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CHAPTER I 

INTRODUCTION 

 

1.1 INTRODUCTION 

Hald (1998 ) gave an account of the history of Mathematical Statistics 

from 1752 to 1930. Klebanov et al.  (2006) discussed the role of sums of a 

random number of random variables in the study of limit theorems.  

The work of Bernoulli and de Moivre in the first half of the 17 th  century 

is considered to be the beginning of the theory of limiting  distributions for sums 

of independent and  identically distributed random variables. This fundamental 

area of Probability Theory attracted many researchers, including Poisson, Gauss 

and Laplace (see   Klebanov et al. (2006)).  The next important period in the 

development of the theory during the 19th century, is connected with the names 

of Chebyshev, Markov and Lyapunov, who developed effective methods for 

proving limit theorems for sums of independent but arbitrarily distributed 

random variables. The modern period in Probability Theory begins with the 
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Kolmogorov’s axiomatization. In the 1930`s the classical questions about 

necessary and sufficient conditions for the convergence of normalized sums of 

independent random variable to degenerate and normal laws were answered by 

Levy, Bernstein , Feller and Khintchine. The original ideas of Levy and 

Kolmogorov gave rise to a new line of research on limiting distributions of 

scaled sums of independent and identically distributed random variables without 

finite variance. A new class of distributions referred to as stable laws, emerged 

as the only possible limits of such sequences. 

The most widely known and used theorem in various areas of science is 

the Central Limit Theorem, which gives necessary and sufficient conditions for 

the convergence of sums of independent and identically distributed random 

variables to the normal law. Consequently, many scientists believe that if the 

number of summands is large, their sum can always be approximated by a 

normal distribution. This, however may not be the case. If the summands have 

infinite variance, then the sum may converge only to a stable non-Gaussian law. 

Moreover, even if the variables are independent and normally distributed, the 

sum of their random number may not be distributed according to the normal law, 

as is illustrated by the following example ( see Kruglov and Korolev ( 1990 ) ).  
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EXAMPLE 1.1.1 

Let kX , k = 1, 2, ...be independent and identically distributed random 

variables with the standard normal distribution. Consider the sum of Xk’s up to 

a random moment nν , where the distribution of nν  is uniform on the set of 

integers { }1,2,..., n . Then, the characteristic function of the normalized random 

sum 

n1 2
n

( X  + X  + ...+ X  )
S  =    

n
ν is equal to 

( )
2 / 2

1

1 n
it n

n
i

t e
n

φ −

=
= ∑ . 

Thus, when n → ∞ , the limiting characteristic function of the sum, nS  becomes 

( )
2

2
2
2 1

t
t e

t
φ

−  
= −     

, which is not the characteristic function of a normal law. 

Therefore, we must study the sum of a random number of random variables. 

Apart from its interesting theoretical properties, the random summation scheme 

appears naturally in various fields, such as Physics, Biology, Economics, 

Reliability and Queuing Theory. The following examples, which have many 

generalizations, illustrate how random summation can arise in practice: 
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(i) Marketing : When ordering supplies to a store, the owner would like 

to know the total amount, T, of an article A sold during given period 

of time. If kX is the (random) amount of A sold to the thk customer, 

and N is the number of customers buying  A during the time period 

considered, then the total amount of A sold can be written as 

1 2 ... .NT X X X= + + +  

 (ii) Insurance Mathematics / Risk Theory : In risk theory, one is interested 

in the distribution of aggregate claims generated by a portfolio of insurance 

policies ( collective risk model ). If the individual claims are denoted by 'kX s  

 (assumed to be independent and identically distributed) and the random variable 

N denotes the number of claims in a given time period, then the aggregate (total) 

claim S is given by  

1 2 ... .NS X X X= + + +  

(iii) Reliability Theory: Many systems studied in reliability theory can be 

described by the following scheme and its various generalizations ( see, e.g., 

Gertsbakh (1984) and  Pillai and Sandhya (1996)) . A system consists of two 

operating units. The working time ( until failure) of each unit has the same 

distribution F (x). At time 0, the first unit starts working while the second is on 

stand by. When the operating unit fails, its place is taken by the  stand by unit, 
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and the first unit goes to repair. If during that time the second unit fails, the 

system fails. An important issue in this setting is the nature of the distribution of 

the time  T until failure of the system. Let X  denote the length of the cycle, 

where the cycle starts with putting first unit  into operation and ends with 

completion of its repair ( before the second unit fails). Let Y be the length of the 

incomplete cycle (terminated by the system failure). Clearly 

1 2 1... NT X X X Y−= + + + + , where N – 1 is the (random ) number of cycles prior 

to the failure, so that 

( ) ( ) 11 , 1iP N i p p i−= = − ≥  

and p is the probability that the second unit fails before the first completes its 

repair. Typically, p is very small, reflecting the fact that the operational 

(average) time is larger than the repair (renewal) time. One is usually interested 

in the asymptotic distribution of T when 0.p →  

 Another sequence of examples of practical appearance of random sums is 

connected with the problem of parameter estimation under sampling with a 

random sample size. Recall that many common estimators ( including maximum 

likelihood estimators , M–estimators and others) are well–approximated by sums 

of independent random variables (see, Ibragimov and Khasmmskii ( 1979)). It is 
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expected that for estimation problems with random sample size, such 

approximation will be provided by sums with random number of terms. 

EXAMPLE 1.1.2 

 Suppose that a statistician observes data transmitted through a device. 

Assume that the device may fail with probability p  in time of transmission of 

any observation. In such situation, the statistician will have a sample of random 

volume N, where N has a geometric distribution with parameter p and is 

independent of the values of the transmitted observations. 

• One may come across samples of random volume in reliability theory, for 

instance when testing operational safety (Gnedenko (1989)). If the test is 

connected with the life  time, then we observe a random number of 

failures in a given time interval. 

• When we want to find the distribution of the velocities of cars on a 

highway, and observe the velocities of cars at a given point of the 

highway during a given time interval, we obtain a sample of random 

volume. 

The number of cases where sums occur is enormous, and it is clear that random 

summation scheme plays an important role in many applied probability 

problems. In addition, random sums appear in various branches of Mathematics, 
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including Mathematical Statistics and the Theory of Stochastic Processes ( see, 

e.g., Gnedenko and Korolev (1996) , Kalashnikov (1997) and Rahimov (1995)).  

Klebanov et al. (1984) discussed the properties of distribution of geometric sums 

of random variables.  

In Chapter II, some properties of geometric Linnik distribution are 

studied. Type I generalized Linnik distribution is also studied in this Section. 

Estimation of parameters of geometric Linnik distribution is done is Section 3. 

Autoregressive process with geometric Linnik marginal distribution is studied in   

Section 4.  As generalizations of geometric Linnik distributions, type I and type 

II generalized geometric Linnik distributions are introduced and studied. 

Asymmetric generalizations of geometric Linnik distribution are studied 

in Chapter III. A representation of the asymmetric Linnik distribution is 

obtained. Type I generalized geometric asymmetric Linnik distribution is 

introduced. It is shown that this distribution arises as the limit distribution of the 

geometric sums of generalized asymmetric Linnik random variables. The 

stability property of type I generalized geometric asymmetric Linnik distribution 

is examined. Autoregressive models with type I generalized geometric 

asymmetric Linnik marginals are developed. Various forms of geometric 

asymmetric Laplace  distributions are also introduced in this Chapter. 
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Tailed distributions are found to be useful in the study of life testing 

experiments and clinical trials.  Tailed forms of type I and type II generalized 

geometric Linnik distribution and their asymmetric forms are studied in Chapter 

IV. Using Marshall – Olkin scheme, Marshall – Olkin forms of type I  and type 

II generalized geometric Linnik distributions are introduced and studied.  A 

representation of tailed type I generalized geometric Linnik distribution is 

obtained.  Also a first order autoregressive model with tailed type I generalized 

geometric Linnik distribution is introduced. It is shown that the process is not 

time reversible. The model is extended to higher order cases. The tailed type II 

generalized geometric Linnik distribution is also introduced and studied in this 

Chapter. As a generalization of tailed type I and type II generalized geometric 

Linnik distributions, tailed type I and   type II generalized geometric asymmetric 

Linnik distributions are  introduced and studied in this Chapter. Marshall – Olkin 

scheme is applied to geometric Linnik characteristic function and its 

generalizations,  and the distributions  so generated are examined. 

In Chapter V, geometric marginal asymmetric Laplace and asymmetric 

Linnik distribution is introduced and studied. Time series models with geometric 

marginal asymmetric Laplace and asymmetric Linnik distributions are 

introduced. Also in this Chapter we study the properties of geometric marginal 
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asymmetric Linnik  - asymmetric Linnik distribution. A bivariate time series 

model with this marginal distribution is developed and studied. Geometric 

bivariate semi-α - Laplace distribution is also introduced and studied in this 

Chapter. The summary and conclusion of the Thesis is presented in Chapter VI. 

 

1.2 LAPLACE DISTRIBUTION 

The double exponential distribution was introduced by Laplace (1774 ) 

(see Kotz et al. (2001)) as the distribution form for which the likelihood function 

is maximized by setting the location parameter equal to the median of the 

observed values of an odd number of independent and identically distributed 

random variables. This result appeared in Laplace’s fundamental paper on 

symmetric distributions for describing errors of measurement and is known as 

the first law of Laplace (see Kotz et al. (2001)). A random variable X on R is 

said to have Laplace distribution if its probability density function is  

( ) 1 , 0, .
2

x

f x e
µ

σ σ µ
σ

−
−

= > − ∞ < < ∞     (1.2.1) 

Another mode of genesis of this distribution is as the distribution of the 

difference of two independent and identically distributed exponential random 

variables. 
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The Laplace distribution, being heavier tailed than the normal, has been 

used quite commonly as an alternative to the normal distribution,  in robustness 

studies. Kotz et al. (2001) discussed the applications of  Laplace  distributions in 

Engineering Sciences, Financial Data Modeling, Inventory Management and 

Quality Control, Astronomy, Biological and Environmental Sciences. Detection 

of a known constant signal that is distorted by the presence of a random noise 

was discussed on Communications Theory on various occasions. For the 

detection of noise in presence of Laplace noise,  see Marks et al. (1978) and  

Dadi and Marks (1987) . A standard problem in communication theory is 

encoding and decoding of analog signals. The distribution of such signals 

depends on their nature. Among the most important one’s are the speech signals. 

It has been found that the Laplace distribution accurately models speech signals. 

Laplace distribution has potential applications in modeling the fracturing of 

materials under applied forces. Another area where Laplace distribution can find 

most interesting and successive application is modeling of financial data. This is 

due to the fact that the traditional models based on Gaussian distribution are very 

often not supported by real life data because of long tails and asymmetry present 

in these data. Since Laplace distributions can account for leptokurtic and skewed 

data, they are natural candidates to replace Gaussian distribution and processes.  
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 In the last several decades various skewed Laplace distributions have 

appeared in the   literature. McGill (1962) considered the distribution with 

probability density function 

  

1

2

1

2

1 ,
2

( )

1 ,
2

x

x

e x
f x

e x

µ
σ

µ
σ

µ
σ

µ
σ

−
−

−
−




≤
= 

 >

                                 (1.2.2) 

  

while Holla and Bhattacharya (1968) studied the distribution with probability 

density function 

  

,
( ) , 0 1.

(1 ) ,

x

x

p e x
f x p

p e x

µ
σ

µ
σ

µ
σ

µ
σ

−
−

−
−


 ≤= < <
 − >


 

Lingappaiah (1988) derived some properties of (1.2.2), terming the distribution 

as two–piece double exponential. Poiraud-Casanova and Thomas-Agnan (2000) 

considered a skewed Laplace distribution with probability density function  

 



 12 

( )
(1 )

( ) 1
p x

p x
e for x

f x p p
e for x

µ

µ

µ

µ

− − −

− −

 <= − 
 ≥

 

where ( ),µ ∈ −∞ ∞ and 0 1.p< <  To show the equivalence of certain quantile 

estimators using the method of Azzalini (1985) , Balakrishnan and 

Ambagaspitiya (1994) (see Kotz et al. (2001)) studied a skewed Lapalce 

distribution with density 

(1 )

(1 )

1 , 0
2( ) .

1 , 0
2

x

x x

e x
f x

e e x

λ

λ

− +

− − +

 − ∞ < ≤= 
 − < < ∞


 

Using the method of Fernandez and Steel (1988), Kozubowki and Podgorski 

(2000) introduced an asymmetric Lapalce distribution with density 

   

( )

( )
2 1

1( )
1

k x

x
k

e for xkf x
k

e for x

µ
σ

µ
σ

µ
σ

µ

− −

− −


 ≥= 

+ 
 <

 

where .k
k
1

2






 −

σ
=µ  They have named  this distribution as asymmetric Laplace 

distribution and studied various properties of this distribution. Kozubowski and 

Podgorski (2000) suggested asymmetric Laplace models for modeling interest 

rates, arguing that the asymmetric Laplace model is capable of capturing the 
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peakedness, fat-tailedness, skewness and high kurtosis observed in the data. 

Kozubowski and Podgorski (2001) presented an application of asymmetric 

Laplace distribution in modeling foreign currency exchange rates. They fitted 

asymmetric Laplace laws to a bivariate data sets on two currency commodities: 

the German  Deutschmark Vs. the U.S. Dollar and the Japanese Yen Vs. the U.S. 

Dollar. The asymmetric Laplace laws are proved to be useful for modeling stock 

market returns and modeling price changes of commodities. Rachev and Sen 

Gupta (1993) proposed Laplace – Weibull mixtures for modeling price changes. 

 For the applications of Laplace distribution in different fields see Kotz et 

al. (2001) and Johnson et al. ( 1995).  Kanji (1985) and Jones and Mc Lachlan 

(1990) have discussed the Laplace normal mixture distribution with density 

function 

2

2
1 2

( )
2

1 2

(1 )( ) ,
2 2

x x
p pf x e e

µ µ
σ σ

σ πσ

− − −
−−

= +     (1.2.3) 

      1 2, , 0 1, , 0x pµ σ σ−∞ < < ∞ < < >

   

and applied the distribution to fit wind shear data. Maximum likelihood 

estimation of parameters of this distribution has been discussed by Scallan 

(1992). Generalized normal Laplace distribution was introduced and studied in 
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Reed (2004, 2005 ) and Reed and Jorgensen ( 2004 ) . The normal – Laplace 

distribution is defined by the characteristic function 

2 2
1 2( ) 22

2 2
2

.
ti t

e
t

σ
µ σ

σ

−

+
 The 

corresponding random variable 1X   can be expressed as 
d

1X = Y+Z   where Y and 

Z are independent with 2
1( , )

d
Y N µ σ= and 2(0, )

d
La σΖ = where ( , )La µ σ denotes the 

Laplace distribution defined in (1.2.1). The normal Laplace distribution 

discussed in Reed and Jorgenson (2004) has the characteristic function     

       
( )( )

2 2
1

2
2( )   .       

-it

ti t
X t e

it

σ
µ δβ

φ
δ β

−
 

  =    +   

           (1.2.4) 

X2 can be expressed as 
d

2 1 2X =  Y + E - E  where 1E   and 2E are independent 

exponential random variables with parameters δ  and β  respectively. 

 The generalized normal Laplace distribution is defined by the 

characteristic function 

( ) ( )
2 2

1 2
22

2 2
2

.

p
ti t

t e
t

σ
µ σ

φ
σ

−
        =     

+       

 

The corresponding random variable 3X  can be expressed as   



 15 

3 1 2 ... pX Y La La La= + + + +  

where ( )2
1,

d
Y p pµ σ=  and 1 2, ,..., pLa La La  are independent and identically 

distributed Laplace random variables with  2(0, ), 1, 2,..., .
d

iLa La i pσ= =  As in the 

case of (1.2.4),  we can write the characteristic function of generalized normal 

Laplace distribution as  

( )
2 2

1

4
2 ,

( ) ( )

p
ti t

X t e
it it

σ
µ δβ

φ
δ β

−
 

  =   − +   

 

    , , 0pδ β > and .µ−∞ < < ∞  

The corresponding random variable 4 1 2X Y G G= + − , where 1,Y G and 2G  are 

independent random variables with  ( )2
1,

d
Y N p pµ σ= and 1G and 2G   have 

gamma distribution with scale parameters δ  and β  respectively having common 

shape parameter p. 

1.3 LINNIK DISTRIBUTION 

Linnik (1963) proved that the function  

( ) 1 , 0 2, 0
1

t
t α

φ α λ
λ

= < ≤ >
+

               (1.3.1) 



 16 

is the characteristic function of a probability distribution. The distribution 

corresponding to the characteristic function (1.3.1) is called Linnik (orα - 

Laplace) distribution. A random variable X with characteristic function φ  in 

(1.3.1) is denoted by ( ), .X dL α λ Note that the ( ),L α λ  distributions are 

symmetric and for 2α = , it becomes the classical symmetric Laplace 

distribution. Devroye  (1986) presented a simple algorithm for generating 

pseuodo random observations from this distribution. Kotz and Ostrovskii (1996) 

have obtained a mixture representation of Linnik distribution. Let   Xα  and Xβ  

be two random variables possessing ( ),L α λ and ( ),L β λ  distributions 

respectively, 0 2α β< < ≤  and Yαβ  a non-negative random variable 

(independent of Xβ ) with density function 

1

2
( ) sin , 0 .

1 2

xf x x
x x Cos

α

α α

β πα
παπ β
β

− 
= < < ∞ 

  + +
 Kotz and Ostrovstkii (1996) 

have shown that .X d X Yα β αβ  

 Linnik laws are special cases of strictly geometric stable distributions 

introduced in Klebanov et al. (1984). A random variable Y ( and its probability 

distribution ) is called strictly geometric stable if for every (0,1)p ∈ ,  there is an 
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0pa >  such that  
1

pN

p i
i

a Y d Y
=
∑    where pN is a geometric random variable with 

mean 1 ,
p

 'iY s  are independent and identically distributed copies of Y, 

independent of pN . Note that strictly geometric stable law is  a special case of 

geometric stable laws. The characteristic function of strictly geometric stable 

laws can be written as  

( )( )/ 2
1( ) ,

1 i sgn t
t t R

t e παδα
φ

λ −
= ∈

+
 

where δ  is such that 2min 1, 1 .δ
α

 ≤ − 
 

 

 The following properties of Linnik distributions are immediate. For 

proofs of these results, refer Kotz et al. (2001). 

(1) Let 1 2, , ,...X X X be symmetric, independent and identically distributed 

random variables and let pN  be a geometric random variable with mean 1 ,
p

 

independent of the ' .iX s  Then the following statements are equivalent: 

(a) X is stable with respect to geometric summation,  

   
1
( )

pN
p i p

i
a X b d X

=
∑ +   for all  (0,1)p ∈    (1.3.2 ) 

where 0pa >   and .pb R∈  
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(b) X has a symmetric Linnik distribution . Moreover, the constants pa  and 

pb  are necessarily of the form : 1/ , 0.p pa p bα= =  

(2)  The distribution function and density of the Linnik ( ,1)L α  distribution 

with 0 2α< <  admit the following representations for 0 :x >  

1
,1 2

0

sin
2( ) 1

1 2 .cos
2

xeF x dv
α ν

α α α

πα
ν

παπ ν ν

∞ − −
= −

+ +
∫    (1.3.3) 

and  

,1 2
0

sin
2( ) .

1 2 cos
2

xep x dv
να

α α α

πα
ν

παπ ν ν

∞ −
=

+ +
∫             (1.3.4.) 

For 0,x <  use ( ),1 ,11 ( )F x F xα α= − −  and 
,1 ,1

( ) ( ).p x p x
α α

= −  

(3)  The density pα  of Linnik ( ),1L α  distribution has the following 

representation for 0 :x >   

( ) 1
1

10, ( )
n k

k n
k

n p x C x R xα
α π

− −

=
∀ > ± = ∑ +   (1.3.5) 

where ( ) ( )1( 1) 1 sin / 2k
kC k kα πα+= − Γ + ,  

( )( ) ( 1) 11 1
( ) .

sin
2

n
n

n
R x x αα

α
πα

π

− + −Γ + +
≤
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(4)  Let ( , )X d L α σ  with 0 2α< ≤ . Then for every 0 < p < α , we have 

( ) ( )
( )

1
.

2 sin cos
2

p
p p p

e p E X p pp

σ π
π π

α
α

−
= =

Γ −
                             (1.3.6) 

(5) All symmetric Linnik distributions are in Class ,L that is, for all 

(0,1)c ∈ the Linnik characteristic function φ  given by (1.3.1) can be written as  

( ) ( ) ( )ct ct tφ φ ψ=                 (1.3.7) 

where 
c

ψ  is a characteristic function. 

(6) The characteristic function (1.3.1) of the Linnik distribution ( ),L α λ  

admits the representation  

( ) ( ) ( )exp 1it

R
t e d uµφ

 
 = − Λ
 
 
∫                  (1.3.8) 

where 

 1/ 1 1/
0

( ) 1exp
2

w

X

d u u u e dwE g
du u w w

α

α α α
α

σ σ λ

∞ −

+

   Λ  = − =      
∫  

and  X has the stable distribution ( ) tt e
α

φ −= and g is the density of X. 

 Kotz, et al. (2001) has discussed the multivariate forms of Laplace 

distributions. Anderson (1992) gave an example of bivariate Gumbel type 

Laplace model with density function 
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( ) ( )( ){ } ( )1 2 1 21
1 2 1 2

1, 1 1 ,
4

x x x xf x x x x e θθ θ θ − + + += + + −  

       ( ) 2
1 2, .x x R∈  

1.4 INFINITE DIVISIBILITY 

A distribution function F is infinitely divisible if for every positive integer 

n, there exists a distribution function nF such that 

.n
nF F ∗=  

Equivalently,  a characteristic function φ  is said to be infiniety divisible if for 

every positive integer n, there exists a characteristic function nφ  such that 

( ) ( )( ) .n
nt tφ φ=  

It is known that the class of infinitely divisible distributions coincides with 

the class of limit distributions of the row sums of certain triangular arrays. Note 

that the class of all infinite divisible distributions coincides with the class of all 

continuous   convolution semi groups. For the properties of infinite divisibility 

of distributions, see  Laha and Rohatgi (1979).  

Klebanov et al. (1984) introduced the concept of geometric infinite 

divisibility of random variables. A random variable Y is said to be geometrically 

infinitely divisible, if Y can be expressed as  
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( )

1

Np
j

p
j

Y d X
=
∑                                                      (1.4.1) 

for every (0,1)p ∈  where 1( ) , 1, 2,...kP Np k pq k−= = =  and pN  and 

( ) ( 1,2,...)j
pX j =  are independent and q=1-p. 

Pillai (1990b) proved that every geometrically infinitely divisible distribution is 

infinitely divisible. For the applications of geometric infinite divisibility in time 

series modeling, see Pillai and Jose (1995). 

1.5   SELF- DECOMPOSABLE DISTRIBUTIONS 

Let { }, 1nX n ≥  be a sequence of independent random variables, and let 

{ }nb  be a sequence of positive real numbers such that the following condition 

holds: 

{ }
1

lim max 0k n
n k n

P X b ε
→∞ ≤ ≤

≥ =      (1.5.1) 

for every 0.ε >   By writing , 1 , 1k
nk

n

XX k n n
b

= ≤ ≤ ≥ ,  we see that the sequence 

{ }nkX  of row-independent random variables satisfies the uniformly asymptotic 

negligible condition. Set ∑
=

=
n

1k
kn XS  for .1n ≥  
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Let L  be the class of distributions which are the weak limits of the 

distribution of the sums 1 , 1n n nb S a n− − ≥  where na  and 0bn >  are suitably 

chosen constants. 

Now it is easy to obtain the following results related to self-decomposable 

distributions (see Laha and Rohatgi (1979)). 

(i) Let { }nX  be a sequence of independent random variables, and { }nb a 

sequence of positive constants such that (1.5.1) is satisfied. Suppose 

that the sequence { }1
n n nb S a− −  converges in law to a non-degenerate 

random variable for some sequence of constants { }na . Then nb → ∞  

and 1 1n
n

b
b

+ →  as .n → ∞  

(ii) A distribution function F with characteristic function φ  is said to be 

self decomposable  if and only if, for every ,1c0 << there exists a 

characteristic function cφ  such that  ( ) ( ) ( )ct ct tφ φ φ=  for .t R∈  

Based on the above result,  we can see that a random variable X is self 

decomposable if for every , 0 1,c c< < ' ,cX d c X X+ where X and 'X  are 

identically distributed and 'X  and cX  are independent. 
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      It is known that any non-degenerate self decomposable distribution is 

absolutely continuous. Also every self decomposable distribution is infinitely 

divisible. For the application of self decomposable  distributions in time series 

modeling, see Bondesson (1981). Pillai (1990a) proved the self-decomposability 

of Mittag-Leffler distributions. Jayakumar and Pillai (1992) discussed the self-

decomposability of Linnik distributions.  

1.6 STABLE DISTRIBUTIONS 

A random variable X on R is said to have stable distribution if for any 

two positive constants a and b,  

1 2a X b X d cX d+ +                                    (1.6.1) 

where 1X  and 2X  are independent and identically distributed as X ,  0, .c d R> ∈  

Let φ  denotes the characteristic function of 1,X X and 2X . Then (1.6.1) in terms 

of characteristic functions is ( ) ( ) ( )idtat bt e ctφ φ φ= .  

When 0,d =  the distribution is said to be strictly stable. For the properties of 

stable distributions, see Laha and Rohatgi (1979). 

The characteristic function of a stable distribution can be expressed as  

(1 ( ) tan )
2

2(1 ( ) ln )

1
( ) .

1

i t t sgn t

i t t sgn t t

e if
t

e if

α πα
µ λ δ

µ λ δ
π

α
φ

α

−− −

−− −


 ≠= 

 =
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α  is called the exponent of the distribution, 0 2,α< ≤  µ  is the location 

parameter, ,µ λ−∞ < < ∞  is the scale parameter, 0>λ ; δ  is the symmetry 

parameter, 11 ≤δ≤−  and  

( )
1 0

1 0
0 0.

if t

if t
Sgn t if t

>

− <


= =



 

Two important members of the class of stable distributions are  normal and 

Cauchy. The Laplace distribution is self-decomposable but not stable.  

The following properties of stable distributions are well known:  

The class of stable distributions is a proper subclass of the class of infinitely 

divisible distributions. Let 1L be the family of distributions, which appear as 

limit distributions of ,a
b
S

n
n

n −  where ∑
=

=
n

11
in ,XS  as nb → ∞  with .n → ∞ . Then 

F is in class 1L  if and only if F is  stable. 

THEOREM 1.6.1 

In order that a distribution function F with characteristic function φ  is in 

class 1L , it is necessary and sufficient that F be infinitely divisible and ln φ  has 

either one of the following representations: 

0

1 2 1ln ( ) 1
1

itx itx dxt i t c e
x x β

φ µ
+

−∞

 
= + − − 

+ 
∫  2 2 1

0

11
1

itx x dxc e
x x β

∞

+
 +

+ − − 
+ 

∫  
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with  1 2 1 20, 0, 0c c c c≥ ≥ + >  and 0 2β< <   

or  

2 2
ln ( ) .

2
tt i t σ

φ µ= −  

As a generalization of stable distributions,   Pillai (1971) studied semi stable 

distributions. A random variable X on R with characteristic function )t(φ is said 

to be semi stable if    ( )( ) ( ) , 1,0 1.at bt a bφ φ= > < <  

1.7 GEOMETRIC STABLE DISTRIBUTIONS 

Let  1 2, ,...X X   be independent, identically distributed random variables. Define 

1 2 ...
p pN NS X X X= + + +  

where pN  is geometric with 1( ) (1 ) , 1, 2,...k
pP N k p p k−= = − = .  

Then the week limit of  

( )
1

( ) ( )
pN

i
i

a p X b p
=

+∑                                           (1.7.1) 

when  0, ( ) 0, ( )p a p b p→ > − ∞ < < ∞  is called geometric stable distributions. 

The sums of the form (1.7.1) usually appear in many applied problems in 

different areas such as Insurance Mathematics/ Risk Theory, Queuing Theory, 
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etc. For various properties of geometric stable distributions, see Kozubowski and 

Rachev (1999). 

1.8   MODELS OF TIME SERIES 

A time series is a series of observations made sequentially in time. Main 

objective of time series analysis is to reveal the probability law that governs the 

observed time series. A simple way of describing a time series to the give one 

dimensional   distribution function and the mean value function if it exists. To 

describe the association between two values on the same series at different times 

we use the auto correlation function 

[ ]
( ) ( )

( ) ( )t t t k t k
k

t t k

E X X

Var X Var X

µ µ
ρ + +

+

− −
=                 (1.8.1) 

where ( ) , 0,1,2,...t i t iE X iµ + += = .        

A time series can be viewed as a realization of a stochastic process. A 

class of time series we encounter in practical situations is the stationary series. If 

for any set of time t1, t2, …, tn and at times t1 +h, t2+h, …, tn +h,  the joint 

distribution of ( )1 2
, ,...,

nt t tX X X  and ( )1 2
, ,...,

nt h t h t hX X X+ + +  are the same for all 

h > 0 and for every n, then the process { }tX is said to be strictly stationary. A 

time series { }tX  is said to be weakly stationary if (i) 2( ) ,tE X < ∞  (ii) ( )tE X µ=   



 27 

for all t and (iii) ( , )t t sCov X X +  depends only on the length of the interval s. 

Note that { }tX  is weakly stationary if it is strictly stationary with finite second 

moments. 

The most popular class of linear time series models consists of 

autoregressive moving average (ARMA) models, purely autoregressive (AR) 

and purely moving average (MA) models. For modeling non-stationary data, 

autoregressive integrated moving average (ARIMA) models are used. 

An autoregressive model of order ,1p ≥  abbreviated as AR(p),  is defined as 

1 1 2 2 ...n n n p n p nX X X Xρ ρ ρ ε− − −= + + + +                (1.8.2) 

where { }nε  is a sequence of independent and identically distributed random 

variables and 1 2, ,...ρ ρ  are constants. Note that (1.8.2) represents the current 

value of the process nX  through its immediate p past values 

1 2, ,...,n n n pX X X− − −  and a random shock nε .  The simplest form of an 

autoregressive model is AR (1) and is given by 

1 .n n nX Xρ ε−= +                                                        (1.8.3) 

Let ( )
nX tφ  denotes the characteristic function of nX  and ( ),

n
tεφ  that of .nε  Then 

(1.8.3) in terms of characteristic function becomes  
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1

( )
( ) .

( )
n

n
n

X

X

t
t

tε
φ

φ
φ ρ

−

=                                                   (1.8.4) 

That is,  the innovation process exists if and only if (1.8.4) is a characteristic 

function for every , 1.ρ ρ ≤  In the case of stationary process { }nX , ( )
n

tεφ  exists 

for every , 0 1ρ ρ< ≤  if and only if the distribution of nX is in class L or self 

decomposable. The autocorrelation function of the process (1.8.3) is   ( ) .kkρ ρ=  

Even though Gaussian models have dominated in the development of time series 

modeling, autoregressive processes with non Gaussian marginal distributions  

are a fast growing area of investigation due to the applications of the same (see, 

Jayakumar and Pillai (1993) and Jayakumar and Kuttykrishnan (2007) ). 

A moving average model of order 1q ≥ ,  denoted by MA(q),  is given by  

1 1 2 2 ...n n n q n q nX δ ε δ ε δ ε ε− − −= + + + +        (1.8.5) 

 where { }nε  is a sequence of independent and identically distributed random 

variables and 1 2, ,..., qδ δ δ  are constants. Here the current value of nX is linearly 

dependent on the q previous values of ' .n sε  For q=1, (1.8.5) reduces to the 

MA(1) model given by  

1 1 .n n nX δ ε ε−= +                                  (1.8.6) 
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Combining AR and MA models,  the general linear time series model, 

namely autoregressive moving average model, denoted by ARMA (p,q) has the 

form 

1 1 2 2 1 1 2 2... ...n n n p n p n n n q n qX X X Xρ ρ ρ ε δ ε δ ε δ ε− − − − − −− − − − = + + + +  

         (1.8.7) 

where 1 2, ,..., pρ ρ ρ ; 1 2, ,..., qδ δ δ  are constants and { }nε  is a sequence of 

independent and identically distributed random variables. 

As noted in Section 2, Laplace distribution is a natural and some times 

superior alternative to the Gaussian distribution. Andel (1983) developed an 

AR(1) model with Laplace marginal. The corresponding process { }nX  is of the 

form 

10X ε=  

and for 1, 2,...n = ,  

2
1

2
1

. .

. . 1
n

n n

X w p
n X w p

X ρ ρ
ρ ε ρ

−

− + −
= 


 

where { }nε  is a sequence of independent and identically distributed Laplace 

random variable with characteristic function 

2 2
1( ) .

1n
t

t
εφ

σ
=

+
                                              (1.8.8) 
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Dewald and Lewis (1985) developed and studied a second order Laplace 

autoregressive time series model. For the development of autoregressive time 

series models with Laplace marginals, see Gibson (1986) and Damsleth and El-

Shaarawi (1989). 
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CHAPTER II 

GEOMETRIC LINNIK AND GENERALIZED GEOMETRIC 

LINNIK DISTRIBUTION 

2.1 INTRODUCTION 

  Pillai (1985) introduced a generalization of the Linnik distribution with 

characteristic function (1.3.1),  namely semi α -Laplace distribution. A random 

variable X on R has semi α -Laplace distribution if its characteristic function 

)t(φ  is of the form  

)t(t1

1)t(
δ+

=φ
α

                (2.1.1) 

where )t(δ  satisfies the functional equation 

( )1
( ) , 0 1, 0 2.t p t pαδ δ α= < < < ≤           (2.1.2)  

George & Pillai (1987) derived expression for the density function of α -Laplace 

random variables in terms of Meijer’s G-function and obtained a multivariate 

generalization of α -Laplace distribution. 

____________________________ 

This Chapter is based on Mariamma Antony and Raju (2005) 
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Pakes (1998) introduced generalized Linnik law with characteristic 

function 

20,0,
t1

1)t( ≤α<>ν






 +

=φ
να

.   (2.1.3) 

This distribution is known as Pakes generalized Linnik distribution. When 1=ν , 

it reduces to α -Laplace distribution where as when 2=α , it reduces to the 

generalized Laplacian distribution of Mathai (1993a) . 

DEFINITION 2.1.1 

 A random variable X on R is said to have geometric Linnik distribution 

and write ),(GLdX λα if its characteristic function )t(φ is  

1( ) , , 0 2, 0.
1 ln(1 )

t t R
t α

φ α λ
λ

= ∈ < ≤ >
+ +

  (2.1.4) 

In Section 2, we study some properties of geometric Linnik distribution. 

Type I generalized Linnik distribution is studied in this Section. Estimation of 

parameters of geometric Linnik distribution is done is Section 3. Autoregressive 

process with geometric Linnik marginal distribution is studied in  Section 4. In 

Section 5, another generalization of geometric Linnik distribution is introduced 

and the properties of this type II generalized geometric Linnik distribution are 

studied. In this case, representation of type II generalized geometric Linnik 
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random variable is obtained, limit theorems concerning this generalized Linnik 

distribution are proved along with estimation of parameters of this distributions 

using empirical characteristic function. Note that some of the results that we 

present in this Chapter   on geometric Linnik and type I generalized geometric 

Linnik distribution are available in Leksmi and Jose (2004,2006) and for the 

sake of completeness, we include the same in our discussion.  

2.2 SOME PROPERTIES OF GEOMETRIC LINNIK DISTRIBUTION  

THEOREM 2.2.1 

 ),(GL λα  distribution is infinitely divisible . 

PROOF 

For ),(GL λα  distribution,   1( )
1 ln(1 )

t
t α

φ
λ

=
+ +

,        

α
φ

−

λ+
=

t1

1e )t(
11

.   (2.2.1) 

But 
αλ+ t1

1  is the characteristic function an infinitely divisible distribution. 

Thus the distribution with characteristic function 1 ,
1 ln(1 )t αλ+ +

0, 0 2λ α> < ≤  

is the characteristic function of a geometrically infinitely divisible distribution. 
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By Pillai & Sandhya (1990), every geometrically infinitely divisible distribution 

is infinitely divisible. This completes the   proof. 

Pillai (1990b) introduced geometric exponential distribution while 

studying the geometric infinite divisibility of harmonic mixtures of random 

variables. 

 A random variable X on [ ∞,0 ) is said to have geometric exponential 

distribution if it has the Laplace transform 

( ) 1( ) , 0.
1 1 (1 )

XE e
n

δφ δ δ
δ

−= = >
+ +

   (2.2.2) 

A representation of geometric Linnik random variables in terms of geometric 

exponential and stable random variables is presented below. 

THEROM 2.2.2 

Let X and Y be independent random variables such that X has geometric 

exponential distribution with Laplace transform 
)1(n11

1
δ++

 and Y is stable with 

characteristic function 20,e t ≤α<
αλ− . Then 1

( , )X Y d GLα α λ . 

 

PROOF 

1

1 ( ) itX Y
X Y

t E e
α

α
φ

 
=  
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1

0
( )itX YE e X x dF x

α
∞  

= = 
 

∫  

    1

0
( ) ( )Y tx dF xαφ

∞
= ∫  

         
( )

1 .
1 1 1n t αλ

=
+ +

 

 

DEFINITION 2.2.1 

A random variable X  on R has the generalized  Linnik distribution and 

write  ( , , )X d GeL pα λ  if it has the characteristic function 

1( )
(1 ) p

t
t α

φ
λ

=
+

 , 0, 0, 0 2.p λ α> > < ≤    (2.2.3) 

 Erdogan and Ostrovskii (1997, 1998) considered a generalization of 

( , , )GeL pα λ distribution and studied its properties. They discussed the analytic 

and asymptotic properties of this distribution and obtained some integral and 

series representation of its probability density. 

DEFINITION 2.2.2 

A random variable X on R is said to have type I generalized geometric 

Linnik distribution and write 1( , , )X d GeGL pα λ if it has the characteristic 

function 
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1( ) ,
1 ln(1 )

t
p t α

φ
λ

=
+ +

0 2, 0, 0.pα λ< ≤ > >   (2.2.4) 

THEOREM 2.2.3. 

Let 1 2, ,...X X  be independent and identically distributed   ),(GL λα  

random variables and pN be geometric with mean 
p
1 . Define 

1 2 ...
pNY X X X= + + +  where pN  is independent of Xi’s. Then 

1( , ,1/ )Y d Ge GL pα λ . 

Proof follows easily.  

 

THEOREM 2.2.4 

Let 1 2, ,...X X be independent and identically distributed 

( , ,1/ )GeL nα λ random variables. Let N  be geometric with mean n independent 

of  Xi’s. Then 1 2 ... NX X X+ + +  converge in distribution to Z where 

( ), .Zd GL α λ  

PROOF 

Consider 

1 1

1 1 .
(1 ) 1 (1 ) 1n nt tα αλ λ

=
 + + + −  

 



 37

Since Linnik distribution is infinitely divisible, 
n

1
)t1(

1
αλ+

 is the characteristic 

function of a probability distribution. 

Let   




 −λ++

=φ
α 1)t1(n1

1)t(
n

1n .   

Then 

  ( ) lim ( )n
n

t tφ φ
→∞

=  

1

1

1 lim (1 ) 1n

n
n t αλ

→∞

=
 + + −  

 

 1 .
1 (1 )ln t αλ

=
+ +

 

THEOREM 2.2.5 

 The function 1( )
1 (1 )

t
ln t α

φ
λ

=
+ +

 on R is a characteristic function if and 

only if (0,2].α ∈   

PROOF 

Suppose for some 0,α >  the function ( )tφ  is a characteristic function. 

Then we have to prove that (0,2].α ∈  The case 0<α is impossible due to the 

requirement that 
0

lim ( ) 1
t

tφ
→

=  for the characteristic function φ . Note that for each 
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positive integer n, the function 
1

1( )
1 (1 )

n

n
n

t
ln t α

φ
λ

 
 =
 + + 

 is also a characteristic 

function. Let nF  denote the distribution function with characteristic function nφ . 

Then nF  converges weakly to a Linnik characteristic function 1( ) .
1

t
t α

φ
λ

=
+

 

This implies that (0,2].α ∈  

For fixed (0,2]α ∈ , the function 
αλ+ t1

1 is the characteristic function of Linnik 

distribution. By Theorem 2.2.4,  1

1 (1 )ln t αλ+ +
 is a characteristic function. 

THEOREM 2.2.6 

 For each (0,2]α ∈ , the distribution ,1Fα  with characteristic function  

1( )
1 (1 )

t
ln t α

φ
λ

=
+ +

 is absolutely continuous. 

PROOF   follows from   Theorem 2.2.2 and hence is omitted. 

THEOREM 2.2.7 

),(GL λα is normally attracted to stable law. 

PROOF 

Let 1 2 ...n nS X X X= + + +  where iX s′  are independent and identically 

distributed ),(GL λα random variables.  The characteristic function of 
1

nn Sα−  is  
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1/
1( )

1 (1 )
n

n

n S t
t

ln
n

α α
φ

λ
−

 
 
 =
 
 + +
 

    

               

2

1

11 ( )

n

t
o

n n

αλ

 
 
 =  
 + +
  

  

     
αλ−→ te , as n → ∞ .  

 

THEOREM 2.2.8 

1/
, ,( ) sX s d Y Z α

α λ α λ  where ,Yα λ  is symmetric stable with characteristic 

function  te
αλ− and sZ  is geometric gamma with Laplace transform 

1 .
1 ln(1 )

s

δ
 
 + + 

  

PROOF 

( )
1

itYZ
X t E e

α
φ

 
=  

 
 

           
0

( )z te dF z
αλ

∞
−= ∫   1 .

1 (1 )

s

ln t αλ

 
 =
 + + 

 

This completes the proof. 
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2.3 ESTIMATION OF PARAMETERS OF GEOMETRIC LINNIK 

DISTRIBUTION 

Press (1972) used empirical characteristic function to estimate the 

parameters of a stable law. Jacques et al. (1999) used characteristic function 

technique to estimate the parameters of geometric stable law (see also,  

Kozubowski (1999)).  Here we estimate the parameters of geometric Linnik 

distribution using empirical characteristic function. 

Consider the geometric Linnik distribution with characteristic function  

1( ) ,
1 (1 )

t
ln t α

φ
λ

=
+ +

 0,λ > 0 2.α< ≤  

The function 
^

1

1( ) j
n itX

n
j

t e
n

φ
=

= ∑  is called the sample ( empirical ) characteristic 

function. We have 
^

( ) ( )nE t tφ φ
 

= 
 

 and by the strong law of large numbers, 

^ .( ) ( )a s
n t tφ φ→ . 

Take  

1( 1)
( )( ) 1 .tt e t αφδ λ

−
= − =   

Then  

( ) , 1, 2.i it t iαδ λ= =   
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Taking logarithms on both sides, we get  

1 1ln ( ) ln lnt tδ λ α= + ,  

2 2ln ( ) ln lnt tδ λ α= + . 

Hence,  

1 2 1 2ln ln ln ( ) ln ( )t t t tα δ δ −  = −  . 

That is,   

1

2
1

2

( )ln
( ) .

ln

t
t
t
t

δ
δ

α =   

For 1,α ≠  

   1 2 2 1 2ln ( ) ln ln ln ln lnt t t t tδ λ α= +  

and  

2 1 1 2 1ln ( ) ln ln ln ln ln .t t t t tδ λ α= +  

Hence,   

1 2 2 1 1 2ln {ln ln } ln ( ) ln ln ( ) lnt t t t t tλ δ δ− = −   

Therefore,  

2 1 1 2

1 2

ln ( ) ln( ) ln ( ) ln( )exp
ln ln

t t t t
t t

δ δ
λ

 − =  
−  

. 
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That is,    

 

^
1

^
^

2

1

2

( )ln
( )

ln

n

n

t

t
t
t

δ

δ
α =   

and for 1≠α ,  

^ ^
^

2 1 1 2

1 2

ln ( ) ln( ) ln ( ) ln( )exp
ln ln

n nt t t t
t t

δ δ
λ

 
− =  
− 

 

 

where 
^ 1( ) exp 1 1

( )n
n

t
t

δ
φ

 
= − − 

 
 is the sample counterpart of ( ).tδ  

2.4  AN AUTOREGRESSIVE PROCESS WITH GEOMETRIC LINNIK 

MARGINALS 

Here we develop an autoregressive process with ),(GL λα  marginal 

distribution. 

The analysis of time series in the classical set up is based on the 

assumption that the observed series is a realization from a Gaussian sequence. 

However, there are many situations where the naturally occurring data show a 

tendency to follow heavy tailed distributions that can not be modeled by a 

Gaussian distribution. The usual technique of transferring data to use a Gaussian 

model also fails in certain situations (see,   Lawrance (1991)).  Hence a number 
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of non-Gaussian autoregressive models have been introduced by various 

researchers (see,   Jayakumar and Pillai (1993, 2002), Pillai and Jayakumar 

(1994), Lawrance and Lewis (1985)).  

The study of non-Gaussian autoregressive models began with the 

pioneering work of Gaver and Lewis (1980). They have considered an AR(1) 

model with exponential ( )µ   marginal distribution. The model is given by 

0 1X ε=  

and   for 1, 2,...n =  

1
0 . .

. . (1 )n n
n

w p
X X

w p
ρ

ρ
ε ρ−


= +  −

      (2.4.1) 

and . .w p stands for with probability, 10 ≤ρ≤  and }{ nε  is a sequence of 

independent and identically distributed exponential  random variables. 

 Another exponential  AR(1) process is obtained by interchanging 1nX −  and  nε  

and this can have no effect on the marginal distribution of  .nX s′  Proceeding this 

way with ρ  replaced by 1 ,δ−  we have for 0,1, 2,...n =  

 

1 . .
(1 ) .

0 . . (1 )
n

n n
X w p

X
w p

δ
δ ε

δ
−

= − +  −
                  (2.4.2) 
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The exponential AR(1) model in (2.4.2), called TEAR(1),  is Markovian and has 

the rδ correlation structure of the exponential AR(1) model. For the properties of 

TEAR (1) model, see Lawrance and Lewis (1981). 

 

THEOREM 2.4.1 

Let }{ 1nX ,n ≥ be defined as 

1

. .

. . (1 )
n

n
n n

w p p
X

X w p p
ε

ε−


=  + −    (2.4.3) 

where { }nε  is a sequence of independent and identically distributed random 

variables. A necessary and sufficient condition that { }nX  is strictly stationary 

Markov process with ),(GL λα marginals is that { }nε  are distributed as 

1( , , ).GeGL α λ ρ  

PROOF 

Taking characteristic functions   on both sides of (2.4.3),  we get  

1
( ) ( ) (1 ) ( ) ( ).

n n n nX Xt p t p t tε εφ φ φ φ
−

= + −  

If { }nX  is stationary, then 

( ) ( ) (1 ) ( ) ( ).X Xt p t p t tε εφ φ φ φ= + −  
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That is,   

   ( )( ) .
(1 ) ( )

X

X

tt
p p tε

φ
φ

φ
=

+ −
 

If 1( ) ,
1 ln(1 )

X t
t α

φ
λ

=
+ +

 then  

1( )
1 ln(1 )

t
p t

ε α
φ

λ
=

+ +
.  

Conversely,  if { }nε  are independent and identically distributed as 

1( , , ),GeGL pα λ  then  

1

1 1 1( ) (1 )
1 ln(1 ) 1 (1 ) 1 ln(1 )

X t p p
p t ln t p tα α α

φ
λ λ λ

= + −
+ + + + + +

 

(1 ) 11

1 ln(1 ) 1 ln(1 )

p p ln t p

p t t

α

α α
λ

λ λ

 + + + −
 =
 + + + + 

 

1 .
1 ln(1 )t αλ

=
+ +

 

If 1 ( , ),nX d GL α λ−  then we get ( , ).nX d GL α λ  

Hence the process { }nX  is strictly stationary. This completes the proof. 
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Consider the kth  order autoregressive process 

1 1

2 2

. .

. .
. .

.

.

.
. .

n

n n

n n

n

n k n k

w p p
X w p p
X w p p

X

X w p p

ε

ε

ε

ε

−

−

−


 +
 +

= 




+



    (2.4.4) 

          

where 1 2 ...... 1,kp p p p+ + + + =  0 1, 1, 2,...,ip i k< < =  and }{ nε  is a sequence of 

independent and identically distributed  random variables independent of 

1 2, ,...n nX X− − . 

Taking characteristic functions  on both sides of (2.4.4),  we get 

1 21 2( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ).
n n n n n n n k nX X X k Xt p t p t t p t t p t tε ε ε εφ φ φ φ φ φ φ φ

− − −
= + + + +  

That is,   

( ) ( ) .
(1 ) ( )n

t X

X

t
p p tε

φ
φ

φ
=

+ −
 

Following similar lines in Theorem 2.4.1,  we get the following result. 

THEOREM 2.4.2 

A necessary and sufficient condition that the model (2.4.4) defines AR(k) 

process with ),(GL λα  distribution is that { }nε  is distributed as 1( , , ).GeGL pα λ  
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2.5  GENERALIZED GEOMETRIC LINNIK DISTRIBUTION 

Here we introduce type II generalized geometric Linnik distribution and 

study its properties.  

DEFINITION 2.5.1 

A random variable X on R has type II generalized geometric Linnik 

distribution and writes 2 ( , , ),X d Ge GL α λ τ  if it has the characteristic function 

1( ) ,
1 (1 )

t
ln t

τ

α
φ

λ

 
 =
 + + 

,0 2, , 0.t R α λ τ∈ < ≤ >   

Note that when 1,τ =  type II generalized geometric Linnik distribution reduces 

to geometric Linnik distribution. 

THEOREM 2.5.1 

2( , , )GeGL α λ τ  distributions are infinitely divisible. 

PROOF 

Follows from Theorem 2.2.1 

DEFINITION 2.5.2 

 A random variable X on (0, )∞  has geometric gamma distribution if it has 

Laplace transform 

1
1( ) , 0, 0.

1 (1 )ln

τ

φ δ δ τ
δ

 
= > > + + 
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For properties of geometric gamma distribution, see Jose and Lekshmi 

(1999). 

 A representation of type II generalized geometric Linnik random variable 

in terms of geometric gamma and stable random variable is presented below. 

THEOREM 2.5.2 

 Let X and Y be independent random variables such that X has geometric 

gamma distribution with Laplace transform 1
1 (1 )ln

τ

δ
 
 + + 

 and Y be stable with 

characteristic function , 0 2, 0.te
αλ α λ− < ≤ >  Then 1/

2( , , ).X Y d GeGLα α λ τ  

PROOF 

1/
1/ ( )t

itX Y
X Y E e

α
αφ  =  

 
 

 
1/

0
/ ( )itX YE e X x dF x

α
∞

 = = 
 ∫  

 1/

0
( ) ( )Y tx dF xαφ

∞
= ∫  

 
0

( )t xe dF x
αλ

∞
−= ∫  

1 .
1 ln(1 )t

τ

αλ

 
 =
 + + 
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Now we shall consider a limiting property of the type II generalized 

Linnik distribution. 

THEOREM 2.5.3 

 Let 1 2, ,...X X  be independent and identically distributed random variables  

with characteristic function  
1/

1

1

n

t αλ

 
 
 + 

 and N be a negative binomial random 

variable with probability generating function , 0,
1

pz
qz

ν

ν
  > − 

 

1 , 1 .p q p
n

= = − Then 1 2 ... NX X X+ + +  converges in distribution to Z  

where 2.
d

Z GeGL=  

PROOF 

Let           1 2 ...N NS X X X= + + + . 

( )1 2( ... )( ) N
N

it X X X
S t E eφ + + +=  

           [ ] ( )
1

( ) .n

n
t P N nφ

∞

=
= =∑  

Therefore, 

( )( ) ,
1 ( )NS

p tt
q t

ν
φ

φ
φ

 
=  − 

where 
1/

1( ) .
1

n

t
t α

φ
λ

 
 =
 + 
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( )1/
1

n
p

t q

ν

αλ

 
 

=  
 + −  

 

 
( )1/

1/
11 1

n
n

t
n

ν

αλ

 
 
 =
  + − −    

 

 
( )1/

1

1 ( 1)
n

n t n

ν

αλ

 
 

=  
 + − −  

 

 

( )1/
1 .

1 1 1
n

n t

ν

αλ

 
 
 =   
 + + − 
   

 

Let  ( ) ( )
Nn St tφ φ=  

1
1lim ( )

1 lim 1 1

n
n

n
n

t

n t

ν

α

φ

λ
→∞

→∞

 
 
 
 =   
   + + −        

 

       
1 .

1 ln(1 )t

ν

αλ

 
 =
 + + 
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THEOREM 2.5.4 

The function 1( )
1 ln(1 )

t
t

ν

α
φ

λ

 
 =
 + + 

 on R is a characteristic function if 

and only if 20 ≤α<  and 0.ν >  

 

THEOREM 2.5.5 

 For each ( ]2,0∈α  and 0ν > , the distribution , ( )F xα ν  with characteristic 

function 1( )
1 ln(1 )

t
t

ν

α
φ

λ

 
 =
 + + 

is absolutely continuous.  

 

Proofs of Theorems 2.5.4 and 2.5.5 follow in the same lines as in 

Theorems 2.2.5 and 2.5.2 

THEOREM 2.5.6 

2( , , )GeGL α λ ν  is normally attracted to stable law. 

PROOF 

The characteristic function of ( )1
1 2 ... nn X X Xα− + + +  is  

1/ ...1 2
1/

( ) ( )
X X Xnn Sn

n

t t
α

α

φ φ
− + + +

=  

    ( )1 2
1/

... /
nX X X t n αφ + + +=  
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   ( )1//
i

n
X t n αφ =   

 

    1

1 ln 1

n

t
n

ν

αλ

 
 
 
 =

  
 + + 
    

 

2

1

11 ( )

n

t
o

n n

ν

αλ

 
 
 =  
 + +
  

 

         te
αλν−→  as  .n → ∞  

This completes the proof. 

THEOREM 2.5.7 

 The generalized geometric Linnik stochastic process admits the 

representation 

( ) 1/
, , , ,

s
sX d Y Z α

α λ ν α λ ν  

where ,Yα λ is symmetric stable with characteristic function 
αλ− te  and ,sZ ν  is 

geometric gamma process with Laplace transform  1 .
1 ln(1 )

sν

δ
 
 + + 
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PROOF 

1/
1/

, ,
( )

s

itYZ
Y Z t E e

α
α

α λ ν
φ  =  

 
  

          
1/

0
( )

itYZeE dF zZ z
α∞  

=  = 
∫  

     1/

0
( ) ( )Y tz dF zαφ

∞
= ∫  

    
0

( )z te d F z
αλ

∞
−= ∫  

         1 .
1 ln(1 )

s

t

ν

αλ

 
 =
 + + 

 

Therefore,  ( ) 1/
, , , ,

s
sX d Y Z α

α λ ν α λ ν .  

Following the method of empirical characteristic function used in the case 

of GL distribution, we can estimate the 2GeGL  distribution parameters. 

Consider the 2( , , )GeGL α λ ν  characteristic function 

1( ) .
1 ln(1 )

t
t

ν

α
φ

λ

 
 =
 + + 

 

We have, the empirical characteristic function is  

^

1

1( ) .j
n itX

n
j

t e
n

φ
=

= ∑  
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         ln ( ) ln 1 ln(1 )t t αφ ν λ = − + +  
. 

Proceeding as in Section 3,   we get 

^
1

^
^

2
1

2

( )ln
( )

ln

n

n

t

t
t
t

δ

δ
α =    and for 1,α ≠  

^ ^
2 1 1 2^

1

2

xp ln ( ) ln ln ( ) ln
,

ln

n ne t t t t

t
t

δ δ

λ

 
−  

 =  

where  

1/^ ^
( ) exp ( ) 1 1n nt t

ν

δ φ
−   = − −    

  and  

^

^
^

^

ln ( )
.

ln 1 ln(1 )

n t

t α

φ
ν

λ

−
=

 
+ + 
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CHAPTER III 

SOME ASYMMETRIC GENERALIZATIONS 

 

3.1 INTRODUCTION 

Due to the applications of Laplace distribution and the asymmetric nature of 

the data sets,  several asymmetric generalizations of the Laplace distribution are 

introduced in the literature by different authors (see,  Yu and Zhang (2005) and 

Kozubowski and Podgorski (2000)). 

Let X and Y be two independent gamma random variables with parameters 

( )11 ,βα  and ( )22 ,βα where , 0,i iα β >  i = 1, 2. Then the characteristic function of 

Z X Y= −  is 

( ) ( ) 21 ti1ti1)t( 21Z
α−α− β−β+=φ . 

Mathai (1993a) introduced the generalized Laplace distribution with characteristic 

function 
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( )τλ+

=φ
22

Z
t1

1)t( , , 0.τ λ >     (3.1.1) 

When τ is a positive integer, the probability density function corresponding to 

(3.1.1) is  

 
11

0

( )1( ) 2
!( 1)!(2 )

x xr
Z

r
f x x e

r r
λ

γτ
τ

τ λ
τ

τλ

−
−

=

 =  − −  
∑  

where 

 0( ) ( 1)...( 1), ( ) 1, 0, .r r xτ τ τ τ τ τ= + + − = ≠ − ∞ < < ∞  

When τ = 1, the above distribution reduces to Laplace distribution and is  a member 

of class of self decomposable distributions. The generalized Laplace density has 

applications in various fields such as the production of the chemical melatonin in 

human body, growth decay mechanism like formation of sand dunes in nature, 

input- output situations in economic contexts, industrial production etc.(see,  Mathai 

1993a, 1993b, 1994, 2000). 

Note that most of the real life contexts may not be symmetric in nature and we 

introduce and study the asymmetric form of the generalized Laplace distribution 

considered above. This asymmetric form is defined by the characteristic function  
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  2
1( )

1Z
t

t i t

τ

φ
λ µ

 
=   + − 

     (3.1.2) 

and the corresponding random variable Z is denoted as ( )τµλ .,GeALa . 

 In Section2,  a generalization of the asymmetric distribution in (3.1.2) is 

considered and a representation of this distribution is obtained. Type I generalized 

geometric asymmetric Linnik distribution is introduced in Section 3 and some 

properties of this distribution are  studied. Autoregressive models of type I 

generalized geometric asymmetric Linnik marginal distribution is introduced and 

studied in Section 4. In Section 5, various skewed versions of   Laplace distributions 

are discussed and geometric versions of these distributions are introduced and their 

extensions to the Linnik case are discussed. 

 

3.2 GENERALIZED ASYMMETRIC LINNIK DISTRIBUTION 

In this Section, we obtain a representation for an asymmetric version of the 

generalized Linnik distribution in (2.2.3). Consider the distribution with 

characteristic function  

 1( ) , , , 0, 0 2.
1

t
t i t

τ

αφ µ λ τ α
λ µ

 
 = − ∞ < < ∞ ≥ < ≤
 + − 

 (3.2.1) 
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We shall refer this distribution as the generalized asymmetric Linnik distribution 

and denote it by ),,,(GeAL τµλα . When α =2, τ =1,  it reduces to asymmetric 

Laplace distribution of Kozubowski and Podgorski (2000). 

THEOREM 3.2.1 

 A ),,,(GeAL τµλα  random variable X with characteristic function (3.2.1) 

admits the representation ( ) ZWWdX
1

αλ+µ  where Z is symmetric stable with 

characteristic function 
αλ−=ψ te)t(  and W is a Gamma random variable with 

probability density function 0,0w,ew
)(

1)w(g w1 >τ>
τΓ

= −−τ  independent of Z. 

PROOF 

Conditioning on W we obtain the characteristic function )t(φ  of ( ) ZWW
1

αλ+µ  as  

( )
1

( )
it W W Z

et E E W

αµ λ
φ

 + 
 

  
  

=   
  

  

 

         
( )

1

0
( )

it w w Z

E e g w dw

α
µ λ

 
 +∞  
 

 
 
 =
 
 
 

∫  
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        1 .
1 t i t

τ

αλ µ

 
 =
 + − 

 

Hence the Theorem. 

 

3.3 GENERALIZED GEOMETRIC ASYMMETRIC LINNIK 

DISTRIBUTION 

Since the distribution with characteristic function (3.2.1) is infinitely divisible, 

using the result of Klebanov et al. (1984), we can define a geometrically infinitely 

divisible distribution with characteristic function )t(ψ  as  1( ) exp 1
( )

t
t

φ
ψ

 
= − 

 
 

where ( )tφ is the characteristic function of an infinitely divisible distribution. The 

characteristic function (3.2.1) can be written as 

 1
1 1exp 1

1 1 ln(1 )t i t t i t

τ

α αλ µ τ λ µ
−

 
      = −  + −     + + −    

 

Hence 
)tit1ln(1

1)t(
µ−λ+τ+

=ψ
α

 is a characteristic function of a geometrically 

infinitely divisible distribution. 
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The distribution with characteristic function  

 1( ) , , , 0, 0 2
1 ln(1 )

t
t i tα

ψ µ λ τ α
τ λ µ

= − ∞ < < ∞ ≥ < ≤
+ + −

      (3.3.1) 

is called Type I generalized geometric asymmetric Linnik distribution with 

parameters τασµ ,,, . 

If X is a random variable with characteristic function (3.3.1), we represent it as 

( )1 , , , .X d GeGAL α λ µ τ  It may be noted that when 1τ =  in (3.3.1) the corresponding 

distribution is the geometric version of asymmetric Linnik distribution and we call 

it as geometric asymmetric Linnik distribution and is denoted by ( , , ).
d

X GAL α λ µ=  

Now we consider the asymmetric behavior of the 1GeGAL  distribution. 

THEOREM 3.3.1 

 The ( )1 , , ,GeGAL α λ µ τ  distribution is the limit distribution of the geometric 

sums of ( ), , , nGeAL τα λ µ  random variables. 

PROOF 

 Let )t(φ  be the characteristic function of a ( ), , , nGeAL τα λ µ random 

variable. Then   
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1( ) .
1

n

t
t i t

τ

αφ
λ µ

 
 =
 + − 

 

Define  

( )1( ) 1 1 1.
( )

nt t i t
t

τ
αλ µ

φ
Θ = − = + − −   

 

Hence using Lemma 3.2 of Pillai (1990b),   

  1( )
1 ( )n t

p t
φ =

+ Θ
  

where p > 1, is the characteristic function of  geometric sum of random variables. 

By choosing p = n, we have  

 

1

n 1tit1n1)t( n
−

α
























−





 µ−λ++=φ

τ

 

So )t(nφ  is the characteristic function of  geometric sum of  ( ), , , .nGeAL τα λ µ  

Consider  

( )
1( )

1 1 1
n

n
n

n

lim t
lim n t i t

τ
α

φ

λ µ
→∞

→∞

=
 

+ + − − 
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)tit1ln(1

1

µ−λ+τ+
=

α
 

which is the characteristic function of ( )1 , , ,GeGAL α λ µ τ  random variables.  Hence 

the theorem 

 Now we prove stability property of ( )1 , , ,GeGAL α λ µ τ  random variables with 

respect to geometric summation. 

THEOREM 3.3.2 

Let { }nX  be a sequence of independent and identically distributed random 

variables and let pN  be geometric random variable with mean p
1 . Further,  assume 

that pN  is independent of iX ’s.  If 
1

p

p

N

N i
i

U X
=

= ∑ , then the random variables pNU  

and iX  are identically distributed if iX  follows ( )1 , , , .GeGAL α λ µ τ  

PROOF 

 Let )t(φ  and ( )tΘ  be the characteristic functions of iX  and pNU  

respectively. Then 

   ( )( ) .
1 (1 ) ( )

p tt
p t

φ
φ

Θ =
− −

      (3.3.2) 
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Suppose ( )1 , , , .iX d GeGAL α λ µ τ  

Then, by (3.3.2) we have  

 
( )

( )
ln 1

pt
p t i tατ λ µ

Θ =
+ + −

 

  
( )

1 .
1 ln 1p t i tατ λ µ

=
+ + −

 

Hence  the theorem. 

3.4  AUTOREGRESSIVE MODELS WITH GENERALIZED 

GEOMETRIC ASYMMETRIC LINNIK MARGINAL DISTRIBUTION 

 Here we develop a time series model with ( )1 , , ,GeGAL α λ µ τ  marginal 

distribution on the basis of geometric infinite divisibility property of the 

distribution. 

THEOREM 3.4.1 

Let { }1n,X n ≥  be defined as 

1

. .

. . 1
n

n
n n

w p
X

X w p
ε θ

ε θ−


=  + −

      (3.4.1) 

where 10 ≤θ<  and { }nε  is a sequence of independent and identically distributed 

random variables. A necessary and sufficient condition that  { }nX  is a stationary 
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process with ( )1 , , ,GeGAL α λ µ τ  marginal is that { }nε  is distributed as 

( )1 , , , .GeGAL α λ µ θτ  

PROOF 

 Let ( )
nX tφ  be the characteristic function of { }nX .  Then from (3.4.1),  we get 

1
( ) ( ) (1 ) ( ) ( )

n n n nX Xt t t tε εφ θ φ θ φ φ
−

= + −    (3.4.2) 

Assuming stationarity, we have  

( ) ( ) (1 ) ( ) ( ).X Xt t t tε εφ θ φ θ φ φ= + −  

Hence  

( )( ) .
(1 ) ( )

X

X

tt
tε

φ
φ

θ θ φ
=

+ −
     (3.4.3) 

Suppose 1( , , , ).nX d GeGAL α λ µ τ  

Then  

( )
1( ) .

1 ln 1
X t

t i tα
φ

τ λ µ
=

+ + −
 

Substituting this in (3.4.3) and simplifying we get,  

  
( )

1( ) .
1 ln 1

t
t i t

ε α
φ

θτ λ µ
=

+ + −
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Hence 1( , , , ).n d GeGALε α λ µ θτ  

Conversely, assume that { }nε  is a sequence of independent and identically 

distributed ( )1 , , ,GeGAL α λ µ θτ  random variables and  0 1( , , , ).X d GeGAL α λ µ τ  Then 

from (3.4.2),  for n = 1 we have 





 µ−λ+τ+

=φ
α tit1ln1

1)t(1X . 

 If  1 1( , , , ),nX d GeGAL α λ µ τ−  then we get 1( , , , ).nX d GeGAL α λ µ τ . 

Thus using inductive argument,  { }nX  is a stationary process with 

1( , , , )GeGAL α λ µ τ  marginal distribution. Hence the Theorem.  

We call the process defined by (3.4.1) with 0 1( , , , )X d GeGAL α λ µ τ  and { }nε  

is a sequence of independent and identically distributed 1( , , , )GeGAL α λ µ θτ  random 

variables as the first order autoregressive process with 1( , , , )GeGAL α λ µ τ  marginal 

distribution .  

From the Definition of the model (3.4.1),   it is easily verified that 

 
0

1 (1 ) ( )
( ) ( ) (1 ) ( ) ( ).

1 (1 ) ( )
n

n n n
n

n n
n n

X X
t

t t t t
t

ε
ε ε

ε

θ φ
φ θφ θ φ φ

θ φ

− −
= + −

− −
 

When ∞→n , 1( ) ( ) .
1 (1 ) ( )n n

n

X t t
tε

ε
φ θφ

θ φ
=

− −
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Let 0X  is distributed arbitrary and { }nε  is a sequence of independent and 

identically distributed 1( , , , )GeGAL α λ µ θτ  random variables. Then as ∞→n  

 
( )

1( ) .
1 ln 1nX t

t i tα
φ

τ λ µ
=

+ + −
 

Hence if 0X  is distributed arbitrary, then the autoregressive process is 

asymptotically stationary with 1( , , , )GeGAL α λ µ τ  marginal distribution. 

Now from the joint characteristic function of ( )1nn X,X +  of the process, it can be  

easily verified that the first order autoregressive process  (3.4.1) with 

1( , , , )GeGAL α λ µ τ  marginal distribution is not time reversible. 

An autoregressive model of kth order with 1( , , , )GeGAL α λ µ τ  as marginal 

distribution can be defined as  

  

0

1 1

2 2

. .

. .
. .

.

.

.
. .

n

n n

n n

n

n k n k

w p p
X w p p
X w p p

X

X w p p

ε

ε

ε

ε

−

−

−


 +
 +


= 



 +
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where 1p
k

0i
i =∑

=
, k..1i,1p0 i =<<  and { }nε  is a sequence of independent and 

identically distributed 1( , , , )GeGAL α λ µ τ  random variables. 

3.5     GEOMETRIC ASYMMETRIC LAPLACE DISTRIBUTIONS-

VARIOUS FORMS 

Kozubowski and Podgorski (2007a, b) considered different forms of 

asymmetric/skew Laplace distribution. The type I form is discussed in Section 1, 

has the  characteristic function 

  2
1( ) , , 0.

1
t R

t i t
φ µ λ

λ µ
= ∈ >

+ −
   

The Type II asymmetric Laplace distribution is obtained by Azzalini’s method (see, 

Azzalini (1985)) and is given by the characteristic function 

2

2 2 2

(1 )
( ) , , , 0, 0.

( ) (1 )

i te t i
t t R

t i t

θ λ δ
ψ θ λ δ

λ λ δ

 + + = ∈ > ≥
 + + + 

    (3.5.1) 

The corresponding density is  

(1 )1
2

(1 )1
2

,1( ) .
,

x x

x

e e x
f x

e x

θ θ
λ λ

θ
λ

δ

δ

θ

λ
θ

− −

−

− − +

− +


− ≥

= 
 <
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The geometric asymmetric Laplace distribution based on the Type II 

asymmetric Laplace distribution is defined by the characteristic function 

))t(ln(1
1)t(
ψ−

=φ  where )t(ψ  is given by (3.5.1). Note that (3.5.1) can be 

extended to the asymmetric Linnik case by considering 

( ) 2 ( ) ( ), ,g x f x F x x R Rγ γ= ∈ ∈   

where ( )f x  is the probability density function of Linnik distribution and ( )F x  is 

the corresponding distribution function. The geometric version of this will lead to 

the geometric asymmetric Linnik law corresponding to the Azzalini’s method. 

Type III asymmetric Laplace distribution is the distribution of Xγ  where  

2 2
1 ,

1 1
X X Y Rγ

γ
γ

γ γ
= + ∈

+ +
    (3.5.2) 

where X and Y are independent and identically distributed  standard Laplace 

random variables. Denoting ( )1,1
1

c
2

−∈
γ+

γ
=  and introducing  the location 

parameter R∈θ  and scale parameter 0>λ , density of γX  can be written as  
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1 121

1
21

22

2

1 ,
1 22 1

1( ) .
1 ,

2 1

x x
cc

x

c

ce e x
cc c

f x

e x
c c

θ
θλ

λ

θ
λ

θ

λ
θ

−
−

−

−

−

− −

−


 − ≥

  −− −   = 


<   − + 
 

 

The corresponding characteristic function is  

  
( ) [ ]

( )
2 2 2

( ) , , , 1,1 .
1 1 1

i tet t R c
c t i ct

θ
ψ θ

λ λ
= ∈ ∈ −

 + − −  

 

The geometric asymmetric Laplace distribution is defined by the characteristic 

function ( ))t(ln1
1
ψ−

.   

For the interrelations between type I , Type II and Type III asymmetric Laplace laws,  see 

Kozubowski and Podgorski (2007a,b). 
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CHAPTER IV 

TAILED DISTRIBUTIONS 

4.1 INTRODUCTION 

Tailed distributions have found applications in various fields and were 

studied by many authors (see,   Littlejohn (1994), Muraleedharan (1999),   

Muraleedharan and Kale (2002) and Hutton (1990)). We encounter tailed 

distributions in life testing experiments where an item fails instantaneously.  In 

clinical trials,  some times a medicine has no response initially with a certain 

probability and on a later stage there may be response, the length of the response is 

described by certain probability distribution. 

DEFINITION 4.1.1 

 Let the random variable X has distribution function F(x) and characteristic 

function ( ).X tφ  A tailed random variable U with tail probability θ  associated with 

X is defined by the characteristic function 

( ) (1 ) ( )U Xt tφ θ θ φ= + −      (4.1.1) 

______________________________ 

This Chapter is based on Mariamma Antony and Raju (2008a) 
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In Section 2, we introduce tailed distributions associated with type I 

generalized geometric Linnik distribution and study its properties. Tailed Type II 

generalized geometric Linnik distribution is also discussed in this Section. Tailed 

type I generalized geometric asymmetric Linnik distribution is studied in Section 3. 

Marshal and Olkin (1997) considered a method of introducing new parameters in to 

a distribution F. For the applications of Marshall Olkin scheme, see   Marshall and 

Olkin (1997) and Jayakumar and Mathew (2006). Jayakumar and Kuttykrishnan 

(2007) redefined Marshall -Olkin schemes and used them to describe   

reparametrized forms of a distribution in terms of characteristic function. In Section 

4,  we derive the Marshall-Olkin form of geometric Linnik, Type I generalized 

geometric Linnik, Type II generalized geometric Linnik, geometric semi-alpha 

Laplace distributions and introduce the tailed distributions generated by the 

Marshall-Olkin forms.  

 

4.2 TAILED GENERALIZED GEOMETRIC LINNIK DISTRIBUTIONS 

 Now we introduce tailed Type I generalized geometric Linnik distribution 

and obtain a representation of the same.  
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In (4.1.1), when  





 λ+τ+

=φ
αt1ln1

1)t(X , then 

   
( )
( )

1 ln 1
( ) .

1 ln 1
U

t
t

t

α

α

τθ λ
φ

τ λ

+ +
=

+ +
     (4.2.1) 

The random variable U with characteristic function (4.2.1) is called tailed Type I 

generalized geometric Linnik and denoted by ( )1 , , ,TGeGL α λ τ θ  

THEOREM 4.2.1 

Let X and Y be independent random variables such that X has tailed 

generalized geometric exponential distribution with Laplace transform 

1(1 )
1 ln(1 )

θ θ
τ δ

+ −
+ +

 and Y is stable with characteristic function 
αλ− te , 

0 2, , , 0,α λ δ τ< ≤ > 0 1.θ< <  Then YXZ
1
α=  has ( )1 , , ,TGeGL α λ τ θ  distribution. 

PROOF 












=φ

αYitX
Z

1

eE)t(  

   ( )1

0
( )Y tx dF xαφ

∞
= ∫  
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0

( )t xe dF x
αλ

∞
−= ∫  

   
( )
1(1 )

1 ln 1 t α
θ θ

τ λ
= + −

+ +
 

   
( )
( )

1 ln 1
.

1 ln 1

t

t

α

α

τθ λ

τ λ

+ +
=

+ +
 

This completes the proof. 

 Now we develop a first order autoregressive model with 1TGeGL distribution 

as marginal. 

Consider the model 

 
1

. .

. . 1
n

n
n n

w p p
X

X w p p
ε

ε−


=  + −

    (4.2.2) 

       n1nn XI ε+= −  

where { }nε  and { }nI  are two sequences of independent and identically distributed 

random variables with nI , 1nX −  and nε  mutually independent and  

( ) ( )0 1 1 .n nP I p P I= = = − =  

We have the model (4.2.2) in terms of characteristic functions is  
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1

( )
( )

(1 ) ( )
n

n
n

X

X

t
t

p p tε
φ

φ
φ

−

=
+ −

. 

 In the stationary case,   

   ( )( ) .
(1 ) ( )n

X

X

tt
p p tε

φ
φ

φ
=

+ −
 

If X has characteristic function (4.2.1),  then  

( )
( )

1 ln 1
( )

1 ln 1n

t
t

c t

α

ε α

τθ λ
φ

τ λ

+ +
=

+ +
 

 where (1 ) .c p p θ= + −  

That is, 

 
( )
1( ) 1 .

1 ln 1n
t

c c c t
ε α

τθ τθ
φ

τ λ

 = + − 
  + +

 

 

Hence, if the model (4.2.2) is stationary with ( )1 , , ,TGeGL α λ τ θ  marginal 

distribution, then the distribution of the innovation sequence { }nε  is 

( )1 , , , .cTGeGL c τθα λ τ  
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If ( )0 1 , , ,
d

X TGeGL α λ τ θ=  and { }nε  are independent and identically 

distributed as ( )1 , , , cTGeGL c τθα λ τ , then the characteristic function of 1X  is  

1 0 1
( ) (1 ) ( ) ( )X Xt p p t tεφ φ φ = + −   

   





















 λ+τ+






 λ+τθ+






















 λ+τ+






 λ+τθ+

−+=
α

α

α

α

t1lnc1

t1ln1

t1ln1

t1ln1
)p1(p  

 

   
( )
( )

1 ln 1
.

1 ln 1

t

t

α

α

τθ λ

τ λ

+ +
=

+ +
 

That is,   1 0.X dX  

If 1 0 ,nX d X−   we can prove that 0nX d X  and hence the process { }nX  is stationary. 

Based on this, we now define stationary first order autoregressive tailed Type I 

generalized geometric Linnik process as follows: 

Let   

( )0 1 , , ,X d TGeGL α λ τ θ    

 and for 1, 2,...n =  

 
1

. .

. . 1
n

n
n n

w p p
X

X w p p
ε

ε−


=  + −

 



 76

 

where { }nε  is a sequence of independent and identically distributed 

( )1 , , , cTGeGL c τθα λ τ  random variables where (1 ) .c p p θ= + −  

It can be shown that the process { }nX  is not time reversible. For this,  consider the 

characteristic function 

( )1 2 1
1, 1 2( , ) n n

n n
it X it X

X X t t E eφ +
+

+=  

                 2 1 1 2( ) ( ) (1 ) ( )
n n nX Xt p t p t tεφ φ φ = + − +   

      





 λ+τ+






 λ+τθ+

=
α

α

t1lnc1

t1ln1 ( )
( )

( )
( )

1 1 2

2 1 2

1 ln 1 1 ln 1
(1 ) .

1 ln 1 1 ln 1

t t t
p p

t t t

α α

α α

τθ λ τθ λ

τ λ τ λ

 + + + + + + − 
+ + + + +  

 

This expression is not symmetric in 1t  and 2.t  

REMARK 4.2.1 

 If { }nε  is a sequence of independent and identically distributed  

( )1 , , , cTGeGL c τθα λ τ , where θ−+= )p1(pc  then (4.2.2) is asymptotically  

stationary with    ( )1 , , ,TGeGL α λ τ θ      marginal distribution.  
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Consider the kth order autoregressive process 

  
1 1

2 2

. .

. .
. . .

. .

n

n n

n n n

n k n k

w p p
X w p p

X X w p p

X w p p

ε

ε

ε

ε

−

−

−


 += +



+

M
    (4.2.3) 

 

If the process { }nX  is stationary,  then in terms of characteristic function (4.2.3) is  

( )( ) ,
(1 ) ( )n

X

X

tt
p p tε

φ
φ

φ
=

+ −
 

where 
1

1 , 0 1.
k

i i
i

p p p
=

− = < <∑  

Thus a necessary and sufficient condition for the model (4.2.3) defines a stationary 

AR(k) process with ( )1 , , ,TGeGL α λ τ θ  marginal distribution is that { }nε  is 

distributed as ( )1 , , , .cTGeGL c τθα λ τ   

Now we consider the type II generalized geometric Linnik distribution and 

study the tailed distribution generated by it. 

DEFINITION 4.2.1 

 A random variable X is said to have tailed type II generalized geometric 

Linnik distribution and write ( )2 , , ,X d TGeGL α λ τ θ  distribution if it has the 
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characteristic function 

 
( )

( )
1 ln 1 (1 )

( ) ,0 2,0 1, , 0.
1 ln 1

X

t
t

t

τα

τα

θ λ θ
φ α θ λ τ

λ

 + + + −  = < ≤ < < >
 + +  

 

The tailed type II generalized geometric Linnik distribution being the tailed 

form of type II generalized geometric Linnik is infinitely divisible. 

As in the case of 1TGeGL  distribution, we now obtain a representation of 

2TGeGL  random variables in terms of tailed geometric gamma and stable random 

variables. 

DEFINITION 4.2.2 

A random variable X is said to have tailed geometric gamma distribution if it 

has Laplace transform 

 
( )

1
1( ) (1 ) , , 0,0 1.

1 ln 1 τ
φ δ θ θ δ τ θ

δ
= + − > < <

+ +  
 

 

THEOREM  4.2.2 

 Let X and Y be independent random variables such that X has Laplace 

transform  
( )[ ]τδ++

θ−+θ
1ln1
1)1(  and Y is stable with characteristic function  
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, 0 2.te
αλ α− < ≤  Then YXU

1
α=  has distribution ( )2 , , , .TGeGL α λ τ θ  

Proof follows analogous to the proof of Theorem 4.2.1. 

 

4.3 TAILED GENERALIZED GEOMETRIC ASYMMETRIC LINNIK 

DISTRIBUTION  

Here we discuss the tailed distributions generated by generalized geometric 

asymmetric Linnik distributions. 

DEFINITION 4.3.1 

 A random variable X is said to have tailed type I generalized geometric 

asymmetric Linnik distribution and write ( )1 , , , ,U d TGeGAL α λ µ τ θ  if it has 

characteristic function 

  
( )
( )

1 ln 1
( ) .

1 ln 1
U

t i t
t

t i t

α

α

τθ λ µ
φ

τ λ µ

+ + −
=

+ + −
 

As in the case of 1TGeGL  random variables,  we now consider the first order 

autoregressive  model (4.2.2). We can prove that if { }nε  are independent and 

identically distributed ( )1 , , , , cTGeGAL c τθα λ µ τ    random variables and 

( )0 1 , , , ,X d TGeGAL α λ µ τ θ , then the model (4.2.2) is stationary with 
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( )1 , , , ,TGeGAL α λ µ τ θ  marginals. Also if the model (4.2.2) is stationary with 

( )1 , , , ,TGeGAL α λ µ τ θ  marginals then it can be easily seen that the distribution of 

{ }nε  is ( )1 , , , , cTGeGAL c τθα λ µ τ  where  (1 ) .c p p θ= + −  Based on this we can 

develop first order autoregressive models with tailed Type I generalized geometric 

asymmetric Linnik marginal  distribution.   

The model can be easily extended to higher order autoregressive model  as in 

(4.2.3).  

The type II generalized geometric asymmetric Linnik distribution can be 

defined using (4.1.1) with )t(Xφ  replaced by  

   

( )
1 .

1 ln 1 t i t
ταλ µ + + −  

 

That is,  a random variable U having tailed type II generalized geometric 

asymmetric Linnik distribution denoted by ( )2 , , , ,TGeGAL α λ µ τ θ  has characteristic 

function 

 

( )
1(1 ) .

1 ln 1 t i t
τα

θ θ
λ µ

+ −
 + + −  
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4.4  MARSHALL-OLKIN FORMS 

 Let X be a random variable having absolutely continuous distribution 

function F(x) in the support (a, b) where a can be ∞−  and b can be ∞+ . Let 

)x(F1)x(F −=  be the survival function of X.   Marshall and Olkin (1997) introduced 

a flexible family of distributions by adding a new parameter in to the survival 

function. Starting with a survival function  )x(F ,   Marshall and Olkin (1997) 

defined a new class of distributions given by  

  ( )( ) , , 0 .
1 (1 ) ( )

F xG x x
F x

γ
γ

γ
= − ∞ < < ∞ < < ∞

− −
     (4.4.1) 

Sankaran and Jayakumar (2007) gave an interpretation for the family (4.4.1) using 

odds function. They showed that family (4.4.1) satisfies the proportional odds 

model. Jayakumar and Mathew (2006) considered a generalization of Marshall-

Olkin scheme and discussed the application of this in Burr Type XII distribution. 

The generalized Marshall-Olkin scheme corresponding to the survival function F  is 

defined as  

   ( )( ) , , 0 , .
1 (1 ) ( )

m
F xH x x m

F x
γ

γ
γ

 
= − ∞ < < ∞ < < ∞ 

− − 
 (4.4.2) 
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Jayakumar and Kuttykrishnan (2007) defined the Marshall-Olkin schemes in terms 

of characteristic functions. Let X be a random variable on ( )∞∞− ,  with 

characteristic function )t(φ . They defined the characteristic function ( )tψ  as  

  ( )( ) , 0 , .
1 (1 ) ( )

tt t
t

γφ
ψ γ

γ φ
= < < ∞ − ∞ < < ∞

− −
,    (4.4.3) 

We now introduce the Marshall-Olkin forms of  the geometric Linnik characteristic 

function,  its asymmetric versions and other extensions.   

Suppose  

( )
1( ) .

1 ln 1
t

t α
φ

λ
=

+ +
 

The Marshall-Olkin form is  

 
( )1

1( ) , 0 2, 0.
1 ln 1

t
t α

γ

ψ α γ
λ

= < ≤ >
+ +

   . 

Note that the Marshall-Olkin form of   ( )λα,GL  distribution give rise to 

( )1
1 , ,GeGL

γ
α λ distribution.  

Simiilarly,  the Marshall-Olkin form of ( )µλα ,,GAL  distribution is the 

( )1
1 , , ,GeGAL

γ
α λ µ  distribution. It can be easily seen that if ( )1 , , ,X d GeGAL α λ µ τ  

then the Marshall-Olkin form of X is ( )1 , , , .GeGAL τ
γ

α λ µ   
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 If =φ )t(

( )
1

1 ln 1 t i t
ταλ µ + + −  

, then  

  =ψ )t(

( )
.

1 ln 1 (1 )t i t
τα

γ

λ µ γ + + − − −  

 

Also if ( )1 , , , ,X d TGeGAL α λ µ τ θ , then  =ψ )t(
( )

[ ] ( )
1 ln 1

1 ( 1) ln 1

t i t

t i t

α

τ α

γ τθ λ µ

γ γ θ λ µ

 + + −  

+ + − + −
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CHAPTER V 

SOME BIVARIATE EXTENSIONS 

 

5.1 INTRODUCTION 

Heavy tailed bivariate distributions with different tail index are used for 

modeling bivariate data. Considering this,  Kozubowski et al. (2005) introduced 

marginal Laplace and Linnik distributions. A  random vector )X,X(X 21=  is said to 

have marginal Laplace and Linnik distribution if it has the characteristic function 

1 22
1 2

1( , ) , 0 2, , 0, , .
1

t s t s R
t s α

ψ α λ λ
λ λ

= < ≤ > ∈
+ +

     

Note that, 

   ,
t1

1)0,t(
2

1λ+
=ψ   

_____________________________  

This Chapter is based on Mariamma Antony and Raju (2008b) and (2008c)  
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and 

2

1(0, ) .
1

s
s α

ψ
λ

=
+

 

Kozubowski et al. (2005) derived the representation of X  as  

  ( )11
2 1 2,X d U X U Xα   

where U is unit exponential, 1X  and 2X  are normal and α  stable random variables 

with respective characteristic functions 

  
2

1
1
( ) tt e λψ −=  and  

  2
2
( ) .ss e

αλψ −=  

The marginal Laplace and  Linnik distribution can be generalized to include 

the asymmetry in the data as follows:  

Consider a  random vector ( )21 X,XX =  with characteristic function  

  1 22
1 2

1( , ) , , 0,0 2, , .
1

t s R
t s i t i sα

ψ λ λ α µ ν
λ λ µ ν

= > < ≤ ∈
+ + − −

 

Note that in this case,  2
1

1( ,0)
1

t
t i t

ψ
λ µ

=
+ −

 and 
2

1(0, ) .
1

s
s i sα

ψ
λ ν

=
+ −

 We call the 
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distribution with characteristic function ( , )t sψ  as marginal asymmetric Laplace and 

asymmetric Linnik  distribution.    

 In Section 2, we introduce geometric marginal asymmetric Laplace and 

asymmetric Linnik distribution and study its properties.  In Section 3, we consider 

geometric marginal asymmetric Linnik and asymmetric Linnik distribution and its 

extensions. Geometric bivariate semi- α -Laplace distribution are introduced and 

studied in Section 4 

5.2 GEOMETRIC MARGINAL ASYMMETRIC LAPLACE AND 

ASYMMETRIC LINNIK DISTRIBUTION 

Kozubowslki et al. (2005) introduced and studied a class of multivariate 

distributions called operator geometric stable laws by generalizing operator stable 

and geometric stable laws. As a particular case,  they studied a new class of 

bivariate distributions namely marginal Laplace and Linnik distributions.  

Kutyikrishnan and Jayakumar  (2005) generalized this class of distributions and 

introduced and studied a class of bivariate distributions that contains marginal 

Laplace and Linnik distributions. The resulting class of bivariate distributions 

namely generalized marginal asymmetric Laplace and asymmetric Linnik 

( GeMALaAL ) distributions have the characteristic function 
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2

1 2

1( , ) ,
1

t s
t s i t i s

τ

αφ
λ λ µ ν

 
 =
 + + − − 

       (5.2.1) 

    1 2, 0, , , 0, (0, 2].λ λ µ ν τ α> − ∞ < < ∞ ≥ ∈  

Let )s,t(ψ  be the characteristic function of a geometrically infinitely divisible 

bivariate distribution given by the equation 





 −

ψ=φ )s,t(
11

e)s,t(  where )s,t(φ  is the 

characteristic function of an infinitely divisible bivariate distribution. 

Substituting (5.2.1) in  the equation 





 −

ψ=φ )s,t(
11

e)s,t( , we obtain 

  
( )2

1 2

1( , ) ,
1 ln 1

t s
t s i t i sα

ψ
τ λ λ µ ν

=
+ + + − −

     (5.2.2) 

    1 2, 0, 0, , , (0,2].λ λ τ µ ν α> ≥ − ∞ < < ∞ ∈  

Hence 
( )2

1 2

1( , )
1 ln 1

t s
t s i t i sα

ψ
τ λ λ µ ν

=
+ + + − −

 is the characteristic function of a 

geometrically infinitely divisible bivariate distribution.  

A bivariate distribution with characteristic function (5.2.2) is called Type I 

generalized geometric marginal asymmetric Laplace and asymmetric Linnik 

1GeGMALaAL  distribution with parameters 1 2, , , , ,α µ ν λ λ τ . Note that when 
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0µ ν= =  and 1,τ =  this becomes geometric marginal Laplace and Linnik 

distribution. 

If ( , )X Y  is bivariate random vector with characteristic function (5.2.2),  we 

represent it as  ( ) 1 1 2, ( , , , , , ).X Y d GeGMALaAL α λ λ µ ν τ  An asymptotic property of  

1GeGMALaAL distribution is  given in  the following theorem.  

THEOREM 5.2.1 

  The 1GeGMALaAL  distribution is the limit distribution of the geometric 

sums of GeMALaAL  random variables. 

The theorem can be proved using the argument similar to the Proof of Theorem 

3.3.1. 

 Now it is useful to develop a bivariate time series model using the 

1GeGMALaAL  marginal distribution. A one parameter autoregressive model 

equivalent  to TEAR(1)  structure of Lawrance and Lewis (1981)  can be 

constructed corresponding to the set of bivariate time series data as follows: 

Let ( ){ }, , 1n n nε η ≥  be a sequence of independent and identically distributed 

bivariate random vectors and let ( )0 0 1 1 2, ( , , , , , )X Y d GeGMALaAL α λ λ µ ν τ .  
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Define ( ){ }, , 1n nX Y n ≥  as  

1

. .

. . 1
n

n
n n

w p p
X

X w p p
ε

ε−


=  + −

  

and            

1

. .

. . 1
n

n
n n

w p p
Y

X w p p
η

η−


=  + −

    (5.2.3) 

 

where 0 < p < 1. 

Let )s,t(nn Y,Xφ  and , ( , )
n n

t sε ηφ  be the characteristic functions of ( )nn Y,X  and 

( )nn , ηε  respectively. Then (5.2.3) gives 

( )
( )

( )1 1

,
,

,

( , )
( , ) .

(1 ) ( , )
n n

n n
n n

X Y

X Y

t s
t s

p p t sε η

φ
φ

φ
− −

=
+ −

  (5.2.4) 

If ( ){ },n nX Y  is  a stationary sequence with 1 1 2( , , , , , )GeGMALaAL α λ λ µ ν τ  marginal 

distribution,  then from (5.2.4) we get  

 ( ) ( )2
1 2

1( , ) .
1 ln 1n n

t s
p t s i t i s

ε η α
φ

τ λ λ µ ν
=

+ + + − −
   (5.2.5) 

Hence ( ) 1 1 2, ( , , , , , ).n n d GeGMALaAL pε η α λ λ µ ν τ  
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Also it can be verified that if ( )0 0 1 1 2, ( , , , , , )X Y d GeGMALaAL α λ λ µ ν τ and 

( ){ }, , 1n n nε η ≥ is an independent and identically distributed sequence of bivariate 

random variables with characteristic function  given by (5.2.5),  the first order 

autoregressive process (5.2.3) is stationary with 1 1 2( , , , , , )GeGMALaAL α λ λ µ ν τ  

marginal distribution.  

Hence, we have the following theorem.  

THEOREM 5.2.3 

Let ( ){ }, , 1n n nε η ≥  be a sequence of independent and identically distributed 

1 1 2( , , , , , )GeGMALaAL pα λ λ µ ν τ  random vectors and ( )0 0,X Y d  

1 1 2( , , , , , ).GeGMALaAL α λ λ µ ν τ  Then the relation (5.2.3) defines a stationary 

bivariate time series with 1GeGMALaAL  marginal distribution.  

5.3 GEOMETRIC MARGINAL ASYMMETRIC LINNIK AND  

ASYMMETRIC LINNIK DISTRIBUTION AND ITS EXTENSIONS 

In practice we come across bivariate random vectors where the components 

of the vectors have heavy tails than normal distribution and component distributions 

are asymmetric with steep peak. 
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DEFINITION 5.3.1 

 Let ( )21 X,XX =  be a random vector with characteristic function  

1 21 2

1( , )
1

t s
t s i t i s

τ

α α
φ

λ λ µ ν

 
 =
 + + − − 

, 

1 2 1 2, 0, , 0, , , 0 , 2.λ λ τ µ ν α α> ≥ − ∞ < < ∞ < ≤      

 

Then we say that ( )21 X,XX =  has generalized marginal asymmetric Linnik and 

asymmetric Linnik distribution and we denote X  by 

1 2 1 2( , , , , , , ).X d GeMALAL α α λ λ µ ν τ  

 The geometric version of this and its generalization are the subject of study 

in this Section.  

DEFINITION 5.3.2 

 A random vector  ( )21 X,XX =  is said to have geometric marginal 

asymmetric Linnik and asymmetric Linnik distribution and write 

1 2 1 2( , , , , , )X d GMALAL α α λ λ µ ν  distribution if it has the following characteristic 

function 
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( )1 21 2

1( , ) ,
1 ln 1

t s
t s i t i sα α

φ
λ λ µ ν

=
+ + + − −

 

  1 2 1 2, 0, , 0, , , 0 , 2.λ λ τ µ ν α α> ≥ − ∞ < < ∞ < ≤  

 

Note that when 1 2α =  and 2α α= , the geometric marginal asymmetric Linnik and 

asymmetric Linnik distribution turns out to be geometric marginal asymmetric 

Laplace and asymmetric Linnik distribution studied in Section 2. 

REMARK 5.3.1 

As in Chapters II and III,  the two generalizations of the geometric marginal 

asymmetric Linnik asymmetric Linnik distribution are Type I generalized geometric 

marginal asymmetric Linnik and  asymmetric Linnik distribution defined by the 

characteristic function  

  
( )1 21 2

1( , )
1 ln 1

t s
t s i t i sα α

φ
τ λ λ µ ν

 
 

=  
+ + + − − 

 

   (5.3.1) 

denoted by ( )1 2 1 1 2 1 2, ( , , , , , , )X X X d GeGMALAL α α λ λ µ ν τ=  and Type II generalized 

geometric marginal asymmetric Linnik and asymmetric Linnik distribution defined 

by the characteristic function  
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( )1 21 2

1( , )
1 ln 1

t s
t s i t i s

τ

α α
φ

λ λ µ ν

 
 

=  
+ + + − − 

 

 

denoted by 2 1 2 1 2( , , , , , , ).X d GeGMALAL α α λ λ µ ν τ  

THEOREM 5.3.1 

The 1 1 2 1 2( , , , , , , )GeGMALAL α α λ λ µ ν τ  distribution is the limit distribution of 

geometric sums of  1 2 1 2( , , , , , , )nGeMALAL τα α λ λ µ ν  random variables. 

PROOF 

 Let ( , )t sφ  be the characteristic function of 1 1 1 2( , , , , , , )nGeMALAL τα α λ λ µ ν  

Then  

( )1 21 2

1( , ) .
1

n

t s
t s i t i s

τ

α α
φ

λ λ µ ν

 
 

=  
+ + − − 

 

 

Define 1( , ) 1
( , )

t s
t sφ

Θ = −  

           = ( )1 21 21 1.nt s i t i s
τ

α αλ λ µ ν+ + − − −  
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Consider 

( )1 21 2

1( , ) .

1 1 1n
n t s

n t s i t i s
τ

α α
φ

λ λ µ ν

=
  + + + − − − 
  

 

( )1 21 2

1lim ( , )

1 lim 1 1n
n

n

n

t s

n t s i t i s
τ

α α
φ

λ λ µ ν
→∞

→∞

=
  + + + − − − 
  

 

( )1 21 2

1 .
1 ln 1 t s i t i sα ατ λ λ µ ν

=
+ + + − −

 

 

Now we develop a bivariate time series model using 1GeGMALAL  marginal 

distribution. 

 Let ( ){ }, , 1n n nε η ≥  be a sequence of independent and identically distributed 

bivariate random vectors and let ( )0 0 1 1 2 1 2, ( , , , , , , )X Y d GeGMALAL α α λ λ µ ν τ  be a 

random vector with characteristic function (5.3.1).  Define ( ){ }, , 1n nX Y n ≥  as 

  
1

. .
. . 1

n
n

n n

w p p
X

X w p p
ε

ε−


=  + −

   (5.3.2) 

  
1

. .
. . 1

n
n

n n

w p p
Y

X w p p
η

η−


=  + −

 

 where 0 < p < 1. 
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Let  ( ) ( , )
n nX Y t sφ  and ( ) ( , )

n n
t sε ηφ  be the characteristic functions of ( ){ },Y,X nn  and 

( ){ }nn , ηε  respectively. 

Then (5.3.2) gives  

  ( )
( )

( )1 1

,
,

,

( , )
( , ) .

(1 ) ( , )
n n

n n
n n

X Y

X Y

t s
t s

p p t sε η

φ
φ

φ
− −

=
+ −

   (5.3.3) 

If ( ){ },n nX Y  is a stationary sequence with 1 1 2 1 2( , , , , , , )GeGMALAL α α λ λ µ ν τ  

marginal distribution, then from (5.3.3) we get  

 ( ) ( )1 2
,

1 2

1( , )
1 ln 1n n

t s
p t s i t i s

ε η α α
φ

τ λ λ µ ν
=

+ + + − −
 

Hence  

( ) 1 1 2 1 2, ( , , , , , , )n n d GeGMALAL pε η α α λ λ µ ν τ .   (5.3.4) 

Also it can be verified that if  

 ( )0 0 1 1 2 1 2, ( , , , , , , )X Y d GeGMALAL α α λ λ µ ν τ  and ( ){ }, , 1n n nε η ≥  is 

independent and identically distributed sequence of bivariate random variables  

given by (5.3.4) then the first order autoregressive process (5.3.2) is stationary with  

1 1 2 1 2( , , , , , , )GeGMALAL α α λ λ µ ν τ  marginal distribution. 
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5.4 GEOMETRIC BIVARIATE SEMI α LAPLACE DISTRIBUTION 

A bivariate semi α  Laplace distribution X  is defined by the characteristic 

function 

  
)s,t(1

1)s,t(
δ+

=φ        (5.4.1) 

where )s,t(δ  satisfies the functional equation  

 
1 1

1 21
1 2( , ) , , 0 1,0 , 2.pt s p t p s pα αδ δ α α = < < < ≤ 

 
 (5.4.2) 

A solution of the equation (5.4.2) is  

  1 21 2( , ) ( ) ( )t s t t s sα αδ δ δ= +   

where 1( )tδ  and 2 ( )sδ  are periodic functions in tln  and sln   with periods 
pln

2 1πα−  

and 
pln

2 2πα−  respectively. 

The solution of (5.4.2) is not unique.  

For example,  the function 

2'1
2( , ) ( , ) ( , ) ,0 2t s t s t s

α

δ α = Σ < ≤       (5.4.3)  
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and Σ  is any non negative definite matrix,  satisfy the functional equation (5.4.3) 

with  α=α=α 21  and any )1,0(p∈ . When 












σσσρ

σσρσ
=Σ 2

2211

211
2
1  in (5.4.3) with 

2α = ,  then (5.4.1) becomes  

 2 2
1 2

1 2
2 2

1 22 2

1( , ) , , 0,0 1
1

t s
t s tsσ σ

φ σ σ ρ
ρσ σ

= > < ≤
+ + +

  

 is the characteristic function of a  bivariate  Laplace distribution (for details, see 

Kuttykrishnan and Jayakumar (2008)  and Kotz et al. (2001)). Kuttykrishnan and 

Jayakumar (2008) studied the properties of bivariate semi α  Laplace distribution in 

(5.4.1) and obtained some characterizations of the distribution. 

In this Section,  we introduce and study geometric bivariate semi α  Laplace 

dsistribution.  A random vector X  is said to have geometric bivariate semi α  

Laplace distribution if it has characteristic function  

( )
1( , )

1 ln 1 ( , )
t s

t s
φ

δ
=

+ +
      (5.4.4) 

where ( , )t sδ satisfies the equation (5.4.2). Note that the distribution we discuss here 

has the form  
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 δ+δ++

=φ
αα )t(s)t(t1ln1

1)s,t(
21

21
  

where  )tp()t( 1
1

11
αδ=δ  and 

1
22 2( ) ( )s p sαδ δ=  for every 2,0 21 ≤αα<  and for 

some (0,1).p ∈  When 1)s()t( 21 =δ=δ  and 1 2,α =  the geometric bivariate semi- α  

Laplace distribution  reduces to geometric marginal Laplace and Linnik 

distribution. 
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CHAPTER VI 

SUMMARY AND CONCLUSION 

Laplace distribution found and continues to find applications in a variety of 

disciplines that range from image and speech recognition (input distributions) and 

ocean engineering (distributions of navigation errors) to finance (distributions of log 

returns of a commodity). Laplace distribution was considered for modeling sizes of 

sand particles and diamonds. Now they are rapidly becoming distributions of first 

choice whenever ‘something’ with heavier than Gaussian tails is observed in the 

data. Laplace distribution has found applications in the fields: Engineering 

Sciences, Financial Data Analysis, Inventory Management and Quality Control, 

Astronomy and Biological and Environmental Sciences.  Consequently, a large 

number of papers in diverse journals and monographs mention Laplace laws as the 

‘right’ distribution.  

The double exponential distribution was discovered by Pierre Laplace as the 

distribution form for which the likelihood function is maximized by setting the 
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location parameter equal to the median of the observed values of an odd number of 

independent and identically distributed random variables. This result appeared in 

Laplace’s fundamental paper on symmetric distribution for describing errors of 

measurement and is known as the first law of Laplace. Another mode of genesis for 

this distribution is as the distribution of difference of two independent and 

identically distributed exponential random variables. Laplace replaced the median 

by the arithmetic mean as the value maximizing the likelihood function and derived 

the corresponding distribution to be the normal distribution. This result is called as 

the Second Law of Laplace.  

In studies with probabilistic content, the Laplace distribution serves as a tool 

for limiting theorems and representations with the emphasis on analyzing its 

difference from the classical theory based on the foundations of normality. Since 

the area under the normal and Laplace curve are the same, the peakedness of the 

Laplace distribution is counterbalanced by a corresponding distribution of 

frequencies in the tails. Generally, there is an over compensation so that the 

leptokurtic curve crosses the normal curve four times, first near the peak and then 

again at the tails and tends towards the x-axis by staying slightly above the normal 

curve. Empirical studies have shown that the data on financial time series and health 
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sciences are heavy tailed than normal curve. Hence modeling such observations, the 

normality assumption will be insufficient.  

The Laplace distribution is generalized by introducing one more parameter 

α  and is named as α -Laplace (Linnik) distribution. Lin (1994) proved that Linnik 

distributions are self-decomposable and obtained a number of characterizations of 

the same (see also, Lin (1998)). George and Pillai (1987) obtained the density of the 

same in terms of Meijer’s G- function. Jacques et al. (1999) proved that the 

generalized Linik laws belong to Paretian family. Pillai (1985) generalized Linnik 

distributions to semi-α -Laplace distributions and derived various properties of the 

same. For the applications of Linnik distributions in various fiels, see Kotz et al. 

(2001). 

As noted in Chapter I, random summation has found applications in different 

fields such as Insurance Mathematics, Marketing, Reliability etc. For the 

applications of random sums in Markov Chain analysis, see Milne and Yeo (1989). 

The negative ageing property of random sum is investigated in Li et al. (2006). 

They showed that under certain circum stances the negative ageing property of the 

random sum 
1

,
N

i
i

X
=
∑ is solely determined by the negative property of the random 
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count ,N  rather than that of .iX    Klebanov et al. (2006) gave a systematic account 

of applications of random summation, especially geometric summation.  

From Chapter II, we have the geometric Linnik distribution is the limit 

distribution of geometric sum of Linnik random variables. Being the limit 

distribution random (geometric) sums, the geometric Linnik distribution, type I and 

type II generalized geometric Linnik   distributions can be   used for modeling data 

in diverse fields such as Engineering, Biology, Risk Theory etc.  

Recently, a number of time series models with non-Gaussian marginal 

distribution have been introduced and studied by various authors. The need for such 

models arises from the fact that many naturally occurring time series are clearly 

non-Gaussian. Lawrance (1978), Andel (1983) and Dewald and Lewis (1985) 

developed and studied time series models using Laplace marginal distribution. 

Anderson and Arnold (1993) discussed the properties of Linnik distributions and 

developed Linnik processes to model time series data on stock price returns.  

Jayakumar et al. (1995) generalized Laplace processes of Lawrance (1978) and 

Dewald and Lewis (1985) and introduced a first order autoregressive α -Laplace 

process. Mariamma Antony and Raju (2005) introduced time series models with 
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Type I and Type II generalized geometric Linnik marginals. In Chapter II, 

autoregressive models with Type I and Type II generalized geometric Linnik 

marginals developed. The stationarity of the processes are established, along with 

other properties.    

Ayebo and Kozubowski (2003) studied a class of skew continuous 

distributions on the real line that arises from symmetric exponential power laws by 

incorporating inverse scale factors into the positive and negative orthants. Skew and 

symmetric Laplace and normal laws are included in this class as special cases. Since 

exponential power laws including their special cases of normal and Laplace 

distribution are symmetric, they are not appropriate for modeling data with 

asymmetric empirical distributions. However various practical applications require 

models for unimodal but skew data. Ayebo and Kozubowski (2003) presented skew 

exponential power models of currency exchange rates. Although there is no 

agreement regarding the best theoretical model, a general consensus is that currency 

exchange rates are leptokurtic; their empirical distributions are fat- tailed with sharp 

peaks at the origin. It is also generally accepted that the currency exchange rates are 

increasingly leptokurtic with decreasing time intervals while daily changes have fat 



 104 

tails and quarterly changes are nearly normal. Some authors also believe that 

currency exchange rates are asymmetric.  

Kozubowski and Podgorski (2000) studied asymmetric Laplace distributions, 

which arise as the limits of sums of independent and identically distributed random 

variables with finite second moment, where the number of terms summed is 

geometrically distributed, independently of the terms themselves.  Ordinary 

symmetric Laplace laws are a subclass of the Asymmetric Laplace distributions. 

Their general characteristics include asymmetry, sharp peaks and heavier tails not 

unlike the properties of stable laws. However, the asymmetric Laplace distributions 

are much easier to work with in practice than stable or general geometric stable 

laws, because they have finite moments of all orders, explicit formulas for densities 

and distribution functions, natural extensions to the multivariate case, and also yield 

to classical estimation procedures. The concept of finite variance also agrees with 

the intuition of many financial analysts. Additionally asymmetric Laplace laws arise 

as limiting distributions of geometric summations, which provide natural models in 

finance, insurance, reliability and other fields.  

Kozubowski and Podgorski (2000) presented an application of asymmetric 

Laplace distributions in modeling foreign currency exchange rates. Their model 
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regarded an exchange rate change as a sum of a large number of small changes. 

However the sum is taken up to a random discrete time pν , having a geometric 

distribution:  

 Exchange Rate Change = 
1
( ).

p

i
Small Changes

ν

=
∑  

Therefore the   asymmetric Laplace distribution (provided the small changes have 

finite variance) can approximate the distribution of the exchange rate change.  pν  is 

considered as the moment when the probabilistic structure governing the exchange 

rates breaks down. This can be due to new information, political or economic or to 

other events that affect the fundamentals of the exchange market. Kozubowski and 

Podgorski (2000) considered the currency exchange rates of the German 

Deutschmark versus the US dollar and the Japanese Yen versus the Us dollar from 1 

January 1980 to 7 December 1990 (2853 data points) and they reached the 

conclusion that the asymmetric Laplace distributions model these data more 

correctly than normal distribution. Yu and Zhang (2005) introduced a three 

parameter asymmetric Laplace distribution which is useful for modeling the model 

errors of quantile regression models and applied the same to modeling a flood data 
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Julia and Vives-Rego (2005) establish the use of asymmetric Laplace distribution in 

modelling size distribution of bacteria. For the applications of skew distributions in 

biology, see also, Barrera et al. (2006). A comprehensive account of various classes 

of the   skew Laplace distributions is given in Kozubowski and Podgorski (2007a). 

They clubbed the various classes into four types and the links between those types 

are established. Skew Laplace   distributions are being widely applied in modeling 

of foreign currency exchange data, underreported data, interest rate data, share 

market return data, option pricing etc.  

In Chapter III, a representation of the asymmetric Linnik distribution is 

obtained. Note that asymmetric Linnik distributions are generalizations of 

asymmetric Laplace laws described above. Also, Type I generalized geometric 

asymmetric Linnik distribution is  introduced and   is shown that this distribution 

arises as the limit distribution of the geometric sums of generalized asymmetric 

Linnik random variables. The stability property of type I generalized geometric 

asymmetric Linnik distribution is examined in Chapter III. Autoregressive models 

with type I generalized geometric asymmetric Linnik marginals are developed. 

Various forms of geometric asymmetric Laplace   distributions are also introduced 

in Chapter III. The asymmetric Laplace/ Linnik distributions and the geometric 
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asymmetric Linnik laws are applied in a variety of situations, where Laplace/ 

geometric Laplace distributions fail to describe the situations. The geometric 

asymmetric Laplace/ Linnik   distribution and its generalizations are more realistic 

than their symmetric counterparts. There are many contexts such as gene sequence 

microarray data, bacterial colony size data etc. which follow asymmetric Laplace   

distributions. Julia and Vives-Rego (2005) report that the asymmetric Laplace 

distribution is an excellent fit to the sidelight scatter (SS) values in gram-negative 

bacterial sizes and to all microorganisms also. In the case of almost all financial 

data   sets, geometric asymmetric Laplace/ Linnik distribution can prove as a more 

appropriate model. Laplace distribution is found useful for modeling data from 

genetics and molecular biology also. Elizabeth and Susan (2005) apply this 

distribution for modeling error in gene expression data. Thus the new distributions 

and processes discussed in Chapter III   can be applied for modeling data from a 

rich variety of contexts.  

Tailed distributions are found to be useful in the study of life testing 

experiments and clinical trials.  These distributions can be used data which exhibit 

zeros, as in the case of stream flow data of rivers that are dry during part of the year. 

They are useful for modeling life times of devices, which have some probability for 
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damage immediately when it is put to use.  Tailed forms of type I and type II 

generalized geometric Linnik distribution and their asymmetric forms are studied in 

Chapter IV. By various methods new parameters can be introduced to expand 

families of distributions for added flexibility or to construct covariate model. 

Introduction of a scale parameter leads to accelerate life model and taking powers 

of a survival function introduces a parameter that leads to the proportional hazards 

model. Marshall and Olkin (1997) suggested a  method of   adding a parameter to a 

family of distributions. Jayakumar and Kuttykrishan (2007) applied Marshall-Olkin 

scheme to characteristic functions and studied the asymmetric Laplace model, so 

generated. In Chapter IV, Marshall – Olkin forms of type I and type II generalized 

geometric Linnik distributions are introduced and studied.  A representation of 

tailed type I generalized geometric Linnik distribution is obtained.  A first order 

autoregressive model with tailed type I generalized geometric Linnik distribution is 

introduced. It is shown that the process is not time reversible. The model is 

extended to higher order cases. The tailed type II generalized geometric Linnik 

distribution is also introduced and studied this Chapter. As a generalization of tailed 

type I and type II generalized geometric Linnik distributions, tailed type I and type 

II generalized geometric asymmetric Linnik distributions are introduced and studied 
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in this Chapter. Marshall – Olkin scheme is applied to geometric Linnik 

characteristic function and its generalizations, and the distributions so generated are 

examined. 

Empirical analysis of some bivariate data, especially in the fields of Biology, 

Mathematical Finance, Communication Theory, Environmental Science etc. shows that 

bivariate observations are asymmetric and heavy tailed with different tail behavior. 

Kozubowski et al. (2005) considered a bivariate distribution related to Laplace and Linnik 

distribution, namely marginal Laplace and Linnik distribution, which can be applied for 

modeling bivariate data with this character. In Chapter V, geometric marginal 

asymmetric Laplace and asymmetric Linnik distribution is introduced and studied. 

Note that, the geometric marginal asymmetric Laplace and asymmetric Linnik 

distribution arise as the limit distribution of geometric sums of asymmetric Laplace 

and asymmetric Linnik random variables. Time series models with geometric 

marginal asymmetric Laplace and asymmetric Linnik distributions are introduced. 

Also in this Chapter we study the properties of geometric marginal asymmetric 

Linnik  - asymmetric Linnik distribution. A bivariate time series model with this 

marginal distribution is developed and studied. Geometric bivariate semi-α - 

Laplace distribution is also introduced and studied in this Chapter. 
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In short, in this Thesis, we have introduced some new classes of distributions 

that are useful for modeling skewed/symmetric data having heavy tailed nature.  

The properties of the members of these classes are obtained. Estimation of 

parameters of the distributions are done in some special cases. The time series 

models with members of this class as marginals are developed and their extensions 

to higher order cases are discussed. Bivaraiate distributions are also introduced and 

studied. These distributions can be used for modeling bivariate data sets with 

different tail indices.  
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