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Chapter 1

INTRODUCTION

1.1 Introduction

Reliability is a critical measure of performance of engineering systems such as power

generators, spacecrafts, telecommunication networks, control systems, nuclear reac-

tors, oil and gas pipelines etc.. Conventional reliability theory is built on a framework

in which both the system and its components can be in one of only two possible states:

”working” or ”failed”. Consequently, the system structure function is a binary func-

tion of binary variables. However, the binary feature of these reliability models places

serious limitations on its utility, because most of the engineering systems and their

components exhibit many levels of performance between the two extremes of ”work-
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ing” and ”failed”. Multi-state system reliability models allow both the system and

its components to assume more than two levels of performance. While multi-state

reliability models provide more precise representations of engineering systems, they

are much more complex and present major difficulties in system definition and per-

formance evaluation. The aim of this research work is to advance the state-of-the-art

of the highly promising multi-state reliability theory so that it can be applied to de-

sign and maintenance of practical engineering systems. Further, the output of this

research work will certainly generate major economic benefits to industries through

optimal design and maintenance of complex systems.

Reliability is the ability of a system (or an item) to perform a required function,

under given environmental and operational condition, and for a stated period of

time. For an item to be reliable, it must operate satisfactorily, for a specified period

of time in the actual application for which it is intended. The vast majority of

the reliability analysis assumes that components and systems are in either of two

states: functioning or failed. The reliability of such a system is the probability that

the system is functioning for a specified period of time without failure. In such a

binary setup, various reliability problems were addressed by different researchers,

complementing the work of Barlow and Proschan (1975). The binary state system

reliability research is on finding reliability bound for the system state and reliability,

obtaining measures of importance for identifying the most important components in

the system (series system, parallel system and k − out− of − n system). In order to

use statistical distributions such as Exponential, Weibull, Gamma, Lognormal, etc,
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the life time (from start of functioning to failure) of components are assumed to be

continuous random variables with above distributions. So that reliability calculations

involves only computation of P [T > t], where T is the lifetime random variable

and t is the mission time. The ageing properties (increasing failure rate, increasing

failure rate average, decreasing failure rate, decreasing failure rate average, etc) are

discussed by several authors, see Brayson and Siddique (1969) and Deshpande et

al. (1986). If the component failure rate is independent of time (random failure)

Exponential distribution serves as very useful model for reliability computation. The

renewal theory and Poisson process theory are used for replacement and maintenance

problems. All these research developments are concentrated only on binary systems.

Barlow and Proschan (1975) and Barlow and Proschan (1996) are good references

for the foundation and developments of binary reliability theory. A comprehensive

introduction to system reliability theory is given by Rausand and Hoyland (2004).

However, as mentioned above, in many real life situations the system and their

components are actually capable of assuming a whole range of levels of performance,

varying from perfect functioning to complete failure. We are actually able to distin-

guish among various ’levels of performance’ for both system and components. For

such systems, the existing dichotomous model is a gross oversimplification and so

models assuming degradable (multi-state) systems and components are preferable

since they are closer to reality. For example, in a power generation system whose

performance is measured in terms of capacity, the performance can be divided into

M + 1 states, 0, 1, ...,M where ’M ’ is the best state and ’0’ is the worst state, see
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Natvig et al. (1986). In the power generation system, state M corresponds to the

performance 100MW (perfect functioning), state M − 1 corresponds to 75MW,...,

state 0 corresponds to 0MW (complete failure). We consider the systems with M +1

states of output performances where each of the components has also M + 1 states

of performances. Such systems are called multi-state systems (MSSs) with multi-

state components. Levitin (2002a) considered the multi-state node acyclic networks

(MNAN), each node has different states determined by a set of nodes that receive

the signal directly without satisfying the conservation law. A state is a set of per-

formances for each node, where performance is characterized by numbers of nodes

where a signal can be received from the given node. Naturally, every state of a node

has associated performance level. Another important MSS, the offshore gas pipeline

network, can be seen in Natvig and Morch (2003), which constitutes the main parts of

the network in the North Sea, as of the end of the eighties, transporting gas to Emden

in Germany. Kolowrocki (2004) considered a steal rope of three layer 36 strands, 18

outer strands, 12 inner strands and 6 strands in the next inner level. All strands are

composed of 7 steel wires. Considering strands as system’s basic components, one

may view that the rope is a parallel system composed of components. The state of

the system is described as, State 3: a strand is new, without any defects, State 2: a

number of brocken wires in the strand is greater than 0% and less than 25% of all

of its wires, corrosion is greater than 0% and less than 25%, abrasion is less than

25% and strain is less than 50%, State 1: a number of brocken wires in the strand is

greater than or equal to 25% and less than 50% of all its wires or corrosion is greater

than or equal to 25% and less than 50%, abrasion is less than 50%, strain is less than
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50%, and State 0: otherwise (a strand is failed 0). Kolowrocki (2004) carried out an

intensive research in large MSSs using extreme value theory.

In MSSs, the reliability evaluation becomes more complicated than in a binary

systems. The methods of MSS reliability assessment are based on four different ap-

proaches: the structure function approach, the stochastic process (mainly Markov and

semi-Markov) approach, universal generating function (UGF) approach and Monte

Carlo simulation approach. The structure function approach is historically the first

that was developed and applied for MSS reliability analysis. The main difficulties in

the MSS reliability analysis is the dimension damnation since each system compo-

nents can have many different states. This makes the structure function approach

very work-time consuming. However when using the structure function approach one

still faces its main disadvantage: inability to investigate dynamic behavior of MSSs.

The stochastic process approach widely used for MSS reliability analysis is more

universal. In this approach, one can consider the states of the process as the states

of the component and the time between the transition from one state to another

is considered to be a random variable. The state of the component at a time de-

pends only on the state from which the last transition to present state occurred.

For instance, let the performance process of the component i is a stochastic process

{Xi(t), t ∈ τ}, where for each fixed value of t ∈ τ , Xi(t) is a random variable taking

values 0,1,...,M according to the degree of degradation. That is, Xi(t) = M if the

component is perfectly functioning, Xi(t) = j, if the component i is in jth degraded
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state and Xi(t) = 0, if the component is completely failed. The index τ is contained

in [0,∞). The joint performance process {X(t), t ∈ τ} = {X1(t), ..., Xn(t), t ∈ τ} for

a set of components is a vector of stochastic processes for which ith marginal process

{Xi(t), t ∈ τ} is the performance process for the ith component, i = 1, ..., n. We

then consider that there is a function φ such that the performance process of the

system is {φ(X(t)), t ∈ τ}. This approach can be applied to relatively small MSSs,

because the number of system states increases drastically with the increase in the

number of system components. The stochastic process approach is proved to be a

very useful tool for time dependent MSSs. Lisnianski and levitin (2003) considered

several examples on this topic. For example, they considered an electric generator,

for reliability evaluation, that has four possible performance levels 100MW (state

3), 70MW (state 2), 50MW (state 1) and 0MW (state 0). The constant demand

is 60MW. The best state with performance rate 100MW is the initial state. Times

to transition from one state to another due to failures are distributed exponentially

with parameters, λ3,2 = 10−3 (hours(-1)), λ2,1 = 5.10−3 (hours(-1)) and λ1,0 = 2.10−3

(hours(-1)). Hence, times to failures T3,2, T2,1 and T1,0, where Ti,j represents the time

to transition from state i to state j, are random variables distributed according to

the c.d.f., F3,2(t) = 1− e−λ3,2t, F2,1(t) = 1− e−λ2,1t and F1,0(t) = 1− e−λ1,0t, for t > 0.

Semi-Markov process is also used when time taken for transition from one state to

another is arbitrarily distributed. Markov and semi-Markov modeling and reliability

evaluation of MSSs are available in the literature at the beginning of 1980’s, see Horjt

et al. (1985).
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UGF technique is fast enough than the structure function approach and stochas-

tic process approach when the complexity involved in computation of MSS reliability

increases. Lisnianski and Levitin (2003) described the structural function approach

and stochastic process approach, and proved the advantage of using UGF in reliabil-

ity evaluation over this methods. This technique allows one to find the entire MSS

performance distribution based on the performance distribution of its components by

using a fast algebraic procedure. An analyst can use the same recursive procedures for

MSSs with different physical nature of performance and different type of component

interaction. In practice, however, a variety of products are available in the market.

Each product is characterized by its capacity or productivity, reliability and price.

The capacity or productivity of a component is the quantitative measure of its per-

formance. It may have different physical nature. Examples of component capacities

are: generating capacity of a generator, pipe capacity for a water circulator, carrying

capacity for an electric transmission line. If two of such components are connected

in parallel, total performance will be sum of individual performances. In traditional

reliability theory, the performance of the parallel system is maximum of individual

performances. So in systems whose performance is measured in terms of capacity or

productivity the traditional reliability analysis is not sufficient, instead one has to

use the method of UGF. Also modern large scale systems are distinguished by their

structural complexity. The computation of reliability or availability or risk in such

systems is complicated and hence the computation of other measures such as impor-

tance measures and joint importance measures are also become complicated. In all

such cases UGF is found to be a useful tool for evaluation of performance measures
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and importance measures.

The developments of MSS reliability analysis started at the end of 1970’s. The

works of Barlow and Wu (1978), El.Neweihi et al. (1978), Ross (1979) and Griffith

(1980) gave structural and statistical foundation for the finite state MSSs. In their

work they defined the MSS and obtained structural properties similar to binary state

systems. This includes, definition of series MSS, parallel MSS, reliability bounds, re-

dundancy at series and parallel level, stochastic performance of MSS and component

importance measures in MSSs. An important theoretical development was on com-

ponent importance measures due to Bueno (1989). Several researchers made fruitful

study in importance measures of MSS, see Abouammoh and Al-Khadi (1991) and

Vassuer and Llory (1999). The joint importance measures for the two components

in a binary system was studied by Hong and Koo (1993) and Hong et al. (1999).

Recently joint importance measure for two components in a MSS was proposed by

Wu (2005). Later, the bulk of the work has been centered around the reliability anal-

ysis of MSSs based on above mentioned literature. Upto date developments in MSS

theory can be seen in Hudson and Kapur (1982), El.Neweihi and Proschan (1984),

Aven (1985), Aven (1988), Ebrahimi (1991), Abouammoh and Al-Khadi (1991), Aven

(1993), Brunelle and Kapur (1999) and Lisnianski and Levitin (2003). The definitions

and properties similar to the discrete state MSSs holds for system whose state change

in continuous fashion, see Baxter (1984), Block and Savits (1984), Baxter and Kim

(1986) and Baxter and Lee (1990). A major application of MSS reliability analysis

is in network systems. For example, consider a system with a set of radio relay sta-

13



tions with a single source and a single receiver and n intermediate stations. Each

one of consecutively ordered stations can have retransmitters generating signals that

reach next k stations (1 ≤ k ≤ n). Here k is random value depend on availability

of retransmitter amplifiers. Therefore each retransmitter is a multi-state component

with random performance characterized by k. The aim of the system is to provide

propagation of a signal from a source to a receiver. Here the reliability can be defined

as the probability that source and receiver are connected by working nodes. It is

also interesting to know which component or which group of components are more

important to the system performance.

Reliability evaluation in large MSSs (a system with considerably large number of

components) has been done by Kolowrocki (2004). They obtained reliability for large

MSSs using extreme value theory. The application of this development is in oil/ gas

transportation problem in which the system is parallel or series combination of large

number of pipe lines of different capacities.

We use the following notations throughout the thesis. The vector x = (x1, x2, ..., xn)

denote the vector of state of components 1, 2, ..., n. C = {1, 2, ..., n} denote the set of

component indices. When we discuss about binary system, each variable takes values

0 or 1, and when we discuss about MSSs, each variable takes values 0, 1, ...,M .

(ji,x) = (x1, ..., xi−1, ji, xi+1, ..., xn) and (.i,x) = (x1, ..., xi−1, .i, xi+1, ..., xn).
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y ≤ x ⇒ yi ≤ xi, i = 1, 2, ..., n, and y < x ⇒ yi ≤ xi, i = 1, 2, ..., n and yi < xi for

some i.

A subset U ⊆ Rn is an upper set if x ∈ U and x ≤ y⇒ y ∈ U .

A subset L ⊆ Rn is an lower set if x ∈ L and y ≤ x⇒ y ∈ L.

x ∨ y = max(x, y) and x ∧ y = min(x, y).

x ∨ y = (x1 ∨ y1, ..., xn ∨ yn) and x ∧ y = (x1 ∧ y1, ..., xn ∧ yn).

For j = 0, 1, ...,M , j = (j, j, ..., j, ..., j),

(ji,X) = (X1, ..., Xi−1, ji, Xi+1, ..., Xn) and (.i,X) = (X1, ..., Xi−1, .i, Xi+1, ..., Xn),

and Y ≤ X⇒ Yi ≤ Xi, for i = 1, 2, ..., n and Yi < Xi for some i.

We now give some brief mathematical ideas of binary and MSSs.
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1.2 Binary State System: An Overview

The theory of binary state systems serves as a unifying foundation for mathematical

and statistical theory of reliability, see Barlow and Proschan (1996, 1975). In this

theory systems and components are assumed to be in one of two states: functioning

or failed. To indicate the state of the ith component, we assign a binary indicator

variable xi to the component i: xi = 1 if the ith component is functioning, 0 if the

component i is failed, for i = 1, 2, ..., n, where n is the number of components in the

system. Similarly the binary variable φ indicates the state of the system: φ = 1 if the

system is functioning, 0 if the system is failed. We also assume that the state of the

system is determined completely by the state of the components, so that we may write

φ = φ(x) where x = (x1, ..., xn). The function φ(x) is called the structure function

of the binary system.

A series structure functions if and only if each component functions. The struc-

ture function is given by φ(x) =
∏n

i=1 xi = min(x1, ..., xn). Similarly a parallel struc-

ture functions if and only if atleast one of the component functions. The structure

function is given by φ(x) =
∐n

i=1 xi = max(x1, ..., xn).

A component is relevant to the system performance if an improvement in compo-

nent performance increases the system performance. Now consider a system such that

its structure function φ is increasing and each component is relevant. Such systems
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are called Coherent systems. Esary and Proschan (1963) provides the properties of

coherent structures in reliability study.

A path vector is defined as a vector x such that φ(x)= 1. The corresponding path

set is C1(x)= {i|xi = 1}. A minimal path vector is a path vector x such that

y < x ⇒φ(y)= 0. The corresponding minimal path set is C1(x).

A cut vector is a vector x such that φ(x)= 0. The corresponding cut set is C0(x).

A minimal vector is a cut vector x such that y > x⇒ φ(y)= 1. The corresponding

minimal cut set is C0(x).

Suppose now that components are statistically independent and the component

reliabilities are available. Suppose that the state Xi of the ith binary component is

random with reliability Ri = P [Xi = 1] = E(Xi), i = 1, 2, ..., n. The reliability of the

binary system is given by

R = P [φ(X) = 1] = E(φ(X)). (1.1)

In order to order the components based on their contribution to system reliability

improvement with respect to component reliability improvement, Birnbaum (1969)

proposed the following importance measure to a component i in a binary system.

I(i) =
∂R

∂Ri

. (1.2)

For example, consider three independent component parallel system with

R1 ≤ R2 ≤ R3,
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then R =
∐3

i=1 Ri = 1−
∏3

i=1(1−Ri) and I(1) ≤ I(2) ≤ I(3).

There are other related mathematical and statistical problems (eg. bounds for

reliability, maintenance, replacement policies, failure rate distributions etc ) addressed

by several authors. See Barlow and Proschan (1975, 1996) for further fundamental

information.

1.3 Multi-state System: An Overview

MSSs are introduced by El.Neweihi et al. (1978), Barlow and Wu (1978), Ross (1979)

and Griffith (1980). In these works, basic concepts of MSS reliability are formulated.

Griffith (1980) introduced the properties of MSS in a more elaborated way. A decom-

position result is introduced by Block and Savits (1982). A case study on offshore gas

pipeline network as an application to MSS reliability is carried out by Natvig et al.

(1986). Block et al. (1989) studied L-superadditive structure functions in MSSs. As

a generalization to usual MSS, MSS of order k (a system whose component is relevant

to atleast k levels of performance) is studied by Abouammoh and Al-kadi (1995).

Stochastic process approach is often used in MSS reliability analysis and it proved

to be a rather universal tool. The UGF is widely used in reliability evaluation of many

real life MSSs and optimization problems. Lisnianski and Levitin (2003) provides
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basic concepts of MSSs, defines MSS reliability measures and systematically describes

the tools for the reliability assessment and optimization problems.

Structural Definitions

The set theoretic approach is followed by Barlow and Wu (1978), who introduced a

class of MSSs based on the concept of minimum path set (minimum cut set) of binary

coherent system. Here each component can be in M + 1 states, {0, 1, ...,M} where

0 is the failed state and M is the maximal or ’perfect’ state. Assume, no minimum

path is properly contained in any other minimum path sets.

Let xi = j if component i is in state j (0 ≤ j ≤ M), so that x = (x1, x2, ..., xn) is

the component state vector. The specification and determination of component state

will in general depend on engineering and system considerations. The component

states will be qualitative measures as the concepts ’failed’ and ’functioning’.

The performance level of the system, given the component state vector x, will be

system dependent and it is unlikely that any one mathematical definition of system

performance will be preferred above all others. Hence we concentrate on a fundamen-

tal, but necessarily limited measure of system performance.

We recall the following from Barlow and Wu (1978).
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Theorem 1.3.1 For a coherent system with min path sets {P1, P2, ..., Pp} and min

cut sets {K1, K2, ..., Kk} and any real valued function fi

max1≤r≤pmini∈Prfi = min1≤s≤kmaxi∈Ksfi.

Let φ be a function with domain Sn = {0, 1, ...,M}n and range S = {0, 1, 2, ...,M},

where M and n are positive integers. The following definition shows how a MSS

state can be represented using state of components for a coherent system, based on

minimum path sets and minimum cut sets.

Definition 1.3.1 For a coherent system with min path sets {P1, P2, ..., Pp} and min

cut sets {K1, K2, ..., Kk} the system state function is

φ(x) = max1≤r≤pmini∈Prxi = min1≤s≤kmaxi∈Ksxi.

With this definition of system state, most of the results for binary coherent systems

have a natural generalization. In case of time dependent system, suppose that tij is

the first time that the component i reaches state j starting in state M , then the time

until the system first reaches j starting in state M , τi, is easily seen to be

τi = max1≤r≤pmini∈Prtij = min1≤s≤kmaxi∈Kstij.

Apart from the set theoretic approach for defining a MSS, El.Neweihi et al. (1978)

introduced the axiomatic definition of multi-state coherent system (MCS) as follows.

It was based on extension of binary relevance property to the multi-state case.
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Definition 1.3.2 A system of n components is said to be a multi-state coherent sys-

tem if its structure function satisfies the following properties.

1. φ(x) is increasing for x ≥ 0.

2. For level ’j’ of component ’i’, there exist a vector (.,x) such that φ(ji,x) = j

while φ(li,x) 6= j for l 6= j, i = 1, 2, ..., n and j = 0, 1, 2, ...,M.

3. φ(j) = j for j = 0, 1, 2, ...,M.

The condition (2) is referred to as the relevance condition.

Using the monotonicity of the structure function, Griffith (1980) introduced the

definition of multi-state monotone structure (MMS) function. The definition also

gives a bound for the MSS using series and parallel structure functions.

Definition 1.3.3 The structure function φ is a multi-state monotone structure func-

tion if it satisfies the following properties.

1. φ(x) is increasing in x ≥ 0.

2. min1≤i≤nxi ≤ φ(x) ≤ max1≤i≤nxi.

Now we consider some important properties of the MSSs defined above. El.Neweihi
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et al. (1978) obtained the decomposition result of MSS as

φ(x) =
M∑

j=0

φ(ji,x)I[xi=j]

where I[xi=j] = 1 if xi = j and 0 otherwise, i = 1, 2, ..., n.

El.Neweihi et al. (1978) obtained bounds for the MCS as,

min1≤i≤nxi ≤ φ(x) ≤ max1≤i≤nxi

and extended the result, ’redundancy at the component level is preferable to the

redundancy at the system level’, from binary state system theory.

Theorem 1.3.2 Let φ be a structure function of a MCS. Then,

1. φ(x ∨ y) ≥ φ(x)∨ φ(y), and

2. φ(x ∧ y) ≤φ(x)∧ φ(y),

equality in (1) and (2) holds for parallel and series system respectively.

Griffith (1980) introduced the concept of strongly coherent and weakly coherent

MSSs, based on relevance assumption of components. This relevance assumptions are

useful in computation of importance measures. The basic idea is stated below.
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Definition 1.3.4 Let φ(x) be a MMS.

1. For any component i and state j, there exist a x such that, φ(ji,x) = j while

φ(li,x) 6= j for l 6= j, then φ(x) is said to be strongly coherent.

2. For any component i and state j ≥ 1, there exist a x such that φ((j − 1)i,x)

< φ(ji,x), then φ(x) is said to be coherent.

3. For any component i and state j, there exist a x such that φ(ji,x) 6= φ(li,x),

for j 6= l, then φ(x) is said to be weakly coherent.

Block and Savits (1982) redefined the existing definition of MSS, so that bounds

of φ(x) is easily obtained as in following theorem.

Theorem 1.3.3 Let φ : Sn → S.

1. φ is non-decreasing if and only if either of the following condition holds

(a) φ(x ∨ y) ≥ φ(x) ∨ φ(y) ∀ x,y ∈ Sn or

(b) φ(x ∧ y) ≤ φ(x) ∧ φ(y) for all x,y ∈ Sn.

2. If φ is non-decreasing, then for all x = (x1, x2, ..., xn) ∈ Sn,

(a) min1≤i≤nxi ≤ φ(x) if and only if φ(k) ≥ k for all k ∈ S,

(b) φ(x) ≤ max1≤i≤nxi if and only if φ(k) ≤ k for all k ∈ S,
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consequently min1≤i≤nxi ≤ φ(x) ≤ max1≤i≤nxi if and only if φ(k) = k for all

k ∈ S.

3. If φ is non-decreasing, then

(a) max1≤i≤nφ(xi, 0) ≤ φ(x) ≤ min1≤i≤nφ(xi, M) and

(b) φ(min1≤i≤nxi, ...,min1≤i≤nxi) ≤ φ(x) ≤ φ(max1≤i≤nxi, ....,max1≤i≤nxi).

Further more, these bounds are not comparable in the sense that there exist a

system φ for which (a) is better than (b) and vise versa.

4. If φ is non-decreasing, then,

(a) φ(x ∨ y) = φ(x)∨φ(y) for all x,y ∈ Sn if and only if φ(x) = max1≤i≤nhi(xi)

where hi(j) = φ(ji,0) and

(b) φ(x ∧ y) = φ(x)∧φ(y) for all x,y ∈ Sn if and only if φ(x) = min1≤i≤nHi(xi)

where Hi(j) = φ(ji,M).

Until now we discussed the structural definition and important properties of a

MSS. When the state variables are random, we need to use probabilistic concepts

to find reliability and related problems. So we consider the stochastic properties of

MSSs in the following section.
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Stochastic Properties

Here we discuss the relationship between the stochastic performance of the system

and stochastic performance of the components in reliability analysis of MSSs.

Let X = (X1, X2, ..., Xn) be a random vector representing the state of the compo-

nents (1, 2, ..., n) where the X1, X2, ..., Xn are assumed to be stochastically mutually

independent. Let P [Xi = j] = pij and P [Xi ≤ j] = Pi(j), for j = 0, 1, 2, ...,M , and

i = 1, 2....n. Pi(.) represent the performance distribution of component i. Clearly,

Pi(j) =
∑j

k=0 pik and Pi(M) =
∑M

k=0 pik = 1 for i = 1, 2, ..., n. Then φ(X) is a

random variable representing the system state of a MCS having structure function φ.

Let P [φ(X) = j] = pj, j = 0, 1, 2, ...,M , and P [φ(X) ≤ j] = P (j), j = 0, 1, 2, ...,M .

P (.) represents the performance distribution of the system. Let h = Eφ(X), we

may express h as follows, h ≡ hp(p1, ...,pn), since h is a function of p1, ...,pn, where

pi = (pi0, ..., piM) for i = 1, 2, ..., n. We call h, the performance function of the system.

El.Neweihi et al. (1978) investigated the system performance function of n com-

ponents in terms of the system performance function of the n− 1 components as,

h(p1,p2, ...,pn) =
M∑

j=0

pijh(ji;p1,p2, ...,pn), i = 1, 2, ..., n,

where h(ji;p1,p2, ....,pn) = Eφ(ji,X) = Eφ(X1, ..., Xi−1, ji, Xi+1, ..., Xn).

El.Neweihi et al. (1978) proved that h(p1,p2, ...,pn) is strictly increasing in pij,
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i = 1, 2, ..., n and j = 0, 1, 2, ...,M .

Let Pi(.) and P ′
i (.) be two possible performance distribution for component i,

i = 1, 2, ..., n. Assume Pi(j) ≥ P ′
i (j), j = 0, 1, 2, ...,M and i = 1, 2, ..., n. Let P (.) and

P ′(.) be the corresponding system performance distribution. Then, El.Neweihi et al.

(1978) proved that P (j) ≥ P ′(j) for j = 0, 1, 2, ...,M and h(p1, ...,pn) ≤ h(p′1, ...,p
′
n).

Now we relate the properties of P , the system performance distribution, to the

properties of h, the system performance function or to the properties of the pij.

El.Neweihi et al. (1978) showed that h =
∑M−1

j=0 P̄ (j), where P̄ (j) = 1 − P (j). Let

P̄i(.) = 1− Pi(.). El.Neweihi et al. (1978) proved that

n∏
1

Pi(j) ≤ P (j) ≤ 1−
n∏
1

P̄i(j), and

M∑
j=1

n∏
1

P̄i(j − 1) ≤ h ≤
M∑

j=1

[1−
n∏
i

Pi(j − 1)].

It gives the bounds on both the system performance distribution and system perfor-

mance function.

A decomposition result useful in computation of importance measures is obtained

by El.Neweihi et al. (1978).

Theorem 1.3.4 Let φ be a structure function of a MCS, then

P [φ(X) ≥ l] =
M∑

j=0

pijP [φ(ji,X)] ≥ l], l = 1, 2, ...,M, i = 1, 2..., n. (1.3)
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Block and Savits (1982) established the following bounds for reliabilities when

component r.v.’s are associated and independent. Let Uk = { all critical path (or

upper) vector to the level k } where a vector x is called an upper (lower) vector for

level k of a MMS if φ(x)≥ k(φ(x)≤ k), it is called critical upper (lower) vector for

level k if in addition y < x and y 6= x ⇒ φ(y)< k( if y ≥ x and y 6= x ⇒ φ(y) > k).

Also denote Lk = {all critical cut (or lower) vectors to the level k }.

Lemma 1.3.1 Let φ be a MMS and k=0,1,...,M-1.

1. The following bounds always holds,

maxY∈∪k+1
P [∩(i,j)∈∪k+1(Y){Xi > j−1}] ≤ P̄ (k) ≤ minY∈Lk

P [∪(i,j)∈Lk(Y){Xi > j}].

2. If the X ′
is are associated (see section 1.5 for association of random

variables), then

maxY∈Uk+1

∏
(i,j)∈Uk+1(Y)

P̄i(j − 1) ≤ P̄ (k) ≤ minY∈Lk

∐
(i,j)∈Lk(Y)

P̄i(j)

and

∏
Y∈Lk

P [∪(i,j)∈Lk(Y){Xi > j}] ≤ P̄ (k) ≤
∐

Y∈Uk+1

P [∩(i,j)∈Uk+1(Y){Xi > j − 1}]

3. If X ′
is are independent, then

∏
Y∈Lk

∐
(i,j)∈Lk(Y)

P̄i(j) ≤ P̄ (k) ≤
∐

Y∈Uk+1

∏
(i,j)∈Uk+1(Y)

P̄i(j − 1).
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Here the bounds for reliability are obtained when components are independent

and associated. The concept of association plays an important role for obtaining

bounds for MSS reliability.

As we do have an added concern, in this work, on the importance and joint

importance measures for both MSSs and binary systems, we shall briefly present the

preliminary ideas and developments of importance measure in the next section.

Importance Measures

When we consider the MSS with multiple components it should be obvious that some

components in the system are more important for the system reliability than other

components. Measures of importance are quantitative criteria for ordering different

components in the coherent system based on their critical roles in the functioning

performance or the failure of the system. The definitions of importance for the com-

ponents in the binary setup are clearly defined in Birnbaum (1969) and Barlow and

Proschan (1975). Later El.Neweihi et al. (1978), Griffith (1980), Bueno (1989), and

Abouammoh and Al-kadi (1991) extended binary concept of component importance

to MSS setup. Barlow and Wu (1978) suggested measures of component importance

in a MSS based on the relevance property; a component i is ”critical” to a coherent

system at state j, if, with component i in state j, the system is in state j and if com-

ponent i not in state j, the system is not in state j. While studying the importance
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measures in MSS, Barlow and Wu (1978) proved that the following two statements

are equivalent:

1. (i) Xi = j ⇒ φ(X) = j and (ii) Xi 6= j ⇒ φ(X) 6= j,

2. (i) Xi ≥ j ⇒ φ(X) ≥ j, (ii) Xi ≤ j ⇒ φ(X) ≤ j,

(iii) Xi > j ⇒ φ(X) > j and (iv) Xi < j ⇒ φ(X) < j.

Needless to say, these statements show how a component is critical to the system.

Now we consider the concepts of component importance of the binary system, see

Barlow and Proschan (1975). If h(p), where p = (R1, ..., Rn) and Ri = P [Xi = 1], is

the reliability function of a binary state system, the importance I(i) of ith component

is

I(i) = ∂h
∂Ri

where h = E[φ(X)] or equivalently

I(i) = h(1i,p)−h(0i,p) = E[φ(1i,X)−φ(0i,X)] or equivalently

I(i) = P [φ(1i,X)= 1 and φ(0i,X)= 0].

Note that h(p)= RiI(i) + h(0i,p) and it implies h((Ri + ∆)i,p) = h(p)+∆I(i),

this demonstrates that a component improvement of4 in component i yields a system
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improvement of ∆I(i).

In the MSS, as defined in Griffith (1980), consider the expected utility

U(ρ) =
M∑

j=1

ajpj(ρ) =
M∑

j=1

bjHj(ρ)

where pi(ρ) = P [φ(X) = i], Hj(ρ) =
∑M

i=j pi(ρ), ρ = (ρ1, ρ2, ..., ρn), ρi = (ρi1, ρi2, ..., ρiM),

ρij =
∑M

l=j pil, b1 = a1, bk = ak − ak−1, for k = 2, 3, ...,M and bj ≥ 0 for all j. Define

Ilj(i) = P [φ(li,X) ≥ j]− P [φ((l − 1)i,X) ≥ j] ∀i, ∀ l and j ≥ 1,

then, component importance to the level l of component i in the MSS is

Il(i) =
M∑

j=1

bjIlj(i), l = 1, 2, ...,M.

Griffith (1980) obtained the general decomposition

U(ρ) =
M∑

j=1

bjP [φ(0i,X) ≥ j] + Ī(i)ρT
i

where Ī(i) = (I1(i), I2(i), ..., IM(i)) and ρT
i is the transpose of ρi.

As a particular realization of above arguments, if ai = j so that U = E[φ(X)]

then, the vector of component importance in the MSS is,

Ī(i) =

(
M∑

j=1

{P [φ(1i,X) ≥ j]− P [φ(0i,X) ≥ j]}, ... ,

M∑
j=1

{P [φ(Mi,X) ≥ j]− P [φ((M − 1)i,X) ≥ j]}

)

= (E[φ(1i,X)]− E[φ(0i,X)], ..., E[φ(Mi,X)]− E[φ((M − 1)i,X)]) .
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Bueno (1989) defined the reliability importance of MSS, the reliability importance

of level l of the ith component for the level j of the system is

Ilj(i) = P [φ(li,X) ≥ j]− P [φ((l − 1)i,X) ≥ j].

This definition enables us to obtain the Griffith reliability importance of level l of the

ith component for the system,

Il(i) =
M∑

j=1

Ilj(i) = E[φ(li,X)− φ((l − 1)i,X)].

Note that all the importance measures discussed above are based on component rel-

evancy with respect to a specified level over the system performance. Meng (1993)

differentiated some of the existing relevancy assumptions and introduced two new

other relevance conditions and importance measures.

Another interesting research area in binary state systems is that of ageing proper-

ties of the lifetime random variable. The ageing properties of the binary state systems

are discussed in Barlow and Proschan (1975). We recall some important concepts of

ageing in the following section.

1.4 Ageing of a Life Time Random Variable

The concept of ageing is very important in reliability theory. ’No ageing’ means the

age of a component has no effect on the distribution of residual life time. ’Positive
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ageing’ describes the situation where residual lifetime tends to decrease, in some prob-

abilistic sense, with increasing age of the component. On the otherhand, ’Negative

ageing’ has an opposite effect on the residual lifetime.

Let Xt be the random variable representing the residual life time of a unit which

has attained the age t. Let the survival function be Rx(t). Next it is seen that

Rx(t) =
R(t + x)

R(t)

where R(x) is the survival or reliability function of the life time random variable with

distribution function F (x). This is the conditional probability that the unit survived

upto time t, will not fail before additional x units of time. Further R0(t) = R(t).

By positive ageing we mean the phenomenon where by an older system has shorter

remaining life time in some statistical sense than a newer or younger one. That is

Rx(t) =
R(t + x)

R(t)
≤ Rx(0) or Rx(t) =

R(t + x)

R(t)

is decreasing in t. Similarly, for negative ageing,

Rx(t) =
R(t + x)

R(t)
is increasing in t.

Obliviously, any study of the phenomenon of ageing is to be based on Rx(t) and

functions related to it.

Another important function used in study of ageing is the conditional failure rate
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function. The conditional failure rate or failure rate λ(t) at time t is defined as

λ(t) = limx→0
R(t)−R(t + x)

xR(t)
,

so that,

λ(t) =
f(t)

R(t)
,

when F = 1−R is absolutely continuous and f(t) is the probability density function

of F (t).

In reliability, we often characterize life distribution through the failure rate func-

tion λ(t) = f(t)
R(t)

.

If λ(t) is increasing in t ( or equivalently Rx(t) = R(t+x)
R(t)

is decreasing in t), then

F is said to be increasing failure rate (IFR) distribution.

Similarly, if λ(t) is decreasing in t ( or equivalently Rx(t) = R(t+x)
R(t)

is increasing in

t), then F is said to be decreasing failure rate (DFR) distribution.

The most commonly considered ageing classes other than IFR and DFR are in-

creasing failure rate average (IFRA), new better than used (NBU), new better than

used in expectation (NBUE), and decreasing mean residual life (DMRL) (with their

duals).

F is said to be IFRA if 1
t

∫ t

0
λ(x)dx is increasing in t.
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F is said to be NBU distribution if

R(t + x) ≤ R(t)R(x), t ≥ 0, x ≥ 0.

F is said to be NBUE distribution if

∫ ∞

0

R(t + x)dx ≤ R(t)

∫ ∞

0

R(x)dx, t, x > 0.

F is said to be DMRL distribution if

µ(t) =

∫∞
t

R(x)dx

R(t)

is decreasing in t.

Details to these ageing properties can be seen in Bryson and Siddiqui (1969) and

Barlow and Proschan (1975). The other ageing properties such as Bathtub shaped

failure rate, HNBUE (Harmonically new better than used in expectation), etc can be

seen in Deshpande et al. (1986), Klefsjo (1982) and Lai et al. (2001).

Suppose, for example, the life time of a component follows two parameter Weibull

distribution, then

F (t) = 1− e−(t/θ)α

, θ > 0, α > 0, t > 0.

Then

λ(t) = α(t/θ)α−1, θ > 0, α > 0, t > 0.

Thus if α = 1, the model becomes constant failure rate model, α < 1 decreasing failure

rate model, and α > 1 increasing failure rate. In many applications of reliability,
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maintenance theory, inventory theory and biometry different probabilistic concepts

of ageing are of interest. Various authors have studied classes of life distributions

based on different concepts of ageing.

If the density function does not exist or if the distribution function is not absolutely

continuous, we cannot use failure rate function for the identification of failure rate

model. In such cases we use Rx(t) to identify the failure rate model.

When we consider a system governed by stochastic process, it is interesting to

study the ageing properties of system lifetime distribution. Ageing properties of first

passage time distribution of Markov chain is given by Brown and Chaganty (1983) and

aging properties of first passage time distribution of a Markov process is studied by

Belzunce et al. (2002). When we model a MSS using semi-Markov process, we need

to consider the ageing properties of semi-Markov system in the reliability analysis.

Barlow and Proschan (1975) discussed the bounds of binary system (series and

parallel) reliability based on concept of association. Block and Savits (1982) obtained

bounds for the reliability when component state random variables are associated. In

the following section we discuss the concepts of association among random variables.
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1.5 Association of Random Variables

In the classical case of statistical inference, the observed random variables of interest

are generally assumed to be independent and identically distributed. However in

several real life situations, the random variables need not be independent.

In reliability studies, there are structures in which the components share load,

so that failure of one component results in increased load on each of the remaining

components. Minimal path structures of a coherent system having components in

common behave in a similar manner. Failure of one component will adversely affect

the performance of all the minimal path structures containing it. In both the examples

given above, the random variables of interest are not independent but are ’associated’.

Hoeffding (1940) [cf. Lehmann (1966)] proved the following result.

Theorem 1.5.1 Let (X, Y ) be a bivariate random vector such that E(X2) < ∞ and

E(Y 2) < ∞. Then

Cov(X, Y ) =

∫ ∞

−∞

∫ ∞

−∞
H(x, y)dxdy (1.4)

where

H(x, y) = P [X > x, Y > y]− P [X > x]P [Y > y]

= P [X < x, Y < y]− P [X < x]P [Y < y].
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Relation (1.4) is known as the Hoeffding identity. This result is useful in the study

of ’association’.

It is customary to consider that two random variables X and Y are associated if

Cov(X, Y ) = E(XY )− E(X)E(Y ) ≥ 0.

If Cov(f(X), g(Y )) ≥ 0 for all pair of non-decreasing functions f, g, then X and Y

are more strongly associated. Finally, if

Cov(f(X, Y ), g(X, Y )) ≥ 0

for all pairs of functions f, g which are non-decreasing in each argument, then X and

Y are more strongly associated. See Esary et al. (1967) for more details.

The strongest of these criteria has a natural multivariate extension. We say

that random variables X1,...,Xn are associated if Cov(f(X), g(Y)) ≥ 0 for all non-

decreasing functions f and g for which Ef(X), Eg(X), Ef(X)g(X) exist, where

X = (X1, ..., Xn).

The following are some important properties of association.

P1. Any subset of associated random variables are associated.

P2. If two sets of associated random variables are independent of one another,

then their union is a set of associated random variables.
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P3. The set consisting of single random variable is associated.

P4. Non-decreasing functions of associated random variables are associated.

Barlow and Proschan (1975) used the concept of association for getting reliability

bounds for binary system.

When a system performance is a stochastic process, a series of bounds for the

availability and unavailability in a fixed time interval, I, for a system of maintained,

interdependent components are given in Natvig (1980) in the traditional binary case,

and in Funnemark and Natvig (1985) in the multi-state case. For the special case

of independent components the only assumption needed to arrive at these bounds is

that the marginal performance process of each component is associated in I. When

these processes are Markovian and binary, a sufficient condition for this to hold is

given by Esary and Proschan (1970). For that, Esary and Proschan (1970) consid-

ered devices capable of two states of performance, either functioning or failed. The

performance process of a device is a stochastic process {Xi(t), t ∈ τ}, where for each

fixed value of t ∈ τ , Xi(t) is a random variable taking values 0, and 1. Xi(t) = 1

if the component is perfectly functioning, and Xi(t) = 0, if the component is com-

pletely failed. The index τ is contained in [0,∞). The joint performance process

{X(t), t ∈ τ} = {X1(t), ..., Xn(t), t ∈ τ} for a set of components is a vector of stochas-

tic processes for which ith marginal process {Xi(t), t ∈ τ} is the performance process

for the ith component, i = 1, ..., n. The joint performance process {X(t), t ∈ τ} of
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a set of components is associated in time if for each set of times {t1, ..., tm} ⊂ τ the

binary random variables in the array

X1(t1) . X1(tm)

. . .

Xn(t1) . Xn(tm)

are associated. Hjort et al. (1985) generalized the condition of association in bi-

nary case to the multi-state case, and gave an equivalent and much more convenient

condition in terms of the transition intensities.

More generally, let a component consist of k branches in parallel and let its state

be the number of functioning branches. Assume that the branches fail and are re-

paired/replaced independently of each other, all having the same instantaneous failure

rate and repair/replacement rate. Then the underlying Markov process is associated.

Association concepts play a role in MSS reliability study.

When we compare two pair of random variables based on their degree of associ-

ation, it is interesting to get a measure of degree of association of each pair. Karlin

(1983) proposed a measure for getting degree of association of pair of random vari-

ables. But when we compare two MSSs with n multi-state components each of which

are governed by Makov process, there is a requirement of a measure based on transi-

tion probability function. Some researchers considered dependence notions based on
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association, i.e., correlation order, see Yi and Weng (2006) and compared dependence

of stationary Markov processes, see Hu and Pan (2000). But they used conditional

expectation of system structure for the comparison. They did not use transition

probability function. Since Kuber and Dharmadhikari (1996) and Dharmadhikari

and Dewan (2006) used transition probability function to get the sufficient condi-

tion for association in time of Markov and semi-Markov processes, a measure based

on transition probability function for comparison of two systems whose performance

processes are Markovian will be helpful to system engineers.

Now we consider the most commonly used performance measures of the MSS.

1.6 Performance Measures of MSS

In the thesis, we use four performance measures-reliability, availability, risk (unre-

liability or unavailability) and expected performance. In this section we give brief

details regarding the performance measures.

Let X = (X1, ..., Xn), where Xi ∈ {0, 1, ...,Mi} denotes the state of the com-

ponent i, where Mi is the best state of component i, whose output performance

is in {xi0, xi1, ..., xiMi
}. Here Mi can be equal in some situations, i.e., Mi = M

∀i = 1, 2, ..., n. Let W ∈ {wk, 0 ≤ k ≤ M} denotes the output performance of the
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system where M = max1≤i≤n{Mi}. Let φ(X) denotes the state of MSS, i.e., φ(X) = k

when W = wk. Let, ∀ 1 ≤ i ≤ n,

pij = P [Xi = j], 0 ≤ j ≤ Mi

and

pk = P [W = wk], 0 ≤ k ≤ M

be the probability distribution of components and system.

In a similar fashion we can consider that the states of components and sys-

tem are time dependent random variables. At time zero, the system begins at its

best state and as time passes the system begins to deteriorate. Then, let X(t) =

(X1(t), ..., Xn(t)) represents the vector of component states, φ(X(t)) represents the

system state and W (t) represents the system output performance.

We consider the following performance measures of MSS in this thesis.

1. System Reliability: Reliability is the ability of the system to meet the

demand. Let wk be the system demand corresponding to state k of the MSS

described above. Then MSS reliability may be defined as

R = P [φ(X) ≥ k] = P [W ≥ wk], k ∈ {0, 1, ...,M}. (1.5)

For a time dependent MSS, the reliability may be defined as, for a system
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working without falling below state k upto time t,

R(t) = P [φ(X(t)) ≥ k] = P [W (t) ≥ wk], k ∈ {0, 1, ...,M}. (1.6)

2. System Availability: System availability may be defined as the probability

that the system is in working state, above level k, at the time of inspection t.

That is,

A(t) = P [φ(X(t)) ≥ k] = P [W (t) ≥ wk], k ∈ {0, 1, ...,M}, (1.7)

where t is the time of inspection.

3. System Expected Performance: System expected performance state is

Es =
M∑

k=0

P [φ(X) ≥ k] =
M∑

k=0

P [W ≥ wk]. (1.8)

The system expected output performance is

E =
M∑

k=0

wkP [W = wk]. (1.9)

In a similar way we can define time dependent system expected performances.

E(t) =
M∑

k=0

wkP [W (t) = wk]. (1.10)

4. Risk (System Unreliability or Unavailability): The system unreliability

may be defined as

R̄ = 1− P [φ(X) ≥ k] = P [W < wk], k ∈ {0, 1, ...,M}. (1.11)

For the time dependent system it is

R̄(t) = 1− P [φ(X(t)) ≥ k] = P [W (t) < wk], k ∈ {0, 1, ...,M}. (1.12)
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Similarly unavailability is

Ā(t) = 1− P [φ(X(t)) ≥ k] = P [W (t) < wk], k ∈ {0, 1, ...,M}. (1.13)

At steady-state, the probability distribution of the MSS states is:

pi = limt→∞P [W (t) = wi] = limt→∞P [φ(X(t)) = i], 0 ≤ i ≤ M. (1.14)

The two vectors of the system performance realizations w̄ = {wi, 0 ≤ i ≤ M}, and

system state probabilities, p̄ = {pi, 0 ≤ i ≤ M} define the system output performance

distribution.

Suppose that the system (or component) is in operation without break from the

start of the operation, then reliability is a suitable measure in reliability analysis.

Also in situation of preventive maintenance activities, the definition of reliability is

central to the study. But, if we shutdown the system without complete failure for

some corrective maintenance or we are interested only in the probability of failure at

time t, we use availability as the performance measure. In nuclear science where the

risk become an important measure for the system performance, we can use the system

unreliability or unavailability. The expected performance or average performance is

used as an important performance measure in the system reliability analysis. Lisni-

anski and Levitin (2003) provides a good account information in reliability analysis

of various real life MSSs based on these OPMs.

The MSS OPMs at steady state may be defined as follows.
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1. Reliability: R =
∑M

i=0 piI{wi≥wk}, I{wi≥wk} is the indicator function of

{wi ≥ wk}.

2. Availability: A =
∑M

i=0 piI{wi≥wk}.

3. Expected State: Es =
∑M

i=0 ipi.

4. Expected Output Performance: E =
∑M

i=0 wipi.

5. Unreliability: R̄ = 1−R.

6. Unavailability: Ā = 1− A.

Most of the reliability engineers use the above performance measures.

In any statistical problem, after the model specification and derivation of various

properties, the inference methods become important such as estimation of unknown

parameters using data, testing of some hypothesis regarding unknown parameter, etc.

In the following section the concept of Bayesian inference in reliability is discussed.

1.7 Bayesian Inference

An important information regarding unknown parameters involved in any statistical

problem is prior information. A useful way of talking about prior information is in
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terms of probability distribution over the possible values of parameter under consid-

eration. Let p be the unknown parameter with prior density π(p). Berger (1985)

provided a good account of procedures of prior selection. Bayesian analysis is per-

formed by combining the prior information (π(p)) and the sample information (x)

into what is called posterior distribution of p given x, from which all inferences and

decisions are made. The posterior distribution of p given the data may be denoted as

π(p|x). In general the sample distribution m(x), where m(x) is the sample density

function, and π(p|x) are not easily calculable. If, for example, x is N(p, σ2) and p is

C(µ, β), then π(p|x) can only be evaluated numerically. A large part of the Bayesian

literature is devoted to finding prior distributions for which π(p|x) can be easily cal-

culated. These are called conjugate priors. Beta distribution belongs to conjugate

prior family.

In Bayesian reliability literature, if reliability is the unknown parameter, the most

of the researchers feels Beta distribution is suitable prior since it is conjugate prior,

ie., posterior distribution is again Beta, see Jun et al. (1999) and Hammada et al.

(2003). Beta distribution in the interval [0,1] is suitable for prior distribution of

reliability.

When we consider MSS made up of n components, each component reliability

may be unknown. So we can assign proper prior distributions to them and estimate

reliability from posterior distribution.
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Now we give the motivation and objectives of the present study in MSS reliability

analysis.

1.8 Motivation and Objectives of the Present Study

There are various unsolved problems associated with MSS reliability analysis. In MSS

reliability engineering we use four important output performance measures (OPMs)

for the MSS. They are reliability, availability, expected performance and risk (unre-

liability or unavailability). The problem of finding joint importance of two or more

components in the sense of Birnbaum, performance achievement worth, performance

reduction worth, and Fussel-Vesely with respect to the OPMs in the MSS is an unex-

plored one. In many engineering applications, these measures have an important role

in finding the joint effect of two or more components for getting maximum variation

in performance measure, for identifying the performance achievement due to interac-

tion, performance reduction due to lack of interaction and the maximum decrement

in the system reliability caused by lack of interaction.

The available MSSs have some specific component relevancy assumptions for their

definition and its importance measure. But in some systems these relevance assump-

tion becomes insufficient for system definition and calculation of importance measures.

So we need some new relevancy assumptions and its use in computing the importance
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and joint importance measures. The application of such definitions arises in power

generation systems, network systems etc, see Natvig et al. (1986) and Natvig and

Morch (2003).

When we are interested in the dynamic behavior of a MSS, Markov/semi-Markov

processes turns out to be the good MSS modeling tools. A major research problem

related to lifetime of a binary system is the behavior of its failure rates, such as IFR,

IFRA, DFR and DFRA. But such behaviors of failure rate in MSS context is to be

developed more. So finding a necessary and sufficient conditions for first passage

time from acceptable state to unacceptable state in a MSS modeled by semi-Markov

process to be IFR, IFRA, DFR and DFRA is a problem of reliability analysis. In

order to apply suitable maintenance and replacement policies to the MSS, we can use

the ageing properties as in the binary case.

The concepts of association in Markov process and semi-Markov process applicable

to MSSs are discussed by Horjt et al. (1985) and Dharmadhikari and Dewan (2006)

respectively. But, we need measures to assess the degree of association of system

governed by Markov process. If we have some criteria based on transition probability

function of the process to find the degree of association, then two processes can be

compared based on the degree of association. The application is useful not only in

reliability engineering, but also in all other field in which similar models apply.

The evaluation of the reliability, availability, risk, expected performance and im-
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portance measures using UGF is now a common practice. But the evaluation of joint

importance measures using UGF remains unsolved yet. It would be helpful to system

engineers, if the evaluation procedure is available. There are large number of real life

MSSs, eg. telecommunication system, oil/gas transportation system, power genera-

tion system, signal transmission system, production and manufacturing systems, etc,

which can be modeled as multi-state network with multi-state arcs or nodes. It is

quite desirable to apply the UGF method of evaluation of joint importance measure

evaluation in network systems.

In any statistical decision problem, the Bayesian inference serves as a useful tool for

estimation. Hence finding the Bayesian methods in complex multi-state reliability and

joint importance measure estimation problems is quite desirable. Bayesian inference

will be useful in rare data problem and in presence of prior information of system

reliability or component reliability.

Based on the above objectives, we have made an attempt to address the problems

and obtained results. These are fundamental to the MSS reliability analysis. The

following section briefly discusses the new results under this objectives.
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1.9 Main Contribution of the Thesis: An Overview

Importance measure(IM)s of components in MSS reliability is indeed an important

topic. In Chapter 2, we introduce the joint structural importance measures, and

the measures of joint importance with respect to various performance measures such

as, system reliability, system availability, system expected output performance, and

system risk (unreliability or unavailability). They are joint reliability importance

measures for any number of components, joint performance achievement worth, joint

performance reduction worth, joint performance Fussel-Vesely measure, for two com-

ponents and joint performance Birnbaum measure for any number of components.

The proposed measure can be used to give priority for safety of operations of group

of components (group of two components or group of three components, etc...). Also,

we give a characterization result using Schur-convex functions for identifying the sign

of the joint reliability importance of a binary imaged MSS.

A key requirement in defining a MCS is the relevance condition of the compo-

nents. The condition of relevancy in binary coherent system (BCS) is extended in

various different ways. Some extensions can be seen in Meng (1993) and Abouammoh

and Al-Khadi (1991, 1995). In Chapter 3, a new class of MCSs is introduced with a

reasonable component relevance condition. Further a more general relevance condi-

tion is introduced and compared with some existing component relevance conditions.

Based on the new relevance conditions, component importance measures for MCSs
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are defined. They are most appropriate for comparing components when certain type

of system improvement is considered. Further, we introduce new joint importance

measures for two or more components with respect to the proposed relevance condi-

tions. Definitions based on structural properties of the new relevance conditions are

given. The new MCS classes include several existing MCSs as special case.

In Chapter 4, we study the aging properties of the first passage time distribution

of the MSS modeled by a semi-Markov process. The states of the system consists of

two sets - one of acceptable states and other of down states. We derive a necessary

and sufficient condition under which the distribution of the first passage time from

acceptable states to down state is IFR and IFRA. The dual results of DFR and DFRA

are also discussed.

In reliability engineering, often lifetime random variables are not independent but

are associated. A sufficient condition for association when the marginal processes are

Markovian is given by Hjort et al. (1985). Lisnianski and Levitin (2003) discussed a

large number of real life problems in MSS modeling and reliability assessment, and

provided a stochastic process approach (eg. Markov and semi-Markov) for the MSS

reliability evaluation. To apply the concept of association to real data one require a

measure of the degree of association. Karlin (1983) compared the relative degree (or

strength) of association for two sets of random variables. In Chapter 5, we address the

problem of assessing the degree of association of a Markov process or of comparing the

relative strength of association of two Markov processes. We suggest a measure based
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on transition probability function to obtain and compare the degree of association in

time of two processes. The measure is also useful in semi-Markov setup.

The method of UGF (also called the method of generalized generating sequence,

see Ushakov (2000)) generalizes the technique that is based on using a well-known

ordinary generating function. The basic idea of method is introduced by Ushakov

(1987). The approach proved to be very convenient for numerical realization. It

ensures relatively small computational resource for evaluating MSS reliability indices

and therefore, can be used in complex reliability optimization algorithm. Lisnianski

and Levitin (2003) used UGF for the evaluation of importance measures. In Chapter

6, we discuss the application of UGF for the evaluation of joint importance measures.

The applications of UGF for the evaluation of joint importance measures in network

problems are highlighted.

In any statistical problem, inference of probability distributions and parameters is

very important. In the case of rare data problem that arise in reliability engineering,

we can use the Bayesian results for inference of unknown parameters. In Chapter

7, we give the method of Bayesian inference of MSS reliability when the system is

modeled as network system. This procedure is useful to get Bayes estimates of joint

importance measures.

Finally, we give some concluding remarks and further future research. A detailed

reference list is given at the end of the thesis.
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Chapter 2

JOINT IMPORTANCE MEASURES

2.1 Introduction

1Importance measures (IMs) quantify the criticality of a particular component within

a system design. They have been widely used as tools for identifying system weak-

ness, and to prioritize reliability improvement activities. Measures of importance are

quantitative criteria for ordering different components in the coherent system whose

improvement may result in the greatest improvement for the system based on their

critical roles in the functioning or the failure of the system and to provide a checklist

1Some contents of this chapter have appeared in Chacko and Manoharan (2008a, 2008c), and

Chacko (2008a)
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for failure diagnosis. They can also provide valuable information for the safety and

efficient operation of the system. From the design point of view, it is crucial to iden-

tify the weakness of the system and how failure of each individual component affects

proper functioning of the system; so that efforts can be spent properly to improve

the system reliability. However, the extend to which a group of component and its

states affect the system is a major concern to the system designer and system con-

troller. To solve this problem, methods dependent on the information obtained from

joint importance measures can be developed for efficient resource allocation. The

knowledge about the joint importance measure can be used as a guide to provide re-

dundancy so that system reliability is increased. It is more informative to the system

designers about the interaction effect of two or more components in improving system

performance. Information about this type of interaction importance of components

constituting a system, with respect to its safety, reliability, availability and risk, is of

great practical aid to system designers and managers. Measures of joint importance

provide the information on the type and degree of interactions between two or more

components by identifying the sign and size of it. A little work has been reported in

literature on joint importance measures and the existing measures are extensions of

Birnbaum importance measures.

In the binary classical reliability theory Birnbaum (1969) and Barlow and Proschan

(1975) proposed some concepts of importance. Although the concept of component

importance is very useful one, a few has been systematically generalized it to the

multi-state case, see Barlow and Wu (1978), El.Neweihi et al. (1978), Griffith (1980),
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El.Neweihi and Proschan (1984) and Bueno (1989). Abouammoh and Al-Khadi

(1991) reviews the measures on importance for MCSs. Gandini (1990) proposed im-

portance and sensitivity measures for MSSs with binary capacited components. Lev-

itin and Lisnianski (1999) proposed importance and sensitivity measures for MSSs

with binary capacited components. These measures account both for MSS perfor-

mance which is caused by the capacited components and stochastic system demand.

Their evaluation method is performed via the UGF method. These approaches have

proven to be valuable to the development of multi-state IMs. Wu and Chan (2005)

proposed IMs for MSSs with respect to performance utility and related their mea-

sure to Griffith’s IM. Ramirez-Marquez and Coit (2005b) proposed new importance

measures for MSSs from two perspectives 1) how a specific component affects MSS

reliability and 2) how a particular state or set of states affects MSS reliability. IMs

are widely used in risk informed applications of the nuclear industry to characterize

the importance of basic events, i.e., element failures, human errors, common cause

failures, etc, with respect to the risk associated to the system. Vassuer and Llory

(1999) mentioned reliability achievement worth (RAW), reliability reduction worth

(RRW), Fussel-Vesely (FV) measure and Birnbaum measure as the most valuable IMs

for binary systems in risk informed applications. Further extensions of these measures

to the multi-state case can be seen in Zio and Podofillini (2003) and Ramirez-Marquez

and Coit (2005a). Levitin, Podofillini and Zio (2003) proposed similar measures using

performance measures, availability and risk. Also Zio and Podofillini (2003) intro-

duced identical measures in terms of system risk-unavailability or unreliability. The

use of IMs to analyze probabilistic risk assessment results is discussed in detail by
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Cheok, Parry, and Sherry (1998) and Van der Borst and Shoonakker (2001).

However, the joint importance measure provides additional information, which the

traditional marginal importance cannot provide, to the system designers, see Hong

and Koo (1993). Joint importance measures for binary system can be seen in Arm-

strong (1995) and Hong et al. (2002). Hong et al. (2000) investigated joint reliability

importance (JRI) of two gate events along with its properties in a fault tree. Wu

(2005) extended the component IMs to joint importance measures for two multi-state

components in a MSS with respect to system structure and expected performance. A

limitation of the IMs currently used in reliability and risk analysis is that they rank

only individual components or basic events whereas they are not directly applicable

to combinations or groups of components or basic events. To partially overcome this

limitation, recently, the differential importance measure (DIM), has been introduced

for use in risk-informed decision making. The DIM is a first-order sensitivity measure

that ranks the parameters of the risk model according to the fraction of total change

in the risk that is due to a small change in the parameters’ values, taken one at a time.

However, it does not account for the effects of interactions among components. Zio

and Podofillini (2006) proposed a second-order extension of the DIM, named DIMII,

for accounting of the interactions of pairs of components when evaluating the change

in system performance due to changes of the reliability parameters of the components.

We recall the existing importance and joint importance measures followed by in-

troducing new joint importance measures-joint structural and reliability importance
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measures-for two or more components. We also propose joint importance measures

as an extension to RAW, RRW, FV and Birnbaum measure of components and gen-

eralize it to other performance measures such as availability, and risk-unavailability

or unreliability. We find the distribution of the performance of the system, under

constraints on the performance of its elements. Once the system performance is de-

termined, one can focus on specific system performance measures. With reference to

the predefined threshold of element performance, the element’s reachable states are

limited to those corresponding to performance either larger or not larger than the

threshold level.

The remaining sections of this Chapter are arranged as follows. The joint struc-

tural importance measure for more than two components of a MSS is proposed in

section 2. Joint reliability importance measure for more than two components of a

MSS is proposed in section 3. In section 4, the characterization of joint reliability

importance based on Schur-convexity property of binary imaged MSS structure func-

tion is given. Joint reliability achievement worth for two components in a MSS is

proposed in section 5. Joint reliability reduction worth for two components in a MSS

is proposed in section 6. In section 7, the joint Fussel-Vesely measure w.r.t. reliability

for two components in a MSS is proposed. The joint reliability Birnbaum measure for

two or more than two components is proposed in section 8. The joint risk importance

measures based on unreliability or unavailability are proposed in last section.
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2.2 Joint Structural Importance Measure

Structural importance measure (SIM) is used to order the components when the com-

ponent reliabilities are not available while reliability importance measures are used

when component reliabilities are available. For a given coherent system, some com-

ponent are more important than others in determining whether the system functions

or not. For example, if a component is in series with the rest of the system, then it

would be seen to be at least as important as any other component in the system, see

Barlow and Proschan (1975).

Let us consider the structure function of a binary coherent system, φ(x), where

x = (x1, ..., xn) is the state vector of its n components with xi = 1 or 0, i = 1, 2, ..., n.

Then we would consider component i is more important if

φ(1i,x)− φ(0i,x) = 1 than if φ(1i,x)− φ(0i,x) = 0,

where (.i,x) = (x1, ..., xi−1, .i, xi+1, ..., xn). Then Barlow and Proschan (1975) pro-

posed the following measure of the structural importance (SI) of component i:

Iφ(i) =
1

2n−1

∑
x:xi=1

[φ(1i,x)− φ(0i,x)]. (2.1)

It is the proportion of the 2n−1 outcomes having xi = 1 which are critical path vectors

for φ.

In order to get the results in multi-state setup, we shall first assume that a
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component can degrade one or more state each time, i.e., from state i to î, î ∈

{i−1, i−2, ..., 2, 1, 0} and the system may degrade more than one state. Also assume

that both the components and the system have M + 1 states, 0, 1, ...,M . Wu (2005)

defined SI measure of component i for MSS (SIM) as, for m̂ = m− 1

SIM(i) =

∑
xi

χ [φ(mi,xi) = j, φ(m̂i,xi) < j]

(M + 1)n−1
,

i.e.,

SIM(i) =

∑
xi

∑j
q=1 χ [φ(mi,xi) = j, φ(m̂i,xi) = j − q]

(M + 1)n−1
(2.2)

where xi = (.i,x), (mi,xi) = (x1, ...,mi, ..., xn), [φ(mi,xi) = j, φ(m̂i,xi) < j] deter-

mines the critical path vector to the level j, (M + 1)n−1 is the total number of state

vectors and χ[true] = 1, χ[false] = 0.

Denote JSIM for the joint structural importance measure for MSS. Wu (2005)

used the following index (eq. 2.3) to measure the JSIM of component i and l in the

MSS.

JSIM(i, l) =
M∑

m=1

M∑
k=1

{SIM(i, l; m, k)− SIM(i, l; m, k̂)} (2.3)

where SIM(i, l; m, k) is∑
xil

∑j
q=1 χ [φ(mi, kl,xil) = j, φ(m̂i, kl,xil) = j − q]

(M + 1)n−2
,

where xil = (.i, .l,x). Obviously, SIM(i, l; m, k) − SIM(i, l; m, k̂) gives information

on how two states of two components interact topologically. In order to get the JSIM

of more than two components, we shall find the change in the JSIM of two component
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when the third component changes its state, i.e.,

JSIM(i, l, r) =
M∑

m=1

M∑
k=1

M∑
n=1

{JSIM(i, l, r; m, k, n)− JSIM(i, l, r; m, k, n̂)} (2.4)

where JSIM(i, l, r; m, k, n) = SIM(i, l; m, k)nr − SIM(i, l; m, k̂)nr while

SIM(i, l; m, k)nr =

∑
xilr

∑j
q=1 χ [φ(mi, kl, nr,xilr) = j, φ(m̂i, kl, nr,xilr) = j − q]

(M + 1)n−3
.

The joint structural importance of three components i, l and r in a MSS can be

measured using (2.4).

Clearly, JSIM(i, l, r; m, k, n)−JSIM(i, l, r; m, k, n̂) in (2.4) gives information on

how states of three components interact topologically. JSIM(i, l, r) indicates how

the topological joint importance of two component changes with the third one.

If the JSIM of three components is positive, we can conclude that there is a

difference in joint structural importance of two components when the third component

change its state from higher level to lower level. It is an indication of joint effect.

If this JSIM(i, l, r) = 0, we can conclude that the third component has no effect

in system performance. Anyway, this type of JSIM gives information regarding joint

effect of components, when reliabilities of components are not available, for the system

improvement. Similarly by appropriately taking differences we can find the higher

order interaction joint structural importance of components.
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2.3 Joint Reliability Importance Measure

Joint reliability importance (JRI) of two or more components is a quantitative mea-

sure of the interactions of two or more components or states of two or more compo-

nents. The value of JRI represents the degree of interactions between two or more

components with respect to system reliability. JRI indicates how components interact

in system reliability, see Armstrong (1999). Consider the vector of component states

X = (X1, X2, ..., Xn), where Xi is the random variable representing the state of the

ith component.

In the binary setup, the marginal reliability importance of a component is

I(i) =
∂R

∂Ri

and the JRI of two components i and j is

JRI(i, j) =
∂2R

∂Ri.∂Rj

(2.5)

where R = E(φ(X)) and Ri and Rj are reliabilities of the components i and j respec-

tively. That is, JRI of two binary components is

JRI(i, j) = R(1i, 1j,p)−R(1i, 0j,p)−R(0i, 1j,p) + R(0i, 0j,p) (2.6)

where R(.i, .j,p) = E(φ(X1, ..., .i, ..., .j, ..., Xn)). In order to generalize this equation

for more than two components, i.e., to measure the improvement of reliability impor-

tance of the system with respect to the interactive effect of more than two components,
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at first we shall calculate change in the JRI of two components with respect to the

change of reliability of third component. If there is any change in the JRI due to

change in state of third component we can say that there is an interactive effect

of three components for the system reliability improvement. That is, in the binary

setup, the change in the JRI is found to be as follows

JRI(i, j, k) = JRI(i, j|1k,p)− JRI(i, j|0k,p) (2.7)

where

JRI(i, j|qk,p) = R(1i, 1j, qk,p)−R(1i, 0j, qk,p)−R(0i, 1j, qk,p) + R(0i, 0j, qk,p),

q = 0 or 1, i.e., change in JRI of two components when third component is im-

proved from its failure state to its functioning state. The value of the JRI(i, j, k)

indicates how the JRI of two components changes with the change of the state of

third component.

In order to find JRI in MSS, we consider Xi’s and system states φ take values in

the set {0, 1, 2, ...,M}. Let

P [φ(X) ≥ j] =P [φ(0i,Xi) ≥ j] +
M∑

m=1

(P [φ(mi,Xi) ≥ j]− P [φ(m̂i,Xi) ≥ j]) P [Xi ≥ m],

Es =
M∑

j=1

P [φ(X) ≥ j], and Rim = P [Xi ≥ m].

We shall prove the following lemma. It shows how JRI of three components express

in terms of JRI of two components proposed by Wu (2005).
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Lemma 2.3.1 Let φ be a structure function of MSS with n components. Then,

∂3Es

∂Rim∂Rlk∂Rrn
=

∂2Es

∂Rim∂Rlk
|nr −

∂2Es

∂Rim∂Rlk
|n̂r . (2.8)

Proof: Since Es =
∑M

j=1 P [φ(X) ≥ j], we get,

Es =
M∑

j=1

(
P [φ(0i,Xi) ≥ j] +

M∑
m=1

(P [φ(mi,Xi) ≥ j]− P [φ(m̂i,Xi) ≥ j]) Rim

)
.

This Es can be again simplified as

M∑
j=1

[
P [φ(0i, 0l,Xil) ≥ j] +

M∑
k=1

(
P [φ(0i, kl,Xil) ≥ j]− P [φ(0i, k̂l,Xil) ≥ j]

)
Rlk +

M∑
m=1

(
P [φ(mi, 0l,Xil) ≥ j] +

M∑
k=1

(
P [φ(mi, kl,Xil) ≥ j]− P [φ(mi, k̂l,Xil) ≥ j]

)
Rlk

)
Rim−

M∑
m=1

(
P [φ(m̂i, 0l,Xil) ≥ j] +

M∑
k=1

(
P [φ(m̂i, kl,Xil) ≥ j]− P [φ(m̂i, k̂l,Xil) ≥ j]

)
Rlk

)
Rim

]
.

For convenience and express the ideas we use, Pmkn = P [φ(mi, kl, nr,Xilr) ≥ j]

and Pim = P [Xi ≥ m]. Again expanding the expression of Es above by pivoting at

rth component, we get Es as,

M∑
j=1

[
P000 +

M∑
n=1

(P00n − P00n̂) Prn +
M∑

k=1

(
P0k0 +

M∑
n=1

(P0kn − P0kn̂) Prn

)
Plk−

M∑
k=1

(
P0k̂0 +

M∑
n=1

(P0k̂n − P0k̂n̂) Prn

)
Plk +

M∑
m=1

{(
Pm00 +

M∑
n=1

(Pm0n − Pm0n̂) Prn

)
+

M∑
k=1

(
Pmk0 +

M∑
n=1

(Pmkn − Pmkn̂) Prn

)
Plk −

M∑
k=1

(
Pmk̂0 +

M∑
n=1

(Pmk̂n − Pmk̂n̂) Prn

)
Plk

}
Pim−

M∑
m=1

{(
Pm̂00 +

M∑
n=1

(Pm̂0n − Pm̂0n̂) Prn

)
+

M∑
k=1

(
Pm̂k0 +

M∑
n=1

(Pm̂kn − Pm̂kn̂) Prn

)
Plk−

M∑
k=1

(
Pm̂k0 +

M∑
n=1

(Pm̂kn − Pm̂kn̂) Prn

)
Plk

}
Pim

]
.
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By differentiating Es with respect to Pim, Plk and Prn we get

∂3Es

∂Rim∂Rlk∂Rrn
=

M∑
j=1

{[Pmkn − Pmk̂n − Pm̂kn + Pm̂k̂n]− [Pmkn̂ − Pmk̂n̂ − Pm̂kn̂ + Pm̂k̂n̂]}

=

[
∂2Es

∂Rim∂Rlk

]
nr

−
[

∂2Es

∂Rim∂Rlk

]
n̂r

. (2.9)

Thus we proved the lemma. �

Let JRIM represent the JRI for the MSS. Now we define the JRIM for three

components. This definition provides a measure for finding JRI of three components

in a MSS.

Definition 2.3.1 The joint reliability importance of three components with respect

to state m of component i, state k of component l and state n of component r of a

multi-state system is

JRIM(i, l, r; m, k, n) =
∂3Es

∂Rim∂Rlk∂Rrn
. (2.10)

We have expressed the JRI of three components in a MSS using existing JRI mea-

sures of Wu (2005). Now we can prove a general theorem of interaction importance

of k of components of a system having n(≥ k) components.

Theorem 2.3.1 Suppose that

JRIM(a1, ..., ak; b1, ..., bk) =
∂kEs

∂Ra1b1....∂Rak
bk

, k = 2, 3, ..., n (2.11)
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represents the interaction importance of k components. Then the joint reliability

importance of k of components can be derived as, for k=2,...,n,

∂kEs

∂Ra1b1....∂Rak
bk

=
∂k−1Es

∂Ra1b1...∂Rak−1
bk−1

|bkak
− ∂k−1Es

∂Ra1b1...∂Rak−1
bk−1

|b̂kak

. (2.12)

Proof. In order to prove this result we shall use the mathematical induction tech-

nique. Clearly the result is true for k = 2, i.e., joint reliability importance of two

components. Assume that the result is true for an integer k(< n), i.e.,

JRIM(a1, ..., ak; b1, ..., bk) =
∂k−1Es

∂Ra1b1...∂Rak−1
bk−1

|bkak
− ∂k−1Es

∂Ra1b1...∂Rak−1
bk−1

|b̂kak

.

(2.13)

By observing change in (2.13) w.r.t. change in a state of ak+1th component, i.e.,

differentiating partially

∂kEs

∂Ra1b1...∂Rak
bk

with respect to Rak+1
bk+1 we get

∂kEs

∂Ra1b1...∂Rak
bk

|bk+1ak+1
− ∂kEs

∂Ra1b1...∂Rak
bk

| ˆbk+1ak+1

,

since it can be expressed as a relation similar to (2.9).

Thus the result is true for k + 1. Hence the result is true for every integer k,

k = 2, 3, ..., n. �

It motivates to define the JRI of k components in a MSS.
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Definition 2.3.2 The joint reliability importance of k components with respect to

state b1 of the component a1, state b2 of the component a2,...,state bk of the component

ak of the multi-state system is

JRIM(a1, ..., ak; b1, ..., bk) =
∂kEs

∂Ra1b1...∂Rak
bk

, k = 2, 3, ..., n. (2.14)

As a result we get the joint importance of 2, 3,.., components in the system. We

can reach some important conclusions regarding the joint importance such as whether

the joint importance is different for different group of components. The size of the

joint importance gives information about the degree of interaction. Following the

above method we get the module importance.

2.4 Schur-Convexity Property and Joint Impor-

tance Measure

In this section we shall prove a characterization result for the joint importance using

Schur-convexity property, which will be useful to identify the sign of the joint impor-

tance rather than size. Gopal (2002) discussed Schur-convexity of structure function

in MSSs.
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A vector a = (a1, ..., an) is said to majorize a vector b = (b1, ..., bn), i.e., a ≥ b

if
∑n

i=j a[i] ≥
∑n

i=j b[i] for j = 1, 2, .., n− 1, and
∑j

i=1 a[i] ≥
∑j

i=1 b[i], for j = 2, ..., n,

when a[i] and b[i] are components of a and b arranged in decreasing order.

A real valued function f defined over Rn is said to be Schur-convex (Schur-concave)

if

f(a) ≥ (≤)f(b) whenever a ≥ b.

A characterization of f to be Schur-convex (Schur-concave) is that, for i 6= j

(ai − aj)

(
∂f(a)

∂ai

− ∂f(a)

∂aj

)
≥ 0(≤ 0).

This characterization is known as Schur-Ostrowaki’s condition. If a1, ..., an denote n

vectors each with p components, then f defined on (Rp)n is said to be a Schur-convex

(Schur-concave) if, for m 6= k and for two components i and l,

(aim − alk)

(
∂f(a1, ..., an)

∂aim

− ∂f(a1, ..., an)

∂alk

)
≥ 0(≤ 0).

For proving Schur-convexity property of performance measure of MSS,

for X′ = (X ′
i, ..., X

′
n), X ′

i = 1 if Xi ≥ m and zero otherwise and φj(X
′) = 1 if

φ(X) ≥ j and zero otherwise, we consider

(Pim − Plk)

(
∂R

∂Pim

− ∂R

∂Plk

)
,

where R = E(φj(X
′)) = P [φ(X) ≥ j], Pim = P [Xi ≥ m].
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Then

R =PimPlkP [φj(X
′) = 1, X ′

i = 1, X ′
l = 1]+

Pim(1− Plk)P [φj(X
′) = 1, X ′

i = 1, X ′
l = 0]+

(1− Pim)PlkP [φj(X
′) = 1, X ′

i = 0, X ′
l = 1]+

(1− Pim)(1− Plk)P [φj(X
′) = 1, X ′

i = 0, X ′
l = 0].

Differentiating R with respect to Pim, we get,

∂R

∂Pim

=PlkP [φj(X
′) = 1, X ′

i = 1, X ′
l = 1] + (1− Plk)P [φj(X

′) = 1, X ′
i = 1, X ′

l = 0]

− PlkP [φj(X
′) = 1, X ′

i = 0, X ′
l = 1]− (1− Plk)P [φj(X

′) = 1, X ′
i = 0, X ′

l = 0].

Differentiating R with respect to plk, we get,

∂R

∂Plk

=PimP [φj(X
′) = 1, X ′

i = 1, X ′
l = 1]− PimP [φj(X

′) = 1, X ′
i = 1, X ′

l = 0]+

(1− Pim)P [φj(X
′) = 1, X ′

i = 0, X ′
l = 1]− (1− Pim)P [φj(X

′) = 1, X ′
i = 0, X ′

l = 0].

Suppose that φj(X
′) is symmetric in its arguments. Then,

φj(X
′
1, ..., pi, ..., ql, ..., X

′
n) = φj(X

′
1, ..., qi, ..., pl, ..., X

′
n), q, p ∈ {0, 1}.

Let P [φj(1i, 1l) = 1] = P [φj(X
′) = 1, X ′

i = 1, X ′
l = 1], k = 0, 1. We can prove that(

∂R

∂Pim

− ∂R

∂Plk

)
= −(Pim − Plk) {P [φj(1i, 1l) = 1]− 2P [φj(1i, 0l) = 1] + P [φj(0i, 0l) = 1]}

and

(Pim − Plk)

(
∂R

∂Pim

− ∂R

∂Plk

)
= −(Pim − Plk)

2[JRIBIMS] (2.15)

where JRIBIMS represents the joint reliability importance of binary-imaged MSS,

i.e., R is Schur-convex (Schur-concave) implies LHS > (<)0 ⇒ JRIBIMS < (>)0.
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Thus we need only to verify the Schur-convexity property of MSS for getting the sign

of the joint importance for two components.

We assumed all components and system have the same number of states. If the

assumption does not hold, the JSIMs and the JRIMs can still be obtained for varying

number of states. If M = 1, MSS becomes a binary system. Our idea of the joint im-

portance measures can be extended and explained in many engineering applications.

Schur-convexity serves as a characterizing criteria for the joint importance measures

to be positive or negative.

In order to define the joint Reliability Achievement Worth (JRAW), joint Relia-

bility Reduction Worth (JRRW), joint Reliability Fussel-Vesely (JRFV) measure for

two components and joint Reliability Birnbaum importance (JRBI) measures for any

number of components, we first recall the existing importance measures in Ramirez-

Marquez and Coit (2005b). The joint importance measures of two components for

MSS with the OPMs, reliability and availability, with reference to the existing mea-

sures of importance, RAW, RRW, FV, and Birnbaum for individual components are

introduced in the following sections. For the sake of better narration, we consider

reliability as the output performance measure and introduce joint importance mea-

sures. This results are also true for the OPM availability. So we can generalize the

results to both reliability and availability. In following sections, for time dependent

binary and MSS, we propose JRAW, JRRW, JRFV for two components and JRBI

measures for any number of components.
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2.5 Joint Reliability Achievement Worth

The RAW measure quantifies the maximum percentage increase in system reliability

generated by a particular component. From a binary perspective it is defined as

RAWi =
P [φ(X(t)) = 1|Xi(t) = 1]

P [φ(X(t)) = 1]
.

For a constant demand wk corresponding to state k, multi-state RAW of component

i with respect to performance threshold α and corresponding performance state kiα

is,

MRAWi =
P [φ(X(t)) ≥ k|Xi(t) ≥ kiα]

P [φ(X(t) ≥ k]
.

We propose the joint importance measure, JRAW, of two components i and j of

binary state system,

JRAWij =
P11 − P10 − P01

P1. + P.1

where

P11 = P [φ(X(t)) = 1|Xi(t) = 1, Xj(t) = 1], P10 = P [φ(X(t)) = 1|Xi(t) = 1, Xj(t) = 0],

P01 = P [φ(X(t)) = 1|Xi(t) = 0, Xj(t) = 1], P1. = P [φ(X(t)) = 1|Xi(t) = 1] and

P.1 = P [φ(X(t)) = 1|Xj(t) = 1], for measuring the joint reliability achievement

worth due to interaction. The JRAWij measure quantifies the maximum percentage

increase in system reliability generated by the interaction of two components i and j.

Note that JRAWij = JRAWji.
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The multi-state extension of above measures for constant demand wk correspond-

ing to state k can be defined with respect to performance level α and β for two

components i and j, as,

MJRAWij =
P≥α,≥β − P≥α,<β − P<α,≥β

P≥α,. + P .,≥β
.

where

P≥α,≥β = P [φ(X(t)) ≥ k|Xi(t) ≥ kiα, Xj(t) ≥ kjβ]

P≥α,<β = P [φ(X(t)) ≥ k|Xi(t) ≥ kiα, Xj(t) < kjβ]

P<α,≥β = P [φ(X(t)) ≥ k|Xi(t) < kiα, Xj(t) ≥ kjβ]

P≥α,. = P [φ(X(t)) ≥ k|Xi(t) ≥ kiα]

and P .,≥β = P [φ(X(t)) ≥ k|Xj(t) ≥ kjβ],

for measuring the joint reliability achievement worth due to interaction.

2.6 Joint Reliability Reduction Worth

The RRW is an index measuring the potential damage caused to the system by a

particular component. The binary expression of the RRW of component i is

RRWi =
P [φ(X(t)) = 1]

P [φ(X(t)) = 1|Xi(t) = 0]
.

Then the extension of RRW to the multi-state case for constant demand wk corre-

sponding to state k can be defined, for the performance level α of component i and
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corresponding performance state kiα, as

MRRWi =
P [φ(X(t)) ≥ k]

P [φ(X(t)) ≥ k|Xi(t) < kiα]
.

We propose the joint importance measure, JRRW, of two components i and j of

binary state system,

JRRWij =
P [φ(X(t)) = 1|Xi(t) = 0] + P [φ(X(t)) = 1|Xj(t) = 0]

P [φ(X(t)) = 1|Xi(t) = 0, Xj(t) = 0]

for measuring the joint reliability reduction worth with respect to interaction of the

components at below specified levels. The JRRWij measure quantifies the potential

damage caused to the system by interaction of two components i and j at below

specified levels. Note that JRRWij = JRRWji.

The multi-state extension of JRRW for constant demand wk corresponding to

state k, can be defined for performance levels α and β of components i and j, as

MJRRWij =
P [φ(X(t)) ≥ k|Xi(t) < kiα] + P [φ(X(t)) ≥ k|Xj(t) < njβ]

P [φ(X(t)) ≥ k|Xi(t) < kiα, Xj(t) < njβ]
. (2.16)

We next define the joint Fussel-Vesely measure for finding the maximum decrement

in system reliability caused by joint effect of two components at below specified levels.
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2.7 Joint Reliability Fussel-Vesely Measure

The FV importance measure quantifies the maximum decrement in system reliability

caused by a particular component.

The binary expression of FV importance measure is

FVi =
P [φ(X(t)) = 1]− P [φ(X(t)) = 1|Xi(t) = 0]

P [φ(X(t)) = 1]
.

It has extended to multi-state case for constant demand wk corresponding to state k

as

MFVi =
P [φ(X(t)) ≥ k]− P [φ(X(t)) ≥ k|Xi(t) < xikiα

]

P [φ(X(t)) ≥ k]
.

We propose the following joint importance measure, JRFV, for two components i and

j of the binary state system, JRFVij =

P [φ(X(t)) = 1|Xi(t) = 0] + P [φ(X(t)) = 1|Xj(t) = 0]− P [φ(X(t)) = 1|Xi(t) = 0, Xj(t) = 0]

P [φ(X(t)) = 1|Xi(t) = 0] + P [φ((X(t)) = 1|Xj(t) = 0]

for measuring the joint reliability Fussel-Vesely importance with respect to interac-

tion. The JRFVij measure quantifies the maximum decrement in system reliability

caused by joint effect of two components i and j at below specified levels. Note that

JRFVij = JRFVji.

The multi-state extension of JRFV for constant demand wk corresponding to state

k can be defined, with respect to the performance levels α and β of components i and
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j, as

MJFVij =
P<α,. + P .,<β − P<α,<β

P<α,. + P .,<β
,

where P<α,. = P [φ(X(t)) ≥ k|Xi(t) < kiα], P .,<β = P [φ(X(t)) ≥ k|Xj(t) < njβ],

and P<α,<β = P [φ(X(t)) ≥ k|Xi(t) < kiα, Xj(t) < njβ].

Now we define the joint Birnbaum importance measure of any number of compo-

nents with respect to reliability. The component Birnbaum importance measure is

the most widely used importance measure by many reliability researchers, engineers

and practitioners.

2.8 Joint Reliability Birnbaum Importance Mea-

sure

2The Birnbaum measure represents the maximum loss in the system reliability when

element i switches from the condition of perfect functioning to the condition of certain

failure. Let the state Xi of the ith binary component is random with probability

P [Xi = 1] = Ri = EXi, i = 1, 2, ..., n. The reliability of the binary system with

2Presented at International Conference on New Trends in Statistics and Optimization, University

of Kashmir, Srinagar, Oct 21-23, 2008 and awarded M. N. Gopalan Price for Young Statisticians

of Indian Society for Probability and Statistics 2008
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structure function φ(X), X = (X1, ..., Xn),∀i, Xi, φ ∈ {0, 1} is

P [φ(X) = 1] = h(p) = Eφ(X),p = (R1, ..., Rn).

Birnbaum (1969) proposed the following IM for the binary state system.

I(i) =
∂h

∂Ri

= h(1i,p)− h(0i,p) = E[φ(1i,X)− φ(0i,X)], i = 1, 2, ..., n.

Clearly I(i) describes the rate of improvement of system performance with respect to

the improvement in performance of component i.

As an extension of Birnbaum measure to the multi-state case, Griffith (1980)

defined the reliability importance of level l of the ith component of the MSS with

structure function φ as

Il(i) = E[φ(li,X)− φ((l − 1)i,X)]

where (li,X) = (X1, ..., Xi−1, li, Xi+1, ..., Xn), and Xi ∈ {0, 1, ...,M}, i = 1, 2, ..., n.

Multi-state joint reliability Birnbaum importance measure, MJRBI, of two com-

ponents i and j with respect to performance levels α and β for the MSS can be defined

as

MJRBIij = P [φ(X(t)) ≥ k|Xi(t) ≥ kiα, Xj(t) ≥ njβ]

− P [φ(X(t)) ≥ k|Xi(t) ≥ kiα, Xj(t) < njβ]

− P [φ(X(t)) ≥ k|Xi(t) < kiα, Xj(t) ≥ njβ]

+ P [φ(X(t)) ≥ k|Xi(t) < kiα, Xj(t) < njβ]. (2.17)
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It measures the improvement of system reliability due to the interaction effect of two

components.

Proceeding like this we can introduce joint reliability Birnbaum importance mea-

sures for three components, four components etc. MJRBI of three components i, j

and l with respect to performance levels α, β and γ for the MSS can be defined as

MJRBIijl = MJRBIij(Xl(t) ≥ mlγ)−MJRBIij(Xl(t) < mlγ) (2.18)

where MJRBIij(Xl(t) ≥ mlγ) is MJRBIij when component l is above some pre-

defined threshold γ with corresponding state mlγ. Similar interpretation holds for

MJRBIij(Xl(t) < mlγ).

Now we redefine the above joint importance measures with general expression

of OPM (reliability or availability)-for the MSS. Let component i be constrained to

performance below α, while the rest of components of the MSS are not constrained:

we denote by OM≤α
i the system OPM obtained in this situation. Similarly, we denote

by OM>α
i the system OPM resulting from the dual situation in which component i

is constrained to performances above α. Also let OM≤α,≤β
i,j , OM>α,≤β

i,j , OM≤α,>β
i,j

and OM>α,>β
i,j be the OPMs when both components i and j are restricted in their

performance based on performance thresholds α and β respectively. We introduce

the following measures for two components in a MSS with respect to performance

measure-reliability or availability.
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1. Joint Performance Achievement Worth:

MJPAWij =
OM>α,>β

i,j −OM>α,≤β
i,j −OM≤α,>β

i,j

OM>α
i + OM>β

j

. (2.19)

2. Joint Performance Reduction Worth:

MJPRWij =
OM≤α

i + OM≤β
j

OM≤α,≤β
i,j

. (2.20)

3. Joint Performance Fussel-Vesely Measure:

MJPFVij =
OM≤α

i + OM≤β
j −OM≤α,≤β

i,j

OM≤α
i + OM≤β

j

. (2.21)

4. Joint Performance Birnbaum Importance:

MJPBIij = OMα,>β
i,j −OMα,≤β

i,j (2.22)

where OMα,>β
i,j represents the Birnbaum importance of the component i when

component j is restricted to the performance above level β. Similarly OMα,≤β
i,j

represents the Birnbaum importance of the component i when component j is

restricted to below level β. Similarly we can find third order MJPBI measures by

taking differences of MJPBI of two components after restricting the performance

of third component below and above some pre-specified performance levels.

Thus we defined four main joint importance measures with respect to reliability

and availability. But we can define the joint importance measures of above type with

respect to risk also. We define joint risk importance measures in the following section.
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2.9 Joint Risk Importance Measures

To compare the joint effect of pair of components with the standardly used risk,

one can transform the performance measures into risk measures (unreliability or un-

availability). In order to introduce the joint risk importance measures, we define the

following indexes in terms of system risk.

F+
i (t), value of risk metric F when component i has been in state below a specified

level throughout the time interval [0, t].

F−
i (t), value of risk metric F when component i has been in its functioning state

(above a specified level ) throughout the time interval [0, t].

The definition of the four of the risk importance measures for a system is recalled

here with reference to the ith component, see Zio and Podofillini (2003) for details.

1. Birnbaum Risk Importance Measure: rBi(t) = F+
i (t)− F−

i (t), it measures the

maximum deviation of risk when ith component shifts from its condition of

perfect functioning to condition of certain failure.

2. Risk Achievement Worth (rAW): rAWi =
F+

i (t)

F (t)
, it is the ratio of risk when

component i is considered always failed in [0, t] to the actual value of risk.
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3. Risk Reduction Worth (rRW): rRWi = F (t)

F−
i (t)

, it is the ratio of the nominal

value of risk to the risk when component i is always available. It measures

the potential of component in reducing the risk, by considering the maximum

decrease in risk achievable when optimizing the components to perfection.

4. Risk Fussel-Vesely Measure (rFV): rFVi(t) =
F (t)−F−

i (t)

F (t)
, it represents the maxi-

mum fractional decrement in risk achievable when component i is always avail-

able.

In order to introduce joint risk measures, multi-state joint Risk Birnbaum Impor-

tance measure (MJrBI), multi-state joint Risk Achievement Worth (MJrAW), multi-

state joint Risk Reduction Worth (MJrRW), and multi-state joint Risk Fussel-Vesely

measure (MJrFV), with reference to two components i and j, we define the following

indexes in terms of system risk.

F++
i,j (t), value of risk metric F when both components i and j have been in state

below some specified levels throughout the time interval [0, t].

F+−
i,j (t), value of risk metric F when components, i has been in state below some

specified level and j has been in state above some specified level, throughout the time

interval [0, t].

F−+
i,j (t), value of risk metric F when components, i has been in state above some
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specified level and j has been in state below some specified level, throughout the time

interval [0, t].

F−−
i,j (t), value of risk metric F when both components i and j have been in state

above some specified levels throughout the time interval [0, t].

Now we define the multi-state joint risk importance measures to the MSS.

1. Multi-state Joint Risk Birnbaum measure:

MJrBIij = F++
i,j (t)− F+−

i,j (t)− F−+
i,j (t) + F−−

i,j (t). (2.23)

It is the maximum variation in risk due to the joint effect of components i and

j.

2. Multi-state Joint Risk Achievement Worth:

MJrAWij =
F++

i,j (t)

F+
i (t) + F+

j (t)
. (2.24)

It is the ratio of risk when both components i and j is below some specified

levels to the risk when either of two components is below some specified levels

in [0, t].

3. Multi-state Joint Risk Reduction Worth:

MJrRWi,j =
F−

i (t) + F−
j (t)

F−−
i,j (t)− F+−

ij − F−+
ij (t)

. (2.25)
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It is the ratio of the nominal value of risk when either of two components i and j

is available to the risk when both components are always available. It measures

the interaction effect of two components in reducing the risk, by considering

the maximum decrease in risk achievable with respect to joint effect of two

components.

4. Multi-state Joint Risk Fussel-Vesely measure:

MJrFVij =
F−

i (t) + F−
j (t)− F−−

ij (t)

F−
i (t) + F−

j (t)
. (2.26)

It represents the maximum fractional decrement in risk achievable when both

of two components i and j are always available to the availability of either of

two components.

The information about the interaction effect of two or more components in improv-

ing system performance can be drawn from the proposed joint importance measures

in various different ways. Information about this type of interaction importance of

components constituting a system, with respect to its safety, reliability, availability

and risk, can be made useful in safety and redundancy operations. The degree of

interactions between two or more components provide some guidelines to preference

in safety operations to some groups of components. We cannot say one measure is

better than the other, each of the measure has specific use, which will depends on the

system engineers objective and use.
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Chapter 3

A NEW CLASS OF MULTI-STATE

COHERENT SYSTEMS

3.1 Introduction

1A binary state system (BSS) of n components can be described by a structure func-

tion φ : {0, 1}n → {0, 1}, which presents the state of system as a function of states of

its n components, see Barlow and Proschan (1975). A binary system is statistically

coherent if it satisfies the following conditions;

1Some contents of this chapter have appeared in Chacko and Manoharan (2008b)
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1. φ(x) is non-decreasing in each argument, where x = (x1, ..., xn) with xi ∈ {0, 1}.

2. For each i, there exist a vector (.i,x), such that φ(1i,x) > φ(0i,x).

Note that the condition (1) and (2) gives, φ(j) = j, j = 0, 1, and j = (j, .., j).

There are various approaches which extends the structure function from the BSS

case to the MSS case, see El.Neweihi et al. (1978) and Griffith (1980). The effort

resulted in, requirement of the extension of non-decreasing binary structure function

to MSS structure function. Also note the condition φ(j) = j, j = 0, 1 of the binary

coherent system (BCS) is extended to multi-state coherent system (MCS) requiring

φ(j) = j, j ∈ {0, 1, ...,M}. The condition (2) of relevancy in BCS is extended in

various different ways. Some extensions can be seen in Natvig (1982), Meng (1993)

and Abouammoh and Al-Khadi (1991, 1995).

This chapter is arranged as follows. A new component relevancy and the cor-

responding class of MCSs are proposed in section 2. The more general component

relevancy and its new class of MCSs are also proposed. The importance and joint

importance measures for the new classes are introduced. An illustrative example of

electrical power generation system is given in section 3.
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3.2 Component Relevancy and the New Class of

MCSs

In this section we discuss the new relevance condition and its generalization on which

the new classes of MCSs are defined. Consider the following existing component

relevance conditions.

NAT: For every component i and level j > 0, there exist (.i,x) such that φ(ji,x) ≥ j

and φ((j − 1)i,x) < j, see Natvig (1993).

GRI.1: For every component i and level j > 0, there exist (.i,x) such that

φ(ji,x) > φ((j − 1)i,x), see Griffith (1980).

GRI.2: For every component i, there exist (.i,x) such that φ(0i,x) < φ(Mi,x),

see Griffith (1980).

EP: For every component i and level j ≥ 1, there exist (.i,x) such that

φ(ji,x) > φ(0i,x), see El.Neweihi and Proschan (1984).

NAT and GRI.1 indicate degree of relevance of each component to every level

of performance; while GRI.2 merely states that φ(x) is not a constant in any of its

arguments.
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Now we consider a situation in which some component is not relevant to every

level of performances, i.e., system degrades from state j to j − 1 when component

degrade only from state j to j−2 or j−3 etc. In order to degrade system, component

must degrade more than one level of performance. For example, see Natvig et. al.

(1986), let S = {0, 1, 2, 3, 4}, the component takes 0, 2 and 4 when system can take 0,

1, 2, 3 and 4. Consider the structure function φ2 having 5 components, see eq.(3.13).

We have, φ2(41, 42, 23, 44, 25) = 4 > φ2(41, 42, 23, 24, 25) = 3, from the minimal path

vectors of φ2, when the 4th component degrades from state 4 to state 2 the system

degrades from state 4 to state 3. Now consider the structure function φ1 with three

components, see eq.(3.12). We have, φ1(41, 02, 43) = 4 > φ1(41, 02, 23) = 2, when the

third component degrade from state 4 to state 2, the system degrades from state 4 to

state 2. Here fourth component must degrade from state 4 to state 2 for the system

to degrade from state 4 to state 3 with respect to φ2. The third component must

degrade from state 4 to state 2 for the system to degrade with respect to φ1.

We define a new component relevance condition as, degradation of a component

from state j to state j − 2 cause system failure or degradation while degradation of

the component from state j to j−1 cannot cause system failure or degradation. Now

the new class of MCSs, say CM.1 class, can be defined using this relevance condition.

Definition 3.2.1 A MCS of n components with structure function φ belonging to

class CM.1 if φ is non-decreasing, φ(j) = j, and for each component i, there exist
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(.i,x) such that φ(ji,x) > φ((j − 2)i,x).

Now consider the generalization of the new relevance condition, one or more than

one level of degradation of the component cause system degradation, i.e., when the

component ’i’ degrades from j to j′ ∈ {j−1, j−2, ..., 1, 0}, the system degrades from

state j to any lower state. Thus we define the generalized class of MCSs, say CM.2

class, with this relevance condition.

Definition 3.2.2 A MCS of n components with structure function φ belonging to

class CM.2 if φ is non-decreasing, φ(j) = j, and for each component i, there exist

(.i,x) such that φ(ji,x) > φ(j′i,x), j′ ∈ {j − 1, j − 2, ..., 2, 1, 0}.

Now we introduce component importance and joint importance measures to the

new classes of MCSs. We consider the problem of measuring the structural importance

and reliability importance of individual components, and joint structural importance

and joint reliability importance of two or more components in the new classes of

the MCSs. The main advantage of defining a new relevance condition is to obtain

the importance measures. At the reliability design phase, the joint importance can

improve system designer’s understanding of the relationship between components and

system and among the components, which is quite desirable.

Now define the structural definition of the component importance (when reliabil-
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ities of components are not given) with respect to the new relevance conditions.

Consider φj(x) = 1 if φ(x) ≥ j and 0 otherwise. We define the structural impor-

tance of a component as follows.

Definition 3.2.3 Let φ : Sn → S be the MCS structure function in CM.1 or CM.2

class. Then φ is said to have the following measures of structural importance for the

level j of component i:

Iij(CM.1) =
1

(M + 1)n−1

∑
x:xi=j

Max{0, φj(ji,x)− φj((j − 2)i,x)}

Iij(CM.2) =
1

(M + 1)n−1

∑
x:xi=j

Max{0, φj(ji,x)− φj((j
′)i,x)}, j′ ∈ {j − 1, j − 2, ..., 0}.

In order to define the joint importance measures for two or more components in

the new classes of MCSs, we use the JSIM in previous chapter, see (2.4). Then JSIM

for three components i, l, and r, with m̂ = m− 2, n̂ = n− 2 and k̂ = k− 2, in CM.1

class is

JSIMCM.1(i, l, r) =
M∑

n=1

M∑
k=1

M∑
m=1

{JSIM(i, l, r; m, k, n)− JSIM(i, l, r; m, k, n− 2).

(3.1)

Similarly, the JSIM for three components i, l, and r, with m̂ = m′ ∈ {m− 1, ..., 1, 0},

n̂ = n′ ∈ {n− 1, ..., 1, 0} and k̂ = k′ ∈ {k − 1, ..., 1, 0}, in CM.2 class is

JSIMCM.2(i, l, r) =
M∑

n=1

M∑
k=1

M∑
m=1

{JSIM(i, l, r; m, k, n)− JSIM(i, l, r; m, k, n′)}.

(3.2)
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Thus we can find JSIM of any number of components w.r.t. both relevance conditions

in the MCS classes CM.1 and CM.2.

Now we consider X=(X1, ..., Xn) as a random vector of component states. For the

BSS with structure function φ, the Birnbaum reliability importance of component i

is

I(i) = P [φ(1i,X)− φ(0i,X) = 1] = h(1i,p)− h(0i,p)

where h(p),p = (R1, R2, ..., Rn), is the reliability function of the BCS,

h(p) = Rih(1i,p) + (1−Ri)h(0i,p) = RiI(i) + h(0i,p).

Therefore, I(i) = ∂h(p)
∂Ri

. It is the major importance measure used in reliability analysis

of the binary state system, to order the components according to the their contribution

to system reliability. But it has extended to multi-state case, see El.Neweihi et

al. (1978) and Griffith (1980). But in that definitions of importance measures,

researchers used the existing relevance conditions. When we consider the new classes,

the relevance conditions would be CM.1 and CM.2. It overcome the draw backs of the

existing importance measures to order the components according to their contribution

to system reliability in some systems.

We propose the following component importance measures for the new MCSs.

Ii(CM.1) =P [φ(ji,X) > φ((j − 2)i,X)], (3.3)

Ii(CM.2) =P [φ(ji,X) > φ(j′i,X)], j′ ∈ {j − 1, j − 2, ..., 1, 0}. (3.4)
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Let the distribution of Xi be described by pi = (pi0, pi1, ..., piM)

where pij = P [Xi = j], i = 1, 2, ..., n, j = 0, 1, ...,M . The reliability function of the

MCS with minimum satisfactory performance level j, is

P [φ(X) ≥ j] =
∑
j∈S

pijP [φ(ji,X) ≥ j],

since pi0 + pi1 + ... + piM = 1.

Now we prove the following theorems. The theorem says that the rate of im-

provement of system reliability with respect to pij will be the importance measures

Ii(CM.1) and Ii(CM.2) when the relevance conditions are CM.1 and CM.2.

Theorem 3.2.1 For the CM.1 class, Ii(CM.1) is the rate of improvement of P [φ(X) ≥ j]

with respect to pij.

Proof: Clearly

P [φ(X) ≥ j] =
∑

j∈S/{j−2}

pij{P [φ(ji,X) ≥ j]−P [φ((j−2)i,X) ≥ j]}+P [φ((j−2)i,X) ≥ j]

(3.5)

since 1− pij−2 = pi0 + pi1 + ... + pij−3 + pij−1 + ... + piM .

Differentiating (3.5) partially with respect to pij, we get

∂P [φ(X) ≥ j]

∂pij

= P [φ(ji,X) ≥ j]− P [φ((j − 2)i,X) ≥ j]

= P [φ((j − 2)i,X) < φ(ji,X)]

= Ii(CM.1).� (3.6)
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Theorem 3.2.2 For the CM.2 class, Ii(CM.2) is the rate of improvement of P [φ(X) ≥ j]

with respect to pij.

Proof: Clearly

P [φ(X) ≥ j] =
∑

j∈S/{j′}

pij{P [φ(ji,X) ≥ j]− P [φ((j′)i,X) ≥ j]}+ P [φ((j′)i,X) ≥ j]

(3.7)

since 1− pij′ = pi0 + pi1 + ... + pij′−1 + pij′+1 + ... + piM .

Differentiating (3.7) partially with respect to pij, we get

∂P [φ(X) ≥ j]

∂pij

= P [φ(ji,X) ≥ j]− P [φ((j′)i,X) ≥ j]

= P [φ((j′)i,X) < φ(ji,X)]

= Ii(CM.2).� (3.8)

Now we consider the joint reliability importance of k components with respect to

the new classes of MCSs. We need only to put b̂1 = b1− 2, b̂2 = b2− 2 ,..., b̂k = bk− 2

in (2.14) in the case of CM.1 class and b̂1 = b′1, b̂2 = b′2 ,..., b̂k = b′k in (2.14) where

b′j ∈ {bj − 1, bj − 2, ..., 1, 0} in the case of CM.2 class. The usefulness of above JRIM

is in power generation system, network systems etc.

Now consider some implications based on the new relevance definitions. In fact

one can easily prove the following implications.
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Theorem 3.2.3 CM.1 ⇒ EP , CM.2 ⇒ NAT ⇒ GRI.1 ⇒ GRI.2 ⇒ EP, CM.2 ⇒

GRI.1, CM.2 ⇒ GRI.2 and CM.2 ⇒ EP.

It is clear that all the existing relevance conditions are special cases of CM.2 (or

CM.1) relevance condition. Hence the existing MCSs are special cases of the proposed

MCSs.

3.3 Example: Power Generation System

We use the Offshore electrical power generation system considered by Natvig et. al.

(1986) as an illustrative example. The purpose of this system is to supply two nearby

oilrings with electrical power. Both oilrings have their own main generation, repre-

sented by equivalent generators A1 and A3 each having capacity of 50MW. In addition

the oilrings have a standby generator A2 that is switched into the network in case of

outage of A1 or A3, or may be used in extreme load situations in either of the oilrings.

The A2 also has capacity 50MW. The control unit, U , continuously supervises the

supply from each of the generators with automatic control of the switches. If for

instance the supply from A3 to oilring 2 is not sufficient, whereas the supply from A1

to oilring 1 is sufficient, U can activate A2 to supply oilring 2 with electrical power

through the subsea cables L. The components have states 0, 2, 4 and the system has

states 0, 1, 2, 3, 4, where 0, 1, 2, 3 and 4 represents the states of system at capacities
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0MW, 12.5MW, 25MW, 37.5MW, and 50MW respectively.

The minimal path vectors to the levels are given in table 1 and table 2, of the

structure functions,

φ1(U,A1, A2) = I(U > 0)min(A1 + A2I(U = 4), 4),

the amount of power that can be supplied to platform 1, and

φ2(U,A1, L, A2, A3) = I(U > 0)min(A3 + A2I(U = 4)I(A1 = 4)L/4, 4),

the amount of power that can be supplied to platform 2, when I(.) is the indicator

function. It is clear from the tables the relevancy of each component in two of the

structure functions. The MSS with relevancy CM.2 is clearly defined in this example.

Table 1. Minimal path vectors of φ1

Levels U A1 A2

2 2 2 0

2 4 0 2

4 2 4 0

4 4 0 4

4 4 2 0
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Table 2. Minimal path vectors of φ2

Levels U A1 L A2 A3

1 4 4 2 2 0

1,2 2 0 0 0 2

2 4 4 2 4 0

2 4 4 4 2 0

3 4 4 2 2 2

3,4 2 0 0 0 4

4 4 4 2 4 2

4 4 4 4 2 2

4 4 4 4 4 0

We modeled a MSS based on two important relevance conditions, which have

application to many engineering systems as it give importance and joint importance

measures. The proposed classes of MCSs contains several existing classes. Hence

CM.1 class and CM.2 class have special importance. The example of power generation

system is a member of CM.2 class, because of relevancy of its components.
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Chapter 4

AGEING PROPERTIES OF

SEMI-MARKOV SYSTEM

4.1 Introduction

1 In this chapter, we are concerned with a MSS having M + 1 states 0, 1, ...,M where

’0’ is the best state and ’M ’ is the worst state (for convenience). At time zero the

system begins at its best state and as time passes system begins to deteriorate. It

is assumed that the time spent by the system in each state is random with arbitrary

sojourn time distribution. The system stays in some acceptable states for some time

1Some contents of this chapter have appeared in Chacko and Manoharan (2009b)
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and then it moves to unacceptable (down) state. The first time at which the MSS

enters the down state after spending a random amount of time in acceptable states

is termed as the first passage time (failure time) to the down state of the MSS.

We study the aging properties of the first passage time distribution of the MSS

modeled by the semi-Markov process {Y (t), t ≥ 0}. In the MSS with M + 1 states

{0, 1, ..., k − 1, k, k + 1, ...,M} where {0, 1, ..., k − 1, k} is the acceptable states, the

sojourn time between state ’i’ to state ’j’ is assumed to be distributed with arbitrary

distribution Fij. Markov and semi-Markov modeling of a MSS is given in Lisnianski

and Levitin (2003). Our aim is to derive a necessary and sufficient condition for a

MSS failure time distribution to be IFR and IFRA and to highlight some potential

applications. Deshpande et al. (1986) and Barlow and Proschan (1975) described

various aspects of positive aging in terms of conditional probability distributions of

residual lifetimes and failure rates. Bryson and Siddiqui (1969) discussed the concept

of ’aging’ or progressive shortening of an entity’s residual lifetime in terms of survival

time distribution.

Let F be the c. d. f. of a continuous random variable T representing lifetime of

a unit. Then

R(t) = 1− F (t) = F̄ (t) = P [T > t]

is called its reliability function (or survival function) and

Rx(t) =
R(t + x)

R(t)
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is the survival function of a unit of age t, i.e., conditional probability that a unit of

age ’t’ will survive for an additional ’x’ unit of time. Obviously, any study of the

phenomenon of aging/ no aging ( i.e., age has no effect on the residual life time) has

to be based on Rx(t) and functions related to it. Following are the definitions of IFR,

DFR, IFRA and DFRA distributions, see Barlow and Proschan (1975).

Definition 4.1.1 Increasing failure rate (IFR) distribution: F is IFR if

Rx(t1) ≥ Rx(t2), x ≥ 0, 0 ≤ t1 ≤ t2 < ∞.

Definition 4.1.2 Increasing failure rate average (IFRA) distributions: F is IFRA

if −1
t
logR(t) is increasing in t or equivalently F is said to be IFRA if (R(t))1/t is

decreasing in t.

Definition 4.1.3 Decreasing failure rate (DFR) distribution: F is DFR if

Rx(t1) ≤ Rx(t2), x ≥ 0, 0 ≤ t1 ≤ t2 < ∞.

Definition 4.1.4 Decreasing failure rate average (DFRA) distributions: F is DFRA

if −1
t
logR(t) is decreasing in t or equivalently F is said to be DFRA if (R(t))1/t is

increasing in t.

The remaining sections of this Chapter are arranged as follows. The first passage

time and its distribution of a semi-Markov system is described in section 2. The
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necessary and sufficient conditions of ageing properties, IFR, DFR, IFRA and DFRA,

of semi-Markov system are proved in section 3. Some applications and examples are

given last section.

4.2 First Passage Time of Semi-Markov System

For a continuous time Markov process {X(t), t ≥ 0} with state space S, a countable

set with a partial ordering, and transition matrix P, we say the Markov process is

of monotone paths if P (X(t) > X(s)) = 1 for t > s. Define D a subset of S to be

an increasing set if i ∈ D and j ≥ i ⇒ j ∈ D. This Markov process is stochastically

monotone if and only if i ≤ j ⇒ P (i, D) ≤ P (j, D) for all increasing sets D. For

a state i and a set D define TD(i) to be first passage time from the state i to D,

with TD(i) = 0 if i ∈ D and TD(i) = ∞ if D is never reached. Brown and Chaganty

(1983) proved that, if {Xn, n ≥ 0} is a stochastically monotone Markov chain with

monotone paths on the partially ordered countable set S, and D is an increasing set

with the complement of D in S finite, then TD(i), the first passage time from state i

to set D, is IFRA.

Let E = {0, 1, 2, ...,M} be a set representing the state of the MSS and probability

space with probability function P , on which we define a bivariate time homogeneous

Markov chain (X, T ) = {Xn, Tn, n ∈ {0, 1, 2, ...}}, Xn takes values of E and Tn on
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the half real line R+ = [0,∞), with 0 ≤ T1 ≤ T2 ≤ ... ≤ Tn ≤ .... Put Un = Tn− Tn−1

for all n ≥ 1. This Markov process is called a Markov renewal process (MRP) with

transition function, the semi-Markov kernel, Q = [Qij], where

Qij(t) = P [Xn+1 = j, Un ≤ t|Xn = i], i, j ∈ E, t ≥ 0

and Qii(t) = 0, i ∈ E, t ≥ 0.

Now we consider the semi-Markov process (SMP), as defined in Pyke (1961). It is

the generalization of Markov process with countable state space. SMP is a stochastic

process which moves from one state to another of a countable number of states with

successive states visiting form a Markov chain, and that the process stays in a given

state a random length of time, the distribution of which may depend on this state as

well as on the one to be visited in the next. Let N(t) = sup{n, Tn = U1+· · ·+Un ≤ t},

define Z(t) = XN(t), it is the semi-Markov process associated with the MRP defined

above. In terms of Z, the times T1, T2,... are successive times of transitions for Z,

and X0, X1, X2,...are successive states visited. If elements of Q have the form

Qij(t) = P [Xn+1 = j|Xn = i][1− e−λ(i)t], i, j ∈ E, t ≥ 0,

for some function λ(i), i ∈ E, then the process Z(t) is a Markov process. That is, in a

Markov process, the distributions of the sojourn times are all exponential independent

of the next state. The word semi-Markov comes from the somewhat limited Markov

property which Z enjoys, namely, that the future of Z is independent of its past given

the present state provided the ’present’ is the time of jump. Limnios (1997) obtained

the reliability of a semi-Markov system.
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Let Iij =indicator function of {i = j}. Define the transition probability that

system occupied state j ∈ E at time t > 0, given that it is started at state i at time

zero, as, ∀i, j, k ∈ E, t > 0,

pij(t) = P [Z(t) = j|Z(0) = i] = P [XNt = j|X0 = i] = hi(t)Iij + Q ∗P(t)(i, j),

where hi(t) = 1−
∑

k Qik(t),P(t) = [pij(t)] and Q ∗P(t)(i, j) =
∑

k

∫ t

0
Qik(dx)pkj(t− x).

To obtain the reliability function of the semi-Markov system described above, we

must define a new process, Y with state space U
⋃
{∇}, where U denotes set of all up

states {0, 1, ..., k} and ∇ is the absorbing state in which all the states {k + 1, ...,M}

of the system is united. Let TD denote the time of first entry to the down states of

Z process.

That is, Y (t) = Z(t)(ω) if t < TD(ω) and Y (t) = ∇ if t ≥ TD(ω).

Let 1 = (1, 1, ..., 1)T , a unit row vector with appropriate dimension. The process

Y (t) is a semi-Markov process with semi-Markov kernel


Up︷ ︸︸ ︷

Q11(t)

Down︷ ︸︸ ︷
Q12(t)

0 0



We denote α = (

up,α1︷ ︸︸ ︷
α(0), ..., α(k),

down,α2︷ ︸︸ ︷
α(k + 1), ..., α(M)) where α(i) = P [Y (0) = i].
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The reliability function is

R(t) = P [∀u ∈ [0, t], Z(u) ∈ U ] = P [Y (t) ∈ U ] =
∑
j∈U

P [Y (t) = j]

=
∑
i∈U

∑
j∈U

P [Y (t) = j, Y (0) = i] =
∑
i∈U

∑
j∈U

P [Y (t) = j|Y (0) = i]P [Y (0) = i]

=
∑
i∈U

∑
j∈U

pij(t)α(i).

4.3 Aging Properties of Semi-Markov System

The sojourn time of the MSS in each state or from one state to another in a semi-

Markov setup is a random variable. Consider the random lifetime of the MSS, TD,

the first passage time to the down state from upstate U , with distribution F . In the

following we assume that ∀i, j ∈ U, pij(t) is either monotone increasing or decreasing

in t.

The following theorem give a necessary and sufficient condition for the distribution

of semi-Markov system to be IFR.

Theorem 4.3.1 For a semi-Markov system with monotone decreasing transition prob-

ability functions, and first passage time distribution F , the following statements are
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equivalent:

(a)F is IFR

(b)
∑
i,j∈U

p
′

ij(t + x)α(i) ≤
∑
i,j∈U

p
′

ij(t)α(i), t ≥ 0.

Proof: In the semi-Markov setup described above, if

Rx(t) =
R(t + x)

R(t)
=

∑
i,j∈U pij(t + x)α(i)

R(t)

is decreasing in t then the rate of decrease of

∑
i,j∈U

pij(t + x)α(i)

is larger than the rate of decrease of R(t). Therefore if Rx(t) is decreasing,

∑
i,j∈U

p
′

ij(t + x)α(i) ≤
∑
i,j∈U

p
′

ij(t)α(i), t ≥ 0.

Conversely suppose that (b) holds, then the rate of decrease of

∑
i,j∈U

pij(t + x)α(i)

is larger than rate of decrease of R(t). Then obviously we have Rx(t) is decreasing in

t, which implies that F is IFR. �

However for a DFR distribution F the ’rate of increase’ of

∑
i,j∈U

pij(t + x)α(i)

does not affect that of Rx(t). It is easy to prove Rx(t) is increasing if and only if

∀i, j ∈ U, pij(t + x) is increasing in t, because 1/R(t) is an increasing function of t
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and product of two increasing functions,
∑

i,j∈U pij(t+x)α(i) and 1/R(t), is again an

increasing function. Hence we have the following theorem.

Theorem 4.3.2 For a semi-Markov system with monotone increasing transition prob-

ability functions, and first passage time distribution F, F is DFR if and only if

∀i, j ∈ U, pij(t + x) increasing in t.

Now we prove a necessary and sufficient condition for the IFRA property of first

passage time distribution of the semi-Markov system.

Theorem 4.3.3 For a semi-Markov system with monotone decreasing transition prob-

ability functions, and first passage time distribution F, the following two statements

are equivalent:

(a)F is IFRA

(b)t2
∑
i,j∈U

p
′

ij(t)α(i) ≤ −1, t ≥ 0.

Proof: Suppose that, F is IFRA. Then (R(t))1/t is decreasing in t. But

(R(t))1/t = (
∑
i,j∈U

pij(t)α(i))1/t

is decreasing in t only when rate of decrease of
∑

i,j∈U pij(t)α(i) is larger than rate of

decrease of 1/t. That is,

∑
i,j∈U

p
′

ij(t)α(i) ≤ − 1

t2
, t ≥ 0,
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equivalently,

t2
∑
i,j∈U

p
′

ij(t)α(i) ≤ −1, t ≥ 0.

Conversely suppose that (b) holds, then
∑

i,j∈U pij(t)α(i) is decreasing at a greater

rate than 1/t, so that (R(t))1/t is a decreasing function of t. Hence, first passage time

distribution F of the semi-Markov system is IFRA. �

On a similar lines we prove a necessary and sufficient condition for the DFRA

property of first passage time distribution of the semi-Markov system.

Theorem 4.3.4 For a semi-Markov system with monotone increasing transition prob-

ability functions, and first passage time distribution F , the following two statements

are equivalent:

(a)F is DFRA

(b)
∑
i,j∈U

p
′

ij(t)α(i) ≥
∑
i,j∈U

pij(t)α(i), t ≥ 0.

Proof: Suppose that, F is DFRA. Then (R(t))1/t is increasing in t. Now consider

the logarithmic transformation of (R(t))1/t.

log(R(t))1/t =
log(

∑
i,j∈U pij(t)α(i))

t

is increasing in t only when rate of increase of log(
∑

i,j∈U pij(t)α(i)) is larger than

rate of increase of t. That is,∑
i,j∈U p

′
ij(t)α(i)∑

i,j∈U pij(t)α(i)
≥ 1, t ≥ 0,
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equivalently, ∑
i,j∈U

p
′

ij(t)α(i) ≥
∑
i,j∈U

pij(t)α(i), t ≥ 0.

Conversely suppose that (b) holds, then log(
∑

i,j∈U pij(t)α(i)) is increasing at a

greater rate than increase of t, so that (R(t))1/t is a increasing function of t. Hence,

first passage time distribution F of the semi-Markov system is DFRA. �

4.4 Applications

Major application of the above results is in maintenance policies such as age and block

replacement policies. A variety of applications of IFR, DFR, IFRA distributions in

maintenance policies of a binary system can be seen in Barlow and Proschan (1996).

Under the IFR property the expected number of failures will be less under block

replacement than under age replacement. When we identify the distribution of semi-

Markov system is IFR or DFR, it will be easy to employ suitable maintenance policies

according to the above theorems. We consider some examples that arise in practical

applications such as power generation system with multi-state performance levels.

Example 4.4.1 Consider a Markov process in continuous time and discrete state

space {1, 2, ...,M}, given in Doob (1953), p.241. The system start in state ’1’ at time

zero and as it enters ’M’, it remains there. Consider the intensity matrix, Q = [Qij],

with entries qij = 0, i ∈ {1, 2, ...,M − 1}, j 6= i + 1, qii+1 = q, and qM = 0. The
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Kolmogorov’s system of differential equation becomes,

for pij(t) = P (Y (t) = j|Y (0) = i),

p
′

ik(t) = −qpik(t) + qpi+1k(t), i < M

p
′

Mk(t) = 0

with initial conditions, pik(0) = δik, the indicator of {i = k}. Then, pMk(t) = 0,

k 6= M, pMM(t) = 1 and it is easily verified that the solution is

pik(t) = 0 k < i

=
(qt)k−ie−qt

(k − 1)!
, i ≤ k < M

= e−qt[eqt − 1− qt− · · · − (qt)M−i−1

(M − i− 1)!
], k = M

which is increasing initially (i. e., system is DFR) for t < t0, where t0 is the time at

which p
′

ik(t) = 0, ( i.e., the time at which pik(t) = pi+1k(t)) and then decreasing in

t > t0 (i.e., system is not DFR) for k ∈ {1, 2, ...,M − 1}, the set of acceptable states.

Here the process is of monotone paths.

Example 4.4.2 Consider a continuous time Markov process {X(t), t ≥ 0} with state

space {0, 1, ...,M} and Y (0) = 0, such that the process stays in state i for a random

length of time whose distribution is exponential with mean 1/λi then moves to state

(i + 1), this continues until down state M is reached. Consider the intensity matrix
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

−λ0 λ0 . .

. . . .

0 0 −λM−1 λM−1

0 0 0 0



The last row (0, 0, ..., 0) means that state ′M ′ is absorbing. Bhat (2000), p.197,

obtained the forward Kolmogorov’s differential equation, with initial conditions

p00(0) = 1, as

p
′

0k(t) = −λkp0k(t) + λk−1p0k−1(t), 0 ≤ k ≤ M − 1.

Then,

p0k(t) = λk−1e
−λkt

∫ t

0

eλkxp0k−1(x)dx, k = 1, 2, ...,M − 1.

The nature of the above transition probability functions shows the first passage

time is IFRA or IFR or DFR or no aging.

For a numerical realization, Lisnianski and Levitin (2003), p.145, considered an

electric generator that has four possible performance levels 100MW (state 0), 70MW

(state 1), 50MW (state 2) and 0MW (state 3). The constant demand is 60MW. The

best state with performance rate 100MW is the initial state. Times to failures are

distributed exponentially with parameters, λ0,1 = 10−3 (hours(-1)), λ1,2 = 5.10−3

(hours(-1)), and λ2,3 = 2.10−3 (hours(-1)). Hence, times to failures T0,1, T1,2 and

T2,3 are random variables distributed according to the c.d.f., F0,1(t) = 1 − e−λ0,1t,
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F1,2(t) = 1 − e−λ1,2t and F2,3(t) = 1 − e−λ2,3t, for t > 0. The system is having

monotone paths. Thus,

p0,1(t) = λ0,1e
−λ1,2t

∫ t

0

eλ1,2up0,0(u)du =
λ0,1

λ1,2

= 0.2,

p0,2(t) = λ1,2e
−λ2,3t

∫ t

0

eλ2,3xλ0,1e
−λ1,2x

∫ x

0

eλ1,2up0,0(u)dudx =
λ0,1

λ2,3

= 0.5,

This means that with exponentially distributed sojourn times, the system failure

time distribution is IFR as well as DFR, no ageing property of MSS.

On the other hand, when we consider the Weibull distribution for the sojourn

times, we can expect specific IFR or DFR property of first passage time distribution.

Let F0,1 = (1 − e−λ0,1t)θ0 , F1,2 = (1 − e−λ1,2t)θ1 and F2,3 = (1 − e−λ2,3t)θ2 , for t > 0.

Let state 0 and 1 be the up states and 2 and 3 be the down states.

p01(t) = θ0λ0,1

∫ t

0

(1− e−λ0,1x)θ0−1(1− (1− e−λ1,2x)θ1)dx

p02(t) = θ0λ0,1

∫ t

0

(1− e−λ0,1x)θ0−1

∫ x

0

θ1λ1,2(1− e−λ1,2u)θ1−1(1− (1− e−λ2,3u)θ2)dudx

For λ0,1 = 2, λ1,2 = 3, θ0 = 3, θ1 = 3 and θ2 = 3, the functions p01(t) and p02(t),

where

p01(t) =k1((−e10t +
3

10
e3t +

1

2
e7t − 1

13
− 1

9
e4t +

6

5
e8t − 3

4
e5t +

2

11
e2t

− 3

7
e6t)e−13t + 0.18)

p02(t) =k2((
1

225
e4t − 2

5
e14t +

4

84
e5t +

1

3
e16t − 5

144
e7t +

47

180
e17t−

20

99
e8t +

47

180
te19t +

10

81
e10t +

1

285
+

3

8
e11t − 2

225
e2t − 1

4
e13t

− 5

192
e3t +

10

117
e6t − 3

20
e9t +

1

7
e12t − 47

720
e15t)e−19t − 0.25)
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increases in t for constants k1 and k2. This implies that, the first passage time

distribution is DFR.

The first passage time random variable has special importance in stochastic pro-

cess applications. We considered a semi-Markov MSS and obtained a necessary and

sufficient condition for IFR/DFR and IFRA/DFRA of the first passage time distri-

bution. The results has theoretical importance, which established in the examples,

as well as practical applications.
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Chapter 5

DEGREE OF ASSOCIATION OF

MARKOV PROCESS

5.1 Introduction

1 For a complex system it is quite often difficult to calculate system reliability. If

the components of the system are maintained, or are interdependent, the calculation

of system reliability can become even more difficult, perhaps impossible. Hence,

there is a considerable amount of literature in reliability theory which deals with

bounds for reliability of MSSs. Associated random variables and time associated

1Some contents of this chapter have appeared in Manoharan and Chacko (2009)
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stochastic processes are useful in reliability theory for obtaining the reliability bounds

for MSSs. The concept of association of random variables is introduced by Esary et

al. (1967). A minimal cut lower bound obtained by Esary and Proschan (1970) for a

non-maintained system is valid if the joint performance process of the components is

associated in time. In particular, if the component lifetime are independent and if the

marginal performance process of each component is associated in time, then the joint

performance process is also associated in time. A sufficient condition for association

when the marginal processes are Markovian is given by Hjort et al. (1985), which has

use in MSS reliability study.

Esary and Proschan (1970) proposed sufficient condition for association in time

of the Markov performance process of a binary system, in terms of its transition

probability functions. Manoharan (1995) discussed about association in time of a

Markov process. Kuber and Dharmadhikari (1996) considered a repairable system

modeled by semi-Markov process and derived a sufficient condition for the association

in time of the process governing the system. Dharmadhikari and Dewan (2006) derived

sufficient conditions for the association in time of a vector valued stochastic process.

Prakash Rao and Dewan (2001) provided a great deal of information on associated

sequences and related inference problems. Lisnianski and Levitin (2003) discussed a

large number of real life problems in MSS modeling and reliability assessment, and

provided a stochastic process approach (eg. Markov and semi-Markov) for the MSS

reliability evaluation.
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To apply the concept of association to real data one require a measure of the degree

of association. Karlin (1983) compared the relative degree (or strength) of association

of two sets of random variables. The problem of assessing the degree of association of

a stochastic process (Markov and semi-Markov process) or of comparing the relative

strength of association of two stochastic process (Markov and semi-Markov process)

is to be studied well. In this chapter, we consider a measure based on transition

probability function for the degree of association of the Markov process or to compare

the relative degree of association of two Markov process.

The applications of the measure is mainly to compare two MSSs whose perfor-

mance process is Markov process. It has theoretical and practical interest. Ordering

of two processes based on correlation measure in terms of transition probability func-

tion is mentioned. The system with high degree of associated components require

more careful treatment in its operation, maintenance etc, because failure or imper-

fect repair of one component will adversely affect the remaining components according

to the degree of association among components.

This chapter is arranged as follows. The measure of degree of association of

Markov process is proposed in section 2. An illustrative example of a medical data is

given in section 3.
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5.2 Measure of Degree of Association

Karlin (1983) has provided an approach for assessing the level and form of depen-

dence for multivariate observations that provides a fine tuning in evaluating relation-

ships of pair of random variable by transforming the data in natural manifold ways

and then computing the associated correlations whose totality reflects on the nature

of dependence between array of transformed variables. The standard approach to

measure the degree of dependence between two random variables X and Y involves

the computation of a single statistics for the sample, resulting in some estimated

measure of ”overall” dependence for the distribution of (X,Y ).

Karlin (1983) proposed the following definition of ordering bivariate distributions

by the strength of their association.

Definition 5.2.1 For two bivariate distributions corresponding to the random vari-

ables (X, Y ) and (Z,W ) we say that dependence of (X, Y ) is stronger than the de-

pendence of (Z,W ) with respect to classes of non-decreasing functions F and G if

ρ[h(X), g(Y )] ≥ ρ[h(Z), g(W )]

for all h ∈ F and g ∈ G.

Notice that the comparisons are made with respect to the same transformations

on the variables (X, Y ) and (Z,W ).
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Now we define a measure which can be used to measure the degree of association

of the Markov process. For the sake of better narration, we first discuss the degree

of association in discrete time stochastic process, Markov Chain, {Xk, k ≥ 0} with

state space E = {1, 2, ...,M}. We have,

Cov(Xk, Xk−1) = E(Xk.Xk−1)− E(Xk)E(Xk−1)

=
∑
i,j∈E

P [Xk ≥ j, Xk−1 ≥ i]−
∑
j∈E

P [Xk ≥ j]
∑
i∈E

P [Xk−1 ≥ i].

Since for non-negative integer valued random variables, Xk and Xk−1,

E(Xk.Xk−1) =
M∑
i=1

M∑
j=1

P [Xk ≥ j, Xk−1 ≥ i] andE(Xk) =
M∑

j=1

P [Xk ≥ j],

and each expectation is finite. But, Xk and Xk−1, associated if,

Cov(Xk, Xk−1) ≥ 0

⇒

(∑
i,j∈E

P [Xk ≥ j, Xk−1 ≥ i]−
∑
i,j∈E

P [Xk ≥ j]P [Xk−1 ≥ i]

)
≥ 0

⇒
∑
i,j∈E

{P [Xk ≥ j, Xk−1 ≥ i]− P [Xk ≥ j]P [Xk−1 ≥ i]} ≥ 0

or
∑
i,j∈E

{P [Xk ≥ j|Xk−1 ≥ i]− P [Xk ≥ j]}P [Xk−1 ≥ i] ≥ 0. (5.1)

Writing (5.1) in terms of one step transition probability, we get,

∑
i,j∈E

∑
i′,j′∈E′

{P [Xk = j′|Xk−1 = i′]− P [Xk = j′]}P [Xk−1 = i′] ≥ 0

where E ′ = {i′, j′ : Xk−1 = i′ ≥ i, Xk = j′ ≥ j}.

We can use the measure,

Cov(Xk, Xk−1) =
∑
i,j∈E

∑
i′,j′∈E′

{P [Xk = j′|Xk−1 = i′]− P [Xk = j′]}P [Xk−1 = i′],
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for assessing the association of the discrete time stochastic process.

Standardization of the covariance may be desired to achieve scale invariance and

enable meaningful comparisons between different data sets. Karlin (1983) replaced the

condition of association, Cov(h(X), g(Y )) ≥ 0 for all functions h ∈ F and g ∈ G, of

two random variables with respect to the classes F and G by an equivalent requirement

ρ(X,Y ) =
Cov(h(X), g(Y ))√

V ar(h(X)).V ar(g(Y ))
≥ 0.

For two stochastic processes {Xk, k ≥ 0} and {Yk, k ≥ 0}, we can use the following

measure for comparing the two processes based on their strength of association.

ρ(Xk,Xk−1) =
Cov(Xk, Xk−1)√

V ar(Xk).V ar(Xk−1)

where V ar(Xk) =
∑

i,j∈E P [Xk ≥ max(i, j)]− P [Xk ≥ j]P [Xk ≥ i].

If

ρ(Xk,Xk−1) ≥ ρ(Yk,Yk−1) (5.2)

the degree of association between Xk and Xk−1 is larger than association between Yk

and Yk−1. If (5.2) is true for every k, then the stochastic process {Xk, k ≥ 0} is more

associated than {Yk, k ≥ 0}.

Now consider a continuous time Markov process {X(t), t ≥ 0}. Let us recall the

sufficient condition, due to Horjt et al. (1985) which is based on the transition proba-

bility function, for the association in time of a Markov process. Denote the transition
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probabilities as pij(s, t) = P [X(t) = j|X(s) = i], s ≤ t, and the transition probability

matrix as P (s, t) = {pij(s, t)}i,j∈{0,1,...,M}. Let τ(I) = (0,∞). The transition intensity

is defined as µij(s) = limh→0+
pij(s,s+h)

h
, i 6= j.

Let Pi,≥j(s, t) = P [X(t) ≥ j|X(s) = i], µi,≥j(s) =
∑M

k=j µik(s), i < j and

µi,<j(s) =
∑j−1

k=0 µik(s), i ≥ j.

Horjt et al. (1985) proved the following result.

Theorem 5.2.1 Let X be a continuous time Markov process with state space {0, 1, ...,M}

and transition probability matrix P (s, t). Assume the transition intensities to be con-

tinuous. Consider the following statements about X :

1. X is associated in time,

2. X is conditionally, stochastically, non-decreasing in time, that is

P [X(t) ≥ j|X(s1) = i1, ..., X(sn) = in]

is non-decreasing in i1, ..., in for each j and for each choice of s1 < ... < sn < t,

n ≥ 1,

3. Pi,≥j(s, t) is non-decreasing in i for each j and for each s < t,

4. for each j and s
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µi,≥j(s) is non-decreasing in i ∈ {0, 1, ..., j − 1}

and

µi,<j(s) is non-decreasing in i ∈ {j, ...,M}.

Then (2), (3) and (4) are equivalent and each of them implies (1).

For the binary case (M = 1) it is easily seen that the statement (3) of the above

theorem is equivalent to

P1,1(s, t) + P0,0(s, t) ≥ 1, for each s < t.

This was the sufficient condition given by Esray and Proschan (1970) for X to be

associated in time.

In order to get the degree of association based on transition probability function,

we consider the correlation measure in terms of transition probability function as

follows.

Consider the random variables X(t), X(s), s < t in the Markov process. It is clear

that if X(t) and X(s), s < t are associated if E(X(t)2) < ∞ and E(X(s)2) < ∞, and

Cov(X(t), X(s)) =
∑
j∈E

∑
i∈E

P [X(t) > j, X(s) > i]− P [X(t) > j]P [X(s) > i] ≥ 0.

(5.3)

Using transition probability function, P [X(t) = j′|X(s) = i′] of the Markov process,

we write (5.3) as,
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Cov(X(t), X(s)) =

∑
j∈E

∑
i∈E

∑
{i′,j′:X(s)=i′>i,X(t)=j′>j}

{P [X(t) = j′|X(s) = i′]−P [X(t) = j′]}P [X(s) = i′] ≥ 0.

(5.4)

Comparison of two Markov processes, {X(t), t ≥ 0} and {Y (t), t ≥ 0}, only in terms of

transition probabilities is not possible but comparison between covariances in terms of

transition probabilities and state probabilities is more reasonable. We can compare

the degree of association of two Markov processes using the following correlation

function, ρX(t, s), since it provide the meaningful comparison with scale invariance

as in case discrete time processes.

In the case of the Markov process we have,

ρX(t, s) =
Cov(X(t), X(s))√

V ar(X(t)).V ar(X(s))
≥ 0

implies association between X(s) and X(t). In order to measure the degree of asso-

ciation in time of the Markov process we use the correlation ρX(t, s) as a function of

transition probability function and state probabilities. We can compare the degree of

association of two Markov processes using ρX(t, s). This gives a stochastic ordering

of two Markov processes based on strength of their association. Denote,

CX(t, s) =
∑
j∈E

∑
i∈E

[P [X(t) ≥ j|X(s) ≥ i]− P [X(t) ≥ j] ]P [X(s) ≥ i],

CX(t, t) =
∑
j∈E

∑
i∈E

[P [X(t) ≥ max(i, j)]− P [X(t) ≥ j]P [X(t) ≥ i] ]

and ρX(t, s) =
CX(t, s)√

CX(t, t).CX(s, s)
.
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We define, if this correlation function of one process is greater than the other,

former process is more associated.

Definition 5.2.2 For two different Markov processes {X(t), t ≥ 0} and {Y (t), t ≥ 0},

we say that association of (X(t), X(s)), s < t is stronger than the association of

(Y (t), Y (s)), s < t if

ρX(t, s) ≥ ρY (t, s).

Above definition shows the association between random variables of both pro-

cesses at two time points. But, in the following definition, we compare the degree of

association of two Markov processes.

Definition 5.2.3 For two different Markov processes {X(t), t ≥ 0} and {Y (t), t ≥ 0},

we say that association of X process is stronger than the association of Y process if

∀s, t ∈ R, s < t

ρX(t, s) ≥ ρY (t, s).

In the following part we consider some conditions of association in terms of the

non-decreasing functions of the classes F and G and its distributional properties. It

provide a measure for the comparison of the degree of association of two system each

consists of n associated components with Markov performance process. For that we

use the following definitions, see Prakash Rao and Dewan (2001).
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The following definition gives the condition for association of a collection of ran-

dom variables with respect to non-decreasing functions.

Definition 5.2.4 A collection of random variables {Xn, n ≥ 1} is said to be associ-

ated if for every n and for every choice of coordinate-wise non-decreasing functions

h(x) and g(x) from Rn to R,

Cov(h(X), g(X)) ≥ 0

whenever it exist, where X = (X1, ..., Xn).

The use of above definition is to define the association in a continuous time

stochastic process which model a performance process of a component. We define

the performance process of n components as follows.

Definition 5.2.5 The performance process of the ith component is a stochastic pro-

cess {Xi(t), t ∈ τ} where for each fixed t ∈ τ, Xi(t) denotes the state of compo-

nent i at time t. The joint performance process of the components is given by

{X(t), t ∈ τ} = {(X1(t), ..., Xn(t)), t ∈ τ}.

Let I = [tA, tB] ⊂ [0,∞), τ(I) = τ ∩ I. Using the above definition, we can define

the association of joint performance process.

Definition 5.2.6 The joint performance process {X(t), t ∈ τ} of the components
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is said to be associated in time interval I if and only if, for any integer m and

{t1, ..., tm} ⊂ τ(I), the random variables in the array

X1(t1) ... X1(tm)

... ... ...

Xn(t1) ... Xn(tm)

are associated.

Here we have a set of mn random variables of the joint performance process of n

components. We have to get a single valued measure to compare association of two

performance processes of two MSSs with n components.

For the component performance process {Xi(t), t ∈ τ}, i ∈ {1, 2, ..., n} and fixed

t1 < ... < tm, let hi(X i) ∈ F, gi(Xi) ∈ G are function of random variables from Rm to

R, where Xi = (Xi(t1), Xi(t2), ..., Xi(tm)). But we have, Xi(t1), Xi(t2), ..., Xi(tm) are

associated if for every hi(xi), and gi(xi), such that E(hi(xi))
2 < ∞ and E(hi(xi))

2 < ∞,

Cov(hi(Xi), gi(Xi)) ≥ 0 where

Cov(hi(Xi), gi(Xi)) =

∫
R

∫
R

{P [hi(Xi) > x, gi(Xi) > y]−P [hi(Xi) > x]P [gi(Xi) > y]}dxdy,

i ∈ {1, 2, ..., n}.

Now suppose that the component performance stochastic process is Markov pro-
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cess, then we define the association of component Markov performance process.

Definition 5.2.7 A Markov performance process {Xi(t), t ∈ τ} of component i is

associated if∫
R

∫
R

{P [hi(Xi) > x|gi(Xi) > y]− P [hi(Xi) > x]}P [gi(Xi) > y]dxdy ≥ 0

for every collection of random variables Xi = (Xi(t1), ..., Xi(tm)) and every choice

of coordinate wise non-decreasing function hi(xi) and gi(xi) from Rm to R such that

E(hi(Xi))
2 < ∞ and E(gi(Xi))

2 < ∞.

In a similar way, we can find a condition for association of joint performance

process of components, in terms of non-decreasing functions, which is quite desirable.

In the following definition, we consider the functions H ∈ F and G ∈ G from Rnm

to R. Now we define the association in time of a joint performance process of n

components using this non-decreasing functions.

Definition 5.2.8 The joint performance process of the components {X(t), t ∈ τ} is

associated in time if∫
R

∫
R

{P [H(X) > x|G(X) > y]− P [H(X) > x]}P [G(X) > y])dxdy ≥ 0

for every collection of random variables,

X = (X1(t1), X2(t1), ..., Xn(t1), X1(t2), ...., Xn(t2), ..., X1(tm), ..., Xn(tm))

and every choice of coordinate wise non-decreasing function H(x) and G(x) from Rnm

to R, such that E(H(X))2 < ∞ and E(G(X))2 < ∞.
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Now we define the measure of degree of association of the MSS consists of n

associated components in which each of the components are governed by Markov

processes. Denote

CX(H, G) =

∫
R

∫
R

{P [H(X) > x|G(X) > y]− P [H(X) > x]}P [G(X) > y]dxdy

CX(H, H) =

∫
R

∫
R

{P [H(X) > max{x, y}]− P [H(X) > x]P [H(X) > y]}dxdy

and ρX(H, G) =
CX(H, G)√

CX(H, H)CX(G, G)
.

We can use the index ρX(H, G) for measuring the degree of association of the

system with n associated components which are governed by Markov processes. A

comparison of the degree of association of two performance processes {X(t), t ≥ 0}

and {Y(t), t ≥ 0} of two systems can be made using the measures ρX(H, G) and

ρY(H, G).

Definition 5.2.9 For two performance process {X(t), t ≥ 0} and {Y(t), t ≥ 0},

of two systems consists of n associated components each of which are governed by

the Markov processes {Xi(t), t ≥ 0} and {Yi(t), t ≥ 0}, i = 1, 2, ..., n respectively,

we say that association of X-system is stronger than the association of Y-system if

∀m , n and H ∈ F, G ∈ G, from Rmn to R such that E(H2) < ∞ and E(G2) < ∞

ρX(H, G) ≥ ρY(H, G).
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The following remark is given by Esray and Proschan (1970) which define the

association of system based on n associated components.

Remark 5.2.1 Let {X(t), t ∈ τ} be a time associated joint performance process

for a set of n components. Let φ1, ..., φm be the structure functions of a set of

coherent systems built from its components, let the joint performance process of a

system be {φX(t), t ∈ τ} = {φ1X(t), ..., φmX(t), t ∈ τ}. For {t1, ..., tk} ⊂ τ ,

Xi(tl), i = 1, 2, ..., n, l = 1, ..., k, are associated. For each j = 1, 2, ...,m and fixed

t, φjX(t) is an increasing function of X1(t), ..., Xn(t). By property (P4), φjX(tl),

j = 1, 2, ..,m, l = 1, ..., k are associated. Again applying property (P4) to φjX(tl),

j = 1, ...,m, l = 1, ..., k, we have the association of φX(t), the structure function of

coherent system.

If we consider two such systems, we can compare the degree of association.

The results described above has theoretical importance in stochastic process the-

ory. So the results are more general. The illustration in this chapter shows its

application to medical field also. So the results described in this chapter can be easily

applied to compare performance processes of MSSs.

Kuber and Dharmadhikari (1996) discussed association in time for semi-Markov

processes and obtained sufficient condition for association in terms of transition prob-
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ability function. The measure of degree of association in semi-Markov process can be

obtained as similar to in Markov process.

The proposed measures may help us (i) to suggest whether a Markov process is

associated in time; and (ii) to asses the relative degree (or strength) of association

when comparing two different Markov performance processes, and (iii) to asses the

relative strength of association of two performance process of two systems consists of

n associated components with Markov performance processes. Similar use holds for

the semi-Markov case.

5.3 Illustration

We consider an example for the application of proposed measure. In this example, we

consider the data set from medical field for the illustration of concept of measure of

association. We re-examine the data on an oral hygiene study, discussed in Das and

Chattopadhyay (2004)( cf. Dharmadhikari and Dewan (2006)) for the illustration of

the association of a vector valued process. Here we calculate the degree of association

of each variable process. Dentists recorded the reduction in the amount of plaque

on teeth. Each individual in the data was monitored for a couple of days. Two

teeth were identified, one on the left lower canine which is in the left lower corner

of a jaw, and one on molar at upper right jaw. The reduction in the thickness of
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plaque for subjects are usually recorded as belonging to four different categories, viz,

no reduction, slight reduction, moderate reduction and vast reduction. One of the

objects of the study was to evaluate effectiveness of brushing. In such cases natural

question can be : Is it possible to reduce the number of records per individual per

day? If there is some sort of dependence, it may be possible to reduce the dimension

of data. Das and Chattopadhyay (2004) developed a latent mixture regression model

to study this categorical multivariate data. Motivated by the data on oral hygiene

study Dharmadhikari and Dewan (2006) derived sufficient conditions for association

in time of the vector valued process X = {{Xi(m), m ≥ 1}, 1 ≤ i ≤ k} which

takes values on a finite set Ek where E = {1, 2, ..., n}. Table 1 give a part of dental

data analyzed. It gives stain on the same tooth at all four positions before and after

brushing, respectively. Numbers under (P1, P2, P3, P4) indicate the amount of stain

at each of the four positions on the selected tooth of an individual. It is easy to verify

that data in table 1 are conditionally increasing in its coordinates. Note that first

probability is based on only two observations and the departure can be attributed to

sampling /measuring errors. With such an understanding, both the data sets can be

considered to be associated in time.

The state probabilities in the above example are given in table 2. The conditional

probabilities P [Xk = j|Xk−1 = i] for i, j ∈ {0, 1, 2, 3} for the four sets of data are

calculated in table 3.
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Table 1. Dental data stain before and after brushing

Before brushing After brushing Before brushing After brushing

No. P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

1 1 1 1 2 0 0 0 0 14 2 1 2 2 0 0 1 1

2 1 1 2 2 0 0 0 1 15 2 2 2 2 0 0 1 1

3 1 1 2 2 0 0 0 1 16 2 2 2 2 0 0 1 1

4 1 1 2 2 0 0 0 1 17 2 2 2 2 0 0 1 1

5 1 1 2 2 0 0 0 1 18 2 2 2 2 0 0 1 1

6 1 2 2 2 0 0 0 1 19 2 2 2 2 0 0 1 1

7 1 2 2 2 0 0 0 1 20 2 2 2 2 0 0 1 1

8 1 2 2 2 0 0 0 1 21 2 2 2 2 0 1 1 1

9 1 2 2 2 0 0 0 1 22 2 2 2 2 0 1 1 1

10 1 2 2 2 0 0 0 1 23 2 2 2 2 0 1 1 1

11 1 2 2 2 0 0 0 1 24 2 2 2 3 0 1 1 1

12 1 2 2 2 0 0 0 2 25 2 2 2 3 1 1 1 2

13 1 2 2 3 0 0 0 2

The information provides useful directions for medical examination and further stud-

ies on each position. But in order to get an ordering in terms of association, we have

to compute the measure of association (using table 2 and table 3). The values are

obtained in table 4. The analysis shows that the data in the third (P3) position is

more associated. This information may be useful to medical practitioners.
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Table 2. State probabilities

P1 P2 P3 P4

P [Xk−1 = 1] = 13
25

P [Xk−1 = 1] = 6
25

P [Xk−1 = 1] = 1
25

P [Xk−1 = 1] = 0

P [Xk−1 = 2] = 12
25

P [Xk−1 = 2] = 19
25

P [Xk−1 = 2] = 24
25

P [Xk−1 = 2] = 22
25

P [Xk−1 = 3] = 0 P [Xk−1 = 3] = 0 P [Xk−1 = 3] = 0 P [Xk−1 = 3] = 3
25

P [Xk = 0] = 24
25

P [Xk = 0] = 20
25

P [Xk = 0] = 13
25

P [Xk = 0] = 1
25

P [Xk = 1] = 1
25

P [Xk = 1] = 5
25

P [Xk = 1] = 22
25

P [Xk = 1] = 21
25

P [Xk = 3] = 0 P [Xk = 3] = 0 P [Xk = 3] = 0 P [Xk = 2] = 3
25

Table 3. The conditional probabilities P [Xk = j|Xk−1 = i] for i, j ∈ {0, 1, 2, 3}

Xk 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Xk−1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

2 11
12

1
12

0 0 14
19

5
19

0 0 12
24

12
24

0 0 1
22

20
22

1
22

0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1
3

2
3

0

Here we compute Cov(Xk, Xk−1), because state space of four positions are assumed

to be same.
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Table 4. Degree of association

Position P1 P2 P3 P4

Cov(Xk, Xk−1) 0 30/625 12/25 2/25

Association in time of a Markov process has been studied by several authors. We

introduced a measure to assess the degree of association in time of Markov process

based on transition probability function. The result have theoretical importance in

the area of ordering of two processes based on degree of association. The practical

applications are in reliability study as well in medical field.
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Chapter 6

EVALUATION OF JOINT

IMPORTANCE MEASURES

6.1 Introduction

1In certain MSSs, the performance of different system components can have different

physical nature whose performance is measured in terms of productivity or capacity

etc. Therefore it is important to measure performance rates of these components

by their contribution into the entire MSS output performance. Examples of such

1Some contents of this chapter have appeared in Chacko (2008b), Chacko and Manoharan (2009a,

2009c)
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MSSs are continuous materials or energy transmission systems, power generation

systems. In power generation applications the performance measure is usually defined

as productivity or capacity (eg. production capacity of 100MW). The main task

of these systems is to provide the desired throughput or transmission capacity for

constant energy, material or information flow. The evaluation of system reliability

and joint importance measure of such systems are complicated because of multi-state

behavior and complexity of configuration of system components. Also we cannot use

usual generating function to find out the performance and probability distribution

of such systems, since for parallel components the performance will not be usual

maximum of individual performances but sum (eg. two parallel power generator with

productivity 100MW provide 200MW as total output). UGF is found to be a fine tool

for such systems in evaluation of reliability and importance measure, see Lisnianski

and Levitin (2003). Some application of UGF can be seen in Levitin (2002a), Levitin

(2002b), Levitin (2003), Levitin (2004a) and Yeh (2006). So we will use the UGF

for the evaluation of performance measure and joint importance measure of systems

whose performance is in terms of productivity or capacity.

This chapter is arranged as follows. The definition of UGF of a component and

a complex MSS are given in section 2. The method of evaluation of joint impor-

tance measure using UGF is provided in section 3. The application of the evaluation

procedure to the network systems is given in section 4. An example is given in last

section.

129



6.2 Universal Generating Function

For a MSS which has a finite number of states, there can be M + 1 different output

performance at each time t,

G(t) ∈ G = {Gk, 0 ≤ k ≤ M}.

The system output performance distribution can be defined by two finite vectors G

and P = {pk(t) = P [G(t) = Gk], 0 ≤ k ≤ M}.

The UGF, represented by a polynomial U(z) can define MSS OPD, i.e., it repre-

sents all the possible states of the system (or component) by relating the probabilities

of each state, pk, to performance Gk of the MSS of that state in the form:

U(z) =
M∑

k=0

pk(t)z
Gk , z ∈ R. (6.1)

Now we discuss the UGF of complex MSS.

UGF for Complex MSS

Real world MSSs are often complex and consist of large number of components com-

posing different types of structures. UGF is a technique to obtain the entire MSS

output performance distribution. This technique uses composition operators for de-

termination of the UGF of a subsystem (component) containing a number of compo-

nents. These operators determine the subsystem UGF expressed as polynomial U(z)
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for a group of components using simple algebraic operations over individual UGFs of

components. All the composition operators for two different components takes the

form

Ω(U1(z), U2(z)) = Ω(
M∑
i=0

p1iz
g1i ,

M∑
j=0

p2jz
g2j)

=
M∑
i=0

M∑
j=0

p1ip2jz
w(g1i,g2j) (6.2)

where U1(z) and U2(z) are individual UGF of components 1 and 2 with performance

distributions {g1i, p1i, i ∈ {0, 1, ...,M}} and {g2j, p2j, j ∈ {0, 1, ...,M}} respectively.

The function w(., .) in composition operators expresses the entire performance rate of

subsystem consisting of different components in terms of the individual performance

rates of the components. The definition of the function w(., .) strictly depends on the

type of connection between the components in the reliability logic diagram sense. Here

we define composition operators Ωσ, Ωπ for subsystems with components connected in

series and in parallel respectively. In MSS where the performance measure is defined in

terms of capacity or productivity, the total capacity of a pair of components connected

in parallel is equal to the sum of the capacities of the components. Therefore the

function w(., .) in composition operator takes the form:

w(g1, g2) = π(g1, g2) = g1 + g2.

For a pair of components connected in series, the component with the least capacity

becomes the bottleneck of the system. In this case the function w(., .) takes the form:

w(g1, g2) = σ(g1, g2) = min(g1, g2).
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Note that the composition operators for components connected in parallel and in

series satisfies the conditions:

Ω(U1(z), ..., Uk(z), Uk+1(z), ..., Un(z)) = Ω(U1(z), ..., Uk+1(z), Uk(z), ..., Un(z))

and

Ω(U1(z), ..., Uk(z), Uk+1(z), ..., Un(z)) = Ω(Ω(U1(z), ..., Uk(z)), Uk+1(z), ..., Un(z))

for arbitrary k. Consecutively applying the Ω operators with corresponding functions

σ or π to the components, one can obtain the UGF for an arbitrary number of

components connected in series or in parallel. Combining the two operators one

can obtain UGF representing performance distribution of an arbitrary series-parallel

system.

6.3 Evaluation of Joint Importance Measure using

UGF

2Here we propose the component’s performance restriction approach (or state space

restriction approach) for evaluation of joint importance measures using UGF. Let

2This work has been presented at National Seminar on Recent Advances in Statistics and Analysis

of Non-conventional Data, March 15-17, Farrok College, Kerala and Awarded Prof. R. N. Pillai

Young Statistician Award 2008 of Kerala Statistical Association
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OMik be the OPM of the MSS when component i is in a fixed state k while the rest

of components evolve stochastically among their corresponding states with steady

state performance distributions {xjl, pjl}, 1 ≤ j ≤ n, 0 ≤ l ≤ Mj.

The conditional probability of the component i being in a generic state k char-

acterized by a performance xik not greater than a pre-specified level threshold α (or

equivalently k ≤ kiα) is

P [Xi = k|k ≤ kiα] =
pik∑kiα

r=0 pir

=
pik

p≤α
i

= p∗1ik (say).

Similarly, the conditional probability of component i being in a state k when it is

known that k > kiα is

P [Xi = k|k > kiα] =
pik∑Mi

r=kiα+1 pir

=
pik

p>α
i

= p∗2ik (say).

Consider the following joint probability distribution of two independent components

i and j given four additional restrictions, (1)k > kiα, h > hjβ, (2)k ≤ kiα, h > hjβ,

(3)k > kiα, h ≤ hjβ and (4)k ≤ kiα, h ≤ hjβ.

P [Xi = k,Xj = h|k ≤ kiα, h ≤ hjβ] =
pikpjh∑kiα

r=0 pir

∑hjβ

m=0 pjm

= p∗∗1 kh (say)

P [Xi = k,Xj = h|k ≤ kiα, h > hjβ] =
pikpjh∑kiα

r=0 pir

∑Mj

hjβ+1 pjm

= p∗∗2 kh (say)

P [Xi = k,Xj = h|k > kiα, h ≤ hjβ] =
pikpjh∑Mi

r=kiα+1 pir

∑m=hjβ

m=0 pjm

= p∗∗3 kh (say)

and P [Xi = k, Xj = h|k > kiα, h > hjβ] =
pikpjh∑Mi

r=kiα+1 pir

∑Mj

m=hjβ+1 pjm

= p∗∗4 kh (say).
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Using the above conditional probability distributions, we obtain the following OPMs:

OM≤α
i =

kiα∑
k=0

pik

p≤α
i

.OMik, (6.3)

OM>α
i =

Mi∑
k=kiα+1

pik

p>α
i

.OMik, (6.4)

OM≤α,≤β
i,j =

kiα∑
k=0

hjβ∑
h=0

p∗∗1 hk.OMik,jh, (6.5)

OM>α,≤β
i,j =

Mi∑
k=kiα+1

hjβ∑
h=0

p∗∗3 hk.OMik,jh, (6.6)

OM≤α,>β
i,j =

kiα∑
k=0

Mj∑
h=hjβ+1

p∗∗2 hk.OMik,jh and (6.7)

OM>α,>β
i,j =

Mi∑
k=kiα+1

Mj∑
h=hjβ+1

p∗∗4 hk.OMik,jh, (6.8)

where OMik,jh be the system steady state OPM when component i is in state k and

component j is in state h. Substituting (6.3) to (6.8) in (2.19) to (2.22) we get the

generalized joint importance measures using steady state probability distribution of

components.

In the same way we can express the joint risk importance measures. At steady

state, let Fik be the risk associated to the system when component i is in state k.

Similarly, let Fik,jh represents the risk associated with the system when component i

is in state k and component j is in state h. Then the joint risk importance measures
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are,

MJrBIij =

kiα∑
r=0

kjβ∑
m=0

p∗∗1 rmFir,jm −
kiα∑
r=0

Mj∑
m=kjβ+1

p∗∗2 rmFir,jm

−
Mi∑

r=kiα+1

kjβ∑
m=0

p∗∗3 rmFir,jm +

Mi∑
r=kiα+1

Mj∑
m=kjβ+1

p∗∗4 rmFir,jm, (6.9)

MJrAWij =

∑kiα

r=0

∑kjβ

m=0 p∗∗1 rmFir,jm∑kiα

r=0 p∗1irFir +
∑kjβ

m=0 p∗1jmFjm

, (6.10)

MJrRWij =
F1

F2 − F3 − F4

(6.11)

where F1 =

Mi∑
r=kiα+1

p∗2irFir +

Mj∑
m=kjβ+1

p∗2jmFjm

F2 =

Mi∑
r=kiα+1

Mj∑
m=kjβ+1

p∗∗4 rmFir,jm

F3 =

kiα∑
r=0

Mj∑
m=kjβ+1

p∗∗2 rmFir,jm

F4 =

Mi∑
r=kiα+1

kjβ∑
m=0

p∗∗3 rmFir,jm, and

MJrFVij =

∑Mi

r=kiα+1 p∗2irFir +
∑Mj

m=kjβ+1 p∗2jmFjm −
∑Mi

r=kiα+1

∑Mj

m=kjβ+1 p∗∗4 rmFir,jm∑Mi

r=kiα+1 p∗2irFir +
∑Mj

m=kjβ+1 p∗2jmFjm

.

(6.12)

The following recursive algorithm allows to compute the system OPM, see Lisni-

anski and Levitin (2003).

1. Obtain the UGFs of all of the system components.

2. If the system contains a pair of components connected in parallel or in series,

replace this pair with an equivalent macro-component with UGF obtained by
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(6.2).

3. If the system contains more than one component, return to step 2.

4. Determine the UGF of the entire series-parallel system as the UGF of the single

equivalent macro-component. The system probability and performance distri-

butions are represented by the coefficients and exponents of this UGF, corre-

sponding to the state probabilities and performance, respectively.

5. Compute the system OPM by applying the equations (6.3) to (6.8) with the

given vectors of probability distribution and output performances.

In order to obtain the state-space restricted OPMs OM≤α
i , OM>α

i , OM≤α,≤β
ij , OM>α,≤β

ij ,

OM≤α,>β
ij , and OM>α,>β

ij , one has to modify the UGF of components i and j as fol-

lows:

U≤α
i (z) =

kiα∑
r=0

pir

p≤α
i

zxir

for OM≤α
i ,

U>α
i (z) =

Mi∑
r=kiα+1

pir

p>α
i

zxir

for OM>α
i ,

U≤α,≤β
i,j (z) =

kiα∑
r=0

pjr

p≤α
i

zxir ∗
kjβ∑

m=0

pjm

p≤β
j

zxjm =

kiα∑
r=0

kjβ∑
m=0

pirpjm

p≤α
i p≤β

j

zω(xir,xjm)

for OM≤α,≤β
ij ,

U>α,≤β
i,j (z) =

Mi∑
r=kiα+1

pir

p>α
i

zxir ∗
kjβ∑

m=0

pjm

p≤β
j

zxjm =

Mi∑
r=kiα+1

kjβ∑
m=0

pirpjm

p>α
i p≤β

j

zω(xir,xjm)
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for OM>α,≤β
ij ,

U≤α,>β
i,j (z) =

kiα∑
r=0

pir

p≤α
i

zxir ∗
Mj∑

m=kjβ+1

pjm

p>β
j

zxjm =

kiα∑
r=0

Mj∑
m=kjβ+1

pirpjm

p≤α
i p>β

j

zω(xir,xjm)

for OM≤α,>β
ij , and

U>α,>β
i,j (z) =

Mi∑
r=kiα+1

pir

p>α
i

zxir ∗
Mj∑

m=kjβ+1

pjm

p>β
j

zxjm =

Mi∑
r=kiα+1

Mj∑
m=kjβ+1

pirpjm

p≤α
i p>β

j

zω(xir,xjm)

for OM>α,>β
ij , then apply the algorithm given above. We use the coefficients of above

UGFs for the evaluation of joint importance measures in (2.19) to (2.22) and (6.9) to

(6.12).

6.4 Application in Network Systems

Since the very early times of reliability engineering, the network reliability is one

of the main subjects of research. The network reliability theory has been applied

extensively in many real-world systems such as computer and communication sys-

tems, electric power generation system, power transmission and distribution systems,

telecommunication network system, transportation systems, oil/gas production sys-

tems etc. Network reliability evaluation approaches exploit a variety of tools for

system modeling and reliability index calculation. Network reliability problems are

generally classified based on the method used to transfer the flow (or signal) and how

the flow conservation law is satisfied. Typically there are two categories; the multi-

state arc network (MAN) and the multi-state node network (MNN). In MAN, each
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arc has a non-negative integer valued discrete random variable capacity (multi-state

arc) and all flows in the network obey the conservation law. Apparently in MNN,

each node is a multi-state node with discrete states determined by a set of nodes

receiving the signal directly from it without satisfying conservation law. Both have

their own applications; for example electrical power distribution system can be mod-

eled by MAN, and computer networks or cellular phone networks can be modeled

as MNN. Thripathy et al (1996) and Patra and Misra (1996) provide information of

MSS modeling of networks and reliability evaluation.

Let G = (N, A) represents a stochastic capacited network made up of n arcs with

known demand wk from a specified source node s to a specific sink node t where N

represents the set of all nodes and A = {ai|1 ≤ i ≤ n} represents the set of all arcs.

Each arc i may be in one of Mi+1 states {0, 1, ...,Mi}, i ∈ {1, 2, ..., n}. Let W (t) is the

random output performance of the multi-state network G at time t which takes the

values wi, i ∈ {0, 1, ...,M}, where M = maxi{Mi}, depending on the network state i

at time t. Let pi(t) is the probability of the network system being in state i at time

t. The two vectors of the network performance realizations, w̄ = {wi, 0 ≤ i ≤ M},

and of the network state probabilities, {pi(t), 0 ≤ i ≤ M} define the network output

performance distribution at time t. The current capacity of arc ai at steady state is

represented by xij, when the arc is in state j, 0 ≤ j ≤ Mi. The vector (pi0, pi1, ..., piMi
)

represents the steady state probability associated to each of the values of capacity of

arc ai. The network state vector x = (x1, ..., xn) denotes the state of all the arcs of the

network system. Function φ(x) : Zn → Z, where Z = {0, 1, ...,M}, M = maxi{Mi}
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maps the network state vector into network state. That is, φ(x), is the state of the

network from source to sink under system state vector x, which represents a MSS

structure function.

We shall make the following assumptions for the network reliability system.

1. Arc states are stochastically independent.

2. The structure function is statistically coherent. That is, improving an arc per-

formance cannot cause to degrade the performance of the network system and

all arcs are relevant.

JRI of the two edges in an undirected network in binary nature is an extension

of the marginal reliability importance (MRI) of edges, Hong and Lie (1993). In an

undirected binary network, reliability is the probability that source and terminal are

connected by working edges. For an undirected stochastic network G(N, E), where

E = {ei|1 ≤ i ≤ n} is set of all edges and N is the set of nodes, let R(G) represents

the probability that the source and terminal are connected by working edges and

q = (q1, ..., qn) where qi = P{ei ∈ E is working}. Marginal reliability importance of

edge ei in an undirected network is defined as IG(i) = ∂R(G)
∂qi

. Again JRI of two edges

is defined as follows.

Definition 6.4.1 The JRI of two edges ei and ej is the second order partial derivative
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of reliability R(G) of an undirected network with respect to reliabilities qi and qj of

both edges: IG(i, j) = ∂2R(G)
∂qi∂qj

.

When we consider the multi-state network with multi-state arc (or nodes), we

can use (2.19)-(2.22) for finding the various joint importance measures in network

systems. In all the measures arcs (or nodes) are referred to components of the MSS.

In order to illustrate the use of UGF in finding joint importance measures in network

systems we consider the following example.

6.5 Example: Sliding Window System

Consider a multi-state multiple sliding window system (MSWS) with n = 5, number

of multi-state components, see Levitin (2004b). It generalizes the linear consecutive

k − out − of − r − from − n : F system consists of n linearly ordered multi-state

components. Each multi-state component can have several different states: from com-

plete failure up to perfect functioning. A performance rate is associated with each

state. A set of integer numbers is defined such that any r = 3, or r = 4 corresponds

to the number of consecutive multi-state components (length of sliding window). For

each r the function, f3(x1, x2, x3) =
∑3

i=1 xi − 5 and f4(x1, x2, x3, x4) =
∑4

i=1 xi − 6,

where xi is the performance rate of ith component, named the acceptability function,

is defined in such a manner that fr < 0 constitutes the system failure. The MSWS
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fails if at least one of the functions fr over the performance rates of any r consecutive

components is negative. Each multi-state component has a total failure (correspond-

ing to performance rate 0) and functioning with nominal performance rates 2, 2, 3,

1, and 2, respectively. The UGF of the individual multi-state components are

U1(Z) = p1,1Z
0 + p1,2Z

2,

U2(Z) = p2,1Z
0 + p2,2Z

2,

U3(Z) = p3,1Z
0 + p3,2Z

3,

U4(Z) = p4,1Z
0 + p4,2Z

1

and U5(Z) = p5,1Z
0 + p5,2Z

2.

The UGF technique is used for evaluating the MSWS OPM, reliability R, without

restriction to components. The system reliability is

R = p1,2p2,2p3,2p4,1p5,2 + (p1,1 + p1,2)p2,2p3,2p4,2p5,2. (6.13)

We consider the following probability distribution of 5 multi-state components in

Table 1. The non-zero OPM with component restriction are computed using (6.13)

in Table.2. The proposed joint importance measures for pairs (i, i + 1), i = 1, ..., 4

are evaluated in table 3 and table 4. A numerical comparison can be made for pair

of components using the size of the value of relevant measure with regard to their

impact on system reliability and unreliability. It is also clear that the greatest joint

importance is assigned to the pair (2,3) based on MRJBI and MJRAW.
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Table 1. Probability distributions of components

Multi-state component i pi,0 pi,1 pi,2 pi,3

1 0.2 0 0.8 0

2 0.3 0 0.7 0

3 0.24 0 0 0.76

4 0.39 0.61 0 0

5 0.01 0 0.99 0

Table 2. MSWS OPM-reliability with restriction to components performance,

α = 0.8, β = 0.9

Multi-state components OPM -reliability

i=1 OM≥α
1 = 2.p2,2p3,2p4,1p5,2 = 0.4108104

i=2 OM≥α
2 = p1,2p3,2p4,1p5,2 + p3,2p4,2p5,2 = 0.6937128

i=3 OM≥α
3 = p1,2p2,2p4,1p5,2 + p2,2p4,2p5,2 = 0.760914

i=4 OM≥α
4 = p2,2p3,2p5,2 = 0.52668

i=5 OM≥α
5 = p1,2p2,2p3,2p4,1 + p2,2p3,2p4,2 = 0.490504

i=1 OM<α
1 = p1,2p2,2p3,2p5,2 = 0.421344

i=1, j=2 OM≥α,≥β
1,2 = p3,2p4,1p5,2 + p3,2p4,2p5,2 = 0.897336

i=2, j=3 OM≥α,≥β
2,3 = p1,2p4,1p5,2 + (p1,1 + p1,2)p4,2p5,2 = 0.91278

i=3, j=4 OM≥α,≥β
3,4 = (p1,1 + p1,2)p2,2p3,2p4,2p5,2 = 0.3212748

i=1, j=2 OM<α,≥β
1,2 = p2,2p3,2p4,2p5,2 = 0.3212748

i=4, j=5 OM<α,≥β
4,5 = p1,2p2,2p3,2 = 0.4256

i=3, j=4 OM≥α,<β
3,4 = p1,2p2,2p5,2 = 0.5544
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Table 3. MJRBI, MJRAW, MJRRW, MJRFV.

Multi-state components MJRBI MJRAW MJRRW MJRFV

i=1, j=2 0.5760612 0.5216 0 0

i=2, j=3 0.91278 0.8264 0 0

i=3, j=4 -0.2331252 0.2909 0 0

i=4, j=5 -0.1043252 0.2909 0 0

Table 4. MJrBI, MJrAW, MJrRW, MJrFV.

multi-state Components MJrBI MJrAW MJrRW MJrFV

i=1, j=2 -0.5760612 0 8.7224 0.8854

i=2, j=3 0.08722 0 6.2585 0.8401

i=3, j=4 0.2331252 0 1.04962 0.0473

i=4, j=5 0.1043252 0 1.4480 0.3094

Again pair (1,2) have greatest MJrAW and MJrFV. This pairs needs more safety and

redundancy operations.

In any statistical problem where the complexity involved, one has to get some

simple evaluation method. We gave a method for evaluation of joint importance

measures, proposed in the previous chapters, based on UGF. The method is illustrated

in a network system (signal transmission system).
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Chapter 7

BAYESIAN INFERENCE FOR

MULTI-STATE SYSTEMS

7.1 Introduction

In a non-Bayesian statistical reliability analysis, the analyst avoids the historical data

that is available on similar systems. But in Bayesian analysis, it permits to include

the information from past data in the overall assessment of system reliability. Let p

denotes the reliability of a certain component at time t. Then p is assumed to belong

to [0, 1], but no values of p in this interval is given preference, even if one is quite

certain that p is close to 1, say. This prior knowledge easily get lost in the model.
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In Bayesian inference, one can introduce this kind of knowledge into the model by

interpreting p as a random variable with some distribution π(p), expressing what one

thinks (believes) about the actual value of p. In MSS reliability evaluation, we have

several advantages by adopting Bayesian approach; firstly, the expert opinion can be

effectively reflected into the model even in the situation of rare data, see Aven and

Hjorteland (2003). The basics of Bayesian theory can be seen in Berger (1985). This

theory is used in MSS reliability analysis. In this chapter we consider the Bayesian

inference of MSS reliability and joint importance measures. For that we shall consider

the whole system reliability in terms of component’s probability distributions. Then

we find the Bayesian estimate of component’s probability distributions to get Bayesian

estimate of whole system reliability. This estimation procedure is mainly applicable

to the multi-state signal transmission systems (network systems).

This chapter is arranged as follows. The role of Bayesian inference in MSS reli-

ability is described in section 2. The Bayes estimation of MSS reliability and joint

importance measure is described in section 3. An illustration in network system is

given in section 4.
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7.2 Bayesian Inference in MSS Reliability

We consider Bayesian estimation of MSS reliability and joint importance measures.

In network systems, if we get the Bayesian estimate of component reliability, we can

easily find the estimate of system reliability. It is possible only when system reliability

is expressed in terms of component reliability. Otherwise the Bayesian inference is

no longer simple. In the case of network systems, the system reliability can be ex-

pressed as combination of component reliabilities, so our approach is useful in network

MSSs. We can use some well known statistical distributions, eg. Beta distribution,

for obtaining the Bayesian estimate of reliability of components. Beta distribution

has many advantage in Bayesian analysis over other distributions in interval [0,1], be-

cause it is in conjugate prior family, see Huang et al. (2006) for Beta prior selection

in reliability analysis.

Weber and Jouffe (2006) presented a methodology that will help developing Bayesian

Networks in complex dynamic models. Robinson (2001) discussed a hierarchical Bayes

approach to system reliability analysis. Hamada et al. (2003) summarized the infor-

mation about the probability of occurrence of each basic event in a multi-state fault

tree using a probability distribution. The prior information for a basic event prob-

ability is in the form of a beta distribution denoted by Beta(a,b). If there are also

basic event data available in the form of x failures, say, in n trials, then the posterior

information for the basic event can be expressed as Beta(a+x,b+(n-x)).
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7.3 Reliability and Joint Importance Measure Es-

timation

Suppose that the system reliability can be expressed as function of component’s prob-

ability distribution, i.e.,

R = f(p1,0, ..., p1,M , p2,0, ..., p2,M , ..., pn,0, ..., pn,M),

where pi,j is the probability that the component i is in state j. Let pij is interpreted as

the proportion of times component i would be in state j when considering an infinite

or very large number of similar situations to the one analyzed.

The parameter pij is unknown, considered to be a random variable over [0, 1], and

our uncertainty related to its value is specified through a prior distribution Hij(pij).

We assume that the the state of the component is either in state j or failed. Let

the density function of prior distribution be

hij(pij) =
Γ(α + β)

Γ(α)Γ(β)
pα−1

ij (1− pij)
β−1, α, β ≥ 0, 0 ≤ pij ≤ 1,

and pij’s are such that pi0 + · · · + pij + · · · + piM = 1, j ∈ {0, 1, 2, ...,M}. Suppose

given n observations for each component, xij is the number times component type i

is in state j. Then the posterior distribution of pij would be

hij(pij|xij) =
Γ(n + α + β)

Γ(xij + α)Γ(n− xij + β)
p

xij+α−1
ij (1−pij)

n+β−xij−1, α, β ≥ 0, 0 ≤ pij ≤ 1.
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Bayes point estimate of pij is p̂ij, which is the mean of the posterior distribution

p̂ij =
xij + α

n + α + β
, (7.1)

if we consider squared error loss function.

Hence we get the Bayes estimate of MSS reliability

R̂ = f(p̂1,1, ..., p̂1,M , p̂2,1, ..., p̂2,M , ..., p̂n,1, ..., p̂n,M). (7.2)

Substituting the Bayes estimates (7.1) of pij’s in various joint importance mea-

sures, we can easily obtain the Bayes estimate of multi-state joint importance mea-

sures.

In the next section, we give an illustration of the Bayes estimation for MSS relia-

bility and joint importance measures.

7.4 Example: Network System

Once the estimate of the probability distribution of components is obtained we get

the estimate of importance and joint importance measures also. We describe the

evaluation of the output performance measure with reference to the five component

MSWS discussed in Chapter 6. Each multi-state component can have several dif-
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ferent states: from complete failure up to perfect functioning. A performance rate

is associated with each state. A set of integer numbers is defined such that any

r = 3, or r = 4 corresponds to the number of consecutive multi-state components

(length of sliding window). For each r the function, f3(x1, x2, x3) =
∑3

i=1 xi − 5

and f4(x1, x2, x3, x4) =
∑4

i=1 xi − 6, where xi is the performance rate of ith compo-

nent, is defined in such a manner that fr < 0 constitutes the system failure. The

MSWS fails if at least one of the functions fr over the performance rates of any r

consecutive components is negative. Each multi-state component has a total failure

(corresponding to performance rate 0) and functioning with nominal performance

rates 2, 2, 3, 1, and 2, respectively. The UGF of the individual multi-state compo-

nents are U1(Z) = p1,1Z
0 + p1,2Z

2, U2(Z) = p2,1Z
0 + p2,2Z

2, U3(Z) = p3,1Z
0 + p3,2Z

3,

U4(Z) = p4,1Z
0 + p4,2Z

1 and U5(Z) = p5,1Z
0 + p5,2Z

2.

The Bayes estimate of reliability is

ÔM = R̂ = p̂1,2p̂2,2p̂3,2p̂4,1p̂5,2 + (p̂1,1 + p̂1,2)p̂2,2p̂3,2p̂4,2p̂5,2.

Table 1. provides the Bayes estimates of performance measures with restriction to

two components. For a numerical illustration, consider p1,2 ∼ Beta(2, 3), p2,2 ∼

Beta(2, 2), p3,2 ∼ Beta(2, 1), p4,1 ∼ Beta(2, 3), and p5,2 ∼ Beta(2, 2). Suppose there

are 5 observations on each component and x1,2 = 3, x2,2 = 4, x3,3 = 3, x4,1 = 2, and

x5,2 = 2. Then the Bayes estimates would be p̂1,2 = 0.5, p̂2,2 = 0.67, p̂3,2 = 0.625,

p̂4,1 = 0.4, and p̂5,2 = 0.444. The Bayes estimate of joint importance measures is

calculated in table 2.
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Table 1. Bayes estimate of MSWS-reliability with restriction to components

performance, α = .8, β = .9

multi-state Components OPM reliability estimate

i=1 ÔM
≥α

1 = 2.p̂2,2p̂3,2p̂4,1p̂5,2

i=2 ÔM
≥α

2 = p̂1,2p̂3,2p̂4,1p̂5,2 + p̂3,2p̂4,2p̂5,2

i=3 ÔM
≥α

3 = p̂1,2p̂2,2p̂4,1p̂5,2 + p̂2,2p̂4,2p̂5,2

i=4 ÔM
≥α

4 = p̂2,2p̂3,2p̂5,2

i=5 ÔM
≥α

5 = p̂1,2p̂2,2p̂3,2p̂4,1 + p̂2,2p̂3,2p̂4,2

i=1 ÔM
<α

1 = p̂1,2p̂2,2p̂3,2p̂5,2

i=1,j=2 ÔM
≥α,≥β

1,2 = p̂3,2p̂4,1p̂5,2 + p̂3,2p̂4,2p̂5,2

i=2,j=3 ÔM
≥α,≥β

2,3 = p̂1,2p̂4,1p̂5,2 + (p̂1,1 + p̂1,2)p̂4,2p̂5,2

i=3,j=4 ÔM
≥α,≥β

3,4 = (p̂1,1 + p̂1,2)p̂2,2p̂3,2p̂4,2p̂5,2

i=1,j=2 ÔM
<α,≥β

1,2 = p̂2,2p̂3,2p̂4,2p̂5,2

i=4,j=5 ÔM
<α,≥β

4,5 = p̂1,2p̂2,2p̂3,2

i=3,j=4 ÔM
≥α,<β

3,4 = p̂1,2p̂2,2p̂5,2

The Bayes estimates of joint importance measures are given below.

1. Joint Performance Achievement Worth:

MJPAWij =
ÔM

>α,>β

i,j − ÔM
>α,≤β

i,j − ÔM
≤α,>β

i,j

ÔM
>α

i + ÔM
>β

j

2. Joint Performance Reduction Worth:

MJPRWij =
ÔM

≤α

i + ÔM
≤β

j

ÔM
≤α,≤β

i,j
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3. Joint Performance Fussel-Vesely Measure:

MJPFVij =
ÔM

≤α

i + ÔM
≤β

j − ÔM
≤α,≤β

i,j

ÔM
≤α

i + ÔM
≤β

j

4. Joint Performance Birnbaum Importance Measure:

MJPBIij = ÔM
α,>β

i,j − ÔM
α,≤β

i,j

Table 2. Bayes estimate of joint importance measures

Pair of components MJPAW MJPBI

1,2 -0.2405 -0.07437

2,3 2.7517 0.9328

3,4 -0.1974 -.0.07437

4,5 -1.5487 -0.2394

The Bayes estimate of joint importance measures indicates that the pair (2, 3) need

more safety and redundancy operations.

The above procedure provides a method of Bayes estimation of MSS reliability and

joint importance measures by computing the posterior mean of components reliability.

This procedure is applicable to MSSs like signal transmission system since the state

of the signal transmission node will be in j or failed, the example illustrate the

procedure. It also emphasis the use of Beta prior distribution when the system

reliability is expressed in terms of components probability distributions.
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Concluding Remarks and Future Research Directions

In many real life systems the states of the system are not binary, instead multi-

state possessing some degradation process over time. When we consider the system

state as random, the probabilistic concepts are incorporated into the system states for

finding MSS performance measures. The most useful and frequently used measures

are reliability, availability, risk(unreliability or unavailability) and expected perfor-

mance. For instance, when the system is in continuous operation from the start of

the installation, possessing some degradation from best state to worst state, reliability

is used as the performance measure. Apart from this notion, suppose that we give

some corrective maintenance actions after MSS is shutdown for a specified period of

time or the system is not required in continuous operation, availability is used as the

performance measure. In nuclear systems, the unreliability or unavailability is the

suitable performance measure. There are large probabilistic safety systems in which

the performance measure is usually risk. Similarly expected performance or aver-

age performance is also important as reliability or availability in system engineering.

Under this requirement, we used the OPMs to obtain new results.

In the first chapter, we gave some preliminary details on BSS, MSS, association of

random variables, ageing properties of lifetime random variables, and Bayesian infer-

ence. We gave details of the development of MSSs from that of BSSs. The definitions

and some main properties of the existing MSSs are recalled there. The notion of
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most commonly used importance measures is also drawn up. The motivation and the

objectives for the current study are briefly sketched there. The main contribution of

the present study is given at the end of the chapter.

Recently, importance and joint importance measure got the attention of many re-

searchers. Their query was, how can we measure the importance or joint importance

of two components with respect to MSS output performance measures mentioned

above. But we considered the problem of obtaining joint importance of more than

two components with respect to system expected performance. When component

reliabilities are unknown, we defined joint structural importance measures. The main

advantage of such measures is the valuable information provided by them to provide

safety and redundancy operations for a group of components based on their critical

roles in interaction for the better performance of the whole system. Also we proposed

a characterization result to identify the sign of multi-state JRI measure. Sometimes

the system engineer may want only to know whether the group of components is

more (or less) important, but no need of the exact importance. In such a situation

this characterization becomes useful. The importance measures other than Birnbaum

measure used in engineering and nuclear system applications is performance achieve-

ment worth, performance reduction worth and performance Fussel-Vesely measure.

We defined joint performance achievement worth, joint performance reduction worth,

joint performance Fussel-Vesely measure and joint performance Birnbaum measure

for MSSs with respect to reliability, availability and risk. These measures give infor-

mation regarding which pair provide more (or less ) interaction effect for achievement
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of performance measure, reduction of performance measure etc. Indeed, this chapter

gave some basic foundation to the joint importance of two or more components in

MSS reliability theory. The joint performance achievement worth, joint performance

reduction worth, and joint Fussel-Vesely measure for more than two components are

quite worthwhile objectives for future research. We can use these importance and

joint importance measures in maintenance and replacement policies, which will be

our next consideration.

As stated in introductory chapter, there are various definitions of MSSs each of

which are differentiated based on the component relevancy. In all such definitions,

either all components are relevant to all states or all components have same relevancy

structure. But many MSSs do not come under the existing classes. So reliability

analysis using the existing MSS definitions caught problems when we compute im-

portance and joint importance measures, since the main advantage of defining a new

class of MSSs is to get importance and joint importance measures. In chapter 3, we

proposed a new relevance condition and its generalization to overcome this difficulty.

Also we defined the new classes in such a way that the existing classes are special

cases of the new classes. The structural properties of the new classes of MSSs, and

the problem of redundancy and bounds for the reliability are objectives for further

research.

Ageing and its ramifications are well developed in binary reliability theory when

the lifetime random variables are assumed to follow some statistical distributions.
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Ageing properties of first passage time distribution in Markov chain/ Markov process

have been appeared in reliability literature. But when we consider a MSS, it is

interesting to get ageing properties of first passage time distribution of semi-Markov

system. In chapter 4, we derived a necessary and sufficient condition for IFR/DFR

and IFRA/DFRA properties of a semi-Markov system. The study of first passage time

distribution or other relevant distributions with respect to other ageing properties may

be a quite worthwhile future work.

Reliability bounds for the MSS can be obtained when components are associ-

ated. But this problem has been solved when MSS is modeled using Markov and

semi-Markov process. In Chapter 5, we proposed the correlation measure in terms

of transition probability function for measure the degree of association of Markov

process, which is quite interesting in engineering and medical field. This measure is

illustrated using a data set from medical field. Still a quite few problems of associ-

ation in components of the MSSs are unexplored. The dependence ordering based

on correlation in terms of transition probability function may open up new research

directions. We need to explore stochastic ordering of two semi-Markov systems based

on correlation order in the future period.

The new method of evaluation of reliability indices using UGF is found to be a

fast procedure which avoid complexities arising in structure function approach, and

stochastic process approach. In Chapter 6, we proposed a method for evaluating the

joint importance measure for two components in the MSSs. It is illustrated in a radio
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relay signal transmission system. This method can be further extended to three or

more components, but the complications will increase. However we find good scope

in UGF for the reliability analysis of MSSs.

In any statistical study based on stochastic models, there is an associated inferen-

tial problem one needs to be studied. Since expert opinion can influence the engineer-

ing system reliability analysis, we can incorporate prior information into component

reliability, so that Bayesian analysis for the inference is easily applied. In Chapter

7, we gave Beta prior to component reliability and obtained Bayes estimate for the

MSS reliability and hence of various joint importance measures. The application of

hyper priors in MSS reliability may also be of more practical utility.

The theory of MSSs are now developing, because many of the practitioners and

engineers found it useful to model many systems. The combination of various types

of multi-state systems with different criteria and constraints can produce many differ-

ent interesting optimization problems. For instance, one may incorporate economical

indices associated with different levels of system performance. This provides a wide

range of models in which design, maintenance activity, warranty policy etc are opti-

mized.
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