 3.5.1. Let A1, A2, ..., Ak ⊂ V (G). If D ⊂ V (G) is a dominating set with

the property D ∩ Ai ̸= ϕ,∀i = 1, 2, ...., k, then D is said to be an [A1, A2, ..........Ak]-

reserved dominating set of G. Cardinality of a minimum [A1, A2, ..........Ak]- reserved

dominating set is called the [A1, A2, ..........Ak]-reserved domination number denoted

by rγ[A1,A2,...,Ak](G) .

For example , consider the graph fig.3.4 .

If A1 = {v1, v2}, A2 = {v7}, Then {v1, v2, v5, v7}is a minimum [A1, A2]- reserved

dominating set.

Hence rγ[A1,A2](G) = 4.

If B1 = {v1, v2, v6}, B2 = {v3, v4, v5}, Then {v5, v6} is a minimum [B1, B2]- reserved

dominating set.

Here rγ[B1,B2](G) = 2.
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Figure 3.4

Remark 3.5.1. For any G and any A1, A2, ......Ak ⊂ V (G) , γ(G) ≤ rγ[A1,A2,...,Ak](G) ≤
γ(G) + k.

Theorem 3.5.2. If A1, A2, ......Ak ⊂ V (G) then an [A1, A2, ..., Ak]-reserved domi-

nating set D is a minimal [A1, A2, ..., Ak]-reserved dominating set if and only if for

each vertex v in D one of the following conditions holds

1. v is an isolate of D.

2. v has a private neighbour u in V −D.

3. There exists l ∈ {1, 2, ...k} such that D ∩ Al = {v}.

Proof. If an [A1, A2, ..., Ak]-reserved dominating set D is minimal, then D is an

[A1, A2, ..., Ak]-reserved dominating set and for each vertex v in D, D − {v} is

not an [A1, A2, ..., Ak]-reserved dominating set. This means that some vertex u in

(V −D) ∪ {v} is not dominated by D − {v} or there exists l ∈ {1, 2, ...k} such that

(D − {v}) ∩ Al = ϕ.

Now if some vertex u in (V −D)∪{v} is not dominated by any vertex in D−{v},

either u = v, means v is an isolate of D or u ∈ V −D. If u is not dominated by

D − {v}, then u is adjacent only to vertex v in D. ie, v has a private neighbour u

in V −D.

If there exists l ∈ {1, 2, ...k} such that (D − {v}) ∩ Al = ϕ, but since D is

an [A1, A2, ..., Ak]-reserved dominating set, D ∩ Ai ̸= ϕ,∀i ∈ {1, 2, ...k}. Hence

D ∩ Al = {v}. Thus there exists l ∈ {1, 2, ...k} such that D ∩ Al = {v}.
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Conversely, suppose that D is an [A1, A2, ..., Ak]-reserved dominating set and

for each vertex v ∈ D, one of the three statements holds. We show that D is a mini-

mal [A1, A2, ..., Ak]-reserved dominating set. If D is not a minimal [A1, A2, ..., Ak]-

reserved dominating set, then there exists a vertex v ∈ D such that D − {v} is an

[A1, A2, ..., Ak]-reserved dominating set. Then each vertex u in (V − D) ∪ {v} is

adjacent with atleast one vertex in D − {v}. Then v is not an isolate of D and

condition 1 does not hold. Then v has no private neighbour in V −D and condition

2 does not hold. D − {v} is an [A1, A2, ..., Ak]-reserved dominating set implies

(D − {v}) ∩ Ai ̸= ϕ,∀i ∈ {1, 2...., n}. Hence condition 3 does not hold. Hence D is

a minimal [A1, A2, ..., Ak]-reserved dominating set.

3.6 Domination number of cartesian product of graphs using

reserved domination number

In this section, domination number of cartesian product of graphs are studied using

reserved domination number.

Theorem 3.6.1. Let G = K1,n with u as center and V (G) = {u, u1, u2, .........un}
and let H be any graph. Let D ⊂ V (G2H) such that D dominates {u}2H. Then,

|D| ≥ 2γ(H) − γ(< F >) , where F = {v ∈ H : (ui, v) is not adjacent to D for

some i} ∪ {v ∈ H : (ui, v) /∈ D, ∀i}.

Proof. Define , π : (G2H) → H as π(u, v) = v,∀(u, v) ∈ (G2H)

Then, π(S) = {v ∈ H : (u, v) ∈ S}.

D0 = ({u} ×H) ∩D
D1 = D ∩ ({u1} × (H − π(N(D0))))

D2 = D ∩ ({u2} × (H − π(N(D0 ∪D1))))

D3 = D ∩ ({u2} × (H − π(N(D0 ∪D1 ∪D2))))
...
...

Dn = D ∩ ({un}2(H − π(N(D0 ∪D1 ∪D2.... ∪Dn−1))))

Then π(D0) ∪ π(D1) ∪ π(D2)..........π(Dn) dominates H
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Therefore,
n∑

i=0

|Di| ≥ γ(H) (3.6.1)

Now, let D1 = D − (D0 ∪D1 ∪ ......... ∪Dn) and K = {v ∈ H : v is not dominated

by π(D1)}
Then, K ⊂ {v ∈ H : (ui, v) is not dominated by D for some ui} ∪ {v ∈ H :

(ui, v) /∈ D, ∀i}
For, Let v ∈ K and if v /∈ {v ∈ H : (ui, v) is not dominated by D for some i}
ie, (ui, v) is dominated by D, ∀i
Then, (ui, v) is dominated by {D0 ∪D1 ∪ .......Dn}
If (ui, v) ∈ Di .Then for l different from i, (ul, v) is not dominated by D0 ∪D1 ∪

......Dn and hence not dominated by D.

Hence (ui, v) /∈ Di,∀i
Therefore , v ∈ N(π(Di)) for i = 0, 1, ..., n

Since (ui, v) is not dominated by D1,∀i = 1, 2, ....., n

We have , (ui, v) /∈ D1 for i = 1, 2, ...., n

Hence , (ui, v) /∈ D for i = 1, 2, ...., n

Hence, K ⊂ {v ∈ H : (ui, v) is not dominated by D for some ui} ∪ {v ∈ H :

(ui, v) /∈ D, ∀i}.

Put F = {v ∈ H : (ui, v) is not dominated by D for some ui} ∪ {v ∈ H :

(ui, v) /∈ D, ∀i}
Then , |D1| + γ(< K >) ≥ γ(H)

And so ,

|D1| + γ(< F >) ≥ γ(H) (3.6.2)

From equation 1 and 2 ,∑n
i=0 |Di| + |D1| + γ(< F >) ≥ γ(H) + γ(H)

Therefore , |D| ≥ 2γ(H) − γ(< F >)

Hence , the result.

The following result generalizes theorem 3.6.1.

Theorem 3.6.2. Let G be any graph with γ(G) = 1 and N ⊂ V (G) such that
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rγN(G) > 1.And let H be any graph. Let D ⊂ G2H with the property that D

dominates (G−N)2H .Then, |D| ≥ 2γ(H)−γ(< F >) , where F = {v ∈ H : (u, v)

is not dominated by D for some u ∈ N} ∪ {v ∈ H : (u, v) /∈ D, ∀u ∈ N} .

Theorem 3.6.3. Let G = K1,N with u as center and V (G) = {u} ∪ N where

N = N1 ∪ N2 ∪ .......Nk , |Ni| ≥ 2, Ni = {ui1, ui2, ......, uir} for i = 1, 2, ...k and

H be any graph. If D ⊂ V (G2H) so that D dominates {u}2H , then |D| ≥
(k + 1)γ(H) −

∑k
i=1 γ(< Fi >) , where Fi = {v ∈ H : (uij, v) is not dominated by D

for some j} ∪ {v ∈ H : (uij, v) /∈ D ∩Ni,∀j} .

Proof. We are using induction on k. As by above theorem , we can see that the

result is true for k = 1.

Assume the result is true for k − 1,

Now, let Nk = {uk1, uk2, ........, ukr}
Dk = Nk ∩D
B = {v ∈ H : (u, v) is only dominated by Dk}
And let,

Dk1 = Dk ∩ {uk1} ×B

Dk2 = Dk ∩ ({uk2} × (B − π(N(Dk1))
...
...
...

Dkr = Dk ∩ ({uk2} × (B − π(N(Dk1)) ∪ π(N(Dk2)).... ∪ π(N(Dk(r−1))))

And D1
k = Dk1 ∪Dk2 ∪ .........Dkr

Then ,

|D1
k| ≥ γ(< B >) (3.6.3)

Also

Let , Ck = {v ∈ H : v is not dominated by π((Dk) − (D1
k))}

Then

Ck ⊂ Fk where

Fk = {v ∈ H : (ukj, v) is not dominated by D for some j}
∪{v ∈ H : (ukj, v) /∈ D ∩Nk,∀j}
Therefore,
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|((Dk) − (D1
k))| ≥ γ(H) − γ(< Fk >) (3.6.4)

From equation 3 and 4

|Dk| ≥ γ(< B >) + γ(H) − γ(< Fk >) (3.6.5)

Now, (D−Dk) together with γ(< B >) elements in {u}2H dominates {u}2H
Therefore by induction hypothesis ,

|D −Dk| + γ(< B >) ≥ (k)γ(H) −
k−1∑
i=1

γ(< Fi >) (3.6.6)

where Fi = {v ∈ H : (uij, v) is not dominated by D for some j}∪{v ∈ H : (uij, v) /∈
D ∩Ni,∀j}

Therefore , from equation 5 and 6

|D| ≥ (k + 1)γ(H) −
k∑

i=1

γ(< Fi >) (3.6.7)

Hence , the result.

3.7 Conclusion

The concept of A-reserved domination number in graphs is introduced in this chapter.

Necessary and sufficient condition for an A-reserved dominating set to be a minimal

A-reserved dominating set is obtained. A-reserved domination number in some

classes of graphs are obtained. These parameters in certain product graphs are

studied. Generalized concept of A-reserved domination number is studied. In the

sixth section domination number of cartesian product of graphs is studied using

reserved domination number.
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CHAPTER 4

Stability of Domination in Graphs

4.1 Introduction

Motivated by numerous applications various types of dominating sets such as Roman

domination, Total domination, fractional domination were introduced and studied

in graph theory. For the purpose of studying stability of domination in graphs,

one such domination called α-stable domination is introduced in this chapter. This

chapter is divided into seven sections. In the second Section of this Chapter, the

concept of α-d- stable domination number of a graph G is introduced. The concept

of α-a- stable domination number of a graph G is introduced in the third section. In

section four, α- stable domination number of a graph G is introduced. In the fifth

section α-stable domination in product graphs are studied. α-stable domination in

corona of graphs is studied in sixth section. Seventh section is a concluding section.

In this chapter the elements of a dominating set are called donors and the other

vertices are called acceptors. A subset D of vertices in a social network graph with

the condition that each member in D dominates almost equally many members

in V − D, or that each member in V − D is dominated by almost equally many

members in D, or both, plays a key role. This concept of equitable domination in

graphs was defined and studied by A Anitha, S Arumugam and Mustapha Chellali[2].
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In social network problems related to marketing, banking and others the instability

affects the system when adjacent acceptors are dominated by unequal number of

donors or adjacent donors dominates unequal number of acceptors. This situation

become worse when the instability is large. Motivated from this idea the concept of

α-stable of domination number is being introduced.

4.2 α-d-stable domination

In this section, α-d-stable domination is introduced and characterization of a minimal

α-d-stable dominating set is obtained. And relation between α-d-stable domination

number and independent domination number is obtained. Nordhaus-Gaddum type

result is obtained. For any non negative integer β, graph G with γ0d(G) > γ1d(G) >

γ2d(G)...... > γβd (G) is constructed.

Definition 4.2.1. Let D be a dominating set. For a vertex u in D let ψD(u) =

|N(u) ∩ (V − D)|. The donor instability or d-instability of an edge e connecting

two donor vertices u and v, dDinst(e)= |ψD(u) − ψD(v)|. Let D ⊂ V , the d-instability

of D, is the sum of d-instabilities of all edges connecting vertices in D, ψd(D) =∑
e∈<D> d

D
inst(e) .

Definition 4.2.2. Let D be a dominating set. Given a non negative integer α,

D is an α-d-stable dominating set, if dDinst(e) ≤ α for any edge e connecting two

donor vertices. Cardinality of a minimum α-d-stable dominating set is the α-d-stable

domination number and denoted by γαd (G).

Definition 4.2.3. A dominating set D is d-stable if ψd(D) = 0. Cardinality of a

minimum d-stable dominating set is the d-stable domination number and denoted by

γ0d(G).

Remark 4.2.1. If α ≥ β, then γ(G) ≤ γαd (G) ≤ γβd (G).
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u1 u2

u3

u4
u5

u6

u7 u8

Figure 4.1

Example 4.2.1. In Figure 4.1, D = {u1, u2} is the minimum dominating set.

ψD(u1) = 4 and ψD(u2) = 2. And dDinst(u1u2) = 2. Hence D is a minimum 2-d-

stable dominating set. And for α ≥ 2, γαd (G) = 2.

If S = {u1, u7, u8}, ψS(u1) = 3 , ψS(u7) = 0 and ψS(u8) = 0. And S is an

independent set. Hence γ1d(G) = γ0d(G) = 3.

Remark 4.2.2. Property of being α-d-stable dominating set is neither superheredi-

tary nor hereditary.

Theorem 4.2.4. An α-d- stable dominating set D is a minimal α-d- stable dom-

inating set if and only if for each vertex v in D one of the following conditions

holds

1. v is an isolate of D.

2. v has a private neighbour u in V −D.

3. There exist two adjacent vertices u1 and u2 different from v in D, u1 adjacent

to v, u2 not adjacent to v and ψD(u1) = ψD(u2) + α.

Proof. If an α-d- stable dominating set D is minimal, then D is an α-d- stable

dominating set and for each vertex v in D, D − {v} is not an α-d- stable domi-

nating set. This means that some vertex u in (V −D) ∪ {v} is not dominated by

D − {v} or there exist two adjacent vertices u1 and u2 different from v in D with

|ψD(u1) − ψD(u2)| ≤ α but |ψD−{v}(u1) − ψD−{v}(u2)| > α.

Now if some vertex u in (V −D)∪{v} is not dominated by any vertex in D−{v},

either u = v, means v is an isolate of D or u ∈ V −D. If u is not dominated by

D − {v}, then u is adjacent only to vertex v in D. ie, v has a private neighbour u
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in V −D.

If |ψD(u1) − ψD(u2)| ≤ α and |ψD−{v}(u1) − ψD−{v}(u2)| > α, let α = 0, then

ψD(u1) = ψD(u2) and |ψD−{v}(u1) − ψD−{v}(u2)| = α + 1. Assume ψD−{v}(u1) >

ψD−{v}(u2). Then u1 is adjacent to v but u2 is not adjacent to v and ψD(u1) =

ψD(u2) + α. If α > 0, then assume ψD(u1) > ψD(u2). Then ψD−{v}(u1) −
ψD−{v}(u2) = α + 1. Then u1 is adjacent to v but u2 is not adjacent to v and

ψD(u1) = ψD(u2) + α.

Conversely, suppose that D is an α-d-stable dominating set and for each vertex

v ∈ D, one of the three statements holds. We show that D is a minimal α-d-stable

dominating set. If D is not a minimal α-d-stable dominating set, then there exists a

vertex v ∈ D such that D − {v} is an α-d-stable dominating set. Then each vertex

u in (V −D)∪ {v} is adjacent with atleast one vertex in D−{v}. Then v is not an

isolate of D and condition 1 does not hold. And v has no private neighbour in V −D
and condition 2 does not hold. D − {v} is an α-d-stable dominating set implies

for any two adjacent vertices u1 and u2 in D − {v}, ψD−{v}(u1) − ψD−{v}(u2) ≤ α.

Hence condition 3 does not hold. Hence D is a minimal α-d-stable dominating set.

Remark 4.2.3. For non negative integer α, γαd (G) = 1 ⇐⇒ γ(G) = 1.

v1

v2

v3

v4

v5

v6

Figure 4.2

Theorem 4.2.5. For a graph G and non negative integer α, βo(G) ≥ γαd (G).

Proof. Let S be a maximum independent set. Then, every vertex in V −S is adjacent

with atleast one vertex in S. Thus S is a dominating set. No two vertices in S are
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adjacent. It follows that S is an α-d-stable dominating set. Hence, βo(G) ≥ γαd (G).

And this bound is sharp. In figure 4.2, γαd (G) = 2 = βo(G).

Theorem 4.2.6. For a graph G and non negative integer α, i(G) ≥ γαd (G).

Proof. Let S be a minimum independent dominating set. No two vertices in S are

adjacent. It follows that S is an α-d-stable dominating set. Hence, i(G) ≥ γαd (G).

And this bound is sharp. In figure 4.2, γαd (G) = 2 = i(G).

Proposition 4.2.7. The domination chain ir(G) ≤ γ(G) ≤ i(G) ≤ βo(G) ≤ Γ(G) ≤
IR(G) can be extended as ir(G) ≤ γ(G) ≤ γαd (G) ≤ i(G) ≤ βo(G) ≤ Γ(G) ≤ IR(G).

Theorem 4.2.8. For any graph G of order n ≥ 2 and non negative integer α,

3 ≤ γαd (G) + γαd (G) ≤ n+ 1.

Proof. Let α be any non negative integer and G be any graph order n ≥ 2, since

γαd (G) ≤ i(G) and i(G) ≤ n− ∆(G)

γαd (G) + γαd (G) ≤ i(G) + i(G)

≤ (n− ∆(G)) + (n− ∆(G))

≤ n+ 1

.

Let G be a graph order n ≥ 2. If γαd (G) = 1, then there is a vertex u of degree

n− 1 in G. Hence u will be an isolated vertex in G. Hence γαd (G) ≥ 2.. In a similar

way if γαd (G) = 1 then γαd (G) ≥ 2. Hence γαd (G) + γαd (G) ≥ 3. And the lower bound

is obviously obtained if γαd (G) > 1.

The bounds given in the above theorem are sharp. For G = Kn, γαd (G) = 1 and

γαd (G) = n and γαd (G) + γαd (G) = n+ 1. For K1,n−1 , γαd (G) = 1 and γαd (G) = 2.

Theorem 4.2.9. For a connected triangle free graph G with |V (G)| ≥ 2 and any

non negative integer α, γαd (G) = 2.
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Proof. Since G is a connected graph there is an edge uv in G. If G is isomorphic to

K2 then G is an empty graph with two vertices. Hence γαd (G) = 2. If |V (G)| > 2,

then each vertex of G is not adjacent to at least one of u or v. Hence u and v are

non adjacent vertices in G and every other vertices are adjacent with either u or v

or both. Hence {u, v} is an α-d-stable dominating set of G. Since G has no isolated

vertex γαd (G) ̸= 1. Hence γαd (G) = 2.

Theorem 4.2.10. If D is an α-d-stable dominating set of a graph G and u and v

are adjacent vertices in D with d(v) = d(u) + k + α, k ∈ Z+, then D contains at

least k elements from (N [v] −N [u]).

Proof. If D is an α-d-stable dominating set of a graph G and u and v are adjacent

vertices in D with d(v) = d(u) + k + α, k ∈ Z+, then |ψD(v) − ψD(u)| ≤ α. Hence

|N [v]∩(V −D)| ≤ |N [u]∩(V −D)|+α. Thus, d(v)−d(u) ≤ |(N [v]−N [u])∩D|+α.

Hence D contains at least k elements from (N [v] −N [u]).

Corollary 4.2.11. If D is a d-stable dominating set of a graph G and u and v

are adjacent vertices in D with d(v) > d(u), then D contains at least d(v) − d(u)

elements from (N [v] −N [u]).

Corollary 4.2.12. If u is a pendant vertex adjacent to v, D is a d-stable dominating

set and u, v ∈ D, then N [v] ⊂ D.

Theorem 4.2.13. For any non negative integer β, there exist graph G with γ0d(G) >

γ1d(G) > γ2d(G)...... > γβd (G)

Proof. Take k = β + 1

Construct G as follows,

Step 1:- Let H be the complete graph with vertex set {a1, a2, ...., ak}.
Step 2:- Let Ai = {ai,1, ai,2, ..., ai,i+1} for i = 1, 2, ..., k.

Form G by joining each vertices in Ai with ai in H for i = 1, 2..., k.
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Let D be a d-stable dominating set, Bi = {ai, ai,1, ai,2, ..., ai,i+1} and Ci = Bi∩D.

If ar, as ∈ D with r < s then by corollary 1.11, D contains s− r elements from

As and hence by corollary 1.12, N [as] ⊂ D. Thus Bs ⊂ D. Thus Ci = Bi for all

i = 1, 2, ..., k.

Hence D = V (G) or D = A1∪A2∪A3∪......∪As−1∪As+1∪.....∪Ak−1∪Ak∪{as}.

Hence we take D = A1 ∪ A2 ∪ A3 ∪ ...... ∪ As−1 ∪ As+1 ∪ ..... ∪ Ak−1 ∪ Ak ∪ {as}.

Thus |Ci| = i+ 1 for i ̸= s and |Cs| = 1. Then,

|D| = 2 + 3 + .....+ (s) + 1 + (s+ 2) + ....+ (k + 1)

= (k+1)(k+2)
2

− (s+ 1).

Hence |D| is minimum when (k+2)(k+1)
2

− (s+ 1) is minimum. That is when s = k.

And D = A1 ∪ A2 ∪ A3 ∪ ...... ∪ Ak−1 ∪ {ak} will form a d- stable dominating set

with |D| = (k+2)(k+1)
2

− (k + 1).

Hence γ0d(G) = (k+2)(k+1)
2

− (k + 1) = (k)(k+1)
2

.

Similarly,

γ0d(G) = (k)(k+1)
2

γ1d(G) = k(k−1)
2

+ 1
...

γβd (G) = (k−β+1)(k−β)
2

+ β.

Figure 4.3 illustrates the graph with γ0d(G) > γ1d(G) > γ2d(G).
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a1
a2

a3

a1,1

a1,2

a2,2

a2,3

a2,2

a3,1

a3,2

a3,4

a3,3

Figure 4.3

4.3 α-a-stable domination

In this section, α-a-stable domination is introduced and characterization of minimal

α-a-stable dominating set is obtained. And relation between α-a-stable domination

number and perfect domination number is obtained. For any non negative integer

β, graph G with γ0a(G) > γ1a(G) > γ2a(G)...... > γβa (G) is obtained.

Definition 4.3.1. Let D be a dominating set. For a vertex u not in D, let ϕD(u)

= |N(u) ∩ D|. The Acceptor Instability or a-instability of an edge e connecting

two acceptor vertices u and v is, aDinst(e) = |ϕD(u) − ϕD(v)|. The a-instability of

D, ϕa(D) is the sum of a-instabilities of all edges connecting vertices in V − D,

ϕa(D) =
∑

e∈<V−D> a
D
inst(e).

Definition 4.3.2. Let D be a dominating set. Given a non negative integer α,

D is an α-a-stable dominating set, if aDinst(e) ≤ α for any edge e connecting two

acceptor vertices. Cardinality of a minimum α-a-stable dominating set is α-a-stable

domination number and denoted by γαa (G).

Definition 4.3.3. The dominating set D is a-stable if ϕa(D) = 0 . Minimum
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cardinality of an a-stable dominating set is a-stable domination number and denoted

by γ0a(G).

Remark 4.3.1. If α ≥ β, then γ(G) ≤ γαa (G) ≤ γβa (G)

Example 4.3.1. In Figure 4.1, D = {u1, u2} is the minimum dominating set.

ϕD(u3) = ϕD(u4) = ϕD(u5) = ϕD(u6) = ϕD(u7) = ϕD(u8) = 1. Hence D is a

minimum a-stable dominating set and γαa (G) = 2 for all non negative integer α.

Remark 4.3.2. Property of being α-a-stable dominating set is neither superheredi-

tary nor hereditary.

Theorem 4.3.4. An α-a- stable dominating set D is a minimal α-a- stable dom-

inating set if and only if for each vertex v in D one of the following conditions

holds

1. v is an isolate of D.

2. v has a private neighbour u in V −D.

3. There exist two adjacent vertices u1 and u2 in V-D, u1 adjacent to v, u2 not

adjacent to v and ϕD(u2) = ϕD(u1) + α.

Proof. If an α-a- stable dominating set D is minimal then D is an α-a- stable

dominating set and for each vertex v in D, D−{v} is not an α-a- stable dominating

set. This means that some vertex u in (V −D) ∪ {v} is not dominated by D − {v}
or there exist two adjacent vertices u1 and u2 in V −D with |ϕD(u1) − ϕD(u2)| ≤ α

but |ϕD−{v}(u1) − ϕD−{v}(u2)| > α.

Now if some vertex u in (V −D)∪{v} is not dominated by any vertex in D−{v},

either u = v, means v is an isolate of D or u ∈ V −D. If u is not dominated by

D − {v}, then u is adjacent only to vertex v in D. ie, v has a private neighbour u

in V −D.

If |ϕD(u1) − ϕD(u2)| ≤ α and |ϕD−{v}(u1) − ϕD−{v}(u2)| > α, let α = 0, then

ϕD(u1) = ϕD(u2) and |ϕD−{v}(u1) − ϕD−{v}(u2)| = α + 1. Assume ϕD−{v}(u2) >

ϕD−{v}(u1). Then u1 is adjacent to v but u2 is not adjacent to v and ϕD(u2) =

ϕD(u1) + α. If α > 0, then assume ϕD(u2) > ϕD(u1). Then ϕD(u2) − ϕD(u1) = α
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and ϕD−{v}(u2)−ϕD−{v}(u1) = α+1. Then u1 is adjacent to v but u2 is not adjacent

to v and ϕD(u2) = ϕD(u1) + α.

Conversely, suppose that D is an α-a-stable dominating set and for each vertex

v ∈ D, one of the three statements holds. We show that D is a minimal α-a-stable

dominating set. If D is not a minimal α-a-stable dominating set,then there exists a

vertex v ∈ D such that D − {v} is an α-a-stable dominating set. Then each vertex

u in (V −D)∪ {v} is adjacent with atleast one vertex in D−{v}. Then v is not an

isolate of D and condition 1 does not hold. And v has no private neighbour in V −D
and condition 2 does not hold. If D − {v} is an α-a-stable dominating set then

for any adjacent vertices u1 and u2 in (V −D) ∪ {v}, ϕD−{v}(u2) − ϕD−{v}(u1) ≤ α.

Hence condition 3 does not hold. Hence D is a minimal α-a-stable dominating set.

Remark 4.3.3. For non negative integer α, γαa (G) = 1 ⇐⇒ γ(G) = 1

Theorem 4.3.5. For α ≥ 1, γαa (G) = 2 ⇐⇒ γ(G) = 2

Proof. If γ(G) = 2, then for a minimum dominating set D, |D| = 2

|D| = 2 ⇒ ϕD(v) = 1 or ϕD(v) = 2 ∀v ∈ V −D

⇒ |ϕD(v1) − ϕD(v2)| ≤ 1, ∀v1, v2 ∈ V −D

⇒ γαa (G) = 2

Conversely, if γαa (G) = 2, then γ(G) ̸= 1. If D is a minimum α-a- stable

dominating set , then |D| = 2, and D is a dominating set. Thus, γ(G) = 2

Theorem 4.3.6. For any graph G and non negative integer α, γαa (G) ≤ γp(G). And

this bound is sharp.

Proof. If D is a perfect dominating set, then every vertex in V −D is adjacent with

exactly one vertex in D. And hence ϕD(v) = 1, for all v ∈ (V − D). And so D
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is an a-stable dominating set . Thus every perfect dominating set is an a-stable

dominating set . Hence, γαa (G) ≤ γp(G).

For G = P3n, γp(G) = n = γαa (G). So we can see that the bound is sharp.

Theorem 4.3.7. For any positive integer β, there exist graph G with γ0a(G) >

γ1a(G) > γ2a(G)...... > γβa (G).

Proof. Let k = β + 1

Construct G as follows

Step 1:Let H be the complete graph with vertex set {a1, a2, ..., ak}
Step 2: For each i take i copies of P3 with vertex set {bi,j, b′i,j, bi,j”} for j = 1, 2, ..., i

and join b′i,j with ai for each j = 1, 2, ...., i.

Let Aj
i = {bij, b′ij, bij”} for j = 1, 2, ...i and Ai = {ai} ∪ ∪i

j=1{bij, b′ij, bij”} for all

i ∈ {1, 2, ..., k}.

Let D be an a-stable dominating set. If ai ∈ D then |Ai ∩D| ≥ i+ 1.

Let r be the smallest integer such that ar /∈ D. Then |Ar ∩D| ≥ r.

If s > r and as /∈ D, since γainst(ar, as) = 0, b′sj ∈ D for atmost r values of j. And if

there exist j for which b′sj /∈ D then bsj, bsj” ∈ D.

=⇒
|As ∩D| ≥ r + 2(s− r)

= 2s− r ≥ s+ 1

Hence, |D| ≥ |A1 ∩D| + |A2 ∩D| + |A3 ∩D| + ...+ |Ar−1 ∩D|+
|Ar ∩D| + |Ar+1 ∩D| + ...+ |Ak ∩D|

≥ 2 + 3 + ...+ (r − 1 + 1) + r + (r + 2) + ....+ (k + 1)

= 1 + 2 + ...+ k + k − 1

= k(k+1)
2

+ (k − 1)

.

Thus, γ0d(G) ≥ k(k+1)
2

+ (k − 1).

And D′ = {a1, ...., ak−1} ∪ ∪k
i=1{b′i1, b′i2, ...b′ii} is an a-stable dominating set with

|D′| = k(k+1)
2

+ (k − 1).

Hence, γ0a(G) ≤ k(k+1)
2

+ (k − 1)

Thus, γ0a(G) = k(k+1)
2

+ (k − 1)
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Similarly,

γ1a(G) = k(k+1)
2

+ (k − 2)

γ2a(G) = k(k+1)
2

+ (k − 3)

γ3a(G) = k(k+1)
2

+ (k − 4)
...

γβ−1
a (G) = k(k+1)

2
+ 1

γβa (G) = k(k+1)
2

Figure 4.4 illustrates the graph with γ0a(G) > γ1a(G) > γ2a(G).

a1

a2

a3

b′1,1

b1,1

b1,1”

b2,2”

b2,2

b2,1”

b2,1

b′2,2

b′2,1

b′3,1
b′3,3

b′3,2

b3,1”

b3,1
b3,2

b3,2”

b3,3

b3,3”

Figure 4.4

4.4 α-stable domination

In this section, the concept of α -stable domination and stable dominating index

is introduced and bound for α -stable domination number is obtained. α-stable
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domination number for standard graphs are obtained.

Definition 4.4.1. A dominating set D is stable, if ψd(D) = 0 and ϕa(D) = 0.

Minimum cardinality of a stable dominating set is called stable domination number

and denoted by γ0(G).

Definition 4.4.2. If a dominating set D is an α-d-stable dominating set and α-a

-stable dominating set, then D is called an α-stable dominating set and cardinality

of a minimum α-stable dominating set is defined as α-stable domination number and

denoted by γα(G)

Remark 4.4.1. If a minimum α -a-stable dominating set is an α-d-stable dominating

set, then γα(G) = γαa (G). And if a minimum α-d- stable dominating set is an α-a-

stable dominating set, then γα(G) = γαd (G).

Remark 4.4.2. If α ≥ β, then γ(G) ≤ γα(G) ≤ γβ(G).

Definition 4.4.3. Minimum α so that γα(G) = γ(G) is called stable dominating

index and denoted by Isd(G).

Example 4.4.1. In figure 4.1, the minimum d-stable dominating set {u1, u7, u8} is

an a-stable dominating set. Hence {u1, u7, u8} is a minimum stable dominating set

and γ0(G) = 3.

A minimum 1-d-stable dominating set {u1, u7, u8} form a 1-a- stable dominating set

and hence {u1, u7, u8} is a minimum 1-stable dominating set and γ1(G) = 3.

And minimum dominating set {u1, u2} is a 2-a- stable dominating set and a 2-d-

stable dominating set. {u1, u2} form a minimum 2-stable dominating set. Hence,

γ2(G) = 2.

And ∀α ≥ 2, γα(G) = 2 = γ(G). Hence, Isd(G) = 2.

Compliment of a minimum α-stable dominating set need not be an α-stable

dominating set. In graph figure 4.1, {u1, u2, u3} is a minimum 1-stable dominating

set but its compliment is not a 1-stable dominating set.

Remark 4.4.3. Property of being α-stable dominating set is neither superhereditary

nor hereditary.

Theorem 4.4.4. For any graph G and for any non-negative integer α, γ(G) =

1 ⇐⇒ γα(G) = 1.
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Proof. If γ(G) = 1, then the single vertex set {v} which dominates all vertices of G,

is an α-d-stable dominating set and an α-a-stable dominating set. Then γα(G) = 1.

Also any α-stable dominating set is a dominating set. So, if γα(G) = 1 then γ(G) = 1.

Lemma 4.4.5. For any graph G and for any non negative integer α, γα(G) =

n ⇐⇒ G = Kn.

Proof. If G ̸= Kn, there is atleast one vertex v with d(v) ≥ 1. Then V − {v} is an

α-stable dominating set. This means that γα(G) ≤ n− 1. Hence if γα(G) = n, then

G = Kn. If G = Kn, then γα(G) = n trivially.

Theorem 4.4.6. For a graph G with δ(G) ≥ 1, γα(G) ≤ n− 1.

Proof. From lemma 4.4.5 it is clear that γα(G) ≤ n− 1.

Theorem 4.4.7. For every graph G of order n and maximum degree ∆ and for any

non negative integer α, γα(G) ≥ n
∆+1

.

Proof. Since γα(G) ≥ γ(G) and γ(G) ≥ n
∆+1

, γα(G) ≥ n
∆+1

.

Theorem 4.4.8. For any non negative integer α, γα(G) = γ(G) for the following

Graphs

� Complete graph Kn

� Path Pn

� Cycle Cn

� Wheel graph Wn
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� Helm graph Hn

Proof. In these graphs minimum dominating set D, form an α-stable dominating

set. Hence α-stable domination number is same as its domination number.

Remark 4.4.4. If G is the corona Cp ◦K1, then for any non negative integer α,

i(G) = γαd (G) = γαa (G) = γα(G) = γ(G) = p.

Proof. Clearly the pendant vertices will form an α-stable dominating set and inde-

pendent dominating se. Hence i(G) = γαd (G) = γαa (G) = γα(G) = γ(G) = p.

Theorem 4.4.9. For complete bipartite graph G = Km,n,m ≤ n and non-negative

integer α

γαa (G) = 2

γαd (G) =
{ min{(n−m+ 2 − α),m} ifn−m+ 2 − α ≥ 2

m otherwise

γα(G) =
{ 2 ifn−m ≤ α

m otherwise

Proof. Let X = {v1, v2, ...., vm} and Y = {u1, u2, ...., un} be the bipartition of V (G).

Then {v1, u1} is a minimum α-a- stable dominating set of G. Hence γαa (G) = 2.

Let D be a minimum α-d-stable dominating set.

Case 1

Let D intersects both X and Y and |D ∩ X| = l and |D ∩ Y | = k. Then

dDinst(e) = |(n − k) − (m − l)|. Thus dDinst(e) ≤ α only if |(n − k) − (l −m)| ≤ α.

Then (n − k) − (l − m) ≤ α or (n − k) − (l − m) ≥ −α. Since D is minimum

α-d-stable dominating set (n−k)− (m− l) ≤ α. Thus (m− l)− (n−k) ≤ α. Hence

k ≥ n−m+ l − α. Thus k and l are minimum when l = 1 and k = n−m+ 1 − α.

Thus |D| ≥ n − m + 2 − α. And D = {u1, v1, v2....., vn−m+1−α} is an α-d-stable

dominating set of |D| = n−m+ 2 − α. Hence γαd (G) = n−m+ 2 − α.

Case 2

Let D intersects with X only. Then |D| = m.
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Case 3

Let D intersects with Y only. Then |D| = n.

Thus γαd (G) =
{ min{(n−m+ 2 − α),m} ifn−m+ 2 − α ≥ 2

m otherwise

Let D be a minimum α-stable dominating set. Case 1

Let |D∩X| = l and |D∩Y | = k. Since dDinst(e) ≤ α and aDinst(e) ≤ α, |l−k| ≤ α

and |(n− k)− (m− l) ≤ α. Hence if n−m > α, k = 0 and l = m and if n−m ≤ α

, k = 1 and l = 1. Thus, γα(G) =
{ 2 ifn−m ≤ α

m otherwise

4.5 α-stable domination in product graphs

4.5.1 α-stable domination in cartesian product of graphs

Theorem 4.5.1. Let G and H be two graphs of order n1 and n2 , then for any

non-negative integer α ,

� γαa (G2H) ≤ min{n1γ
α
a (H), n2γ

α
a (G)}

� γαd (G□H) ≤ min{n1γ
α
d (H), n2γ

α
d (G)}

� γα(G□H) ≤ min{n1γ
α(H), n2γ

α(G)}.

Proof. Let SH be a minimum α-a-stable dominating set of H. Let us see that S =

V (G)×SH is an α-a-stable dominating set of G□H. If (u, v) ∈ (V (G)×V (H))−S.

Then (u, v) is adjacent to atleast one vertex in S. And if (u1, v1) ∈ (V (G)×V (H))−S
and (u2, v2) ∈ (V (G) × V (H)) − S and (u1, v1) adjacent to (u2, v2). Then,

ϕS(u1, v1) = |{(u, v) ∈ S : (u1, v1) adjacent to (u, v)}|
= |{(u, v) ∈ S : u1 = u and v1 adjacent to v}∪

{(u, v) ∈ S : u1 adjacent to u and v1 = v}|

Since {(u, v) ∈ S : u1 adjacent to u and v1 = v} = ϕ

ϕS(u1, v1) = |{(u, v) ∈ S : u1 = u and v1 adjacent to v}|
= ϕSH

(v1).
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Similarly ϕS(u2, v2) = ϕSH
(v2). And

|ϕS(u1, v1) − ϕS(u2, v2)| = |ϕSH
(v1) − ϕSH

(v2)

≤ α.

Hence S is an α-a-stable dominating set of G□H.

Similarly, if SG is a minimum α-a-stable dominating set of G, then SG × V (H) is

an α-a-stable dominating set of G□H.

Thus,

γαa (G2H) ≤ min{n1γ
α
a (H), n2γ

α
a (G)}.

Let SH be a minimum α-d-stable dominating set of H. Let S = V (G) × SH . If

(u, v) ∈ (V (G) × V (H)) − S, then (u, v) is adjacent to atleast one vertex in S. And

if (u1, v1) ∈ S and (u2, v2) ∈ S and (u1, v1) adjacent to (u2, v2). Then,

ψS(u1, v1) = |{(u, v) ∈ (V (G) × V (H)) − S : (u1, v1) adjacent to (u, v)}|
= |{(u, v) ∈ (V (G) × V (H)) − S : u1 = u and v1 adjacent to v}∪

{(u, v) ∈ (V (G) × V (H)) − S : u1 adjacent to u and v1 = v}|

Since, {(u, v) ∈ (V (G) × V (H)) − S : u1 = u and v1 adjacent to v} = ϕ

ψS(u1, v1) = |{(u, v) ∈ (V (G) × V (H)) − S : u1 = u and v1 adjacent to v}|
= ψSH

(v1).

Similarly ψS(u2, v2) = ψSH
(v2).

Thus

|ψS(u1, v1) − ψS(u2, v2)| = |ψSH
(v1) − ψSH

(v2)

≤ α

Thus S is an α-d-stable dominating set of G2H.

Similarly, if SG is a minimum α-d-stable dominating set of G, SG × V (H) is an

α-d-stable dominating set of G2H. Thus,

γαd (G2H) ≤ min{n1γ
α
d (H), n2γ

α
d (G)}.

Hence, γα(G2H) ≤ min{n1γ
α(H), n2γ

α(G)}.

Remark 4.5.1. The bound in theorem 4.5.1 is attained if G = Kn and H = K2;

because γα(Kn2K2) = 2 = min{2γα(Kn), nγα(K2)}.
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Theorem 4.5.2. For any graph G of order m and any non negative integer α,

γα(Cn2G) ≥ mn
∆(G)+3

.

Proof. Since ∆(Cn2G) = ∆(G) + 2 and |V (Cn2G)| = mn, by theorem 4.4.7

γα(Cn2G) ≥ mn
∆(G)+3

.

Theorem 4.5.3. If m,n ≥ 2 for any non negative integer α, γα(Cm2Cn) ≥ mn
5
.

Proof. By theorem 4.5.2,

γα(Cm2Cn) ≥ mn
∆(Cm)+3

= mn
5

Theorem 4.5.4. If m,n ≥ 2 for any non negative integer α, γα(Cm2Cn) ≥
γα(Cm)γα(Cn).

Proof. By theorem 4.5.3,

γα(Cm2Cn) ≥ mn
5

≥ ⌈m
3
⌉⌈n

3
⌉

= γα(Cm)γα(Cn)

Hence, γα(Cm2Cn) ≥ γα(Cm)γα(Cn).

Theorem 4.5.5. For non-negative integer α, γα(P22Pn) = ⌈n+1
2
⌉.

Proof. Let x1, x2, ....., xn be the vertices in the first copy of Pn and y1, y2, ....., yn be

the vertices in the second copy of Pn.

Case 1

If n is odd, D consists of those vertices xi, yj where i ≡ 1(mod4) and j ≡ 3(mod4)

will form an α-stable dominating set with |D| = |{xi : i ≡ 1(mod4)}| + |{yj : j ≡
3(mod4)}| = ⌈n+1

2
⌉. Hence γα(P22Pn) ≤ ⌈n+1

2
⌉. Since γα(P22Pn) ≥ γ(P22Pn) =

⌈n+1
2
⌉, γα(P22Pn) = ⌈n+1

2
⌉.

Case 2

If n is even and n ≡ 0(mod4) then D = {xi : i ≡ 1(mod4)} ∪ {xn−2} ∪ {yj :

j ≡ 3(mod4)&j ≤ n − 5} ∪ {yn} is an α-stable dominating set with |D| = |{xi :

i ≡ 1(mod4)}| + |{xn−2}| + |{yj : j ≡ 3(mod4)&j ≤ n− 5}| + |{yn}| = n
4

+ 1 + n
4
−
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1 + 1 = ⌈n+1
2
⌉. Hence γα(P22Pn) ≤ ⌈n+1

2
⌉. Since γα(P22Pn) ≥ γ(P22Pn) = ⌈n+1

2
⌉,

γα(P22Pn) = ⌈n+1
2
⌉.

Case 3

If n is even and n ≡ 2(mod4) thenD = {xi : i ≡ 1(mod4)&i ≤ n−5}∪{xn}∪{yj :

j ≡ 3(mod4)} ∪ {yn−2} is an α-stable dominating set with |D| = |{xi : i ≡
1(mod4)&i ≤ n−5}|+ |{xn}|+ |{yj : j ≡ 3(mod4)}|+ |{yn−2}| = ⌊n

4
⌋−1+1+⌊n

4
⌋+

1 = ⌈n+1
2
⌉. Hence γα(P22Pn) ≤ ⌈n+1

2
⌉. Since γα(P22Pn) ≥ γ(P22Pn) = ⌈n+1

2
⌉,

γα(P22Pn) = ⌈n+1
2
⌉.

4.6 α-stable domination in corona of graphs

Theorem 4.6.1. For any two graphs G and H and non negative integer α, α-stable

domination number of its corona, γα(GoH) = |V (G)|.

Proof. Let {v1, v2, ....., vn} be the vertices of G and {u1, u2, ....um} be the vertices

of H. Hi be the ith copy H in GoH. To make sure that each vertex of Hi is

dominated, we need atleast one vertex of Hi or vi. Thus the dominating set contains

atleast n vertices. Let D = {v1, v2, ......., vn}. Then each vertex of V −D is adjacent

with exactly one vertex of D and each vertex of D dominates exactly m vertices

in V − D. And so ψD(v) = m, ∀v ∈ D and ϕD(v) = 1, ∀v ∈ V − D. Therefore,

|ϕD(v1)−ϕD(v2)| = 0,∀v1, v2 ∈ V −D and |ψD(v1)−ψD(v2)| = 0,∀v1, v2 ∈ D. And

so D is a minimum α-stable dominating set. Thus γα(GoH) = n = |V (G)|.

4.7 Conclusion

Any real life situation in social network such as banking and marketing, can be

modelled by Graphs. In this chapter, to study the stability of domination in Graphs

the concept of α-d-stable domination number, α-a-stable domination number and

α-stable domination number are introduced. Necessary and sufficient condition for

an α-d-stable dominating set to be a minimal α-d-stable dominating set is obtained.
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Necessary and sufficient condition for an α-a-stable dominating set to be a minimal

α-a-stable dominating set is obtained. The relation between α-d-stable domination

number and independent domination number is discussed. And these parameters in

certain product graphs are studied.

Since the parameters introduced here have large scale of applications, this area

has great scope for further studies.
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CHAPTER 5

P3- Convexity in graphs

5.1 Introduction

Any network can be modelled by graphs. If a set of vertices S initially possessing a

property spreads the property to the vertices having two neighbours S, then finding

the minimum number of vertices required to spread the property to all vertices in

the graph is an important problem in the field of Graph theory. Sharing an idea

or spreading a virus or the strategy in some sort of marketing are some examples

of this. We can approach the problem through P3-convexity. The P3-convexity

was first studied for directed graphs [34, 49]. Later P3-convexity considered for

undirected graphs [24, 25, 26, 33, 11]. As the adjacency is the main property dis-

cussed in P3-convexity, the concept of P3- convexity resembles domination in graphs.

This motivated us to study P3- convexity in graphs. In this chapter the concept

P3-convexity C, exclusively P3-convex invariants P3-hull number, radon number and

caratheodory number is studied.

This chapter is divided into six sections. In which first one is an introductory

section. Second section deals with general properties in P3-convexity. Third section

contains P3-convex invariants, P3-hull number, radon number and caratheodory
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number of some classes of graphs. And fourth section deals with P3-convexity on

strong product, cartesian product and composition of graphs. P3-convexity in corona

related graphs are studied in fifth section. And sixth section is a concluding section.

For a graph G, Given a set S ⊂ V (G), the P3- interval I[S] = S ∪ {v :

|N(v) ∩ S| ≥ 2}. S is a P3- convex set, if I[S] = S. A graph G together with

P3-convex sets in G form P3-convexity C in G[36].

The P3- convex hull HC(S) of S in G is the smallest P3- convex set containing

S. [36] P3-convexity C is uniquely determined by the P3-convexity in a graph G.

Hence in this chapter we are using HG(S) instead of HC(S).

The P3- convex hull can be formed from a sequence Ip[S], where p is a nonnega-

tive integer, I0[S] = S, I1[S] = I[S], and Ip[S] = I[Ip−1[S]], for every p ≥ 2. When,

for some p ∈ N we have if Iq[S] = Ip[S], for all q ≥ p, then Ip[S], is a convex set.

If HG(S) = V (G) then S is a P3-hull set of G. The cardinality h(G) of a mini-

mum P3-hull set in G is called the P3-hull number of G.[36] In this chapter we are

using hull number of G instead of P3-hull number of G.

The caratheodory number is the smallest integer c such that for every set S of

vertices of G and every vertex u in HG(S), there is a set F ⊂ S with |F | ≤ c and

u ∈ HG(F )[35]. In this chapter we are using c(G) instead of c.

A Radon partition of R is a partition of R into two disjoint sets R1 and R2 with

HG(R1) ∩HG(R2) ̸= ϕ . The Radon number r(G) of G is the minimum integer r

such that every set of r vertices of G has a Radon partition. [48]

An outerplanar graph is a planar graph that allows an embedding in the plane

such that all vertices are on the outer face. A maximal outerplanar graph is an

outerplanar graph with a maximum number of edges. In the plane embedding

the boundary of the outer face, provided it has at least three vertices, is then a

hamiltonian cycle. All other edges form a triangulation of this outer cycle.[44]
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Convexity C on G is joint hull commutative provided that for each nonempty

convex set S in C and for each vertex p ∈ V (G), HG(S∪{p}) = ∪u∈SHG({p, u})[74].

A wounded spider is the graph formed by subdividing at most n− 2 edges of

star K1,n−1.

5.2 General properties in P3-convexity

This section deals with characterization of graphs with certain hull number. Charac-

terization of tree using P3-convexity is given in this section. Joint hull commutative

property in P3-convexity is discussed.

Theorem 5.2.1. h(G) = n if and only if each vertex has degree less than or equal

to 1.

Proof. Let G be a graph with each vertex has degree less than or equal to 1. If S

is a proper subset of V (G), then HG(S) = S. Thus minimum P3- hull set is V (G)

itself. Hence h(G) = n.

If h(G) = n, then no vertex is adjacent to more than two vertex. Each vertex

is adjacent to atmost on vertex. Hence degree of each vertex is less than or equal to 1.

Theorem 5.2.2. Let G be a star with atleast 3 vertices, then h(G) = n− 1.

Proof. If G is a star K1,n−1, then all the pendant vertices must be there in mini-

mum P3- hull set. And set of all pendant vertices will form a P3- hull set. Hence

h(K1,n−1) = n− 1.
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v1

v2

v3
v4

Figure 5.1

v1

v2

v3

v4 v5

Figure 5.2

Theorem 5.2.3. Let G be a graph with |V (G)| ≥ 4 and h(G) = n − 1, then the

graphs isomorphic to graphs given in figure 5.1, Pm,m ≥ 5 and 5.2 are forbidden

subgraphs.

Proof. If G has a subgraph isomorphic to graphs given in figure 5.1 or Pm,m ≥ 5 or

figure 5.2,

Case 1 G has a subgraph isomorphic to figure 5.1.

If S = V (G) − {v2, v3}, then HG(S) = V (G). Hence h(G) ≤ n− 2.

Case 2 G has a subgraph isomorphic to Pm,m ≥ 5.

Let v1, v2, ..., vm the vertices of Pm. If S = (V (G)−{vi : i ≡ 0(mod2)})∪{vm},

then HG(S) = V (G). Hence h(G) ≤ n− 2.

Case 3 G has a subgraph isomorphic to figure 5.2.

If S = V (G) − {v3, v4}, then HG(S) = V (G). Hence h(G) ≤ n− 2.

Thus if h(G) = n− 1, then then graphs given in figure 5.1, Pm,m ≥ 5 and figure 5.2

are forbidden subgraphs.

Corollary 5.2.4. Let G be a graph with order n and h(G) = n− 1
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� If n = 3, then either G is a triangle or a star.

� If n = 4, then either G is a path or a star.

� If n ≥ 5, then G is a star.

Proof. Let G be a graph with order n and h(G) = n− 1.

If n=3 Then it is clear that either G is a triangle or a star.

If n=4 Graph which has no subgraph as stated in theorem 5.2.3 is either a path or a

star.

If n ≥ 5 Graph which has no subgraph as stated in theore 5.2.3 is a star.

Theorem 5.2.5. Let G be a 2-connected graph with a universal vertex. Then

h(G) = 2.

Proof. Let v be a universal vertex of G and u be any vertex in V (G) which has

eccentricity e in G− u.

Then, I[{u, v}] = N [u]

I2[{u, v}] = N2[u]

I3[{u, v}] = N3[u]
....

Ie[{u, v}] = V (G).

Hence HG({u, v}) = V (G) and h(G) = 2

The condition given in 5.2.5 is not necessary. For the graph in 5.3 h(G) = 2 but

G has no universal vertex.

Figure 5.3

There are 1-connected graphs with universal vertex, but h(G) > 2. Figure 5.4

is a 1- connected graph having universal vertex. But h(G) = 3.
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Figure 5.4

Remark 5.2.1. The minimum size of a graph G for which order(G) = n and

h(G) = 2 is 2(n− 2).

Proof. Let G be a graph of order n. If h(G) = 2, then there exists two vertices u

and v so that HG({u, v}) = V (G). Let S = {u, v} and d be the minimum integer

so that Id[{u, v}] = V (G). Then every vertex in I1[S] − S is incident with at least

two vertices in S. And every vertex in Ik[S] − Ik−1S is incident with at least two

vertices in Ik−1S ∀k ∈ {1, 2, ..., d}. Hence there should be at least 2(n− 2) edges.

Figure 5.3 illustrates a graph having minimum size of graph with order 7 and

h(G) = 2. Here order(G) = 7 and size(G) = 2(7 − 2)

Theorem 5.2.6. For 2 ≤ a ≤ n−1, there exist a connected graph G with |V (G)| = n

and h(G) = a.

Proof. When a = n− 1, if G = K1,n−1 then h(G) = n− 1 and |V (G)| = n.

For a ≤ n− 2,

Let K1,n−1 is the star with centre v and pendant vertices v1, v2, . . . . . . , vn−1. And

let G be the graph obtained from the star K1,n−1 by joining vertices xi−1, xi for

1 ≤ i ≤ n − a. Then xn−1, xn−2, . . . . . . , xn−a will be a minimum P3- hull set of G

and hence h(G) = a and |V (G)| = n.

Remark 5.2.2. Being a P3-convex set is neither hereditary nor superhereditary

property.
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Theorem 5.2.7. If G is disconnected with atleast two components G1 and G2,

|V (G1)| ≥ 2, |V (G2)| ≥ 2. Then h(G) = 2.

Proof. Kr,s, r, s ≥ 2 is a spanning subgraph of G. Also h(Kr,s) = 2, r, s ≥ 2 and

hence h(Kr,s) ≥ h(G). Hull number of a graph is always greater than or equal to 2.

Thus h(G) = 2.

Theorem 5.2.8. Let G be a tree with n vertices. Then there exist a sequence of

sets V (G) = Vn ⊃ Vn−1 ⊃ . . . . . . . . . ⊃ V1 where for each i, Vi is convex and |Vi| = i.

Proof. Let G be a tree. Let V (G) = Vn and v1 be a pendant vertex of the tree G. If

Vn−1 = Vn − {v1}. Then clearly Vn−1 is convex in G. Let v2 be a pendant vertex of

G− v1 and Vn−2 = Vn−1 − {v2}. Then clearly Vn−2 is convex in G and so on . The

sets Vi, thus formed have the property V (G) = Vn ⊃ Vn−1 ⊃ . . . . . . . . . ⊃ V1 where

for each i, Vi is convex and |Vi| = i.

For the graph G in figure 5.5 there exist a sequence of sets V (G) = Vn ⊃ Vn−1 ⊃
. . . . . . . . . ⊃ V1 where for each i, Vi is convex and |Vi| = i. But G is not a tree.

Hence converse may not be true in theorem 5.2.8.

Figure 5.5

Theorem 5.2.9. Let G be a connected graph. Then G is a tree if and only if for

each connected subgraph H of G, V (H) is a convex set of G.

Proof. Let G be a connected graph. Suppose that for each connected subgraph H

of G, V (H) is a convex set of G. If G has a cycle C then C − v is a connected

subgraph of G. But V (C−v) not convex. Thus G contains no cycle. Thus G is a tree.
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Let G be a tree and H be a connected subgraph of G. If V (H) is not a

convex set there exists a vertex u ∈ V (G) − V (H) which is adjacent to two vertices

v1, v2 ∈ V (H). Then there exists two v1v2 paths in G. Since G is a tree it is not

possible. Hence for each connected subgraph H of G, V (H) is a convex set of G.

Theorem 5.2.10. If G is a graph having no cycle with length ≤ 4 and |V (G)| ≥ 4,

then h(G) ≥ 3.

Proof. Let G be a graph, having no cycle with length ≤ 4 and |V (G) ≥ 4. If

S = {u1, u2} ⊂ V (G), then we distinguish into three cases.

Case 1 If d(u, v) = 1,

Since G is triangle free, I1[S] = S. Hence HG(S) = S.

Case 2 If d(u, v) = 2,

Then if u,w, v be the minimum uv path in G. Then I1[S] = {u, v, w} and

I2[S] = {u, v, w}. Hence HG(S) = {u, v, w}.

Case 3 If d(u, v) ≥ 3,

Then I1[S] = S. Hence HG(S) = S.

Thus HG(S) = I1[S] and |I1[S]| ≤ 3. Hence HG(S) ̸= V (G) and S cannot be a hull

set. Thus, h(G) ≥ 3.

Theorem 5.2.11. If G is a graph with the property I1[S] = HG(S), ∀S ⊂ V (G),

then G has joint hull commutative propery.

Proof. Let G be a graph with the property I1[S] = HG(S), ∀S ⊂ V (G).

For any convex set C and p ∈ V (G), if w ∈ HG(C ∪ {p}) − (C ∪ {p}), then

w ∈ I1(C ∪ {p}). Then there exists v1 ∈ C such that w is adjacent to v1 and p.

Then ∀w ∈ HG(C ∪ {p}) − (C ∪ {p}), there is some v1 ∈ C such that

w ∈ HG({v1, p}).
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Hence, HG(C ∪ {p}) = ∪{HG({c, p}) : c ∈ C}. Thus, G has joint hull commu-

tative property.

Following theorem shows that converse may not be true.

Theorem 5.2.12. If G is a maximal outer planar graph with diam(G) > 2, then

G has joint hull commutative property. But there are S ⊂ V (G) such that I1[S] ̸=
HG(S).

Proof. In maximal outer planar graph G, convex sets are singleton sets or V (G) or

vertex set S having property distance between any two vertices is at least 3.

Let p ∈ V (G),

If S is either singleton or V (G) then trivially it satisfy the property HG(S ∪ {p}) =

∪{HG({v, p}) : v ∈ S}.
If S is a vertex set in which any two distinct distance are at distance at least 3,

If there is a vertex v ∈ S, such that d(v, p) = 2, then HG({v, p}) = V (G). And so,

HG(S ∪ {p}) = ∪{HG({v, p}) : v ∈ S}.
If there is no vertex v ∈ S, such that d(v, p) = 2, then HG({v, p}) = {v, p} for all

v ∈ S. And so HG(S ∪ {p}) = S ∪ {p} = ∪{HG({v, p}) : v ∈ S}. Thus maximal

outer planar graphs have joint hull commutative P3- convex property.

Also, if |V (G)| ≥ 5, then for any adjacent vertices u and w in V (G), HG({u, v}) =

V (G) and I1[{u, v}] ̸= HG(S).

Theorem 5.2.13. Let H be a connected subgraph of a graph G. Then if V (H) is

the only nontrivial convex set of H, then H is a block. In particular, if V (G) is the

only nontrivial convex set of G, then G is a block.

Proof. Let H be a connected subgraph of a graph G and V (H) is the only nontrivial

convex set of H. If w is a cut vertex of H and H1 and H2 are the components of

H − w. Let v ∈ H1, then convex hull of {v, w} ⊂ V (H1) which is a contradiction.

Thus, H is a block.
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Theorem 5.2.14. Every block in a graph G is a P3- convex set.

Proof. Let B be a block which is not P3-convex set. Then, there exist a vertex

u ∈ B such that u has two neighbours v1 and v2 in B. < B ∪ {u} > is a non

separable subgraph containing B which is a contradiction to B is a block. Thus B

is a P3-convex set.

Theorem 5.2.15. Let G1 be the graph generated by Mycielski’s construction of a

graph G. Then h(G1) ≤ h(G) + 1.

Proof. Let V (G) = {v1, v2, ...., vn}, n ≥ 2 and u1, u2, u3, ...., un, v be the vertices

added for Mycielski’s construction. If S is a minimum P3- hull set of a graph G.

Then if S1 = S ∪ {v}. Then V (G) ⊂ HG(S1). Each vertex in {u1, u2, ...., un} has

atleast two neighbours in V (G). Hence {u1, u2, ...., un} ⊂ HG(S1). And v has is

adjacent to every vertices in {u1, u2, ...., un}. Thus HG(S) = V (G1). Hence, S1 is a

P3-convex hull set of G1. And h(G1) ≤ h(G) + 1.

If G = P3, then h(G) = 2. And if G1 is the graph generated by Mycielski’s

construction of a graph G, then h(G1) = 3. Thus, this bound is sharp.

If G = Kn, then h(G) = 2. And if G1 is the graph generated by Mycielski’s

construction of a graph G, then h(G1) = 2. Thus, strict inequality may occur.

Theorem 5.2.16. Let G be a graph of order n ≥ 3 and size m, Tk(G) the trestled

graph of G with k ≥ 2, then h(Tk(G)) = km.

Proof. Let upilu
p
jl be the pth copy of K2 added to the edge el with end vertices

vivj. Let {v1, v2, . . . . . . . . . . . . , vh(G)} be a minimum P3 -hull set. Choose an

edge e1 incident with v1. Inductively choose ei incident with vi which is differ-

ent from e1, e2, . . . . . . ..ei−1 for 1 ≤ i ≤ h(G). Rename the remaining edges as

eh(G)+1, eh(G)+2, ..., em. Take S = {upil : 1 ≤ i, l ≤ h(G); 1 ≤ p ≤ k}. Choose vil
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a vertex incident with el for h(G) + 1 ≤ l ≤ m. Then take T = {upill : 1 ≤ p ≤
k;h(G) + 1 ≤ l ≤ m}. Then HTk(G)(S ∪ T ) = V (Tk(G)). Thus |SUT | = km and

these km vertices of S∪T will form a convex hull set of Tk(G). Hence h(Tk(G)) ≤ km.

We need atleast one vertex from each copy of K2 to form the convex hull set. Thus

h(Tk(G)) ≥ km . Thus h(Tk(G)) = km.

5.3 P3-Convexity in some classes of graphs

P3-convex invariants- hull number, radon number and caratheodory number of some

classes of graphs are obtained in this section.

Theorem 5.3.1. For a path Pn with n ≥ 3, c(Pn) = 2, r(Pn) = ⌊n
2
⌋ + 2 and

h(Pn) = ⌊n
2
⌋ + 1.

Proof. Let U ⊆ V (G), consider v ∈ H(U).

If |U | ≤ 2 or v ∈ U , there is nothing to prove.

Otherwise, if u ∈ Ip[U ] − Ip−1[U ] for some p ≥ 1, then there exists two vertices v1

and v2 in Ip−1[U ] which are adjacent to v. But d(v1) ≤ 2 and d(v2) ≤ 2. Hence

p = 1. Thus, if F = {v1, v2}, v ∈ HG(F ) and F ⊂ U . Hence c(Pn) = 2.

Let v1, v2, ..., vn be the vertices of Pn.

Then if R = {vn} ∪ {vi : i ≡ 1(mod2), 1 ≤ i ≤ n} has no radon partition in Pn.

Hence r(Pn) ≥ ⌊n
2
⌋ + 2.

And if |R| ≥ ⌊n
2
⌋+ 2, then there exists i ∈ {1, 2, ..., (n− 2)} so that vi, vi+1, vi+2 ∈ R.

Then R1 = {vi+1} and R2 = R − {vi+1} is a radon partition of R. Hence

r(Pn) ≤ ⌊n
2
⌋ + 2.

Thus r(Pn) = ⌊n
2
⌋ + 2.

If S = {vn} ∪ {vi : i ≡ 1(mod2), 1 ≤ i ≤ n}, then HG(S) = V (Pn). Hence

h(Pn) ≤ ⌊n
2
⌋ + 1.

If |S| < ⌊n
2
⌋ + 1, then there exist i ∈ {1, 2, ..., n − 1} so that vi, vi+1 /∈ S. Hence

there exist i ∈ {1, 2, ..., n− 1} so that vi, vi+1 /∈ HG(S). Thus h(Pn) ≥ ⌊n
2
⌋ + 1.
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Hence h(Pn) = ⌊n
2
⌋ + 1.

Theorem 5.3.2. For a complete graph Kn with n ≥ 3, c(Kn) = 2, r(Kn) = 3 and

h(Kn) = 2.

Proof. Let U ⊂ V (G), consider v ∈ HG(U). If F = {v1, v2} ⊂ U, then HG(F ) =

V (G). Thus, v ∈ h(F ). Hence c(Kn) = 2.

P3-Convex hull of every set having atleast two elements contain all the other

vertices. Thus every three element set can be partitioned into two sets for which the

convex hull of one set contains the vertex from the other set. Hence r(Kn) = 3.

Choose any vertices u, v ∈ V (Kn) and let S = {u, v} then HG(S) = V (Kn).

Hence h(Kn) = 2.

Theorem 5.3.3. For a cycle Cn, c(Cn) = 2, r(Cn) = ⌈n
2
⌉ + 1 and h(Cn) = ⌈n

2
⌉.

Proof. Let U ⊂ V (G), consider v ∈ HG(U). If v ∈ HG(U) − U , since the degree of

each vertex is 2, v ∈ I1[U ]. Thus there exists two vertices v1 and v2 in U which are

adjacent to v. Thus, if F = {v1, v2} ⊂ U , v ∈ HG(F ). Hence c(Cn) = 2.

Let v1, v2, ..., vn be the vertices of Cn.

Then choose R = {v1, v3, v5, ....vn}, if n is odd and choose R = {v1, v3, v5, ....vn−1},

if n is even. Then R has no radon partition in Cn. Thus r(Cn) ≥ ⌈n
2
⌉ + 1.

And if |R| ≥ ⌈n
2
⌉+ 1, then there exists i ∈ {1, 2, ..., (n− 2)} so that vi, vi+1, vi+2 ∈ R

or vn−1, vn, v1 ∈ R or vn, v1, v2 ∈ R. Then, if vi, vi+1, vi+2 ∈ R, R1 = {vi+1} and

R2 = R− {vi+1} is a radon partition of R. If vn−1, vn, v1 ∈ R then R1 = {vn} and

R2 = R − {vn} is a radon partition of R. If vn, v1, v2 ∈ R then R1 = {v1} and

R2 = R− {v1} is a radon partition of R. Hence r(Cn) ≤ ⌈n
2
⌉ + 1.

Thus r(Cn) = ⌈n
2
⌉ + 1.
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Choose S = {v1, v3, v5, ....vn}, if n is odd and choose S = {v1, v3, v5, ....vn−1}, if

n is even. Then HG(S) = V (Cn). Hence h(Cn) ≤ ⌈n
2
⌉.

If |S| < ⌈n
2
⌉, then v1, vn /∈ S or there exist i ∈ {1, 2, ..., n− 1} so that vi, vi+1 /∈ S.

Hence v1, vn /∈ HG(S) or there exist i ∈ {1, 2, ..., n − 1} so that vi, vi+1 /∈ HG(S).

Thus h(Cn) ≥ ⌈n
2
⌉.

Thus h(Cn) = ⌈n
2
⌉.

Theorem 5.3.4. For a star K1,n−1, n ≥ 4, c(K1,n−1) = 2, r(K1,n−1) = 4, and

h(K1,n−1) = n.

Proof. Let U ⊂ V (G), consider v ∈ h(U). If v ∈ HG(U) − U , then since the only

one vertex having degree greater than 2 is the center, v ∈ I1[S] and v is the center.

Thus there exists two vertices u1 and u2 in U which are adjacent to v. Thus, if

F = {u1, u2}, v ∈ HG(F ). Hence c(K1,n−1) = 2.

Every four element set can be partitioned into two sets having two elements for

which the centre as the common element of convex hull. And for the set containing

three vertices having degree one has no radon partition. Thus r(K1,n−1) = 4.

Let v1, v2, ...., vn−1 be the pendant vertices of K1,n−1. Then every P3-hull set

contains v1, v2, ...., vn−1. Hence h(K1,n−1) ≥ n− 1.

And {v1, v2, ...., vn−1} is a P3-hull set. Hence h(K1,n−1) ≤ n− 1.

Thus h(K1,n−1) = n− 1

Theorem 5.3.5. For a complete bipartite graph Km,n, m,n ≥ 2, r(Km,n) = 3,

c(Km,n) = 2, h(Km,n) = 2.

Proof. Every three element set contains atleast two vertices which are independent.

And the convex hull of these two vertices contain all the other vertices. Thus every

three element set can be partitioned into two sets for which the convex hull of one

set contains the vertex from the other set. Hence r(Km,n) = 3.

Let U ⊂ V (Km,n) and v ∈ HG(U). If v ∈ U , then there is a subset F ⊂ U with

|F | ≤ 2 and v ∈ HG(F ).
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If v ∈ HG(U) − U , then there exist two vertices in v1, v2 ∈ U so that I1[{v1, v2}] ̸=
{v1, v2}. Then I2[{v1, v2}] = V (Km,n). Hence there is a subset F = {v1, v2} ⊂ U

with |F | ≤ 2 and v ∈ HG(F ).

Thus c(Km,n) = 2.

Let v1, v2 be two vertices from one partite set of Km,n, then HG({v1, v2}) =

V (Km,n). Hence h(Km,n) = 2.

Theorem 5.3.6. For a wounded spider G,

h(G) =
{ ∆(G) if centre is incident with more than one pendant vertex

∆(G) + 1 otherwise
.

Proof. If {v1, v2, . . . . . . . . . . . . , vt} be the pendant vertices of the graph. Then

{v1, v2, . . . . . . . . . . . . , vt} must be contained in a minimum P3- hull set. If atleast two

vertices from this set is adjacent to the vertex with degree ∆(G). Then this set is

a minimum P3 -hull set and h(G) = ∆. Otherwise, {v1, v2, . . . . . . . . . . . . , vt} ∪ {v}
where v is the vertex with degree ∆, will form a minimum P3- hull set. Thus,

h(G) =
{ ∆ if centre is incident with more than one pendant vertex

∆ + 1 otherwise

5.4 P3-Convexity in product graphs

A detailed study in the P3-convex invariants- hull number, radon number and

caratheodory number of product graphs-strong product of graphs, cartesian product

of graphs and composition of graphs- is done in this section.

5.4.1 P3-Convexity in strong product of graphs

Hull number in strong product of graphs were studied in [36] and theorem 5.4.1

is obtained in [36]. Here we deal with caratheodory number and radon number of

strong product of graphs.
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If V (G) = {u1, u2, ...., um} and V (H) = {v1, v2, ...., vn}. Here we refer the set of

vertices {(ui, v1), (ui, v2), ...., (ui, vn)} as line Li and set of vertices {(u1, vj), (u2, vj), ......,

(um, vj)} as column Cj.[36]

Theorem 5.4.1. [36] Let G and H be nontrivial connected graphs. Then, h(G⊠H) =

2.

Lemma 5.4.2. [36] Let G and H be nontrivial connected graphs, S ⊂ V (G2H).

Let L1
i ⊂ Li, for some i ∈ {1, 2, ...,m} and C1

j ⊂ Cj, for some j ∈ {1, 2, ..., n}, such
that L1

i and C1
j induce connected graphs and L1

i ∩ C1
j ̸= ϕ. Let R = {(uk, vl) ∈

V (G2H) : (uk, vj) ∈ C1
j and(ui, vl) ∈ L1

i }. If L1
i ∪C1

j ⊂ Ip[S] for some integer p > 0,

then R ⊂ HG2H(S).

We are using lemma 5.4.2 from [36] to obtain 5.4.3.

Lemma 5.4.3. Let G and H be nontrivial connected graphs, S ⊂ V (G⊠H). Let

L1
i ⊂ Li, for some i ∈ {1, ...,m} and C1

j ⊂ Cj, for some j ∈ {1, ..., n}, such that L1
i

and C1
j induce connected graphs and L1

i ∩ C1
j ̸= ϕ. Let R = {(uk, vl) ∈ V (G⊠H) :

(uk, vj) ∈ C1
j and(ui, vl) ∈ L1

i }. If L1
i ∪ C1

j ⊂ Ip[S] for some integer p > 0, then

R ⊂ HG⊠H(S).

Proof. G2H is a spanning subgraph of G⊠H. Hence for any U ⊂ V (G) × V (H),

HG2H(U) ⊂ HG⊠H(U).

Here, L1
i and C1

j induce connected subgraphs of Li and Cj respectively and L1
i ∩C1

j ̸=
ϕ. And L1

i ∪ C1
j ⊂ Ip[S] for some integer p > 0. Then by [36],

R = {(uk, vl) ∈ V (G2H) : (uk, vj) ∈ C1
j and(ui, vl) ∈ L1

i } ⊂ HG2H(S).

Since HG2H(S) ⊂ HG⊠H(S), R ⊂ HG⊠H(S).

Lemma 5.4.4. Let G and H be non trivial connected graphs. Then, for S ⊂
V (G⊠H) either HG⊠H(S) = V (G⊠H) or HG⊠H(S) = S.

Proof. Let S ⊂ V (G⊠H) and HG⊠H(S) ̸= S. Then there exists a vertex (a, b) ∈
I1[S] and (a, b) /∈ S. Thus there exist two vertices (a1, b1) and (a2, b2) adjacent to

(a, b) in G⊠H.
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Case 1 a1 adjacent to a and b1 adjacent to b.

Rename a1, b1, a and b as u1, v1, u2, v2 respectively. And remaining vertices

of G as u3, u4,....,um and remaining vertices of H as v3, v4,....,vn respectively.

Then {(u1, v1), (u2, v2), (u1, v2), (u2, v1)} ⊂ I2[S].

There is a path from u1(u2) to ui, ∀i ∈ {3, 4, ....,m}. Thus each vertices

(ui, v1), (ui, v2) ∈ HG⊠H(S), ∀i ∈ {3, 4, ....,m}. And There is a path from

v1(v2) to vj , ∀j ∈ {3, 4, ...., n}. Thus each vertices (u1, vj), (u2, vj) ∈ HG⊠H(S),

∀j ∈ {3, 4, ...., n}. Hence  L1 and C1 ⊂ HG⊠H(S).

Hence by lemma 5.4.3, HG⊠H(S) = V (G⊠H).

Case 2 a1 adjacent to a and b1 = b.

Rename a1, a and b1 as u1, u2 and v1 respectively. Choose any vertex adjacent

to v1 and rename it as v2. And rename remaining vertices of G as u3, u4,....,um

and remaining vertices of H as v3, v4,....,vn respectively.

Then {(u1, v1), (u2, v1)} ⊂ I2[S] and {(u1, v1), (u2, v2), (u1, v2), (u2, v1)} ⊂
I3[S].

There is a path from u1(u2) to ui, ∀i ∈ {3, 4, ....,m}. Thus each vertices

(ui, v1), (ui, v2) ∈ HG⊠H(S), ∀i ∈ {3, 4, ....,m}. And there is a path from

v1(v2) to vj , ∀j ∈ {3, 4, ...., n}. Thus each vertices (u1, vj), (u2, vj) ∈ HG⊠H(S),

∀j ∈ {3, 4, ...., n}. Hence  L1 and C1 ⊂ HG⊠H(S).

Hence by lemma 5.4.3 HG⊠H(S) = V (G⊠H).

Thus, if S ⊂ V (G ⊠ H) and HG⊠H(S) ̸= S, then HG⊠H(S) = V (G ⊠ H). Hence,

either HG⊠H(S) = V (G⊠H) or HG⊠H(S) = S.

Theorem 5.4.5. Let G and H be nontrivial connected graphs, then c(G⊠H) = 2.
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Proof. Let S be a subset of V (G⊠H) and (u, v) ∈ HG⊠H(S).

Case 1 (u, v) ∈ S, then there is F ⊂ S with |F | = 1 and (u, v) ∈ HG⊠H(F ).

Case 2 (u, v) /∈ S and (u, v) ∈ HG⊠H(S). Choose any (a, b) ∈ I1[S], but (a, b) /∈ S.

Then there exist vertices (a1, b1), (a2, b2) ∈ S which are adjacent to (a, b).

Take F = {(a1, b1), (a2, b2)} ⊂ S. Then H[F ] ̸= F . Hence by lemma5.4.4

HG⊠H(F ) = V (G⊠H). Hence (u, v) ∈ HG⊠H(F ), F ⊂ S and |F | = 2.

Thus c(G⊠H) ≤ 2. Since G and H are nontrivial connected graphs, c(G⊠H) ≥ 2.

Thus c(G⊠H) = 2.

Theorem 5.4.6. Let G and H be nontrivial connected graphs, then r(G ⊠H) ≥
max{⌈diam(G)+4

3
⌉, ⌈diam(H)+4

3
⌉}.

Proof. Let diam(G) = k and diam(H) = l, and v1, v2, ....., vl+1 be a maximum path

in H. If u ∈ V (G), then if R = {(u, v1), (u, v4), (u, v7), ..., (u, v⌈ l+1
3

⌉)}, then, each ver-

tex in V (G⊠H) is adjacent to atmost one vertex in R. Hence, for any partition R1, R2

of R, HG⊠H(R1) = R1 and HG⊠H(R2) = R2. And thus HG⊠H(R1)∩HG⊠H(R2) = ϕ.

Thus R with |R| = ⌈ l+1
3
⌉ has no radon partition in G⊠H. Hence r(G⊠H) ≥ ⌈ l+1

3
⌉+1.

Similarly r(G ⊠ H) ≥ ⌈k+1
3
⌉ + 1. Thus r(G ⊠ H) ≥ max{⌈k+1

3
⌉ + 1, ⌈ l+1

3
⌉ + 1}.

Hence r(G⊠H) ≥ max{⌈diam(G)+4
3

⌉, ⌈diam(H)+4
3

⌉}.

This bound is sharp since r(G⊠H) = ⌈n+4
3
⌉ = max{⌈diam(G)+4

3
⌉, ⌈diam(H)+4

3
⌉},

when G = Pn and H = Km.

For G = P4 and H = P4, r(G⊠H) = 4 > max{⌈diam(G)+4
3

⌉, ⌈diam(H)+4
3

⌉}. Hence

strict inequality may occur in the above result.
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5.4.2 P3-Convexity in cartesian product of graphs

P3 hull number of cartesian product of graphs were well studied in [36]. In this

section bounds for caratheodory number and radon number of cartesian product of

graphs are obtained.

Theorem 5.4.7. Let G and H be connected graphs different from complete graph

with caratheodory number c(G) and c(H) respectively. Then c(G2H) ≥ max{c(G) +

1, c(H) + 1}.

Proof. Let |V (G)| = m, |V (H)| = n and V (H) = {u1, u2, ...., um}. Choose S =

{v1, v2, ...., vc(G)} ⊂ V (G) and vc(G)+1 ∈ HG(S), but S has no subset F such that

|F | ≤ c(G)−1 and vc(G)+1 ∈ HG(F ). Then, let ui, uj be vertices in H with d(ui, uj) =

2 and up ∈ N [ui, uj]. Take S1 = {(ui, v1), (ui, v2), (ui, v3), ..., (ui, vc(G)), (uj, vc(G))}.

Then (up, vc(G)+1) ∈ HG2H(S1) and S1 has no subset F such that |F | ≤ c(G) and

(up, vc(G)+1) ∈ HG2H(F ). Hence c(G2H) ≥ c(G) + 1. Similarly, we can show that

c(G2H) ≥ c(H) + 1. Hence c(G2H) ≥ max{c(G) + 1, c(H) + 1}.

The bound is sharp, since c(G2H) = 3 = max{c(G) + 1, c(H) + 1}, when

G = P3 and H = P3.

For G = P8 and H = P3, c(G2H) = 8 > max{c(G) + 1, c(H) + 1}. Hence strict

inequality may occur in the above result.

Remark 5.4.1. If G = Km and H = Kn then c(G2H) = 2 = c(G) = c(H).

Proof. For any S ⊂ V (Km2Kn) with |S| ≥ 2, HKm2Kn(S) = V (Km2Kn). Hence

c(Km2Kn) = 2.

Remark 5.4.2. Let G and H be connected graphs and G is different from complete

graph. If caratheodory number of G is c(G), then c(G2H) ≥ c(G) + 1.
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Theorem 5.4.8. Let G and H be connected graphs with radon number r(G) and r(H)

respectively. Then r(G2H) ≥ max{⌊diam(H)+1
3

⌋(r(G) − 1) + 1, ⌊diam(G)+1
3

⌋(r(H) −
1) + 1}.

Proof. Let diam(H) = l and v1, v2, ..., vl+1 be a maximum path of H. Choose

R = {u1, u2, ....., ur(G)−1} ⊂ V (G) which has no radon partition in G. Then

R1 = {u1, u2, ....., ur(G)−1} × {v1, v4, v7, ..., v⌊ l+1
3

⌋} has no radon partition in G2H.

If R1 has a partition R1
1, R

1
2 and HG2H(R1

1) ∩ HG2H(R1
2) ̸= ϕ. Let R1

1 ∩
(R × {vi}) = R1i

1 , R1
2 ∩ (R × {vi}) = R1i

2 and R1 ∩ (R × {vi}) = R1i. Then

HG2H(R1) = ∪⌊ l+1
3

⌋
i=1 HG2H(R1i), HG2H(R1

1) = ∪⌊ l+1
3

⌋
i=1 HG2H(R1i

1 ) and HG2H(R1
2) =

∪⌊ l+1
3

⌋
i=1 HG2H(R1i

2 ). Hence HG2H(R1i
1 ) ∩HG2H(R1i

2 ) ̸= ϕ for some i ∈ {1, 3, ..., ⌊ l+1
3
⌋}.

If R1 = {u : (u, v) ∈ R1i
1 } and R2 = {u : (u, v) ∈ R1i

2 }, then R1, R2 is a radon

partition of R in G, which is a contradiction. Hence R1 has no radon partition in

G2H.

Hence r(G2H) ≥ ⌊diam(H)+1
3

⌋(r(G) − 1) + 1.

In a similar way, r(G2H) ≥ ⌊diam(G)+1
3

⌋(r(H) − 1) + 1.

Thus r(G2H) ≥ max{⌊diam(H)+1
3

⌋(r(G) − 1) + 1, ⌊diam(G)+1
3

⌋(r(H) − 1) + 1}.

For G = P11 and H = P4,

r(G2H) > max{⌊diam(H)+1
3

⌋(r(G)− 1) + 1, ⌊diam(G)+1
3

⌋(r(H)− 1) + 1}. Hence strict

inequality may occur in the above result.

5.4.3 P3-Convexity in composition of graphs

The composition of graphs G and H can be defined as follows: every vertex vi ∈ V (G),

for every 1 ≤ i ≤ |V (G)|, is replaced by a copy of H, denoted by Gi, and if there

exists an edge vivj ∈ E(G), every vertex of Gi is adjacent to every vertex of Gj,

for all i, j ∈ {1, ..., |V (G)|}, i ≠ j. For i ≠ j, i, j ∈ {1, ..., |V (G)|} if there exists a
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path from vi to vj in G, then a subgraph Gj of G[H], is said to be reachable from a

subgraph Gi.[36]

The P3-convex hull number of composition of graphs is obtained in [36] and

it is obtained that h(G[H]) = 2, when G and H are nontrivial graphs and G is

connected. In this section caratheodory number and radon number of composition

of graphs is studied.

Lemma 5.4.9. Let G and H be non trivial connected graphs. Then, for S ⊂ V (G[H])

either HG[H](S) = V (G[H]) or HG[H](S) = S.

Proof. Let V (G) = {u1, u2, ..., um} and V (H) = {v1, v2, ...., vn}. Let U ⊂ V (G[H])

and HG[H](U) ̸= U . Then choose any vertex v ∈ I1[U ]. Then there exists two

vertices x, y ∈ U which are adjacent to v.

If x, y ∈ Gi for i ∈ {1, ..., |V (G)|}, then for some j ∈ {1, ..., |V (G)|}, vivj ∈ E(G)

and x and y is adjacent every vertices of Gj. Hence V (Gj) ⊂ I1[{x, y}]. And

V (Gi) ⊂ I2[{x, y}]. Since G is connected, every subgraph Gk is reachable from Gj,

for k ̸= j, k ∈ {1, 2, ..., |V (G)|}. Hence HG[H]({x, y}) = V (G[H]).

If x ∈ Gi and y ∈ Gj , i ̸= j.

Then if v ∈ Gi, V (Gj) ⊂ I2[{x, y}]. Since for k ̸= j, k ∈ {1, 2, ..., |V (G)|}, every

vertex of Gk is reachable from Gj, HG[H]({x, y}) = V (G[H]).

If v ∈ Gp, p ̸= i, j, then Gp ⊂ I2[{x, y}]. And Gk is reachable from Gp, ∀k ̸= p,

k ∈ {1, 2, ..., |V (G)|}. Hence HG[H]({x, y}) = V (G[H]).

Hence HG[H]({x, y}) = V (G[H]).

Hence if S ⊂ V (G[H]) then either HG[H](S) = V (G[H]) or HG[H](S) = S.

Theorem 5.4.10. Let G and H be nontrivial connected graphs. Then c(G[H]) = 2.

Proof. Let S be a subset of V (G[H]) and (u, v) ∈ HG[H](S).
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Case 1 (u, v) ∈ S, then there is F ⊂ S with |F | = 1 and (u, v) ∈ HG⊠H(F ).

Case 2 (u, v) /∈ S and (u, v) ∈ HG[H](S). Choose any (a, b) ∈ I1[S], but (a, b) /∈ S.

Then there exist vertices (a1, b1), (a2, b2) ∈ S which are adjacent to (a, b).

Take F = {(a1, b1), (a2, b2)} ⊂ S. Then HG[H][F ] ̸= F . Hence by lemma5.4.9

HG[H](F ) = V (G[H]). Hence (u, v) ∈ HG[H](F ), F ⊂ S and |F | = 2.

Thus c(G[H]) ≤ 2. Since G and H are nontrivial connected graphs, c(G[H]) ≥ 2.

Thus c(G[H]) = 2.

Theorem 5.4.11. Let G and H be nontrivial connected graphs. Then r(G[H]) =

max{3, ⌊diam(G)+1
3

⌋ + 1}.

Proof. Let V (G) = {u1, u2, ..., um}, ⌊diam(G)+1
3

⌋ > 2 and v1, v2, ...., vl+1 be a maxi-

mum path in G.

If R = {(u1, v1), (u4, v1), ...., (u⌊ l+1
3

⌋, v1)}. Then no two vertices in R has common

neighbour in V (G[H]). Hence HG[H](R) = R and R has no radon partition in G[H].

Hence r(G[H]) ≥ ⌊diam(G)+1
3

⌋ + 1.

Let R ⊂ V (G[H]) with |R| ≥ ⌊diam(G)+1
3

⌋ + 1.

If |Gi ∩ R| ≥ 2 for some i ∈ {1, 2, ...m} and x, y ∈ Gi ∩ R. Then by 5.4.9,

HG[H]({x, y}) = V (G[H]). Hence R1 = {x, y} and R2 = R − {x, y} is a radon

partition of R.

If |Gi ∩ R| ≤ 1 for all i ∈ {1, 2, ...m}, since |R| ≥ ⌊diam(G)+1
3

⌋ + 1, there exists two

vertices x ∈ Gi and y ∈ Gj, with x, y has a common neighbour w ∈ Gk for some

k ̸= i, j, k ∈ {1, 2, ...m}. Thus by 5.4.9 HG[H]({x, y}) = V (G[H]). Then R1 = {x, y}
and R2 = R− {x, y} is a radon partition of R.

Hence r(G[H]) ≤ ⌊diam(G)+1
3

⌋ + 1.

Thus r(G[H]) = ⌊diam(G)+1
3

⌋ + 1.

If ⌊diam(G)+1
3

⌋ ≤ 2, then Let R ⊂ V (G[H]) with |R| ≥ 3.

Then, if |Gi ∩ R| ≥ 2 for some i ∈ {1, 2, ...m} and x, y ∈ Gi ∩ R. HG[H]({x, y}) =

85



Chapter 5. P3- Convexity in graphs

V (G[H]). Hence R1 = {x, y} and R2 = R− {x, y} is a radon partition of R.

If |Gi ∩ R| ≤ 1 for all i ∈ {1, 2, ...m}, since |R| ≥ ⌊diam(G)
4

⌋ + 1, there exists two

vertices x ∈ Gi and y ∈ Gj, with x, y has a common neighbour w ∈ Gk for some

k ≠ i, j, k ∈ {1, 2, ...m}. Thus HG[H]({x, y}) = V (G[H]). Then R1 = {x, y} and

R2 = R− {x, y} is a radon partition of R. Hence r(G[H]) = 3.

Thus r(G[H]) = max{3, ⌊diam(H)+1
3

⌋ + 1}.

5.5 P3-Convexity in corona related graphs

Study in the P3-convex invariants- hull number and radon number of corona related

graphs is done in this section.

5.5.1 P3-Convexity in corona of graphs

Detailed study on hull number and radon number of corona of graphs is done in

this section.

Theorem 5.5.1. Let G be a graph with radon number r, and |V (G)| = n, then

2r − 1 ≤ r(G ◦H) ≤ r + n.

Proof. Let V (G) = {v1, v2, ...., vn}, V (H) = {u1, u2, ...., un} and copy of H corre-

sponding to vi be Hi.

Let R1 be any subset of V (G ◦H) with |R1| ≥ r + n.

Case 1 If |R1 ∩ V (G)| ≥ r. Then R1 ∩ V (G) has a radon partition in G, say R1
1 and

R1
2. Then R1

1 ∪ (R1 − V (G)) and R1
2 is a radon partition of G⊙H.

Case 2 If |R1 ∩ V (G)| < r. Then |R1 ∩ ∪n
i=1V (Hi)| ≥ n + 1. Hence there is some

k ∈ {1, 2, ..., n} such that |V (Hk) ∩R1| ≥ 2.

If |(V (Hk) ∪ {vk}) ∩ R1| ≥ 3, say {w1, w2, w3} ⊂ (R1 ∩ V (Hk)). Then

{w1, w2}, {w3}is a radon partition of {w1, w2, w3} and R1 − {w3} and

{w3} is a radon partition of R1.

86



Chapter 5. P3- Convexity in graphs

Otherwise |(V (Hi) ∪ {vi}) ∩ R1| ≤ 2,∀i ∈ {1, 2, ..., n}. Then since

|R1| ≥ r+n, there are atleast r number of Hi where i ∈ {1, 2, ..., n} with

|(V (Hi) ∪ {vi}) ∩ R1| = 2, say for i = 1, 2, ....., r. Since, |R1 ∩ V (G)| =

t < r, there are atleast r − t number of Hi where i ∈ {1, 2, ...r} with

|V (Hi) ∩R1| = 2, say for i = t+ 1, t+ 2, ....., r and t number of Hi with

|(V (Hi)∪{vi})∩R1| = 2, say for i = 1, 2, ..., t. Let Ti = ((V (Hi)∪{vi})∩
R1), ∀i = 1, 2, ..., t and Ti = (V (Hi) ∩ R1), ∀i = t + 1, t + 2, ...r. Then

{v1, v2, ....., vr} has a radon partition say R1 and R2. Let A = {i : i ∈ R1}
and B = {i : i ∈ R2}. Then R1

1 = ∪i∈ATi and R1
2 = ∪i∈BTi is a radon

partition of R1.

Hence, r(G ◦H) ≤ r + n.

Choose R = {v1, v2, ...., vr−1} so that R has no Radon partition in G. Then take

u1i , u
2
i any two vertices in V (Ki). Then R1 = ∪r−1

i=1{u1i , u2i } has no Radon partition

in G ◦H. Thus 2r − 1 ≤ r(G ◦H).

Strict inequality may occur in the above result.

For G =Friendship graph F3 and H = Km, r(G ◦H) = 9 < 4 + 7 = r(G) + n,

G =Friendship graph F3 and H = Kn, is an example for r(G ◦K) < r + n.

And for G = C8 and H = Km, r(G ◦Kn) = 13 > 2 × 5 − 1 = 2r(G) − 1. Hence

G = C8 and H = Km is an example for 2r − 1 < r(G ◦H).

And upper bound may attain. Since for G = Cn and H = Kn, r(G ◦Km) =

⌈n
2
⌉ + 1 + n = r(G) + n, G = Cn and H = Km is an example.

Lower bound may also attain. Since for G = Kn and H = Kn, r(G ◦Kn) = 5 =

2 × 3 − 1 = 2r(G) − 1, G = Kn and H = Kn is an example.

Theorem 5.5.2. For any two graphs G and H, h(G ◦H) = |V (G)| + 1.
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Proof. LetG andH be graphs with V (G) = {v1, v2, ...., vn} and V (K) = {u1, u2, ...., um}
and Hi be the copy of H corresponding to vi, ∀i = 1, 2, ...., n.

Let S1 = {v1}∪{u11, u12, ....., u1n} where u1i is any vertex from Hi, ∀i = 1, 2, ....., n.

Let l = eccentricity(v1) in G and p = diameter(H).Then,

I[S1] ⊃ N [v1] ∪ {u11, u12, ....., u1m}
I2[S1] ⊃ N2[v1] ∪ {u11, u12, ....., u1m}
I l[S1] ⊃ V (G) ∪ {u11, u12, ....., u1m}
I l+p[S1] = V (G ◦H)

Hence h(G ◦H) ≤ |V (G)| + 1.

Conversely, let S1 ⊂ V (G ◦H), with |S1| < |V (G)| + 1. Then, |S1| ≤ |V (G)|
and hence |S1 ∩ (∪n

i=1V (Hi))| < |V (G)| or S1 ∩ V (G) = ϕ.

If |S1∩(∪n
i=1V (Hi))| < |V (G)|, there is some k ∈ {1, 2, ...n} with V (Hk)∩S1 = ϕ.

Then HG◦H [S1] ⊉ V (Hk)

If S1 ∩ V (G) = ϕ. Then,

Case 1 |V (Hi) ∩ S1| = 1, ∀i = 1, 2, ...., n.

Then HG◦H [S1] = S1 ̸= V (G ◦H)

Case 2 |V (Hk) ∩ S1| = 0 for some k ∈ {1, 2, ...., n}.

Then HG◦H [S1] ⊉ V (Hk)

Hence HG◦H [S1] ̸= V (G ◦H).

Thus, h(G ◦H) ≥ |V (G)| + 1.

Hence it follows that h(G ◦H) = |V (G)| + 1.
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5.5.2 P3-Convexity in neighbourhood corona of graphs

In this section bounds for hull number and radon number of neighbourhood corona

of graphs are obtained.

Theorem 5.5.3. Let G and H be nontrivial graphs with hull number h(G) and h(H)

respectively and δ(G) ≥ 2. Then h(G ⋆ H) ≤ h(G).

Proof. Let S = {v1, v2, ..., vh(G)} be a minimum P3-convex hull set and Id[S] ⊃ V (G)

for some d. Since G has no pendant vertex every vertex in G ⋆ H is adjacent with

atleast two vertices in G. Hence Id+1[S] = V (G ⋆ H). Hence h(G ⋆ H) ≤ h(G).

The bound given in 5.5.3 is sharp, since the bound is attained for G = C8 and

H = P5. Here h(G ⋆ H) = 4 = h(G).

Following remark shows that the difference in the inequality 5.5.3 may be large.

Remark 5.5.1. For any integer a ≥ 2 there exists graph G and H with h(G ⋆H) =

h(G) + a.

Proof. Let n = a − 2, G be the friendship graph Fn and H be any graph with

|V (H)| ≥ 2. Then h(G ⋆ H) = 2 and h(G) = n.

Following remark shows that theorem 5.5.3 may not hold for graph G with

pendant vertices.

Remark 5.5.2. For the graph G = P5 and H = K3, h(G ⋆ H) = 4 while h(G) = 3.

Theorem 5.5.4. Let G be any graph and |V (H)| ≥ 2, then

r(G ⋆ H) ≥ 2 × ⌊diam(G) + 1

3
⌋ + 1

.

Proof. Let v1, v2, ..., vl+1 be a maximum path in G and remaining vertices of V (G)

be {vl+2, vl+3, ..., vn}.Let Hi be the copy of H corresponding to vi, ∀i ∈ {1, 2, ..., n}

89



Chapter 5. P3- Convexity in graphs

in G ⋆ H. Choose two vertices vi,1, vi,2 from Hi, ∀i ∈ A = {1, 4, 7, ..., ⌊diam(G)+1
3

⌋}.

Then R = ∪i∈A{vi,1, vi,2} has no radon partition in G ⋆ H. Hence r(G ⋆ H) ≥
2 × ⌊diam(G)+1

3
⌋ + 1.

5.5.3 P3-Convexity in edge corona of graphs

In this section bounds for hull number and radon number of edge corona of graphs

are obtained.

Theorem 5.5.5. Let G and H be nontrivial graphs with hull number h(G) and h(H)

respectively. Then h(G ⋄H) ≤ h(G).

Proof. Let S = {v1, v2, ..., vh} be a minimum P3-convex hull set of G and Id[S] ⊃
V (G) for some d. Then every vertex in G ⋄H is adjacent with atleast two vertices

in G. Hence Id+1[S] = V (G ⋄H). Hence h(G ⋄H) ≤ h(G).

Theorem 5.5.6. Let G be a graph having perfect matching and |V (H)| ≥ 2, then

r(G ⋄H) ≥ |V (G)| + 1.

Proof. Let e1, e2, ...., eq be a perfect matching in G and eq+1, eq+2, ..., er be the re-

maining edges of G. Let Hi be the copy of H in G ⋄ H corresponding to ei ,

∀i ∈ {1, 2, ..., r}. Then |{e1, e2, ...., eq}| = |V (G)|
2

. Choose two vertices vi,1, vi,2 from

Hi, ∀i ∈ {1, 2, ..., q}. Let R = ∪q
i=1{vi,1, vi,2}. Then |R| = |V (G)| and R has no

radon partition in G ⋄H. Hence r(G ⋄H) ≥ |V (G)| + 1.

Since r(G ⋄H) = 7 = |V (G)| + 1, for G = C6 and for any graph H, the bound

given in theorem 5.5.6 is sharp.
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5.6 Conclusion

The concept of P3- convexity is studied here. The motivation behind this is the

problem like sharing an idea or marketing, having the property:- a set of vertices

S initially possessing a property spreads the property to the vertices having two

neighbours in S. These problems like sharing or marketing can be extended in a

way that set of vertices having the property a set of vertices S initially possessing a

property spreads the property to the vertices having k neighbours in S. Thus there

is a large scale of application and scope in this area.

This chapter includes general properties in P3-convexity, P3-convex invariants,

hull number, radon number and caratheodory number of some classes of graphs,

strong product, cartesian product, composition of graphs. and corona related graphs.
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CHAPTER 6

Conclusion and Results

6.1 Conclusion

This thesis is an attempt to introduce various types of domination parameters and

study their properties. And domination number of cartesian product of graphs is

studied using one of this domination parameter.

First chapter is an introductory chapter in which background information and

preliminary information about the work are provided.

In the second chapter a study of domination number of cartesian product of

graphs is done. Main results from this chapter are listed below. These results are

published in [59]

1. Let G be any graph and Pn be a path having n vertices. Then n
3
γ(G) <

γ(G2Pn).

2. Let G be any graph and Pn be a path having n vertices. If G has a minimum

dominating set D such that D = D1∪D2, D1∩D2 = ϕ and every vertex not in

D has a neighbour in D1 and a neighbour in D2, then γ(G2Pn) ≤
⌈
n
2

⌉
γ(G).
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3. Let G be a graph having a minimum dominating set D which can be partitioned

into two nonempty sets D1 and D2 with the property every vertex not in D

is adjacent with atleast one vertex in D1 and atleast one vertex in D2. Then

γ(G2C4) ≤ 2γ(G).

4. Let G be any graph and Cn be a cycle having n vertices, then n
3
γ(G) ≤

γ(G2Cn).

5. Let G be any graph and Cn be a cycle having n vertices. If G has a minimum

dominating set D such that D = D1 ∪D2, D1 ∩D2 = ϕ and every vertex not

in D has a neighbour in D1 and a neighbour in D2, then γ(G2Cn) ≤
⌈
n
2

⌉
γ(G).

In the third chapter Reserved domination number is introduced and some of

its properties are studied. Result on domination number of cartesian product

of graphs is obtained using reserved domination number. Some of the results

from third chapter is published in [60]

Let A ⊂ V (G), A ̸= ϕ, a dominating set D of a graph G is an A- reserved

dominating set, if D∩A ̸= ϕ. The A-reserved domination number of G, rγA(G)

is the cardinality of minimum A-reserved dominating set.

Let A1, A2, ..., Ak ⊂ V (G), Ai ̸= ϕ,∀i = 1, 2, ..., k. If D ⊂ V (G) is a dominat-

ing set with the property D ∩ Ai ̸= ϕ,∀i = 1, 2, ...., k, then D is said to be

an [A1, A2, ..........Ak]- reserved dominating set of G. Cardinality of minimum

[A1, A2, ..........Ak]- reserved dominating set is called the [A1, A2, ..........Ak]-

reserved domination number denoted by rγ[A1,A2,...,Ak](G) .

6. For any Graph G and A ⊂ V (G), γ(G) ≤ rγA(G) ≤ γ(G) + 1

7. An A-reserved dominating set D is a minimal A-reserved dominating set if

and only if for each vertex v in D one of the following conditions holds

(a) v is an isolate of D.

(b) v has a private neighbour u in V −D.

(c) D ∩ A = {v}.
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8. If A ⊂ B, then rγA(G) ≥ rγB(G).

9. rγA(G) = 1 if and only if A contains a universal vertex of G.

10. rγA(G) = n if and only if G = Kn.

11. For a graph G and A ⊂ V (G),

� rγA(G) = γ(G) + 1 if and only if A ⊂ anticore(G).

� rγA(G) = γ(G) if and only if A ∩ (anticore(G)) ̸= phi.

12. For a graph G and A ⊂ V (G),

� rγA(G) = γ(G) + 1 if and only if γ(Gv + u) = γ(G) + 1 for every v ∈ A.

� rγA(G) = γ(G) if and only if ∃v ∈ A satisfying γ(Gv + u) ̸= γ(G) + 1.

13. For cycle Cn and any A ⊂ V (Cn), rγA(Cn) = ⌈n
3
⌉ = γ(G).

14. For complete graph Kn and any A ⊂ V (Kn), rγA(Kn) = 1.

15. For complete bipartite graph Km,n with 2 ≤ m,n and any A ⊂ V (Km,n),

rγA(Km,n) = 2.

16. If n ≡ 1(mod3) and A ⊂ V (Pn), then rγA(Pn) = ⌈n
3
⌉ = γ(Pn).

17. If n ≡ 0(mod3) and A ⊂ V (Pn), then

rγA(Pn) =

{
⌈n
3
⌉ ifA ∩ {vi : i ≡ 2(mod3)} ≠ ϕ

⌈n
3
⌉ + 1 Otherwise

18. If n ≡ 2(mod3) and A ⊂ V (Pn), then

rγA(Pn) =

{
⌈n
3
⌉ ifA ∩ {vi : i ≡ 1, 2(mod3)} ≠ ϕ

⌈n
3
⌉ + 1 Otherwise

19. rγA∪B(G) = min {rγA(G), rγB(G)}.

20. Let G and H be two graphs of order n1 and n2, then for any A ⊂ V (G) and

B ⊂ V (H), rγA×B(G2H) ≤ min{n1rγB(H), n2rγA(G)}.

21. If a graph G satisfy the inequality rγA×B(G2H) ≥ rγA(G)rγB(H), for every

graph H and for A× B = {(u, v)} where (u, v) is an element in a minimum

dominating set of G2H. Then G satisfies Vizing’s inequality.
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22. Let G be a graph that satisfies rγA×B(G2H) ≥ rγA(G)rγB(H), for every A ⊂
V (G) and for every graph H and B ⊂ V (H), and let G1 be a spanning subgraph

of G such that rγA(G) = rγA(G1). Then G1 also satisfies rγA×B(G12H) ≥
rγA(G1)rγB(H), for every A ⊂ V (G1) and for every graph H and B ⊂ V (H).

23. If n is an odd integer and x1, x2, ....., xn be the vertices in the first copy of Pn

in Pn2P2 and y1, y2, ....., yn be the vertices in the second copy of Pn in Pn2P2,

then for any A ⊂ V (Pn2P2),

rγA(Pn2P2) =

{
⌈n+1

2
⌉ ifA ∩ {xi, yi : i = 2k + 1, 1 ≤ i ≤ n} ≠ ϕ

⌈n+2
2
⌉ Otherwise

.

24. If n is an even integer , then for any A ⊂ V (Pn2P2),

rγA(Pn2P2) = ⌈n+ 1

2
⌉

25. If A ⊂ V (Pn2P3),

n− ⌊n− 1

4
⌋ ≤ rγA(Pn2P3) ≤ n+ 1 − ⌊n− 1

4
⌋

.

26. If A ⊂ V (Pn2P4),

n+ 1 ≤ rγA(Pn2P4) ≤ n+ 2 if n=1,2,3,4,5,6 or 9

n ≤ rγA(Pn2P4) ≤ n+ 1 Otherwise

.

27. For any A ⊂ V (Km) and B ⊂ V (Kn),m ≤ n rγA×B(Km2Kn) = m.

28. For any A ⊂ V (Pm) and B ⊂ V (Kn),m, n > 2 ∈ N , rγA×B(Pm2Kn) = m.

29. For any A ⊂ V (Cm) and B ⊂ V (Kn),m, n > 2 ∈ N , rγA×B(Cm2Kn) = m.

30. For any two nontrivial graphs G and H and for every A ⊂ V (G) and B ⊂ V (H),

rγA×B(G⊠H) ≤ rγA(G)rγB(H).
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31. Let G be a graph order n and H be a graph order m and Hi be the copy of H

corresponding to vi ∈ G, then for A ⊂ V (GoH),

rγA(GoH) =

{
n if A ∩ (V (G) ∪ {v : v is a universal vertex of Hi}) ̸= ϕ

n+ 1 Otherwise

.

32. If A1, A2, ......Ak ⊂ V (G) then an [A1, A2, ..., Ak]-reserved dominating set D is

a minimal [A1, A2, ..., Ak]-reserved dominating set if and only if for each vertex

v in D one of the following conditions holds

(a) v is an isolate of D.

(b) v has a private neighbour u in V −D.

(c) ∃l ∈ {1, 2, ...k} such that D ∩ Al = {v}.

33. Let G = K1,n with u as center and V (G) = {u, u1, u2, .........un} and let H

be any graph . Let D ⊂ V (G2H) such that D dominates {u}2H . Then ,

|D| ≥ 2γ(H) − γ(< F >) , where F = {v ∈ H : (ui, v) is not adjacent to D

for some i} ∪ {v ∈ H : (ui, v) /∈ D, ∀i}.

34. Let G be any graph with γ(G) = 1 and N ⊂ V (G) such that rγN (G) > 1.And

let H be any graph. Let D ⊂ G2H with the property that D dominates

(G−N)2H .Then, |D| ≥ 2γ(H) − γ(< F >) , where F = {v ∈ H : (u, v) is

not dominated by D for some u ∈ N} ∪ {v ∈ H : (u, v) /∈ D, ∀u ∈ N} .

35. Let G = K1,N with u as center and V (G) = {u} ∪ N where N = N1 ∪
N2 ∪ .......Nk , |Ni| ≥ 2, Ni = {ui1, ui2, ......, uir} for i = 1, 2, ...k and H be

any graph. If D ⊂ V (G2H) so that D dominates {u}2H , then |D| ≥
(k+ 1)γ(H)−

∑k
i=1 γ(< Fi >) , where Fi = {v ∈ H : (uij, v) is not dominated

by D for some j} ∪ {v ∈ H : (uij, v) /∈ D ∩Ni,∀j} .

α-stable domination number is introduced and some of its properties are

studied in the fourth chapter. Main results from the chapter are listed below.

Let D be a dominating set. For a vertex u in D let ψD(u) = |N(u)∩ (V −D)|.
The donor instability or d-instability of an edge e connecting two donor ver-

tices u and v, dDinst(e)= |ψD(u) − ψD(v)|. Let D ⊂ V , the d-instability
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of D, is the sum of d-instabilities of all edges connecting vertices in D,

ψd(D) =
∑

e∈<D> d
D
inst(e). Let D be a dominating set. Given a non neg-

ative integer α, D is an α-d-stable dominating set, if dDinst(e) ≤ α for any

edge e connecting two donor vertices. Cardinality of a minimum α-d-stable

dominating set is the α-d-stable domination number and denoted by γαd (G). A

dominating set D is d-stable if ψd(D) = 0. Cardinality of a minimum d-stable

dominating set is d-stable domination number and denoted by γ0d(G).

For a vertex u not in D, let ϕD(u) = |N(u) ∩D|. The Acceptor Instability or

a-instability of an edge e connecting two acceptor vertices u and v is, aDinst(e)

= |ϕD(u) − ϕD(v)|. The a-instability of D, ϕa(D) is the sum of a-instabilities

of all edges connecting vertices in V − D, ϕa(D) =
∑

e∈<V−D> a
D
inst(e). Let

D be a dominating set. Given a non negative integer α, D is an α-a-stable

dominating set, if aDinst(e) ≤ α for any edge e connecting two acceptor vertices.

Cardinality of a minimum α-a-stable dominating set is α-a-stable domination

number and denoted by γαa (G). The dominating set D is a-stable if ϕa(D) = 0

. Minimum cardinality of an a-stable dominating set is a-stable domination

number and denoted by γ0a(G).

A dominating set D is stable, if ψd(D) = 0 and ϕa(D) = 0. Minimum car-

dinality of a stable dominating set is called stable domination number and

denoted by γ0(G). If a dominating set D is an α-d-stable dominating set

and α-a -stable dominating set, then D is called an α-stable dominating set

and cardinality of a minimum α-stable dominating set is defined as α-stable

domination number and denoted by γα(G) .

36. If α ≥ β, then γ(G) ≤ γαd (G) ≤ γβd (G).

37. Property of being α-d-stable dominating set is neither superhereditary nor

hereditary.

38. An α-d- stable dominating set D is a minimal α-d- stable dominating set if

and only if for each vertex v in D one of the following conditions holds
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(a) v is an isolate of D.

(b) v has a private neighbour u in V −D.

(c) There exist two adjacent vertices u1 and u2 different from v in D, u1

adjacent to v, u2 not adjacent to v and ψD(u1) = ψD(u2) + α.

39. For non negative integer α, γαd (G) = 1 ⇐⇒ γ(G) = 1.

40. For a graph G and non negative integer α, βo(G) ≥ γαd (G).

41. For a graph G and non negative integer α, i(G) ≥ γαd (G).

42. ir(G) ≤ γ(G) ≤ γαd (G) ≤ i(G) ≤ βo(G) ≤ Γ(G) ≤ IR(G).

43. For any graph G of order n ≥ 2 and non negative integer α, 3 ≤ γαd (G) +

γαd (G) ≤ n+ 1.

44. For a connected triangle free graph G with |V (G)| ≥ 2 and any non negative

integer α, γαd (G) = 2

45. If D is an α-d-stable dominating set of a graph G and u and v are adjacent

vertices in D with d(v) = d(u) + k + α, k ∈ Z+, then D contains at least k

elements from (N [v] −N [u]).

46. If D is a d-stable dominating set of a graph G and u and v are adjacent vertices

in D with d(v) > d(u), then D contains at least d(v) − d(u) elements from

(N [v] −N [u]).

47. If u is a pendant vertex adjacent to v, D is a d-stable dominating set and u, v

∈ D, then N [v] ⊂ D.

48. For any non negative integer β, there exist graph G with γ0d(G) > γ1d(G) >

γ2d(G)...... > γβd (G)

49. If α ≥ β, then γ(G) ≤ γαa (G) ≤ γβa (G)

50. Property of being α-a-stable dominating set is neither superhereditary nor

hereditary.

51. An α-a- stable dominating set D is a minimal α-a- stable dominating set if

and only if for each vertex v in D one of the following conditions holds
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(a) v is an isolate of D.

(b) v has a private neighbour u in V −D.

(c) There exist two adjacent vertices u1 and u2 in V-D, u1 adjacent to v, u2

not adjacent to v and ϕD(u2) = ϕD(u1) + α.

52. For non negative integer α, γαa (G) = 1 ⇐⇒ γ(G) = 1

53. For α ≥ 1, γαa (G) = 2 ⇐⇒ γ(G) = 2

54. For any graph G and non negative integer α, γαa (G) ≤ γp(G). And this bound

is sharp.

55. For any positive integer β, there exist graph G with γ0a(G) > γ1a(G) >

γ2a(G)...... > γβa (G).

56. If α ≥ β, then γ(G) ≤ γα(G) ≤ γβ(G).

57. Property of being α-stable dominating set is neither superhereditary nor

hereditary.

58. For any graph G and for any non-negative integer α, γ(G) = 1 ⇐⇒ γα(G) =

1.

59. For any graph G and for any non negative integer α, γα(G) = n ⇐⇒ G = Kn.

60. For a graph G with δ(G) ≥ 1, γα(G) ≤ n− 1.

61. For every graph G of order n and maximum degree ∆ and for any non negative

integer α, γα(G) ≥ n
∆+1

.

62. For any non negative integer α, γα(G) = γ(G) for the following Graphs

� Complete graph Kn

� Path Pn

� Cycle Cn

� Wheel graph Wn

� Helm graph Hn
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63. If G is the corona Cp◦K1, then for any non negative integer α, i(G) = γαd (G) =

γαa (G) = γα(G) = γ(G) = p.

64. For complete bipartite graph G = Km,n,m ≤ n and non-negative integer α

γαa (G) = 2

γαd (G) =
{ min{(n−m+ 2 − α),m} ifn−m+ 2 − α ≥ 2

m otherwise

γα(G) =
{ 2 ifn−m ≤ α

m otherwise

65. Let G and H be two graphs of order n1 and n2 , then for any non-negative

integer α ,

� γαa (G2H) ≤ min{n1γ
α
a (H), n2γ

α
a (G)}

� γαd (G□H) ≤ min{n1γ
α
d (H), n2γ

α
d (G)}

� γα(G□H) ≤ min{n1γ
α(H), n2γ

α(G)}.

This bound is sharp.

66. For any graph G of order m and any non negative integer α, γα(Cn2G) ≥
mn

∆(G)+3
.

67. If m,n ≥ 2 for any non negative integer α, γα(Cm2Cn) ≥ mn
5

.

68. If m,n ≥ 2 for any non negative integer α, γα(Cm2Cn) ≥ γα(Cm)γα(Cn).

69. For non-negative integer α, γα(P22Pn) = ⌈n+1
2
⌉.

70. For any two graphs G and H and non negative integer α, α-stable domination

number of its corona, γα(GoH) = |V (G)|.

Chapter five deals with the concept of P3-convexity. Radon number, caratheodory

number and hull number of some classes of graphs are obtained. P3-convexity

in product graphs and corona related graphs are well studied. A part of this

chapter is published in [61]

71. h(G) = n if and only if each vertex has degree less than or equal to 1.
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72. Let G be a star with atleast 3 vertices, then h(G) = n− 1.

73. Let G be a graph with order n and h(G) = n− 1

� If n = 3, then either G is a triangle or a star.

� If n = 4, then either G is a path or a star.

� If n ≥ 5, then G is a star.

74. Let G be a 2-connected graph with a universal vertex. Then

h(G) = 2.

75. The minimum size of a graph G for which order(G) = n and h(G) = 2 is

2(n− 2).

76. For 2 ≤ a ≤ n − 1, there exist a connected graph G with |V (G)| = n and

h(G) = a.

77. Being a P3-convex set is neither hereditary nor superhereditary property.

78. If G is disconnected with atleast two components G1 and G2, |V (G1)| ≥ 2,

|V (G2)| ≥ 2. Then h(G) = 2.

79. Let G be a tree with n vertices. Then there exist a sequence of sets V (G) =

Vn ⊃ Vn−1 ⊃ . . . . . . . . . ⊃ V1 where for each i, Vi is convex and |Vi| = i.

80. Let G be a connected graph. Then G is a tree if and only if for each connected

subgraph H of G, V (H) is a convex set of G.

81. If G is a graph having no cycle with length ≤ 4 and |V (G)| ≥ 4, then h(G) ≥ 3.

82. If G is a graph with the property I1[S] = HG(S), ∀S ⊂ V (G), then G has

joint hull commutative propery.

83. If G is a maximal outer planar graph with diam(G) > 2, then G has joint hull

commutative property. But there are S ⊂ V (G) such that I1[S] ̸= HG(S).

84. Let H be a connected subgraph of a graph G. Then if V (H) is the only

nontrivial convex set of H, then H is a block. In particular, if V (G) is the

only nontrivial convex set of G, then G is a block.
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85. Every block in a graph G is a P3- convex set.

86. Let G1 be the graph generated by Mycielski’s construction of a graph G. Then

h(G1) ≤ h(G) + 1.

87. Let G be a graph of order n ≥ 3 and size m, Tk(G) the trestled graph of G

with k ≥ 2, then h(Tk(G)) = km.

88. For a path Pn with n ≥ 3, c(Pn) = 2, r(Pn) = ⌊n
2
⌋ + 2 and h(Pn) = ⌊n

2
⌋ + 1.

89. For a complete graph Kn with n ≥ 3, c(Kn) = 2, r(Kn) = 3 and h(Kn) = 2.

90. For a cycle Cn, c(Cn) = 2, r(Cn) = ⌈n
2
⌉ + 1 and h(Cn) = ⌈n

2
⌉.

91. For a star K1,n−1, n ≥ 4, c(K1,n−1) = 2, r(K1,n−1) = 4, and h(K1,n−1) = n.

92. For a complete bipartite graph Km,n, m,n ≥ 2, r(Km,n) = 3, c(Km,n) = 2,

h(Km,n) = 2.

93. For a wounded spider G,

h(G) =
{ ∆(G) if centre is incident with more than one pendant vertex

∆(G) + 1 otherwise
.

94. Let G and H be nontrivial connected graphs. Then, h(G⊠H) = 2.

95. Let G and H be non trivial connected graphs. Then, for S ⊂ V (G⊠H) either

HG⊠H(S) = V (G⊠H) or HG⊠H(S) = S.

96. Let G and H be nontrivial connected graphs, then c(G⊠H) = 2.

97. LetG andH be nontrivial connected graphs, then r(G⊠H) ≥ max{⌈diam(G)+4
3

⌉, ⌈diam(H)+4
3

⌉}.

98. LetG andH be connected graphs different from complete graph with caratheodory

number c(G) and c(H) respectively. Then c(G2H) ≥ max{c(G)+1, c(H)+1}.

99. If G = Km and H = Kn then c(G2H) = 2 = c(G) = c(H).

100. Let G and H be connected graphs and G is different from complete graph. If

caratheodory number of G is c(G), then c(G2H) ≥ c(G) + 1.

101. Let G and H be connected graphs with radon number r(G) and r(H) respec-

tively. Then r(G2H) ≥ max{⌊diam(H)+1
3

⌋(r(G) − 1) + 1, ⌊diam(G)+1
3

⌋(r(H) −
1) + 1}.
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102. Let G and H be non trivial connected graphs. Then, for S ⊂ V (G[H]) either

HG[H](S) = V (G[H]) or HG[H](S) = S.

103. Let G and H be nontrivial connected graphs. Then c(G[H]) = 2.

104. LetG andH be nontrivial connected graphs. Then r(G[H]) = max{3, ⌊diam(G)+1
3

⌋+
1}.

105. Let G be a graph with radon number r, and |V (G)| = n, then 2r − 1 ≤
r(G ◦H) ≤ r + n.

106. For any two graphs G and H, h(G ◦H) = |V (G)| + 1.

107. Let G and H be nontrivial graphs with hull number h(G) and h(H) respectively

and δ(G) ≥ 2. Then h(G ⋆ H) ≤ h(G).

108. Let G be any graph and |V (H)| ≥ 2, then

r(G ⋆ H) ≥ 2 × ⌊diam(G) + 1

3
⌋ + 1

.

109. Let G and H be nontrivial graphs with hull number h(G) and h(H) respectively.

Then h(G ⋄H) ≤ h(G).

110. Let G be a graph having perfect matching and |V (H)| ≥ 2, then r(G ⋄H) ≥
|V (G)| + 1.

6.2 Proposals for further study

We are aware that the research done for this work is not complete. Even so, it

continues to be a vibrant and accessible area for research. Some of the problems on

our thoughts that are still open are listed here.

1. Characterize the graphs G and A ⊂ V (G) for which rγA(G) = γ(G) in terms

of degree.

2. Find the bounds for rγ[A1,A2,...,Ak](G) in terms of order and degree.

3. Study the change of reserved domination number of a graph with the atomic

variations of graph, such as vertex removal, edge removal.
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4. To study the stability of domination in real life problems it is more beneficial

to define α-stable domination for weighted graph and study it in detail.

5. Characterize the graphs with γ0(G) = γ(G).

6. Characterize the graphs for which the compliment of minimum α-stable domi-

nating set is an α-stable dominating set.

7. Develop an algorithm to find the α-stable domination number of a graph.

8. Study the change of hull number of a graph with the atomic variations of

graph, such as vertex removal, edge removal.
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