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INTRODUCTION
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1.1 Introduction

Stochastic models have become an indispensable tool for understanding many real

world situations and they have been increasingly realized as an important branch of

study in all fields. In the study of any system, we seek a model describing the reality

by explaining the responses and outputs in terms of input variables as well as time.

Almost all these models are stochastic because most of the variables are random and

most of the measurements of the responses are subjected to random measurement

errors.

Stochastic models have application in many well-known areas of Physical, Bi-

ological/Medical, Engineering, Social, and Economical sciences as well as in other

non-trivial areas. To study these systems, it is important to understand the probabil-

ity laws governing the behavior of these systems. New methodologies are researched

and implemented for all these complex problems whose solutions, sometimes are ex-

tremely difficult to carry out practically. But the availability of high speed computers

have added new dimensions to it. Also it is vital to check whether the new technolo-

gies possess their optimal properties so as to ensure their proper use.

Enormous progress have been achieved in the development of the science of sur-

vival/clinical trials during the last century. In this progress, several methods have

been developed, implemented and refined that enable reliable, efficient and ethical

evaluation of the benefits and risks of interventions that target the treatments and

prevention of human diseases. The formation of censored data survival analysis meth-
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ods, is probably, one of the most important components of this development. As the

analysis of clinical trial data with time-to-death outcome provided the original moti-

vation for this new statistical methodology, the field have become known as survival

analysis.

The time, life and risk are three basic elements in the empirical process studied

in biomedical research. Risk of birth, risk of illness and risk of death and other risks

continuously act on human beings with varying degree of intensity and varying degree

of frequency. Recent advances in stochastic process have made to study systematically

these risks in human populations from a probabilistic point of view. Many have

contributed to the theoretical development of stochastic process to the high level

of sophistication they enjoy today. Among then we cherish the works of Markov,

Kolmogorov Feller, Doob and others.

Stochastic models can be very effectively used for the interpretation of clinical

trials. Some disease can be characterized by the patient being in one of a finite

number of states; eg: relapse, remissive, toxic etc. These states may be both transient

and absorbing. Different investigators have proposed Markovian models to describe

data dealing with the time-dependent phenomena associated with these diseases. We

mention in particular some early works of Fix and Neyman(1951), Weiss and Zelen

(1963) on cancer, the works of Marshal and Goldhamer (1955) on epidemiology of

mental disease, Alling(1958) on tuberculosis. All these assume that the distribution

of time spent in an occurrence of a particular phase is negative exponential. But it has

become necessary to consider any distribution for stay in a given phase as the Markov

6



Theory was found to be insufficient for the study statistics relating to many diseases,

for example leukemia. In certain situation it has been found that gamma density has

a convenient representation of the probability density of the stay in a phase. Hence

the Semi-Markov model has wide applicability to many clinical situations.

When we look at the progression of some diseases, there we observe different

stages of disease and a staging process. Development of many chronic conditions,

especially, is characterized by stages. Generally disease advance with time from a

mild stage though intermediate and severe stages to death. The process is irreversible,

but a patient may die while being in any of the stages. In the natural progression of

cancer for example, there are stages of disease determined by the size of tumor and

metastasis. AIDS too, can be classified by stages.

Birth order and child spacing are another example of staging process. Here the

process begins when the couple decided to start a family; stages are developed by the

parities of the woman, from parity zero(no children), to parity one(one child), to parity

two(two children) and so on. The process is clearly irreversible and it terminates

when the couple decides to stop reproducing. we can find staging phenomena in

many other areas such as metamorphosis in biology, foraging process in wildlife and

cascade process for statistical studies of chronical illness(see Chiang(1979)).

Almost every theoretical development in the area of stochastic process is applied

sooner or later, in survival/clinical trials or biomedical sciences. In this thesis we

describe some relatively recent such applications.
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In the new millennium, the lime light of advancement of knowledge has been

stolen primarily by the spectacular advent of information technology (IT). Modern

electronics and computers have invaded each and every corner of Globe and touched

all walks of life, science, technology, and society. And yet major challenges have

erupted from almost every sphere of life on earth, most noticeably, in the sectors of

biomedical sciences.

Longitudinal studies, employing repeated measurement of subject over time, play

prominent role in the medical and health sciences as well as in the pharmaceutical

studies. As an important strategy in modern clinical research, they provide valuable

insights into both development and persistence of disease and those factors alter the

course of disease development.

Research on statistical method for design and analysis of human investigations

expanded in the second half of the twentieth century. Beginning in the early 1950s,

the major developed countries shifted a substantial part of its research support from

military to biomedical research. The national institute of health(NIH) of US govern-

ment gre3w rapidly throughout the period 1950-1970. The NIH sponsored many of

the important epidemiological studies and clinical trials of that period. The typical

focus of these early studies was morbidity and especially, mortality. Investigators

sought to identify the causes of early death and to evaluate the effectiveness of treat-

ments for delaying death and morbidity. In such studies usually participants were

seen at specific time intervals (for example one year or two years). Survival outcomes

during the successive time periods were treated as independent events and modeled
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using multiple logistic regression. The successful use of multiple logistic regression

in this setting, and the recognition that it could be applied to case-control data, led

to wide spread use of this methodology beginning in the 1960s.The analysis of time-

to-event data was revolutionized by the seminal paper of Cox (1972) describing the

proportional hazard model. This paper was followed by a rich and important body of

work that established the conceptual basis and the computational tools for modern

survival analysis.

As the research advanced, however, investigators began to follow populations of

all ages over time, both in observational studies and clinical trials, to understand the

development and persistence of disease and to identify factors that alter the course of

disease development. This interest in the temporal pattern of change in human char-

acteristics came at a period when advances in computing power made new and more

computationally intensive approaches to statistical analysis is available at the desk-

top. Thus in the early 1980s, Laird and Ware proposed the use of the EM algorithm

to fit a class of linear mixed effect models appropriate for the analysis of repeated

measurements. Laird and Ware(1982), Jenrich and Schluchter(1986) proposed a vari-

ety of algorithms, including Fisher scoring and Newton-Raphson algorithms. Later in

the decade, Liang and Zeger introduced the generalized estimating equation (GEE)

in the biostatistics literature and proposed a family of generalized linear model for

fitting repeated observations of binary and counted data.

Many other investigators contributed to the rapid development of methodology

for the analysis of these longitudinal data. The past 25 years have seen considerable
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progress in the development of statistical methods for the analysis of longitudinal

data. Despite these important advances, methods for analysis of longitudinal data

have been somewhat slow to move into the mainstream. In this thesis we present a

comprehensive description of some stochastic models in survival/clinical trials. Our

main emphasis is on the theoretical as well as practical aspects of subject matter.

Although the methods are applied to problems drawn from the health sciences they

apply equally to the other areas of application, for example education, psychology,

and other branches of the behavioral and social sciences.

Clinical trials are prospective studies which often have time to a clinical outcome

as the principal response. The dependence of this univariate measure on treatment

and other factors is the subject of survival analysis. The problem that we discuss in

this thesis have a direct bearing on both Survival analysis and Clinical trials

In clinical trials for assessing a medical treatment data are often collected over

multiple visits of participant patients. Despite a thoughtful and well defined study

protocol, frequently patients dropout before the completion of study. Resultantly

censoring will be an essential part of it. In many situations like follow-up studies in

organ transplant, chemotherapy and/or surgical treatment for various cancers etc.,

the patients are examined only at fixed regular intervals or when reporting for checkup

so that the medical practitioner can observe the patient only at that specified points

of time.

In type II progressive interval censoring with random removal(Type II PICR),
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the individual are examined at fixed regular intervals, at each examination the number

of both dropouts and failed individuals are recorded, the study will be terminated

when a pre-specified number of failed individuals are observed. It inherits wonderful

features of type II censoring, interval censoring and progressive censoring with the

provision to discard the subjects at end of any interval at will. Sometime the removal

of subjects from a clinical study become necessary when they are not suitable further.

For instance, this may be due to patient’s uninterest in the present treatment or due

to infection of some other contiguous disease.

Practically it is difficult to initiate a study of responses to a rare treatment strat-

egy for a large group simultaneously. The Type II PICR scheme can accommodate a

patient following the same treatment strategy at any point of time. In other words,

there is no restriction that they are all have to get into the study at a single point

time. An investigator has the freedom even to include cases satisfying the set of

criteria from old medical records. This advantage gives the censoring scheme great

adoptability in medical research problems.

In this thesis we propose a clinical model based on probability structure of Gener-

alized Exponential Distribution. It has some interesting features very similar to those

of Weibull family and gamma family but a nice alternative to them in many situa-

tions. Although Weibull distribution is a popular life time distribution on account of

its several advantages, the maximum likelihood estimates of the Weibull parameters

may not behave properly for all parametric values even when location parameter is

zero. (see Bain (1978)). Also the monotonicity of Weibull hazard function reaching
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an infinite value when the shape parameter is greater than one, may not be appropri-

ate in many situations. The Weibull family does not enjoy likelihood ratio ordering

property like gamma family, making the problem of one sided hypothesis testing ex-

tremely difficult. Further the distribution of the mean of random sample from the

Weibull distribution is not simple to compute though its distribution function has a

single form.

Even today in medical practice, a majority of treatment decisions are made using

ad hoc or heuristic strategies. There is a growing feeling among medical practitioners

that the treatment decisions are too complicated to solve accurately by intuition

alone. In many medical treatment, decision must be made sequential in an uncertain

environment. A physician determining a course of treatment must consider patient’s

health as well as the best treatment decision in the future. Often decisions are to be

taken in a dynamic environment. Physiological as well as physical changes in patients,

may sometime contribute to the changes of the environment. Uncertain environment

arises mainly due to patients respond differently even to same treatment for a disease.

Physicians always need to make subjective judgement about the treatment strate-

gies. However a mathematical decision model that provide insight into the nature of

optimal decision can aid the treatment. This is necessitated by the fact that the

subject/patient often lives in varying environments during which they are subjected

to varying environment conditions with significant effects on performance/health sta-

tus. During a treatment period whole environment of the patient may change due to

occurrence of other contagious diseases, hypertension, high blood pressure, cardiac
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problems, severe climatic/seasonal changes or adopting entirely new treatment strat-

egy on medical team’s advice. When environment changes, the state of patient also

changes. The deterioration and failure process therefore depends on the environment.

This makes it crucial to identify an optimal treatment strategy especially for a range

of multi-state disease process.

In this thesis we propose a method for determining an optimal treatment strategy

using semi-Markov decision process. It is a complex survival model according to a

semi-Markov process that lives in a randomly changing environment according to a

semi-Markov process which affect model parameters.

In MDP models the treatment decision are taken at each of a sequence of unit

time intervals or fixed epochs and the sojourn time in states has no effect on rewards

or incurring costs for patient. However in health-care and other applications, decisions

are taken over continuous time intervals. For instance, the decision may be admin-

istering various treatments. The sojourn time in states may depend on the duration

of his/her current health status and the treatments. The MDP models might not

be suitable to model such disease progression instead Semi-Markov Decision Process

(SMDP) models are more appropriate. In SMDP models allow patients’ state tran-

sition to occur in continuous time and allow to assume any probability distribution

for sojourn time in a state.

Semi-Markov stochastic model is a useful tool for predicting the evolution of

infection of infectious diseases and the probability of an infected patients survival.
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This model, when compared to the most common epidemiologic data analyzes, has

the following advantages:

(i) We can consider, the randomness in the different states in which the infection

can evolve and also the time elapsed in each state as random;

(ii) since all the states are interrelated, any improvements are also can be considered;

(iii) a large number of disease states can be considered;

(iv) fewer and less rigid working hypotheses are needed;

(v) only raw data obtained from observations are needed, with no strong assump-

tions about any standard probability functions regarding the random variables

analysed;

(vi) the conclusions are simply based on a list of all computed probabilities derived

directly from raw data.

Semi-Markov processes were defined in the fifties independently of each other by Levy

(1956) and Smith (1955). A detailed theoretical analysis of semi-Markov processes

is given in Howard(1971(2)). Since then, they have been applied in a number of

scientific fields including: engineering applications (systems reliability) by Howard

(1971(2)), Limnios and Oprisan(2001), Janssen and Manca (2006), finance by G Di

Biase et al.(2005), insurance, actuarial and demographic sciences by Janssen and

Manca, (2006,1997), D’Amico et al (2006), respectively. Semi-Markov models have
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also been employed in the field of biomedicine, for example, in applications to pre-

vent, screen, and design cancer prevention trials, in Davidov(1999), and Davidov and

Zelen(2000), respectively.

As regards the statistical analysis of semi-Markov processes, the fundamental

references are Gill(1980), Andersen et al. (1993), Ouhbi and Limnios(1999) and,

more the recent, Limnios and Ouhbi(2005) and Dabrowska and Ho(2006).

1.2 Survival Analysis- An Overview.

Survival analysis is a traditional statistical theme, but the recent surge of interest

in this area is mainly due to its applications in biomedical sciences. In survival and

event history analysis, one studies the time to occurrence of certain events. The

field of survival analysis emerged in the 20th century and experienced tremendous

growth during the latter half of the century. The early efforts in development of

survival analysis methodology were predominantly focussed at the estimation of the

hazard function λ(t) and the survival function S(t). The developments in the field

of survival analysis that have had the most profound impact on various application

field are the Kaplan-Meier(1958) method for estimating the survival function, the

log-rank statistic by Mantel(1966) for comparing two survival distributions and the

Cox(1972) proportional hazard model for quantifying the effects of covariates on the

survival time. Survival data is a term used for data measuring the time to some

event. In the simplest case, the event is death, but the term also covers other events,
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like occurrence of diseases, germination time of seeds etc. In industrial applications,

it is typically time to failure of a unit or some component in a unit. In economics, it

can be time acceptance of a job offer for an unemployed person. In demography, the

event can be entering marriage.

Lifetime (survival time) data often come with a feature that creates problems

called censoring in the analysis of the data. In broad sense it occurs when exact

lifetime are known for only a portion of the individuals under study, the remaining

lifetimes are known only to exceed certain values. Some times experiments are run

over a fixed time period in such a way that an individual’s lifetime will be known

exactly only if it is less than some predetermined value. In such situation the data

are said to be type I censored. The situation in which only the ′r′ smallest observations

in a random sample of n item are observed (1 ≤ r ≤ n), the sample collected is said to

be type II censored. It is to be noted that with type I censoring the number of exact

lifetimes observed is random, in contrast to the case of type II censoring where it is

fixed. Generalized type II censoring, random censoring etc., are some other types of

censoring existing in literature. Lawless(2003) gives a detailed illustration on various

types of censoring on survival (lifetime) data and also the parametric/non-parametric

methodology for lifetime data analysis.
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Some Concepts in Lifetime Distribution:

Let T be a non-negative continuous random variable representing the lifetime of

individuals in some population. Let f(t) denote the probability density function

(p.d.f.) of T and let the distribution function be

F (t) = Pr(T ≤ t) =

∫ t

o

f(x)dx

and the survival function

S(t) = 1− F (t)

In case of lifetimes of manufactured items, S(t) has been referred to as the

reliability function.

The p.d.f.( or p.m.f.) and the distribution and the survival function are common

representation of a probability distribution, the hazard function (called the failure

rate earlier) is a function which is particularly useful with lifetime distributions. They

describe the way in which the instantaneous probability of death for an individual with

time. Often, in applications there may be qualitative information about the hazard

function, which can help in selecting a life distribution model. For example, there may

be reason to restrict consideration to models with non decreasing hazard functions

or with hazard function having some other well-defined characteristic. In short, the

hazard function represents an aspect of a distribution that has direct physical meaning

and that information about the nature of the hazard function is helpful in selecting

a model.
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The hazard function of a life distribution which specifies the instantaneous rate

of death or failure at time t, given that the individual survives up till t, is denoted

by h(t) and is defined as,

h(t) = lim
4t−>0Pr[

t ≤ T < t +4t/T ≥ t

4t
] (1.2.1)

⇒ h(t) =
f(t)

S(t)
, provided f(t) exists. (1.2.2)

It now follows that,

logeS(t) = −
∫ t

0

h(x)dx.

∫ t

0
h(x)dx is the cumulative hazard function and is denoted by H(t). Then,

S(t) = exp(−H(t))

Also f(t) = h(t)S(t)

= h(t)e−H(t).

When lifetime are grouped or when ‘lifetime’ refers to an integral number of cycles

of some sort, it may be desired to treat T as a discrete random variable. Suppose T

can taken on values t1, t2, . . . with 0 ≤ t1 ≤ t2 ≤ . . . and let the probability function

be pj = Pr(T = tj) for j = 1, 2, . . . . Then the survival function is,

S(t) = Pr(T ≥ t) =
∑

j=tj≥t

pj

hazard function h(tj) = Pr(T = tj/T ≥ tj)

=
pj

S(tj)
, j = 1, 2, . . .

As in continuous case, the probability, survival, and the hazard functions give equiv-
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alent specifications of the distribution of T. Since pj = S(tj)− S(tj+1),

h(tj) = 1− S(tj+1)

S(tj)
; j = 1, 2, . . .

and,

S(t) =
∏

j:tj<t

[1− h(tj)].

Occasionally situations arises in which one would like T to have both discrete and

continuous components. Special notation or definitions will not be introduced for such

situations, which will be handled as they occur. No real difficulties are encountered

with mixed distributions, especially if one works primarily with the survival function,

which, as usual, is a monotone decreasing left-continuous function on [0,∞).

1.3 Clinical Trials-An Overview.

Treatment Effect in Clinical Trials with Dropouts

In clinical trials for assessing a medical treatment, data are often collected over mul-

tiple visits from participated patients. Statistical inference is typically carried out

by first defining a measure of treatment efficacy, called treatment effect, and then

testing a suitably formulated hypothesis regarding the treatment effect. When all

patients complete the entire trial, one commonly used treatment effect is the mean

of a patient’s primary response at the end of the study or the mean of change of

efficacy from baseline to the end of the study. This is motivated by the fact that
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many drug products are expected to produce the maximum or clinically meaningful

treatment effect at the designed end of the study (last visit). Statistical inference

on this treatment effect can be either a longitudinal study (under certain statistical

models) or an endpoint analysis.

Despite a thoughtful and well-designed study protocol, it is frequently the case

in a clinical trial that patients drop out before the completion of the study (Heyting

et al., 1992). In the presence of dropout, how should the treatment effect be defined?

Many people think that the mean response at the end of the study can still be defined

as the treatment effect, regardless of whether there is a dropout or not. Although this

definition may be suitable in some problems, it is not adequate in many situations;

for example, the mean response at the end of the study is not well defined for a

patient who dropped out because of death. Because dropout is frequently related to

the medical treatment, the definition of treatment effect is not straightforward and

its importance is often overlooked.

Definition of treatment effect in a clinical trial with dropout, is of primary im-

portance, because how to define the treatment effect drives the statistical analysis,

not vice versa. One should first carefully think about what is a relevant treatment

effect and then choose a valid statistical method to assess the treatment effect. Two

popular definitions of the treatment effect are study-end treatment effect and the last-

observed treatment effect. In the following sections, we describe the appropriateness

and the pros and cons of these definitions.
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Study-end Treatment Effect

First of all, any treatment effect should be defined over the population of all ran-

domized patients, which is the intention-to-treat principle required by all regulatory

agencies. The study-end treatment effect is defined the same as in the case of no

dropout, i.e., the mean response of all patients at the end of the study. If all dropout

patients are still under their assigned treatments until the designed end of the study

(so that the only thing missing for a dropout patient is the observation at the end of

the study), this treatment effect is meaningful and clearly acceptable. Let µ
(j)
s,t denote

the mean response at visit t under treatment j of a patient dropping out after visit

s; where s, t = 1, 2, ..., T ; T is the designed number of visits and s = T means that a

patient completes the study. Then, the study-end treatment effect is

µ
(j)
end =

T∑
s=1

p(j)
s µ

(j)
s,T (1.3.1)

where p
(j)
s is the probability of a patient under treatment j dropping out after

visit s.

There are practical situations in which it makes sense to assume that patients

are under their assigned treatments after dropout. For example, treatments are still

effective after patients drop out. In vaccine studies, some patients may not come

back for follow-up evaluations. However, because the vaccine has been injected into

their bodies, the treatment is continuing until a specific time (the end of the study).
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Another example is that patients continue their assigned treatments until the end

of the study although they discontinue their scheduled visits. In many problems,

unfortunately, patients do not receive the assigned treatment after dropping out. If

we still define the study-end treatment effect as the mean response of all patients at the

end of the study, assuming that dropout patients had remained on assigned treatment

until the end of the study, then this study-end treatment effect is counterfactual

and is a hypothetical parameter. Thus, it will be referred to as the causal study-

end treatment effect. The causal study-end treatment parameter is still given by

Eq. ( 1.3.1), but µ
(j)
s,t , s < T are hypothetical parameters. The causal study-end

treatment effect is viewed by many as the cornerstone of drug evaluation so far and

causal inference is the main goal of many studies.

In some problems, it is of some scientific relevance; see an example in Scharfstein

et al. (2003). It is reasonable to believe that the causal study-end treatment effect is

relevant when a drug’s long-term effect is of primary interest. Even though dropout

patients are treated for a time period shorter than the designed time period, the

effectiveness of the drug should be evaluated for the entire study period, because the

drug product is expected to produce maximum clinical treatment effect at the end

of the study. For example, the long-term effect is relevant if the drug product is for

lowering cholesterol.
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Last-observed Treatment Effect

The study-end treatment effect may be suitable when the long-term drug effect is the

only concern, but not in the case where a portion of the patient population cannot

wait to see the long-term effect. Claiming a drug product is efficacious in a long term

is not relevant to these patients. An alternative to the study-end treatment effect is

the last-observed treatment effect

µ
(j)
last =

T∑
s=1

p(j)
s µ(j)

s,s (1.3.2)

where, according to the notation in Eq.( 1.3.1), µ
(j)
s,s is the last-observed mean

response for a patient under treatment j dropping out after visit s. For a patient

dropping out after visit s, µ
(j)
s,s is a good summary measure for this patient if we care

about his/her response at the last time he/she is treated. The parameter µ
(j)
last is also

referred to as the global mean in Shao, J., Zhong, B.(2003) because it is a weighted

average of stratum means when each subpopulation of patients dropping out after a

particular visit is treated as a stratum.

Note that the difference between µ
(j)
last in Eq.( 1.3.2) and the causal parameter

µ
(j)
end in Eq. ( 1.3.1) is that µ

(j)
s,T is replaced by µ

(j)
s,T , s < T . Unlike parameters

µ
(j)
s,T , s < T parameters µ

(j)
s,s, s < T are always meaningful and can be estimated based

on what we can observe. When parameters µ
(j)
s,T , s < T are not meaningful, a strong

case can be made that the last-observed treatment effect is far more real and more

relevant than the causal study-end treatment effect. In the case where dropout is
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related to death,it is reasonable to treat the last visit prior to death as the actual

study end for a dropout patient. Another situation in which the last visit prior

to dropout can be treated as the actual study end is when patients recovered and

stopped their medication prior to the designed study end. In these cases, an analysis

not focusing on a fixed time point (visit), such as the last visit, is more reasonable.

When dropout is not caused by reasons such as death or recovery, the last-observed

treatment effect is a weighted average of short-term and long-term treatment effects,

and it makes sense whenever both types of effects are relevant. In particular, it makes

sense when we do not need to make inference on what patients do after dropout. When

the long-term treatment effect is the only focus, however, the last-observed treatment

effect may be inappropriate. It may be reasonable to treat the two approaches, the

one focusing on the study-end parameter and the one focusing on the last-observed

treatment effect, as complements to each other, rather than competitors, because one

of them mainly concerns long-term treatment effects and the other is useful when

short-term treatment effects are also relevant.

Dropout Pattern

In most applications, the dropout pattern, i.e., (p
(j)
1 , p

(j)
2 , ..., p

(j)
T ) with p

(j)
s being the

proportion of dropout patients after visit s, varies with treatment j. A criticism

to the use of the last-observed treatment effect µ
(j)
last last defined in Eq.( 1.3.2) is

its dependence on the dropout pattern. In this section, we discuss the appropriate-
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ness of the use of a treatment effect parameter depending on the dropout pattern.

First, note that the same criticism also applies to the study-end parameters µ
(j)
end,

because it depends on the dropout pattern as indicated in Eq.( 1.3.1). Does it make

sense to compare parameters µ
(j)
last or µ

(j)
end for different j values (treatments) when

(p
(j)
1 , p

(j)
2 , ..., p

(j)
T ) varies with j? Let us divide the entire patient population into T

strata with the sth stratum consisting of patients dropping out after visit s. Because

sampling is not stratified µ
(j)
last and µ

(j)
end are poststratified means (McHugh, R. and

Matts, J. (1983); Valliant, R. (1993)). In many problems, comparing poststratified

means is of interest, although stratum patterns are different.

Another point of view is that the p
(j)
s are intrinsic population parameters, and

even if we can define a treatment effect parameter not depending on the dropout pat-

tern, one may still question about the appropriateness of concluding the effectiveness

(or noneffectiveness) of a medical treatment when dropout patterns are different for

different treatments. In many statistical applications, we compare two populations

using a chosen parameter, knowing that there are other parameters taking different

values for different populations. In the simple two-sample problem with no missing

data, for example, two treatments may be compared by using the difference of two

population means, even though we know that the two populations may be different

in terms of their variances or other population characteristics. Thus, if the response

means of two drug products are the same but the variances of the responses are

different, can we conclude that the two drug products have the same efficacy? In

other words, can we compare treatment effects when dropout patterns are different?
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Of course, an analysis on the dropout pattern itself may be important in comparing

treatments, in addition to the inference on µ
(j)
last and µ

(j)
end .

Last Observation Carry Forward.

The last observation carry forward (LOCF) has a long history of application and, in

many cases, it is used mainly because there is no other established methods available.

In LOCF, the missing (or nonexisting) observation at visit T for a dropout patient is

imputed by ”carrying forward” the patient’s last observation prior to dropout, and

then a standard endpoint analysis is applied by treating imputed values as if they

were observed at visit T .

There are many criticisms to the LOCF method (e.g., Mallinckrodt et al.(

2003a,b), Ting, N. (2000), Verbeke, G.and Mohlenberghs, G. (2000)). Now it is

of interest to revisit the issue of when and why the LOCF is wrong. First, assume

that the study-end treatment effect µ
(j)
end in Eq.( 1.3.1) is chosen as the treatment ef-

fect parameter, regardless of whether it is a causal parameter or not. Then, treating

patients’ last observations prior to dropout as their observations at the end of the

study is a biased imputation. The sample mean based on LOCF is in fact an unbiased

estimator of the last-observed treatment effect µ
(j)
last defined in Eq.( 1.3.2) (Shao, J.,

and Zhong, B. (2003)), µ
(j)
end defined in Eq.( 1.3.1) unless µ

(j)
end=µ

(j)
last, which rarely

occurs. Of course, statistical inference based on biased estimators is also biased.

26



One argument to support the LOCF method is that it provides a conservative in-

ference when µ
(j)
end > µ

(j)
last, assuming that larger mean response indicates effectiveness

of the medical treatment. There are two problems here. The first is that µ
(j)
end > µ

(j)
last

is not always true. The second is that treating imputed values as observed data may

produce a bias in assessing the variability that leads to a biased inference even if µ
(j)
end

= µ
(j)
last last, the standard formula of calculating the variability for statistical inference

does not take into account of the fact that some data are imputed.

Next, assume that the last-observed treatment effect µ
(j)
last in Eq.( 1.3.2) is cho-

sen as the treatment effect parameter. In this case, the LOCF sample mean is an

unbiased estimator of µ
(j)
last. This is due to the fact that the LOCF sample mean is

identical to the poststratified sample mean when the population is strati.ed according

to whether patients drop out after visit s, s = 1, ..., T. Inference based on LOCF may

still be biased, because of the previously discussed issue of not correctly assessing

the variability. In some special cases, it is shown in Shao, J., and Zhong, B. (2003)

and Cheng et al. (2005) that some statistical tests based on LOCF are asymptot-

ically correct, because certain balance structure of data eliminates the problem of

not correctly assessing the variability. In general, however, it is advised that the

LOCF method should be replaced by the last observation analysis (LOAN) (Cheng

et al., 2005; Dawson,J.D. 1994; Dawson, J.D. and Lagakos, S.W.(1994); Shao, J., and

Zhong, B. (2003); Shih, W., Quan, H. (1998)). When the parameters µ
(j)
s,s, s ≤ T are

of interest, we should analyze last observed data from patients rather than ”carrying

them forward” to the end of the study. Therefore the LOCF is entirely wrong when
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the study-end parameters are used as the treatment effect. When the last-observed

treatment effect is adopted, it may be nearly correct in some special cases, but the

LOAN is preferred.

Missing Data and Dropout

Presence of missing observations is a problem associated with many longitudinal

studies and is more acute than that in cross-sectional studies, since non response

can occur at any occasion. An individual’s response can be missing at one time and

then be measured at a later time, resulting in a large number of distinct missingness

patterns. The problem of drop out also is likely as an individual may withdraw from

the study before its completion. The term missing data indicates that an intended

measurement that could not be obtained and includes either of the above cases.

Missing data have three important implications. First, it makes the data unbal-

anced over time, since not all individuals have the same number of repeated measure-

ments at a common set of occasions. This feature of missingness will not be of any

concern for the methods described later. Second, there will be a loss of information

and it causes a reduction in efficiency or a drop in precision with which changes in

mean responses over time can be estimated, due to the associated loss of information.

This reduction in precision is directly related to the amount of missing data and will

also be influenced to a certain extend by how the analysis handles the missing data.

Finally, under certain circumstances, missing data can introduce bias and thereby
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lead to misleading inferences about changes in the mean response. It is this last fac-

tor, the potential for serious bias, that complicates the analysis. Hence the reason for

missing data or the missing data mechanism must be carefully considered. Some rea-

sons for missing data are relatively benign and do not complicate the analysis, where

as others are not and can potentially introduce bias in the estimates of parameters.

There can be more than a single reason for missing data and these reasons may or

may not be related to the response variable of interest. For example in a longitudinal

study designed to study pulmonary function in school children in a district, if a child

changes school district during the study because of employment relocation of parents,

the missing data mechanism is unrelated to the child’s pulmonary function. On the

other hand, if the child moved out of school district because he developed respiratory

problems, then missing is related to child’s pulmonary function. When missing data

mechanism is not related to the response variable of interest, the impact of missing

data is relatively benign and does not complicate the analysis. In the other case

greater care is required because there is potential for bias.

We review three general types of missing data mechanisms and illustrate the

main distinctions between them. The mechanisms differ in terms of assumptions

concerning whether missingness is related to observed and unobserved responses.

Recently there has been a great deal of attention on modelling longitudinal data

subject to missingness. Modern missing data terminology is largely due to Rubin

(1976) and Little and Rubin (2001). The taxonomy of missing data mechanisms de-
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veloped by them for describing the assumptions concerning the dependence of the

missingness process on observed and unobserved responses is widely used. Recently,

Little (1993, 1995) advocate pattern-mixture models as a valuable alternative to se-

lection models. An early reference is Glynn et al.(1986). The EM algorithm, a general

technique for ML estimation with incomplete data, is introduced in the seminal paper

by Dempster et al. (1977).

A useful discussion of methods for handling dropout in longitudinal studies can

be found in Heyting et al. (1992), Little and Rubin (2001) and Schafer (1997). Ware

(2003) gives “last value carried forward” imputations that are widely used to handle

dropouts. Laird (1988), Little (1995) and Kenward and Molenberghs (1999) discuss

various aspects of missing data issues in longitudinal studies.

Inverse probability weighted methods were first proposed in the sample survey

literature by Horvitz and Thompson (1952). Robins et al. (1995) developed an

inverse probability weighted estimating equations approach for handling missing data

in longitudinal studies. Propensity score methods are described in Rosenbaum and

Rubin (1983). A comprehensive description of imputation methods can be found in

Rubin (1987). Molenberghs et al. (1998) shows that the classical taxonomy of missing

data models namely MCAR, MAR, and informative missingness, which has been

exclusively within a selection modelling framework, can also be applied to pattern-

mixture models.

Wu and Caroll (1988) uses a probit model for informative censoring in con-
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junction with linear random effects. Modifications of this approach were proposed by

Degruttola and Tu (1995) and Schulchter (1992). Diggle and Kenward (1994) propose

likelihood based methods for longitudinal data subject to non-ignorable missingness.

Troxel et al. (1998) gives an extension of this method that can be used when missing

data are both non-ignorable and non-monotone.

Follmann and Wu (1995) show that informative missingness is a special case of a

nonignorable missing data mechanism. Various authors have proposed shared random

effect models for longitudinal data subject to informative missingness. Wu and Carroll

(1988) and Wu and Bailey (1989) propose methodology for repeated Gaussian data;

Follmann and Wu (1995), Ten Have et al. (1998), and Pulksteniset al.(1998) propose

models for binary longitudinal responses; and Albert and Follmann (2000) propose

modeling approaches for longitudinal count data. All these approaches account for

informative missingness by introducing random effects that are shared between the

response and missing-data processes.

Diggle and Kenward (1994) propose likelihood based methods for longitudinal

data subject to non-ignorable missingness. Their model allows the missingness prob-

ability to depend on previous and current values of the longitudinal variable, thus

moving beyond the MAR assumption.

Albert et al. (2002) present a latent autoregressive model for longitudinal binary

data subject to informative missingness. In this model, a Gaussian autoregressive

process is shared between the binary response and missing data processes, thereby
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inducing informative missingness. The approach extends the work of Follmann and

Wu (1995) and Ten Have et al. (1998), by developing a model for longitudinal binary

data in which a Gaussian autoregressive process rather than a random effect is shared

between the response and missing data mechanism.

Hierarchy of Missing Data Mechanisms

Ordinarily the missing data mechanism is not under the control of the investigators

and often is not well understood. But, as it decides the validity of the inferences,

assumptions are made about the missing data mechanism. The validity of the analysis

depends on whether these assumptions hold.

The missing data mechanism can be thought of as a probability model for the

distribution of a set of response indicator variables taking values 1 if the response is

obtained and the vale 0 if otherwise. We denote the vector of response indicators by

Ri = (Ri1, Ri2. . . . , Rin)′ (1.3.3)

with Rij = 1 if Yij is observed and Rij = 0 if Yij is missing. We do not consider

missingness in the covariates. Given Ri, Y i = (Yi1, Yi2, . . . , Yin)′ can be partitioned

into two components Y O
i and Y M

i , where Y O
i denotes the vector of observed responses

and Y M
i denotes the vector of missing responses. Considering how Ri is related to

Y i, three types of missing data mechanisms can be distinguished. They are

1. Missing Completely at Random (MCAR)
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2. Missing at Random (MAR), and

3. Not Missing at Random (NMAR).

The type of missing data mechanism determines the appropriateness of different meth-

ods of analyses, for example, maximum likelihood,generalized least squares (GLS) or

the generalized estimation equations(GEE).

Missing Completely at Random (MCAR)

Data are said to be MCAR when the probability that responses are missing is unre-

lated to both the observed responses and the values that would have been obtained.

That is longitudinal data are MCAR when missingness in Yi is simply the result of

a chance mechanism that does not depend on either observed or unobserved compo-

nents of Yi. That is Ri is independent of both Y O
i and Y M

i or

P (Rij = 1/Y11, Y12, . . . , Y1n,X i) = P (Rij = 1/X i). (1.3.4)

That is missingness in Yij is simply the result of a chance mechanism that does not

depend on observed or unobserved components of Y i.

If the data are MCAR, the observed data can be thought of as a random sample

of the complete data. As a result, the moments of observed data do not differ from

the corresponding moments of the complete data. Thus completers(i.e., those with

no missing data) can be regarded a random sample from the target population, albeit
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with a small sample size than intended. Thus the subjects with missing data can

be removed from the analysis. Therefore an MCAR mechanism does not require any

special method of analysis.

Missing at Random (MAR)

Data are said to be MAR when the probability that responses are missing depends

on the set of observed responses, but is unrelated to the specific missing values that

would have been obtained. That is

P (Ri/Y
O
i ,Y M

i , X i) = P (Ri/Y
O
i ,X i). (1.3.5)

For example, in the longitudinal study designed to study pulmonary function of school

children in a district, suppose children moved out of school district because they

developed respiratory problems. Then if the decision to relocate could be predicted

based only on the recorded history of pulmonary function measurements, the missing

data are MAR. However, data will not be MAR if the decision to relocate was based

on some extraneous variable, unavailable to the investigator, that was predictive of

the future unobserved pulmonary function measure.

If data are MAR, the distribution of Y i in the subpopulation defined by missing

data patterns is not the same as that in the target population. As a consequence, the

analysis restricted to the completers is not valid or the completers are a biased sample

from the target population and a complete case analysis produces biased estimates

of change in mean response over time. Further, the distribution of Y O
i , the observed
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components of Y i, does not coincide with the distribution of same components of

Y i, in the target population. Therefore the sample means, variances and covariances

based on the available data are biased estimates of the corresponding parameters in

the target population. As a result, GLS no longer provides valid estimates of mean

response β without making correct assumptions about the joint distribution of the

longitudinal responses. On the other hand, ML estimation of β is valid when data are

MAR provided the multivariate normal distribution has been correctly specified. The

distinction between the MCAR and MAR mechanisms determines the appropriateness

of ML estimation under the assumption of a multivariate normal distribution for the

responses and GLS without requiring assumptions about the shape of the distribution.

Properties of GLS require that either the data are complete or that the missing data

are MCAR. If the data are MAR, GLS based only on the moments of available data

can yield biased estimates of β. In contrast, ML estimation yields valid estimates

of β when data are MCAR or MAR, but for the latter mechanism at the cost of

requiring that the joint distribution of the responses is correctly specified.

If data are MAR, the observed data cannot be regarded as a random sample of

the complete data. The distribution of Y M
i conditional on Y O

i is the same as the

conditional distribution of the corresponding observations among the complete cases,

conditional on those complete cases having the same value as Y O
i . As a result, the

missing values can be validly predicted using the observed data (and a model for the

joint distribution).

With MAR, the missing values can be predicted using the observed data and
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a model for joint distribution of Y i. But one does not need to use the model for

P (Ri/Y
O
i ,X i) as a function X i and Y O

i , only a model for Y i given X i. The same is

true for MCAR as well as it is a special case of MAR. That is one does not need to use

the model for P (Ri/Y
O
i , X i) to obtain valid likelihood based inferences, only a model

for f(Y i/X i). Since it is common to use a model for f(Y i/X i), valid likelihood based

analyses can be obtained with MAR or MCAR data with no extra assumptions, other

than the general statement of MAR or MCAR. For this reason MAR and MCAR are

often referred to as ignorable mechanisms, the ignorability referring to the fact that

P (Ri/Y i,X i) does not depend on missing observations.

The MAR assumption is far less restrictive on P (Ri) than MCAR and may be

considered to be a more plausible assumption about missing data in many applica-

tions.

Not Missing at Random (NMAR)

Missing data are said to be NMAR when the probability that responses are missing is

related to the specific values that would have been obtained. That is P (Ri/Y
O
i , Y M

i ,X i)

depends on at least some elements of Y M
i .

An NMAR mechanism is referred to as a nonignorable missingness as the missing

data mechanism cannot be ignored when the goal is to make inferences about the

distribution of the complete longitudinal responses. The term informative is also
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sometimes used in the sense that missingness informs us about the distribution of

missing observations. Specifically the distribution of Y M
i conditional on Y O

i is not

same as that in the completers as in the target population, but rather the distribution

of Y M
i depends on Y O

i and on P (Ri/Y i,X i).

Common Approaches For Handling Dropout.

In this section we present a short review of some of the most commonly used methods

for handling dropout in longitudinal analysis. We also discuss the assumptions about

dropout required for each of the methods to yield valid inferences. We note that

many traditional methods for handling missing data (e.g., complete−case analysis,

imputation) became popular when the only approaches for analyzing data were ones

based on complete and balanced data.

Complete-Case Analysis.

One approach to handling dropout is to simply exclude all data from the analysis on

any subject who drops out. That is, a so-called complete-case analysis can be per-

formed by excluding any subjects that do not have data at all intended measurement

occasions. We must stress that this methods is very problematic and is rarely an ac-

ceptable approach to the analysis. It will yield unbiased estimates of mean response

trends only when it can be assumed that dropout is MCAR. Recall that when dropout
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is MCAR, the study completers are a random subsample of the original sample from

the population. However, even in cases where the MCAR assumption might be ten-

able, a complete-case analysis is very unappealing because of the reduction in the

number of subjects contributing to the analysis. A complete-case can be immensely

inefficient, leading to an analysis with reduced statistical power.

Available-Data Analysis.

Another approach for handling dropout is the available−data method. This is not a

single method, but a very general term that refers to a wide collection of techniques

that can readily incorporate vectors of repeated measures of unequal length in the

analysis. For example, standard applications of GLS or GEE approach can be consid-

ered available−data methods, since these approaches base the analysis on all of the

available observations. In general, available−data methods are more efficient than

complete−case methods because they incorporate the partial information obtained

from those who dropout. However many available-data methods will yield valid anal-

yses only if the conditional (i.e., conditional on X i) means and covariances of the

observed components of Y i) among those who dropout coincide with the correspond-

ing conditional means and covariances of Y i) in the target population. As a result,

available−data methods will yield biased estimates of mean response trends unless

dropout is MCAR. In general, for available−data (and complete-case) methods to be

valid we require that dropout is MCAR.
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Imputation.

A third approach, and one that is widely used in practice, is some form of imputation

for the missing responses following dropout. The idea behind imputation is very

simple: substitute or fill-in the values that were not recorded with imputed values.

One of the chief attractions of imputation methods is that, once a filled−in data

set has been constructed, a standard methods for complete data can be applied.

However, methods that rely on just a single imputation, creating only a single filled-

in data set, fail to acknowledge the uncertainty inherent in the imputation of the

unobserved responses. Multiple imputation circumvents this difficulty. In multiple

imputation the missing values are replaced by a set of m plausible values, thereby

acknowledging the uncertainty about what values to impute for the missing responses.

Typically, a small number of imputations, for instance, 5 ≤ m ≤ 10, is sufficient to

obtain realistic estimates of the sampling variability. With multiple imputation, m

filled in data sets are created, producing m different sets of parameter estimates and

their standard errors. These are then appropriately combined to provide a single

estimate of the parameters of interest, together with standard errors that reflect the

uncertainty inherent in the imputation of the unobserved responses. Specifically,

a single estimate of the regression parameters is obtained by taking the arithmetic

average of the estimates obtained from the m filled-in data sets. Letting β̂(k) and

Ĉov ˆ(β)
(k)

denote the estimate of β is given by

β̄ =
i

m

m∑

k=1

β̂(k), (1.3.6)
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and the estimated covariance of β̄ is given by

1

m

m∑

k=1

Ĉov(β̂(k)) +

(
1 +

1

m

)
1

m − 1

m∑

k=1

(
β̂(k) − β̄

) (
β̂(k) − β̄′

)
(1.3.7)

Although the latter expression for calculating the standard errors appears some-

what complicated, it simply combines two inherent sources of variability : the within-

imputation variance and the between-imputation variance. The main idea behind

multiple imputation is very simple; what is less clear-cut is how to produce the im-

puted values for the missing responses. Next, we consider some of the commonly used

methods for imputing missing data.

One widely used imputation method, especially in longitudinal clinical trials,

is ”last value carried forward”(LVCF), occasionally referred to as ”last observation

carried forward” (LOCF). This is a single imputation method that fills-in or imputes

the missing values following dropout with the last observed values for the subject.

Despite its widespread use, it should be recognized that LVCF makes a strong, and

often very unrealistic, assumption that the responses following dropout remain con-

stant at the last observed value prior to dropout. Perhaps the only setting where this

assumption might conceivably be appropriate is when dropout is due to recovery or

cure. In the context of placebo-controlled longitudinal clinical trials, there appears to

be some statistical folklore that LVCF yields a conservative estimate of the compari-

son of an active treatment versus the control. However, this is a gross misconception,

and will only be true to the extent that the active treatment prior to dropout has
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carry-over effects following dropout.

In many clinical trials, this is unlikely to be the case; instead, dropout from

the active treatment ( e.g. due to adverse side effects) might very well result in a

deterioration of the response. Despite frequent and well-founded criticisms by statis-

ticians, LVCF is still widely used to handle dropouts in clinical trials. Regulatory

agencies such as the US Food and Drug Administration (FDA) seem to encourage the

continuing use of LVCF as a method for handling dropouts, despite all of its obvious

shortcomings. Except in very rare cases (as mentioned above), the use of LVCF is

not recommend as a method for handling dropout.

Variations on the LVCF theme include baseline value carried forward and worst

value carried forward. Worst value carried forward is most often used in comparisons

of an active treatment to a placebo, since it is assumed to be conservative in that

setting’ However, both of these alternatives suffer the same difficulties as LVCF and

cannot be counted on to give unbiased treatment estimates. In addition, all of the

methods suffer from optimistic standard error estimates. It is easy to see that these

analysis give smaller standard errors than complete-case , or even available-data esti-

mates because they assume completes data on everyone. However they will generally

give smaller standard errors than what we would expect if we had been fortunate

enough to have complete data on everyones. This is because the variability of base-

line measurement is usually smaller because of selection criteria in to the study, and

as we move out in time, the observations tend to become more variable. Hence sub-

stituting baseline or intermediate values for final values that can be expected to give
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a less variable data set. It is also true if we use worst value, since worst values are

often similar especially for responses based on a scale.

1.4 Longitudinal Analysis.

A response sequence is the set of sequentially observed response variables on an

individual or unit involved in a study. The response variables are outcomes measured

during the course of the trial. A response may be total mortality, death from a specific

cause, incidence of a disease, a complication or specific adverse effect of disease,

symptomatic relief, a clinical finding, a laboratory measurement, or the cost and ease

of administering the intervention. If the primary question concerns total mortality, the

occurrence of deaths in the trial clearly answers the question. If the primary question

involves severity of arthritis, on the other hand, extent of mobility or a measure of

freedom from pain may be reasonably good indicators. In other circumstances, a

specific response variable may only partially reflect the overall question, the response

variable may show a change from one discrete state(living) to another (dead), from

one discrete state to any of several other states (changing from one stages of disease

to another), or from one level of a continuous variable to another. If the question can

be appropriately defined using a continuous variable, the required sample size may

be reduced .

However, the investigators need to be careful with this variable and any observed

differences are clinically meaningful and relevant and that the use of a continuous
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variable is not simply a device to reduce sample size.

In general, a single response variable should be identified to answer the primary

question. If more than one are used, the probability of getting a nominally significant

result by chance alone is increased. If several response variables give inconsistent

result, interpretation becomes difficult. The investigators would then need to consider

which outcome is most important. There may be circumstance when more than

one primary response variables need to be looked at. This may be the case when

investigators truly cannot state which of the several response variables relates most

closely to the primary question.

Combining event to make up a response variable might be useful if any one

event occurs too infrequently. However, that the combined events should be capable

of meaningful interpretation such as being related through a common underlying con-

dition. One kind of combination response variable involves two kinds of events. In a

study of heart disease, combined events might be death from coronary heart disease

plus nonfatal myocardial infraction. This is clinically meaningful since death from

coronary heart disease and nonfatal myocardial infraction might together represent

a measure of coronary heart disease. Difficulties in interpretation can arise if the

results of each of the components in such a response variable are inconsistent. In the

physicians’ health study report of aspirin to prevent cardiovascular disease, there was

no difference between intervention and control groups in mortality, a large reduction

in myocardial infarction in the aspirin-treated group, and an increase in stroke , pri-

marily hemorrhagic. In this case, cardiovascular mortality was the primary response
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variable, rather than a combination. If it had been a combination, the interpretation

of the results would have been even more difficult than it was. When a combination

response variable is used, and more than one event may occur in an individual, the

rules for establishing a hierarchy of events should be established in advance. Thus

a fatal event would take precedence over a nonfatal event, and only the fatal event

would be counted, or, in the case of two nonfatal events, the first to occur would be

counted.

Regardless of whether the investigators are measuring a primary or secondary

response variable, certain rules apply. First, they should define and write the ques-

tions in advance, being as specific as possible. It is essential for planning of study

design and calculation of sample size. Specifying response variables and anticipated

benefit in advance eliminates the possibility of legitimate criticism that can be made

if the investigator looked at the data until they found a statistically significant result

and then decided that the response variable what they really had in mind for the

entire time.

Second, the primary response variable must be capable of being assessed in all

participants. Selecting one response variable to answer the primary question in some

participants and another response variable to answer the same primary question in

other participants is not a legitimate practice.

Third, unless there is a combination primary response variable in which the

participant remains at risk of having additional events, participation generally ends

44



when the primary response variable occurs. In other words, unless death is the

primary response variable, the investigator may well be interested in certain events

subsequent to the occurrence of the primary response variable. These events will not

change the analysis of the primary response variable but may effect the interpretation

of results. For example, deaths occurring after a nonfatal primary response variable,

but before the official end of the trial as a whole, may be of interests.

Fourth, response variables should be capable of unbiased assessment. Truly

double-blind studies gave a distinct advantage over other studies in this regard. If

a trial is not double blinded , then, whenever possible, response variable assessment

should be done by people who are not involved in participant follow-up and who

are blinded to the identity of the study group,. Independent reviewers are often

helpful. Of course, the use of blinded or independent reviewers does not entirely

solve the problem of bias. Unblinded investigators sometimes fill out forms, and the

participants may be influenced by these investigators,

Fifth, it is important to have response variables that can be ascertained as

completely as possible. A hazard of long-term studies is that participants may fail to

return for follow-up appointments.

If the response variable is one that depends on an interview or an examination

and participants fail to return for follow-up appointments information will be lost.

Not only it be lost, but it may be differentially lost in the intervention and control

groups.
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A common criticism of clinical trials is that they are expensive and of long dura-

tion. This is particularly true for trials that use the occurrences of clinical events as

the primary response variable. It has been suggested that response variables that are

intermediate or continuous in nature might substitute for the clinical outcomes. Thus,

instead of monitoring cardiovascular mortality or myocardial infarction an investiga-

tor could examine progress of atherosclerosis by means of angiography, ultrasound

imaging, or change in cardiac arrhythmia by means of ambulatory electrocardio-

grams. In the cancer field, change in tumor size might replace mortality. In AIDS

trials, change in CD-4 lymphocyte level has been used as a response to treatment

instead of incidence of AIDS or mortality in HIV-positive patients. Osteoporosis has

been used as a surrogate for bone fractures.

An argument for use of these surrogate response variables is that since the vari-

ables are continuous, the sample size can be smaller and the study less expensive than

otherwise. Also, changes in the variables are likely to occur before the clinical event,

shortening the time required for the trial.
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1.5 Censoring of Observations

Right censoring

Right censoring whereby only lower bounds on lifetime are available for some indi-

viduals, can occur for various reasons. It may be planned, as when a decision is made

to terminate a life test before all items have failed, or unplanned, as when a person

in prospective study is ” lost to follow up” because they move away from the region

where the study takes place. To obtain a likelihood function or the properties of

statistical procedures based on censored data it is necessary to consider the process

by which both lifetimes and censoring times arise. To do this we apparently need

a probability model for the censoring mechanism. Interestingly, it turns out that

the observed likelihood function for lifetime parameters takes the same form under

a wide variety of mechanisms. We consider some specific types of censoring in the

next section and then give a general formulation. We first introduce some notation

for censored data. Suppose that n individual have lifetimes represented by random

variables Ti...Tn. Instead of the observed values for each lifetime, however, we have

a time tI which we know is either the lifetime or a censoring time,. Let us define a

variable = I(Ti = ti) that equals 1 if Ti = tI and 0 if Ti > ti this is called the censoring

or status indicator for ti The observed data then consist of (ti, i), i = 1...n. With this

notation we occasionally let ti represent either a random variable or a realized value.

For a variety of censoring mechanisms the observed likelihood function takes the form
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L =
n∏

i=1

f(ti)
δiS(ti+)1−δi . (1.5.1)

The expression is derived for the most basic type of censoring, and subsequently

for some other censoring mechanisms in the following sections.

Some types of Right Censoring

Several censoring mechanisms and the likelihood function obtained for each are de-

scribed in this section. For simplicity we ignore covariates and assume that lifetimes

Ti are independent and identically distributed,. Extensions to allow covariates are

straight forward.

Type I censoring

A type I censoring mechanism is said to apply when each individual has a fixed

potential censoring time CI > 0 such that TI is observed if Ti ≤ Ci ; otherwise, we

know only that TI > Ci Type I censoring often arises when a study is conducted over

a specified time period.

In our general notation, we have

ti = min(Ti, Ci); δi = 1(Ti ≤ Ci) (1.5.2)

for type I censoring. The likelihood function for a type I censored sample is based on
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probability distribution of (ti, δi), i = 1, 2, . . . , n. Both ti and δi are random variables

in(1.1.1) and their joint probability density function

f(ti)
δiPr(Ti > Ci)

(1−δi). (1.5.3)

To see this,note that the Ci are fixed constants that tican take on values ≥ Ci, with

Pr(ti = Ci, δi = 0) = Pr(Ti > Ci)

Pr(ti, δi = 1) = f(ti) ti ≤ Ci,

where pr in the second expression denotes either a p.d.f or p.m.f according to whether

the distribution is continuous or discrete at ti . assuming that the life times Ti, ..., Tn

are statistically independent, we obtain likelihood function from(1.1.2)

L =
n∏

i=1

f(ti)
δiS(ti+)1−δi (1.5.4)

The term S(ti+) appears in Eqn.( 1.5.4) because it equals Pr(Ti > ti). In general; if

S(t) is continuous at ti then S(ti+) = S(ti).

Exact sampling properties of estimates or tests based on a likelihood function of

the form Eqn.( 1.5.4) are generally in tractable mathematically, but standard large

sample results for maximum likelihood apply and finite sample properties can be

investigated by simulation.

For example, the lifetimes Ti are iid exponential with p.d.f.

f(t) =
1

λ
exp

(
− t

λ

)
; θ, t > 0
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The cumulative distribution function F(t) is given by

F (t) = 1− exp

(
− t

λ

)
; t > 0

and survival function

S(t) = exp

(
− t

λ

)

Then

L(λ) =
n∏

i=1

(λe−λt)δi(e−λt)1−δi .

= λrexp

(
−λ

n∑
i=1

ti

)
(1.5.5)

where the r =
∑

δi is the observed number of uncensored lifetimes, or failures. The

log-likelihood function `(λ) = logL(λ) is

`(λ) = rlogλ− λ

n∑
i=1

ti. (1.5.6)

The maximum likelihood estimate is given by solving d`
dλ

= 0, and is λ̂ = r∑n
i=1 ti

The exact distribution of λ̂ is rather intractable, as is the distribution of the minimal

sufficient statistic (r,
∑

ti). For the Type I censoring scheme the censoring time Ci

are specified fixed values. In many settings they are actually random. For example,

in clinical trial of leukemia, individuals entered the study in a more or less random

fashion according to their time of diagnosis with leukemia, so their censoring times

were effectively random. In fact, the study was actually terminated early, based on

the accumulating data, thus altering the original censoring times.
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Independent random Censoring

A very simple random censoring process that is often realistic is one in which each

individual is assumed to have a lifetime T and a censoring time C, with T and

C independent continuous random variables, with survivor functions S(t) and G(t)

respectively. All lifetimes and censoring times are assumed mutually independent,

and it is assumed that G(t) does not depend on any of the parameters of S(t) As

in the case of Type-1 censoring, ti = min(Ti, Ci) The data from observations of n

individuals is assumed to consist of the pairs (ti, δi), i = 1, 2, ....n; the same final

result is obtained if Ci is available for all i = 1, 2, ..., n. The p.d.f of (ti, δi) is easily

obtained: if f(t) and g(t) are the p.d.f’s for Ti and Ci then

Pr(ti = t, δi = 0) = Pr(Ci = t, Ti > Ci)

= g(t)S(t)

Pr(ti = t, δi = 1) = Pr(Ti = t, Ti ≤ Ci)

= f(t)G(t)

These can be combined into single expression

Pr(ti = t, δi) = [f(t)G(t)]δi [g(t)S(t)]1−δi .

and thus the distribution of (ti, δi), i = 1, ..., n is

n∏
i=1

[f(t)G(t)]δi [g(t)S(t)]1−δi .
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Since G(t) and g(t) do not involve any of the parameter in f(t), they can be neglected

and the likelihood function taken to be

L =
n∏

i=1

f(t)δiS(t)1−δi

which is of the same form as Eqn.( 1.5.4). The earlier result for Type-I censoring

can in fact be considered as a special case of this if we allow the Ci to have degen-

erate distributions, each with mass at one fixed point. Another approach that leads

directly to this likelihood function is to argue that if G(t) and g(t) do not involve

any parameters of f(t), then C1, ..., Cn are ancillary and One should condition on the

realized censoring times when making inferences about the distribution of T . This

takes us back to the Type I censoring framework. A point to note is that although it

may be desirable to make inferences conditional on the Ci in any given situation, the

properties of the procedures average over the distribution of the Ci may be of interest

when planning studies, and in some applications.

Although the independent random-censorship model is often reasonable, in many

situations the censoring process is linked to the failure time process. Suppose, for

example, that the termination date for a medical trial is not fixed before the study

commences, but is chosen later, with the choice influenced by the results of the study

up to that time. In such instances, it may be difficult to write down a model that fully

represents the process under study. Fortunately, the likelihood function Eqn.( 1.5.4)

is still applicable in many such complicated situations.
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Type II Censoring

In Type-II censoring only the r smallest lifetimes t(1) < t(2) < ... < t(r) in a random

sample of n are observed; 1 ≤ r ≤ n. This censoring scheme when n individuals start

on study at the same time, with the study terminating once r failures ( or lifetimes

) have been observed.

For continuous distributions we can ignore the possibility of ties and denote

the r smallest lifetimes as T(1) < T(2) < ... < T(r). If the Ti have p.d.f f(t) and

survival function S(t) then from general results on order statistics,the joint p.d.f of

T(1), T(2), ..., T(r). is

n!

(n− r)!

{
r∏

i=1

f(t(i))

}
S(t(r))

n−r (1.5.7)

The likelihood function is based on Expn.( 1.5.7). By dropping the constant

n!
(n−r)!

and noting that in terms of the (δi, ti) notation we have δi = 0 and ti = t(r).

For those individuals whose lifetimes are censored. We see that Expn.( 1.5.7) gives

a likelihood of the same form Eqn.( 1.5.4) as for Type I censoring. The sampling

properties are, however, different in finite samples.

When we consider type II censored exponential lifetimes, the log-likelihood is

same as Eqn.( 1.5.6)

`(λ) = rlogλ− λ

[
n∑

i=1

t(i) + (n− r)t(r)

]
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and likelihood estimate for λ can be written as λ̂ = r/W where

W =
n∑

i=1

t(i) + (n− r)t(r)

Since r is fixed, the statistic W is sufficient for λ and it is shown that 2λW =

2rλ/λ̂ ∼ χ2
(2r), a chi-squared distribution with 2r degree of freedom. This allows

exact confidence intervals and tests for λ to be developed.

Progressive Type II Censoring

Progressive Type II censoring is a generalization of Type II censoring. In this case,

the first r1 failures in a life test of n items are observed; then n1 of the remaining

n− ri unfailed items are removed from the experiment, leaving n− r1−n1 items still

present. When a further r2 items have failed,n2 of the still unfailed items are removed,

and so on. The experiment terminates after some prearranged series of repetitions of

this procedure.

This scheme is of more theoretical than practical interest, but let us obtain

the likelihood function assuming that lifetimes are independent and identically dis-

tributed (i.i.d) with p.d.f.f(t) and survivor function S(t) For simplicity we suppose

the censoring has only two stages: at the times of the r1th failure, n1 of the re-

maining n − r1 unfailed items are randomly selected and removed. The experiment

then terminates when a further r2 items have failed. At this point there will be

n − r1 − n1 − r2 items still unfailed. The observations in this case are the r1 failure

times T(1) < T(2) < ... < T(r1) in first stages of the experiment and the r2 failure times
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in the second stage of the experiment which we will denote by T ∗
(1) < T ∗

(2) < ... < T ∗
(r2)

.

The distribution of the data can be written as

g1(t1, ..., tr1)g2(t
∗
1, ..., t

∗
r1
|t1, ..., tr1) (1.5.8)

where g1 and g2 represent p.d.f.’s of the variable indicated. The joint p.d.f. g1(t1, ..., tr1)

is given by Expn.( 1.5.7) with r = r1 . To write down the second term in Expn.( 1.5.8),

we observe that given t1, ..., tr1 , the lifetimes of the items left in the experiment have

a left-truncated distribution with p.d.f. and survival functions as

f1(t) =
f(t)

S(t(r1))
, S1(t) =

S(t)

S(t(r1))
t ≥ t(r1)

respectively. Thus T ∗
(1), ..., T

∗
(r2) are the r2smallest observations in the random sample

of size n−n1− r1 from this truncated distribution by Expn.( 1.5.7), the second term

in Expn.( 1.5.8) is therefore

(n− r1 − n1)!

(n− r1 − n1 − r2)!

{
r2∏

i=1

f ∗1 (t(i))

}
[
S1(t

∗
(r2))

]n−r1−n1−r2 (1.5.9)

Combining two parts of the Expn.( 1.5.8), we obtain the likelihood function as

c

{
r1∏

i=1

f(t(i))

}
[
S(t(r1))

]n1

{
r2∏

i=1

f ∗(t(i))

}
[
S(t∗(r2))

]n−r1−n1−r2 (1.5.10)

where c = n!(n− r1 − n1)!/[(n− r1)!(n− r1 − n1 − r2)!].

The above likelihood function then will be form the base for the further inferential

procedures in progressive type II censoring case.
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Progressive Type II Interval Censoring

In survival analysis, clinicians are often interested in estimating the corresponding

lifetime distribution after a treatment is administered to test subjects. In setting up

these life tests, censoring is often adopted due to time and cost constraints. Type-II

censoring is used to ensure a pre-assigned number of failures, say m, observed at the

end of the test. However, practical applications may dictate that it is impossible or

undesirable to conduct this type of continuous monitoring. For instance, patients

or test subjects come back for treatment or diagnosis at regular intervals. Thus,

the observed data are interval censored. For interval censoring, the length of the

successive inspections and the number of inspection k are pre-determined. Therefore,

unlike Type-II censoring, one would have no idea of how many failures would occur at

the end of the kth inspection. Too few failures would provide insufficient information

about the tail performance of the lifetime distribution. Details on these censoring

schemes can be found in Bain et al.(1991),Lawless(1982)and Meeker(1998). Some

recent developments in the use of interval censoring to lifetime analysis can be found

in Aggarwala(2002),Sun, J.G(2001), Lim et al.(2002).

Tse et al.(2002) studied a new type of censoring scheme, namely Type-II interval

censoring, which integrates the specific features of Type-II censoring and interval

censoring. In particular, suppose that n subjects are selected in a life test. Inspections

are conducted at pre-determined intervals and the number of ”failures” occurring

between two successive inspection times are recorded. The test will be terminated
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when the total number of failures is greater than or equal to a pre-assigned number

m. Adopting this censoring scheme, an experimenter can assure that there is at least

m failures observed before the test is terminated.

We assume that the survival time T follows a exponential distribution with

parameter θ The probability density function of T is given by

f(t) =
1

θ
exp

(
− t

θ

)
; θ, t > 0

The cumulative distribution function F(t) is given by

F (t) = 1− exp

(
− t

θ

)
; t > 0

Suppose there are n subjects are randomly selected for the study and when

specified number or percentage of total m (say) or more subjects are failed, the study

will be terminated. Let ti, t2, ...tk, ... be the predetermined inspection times and t0=0.

Under a integrated Type II interval censoring scheme, the study is terminated after

the kth inspection time if the total number of failed subjects is equal to or more than

m. At the ith inspection, di failed subjects are observed . In other words, di is the

number of failed subjects between any two successive inspections at ti−1 and ti. Thus,

di’s are random variables obtained from the study. Let us denote Yj =
∑j

i=1 di and

tk+1 = ∞ the total number of failed subjects observed upto the jth inspection time

tj. If Yk−1 < m and Yk ≥ m , for the predetermined integer m , 0 ≤ m ≤ n; the test

is terminated at the kth inspection time tk . Denote D = (d1, d2, , dk) and where k is

random and corresponds to the last inspection time tk. the likelihood function of D
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is given by

L(d1, d2, , dk) =
n!

r1!r2!...rk+1!

k+1∏
i=1

(pi − Pi−1)
r1 (1.5.11)

where p0 = 0; pk+1 = 1; pi = p(T ≤ ti) = 1− exp
(− ti

θ

)
and

rk+1 = n−∑k
i=1 r1. Note that k should be treated as a random variable in Eqn.( 1.5.11).

The MLE of θ is found by maximizing the likelihood function L given in Eq. 1.5.11.

After taking logarithm of L, the likelihood equation is given by

dlnL

dθ
=

k+1∑
i=1

ri

pi − Pi−1

(
dpi

dθ
− dpi−1

dθ

)
(1.5.12)

where dpi

dθ
= − ti

θ2 exp
(− ti

θ

)
.

Standard numerical methods such as Newton-Raphson can be used to find the

solution of this equation. Furthermore, the Fisher information, denoted by I(θ) is

given by

I(θ) = E

(−d2lnL

dθ2

)
(1.5.13)

1.6 An Overview of The Main Contribution of The

Thesis.

Some stochastic models in survival and clinical trials are described in this thesis.

It is organized into five chapters and each chapter is divided into different sections.

In the introductory Chapter, a general introduction to the thesis is given. Section

2 provides an overview of survival analysis and basic ideas. Next two sections give
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general idea about clinical trials and longitudinal analysis. The section 5 gives brief

account of important right censoring schemes. A special discussion on progressive

type II censoring schemes is also given here. In clinical trials medical treatment data

are often collected over multiple visits of participant patients. Despite a thoughtful

and well defined study protocol frequently patients dropout before the completion of

study. Resultantly censoring will be an essential part of it. In each censoring schemes

the corresponding likelihood function is indicated for further inference procedure. The

last section of this chapter provides an overview of the main contribution of thesis

In Chapter 2 we describe the analytical tools used in the thesis, viz. Markov De-

cision Process(MDP), Markov Renewal process (MRP), semi-Markov process(SMP)

and semi-Markov decision process(SMDP). The Markov decision processes are simple

yet powerful models for sequential decision problems. In these models, we assume

that there is a state space; at each time the system occupies a certain state, and the

decision maker, or controller, has a set of feasible actions for that state that can be

applied. Semi-Markov stochastic model is a useful tool for predicting the evolution of

infection of infectious diseases and the probability of an infected patients survival. In

SMDP models allow patients’ state transition to occur in continuous time and allow

to assume any probability distribution for sojourn time in a state.

In Chapter 3 we present a method for analysing longitudinal data that imposes

minimal structure or restrictions on the mean responses over time and on the co-

variance among the repeated measures. The method focusses on analysing response

profiles and can be applied to longitudinal data when the design is balanced, with
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the timing of the repeat measures common to all individuals in the study. This is

method of modeling mean response. Although the method is applied to problems

drawn from the health sciences they apply equally to the other areas of application ,

for example finance, education, psychology, and other branches of the behavioral and

social sciences.

We propose a clinical study model based on probability structure of Generalized

Exponential Distribution in Chapter 4. The Generalized Exponential Distribution

has some interesting features very similar to those of Weibull family and gamma fam-

ily but a nice alternative to them in many situations. Although Weibull distribution

is a popular life time distribution on account of its several advantages, the maxi-

mum likelihood estimates of the Weibull parameters may not behave properly for all

parametric values even when location parameter is zero(see Bain (1978)). Also the

monotonicity of Weibull hazard function reaching an infinite value when the shape

parameter is greater than one, may not be appropriate in many situations. The

Weibull family does not enjoy likelihood ratio ordering property like gamma family,

making the problem of one sided hypothesis testing extremely difficult. Further the

distribution of the mean of random sample from the Weibull distribution is not simple

to compute though its distribution function has a single form. This is a Generalized

Exponential Model under a more flexible and practical censoring scheme namely Type

II progressive interval censoring with random removals ( PICR). In type II progressive

interval censoring with random removal(Type II PICR), the individual are examined

at fixed regular intervals, at each examination the number of both dropouts and failed
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individuals are recorded, the study will be terminated when a pre-specified number

of failed individuals are observed. It inherits wonderful features of type II censoring,

interval censoring and progressive censoring with the provision to discard the subjects

at end of any interval at will. Sometime the removal of subjects from a clinical study

become necessary when they are not suitable further. Maximum likelihood estimation

of parameters of the generalized exponential model is discussed and their properties

are studied in this Chapter. An illustrative example towards the application of the

model is also given here. The generalized exponential model is suggested as a better

alternative for analysis of life time data.

In Chapter 5 we describe a Semi-Markov decision process(SMDP) modeling in

the contest of medical treatment wherein the decisions are often sequential and uncer-

tain. The subject/patient lives in varying random environments, imparting significant

effects on performance/health status. The environment is modelled as a Semi-Markov

Process and in each environment state, the patient goes through several states of dis-

ease according to a Semi-Markov Process. In an environment ′k′ when the patient

state is ′i′, one of the following two actions are available: continue the present treat-

ment strategy (C) with a given cost rate hk(i) or initiate a rejuvenating treatment

strategy (R) with a cost rate ck(i), In this complex model the optimal strategy is

found out minimizing the expected discounted total cost. In section 2, stage wise

prognosis of three diseases; smallpox, liver Disease and Alzheimer’s Disease is dis-

cussed. A special case of Markov environment is discussed indicating the feasibility

of the computation of optimal policy. A numerical illustration is also provided to
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support the viability of the analysis and results. The model provide a useful and

flexible representation of acute and chronic events and can be used to explore the

economic impact of changes in therapy. Semi-Markov stochastic model is a useful

tool for predicting the evolution of infection of infectious diseases and the probability

of an infected patients survival. In SMDP models allow patients’ state transition to

occur in continuous time and allow to assume any probability distribution for sojourn

time in a state. The method given can be utilized to make optimal decision in variety

of problem in diversified field because its generic nature.

Many mathematical illustrations appeared in this thesis are performed using

MATHLAB. Recursive computations are by C++ programme. A computer pro-

gramme in C++ used to determine the optimal treatment strategy in numerical

example given in Chapter 5, is appended at the end of the thesis.

We conclude the thesis pointing out the salient features of our study and scope

for further work. A fairly comprehensive bibliography on the topic of interest is given

at the end.
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Chapter 2

SOME ANALYTICAL TOOLS

USED IN THE THESIS
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2.1 Introduction

In this chapter we describe the analytical tools used in this thesis. They are Markov

Decision Processes(MDP), Markov Renewal process (MRP), semi-Markov process(SMP)

and semi-Markov decision process(SMDP). The Markov decision processes are simple

yet powerful models for sequential decision problems. In these models, we assume

that there is a state space; at each time the system occupies a certain state, and the

decision maker, or controller, has a set of feasible actions for that state that can be

applied. At the next time, the state changes according to some probability distribu-

tion which depends only on the current state and action, and does not depend on the

past. MDPs are also called controlled Markov chains in the literature, and have a

wide range of application areas.

2.2 Markov Decision Processes (MDP)

At the first phase we describe the theory and computational methods developed for

MDPs with a finite number of states and actions, and in a discrete-time context, by

which we mean that the state transitions occur and the actions are applied at integer

times 0, 1, . . . . Now, we will focus on the probabilistic aspect of our problem for-

mulation: how is the uncertainty modeled?; what is the corresponding mathematical

object that we are dealing with?; what is the form of the optimization problems? and

what does the Markovian assumption on the state evolution imply?.
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Model Parameters

The model of an MDP specifies parameters relating to system dynamics and cost:

• a state space S ;

• for every state a set of feasible actions, which can be jointly represented by the

set

{(s, U(s)), ∀s ∈ S},

where U(s) is the set of feasible actions at state s; we define

U =
⋃
s∈S

U(s)

and call it the action or control space;

• a set of state transition probabilities,

{pij(u), ∀ i ∈ S, u ∈ U(i)};

where
∑

j∈S U(j) = 1 and

• a per-stage cost function, ci(u).

Here the state space S and the action space U(s) are assumed to be finite. The

economic consequences of the decisions taken at the decision epochs are reflected in

receiving a lump sum reward (or pays a cost). This controlled dynamic system is

called a discrete-time Markov decision model when the Markov property is satisfied.

Note that the one-step costs ci(u) and the one-step transition probabilities pij(u) are

assumed to be time homogeneous.
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Stationary policies

A policy or rule for controlling a system is a prescription for taking actions at each

decision epoch. A stationary policy π is a rule that always prescribe a single action

πi whenever the system is found in state i at a decision epoch.

We define for n = 0, 1, ...

Xn = the state of the system at the nth decision epoch.

Under he given stationary policy π, We have

P{Xn+1 = j/Xn+1 = i} = pij(πi),

regardless of past history of the system up to time n. Hence under a given stationary

policy π the stochastic process {xn} is a discrete-time Markov chain with one step

transition probabilities pij(πi). This Markov chain incurs a cost ci(πi) each time the

system visits the state i. Thus we can invoke results from Markov chain theory to

specify the long-run average cost per unit time under a given stationary policy.

Average cost for a given stationary policy

For a given stationary policy π, we denote the n-step transition probabilities of the

corresponding Markov chain {xn} by

pn
ij(π) = P{Xn = j/X0 = i}, i, j ∈ S and n = 1, 2, ....
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where p1
ij(π) = pij(π).

By Chapman-Kolmogorov equations,

pn
ij(π) =

∑

k∈S

pn−1
ik (π)pkj(πk), n = 2, 3....

Also we define the expected cost function Vn(i, π) by

Vn(i, π) = the total expected costs over the first n decision epochs when the initial

state is i and the policy π is used.

Thus, we have

Vn(i, π) =
n−1∑
t=0

∑
j∈S

pt
ij(π)cj(πj) (2.2.1)

where p0
ij(π)=1 for j = i and p0

ij(π)=0 for j 6= i. Next we define the average cost

function gi(π) by

gi(π) = limn→∞
1

n
Vn(i, π), i ∈ S

The long run average expected cost per unit time is independent of initial state

i when it is assumed that the Markov chain {Xn} corresponding to policy π has no

two disjoint closed sets.

In the unichain case we can write

gi(π) = g(π), i ∈ S

Then it follows by the ergodic theorem,

g(π) =
∑
j∈S

cj(πj)Ej(π),

67



where {Ej(π), j ∈ S} is the unique equilibrium distribution of Markov chain {Xn}.

The Ej(π)’s are the unique solution to the system of linear equations

Ej(π) =
∑

k∈S

pkj(πk)Ek(π), j ∈ S

∑
j∈S

Ej(π) = 1

Moreover, for any j ∈ S,

Ej(π) = limm→∞
1

m

m∑
n=1

pn
ij(π) ∀ i ∈ S (2.2.2)

We have that g(π) is the expected value. Also with probability 1,the long-run actual

average cost per unit time =g(π) independently of the initial state.

Average cost optimal policy

The optimization problem is now to find a policy with the minimum cost, with respect

to the chosen cost criterion, for a given or every initial state.

A stationary policy π∗ is said to be average cost optimal if

gi(π
∗) ≤ gi(π)

for each stationary policy π uniformly in the state i. It is stated without proof that

an average cost minimal policy π∗ always exists. Moreover, policy π∗ is not only

optimal among the class of stationary policies but it is also optimal among the class

of all conceivable policies (see ref: Derman(1970)).
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2.3 Markov Renewal Process and Semi-Markov Pro-

cesses

Some systems follows a Markov property not at all point of time but only for a special

increasing stopping times. These times are the state changes times of the considered

stochastic process.

we present below basic results and definitions of a Markov renewal process.

Consider an at most countable set S say, a two-dimensional stochastic process

(X, T ) = (Xn, Tn, n ∈ N) where the random variable (r.v.) Xn takes values in S and

the r.v. Tn takes values in R+ and satisfies 0 = S0 ≤ S1 ≤ S2 ≤ . . .

Definition 2.3.1 The stochastic process (X, T ) is called a Markov Renewal Process

(MRP) if it satisfies the following relation

P [Xn+1 = j,Tn+1 − Tn ≤ t|X0, ..., Xn−i, Xn = i; T0, ..., Tn]

= P [Xn+1 = j, Tn+1 − Tn ≤ t|Xn = i]

= Qi,j(t)

for all n ∈ N,j ∈ S and t ∈ R+

The set S is called state space of the MRP the function Qi,j(t) form semi-Markov

kernel.

From these relations it is clear that (Xn) is a Markov chain with state space S
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and transition probability P (i, j) = Qi,j(∞). It is called embedded Markov chain.

For every i ∈ S, we have P (i, i) = 0.

Now, we define, the counting process {N(t), t ≥ 0} associated to the point

process {Tn, n ≥ 0} ie. for each time t ≥ 0 the r.v N(t) is

N(t) := sup{n : Tn ≤ t}

and define continuous time process Z = {Z(t), t ∈ R} by

Z(t) := XN(t).

Then the process Z is called semi-Markov process (SMP). Also define

Pi,j(t) = P [Z(t) = j|Z(t) = 0]

Hi(t) =
∑
j∈S

Qi,j(t),

mi =

∫ ∞

0

[1−Hi(u)]du.

We have the following particular classes of the MRP

(1) Discrete time Markov chain

Qi,j(t) = P (i, j) I{t ≥ 0}, for all i, j ∈ S, and t ≥ 0.

(2) Continuous time Markov chain

Qi,j(t) = P (i, j) (1− e−λ(i)t) for all i, j ∈ S, and t ≥ 0.
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(3) Renewal Process :

(a) Ordinary: It is an MRP with two states S = {0, 1},

P(0,1)=P(1,0)=1 and Q01(.) = F (.),where F is the common distribution func-

tion of the inter-arrival times of the renewal process.

(4) Modified or delayed : It is an MRP with three states S = {0, 1, 2},

P(0,1)=1,P(1,2)=P(2,1)=1 and 0 elsewhere and Q01(.) = F0(.), Q12(.) =

Q21(.) = F (.), where F0 is the common distribution function of the first arrival

time and F is the common distribution function of the inter-arrival times of the

renewal process.

(5) Alternating: It is an MRP with two states S = {0, 1},

P(0,1)=P(1,0)=1 and 0 elsewhere and Q01(.) = F (.), Q10(.) = G(.) where

F and G are the common distribution function corresponding to the odd and

even inter-arrival times .

For a systematic account of these topic, covering the Markov renewal equation and

its solution one may refer to Cinlar(1975). As an extension of the basic classical limit

theorems in probability theory to the semi-Markov setting those are available in the

literature, some limit theorems useful for reliability/survival analysis.

As noted above, in the SMP environment, two random variables run simultane-

ously.

Xn : Ω → S, Tn; Ω → R, n ∈ N.

Xn with state space, say, S = {S1, ..., Sm} represents the state at the nth transition.
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In the health care environment, the elements of S represent all the possible stages

in which the disease may show level of seriousness. Tn, with state space equal to R,

represents the time of the nth transition. In this way, we can not only consider the

randomness of the states but also the randomness of the time elapsed in each state.

The process (Xn,Tn) is assumed to be a homogeneous Markovian renewal process.

Furthermore, it is necessary to introduce the probability that the process will

leave state i in a time t as

Hi(t) = P [Tn+1 − Tn ≤ t|Xn = i].

Obiviously,

Hi(t) =
m∑

j=1

Qi,j(t).

It is now possible to define the distribution function of the waiting time in each state

i, given that the state successively occupied is known,

Gi,j(t) = P [Tn+1 − Tn ≤ t|Xn = i,Xn+1 = j]

Obviously, the related probabilities can be obtained by means of the following formula:

Gij(t) =

{
Qi,j(t)

P (i,j)
, if P (i, j) = 0

1, if P (i, j) 6= 0

The main difference between a continuous time Markov process and a semi-Markov

process lies in the distribution functions Gij(t). In a Markov environment this function

must be a negative exponential function. On the other hand, in the semi-Markov case,

the distribution functions Gij(t) can be of any type. This means that the transition

intensity can be decreasing or increasing.
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If we apply the semi-Markov model in the health care environment, we can

consider, by means of the Gij(t), the problem given by the duration of the time spent

inside one of the possible disease states.

Now the homogeneous SMP, Z = {Z(t), t ∈ R} represents, for each waiting

time, the state occupied by the process

Z(t) = XN(t), where Nt = sup{n : Tn ≤ t } .

The transition probabilities are defined in the following way:

φij(t) = P [Z(t) = j|Z(0) = i]

. They are obtained by solving the following evolution equations:

φij(t) = δi,j(1−Hi(t)) +
m∑

β=1

∫ t

0

Q′
iβ(ϑ)φβj(t− ϑ)dϑ, (2.3.1)

where δi,j represents the Kronecker delta.

The first addendum of formula (2.3.1) gives the probability that the system does

not undergo transitions up to time t given that it was in state i at an initial time 0. In

predicting the disease evolution model, it represents the probability that the infected

patient does not shift to any new stage in a time t. In the second addendum, Q′
iβ(ϑ) is

the derivative at a time ϑ of Qi,β(ϑ) and it represents the probability that the system

remained in a state i up to the time ϑ and that it shifted to state β exactly at a

time ϑ. After the transition, the system will shift to state j following one of all the

possible trajectories from state β to state j within a time t− ϑ. In disease evolution

model, it means that up to a time an infected subject remains in the state i. At the
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time ϑ, the patient moves into a new stage β and then reaches state j following one

of the possible trajectories in some time t− ϑ.

2.4 Semi-Markov Decision Processes (SMDPs)

In Markov decision processes (MDPs) the decisions are taken at each of a sequence of

unit time intervals. The Semi-Markov decision processes (SMDPs) generalize MDPs

by allowing the decision maker to choose actions whenever the system state changes,

modeling the system evolution in continuous time and allowing the sojourn time in

a particular state to follow an arbitrary probability distribution. The system state

may change several times between decision epochs; only the state at a decision epoch

is relevant to the decision maker. If transition times between states are distributed

exponentially, we refer to the process as continuous-time Markov decision process

(CTMDP)

The model of an SMDP specifies parameters relating to system dynamics and

cost are specified similarly as in MDP:

• At a decision epoch the system occupies a state s ∈ S, S is the state space ;

• for every state s a set of feasible actions called action or control space U(s),

which can be jointly represented by the set

{(s, U(s)), ∀s ∈ S},

74



Also we define

U =
⋃
s∈S

U(s);

• a set of state transition probabilities,

{Qij(t|u), ∀ s ∈ S, u ∈ U(s)};

In most applications Qij(t|u) is not provided directly, but instead Fi(t|u) and pij(t|u)

are used. The Fi(t|u)denotes the probability that the next decision epoch occurs

within t time units, given that action u ∈ U is chosen in state i. The quantity pij(t|u)

denotes the probability that the system occupies state j in t time units after the

decision epoch given i and u. (If the natural process does not change state until the

next decision epoch, pij(t|u) = 1 for all t ).

The following assumption is needed to guarantee that there will not be an infinite

number of decision epochs within finite time:

There exists ε > 0 and δ > 0 such that Fi(t|u) ≤ 1− ε for all u ∈ U and i ∈ S

Two special cases forFi(t|u) :

• When Fi(t|u) = 1− e−β(i,u)t

we refer to this as a continuous-time Markov decision process.

• When Fi(t|u)=0 ,if t ≤ t′; =1 if t > t′

for some fixed t for all i and u, we obtain a discrete-time MDP.
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When decision maker chooses action u in state i, he receives a lump sum reward (or

pays a cost) g(i, u) In addition to that, he accrues a reward (or incurs a cost) at rate

c(j′, i, u) as long as the natural process occupies state j, and action u was chosen in

state i at preceding decision epoch.

Decision rules and policies

In SMDP, the decision rules may be deterministic or randomized, Markovian or his-

tory dependent. Let us define a policy π = (d1, d2...) decision rule d1 is used at

t0 = 0

In discounted model for a policy π ∈ Π, let us denote υπ
α(s) as the expected

infinite-horizon discounted reward with the discount factor α, given that the process

occupies state s in the first decision epoch:

υπ
α(s) ≡ Eπ

s

( ∞∑
n=0

e−αTn

[
g(Xn, Yn) +

∫ Tn+1

Tn

e−α(t−Tn)c(wt, Xn, Yn)dt

])

where T0, T1, ... represent the times of successive decision epochs, wt denotes the

state of the natural process at time t. Define the value of a discounted SMDP by

υ∗α(s) ≡ supπ∈Πυπ
α(s)

The goal is to find a policy π∗ for which υπ∗
α (s) = υ∗α(s)

In other words, the objectives in these problems, is to maximize the expected
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discounted reward or minimize the expected discounted total costs and obtain the

best policy. We confine ourselves to the optimality criterion of the total expected

discounted cost. This criterion is found to be more appropriate in many applications,

particularly in biomedical and reliability studies. An alternative criterion is the long

run average cost per unit time which is more appropriate when many state transitions

occur within a relatively short time just as in the stochastic control problems in

telecommunication application.
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Chapter 3

ANALYSIS OF RESPONSE

PROFILES
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3.1 Introduction

In this chapter we present a method for analysing longitudinal data that imposes min-

imal structure or restrictions on the mean responses over time and on the covariance

among the repeated measures. The method focusses on analysing response profiles

and can be applied to longitudinal data when the design is balanced, with the timing

of the repeat measures common to all individuals in the study. However, the method

can also handle incomplete longitudinal studies with balanced designs. The method

is appealing when there is a single categorical covariate (denoting exposure groups)

and when no specific a priori pattern of the difference in response profiles between

groups can be specified.

If E(Yij) is expressed exclusively in terms of the p explanatory variables Xij1,

Xij2, . . . , Xijp, the model is said to be unconditional. If among these, time is simply

interpreted as a discrete variable indicating the order in which the response is observed

within each sample unit in a balanced design the corresponding models are known as

profile models and are equivalent to those usually considered in ANOVA or ANCOVA

problems. The profile model may be expressed as

Y = XM + E,

where Y = (Y1, Y2, . . . , YN)′, X = (X1, X2, . . . , Xp),M is a p× n matrix of unknown

parameters and E = (e1, e2, . . . , en)′. Typically, the elements of M denote expected

responses for units under the different treatments at the different instants.
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At any given level of the group factor, the sequence of means over time is referred

to as the mean response profile. For example, the mean response profiles for the two

groups randomized to a drug and its placebo

The main goal in the analysis of response profiles is to characterise the patterns

of change in the mean response over time in the groups and to determine whether the

shapes of the mean response profiles differ for the two groups.

The methods for analysing response profiles can be extended in a straightforward

way to handle the case where there is more than a single group factor and when there

are baseline covariances that need to be adjusted for. For example, in an observational

study the groups might be defined by characteristics of the study subjects, such as

age, gender or exposure level.

Rowel and Walters (1976) and Bryant and Gillings (1985) discuss the analysis

strategies using standard parametric or non-parametric ANOVA or regression proce-

dures on some kind of univariate or bivariate summary measure for the individual

response profiles. The article by Rowell and Walters (1976) is widely cited for popu-

larising the analysis of summary measures of growth in many different disciplines.

Potthoff and Roy (1964) gives an extension of the profile models, which in the

literature is often referred to as growth curves models. The paper gives a typical

example that involves the linear relation between an anatomic distance and age in

orthodontical study.
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A detailed discussion of issues surrounding adjustment for baseline response in

the analysis of change can be found in Lord (1967), Laird (1983) and Fitzmaurice

(2001).

MANOVA models may also be employed to analyse problems under the growth

curve model. Khatri (1966) show that the estimators proposed in Potthoff and Roy’s

(1964) paper are ML estimators.

Strengths and Weaknesses of Analysing Response Profiles

The analysis of response profiles is a straightforward way to analyse data from a

longitudinal study when the design is balanced, with the timings of the repeated

measures common to all individuals in the study, and when all the covariates are

discrete (e.g., representing different treatments, interventions, or characteristics of

the study subjects). It allows arbitrary patterns in the mean response over time and

in the covariance of the responses. As a result, this method has certain robustness

since the potential risk of bias due to misspecification of the models for mean and

covariance are minimal. Although the method requires that data arise from a balanced

design, it can be applied when the data are incomplete due to missing response data.

The analysis of response profiles can be extended in a straightforward way to handle

the case where individuals can be grouped according to more than a single factor.

For example, if there are two covariates that are discrete (e.g., treatment group and

gender), the analysis will include tests of the 3-way and 2-way interactions among
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these two factors and time (in addition to their main effect.)

The analysis of response profiles does have a number of potential drawbacks.

First, the requirement that the longitudinal design be balanced implies that the

method cannot be applied when the vectors of repeated measures are obtained at

different sequences of time except by moving an observation to the nearest planned

measurement time. As a result, the method is not well suited to handle mistimed

measurements, a common problem in many longitudinal studies. Note, however, that

the method can handle unbalanced patterns of observations due to missing response

data. Second, the analysis ignores the time ordering of the repeated measures. Third,

because the analysis of response profiles produces an overall omnibus test of effects,

it may have low power to detect group differences in specific trends in the mean re-

sponse over time. (e.g., linear trends in the mean response). Single degree of freedom

tests of specific time trends are more powerful. Finally, in the analysis of response

profiles, the number of estimated parameters (G × n mean parameters and n(n+1)
2

covariance parameters) grows rapidly with the number of measurement occasions.

3.2 Hypotheses Concerning Response Profiles

Initially we focus on two group designs. Generalizations to more than two groups are

straightforward. Given a sequence of n repeated measures on a number of distinct

groups of individuals, three main questions concerning response profiles can be posed.
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1. Are the two mean response profiles similar in the two groups, in the sense that

the mean response profiles are parallel? That is whether the patterns of changes

in the response over time are same across the groups. This question concerns

the group × time interaction effects.

2. Assuming that the population mean responses are parallel, are the means constant

over time, in the sense that the mean response profiles are flat. This question

concerns the time effect.

3. Assuming that the population mean response profiles are parallel, are they also

same at the same level in the sense that mean response profiles for the two

groups coincide?

The first question is of main scientific interest. This question is the raison d’ être

of a longitudinal study. Whether the second and third questions have scientific in-

terest depends upon the longitudinal study design. An affirmative answer to the

first question is assumed while considering the second and third questions, consistent

with the general principle that the main effects are not of interest when there is an

interaction among them.

The choice of appropriate hypothesis deserves considerations regarding whether

the longitudinal data arise from a randomised trial or from an observational study.

In the former case, the study participants are randomised to treatment groups and

the baseline values of the response are obtained prior to scientific interventions, i.e.,

the mean response at occasion 1 is independent of treatment assignment. That is, by
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design, the group means are equal at baseline. In contrast, in an observational study,

there is no a priori reason to assume that the groups have the same mean at baseline

unless the groups are selected by matching on baseline response.

In a randomised longitudinal clinical trial the only question of scientific interest

is the first because it addresses whether changes in the mean response over time are

the same in all groups. The second question is of less importance as it does not

involve a direct comparison of groups. The second question concerns the time effect,

where focus is on the comparison of the mean response at each occasion averaged

over the groups. Thus hypothesis concerning the main effect of time translate into

the question whether overall (i.e., averaged over groups) mean response has changed

from baseline. In a randomised trial, the third question is of no interest. Actually,

the test of group effect is subsumed within the test of group × time interaction, since

the absence of group × time interaction implies that groups have same pattern of

change over time and their mean response profiles must necessarily coincide.

In an observational study, the first question is usually of primary interest. It

addresses whether the patterns of change over time in the mean response vary by

group. In contrast to randomised trial, however, the second and third questions may

also be of substantive interest. For example, in a longitudinal study of growth or

ageing, there may be interest in the pattern of change in the mean response over

time, even when the pattern of change is same in all the groups. This concerns the

main effect of time and is addressed by the second question. Ordinarily, when time

effect is of interest, the trend in mean response is described with a parametric curve.
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In an observational study, there may also be interest in group comparisons of the

mean response averaged over time. This concerns the group effect and is addressed

in the third question.

To highlight the main features of analysis of response profiles, consider an ex-

ample from a two-group study comparing a novel treatment and a control. Assume

that the two groups have repeated measurements at the same set of n occasions. The

analysis of response profiles is based on comparing the mean response profiles in the

two groups. Let µ(T ) = {µ1(T ), µ2(T ), . . . , µn(T )}′ denote the mean response profile

for the treatment group and µ(C) = {µ1(C), µ2(C). . . . , µn(C)}′ denote that for the

control group. Let ∆j = µj(T ) − µj(C), j = 1, 2, . . . , n. The comparison can be

made by considering the null hypothesis of no group × time interaction, that is, the

hypothesis that the mean response profiles are parallel, for which the requirement

is that the differences ∆j’s are constant over time. Thus, in terms of ∆j’s, the null

hypothesis is

H01 : ∆1 = ∆2 = · · · = ∆n.

The test has n − 1 degrees of freedom as the number of constraints on the mean

responses under this hypothesis is n− 1.

When there are G groups with repeated measurements at the same set of n oc-

casions, let µ(g) = {µ1(g), µ2(g), . . . , µn(g)}′ denote the mean response profile for the

gth group (g = 1, 2, . . . , G). With G groups, there are G− 1 redundant comparisons.

Define ∆j(g) = µj(g)− µj(G), (for j = 1, 2, . . .,n; g = 1, 2, . . . , G− 1). i.e., ∆j(g) is
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the contrast or comparison of the mean response at the jth occasion for the gth group

(g = 1, 2, . . . , G − 1) with the mean response at the jth occasion for the group G.

Then, the null hypothesis that the mean response profiles are parallel is

H01 : ∆1(g) = ∆2(g) = · · · = ∆n(g), for g = 1, 2, . . . , G− 1.

The test has (G − 1) × (n − 1) degrees of freedom. However, unless the test

of group × time interaction has only one degree of freedom, this test does not help

in discerning in what manner the pattern of change over time differ across groups.

In the next section we describe a general linear model formulation of the analysis of

response profiles.

3.3 General Linear Model Formulation

Consider the general linear regression model

E(Y i/X i) = µi = X iβ, (3.3.1)

for appropriate choices of X i. The hypothesis of no group × time interaction can

be expressed in terms of β. Let ‘n’ be the number of repeated measures and N be

the number of subjects. To express the model for a design with G groups and n

occasions of measurement, we require G × n parameters for the G mean response

profiles. We illustrate the main idea with the help of a numerical example with two
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groups measured at three occasions. For the first group, let the design matrix be

X i =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


 ,

while for the second group the design matrix is

X i =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


 .

Then in terms of the model (3.3.1) where β = (β1, β2, . . . , β6)
′ is a 6×1 vector of

regression coefficients,

µ(1) =




µ1(1)
µ2(1)
µ3(1)


 =




β1

β2

β3


 .

Similarly

µ(2) =




µ1(2)
µ2(2)
µ3(2)


 =




β4

β5

β6


 .

The hypothesis about the mean response profiles in two groups in terms of µ(1)

and µ(2) can now be expressed in terms of hypotheses about the components of β.

Specifically, the hypothesis of no group × time interaction effect can be expressed as

H01 : (β1 − β4) = (β2 − β5) = (β3 − β6) (3.3.2)

In this parameterisation, hypothesis about the group × time interaction cannot be

expressed in terms of certain components of β being zero; instead, these hypotheses

can be expressed in terms of Lβ = 0, for particular choices of vectors or matrices L.

For example (3.3.2) may now be expressed as

H01 : Lβ = 0,

where

L =

(
1 −1 0 −1 1 0
1 0 −1 −1 0 1

)
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An attractive feature of the general linear model (3.3.1) is that it can handle settings

where the data for some subjects are missing. For example, suppose that the ith

subject belongs to the first group and is missing the response at the third occasion.

Then the appropriate design matrix for the subject is obtained by removing the third

row of the full data design matrix for the subjects from the first group as

X i =

(
1 0 0 0 0 0
0 1 0 0 0 0

)

In general, the appropriate design matrix for the ith subject is simply obtained by

removing rows of the full data design matrix corresponding to the missing responses.

This allows analysis of response profiles to be based on all available observations of

the subjects.

The general linear model (3.3.1) for two groups measured at three occasions

could have also been expressed in terms of the following matrices.

X i =




1 0 0 1 0 0
1 1 0 1 1 0
1 0 1 1 0 1


 ,

for the first group, and

X i =




1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0


 ,

for the second group. In that case

µ(2) =




µ1(2)
µ2(2)
µ3(2)


 =




β1

β1 + β2

β1 + β3


 ;

and, µ(1) =




µ1(1)
µ2(1)
µ3(1)


 =




β1 + β4

(β1 + β4) + (β2 + β5)
(β1 + β4) + (β3 + β6)


 .
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The choice of the reference group (here the second group) is arbitrary. With this

choice of design matrices for the two groups, the interpretation of the regression

coefficients has changed. The hypothesis of no group × time interaction, now, is

H01 : β5 = β6 = 0.

This parameterisation, often called the reference parameterisation, is more convenient

since the hypothesis H01 is represented by the vanishing of certain components of β,

and is the one that is commonly adopted by many statistical packages

If H01 cannot be rejected, the hypotheses concerning mean effects of time and/or

group may be of secondary interest. Hypotheses concerning main effects can similarly

be represented by the vanishing of certain components of β. For example hypothesis

of no time effect is

H02 : β2 = β3 = 0,

and the hypothesis of no group effect is

H03 : β4 = 0.

For the general case with G groups measured at n occasions, the number of constraints

under H02 is n-1 and is the same regardless of the number of groups and the test of

H02 has n-1 degrees of freedom. Similarly the number of constraints under H03 is G-1

and is the same regardless of the number of occasions and the test of H03 has G-1

degrees of freedom. The tests of main effects are obtained from the reduced models

that excludes the group × time interaction.
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Finally, Given that the analysis of response profiles can be expressed in terms

of the linear model (3.3.1), where β = (β1, β2 . . . , βp)
′ is a p × 1 vector of regression

coefficients (with p = G×n), maximum likelihood estimation of β, and the construc-

tion of tests of the group × time interaction (and the main effects of time and group),

are possible once the covariance of Y i has been specified. In the analysis of response

profiles, the covariance of Y i is usually assumed to be unstructured with no con-

straints on n(n+1)
2

covariance parameters other than the requirement that they yield

a symmetric matrix that is positive definite. The condition of positive definiteness of

the covariance matrix ensures that while repeated measures can be highly correlated,

there must be no redundancy in the sense that one of the repeated measures can be

expressed as a linear combination of the others. The condition also ensures that no

linear combination of responses can have negative variance. Given REML (or ML)

estimates of β, and their standard errors (and the estimated covariance of β̂, tests

of group × time interaction (and main effects of time and group), can be conducted

using multivariate Wald tests. Alternatively likelihood ratio tests can be constructed,

but requires that the model be fit to the data with and without the constraints un-

der the null hypothesis (i.e., fitting the ‘reduced’ and the ‘full’ models respectively).

Before illustrating the analysis of response profiles, we present a brief review of the

‘reference group’ parametrisation.
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3.4 Reference Group Parameterisation

Consider a group factor with G levels. To present this factor in a linear model we

can define a set of dummy or indicator variables,

Zig =

{
1, if the ith subject belongs to group g;
0, otherwise.

Letting X i = (Zi1, Zi2, . . . , ZiG), the mean response in G groups, denoted by

µi(1), µi(2), . . . , µi(G), can be expressed in terms of the linear model

E(Y i/X i) = µi = X iβ.

In this parameterisation 


µi(1)
µi(2)

...
µi(G)


 =




β1

β2
...

βG




If we wish to introduce an intercept, say β1, by setting the elements of the first column

of X i to 1 (for all i = 1, 2, . . . , N) then there is redundancy in X i, if all G indicator

variables Zi1, Zi2, . . . , ZiG are also included in the design vector X i. To avoid this over

specification, one of the indicator variables must be excluded from X i. Arbitrarily

we can drop ZiG. Then with X i = (1, Zi1, Zi2, . . . , Zi,G−1), the mean response in G

groups can be expressed in terms of the linear model

E(Y i/X i) = µi = X iβ,

where β = (β1, β2, . . . , βG)′. In this parameterisation,



µi(1)
µi(2)

...
µi(G− 1)

µi(G)




=




β1 + β2

β1 + β3
...

β1 + βG

β1
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Because the intercept term, β1, is also the mean of group G, and all the remaining

components of β represent deviations from the mean of group G, this parameterisation

is often referred to as the reference group parameterisation. Here, the last level of

the group factor (i.e., group G) is the reference group and it is no coincidence that

this is the same group whose indicator variable was excluded from X i.

3.5 One Degree of freedom Tests for Group × Time

Interaction

The tests of group × time interaction is quite general and it posits no specific pattern

for the difference in response profiles between groups. This lack of specificity becomes

a problem in studies with a large number of occasions of measurement because the

general test for group × time interaction with (G− 1)× (n− 1) degrees of freedom,

becomes less sensitive to an interaction with a specific pattern as n increases.

In the typical randomised trial of interventions, subjects are randomised to the

intervention groups at baseline and the investigator seeks to determine whether the

pattern of response after intervention differs between groups. Randomisation implies

that the mean at baseline is independent of treatment group, that is, by design, the

groups have the same mean response at baseline. In that setting, analysts frequently

specify a single contrast believed to best represent the direction in which the pattern

of response will differ most markedly. For example, if we assume the first parameter-
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isation described in Section 3.3 with two groups and wish to test for the equality of

the difference between the average response at occasion 2 through n and the baseline

value in the two groups, we can choose the contrast

L = (−L1, L1) ,

where

L1 =

(
−1,

1

n− 1
,

1

n− 1
, . . . ,

1

n− 1

)
.

Here, L1 computes the mean response from occasion 2 through n and subtracts the

mean response at baseline for a single group. The latter can be thought of as the

average change over the interval for a single group. Thus L is the group contrast of

this average change in the two groups.

A variant of this approach, known as Area Under the Curve Minus Baseline, or

sometimes simply AUC, corresponds to calculation of the area under the trapezoidal

curve created by connecting the responses plotted at the respective time points and

subtracting y1(tn − t1), the area of the rectangle of height y1 and width tn − t1.

The AUC (minus baseline) is negative because the responses after intervention

begins are smaller than baseline value. The AUC (minus baseline) can be constructed

by subtracting the baseline mean µ1, from each of the means µ1 through µn and

calculating area under the trapezoid constructed by connecting these differences. To

test for the equality of AUC in two groups, one employs the contrast

L = (−L2, L2) ,
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where

L2 =
1

2
(t1 + t2 − 2tn, t3 − t1, . . . , tj+1 − tj−1, . . . , tn − tn−1)

and 1
2
(tj+1 − tj−1) is the value of the contrast vector for time points 1 (baseline) or

n (the last occasion). These contrast weights are not intuitively obvious, but can

be derived from the formula for the area of a trapezoid. Although the curve in the

above figure suggests that L is applied to the individual observations, it must be

emphasized that the contrast weights are applied to the estimated means, not the

individual observations.

A third popular method for constructing a single-degree-of freedom test corre-

sponds to a test of the hypothesis that the trend over time is the same in several

treatment groups. This method is a special case of the growth curve analysis.

In many applications, the one-degree-of-freedom test will be statistically signifi-

cant when the overall test for group × time interaction is not. For valid application of

conventional significant levels, the form of the contrast must be specified prior to data

analysis. Otherwise, one would be at risk of seeking the best contrast and testing its

significance as if it had been chosen in advance. To guard against this criticism, the

protocols for randomised trials usually specify the form of the contrast. This require-

ment highlights a hazard of the one-degree-of-freedom tests. The added sensitivity

comes at the price of reduced generality. If the difference between the treatment

groups takes a form quite different from the pattern anticipated by the contrast, one

can fail to obtain statistically significant result for a one-degree-of-freedom test even
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when the overall test for group × time interaction is statistically significant. Thus

one-degree-of-freedom test should be employed only when there is sufficient prior

information to specify the contrast with confidence.

3.6 A Numerical Illustration

We shall illustrate the analysis of mean response using recent stock market data.

Stock prices of Indian IT major Infosys Technologies for the period 26th December

2003 to 31st December 2008 obtained from official web site of National Stock Exchange

(NSE) of India. Bombay Stock Exchange (BSE)indices for the corresponding period

obtained from the BSE itself.

We arrived at the stock prices of Infosys Technologies by considering bonus

share issue and stock spit for the last five years. On 1stjuly2004 the company issued

bonus shares in the ratio 3:1 (3 shares for every 1 share in demat account before the

book closure). Evidently every investor will have four shares instead of one in his

demat account. Therefore Net Asset Value (NAV) of one share held previously to

1stjuly2004 will be 4× close price. Similarly the company made a stock split in the

ratio 2:1 on 13thjuly2006 (one share with face value Rs.10/- becomes 2 shares with

face value Rs.5/- each). Hence NAV of one share held previously to 1stjuly2004 will

be 8 × close price. The relevant figures shown in bold type and with * in table-3.1.

The NAV taken as effective stock price for the share.
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Table- 3.1 Stock prices of Infosys Technologies. with traded volume and NAV

Date Prev Close Open Price Close Price Total Traded Net Asset
Quantity Value

...
...

...
...

...
...

28-Jun-04 5483.90 5530.00 5597.90 490516 5597.90
29-Jun-04 5597.90 5605.00 5586.70 687773 5586.70
30-Jun-04 5586.70 5570.00 5524.10 611316 5524.10
1-Jul-04 5524.10 1395.00 1408.80* 1767215 @ 5635.20*
2-Jul-04 1408.80 1365.25 1423.35 1558128 5693.40
5-Jul-04 1423.35 1426.30 1429.45 969096 5717.80
6-Jul-04 1429.45 1427.00 1426.50 1201123 5706.00
7-Jul-04 1426.50 1404.15 1392.45 1776746 5569.80
8-Jul-04 1392.45 1400.00 1352.25 2366130 @ 5409.00
9-Jul-04 1352.25 1300.00 1382.50 1424235 5530.00

...
...

...
...

...
...

10-Jul-06 3105.00 3189.00 3188.05 764033 12752.20
11-Jul-06 3188.05 3199.00 3148.20 810381 12592.80
12-Jul-06 3148.20 3300.00 3385.65 4251043 13542.60

13-Jul-06 3385.65 1748.00* 1681.95* 1423289 @ 13455.60*
14-Jul-06 1681.95 1650.00 1648.75 1737712 13190.00
17-Jul-06 1648.75 1641.00 1605.25 1552356 12842.00
18-Jul-06 1605.25 1610.35 1629.55 1323057 13036.40
19-Jul-06 1629.55 1661.00 1604.55 1448682 12836.40
20-Jul-06 1604.55 1698.70 1647.85 1503490 @ 13182.80
21-Jul-06 1647.85 1634.80 1602.10 1140542 12816.80

...
...

...
...

...
...

@ figures considered for data set

Nowadays, Cash Market of stock exchanges are highly influenced by Derivative

Market (Futures & Options Market). Life of monthly contracts of derivatives end on

last Thursday (critical day) of the month. Stock prices will have a new lease of life

after the critical day. Thus we have considered stock prices on first Thursday (base

line), on second Thursday (Week 1), on third Thursday (Week 2)and on the critical

day (Week 4), for data set. To make independent entities for the months, We have

96



taken the deviation of stock price from stock price on critical day of previous month.

Table- 3.2A Increase in Stock Prices and BSE Indices

Stock Price BSE Index
Month Base line Week 1 Week 2 Week 4 Base line Week 1 Week 2 Week 4
2003
Jan -26.00 49.95 -138.55 -489.15 -17.58 1.56 -9.12 -162.76
Feb 258.60 -85.15 -7.80 -153.95 85.56 27.63 83.34 57.46
Mar -7.55 -40.05 255.55 184.40 -86.99 -169.10 -84.41 -160.55
Apr 5.10 -1240.00 -1326.35 -1391.90 34.37 -81.46 -132.29 -179.56
May -111.25 77.95 -14.25 -128.25 22.56 24.37 75.74 227.02
Jun 90.20 200.30 273.60 469.40 97.95 173.05 290.35 388.15
Jul -120.40 387.80 224.40 363.20 87.49 127.23 116.51 240.21
Aug -93.85 -185.55 112.25 296.60 14.22 128.59 302.78 419.68
Sep 310.85 325.75 342.35 608.70 98.22 180.84 -78.14 84.86
Oct 66.40 -60.40 123.15 109.10 157.93 401.53 590.17 483.37
Nov 458.80 130.55 5.25 311.75 267.02 168.64 -9.29 208.52
Dec 133.40 49.45 200.50 495.50 236.86 310.92 465.96 652.88
2004
Jan 212.50 424.25 137.60 -170.75 273.55 466.62 421.99 160.83
Feb 186.35 100.05 -146.80 -368.00 -82.12 134.21 52.35 -235.63
Mar 399.90 -29.50 52.10 281.90 248.75 82.74 -152.18 -152.68
Apr -56.00 145.10 169.40 -128.25 326.41 424.01 429.53 253.99
May 258.50 155.00 -110.80 259.00 88.87 -268.96 -736.32 -609.88
Jun -56.30 -24.60 -98.20 111.40 -240.56 -113.91 -218.67 -350
Jul 226.05 -0.15 364.65 733.25 165.50 135.29 179.64 411.9
Aug 88.80 -147.80 4.60 39.80 132.33 19.32 3.2 15
Sep 228.40 308.40 597.60 599.80 63.27 162.78 342.23 448.16
Oct 40.00 476.00 337.00 1013.20 190.05 129.49 57.45 132.01
Nov 155.60 273.20 456.00 323.20 117.26 238.69 309.85 319.41
Dec 201.20 50.40 363.00 74.20 293.40 269.24 385.35 487.51
2005
Jan -17.60 -319.20 -333.60 -384.20 -155.15 -301.48 -339.3 -283.11
Feb 597.00 369.20 887.40 848.80 380.54 338.40 349.86 334.78
Mar 200.60 271.00 67.20 371.60 210.51 333.44 95.31 -81.39
Apr -275.60 -622.80 -1249.60 -1406.40 52.82 -24.90 -193.62 -208.62
May 358.20 622.20 764.60 1198.40 75.45 172.62 194.74 386.58
Jun -15.40 126.20 301.00 612.20 -15.22 161.75 229.63 523.07
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Table- 3.2B Increase in Stock Prices and BSE Indices

Stock Price BSE Index
Month Base line Week 1 Week 2 Week 4 Base line Week 1 Week 2 Week 4
Jul -153.40 -889.60 -597.00 -510.60 -48.72 -6.15 110.47 411.18
Aug 331.60 251.20 272.20 164.80 192.05 211.48 206.3 55.39
Sep 615.40 602.40 715.00 1017.60 215.73 392.14 623.34 989.75
Oct 331.60 385.80 49.60 241.20 -121.47 -273.27 -715.05 -577.42
Nov 0.00 269.80 482.20 457.80 0.00 236.18 576.77 671.29
Dec 267.80 481.40 866.80 1146.00 200.74 162.27 426.36 579.21
2006
Jan 269.80 -598.60 -666.20 -662.00 294.49 57.63 126.59 226.67
Feb 24.60 322.80 -163.40 -109.60 293.95 494.90 574.38 694.13
Mar 239.00 193.80 509.00 993.80 382.73 329.49 634.69 1062.99
Apr 287.00 -96.60 934.40 358.80 439.86 -69.81 732.51 527.98
May 314.40 493.40 -395.00 -1216.60 512.61 600.39 -443.59 -1168.7
Jun 5.20 -499.00 -406.00 660.40 -594.90 -1370.51 -1121.26 -504.16
Jul 680.80 1481.00 1208.20 1292.20 605.81 696.34 190.78 579.43
Aug 116.80 402.00 794.00 1184.40 181.57 407.58 735.89 957.46
Sep 4.00 199.20 253.60 414.00 154.80 273.97 575.22 681.69
Oct 56.40 1295.20 1682.80 1721.60 8.67 157.24 342.85 317.67
Nov 91.20 510.40 1012.80 850.80 392.71 439.08 807.48 997.9
Dec 352.80 131.20 -128.00 548.00 275.72 -209.15 -311.45 150.03
2007
Jan 296.80 -521.60 -192.40 -57.60 25.37 -215.63 371.41 436.38
Feb 223.60 1061.60 1135.60 372.00 -15.54 369.37 72.83 -261.41
Mar -1026.80 -1214.00 -1664.80 -2374.40 -861.76 -971.96 -1477.46 -1041.65
Apr 12.80 441.20 393.60 225.20 -123.58 134.15 640.04 1249.22
May 502.40 -357.20 -282.80 -762.80 -150.67 -457.65 70.83 315.58
Jun 269.20 765.60 279.60 12.40 -358.28 -340.74 -45.22 -39.89
Jul -66.00 -22.80 571.60 874.40 357.32 587.47 1045.56 1271.74
Aug -1081.20 -800.80 -970.00 -1353.20 -790.61 -676.16 -1418.1 -654.57
Sep 308.80 -247.60 -518.40 405.20 494.57 492.70 1226.21 2028.82
Oct 664.40 488.00 -206.80 -630.40 626.58 1663.51 847.83 1620.33
Nov 295.20 -965.60 -1518.00 -2158.40 953.46 288.04 1014 232.37
Dec 544.80 741.60 1026.40 1881.20 792.61 1101.13 159.31 1213.46
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Table- 3.3: Variance-Covariance matrix Ĉov(β̂)

Stock Price BSE Index
Base Week Week Week Base Week Week Week

Group line 1 2 4 line 1 2 4

Stock Price
Base line 1572.22 1375.29 1505.92 1924.48 1081.81 1124.91 1241.92 1130.25
Week 1 1375.29 4598.29 4818.44 5237.34 880.84 1933.76 1355.10 1401.20
Week 2 1505.92 4818.44 6983.50 7915.94 960.76 1882.83 2360.46 2603.12
Week 4 1924.48 5237.34 7915.94 11416.54 1145.26 1826.03 2558.10 3917.19

BSE Index
Base line 1081.81 880.84 960.76 1145.26 1625.29 1790.04 1901.68 1655.75
Week 1 1124.91 1933.76 1882.83 1826.03 1790.04 3080.12 2644.77 2664.90
Week 2 1241.92 1355.10 2360.46 2558.10 1901.68 2644.77 4553.41 4326.16
Week 4 1130.25 1401.20 2603.12 3917.19 1655.75 2664.90 4326.16 5807.13

Table-3.4: Mean increase and(Std. deviation) at Base line, Week 1, Week 2, Week 4

Group Base line Week 1 Week 2 Week 4

stock Price 141.26 101.53 118.20 161.18

( 307.14 ) ( 525.26 ) ( 647.31 ) ( 827.64 )

BSE Index 124.32 135.95 160.04 280.57

( 312.28 ) ( 429.89 ) ( 522.69 ) ( 590.28 )

A popular method for constructing a single-degree-of freedom test corresponds to a

test of the hypothesis that the trend over time is the same in several groups. This

method is a special case of the growth curve analysis.

The test of group × time interaction is based on multivariate Wald Test. The

test provides a simultaneous test of H0 : Lβ = 0 vs HA : Lβ 6= 0, for a suitable
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choice of L and the test statistic can be constructed as

W 2 =
(
Lβ̂

) {
LĈov(β̂)L′

}−1 (
Lβ̂

)
, (3.6.1)

and compared to a χ2-distribution with degrees of freedom equal to the number of

rows of L.

The increase in stock prices are computed for four time points in a month, the

vector representing the contrast based on the mean response at time 2 through n

minus baseline is given by

L = (−L1, L1) , =

(
−1,

1

3
,

1

3
,

1

3
,−1,

1

3
,

1

3

1

3

)
.

The Mean increase and standard deviation at base line, Week 1, Week 2, Week

4 for both the groups are shown in . Its Variance-Covariance matrix shown in ta-

ble (3.3). Thus from the table (3.3), we can easily determine that the average value of

the mean response minus baseline as 14.4167 in the stock price group and 67.6753 in

the BSE index group. Thus if we assume the first parameterisation assumed in Sec-

tion 3.4, then the Lβ̂ = 82.0920 and the value of the Wald test statistics is Z = 1.2441

(or W 2 = 1.5478, with one degree of freedom), indicating no significant difference in

the response pattern between the two groups.

The contrast for comparing the AUC (minus baseline) in the two groups is given

by

L = (−L2, L2) , = ( 3.5, − 1, − 1.5, − 1, − 3.5, 1, 1.5, 1) .
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From Table‘(3.4), the estimated mean AUC is −54.3996 in the stock price group

and 221.4614 in the BSE index group. Thus if we assume the first parameterisa-

tion assumed in Section 3.4, then the Lβ̂ = 277.8610, yielding a Wald statistics of

Z = 1.895 (or W 2 = 1.4149, with one degree of freedom), again not a significant

statistic. Thus both the methods of analysis provide a clear signal that the response

profile does not differ in the two groups
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Chapter 4

GENERALIZED EXPONENTIAL

MODEL 1

1This chapter is based on T. D. Xavier and M. Manoharan(2007)
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4.1 Introduction

Censoring is a common feature in clinical trials. A Generalized Exponential Model

under a more flexible and practical censoring scheme namely Type II progressive

interval censoring with random removals ( PICR) is appropriate in many situations

like follow-up studies in organ transplant, chemotherapy and/or surgical treatment

for various cancers etc. The patients are examined only at fixed regular intervals or

when reporting for checkup at the hospital so that one can observe the patient only

at that specified points of time. The survival time of some of these patients cannot

be observed exactly since some of them withdraw from study due to the reasons only

known to them.

In type II interval censoring ’n’ subjects are selected in a life test, inspections are

conducted at pre-determined intervals and the number of ’failures’ occurring between

two successive inspection times are recorded. The study will be terminated when

the total number of failures is greater than or equal to a pre-assigned number ’m’. A

handicap of this censoring scheme is that we could not utilize the sensitive information

of drop-outs in the study. There are many real life situations, in particular clinical

study, where one may come across more complicated censoring scheme combining

the features of Type II censoring , interval censoring and progressive censoring with

random removals. When the total time of study and the number of failed subjects

are random outcomes, such a scheme is highly warranted. Xing and Tse (2005) in a

clinical trial investigated a Weibull model under the censoring scheme called Type II
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PICR to cope with the setting that patients are examined at fixed regular intervals

and dropouts occur during the study period. In Type II PICR, the individual are

examined at fixed regular intervals, at each examination the number of both dropouts

and failed individuals are recorded, the study will be terminated when a pre-specified

number of failed individuals are observed

Although Weibull distribution is a popular life time distribution on account of its

several advantages, the maximum likelihood estimates of the Weibull parameters may

not behave properly for all parametric values even when location parameter is zero(see

Bain (1978)). Also the monotonicity of Weibull hazard function reaching an infinite

value when the shape parameter is greater than one, may not be appropriate in many

situations. The Weibull family does not enjoy likelihood ratio ordering property like

gamma family, making the problem of one sided hypothesis testing extremely difficult.

Further the distribution of the mean of random sample from the Weibull distribution

is not simple to compute though its distribution function has a simple form.

Gupta and Kundu (1999) introduced generalized exponential(GE) family that

has some interesting features very similar to those of Weibull family and gamma

family but a nice alternative to them in many situations. The generalized exponential

distribution is a two-parameter distribution having distribution function

F (x) = (1− e−βx)α, x > 0, (α, β > 0)

where α is the shape parameter and β is the scale parameter. Its density function is
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given by

f(x; α, β) = αβ(1− e−βx)α−1e−βx ; x > 0

It is interesting to note the similarities of the density and distribution function

of GE family with corresponding gamma family and Weibull family. If the shape

parameter α =1, then all the three distributions coincide with the one-parameter

exponential distribution. Therefore all the three distributions are extensions or gen-

eralizations of the exponential distribution, different ways. If X has an exponential

distribution with moment generating function(mgf) ME(t) and distribution function

FE(x), and similarly, subscript symbols G, W and GE respectively represent gamma,

weibull and generalized exponential distributions, then it is well known that MG(t) =

(ME(t))α and FW (x) = FE(xα). The GE distribution is such that FGE(x) = (FE(x))α.

It can be said that GE distribution is the distribution of maximum of α (an integer)

number of i.i.d exponential variables. From the form of density function of the GE

distribution, we see that, if α ≤ 1, the density function is strictly decreasing function,

where as if α > 1, it is a unimodel skewed density function.

If X ∼ GE(α, β), the survival function and hazard function are given by

S(t; α, β) = 1− F (t) = 1− (1− e−βt)α ; t > 0 (4.1.1)

h(t; α, β) = f(t;α,β)
S(t;α,β)

=
αβ(1− e−βt)α−1e−βt

1− (1− e−βt)α
; t > 0 (4.1.2)

If α = 1, the hazard function becomes β, independent of x

For the Weibull distribution, if α > 1, the hazard function increases from zero to
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∞ and if α < 1, the hazard function decreases from ∞ to zero. Many authors point

out that because for the gamma distribution (for α > 1), the hazard function increases

from zero to a finite number, the gamma may be more appropriate as a population

model when the items in the population are in a regular maintenance program. The

hazard rate may increase initially, but after some time the system reaches a stable

condition because of maintenance. The same comments hold for the GE distribution.

Therefore, if it is known that the data are from regular environment, it may make more

sense to gamma distribution or the GE distribution than the Weibull distribution.

Type II Progressive Interval Censoring with Random Re-

movals

We follow the discussion on Type II PICR scheme of chapter I. Suppose that n

subjects are randomly selected for the study and when specified number or percentage

of total m (say) or more subjects are failed, the study will be terminated. Let ti, t2, ...

be the predetermined inspection times and t0=0. Under a Type II PICR censoring

scheme, the study is terminated after the kth inspection time if the total number of

failed subjects is equal to or more than m. At the ith inspection, di failed subjects

are observed and Ri subjects are randomly removed from the test. In other words, di

is the number of failed subjects between any two successive inspections at ti−1 and

ti. Thus, Ri and di are random variables obtained from the study. Let us denote

Yj =
∑j

i=1 di the total number of failed subjects observed upto the jth inspection
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time tj. If Yk−1 < m and Yk ≥ m , for the predetermined integer m , 0 ≤ m ≤

n; the test is terminated at the kth inspection time tk . Denote D = (d1, d2, , dk)

and R = (R1, R2, ..., Rk−1) where k is random and corresponds to the number of

inspections before the termination of the experiment tk.

Now we discuss exponential, Weibull and generalized exponential model for the

survival times under the type II PICR censoring scheme.

Exponential Model:

Assume that the survival time T follows an exponential distribution with parameters

β . The probability density function of T is given by

f(t) = βe−βt , t > 0 (β > 0). (4.1.3)

The cumulative distribution function F(t) is given by

F (t) = 1− e−βt, t ≥ 0

In order to derive the joint likelihood function based on the observations under this

set up, we first consider the following conditional joint probability density function.

The conditional joint probability density function of number of observations di and
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k, conditional on Ri

f(d1, ..., dk, k|R) =

(
n

d1

)(
n− d1 −R1

d2

)
. . .

(
n−∑k−1

j=1 dj −
∑k−1

j=1 Rj

dk

)

×
k∏

i=1

(pi−1 − pi)
di(1− pi)

Ri (4.1.4)

where Rk = n−
k∑

j=1

dj −
k−1∑
j=1

Rj

p0 = 0, pi = 1− e−βti for i = 1, 2, , k − 1, pk+1 = 1.

Weibull Model:

Assume that the survival time T follows a Weibull distribution with parameters α

and β , where α is the scale parameter and β is the shape parameter. The probability

density function of T is given by

f(t) =
β

α

(
t

α

)β−1

exp

[
−

(
t

α

)β
]

, ; α, β, t > 0 (4.1.5)

The cumulative distribution function F(t) is given by

F (t) = 1− exp

[
−

(
t

α

)β
]

, for t ≥ 0

Now the joint probability density function of number of observations di and k, con-

ditional on Ri
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f(d1, ..., dk, k|R) =

(
n

d1

)(
n− d1 −R1

d2

)
. . .

(
n−∑k−1

j=1 dj −
∑k−1

j=1 Rj

dk

)

×
k∏

i=1

(pi−1 − pi)
di(1− pi)

Ri (4.1.6)

where Rk = n−
k∑

j=1

dj −
k−1∑
j=1

Rj

p0 = 0, pi = 1− exp

[
−

(
ti
α

)β
]

for i = 1, 2, , k, pk+1 = 1.

Xiang and Tse(2005) discussed the maximum likelihood estimators of the parameters

of this model under progressive interval censoring with random removals.

4.2 The Generalized Exponential Model

We assume that the survival time T follows a generalized exponential distribution with

parameters α and β , where α is the shape parameter and β is the scale parameter.

The probability density function of T is given by

f(t) = αβ(1− e−βt)α−1e−βt ; α, β, t > 0 (4.2.1)

The cumulative distribution function F(t) is given by

F (t) = (1− e−βt)α, for t ≥ 0
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Now the joint probability density function of number of observations di and k, con-

ditional on Ri, can be derived inductively following Xiang and Tse (2005).

f(d1, ..., dk, k|R) =

(
n

d1

)(
n− d1 −R1

d2

)
. . .

(
n−∑k−1

j=1 dj −
∑k−1

j=1 Rj

dk

)

×
k∏

i=1

(pi−1 − pi)
di(1− pi)

Ri (4.2.2)

where Rk = n−
k∑

j=1

dj −
k−1∑
j=1

Rj

p0 = 0, pi = (1− e−βti)α for i = 1, 2, , k − 1, pk+1 = 1.

If Ri is assumed to follow a binomial distribution with parameter λ , the probability

of ri subjects removed from the study at the ith inspection time is given by

Pr(Ri = ri|Ri−1 = ri−1, ..., R1 = r1) =

(
ni −m

ri

)
λri(1− λ)ri+1−m (4.2.3)

where ni = n−∑i−1
j=1 rj, 0 ≤ ri ≤ ni −m fori = 1, 2, ..., k − 1

We have the joint distribution of D = (d1, d2, ..., dk) and R = (R1, R2, ..., Rk−1)

obtained as follows

P (R, λ) = Pr(Rk−1 = rk−1|Rk−2 = rk−2, ..., R1 = r1)

×Pr(Rk−2 = rk−2|Rk−3 = rk−3, ..., R1 = r1)

× · · · × Pr(R2 = r2|R1 = r1)Pr(R1 = r1)

=
(

nk−1−m
rk−1

)(
nk−2−m

rk−2

)
...

(
n2−m

r2

)
(
(

n1−m
r1

)
)λ(

∑k−1
j−1 rj)

×λ
∑k−1

j−1 rj(1− λ)(k−1)(n−m)−∑k−1
j=1 (k−j)rj

= (n−m)!∏k−1
j=1 rj !(nk−m)!

λ
∑k−1

j−1 rj(1− λ)(k−1)(n−m)−∑k−1
j=1 (k−j)rj (4.2.4)

Therefore, the joint likelihood function based on the observations D = (d1, d2, . . . , dk)
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and R = (R1, R2, ..., Rk−1) can be written as

L(θ, λ, k, D, R) = f(d1, ..., dk, k; θ|R)× P (R, λ) (4.2.5)

Remark 4.2.1 Type II censoring, interval censoring and progressive censoring are

particular cases of Type II PICR censoring scheme because the later combines the

features of all the above three with a provision to accommodate dropouts . Thus,

the probability density function under Type II progressive censoring is obtained as a

special case of Eq.( 4.2.2) when all di’s are fixed to be 1 and ti = T(i), where T(i) is

the ith ordered survival time. When Ri = 0 for all i, we have the Type II censoring.

On the other hand Ri = 0 for all i and m = n, it will be the interval censoring.

4.3 Parameter Estimation

The maximum likelihood estimate of λ can be obtained directly by maximizing the

Eqn.(4.2.4) because f(d1, ..., dk, k, θ|R) does not depend on λ. Gupta and Kundu

(1999, 2000) studied the properties of maximum likelihood estimators(MLEs) of the

parameters of GE distribution based on complete sample. They compared the MLEs

with the other estimators like method of moments estimators, estimators based on

percentages, least square estimators, weighted least square estimators etc. mainly

with respect to their biases and mean square errors(MSEs)using extensive simulation

technique. Further it is established that, the MLE works the best in almost all

cases considered for estimating both α and β . Also the computational complexity

111



is minimal for MLE. For moderate or large sample sizes MLEs are well preferred to

any other method. Hence we follow the maximum likelihood method estimation in

the present context of Type II PICR censoring scheme.

Now normal equations are

∂lnL

∂α
= 0 ⇒ ∑k

i=1

[
di

pi−pi−1

(
∂pi

∂α
− ∂pi−1

∂α

)
− piRiln(1−e−βti)

1−pi

]
= 0 (4.3.1)

∂lnL

∂β
= 0 ⇒ ∑k

i=1

[
di

pi−1−pi

(
∂pi

∂β
− ∂pi−1

∂β

)
+ αRitie

−βti (1−e−βti)α−1

1−pi

]
= 0 (4.3.2)

∂lnL

∂λ
= 0 ⇒ 1

λ

∑k−1
j=1 Rj − 1

1−λ

[
(k − 1)(n−m)−∑k−1

j=1(k − j)Rj

]
= 0 (4.3.3)

where ∂pi

∂α
= pilog(1− e−βti), ∂pi

∂β
= αtie

−βti(1− e−βti)α−1.

The MLE of λ is easily obtained from Eqn.( 4.3.3), as

λ̂ =

∑k−1
j=1 Rj

(k − 1)(n−m)−∑k−1
j=1(k − j − 1)Rj

(4.3.4)

On the other hand the MLE of α and β can be solved from Eqn.( 4.3.1) and Eqn.( 4.3.2)

by using iterative algorithms like Newton-Raphson method. Denote the Fisher infor-

mation matrix associated with α, β and λ by I(α, β, γ), we write the partitioned form

as follows

I(α, β, γ) = E




∂2lnL
∂α2

∂2lnL
∂α∂β

0
∂2lnL
∂α∂β

∂2lnL
∂β2 0

0 0 ∂2lnL
∂λ2




=

(
I1(α, β) 0

0 I2(λ)

)
(4.3.5)
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From the Eqns.(4.3.1) to (4.3.3), the second-order partial derivatives are

∂2lnL

∂α2
=

k∑
i=1

[
di

pi − pi−1

(
∂2pi

∂α2
− ∂2pi−1

∂α2

)
− di

(pi − pi−1)2

(
∂pi

∂α
− ∂pi−1

∂α

)2
]

−
k∑

i=1

[
piRiln(1− e−βti)2

(1− pi)2

]
(4.3.6)

∂2lnL

∂β2
=

k∑
i=1

[
di

pi − pi−1

(
∂2pi

∂β2
− ∂2pi−1

∂β2

)
− di

(pi − pi−1)2

(
∂pi

∂β
− ∂pi−1

∂β

)2
]

− α

k∑
i=1

[
piRit

2
i (α− eβti(1− pi))

(1− e−βti)2(1− pi)2

]
(4.3.7)

∂2lnL

∂α∂β
=

k∑
i=1

[
di

pi − pi−1

(
∂2pi

∂α∂β
− ∂2pi−1

∂α∂β

)
− di

(pi − pi−1)2

(
∂pi

∂α
− ∂pi−1

∂α

)(
∂pi

∂β
− ∂pi−1

∂β

)]

+
k∑

i=1

[
piRiti(1− pi + αln(1− e−βti))

(1− eβti)(1− pi)2

]
(4.3.8)

∂2lnL

∂λ2
= −

(∑k−1
i=1 Rj

λ2
+

(k − 1)(n−m)−∑k−1
i=1 (k − j)Rj

(1− λ)2

)
(4.3.9)

where ∂2pi

∂α2 = pilog(1− e−βti)2, ∂2pi

∂β2 =
αpit

2
i (e−βti−α)

(e−βti−1)2
and ∂2pi

∂α∂β
= piti(1+αlog(1−e−βti ))

e−βti−1
.

Remark 4.3.1 The closed form of expression of the expected values of these second

order partial derivatives are not readily available . These terms can be evaluated by

using numerical method. The standard errors of the estimators can be evaluated by

using expressions (4.3.6), (4.3.7) and (4.3.9) The joint assymtotic distribution of the

MLE of α and β is multivariate normal and in particular (
√

n(α̂−α),
√

n(β̂ − β)) ∼

N2(0, nI1(α, β)) where I1(α, β) is given by (4.3.5)
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4.4 An Illustrative Example

We shall illustrate the methodology using a hypothetical data on leukemia patients.

Suppose that a group of 70 leukemia patients was considered, end of every month

progress of the group was recorded. However during the course of study some of the

patients had to be removed from the study because they developed other infections.

The study was terminated after majority of them (60 %) died. The following table

shows its details

Month
ti 1 2 3 4 5 6 7 8 9

di 6 5 8 6 5 4 3 2 3
ri 2 3 3 2 3 2 2 2 0

where di=number of patients died during the ith month and ri=number of patients

removed from the study at the ith month.

The data from the study can be fitted into the GE model. Here n=70 and m=42.

From the normal equations 3.1 and 3.2, the maximum likelihood estimate of α and

β are obtained as α̂ =1.1563 and β̂ =0.2069 with standard errors 0.618 and 0.146

respectively. The MLE of the removal probability λ̂ =0.1234 with standard errors

0.0403

Remark 4.4.1 The figure1 shows graph of Survival function S(t) of both Weibull

and GE model for the data given in the example. It may be noted that the two graph

shows almost perfect agreement and hence it suggests that the proposed GE-model can

be used as an alternative to the Weibull model.
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Figure 4.1: Survival Function S(t).

4.5 Discussion

The type II progressive interval censoring with random removals is a more flexible and

practical censoring scheme since it integrates the features of Type II censoring, interval

censoring and progressive censoring with random removals. The GE distributions are

more flexible than gamma and as flexible as Weibull distributions (the distribution

function of GE is in a closed form, the inference based on the censored data can be

handled more easily than with gamma). Therefore the GE model can be used as a

better alternative for analyzing lifetime data.
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Chapter 5

OPTIMAL TREATMENT

STRATEGY USING

SEMI-MARKOV DECISION

PROCESS
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5.1 Introduction

In some medical treatment, decision must be made sequential and in an uncertain

environment. A physician determining a course of treatment must consider patient’s

health as well as the best treatment decision in the future. Often decisions are to be

taken in a dynamic environment. Physiological as well as physical changes in patients,

may sometime contribute to the changes of the environment. Uncertain environment

arises mainly due to patients respond differently even to same treatment for a disease.

Physicians always need to make subjective judgement about the treatment strate-

gies. However a mathematical decision model that provide insight into the nature of

optimal decision can aid the treatment. Markov decision processes (MDPs)are appro-

priate technique useful in class of problems involving complex, stochastic and dynamic

decisions for which it can find optimal solutions. The goal of a MDP is to provide a

optimal policy which is a decision strategy to optimize a particular criterion such as

maximizing total discounted reward or minimizing the total discounted cost.

MDPs are a general framework for modeling dynamic systems under uncertainty.

It binds previous, current and future treatment decision through the proper definition

of patient’s states defined as variables that contain the relevant information for making

future decisions. The treatment model evolves in the following manner. The condition

or state of patient is observed (or partially observed), an action is taken, a cost is

incurred (or a reward is received) and the patient get into a new state according to a

known probability distribution. The state variable defined so that given current state
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of patient, the future transitions and rewards are independent of the past. It is the

standard assumption of a Markov Process

The broad classes of MDPs are Finite Horizon MDPs and Infinite Horizon MDPs.

The number N of decision epochs is finite in the former and it goes to infinite in the

latter. For a finite horizon model optimal policy for both the average reward per

state and the total reward criterion are equivalent. Infinite horizon models requires

a large amount of data hence it is assumed that the data are time homogeneous. As

a result the states of infinite horizon MDP must be carefully defined to ensure that

the state transition of patients are stationary. When the data are time dependent

the time homogeneity assumption can be satisfied by properly augmenting the state

definition with the time at which the transition occurs

In most of the medical investigation, state of a patients is decided in the light

of a series of medical tests which are subjected to test errors. A modified MDPs

called Partially Observed MDPS (POMDP) have been developed to deal the data

with imperfect information (Lovejoy (1991), White et al.(1989)) In these models it

is assumed that uncertainty exist, in patient’s transition and the state he/she truly

occupies. Therefore the objective is to find an optimal policy based on the observation

of the patient and the previous decision rule applied.

In MDP models the treatment decision are taken at each of a sequence of unit

time intervals or fixed epochs and the sojourn time in states has no effect on rewards or

incurring costs for patient. However in health-care and other application, decision are
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taken over continuous time intervals such as varying treatment can be administered.

The sojourn time in states may depend on the duration of his/her current health

status. The MDP models might not be suitable to model such disease progression

instead Semi-Markov Decision Process (SMDP) models are more appropriate. In

SMDP models allow patients’ state transition to occur in continuous time and allow

to assume any probability distribution for sojourn time in a state.

For a range of multi-state diseases in which the data arises as transition-times and

states, Markov and Semi-Markov process are appropriate models. Historically it has

been difficult to adopt realistic models for biomedical applications since the likelihood

turns out to be prohibitively complicated. With the development of computational

methods and aids, the problem of tractability can be overcome. Kay(1986)introduced

a k-state Markov model for continuous time processes for analyzing cancer markers.

Similar models have been applied to AIDS (Longini et al(1989)), heart transplantation

(Sharples(1993)), diabetes(Anderson(1988), Marshall and Jones (1995)), infectious

diseases , dementia etc. Extension to these models have been further extended to

include fixed time and time-varying covariate information (see for eg: Anderson et

al (1991), Gauvreau et al(1994)). Methods for estimation of transition rates are

generally numerically based and have usual maximum likelihood sampling schemes

such as Metroplois-Hasting method(Sharples (1993), Prevost et al.(1998), Richard et

al.(1993), or have used population-based approaches akin to weighted least squares(

see Chen et al. 1996). These approaches have all concentrated on continuous-time

Markov processes usually due to unequally spaced observation times.
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In this chapter, we consider a complex survival model that lives in a randomly

changing environment which affect model parameters. The term ’environment’ is

used in the generic sense so that it represents any set of conditions that affect the

stochastic structure of the model investigated. The concept of ’environment’ process

in one form or another, has been used in the literature for various purpose.

The use of environmental process to modulate the deterministic and stochas-

tic parameters of Operation Research models can be seen in reliability, inventory

and queueing applications. One may refer to Ozekici and Soyer(2003)for an expos-

itory coverage in reliability theory. The problem of optimal replacement of a semi-

Markov system under semi-Markov environment is studied by Hu and Yue(2003).

Ozekici(1996), Ozekici and Parler(1999) discuss other applications in inventory and

queueing. A comprehensive discussion on Markov modulated queueing system can be

found in Prabu and Zhu(1988).

Although the literature cited above illustrate the use of random environment

in reliability, inventory and queueing model, the concept is of paramount interest

in survival analysis. It is generally assumed that a patient stays in a given fixed

environment. The probability law of his ageing and death process there remain intact

throughout his useful life. The life duration and corresponding hazard rate is taken

to be the one obtained through statistical life testing procedures that are believed

to be under ideal conditions.There has been growing interest in the recent years in

lifetime models under random environment.
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This is necessitated by the fact that the subject/patient often lives in varying en-

vironments during which they are subjected to varying environment conditions with

significant effects on performance/health status. During a treatment period whole

environment of the patient may change due to occurrence of other contagious dis-

eases, hypertension, high blood pressure, cardiac problems, severe climatic/seasonal

changes or adopting entirely new treatment strategy on medical team’s advice. When

environment changes, the state of patient also changes. The deterioration and failure

process therefore depends on the environment. This makes it crucial to identify an

optimal treatment strategy especially for a range of multi-state disease processes.

The remainder of this chapter is organized as follows. In section 2 prognosis of

three diseases are discussed. In section 3 the model is presented in the frame of MDP.

Section 4 deals with the problem of optimal control limit policies. Section 5 addresses

a special case of Markov environment in which computationally feasible solution is

arrived at. A numerical example is provided in the next section to illustrated the

methodology. Followed by a discussion in the final section.

To begin with we shall examine some situations where we observe the progression

of disease through stages.
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5.2 Prognosis of Some Diseases

Alzheimer’s Disease

It is a progressive, degenerative disease that destroys vital brain cells. As each area

of the brain is affected, certain functions or abilities can be lost. The losses affect

the individual’s ability to think, to remember, to understand and to make decisions.

In addition to affecting a person’s mental abilities, Alzheimer’s disease affects moods

and emotions. Along with loss of abilities, changes in behaviour occur. Gradually,

independence disappears. The progression of Alzheimer’s disease varies from person

to person and can span three to twenty years (the average length of the disease is

between eight and twelve years). The progression can be described as a series of

stages, providing a guide to the pattern of the disease, which can help when making

care decisions. One staging system explains the disease in three stages: early, middle

and late. Another staging system, often used by medical professionals, is the Global

Deterioration Scale (also called the Reisberg Scale). This scale divides the disease

into seven stages.

SmallPox

Highly contagious disease Smallpox was the most feared epidemic for centuries. Now it

is eradicated from the most part of the globe by vaccination. Progression of smallpox

has several medically well defined stages of disease.
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Stages Duration Contagious?

1.Incubation period 7 to 17 days Not Contagious
2.Initial symptoms (Prodome) 2 to 4 days Possibly contagious
3.Early rash About 4 days Highly contagious
4.Pustular rash About 5 days Contagious
5.Pustules and scabs About 5 days Contagious
6.Resolving scabs About 6 days Contagious
7.Scabs resolved Not contagious

Incubation period: Exposure to the virus is followed by an incubation period

during which people do not have any symptoms and they may feel fine. The average

incubation period is 12 to 14 days after exposure to the virus but it can range from

7 to 17 days. At this time the infected person is not contagious.

Initial Symptoms - Prodome: The first symptoms of smallpox include: Fever (38

degrees Celcius), malaise, head and body aches, and sometimes vomiting. At this

time people are normally prostrate.

Early rash: The smallpox rash has a characteristic centrifugal distribution.

The rash emerges first as small red spots on the tongue and in the mouth. These

develop into sores and then the sores break open which releases large amounts of the

virus into the mouth and throat. When this happens the person becomes contagious.

About the same time that the sores break open a rash appears on the skin. It starts

on the face, spreads to the arms and legs and then to the hands and feet. The rash

will usually spread to all parts of the body within 24 hours. As the rash appears the

fever may fall and the person may feel a bit better. The rash becomes raised bumps

by the third day of the rash. By the forth day the bumps fill with a thick opaque

fluid and often have a depression in the centre. The fever will often increase again at
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this time and may remain high until scabs have formed over the bumps.

Pustular rash: The bumps become pustules, which are sharply raised and

usually round and firm to the touch.

Pustules and scabs: The pustules begin to form a crust and then a scab. By

the end of the second week after the rash has appeared most of the sores will have

scabbed over.

Resolving Scabs: The scabs will begin to fall off but will often leave marks

on the skin that will become pitted scars. Most of the scabs will have fallen off three

weeks after the rash first appeared. The person is contagious to others until all of the

scabs have fallen off. Scabs Resolved: Once the scabs have fallen off the person is no

longer contagious.

Liver Disease

The prognosis of liver disease has Various stages namely , Inflammation, Fibrosis,

Cirrhosis, Liver cancer and Liver failure. Healthy liver helps fight infections and

cleans our blood. It also helps digest food and stores energy for when we need it. It

has the amazing ability to grow back, or regenerate, when it is damaged. Anything

that keeps the liver from doing its job - or from growing back after injury - may put

our life in danger. Whether the liver is infected with a virus, injured by chemicals,

or under attack from your own immune system, the basic danger is the same - that
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the liver will become so damaged that it can no longer function properly.

Stage 1 . Inflammation: In the early stage of any liver disease, liver may

become inflamed. It may become tender and enlarged. Inflammation shows that

the body is trying to fight an infection or heal an injury. But if the inflammation

continues over time, it can start to hurt liver permanently. When most other parts

of our body become inflamed, we can feel it - the area becomes hot and painful. But

an inflamed liver may cause no discomfort at all. If the liver disease is diagnosed and

treated successfully at this stage, the inflammation may go away.

Stage 2 . Fibrosis: If left untreated, the inflamed liver will start to scar. As

excess scar tissue grows, it replaces healthy liver tissue. This process is called fibrosis.

(Scar tissue is a kind of fibrous tissue.) Scar tissue cannot do the work that healthy

liver tissue can. Moreover, scar tissue can keep blood from flowing through the liver.

As more scar tissue builds up, liver may not work as well as it once did. Or, the

healthy part of liver has to work harder to make up for the scarred part. If the liver

disease is diagnosed and treated successfully at this stage, there’s still a chance that

the liver can heal itself over time.

Stage 3 . Cirrhosis: But if left untreated, liver may become so seriously

scarred that it can no longer heal itself. This stage - when the damage cannot be

reversed - is called cirrhosis. Once one been diagnosed with cirrhosis, treatment will

focus on keeping his/her condition from getting worse. It may be possible to stop or

slow the liver damage. It is important to protect the healthy liver tissue that have

125



left. Cirrhosis can lead to a number of complications, including liver cancer. In some

people, the symptoms of cirrhosis may be the first signs of liver disease.

Stage 4 .Liver cancer: Cancer that starts in the liver is called primary liver

cancer. Cirrhosis and hepatitis B are leading risk factors for primary liver cancer.

But cancer can develop in the liver at any stage in the progression of liver disease

Stage 5 . Liver failure Liver failure means that your liver is losing or has

lost all of its function. It is a life-threatening condition that demands urgent medical

care. The first symptoms of liver failure are often nausea, loss of appetite, fatigue, and

diarrhea. Because these symptoms can have any number of causes, it may be hard

to tell that the liver is failing. But as liver failure progresses, the symptoms become

more serious. The patient may become confused and disoriented, and extremely

sleepy. There is a risk of coma and death. Immediate treatment is needed. The

medical team will try to save whatever part of the liver that still works. If this is

not possible, the only option may be a liver transplant. When liver failure occurs

as a result of cirrhosis, it usually means that the liver has been failing gradually for

some time, possibly for years. This is called chronic liver failure. Chronic liver failure

can also be caused by malnutrition. More rarely, liver failure can occur suddenly, in

as little as 48 hours. This is called acute liver failure and is usually a reaction to

poisoning or a medication overdose.
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5.3 Semi-Markov Model for Treatment Strategy

we shall state the general form of the model that represents the foregoing situation

may be stated as follows:

1. The patient is in a semi-Markov environment{(Jn, Ln), n ≥ 0} on a set K of

countable environment states, where Jnis the state of the environment immedi-

ately after its nth transition epoch Tn, and 0 = T0 < T1 < T2 < · · · . Ln is the

time duration of the patient in the state Jn. Let the state’s kernel be

Gkk(t) = Pr(Tn−1 − Tn ≤ t, Jn+1 = k′/Jn = k)

and let ψkk′ = Gkk′(∞) and Gk(t) =
∑

k′∈K Gkk′(t).

2. During an environment state k, the patient goes through several states of disease

according to a semi-Markov process with a kernel {P k
ij(t), i, j ∈ S} and a set

S = {0, 1, 2, ...} of countable states, where the state 0 represents disease-free

state, and states 1, 2, . . . represent the different adverse disease states of the

patient and the bigger the value, the more serious is the condition.

Let P k
ij = P k

ij(∞), T k
ij(t) = P k

ij(t)/P
k
ij and T k

i (t) =
∑

j∈S P k
ij(t)

3. Suppose that the patient is in environment k, then one of the following two

actions can be chosen if his state transfers to i :

(a) Continue the present treatment strategy (denoted by C) with a cost rate

hk(i);

(b)Initiating a rejuvenating treatment strategy (denoted by R)like chemother-
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apy, radiation, surgery, organ transplant and/or admission in ICU etc., with a

cost rate ck(i), and the time of action R is assumed to be a random variable

with probability distribution function F k(t), and the state after rejuvenation

will be 0, the disease-free state.

4. When the environment state changes from k to k′ if action C or R is chosen then

the patient’s state will change immediately according to a probability qk
ij and

an instantaneous cost Rk(i, C)occurs; while if action R is chosen then within no

time it completed and an instantaneous cost Rk(i, R) occurs.

5. The objective is to minimize the expected discounted total costs with discount

factor α > 0.

The above treatment strategy can be modeled by a semi-Markov decision process

(SMDP) in a semi- Markov environment, presented and studied by Hu (1997), as

follows.

During the environment state k, i.e., Jn = k for some n ≥ 0, it can be modeled by

the following SMDP:

SMDPk := {S, A, pk(j|i, a), T k(.|i, a, j), rk(i, a, j, u)} (5.3.1)

where S is the state space and A ={C, R}is the action set. The transition probability

pk, the distribution function T k of the transition time, and the one step cost function
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rk are given, respectively by

P k(j|i, C) = P k
ij , P k(j|i, R) = δi0

T k(t|i, C, j) = T k
ij(t) , T k(t|i, R, 0) = F k(t)

rk(i, C, j, u) = hk(i)

∫ u

0

e−αtdt = hk(i)α−1(1− e−αt)

rk(i, R, j, u) = Ck(i)

∫ u

0

e−αtdt = Ck(i)α−1(1− e−αt) (5.3.2)

δi0 =

{
1 if j = 0,
0 otherwise

For SMDP in a semi-Markov environment, when the environment state changes from

k to k′ i.e., at Ln+1 for some n ≥ 0 with Jn = k and Jn+1 = k′, the patient’s state

changes immediately to j with a probability q(j|i, a, k, k′) if the patient’s state is i

at Ln+1 − 0 and the last action taken before Ln+1 is ’a’, and in the same time, an

instantaneous cost Rk(i, a)occurs, where

q(j|i, C, k, k′) = qk
ij

q(j|i, R, k, k′) = δj0

To simplify notations, for k ∈ K and s, t ≥ 0, we let

hk(s, t) =
∑

k′
Pr(Tn+1 − Tn > t, Jn+1 = k′/Jn = k)

∫ t

0

e−αudu

+

∫ s+t

s+

∑

k

Pr(Tn+1 − Tn ≤ u, Jn+1 = k′/Jn = k)

∫ u−s

0

e−αldl

= α−1(1− e−αt)[1−Gk(t + s)] + α−1

∫ s+t

s+

(1− e−α(u−s)dGk(u),

gk.k′(s, t) =

∫ s+t

s+

e−α(u−s)dGk′(u), (5.3.3)

gk(s, t) =
∑

k′∈K

gk.k′(s, t) =

∫ s+t

s+

e−α(u−s)dGk(u),
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Let x = (k, s, i) ∈ Ω = {(k, s, i) : k ≥ 0, s ≥ 0, i ∈ S} be the mathematical state

which means that the environment is in state k just since time s ago and the patient’s

state just transfers to i . Then, we define Expected discounted cost occurring when

the state x is reached and action ’a’ is taken,the r(x,a)

r(x,C) = hk(i)

∫ ∞

0

hk(s, t) dT k
i (t) + Rk(i, C)

∫ ∞

0

gk(s, t) dT k
i (t)

r(x,R) = ck(i)

∫ ∞

0

hk(s, t) dF k(t) + Rk(i, R)

∫ ∞

0

gk(s, t) dF k(t) (5.3.4)

and β(x, a, k′) is corresponding to a discount factor depending on the state x,when

the action is ’a’ and the next environment state k′.

β(x, C, k′) =

∫ ∞

0

gkk′(s, t) dT k
i (t)

β(x,R, k′) =

∫ ∞

0

gkk′(s, t) dF k(t)

Now, it follows that V ∗(x), the minimal expected discounted total cost starting from

the initial state x,is the minimal nonnegative solution of the following optimality

equation

V ∗(x) = min{V ∗(x,C), V ∗(x, R)} (5.3.5)

where, x = (k, s, i) ∈ Ω

V ∗(x,C) = r(x,C) +
∑

k′∈K

β(x,C, k′)
∑
j∈S

qk
ij V ∗(k′, 0, j)

+
∑
j∈S

P k
ij

∫ ∞

0

e−αtV ∗(k, s + t, j) dT k
ij(t) (5.3.6)

V ∗(x, R) = r(x,R) +
∑

k′∈K

β(x,R, k′) V ∗(k′, 0, 0)

+

∫ ∞

0

e−αtV ∗(k, s + t, 0) dF k(t)
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are respectively the discounted total cost if action C or R is used in the first horizon

with the mathematical state x and then the optimal policy is used in the remaining

horizons.

5.4 Optimal Control Limit Policies

From the standard results in discrete time Markov decision processes DTMDP, Eqn.( 5.3.5)

can be considered as an optimality equation for an adequate DTMDP with state space

Ω Thus we can consider its n-horizon problem with the optimality equation

V ∗
n (x) = min{V ∗

n (x,C), V ∗
n (x,R)}, where x = (k, s, i) ∈ Ω (5.4.1)

where V ∗
n (x) is the optimal value from state x for n horizons problem, while

V ∗
n (x,C) = r(x,C) +

∑

k∈K

β(x,C, k′)
∑
j∈S

qk
ij V ∗

n−1(k
′, 0, j)

+
∑
j∈S

P k
ij

∫ ∞

0

e−αtV ∗
n−1(k, s + t, j) dT k

ij(t) (5.4.2)

V ∗
n (x,R) = r(x,R) +

∑

k∈K

β(x,R, k′) V ∗
n−1(k

′, 0, 0)

+

∫ ∞

0

e−αtV ∗
n−1(k, s + t, 0) dF k(t)

are the values from state x in n horizons if action C or R is used respectively in

the first horizon and then an optimal policy in the remaining horizons. The initial

conditions are

V ∗
0 (x,C) = V ∗

0 (x, C) = 0
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Let vn(x) = V ∗
n (x,C)− V ∗

n (x, R), v(x) = V ∗(x,C)− V ∗(x,R)}

x = (k, s, i) ∈ Ω

then it follows from the standard theory of DTMDP that

lim
n→∞

V ∗
n (x, a) = V ∗(x, a), a = C,R (5.4.3)

lim
n→∞

vn(x) = v(x)

while the optimal policies can be depicted as f ∗n(x) = C ⇐⇒ vn(x) < 0, f ∗(x) =

C ⇐⇒ v(x) < 0. So,(f ∗N , f ∗N1
, ..., f ∗0 ) is optimal for N-horizon problem; and f ∗ is

optimal for the infinite horizon discounted criterion. A concept of stochastic order

between two distribution functions is needed. For two distribution functions F and

G, F is said to be smaller stochastically than G, denoted by F ¹ G, if F (t) ≥ G(t)

for each t

We have the following familiar result on stochastic order.

For two distribution functions F and G, F ¹ G if and only if
∫∞
−∞ f(t)dF (t) ≤

∫∞
−∞ f(t)dG(t) for each nondecreasing function f .

To obtain some properties of the optimal policies, we introduce the following assump-

tion.

ASSUMPTIONS A

For each k ∈ K,

(A.1)
∑∞

j=m qk
ij nondecreasing in i for each m ≥ 0;

(A.2) hk(i), ck(i), Rk(i, C) andRk(i, R) are all nonnegative and nondecreasing in i ;
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(A.3) both hk(i)− ck(i) and Rk(i, C)−Rk(i, R) are nondecreasing in i ;

(A.4) F ¹ T k
0 ¹ T k

1 ¹ T k
2 . . ., i.e., T k

i is stochastically nondecreasing in i and F k(.) is

the smallest;

(A.5)
∫∞

0
e−at

∑
j∈S V (t, j)pk

ijdT k
ij(t) is nondecreasing in i if V (t, j )is nonnegative and

nondecreasing in j for each t ≥ 0.

As usual, Assumption (A.1) that
∑∞

j=m qk
ij is nondecreasing in i for m > 0 means

that more serious is the condition of patient, faster the critical state reached by

the environment change. Assumption (A.3) that hk(i) − ck(i) is nondecreasing in i

indicates that the treatment cost increases faster than the rejuvenating cost as the

increasing of serious condition of patient , and similar for Rk(i, C)−Rk(i, R). In fact,

Assumptions A.1), (A.2) and (A.3) are those in the literature for the discrete time

model,while Assumption (A.4) is given for the continuous time case here. Assumption

(A.4) means that the sojourn time in a state for patient is nondecreasing as seriousness

of his condition increases, and the rejuvenating time is smaller than the sojourn time

in any state. Assumption (A.5) follows that if T k
ij(t) is absolutely continuous with

probability density function tkij(t) , and
∑∞

j=m pk
ijt

k
ij(t) is nondecreasing in i for each

t ≥ 0,m ≥ 0, which is similar as (A.1). It is easy to see that the latter two conditions

are involved in the state definition.

By the earlier stated result on stochastic order and Assumption A, it is easy to see

that the gkk′(t) is nondecreasing in i which implies that β(x,C, k′) is nondecreasing

in i.
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We have the following well known result on transition probabilities

Let [rij] be a transition probability matrix, then the following two are equivalent:

(1) For each m ≥ 0 ,
∑∞

j=m rij is nondecreasing in i ;

(2) For each nonnegative and nondecreasing function h( j ),
∑∞

j=0 rijh(j) is nonde-

creasing in i.

Then by using the induction method it can be shown from the above result and

Assumption A that all of V ∗
n (x,C), V ∗

n (x,R)andV ∗(x) are nondecreasing in i.

Now for each k ∈ K and s ≥ 0

r(x,C)− r(x,R) = hk(i)

∫ ∞

0

hk(s, t) [dT k
i (t)− dF k(t)]

+ [hk(i)− ck(i)]

∫ ∞

0

hk(s, t) dF k(t)

+ Rk(i, C)

∫ ∞

0

gk(s, t) [dT k
i (t)− dF k(t)]

+ [Rk(i, C)−Rk(i, R)]

∫ ∞

0

gk(s, t) dF k(t)

is also nondecreasing in i due to Assumption A, result on stochastic order and the

fact that both hk(s, t) and gk(s, t) are nondecreasing in t for each k ∈ K, s ≥ 0 . It

should be noted that the latter two terms in V ∗
n (x,R) of Eqn.( 5.4.2) are independent

of i . So vn(x) is nondecreasing in i and thus the following result

Theorem 5.4.1 Under Assumption A, both V ∗
n (k, s, i) and vn(k, s, i) are nondecreas-
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ing in i for each n ≥ 0, k ∈ K, s ≥ 0, so

V ∗
n (k, s, i) = V ∗

n (k, s, i, c), 0 ≤ i ≤ i∗n(k, s)

= V ∗
n (k, s, i, R), i ≥ i∗n(k, s) (5.4.4)

where i∗n(k, s) := min(i|vn(k, s, i) ≥ 0).

Similarly, both V ∗
( k, s, i) and v(k, s, i) are also nondecreasing in i and

V ∗(k, s, i) = V ∗(k, s, i, c), 0 ≤ i ≤ i∗(k, s)

= V ∗(k, s, i, R), i ≥ i∗(k, s) (5.4.5)

where i∗(k, s) := min(i|v(k, s, i) ≥ 0).

The above Theorem states that there exists a state limit i∗(k, s) just since time s

ago for each k ∈ K and s ≥ 0 such that if the patient enters a state i while the

environment is in state k, then the optimal action is to replace the patient by a new

one if and only if the deteriorative degree of the patient is over the limit i∗(k, s), i.e.,

i ≤ i∗(k, s) . Such a policy is called a control limit policy. So the Theorem shows

that there exists optimal control limit policies for both finite and infinite-horizon

problems. In the next section, we will discuss a special case of Markov environment

and get some better results.
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5.5 Markov Environment-A Special Case.

In this section, we consider that the environment is Markov as follows:

Gkk′(t) = ψkk′Gk(t), Gk(t) = 1− e−λkt, t ≥ 0, k and k′ ∈ K. (5.5.1)

In this case, it will be shown that the variable s in state x = (k, s, i ) can be deleted.

Let

tkF =

∫ ∞

0

[1− e−(λk+α)t]dF k(t)

tkij =

∫ ∞

0

[1− e−(λk+α)t]dT k
ij(t)]

tkt =
∑
j∈S

P k
ijt

k
ij, αk

F = 1− tkF , αk
ij = 1− tkij, αk

i = 1− tki (5.5.2)

where F k(t) andT k
ij(t) are defined in Section 1. Then it can be calculated, due to

Eqn.( 5.3.4), that

r(x,C) = r′(k, i, C)e−(λks) =
tki

λk + α
[hk(i) + λkR

k(i, C)]e−(λks)

r(x,R) = r′(k, i, R)e−(λks) =
tkF

λk + α
[ck(i) + λkR

k(i, R)]e−(λks) (5.5.3)

β(x,C, k′) =
λkt

k
i

λk + α
ψkk′e

−λks

β(x, R, k′) =
λkt

k
F

λk + α
ψkk′e

−λks

Based on Eqn.( 5.5.3), it can be shown that eλksV ∗(k, s, i) and therefore eλksV ∗(k, s, i, C),

eλksV ∗(k, s, i, R) are independent of s and thus

eλksV ∗(k, s, i) = V ∗(k, 0, i)

eλksV ∗(k, s, i, C) = V ∗(k, 0, i, C)

eλksV ∗(k, s, i, R) = V ∗(k, 0, i, R)
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We denote by

V ∗(k, i) := V ∗(k, 0, i), V ∗(k, i, C) := V ∗(k, 0, i, C), V ∗(k, i, R) := V ∗(k, 0, i, R)

and

v(k, i) = V ∗(k, i, C)− V ∗(k, i, R)

Then V ∗(k, i) is the minimal nonnegative solution of the following optimality equation

V ∗(k, i) = min{V ∗(k, i, C), V ∗(k, i, R)} (5.5.4)

with corresponding

V ∗(k, i, C) = r′(k, i, C) +
λkt

k
i

λk + α

∑

k′ ∈ K

ψkk′
∑
j ∈ S

qk
ijV

∗(k′, j) +
∑
j ∈ S

pk
ijα

k
ijV

∗(k, j)

V ∗(k, i, R) = r′(k, i, R) +
λkt

k
F

λk + α

∑

k′ ∈ K

ψkk′V
∗(k′, 0) + αk

F V ∗(k, 0) (5.5.5)

Now, the problem is simplified by deleting the time variable s, and we can solve

for V ∗(k, i) only. From the standard results in DTMDP, Eqn.( 5.5.4) can also be

considered as the optimality equation of an adequate defined DTMDP with state

space S ′ = {(k, i) : k ∈ K, i ∈ S} and action set A ={C, R}.

In the case of Markov environment, Assumptions (A.4) and (A.5) can be re-

placed, respectively, by the following weaker ones:

(A.4′) tkF ≤ tk0 ≤ tk1 ≤ tk2 ≤ . . . for each k ∈ K ;

(A.5′)
∑∞

j=m pk
ijα

k
ij is nondecreasing in i for each k ∈ K and m ≥ 0 .

The following corollary can be proved exactly as that of Theorem 5.4.1 from the

above discussions
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Corollary 5.5.1 For the Markov environment case, suppose that Assumptions (A.1),

(A.2), (A.3), (A.4′), (A.5′) hold, then v(k, i) = V ∗(k, i, C)−V ∗(k, i, R) is nondecreas-

ing in i and

V ∗(k, i) = V ∗(k, i, O), i < i∗(k)

= V ∗(k, i, R), i > i∗(k) (5.5.6)

where i∗(k, i) = min{i|v(k, i) ≥ 0}

The corollary says that the state limit is also independent of the time variable s, that

is, i∗(k, s) = i∗(k).

Remark 5.5.1 (1) If tkF ≤ tk0 is not true, then it can be shown similarly that Corol-

lary 5.5.1 holds in i ≥ Jk := min{i|tki ≥ tkF} and i∗(k) should be redefined by

i∗(k) := min{i ≥ Jk|v(k, i) ≥ 0}. In this case, the optimal policy is to operate if

Jk ≤ i < i∗(k) and to replace if i ≥ i∗(k), while it is not known what optimal action

is when 0 ≤ i < Jk. We call such a policy an extended control limit policy.

(2) Due to the expressions of r (x, a) of Eqn. 5.5.3, one can know that both the

optimal value and the optimal policies depend on T k
ij(t) only through tkij. This is to say

that the model with a Markov environment is robust with respect to the distribution

function T k
ij(t) of the time of state transition for the patient.

Moreover, if

P k
ij(t) = P k

ijT
k
i (t), ∀ i, j, k
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k then, we can assume that the patient is Markov, i.e.,

T k
i (t) = 1− e−µk

i t

where k
i and tki are determined by each other with

tki =
λk + α

λk + α + µk
i

µk
i = (λk + α)

1− tki
tki

. In Assumption (A.4′), tki is nondecreasing in i, so
∑∞

j=m P k
ijα

k
ij =

∑∞
j=m P k

ij(1− tkij)

may not be nondecreasing. The following lemma gives a sufficient condition for it.

Lemma 5.5.1 Suppose that T k
ij(t) = T k

i (t) for all i, j ∈ S, k ∈ K and m ≥ 0, then

∑∞
j=m pk

ijα
k
ij is nondecreasing in i if and only if

tki+1 − tki
1− tki

≤
∑∞

j=m P k
i+1,j −

∑∞
j=m P k

i,j∑∞
j=m P k

ij

(5.5.7)

Eqn. ( 5.5.7) means that the increasing speed of
∑∞

j=m P k
ij in i for each m ≥ 0 is

larger than or equals to the decreasing speed of (1− tki ).

Proof: It follows the given condition that

tki,j = tki , αk
i,j = αk

i = 1− tki ,

∞∑
j=m

P k
ijα

k
ij = (1− tki )

∞∑
j=m

P k
ij

It is obvious that for two nonnegative functions h(i) and g(i), if h(i) is non-increasing

while g(i) is nondecreasing, then h(i),g(i) is nondecreasing if and only if

h(i)

h(i + 1)
≤ g(i + 1)

g(i
or

h(i)− h(i + 1)

h(i + 1)
≤ g(i + 1)− g(i)

g(i
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which immediately implies the Lemma 4.1. The optimal policies f ∗n and f ∗ are charac-

terized by i∗n(k) and i∗(k), respectively.We have the following result about the upper

bound of these numbers, which is useful for the state reduction problem discussed

below.

Lemma 5.5.2 Under the conditions given in Corollary 5.5.1, if tk0 = tkF , then

i∗n(k) ≤ i∗0(k) := min{i|4r(k, i) ≥ 0} and i∗(k) ≤ i∗0(k) where 4r(k, i) = r′(k, i, C)−

r′(k, i, R).

Proof: If tk0 = tkF , then αk
0 = αk

F . So it follows from Theorem 5.4.1 that

tki
∑
j ∈ S

qk
ijVn(k′, j)− tkF Vn(k′, 0) ≥ tkF

∑
j ∈ S

qk
ijVn(k′, 0)− tkF Vn(k′, 0) = 0

∑
j ∈ S

pk
ijα

k
ijVn(k, j)− αk

F Vn(k, 0) ≥
∑
j ∈ S

pk
0jα

k
0jVn(k, j)− αk

F Vn(k, 0)

= αk
0Vn(k, 0)− αk

F Vn(k, 0) = 0

So, we can get that vn(k, i) ≥ 4r(k, i), which implies the lemma immediately. As-

sumption (A.3) is about the cost rate, we now replace it by a new one about the

expected total cost in a state. (A.3′) for each k ∈ K, both hk(i)tki − ck(i)tkF and

Rk(i, C)tki − Rk(i, R)tkF are nondecreasing in i . Here, hk(i)tki and ck(i)tkF are re-

spectively the expected treatment and rejuvenating treatment costs in state i when

the environment state is k. So the nondecreasingness of hk(i)tki − ck(i)tkF means that

the expected treatment cost increases faster than the expected rejuvenating treatment

cost as the patient’s state increases. The nondecreasingness of Rk(i, C)tki −Rk(i, R)tkF

has a similar meaning.
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Theorem 5.5.1 Under Assumptions (A.1), (A.2), (A.3,), (A.4′) and (A.5′), for

each k ∈ K and n ≥ 1, vn(k, i) := V ∗
n (k, i, C) − V ∗

n (k, i, R) is nondecreasing in

i , so vn(k, i) < 0 iff i < i∗n(k) := min{i|vn(k, i) ≥ 0}; moreover, v(k, i) :=

V ∗(k, i, C) − V ∗(k, i, R) is also nondecreasing in i , and v(k, i) < 0 iff i < i∗(k) :=

min{i|v(k, i) ≥ 0}. Thus, there exist optimal control limit policies.

Proof: It should be noted first that under the given conditions,

(λk + α)4r(k, i) = [hk(i)tki − ck(i)tkF ] + λk[R
k(i, C)tki −Rk(i, R)tkF ]

is nondecreasing in i . Then the theorem can be proved exactly as that of Theorem

5.4.1.

Remark 5.5.2 The above theorem shows the existence of optimal control limit poli-

cies whose state limit i∗(k) depends only on the environment state k. Thus, the

Markov environment case is more simpler than the semi-Markov environment case.

Now we reduce the number of states of the patient under the Markov environment

(see Eqn.( 5.5.1)). First, we suppose that

i∗n(k) ≤ j(k), n ≥ 0, k ∈ K (5.5.8)

for some j (k), where i∗n(k) is defined in Theorem 5.5.1 .

By Theorem 5.5.1, we have

[V ∗(k, i) = V ∗(k, i, R) = r′(k, i, R) + V0(k), i ≥ j(k), k ∈ K (5.5.9)
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Where

V0(k) =
λkt

k
F

λk + α

∑

k′∈K

ψkk′V
∗(k′, 0) + αk

F V ∗(k, 0).

Thus one can get by Eqn.( 5.5.4) for i ≥ 0 as follows:

V ∗(k, i, C) = r′(k, i, C) +
λkt

k
i

λk + α

∑

k′∈K

ψkk′{
j(k′)−1∑

j=0

qk
ijV

∗(k′, j)

+
∞∑

j=j(k′)

qk
ij[r

′(k, i, R) + V0(k
′)]}

+

j(k)−1∑
j=0

pk
ijα

k
ijV

∗(k, j) +
∞∑

j=j(k)

pk
ijα

k
ij[r

′(k, i, R) + V0(k)]

= r′(k, i, C)
λkt

k
i

λk + α

∑

k′∈K

ψkk′

∞∑

j=j(k′)

qk
ij[r

′(k′, j, R)− r′(k′, j(k′), R)]

+
∞∑

j=j(k′)

pk
ijα

k
ij[r

′(k, j, R)− r′(k, j(k), R)]

+
λkt

k
i

λk + α

∑

k′∈K

ψkk′ [

j(k′)−1∑
j=0

qk
ijV

∗(k′, j) +
∞∑

j=j(k′)

qk
ijV

∗(k′, j(k′))]

+

j(k)−1∑
j=0

pk
ijα

k
ijV

∗(k, j) +
∞∑

j=j(k)

pk
ijα

k
ijV

∗(k, j(k)) (5.5.10)

We define that

q̃kk′
ij =

{
qk
ij, When j < j(k′)∑∞

j=j(k′) qk
ij When j = j(k′)

p̃k
ij =

{
pk

ij, When j < j(k′)∑∞
j=j(k′) pk

ij When j = j(k′)

T̃ k
ij(t) =

{
T k

ij(t), When j < j(k′)∑∞
j=j(k) pk

ijT
k
ij(t)/p̃

k
i,j(k) When j = j(k′) (5.5.11)

Thus
∞∑

j=j(k)

pk
ijα

k
ij = p̃k

i,j(k)α̃
k
i,j(k)
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Where α̃k
i,j(k) is defined as αk

i,j(k) with T k
ij(t) being replaced by T̃ k

ij(t) . Let

h̃k(i) = hk(i) + λk

∑

k′∈K

ψkk′

∞∑

j=j(K′)

qk
ij

tk
′

F

λk′ + α
[ck′(j)− ck′(j(k′))]

+ (tki )
−1tkF

∞∑

j=j(K′)

pk
ijα

k
ij[c

k′(j)− ck′(j(k′))]

R̃k(i, C) = Rk(i, C) +
∑

k′∈K

ψkk′

∞∑

j=j(k′)

qk
ij

tk
′

F

λk′ + α
λk′ [R

k′(j, R)−Rk′(j(k′), R)]

+ (tki )
−1tkF

∞∑

j=j(K)

pk
ijα

k
ij[R

k(j, R)−Rk(j(k), R)]

r̃(k, i, C) =
tki

λk + α
[h̃k(i) + λkR

k(i, C)]

It is easy to see that r̃(k, i, C) is still nondecreasing in i for each k under Assumption

A. Then for i ≥ 0,

V ∗(k, i, C) = r̃(k, i, C) +
λkt

k
i

λk′α

∑

k′∈K

ψkk′

j(k′)∑
j=0

q̃kk′
ij V ∗(k′, j) +

j(k)∑
j=0

p̃k
ijα̃

k
ijV

∗(k, j).

(5.5.12)

Now, we construct a new rejuvenating model (NRM), which is similar as the original

rejuvenating model (ORM) excepts that

1 the state set of the patient in environment k is Sk = {0, 1, ..., j(k)} for k ∈ K;

2 the parameters pk
ij, T k

ij(t), qk
ij, hk(i) and Rk(i, C) are replaced by p̃k

ij,

T̃ k
ij(t), q̃k

ij, h̃k(i) and R̃k(i, C), respectively, which are defined the above;

3 the patient must be given rejuvenating treatment in state j(k) during environ-

ment state k (due to Eqn.( 5.5.8)).
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From the above discussions, we know that the NRM and the ORM are equivalent un-

der the meanings that the optimal objective values are identical and their optimality

equations are equivalent for both the finite- and infinite-horizon problems. So their

optimal policies are identical. The difference between them is that the number of

patient’s states is finite for NRM. Certainly, the problem with finite states is simpler

than that with infinite states, e.g., the computation for the case of finite states is

feasible while that for the case of infinite states should be approximated.

When j(k) ≤ j∗ for some j∗, it can take the state set as Sk = {0, 1, ..., j∗}, which

is irrespective of k. In the remaining of this section, we consider two further special

cases. The first is that the state of patient itself is Markov, i.e.,

T k
ij(t) = 1− e−µk.it, F k(t) = 1− e−µF (t (5.5.13)

then αk
ij =

µk.i

λk + µk.i + α
, tkij =

λk + α

λk + µk.i + α

The second further special case is that the environment is a Poisson process with rate

, i.e., the Markov environment (see Eqn.( 5.5.1) with

ψk,k′ = 1 Gk(t) = 1− e−λt, t ≥ 0, k ∈ K. (5.5.14)

Moreover, it is assumed that each adverse factor increases the degree of the seriousness

in the condition of the patient with a probability distribution {qj, j ≥ 0} as follows:

qk
ij = 0 for j < 0 and qk

ij = qj−1 for j ≥ i (5.5.15)

Furthermore, all pk
ij, T

k
ij, h

k(i), ck(i), Rk(i, C) and Rk(i, R) are independent of k and

will be denoted by pij , Tij(t) and so on, by only deleting k in the original notations.
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Then tkij, t
k
i , α

k
ij, α

k
i , t

k
F , αk

F are also independent of k and will be denoted by tij , ti

and so on.

Under these conditions, it can be shown that V ∗(k, i) and therefore V ∗(k, i, C) and

V ∗(k, i, R) are independent of k. So i∗(k) = i∗ is also independent of k.

5.6 Numerical Example

Consider a numerical example where the environment is a Markov process having two

states with parameters as follows

ψkk′ =

(
0.64 0.36
0.57 0.43

)
, λ1 = 0.076, λ2 = 0.093

and the state transition probabilities for the system are

(P 1
ij) =




0.68 0.26 0.06 0.0 0.0
0.04 0.68 0.22 0.00 0.0
0.0 0.07 0.65 0.28 0.00
0.0 0.0 0.03 0.65 0.32
0.0 0.0 0.0 0.0 1.0




, (P 2
ij) =




0.83 0.15 0.02 0.0 0.0
0.03 0.72 0.18 0.07 0.0
0.0 0.04 0.67 0.18 0.11
0.0 0.0 0.05 0.61 0.34
0.0 0.0 0.0 0.0 1.0




while two probability systems caused by the environment changes are

(q1
ij) =




0.58 0.28 0.14 0.00 0.0
0.06 0.48 0.28 0.18 0.0
0.0 0.04 0.41 0.27 0.18
0.0 0.0 0.0 0.42 0.58
0.0 0.0 0.0 0.0 1.0




, (q2
ij) =




0.64 0.26 0.10 0.0 0.0
0.06 0.55 0.27 0.12 0.0
0.0 0.06 0.47 0.29 0.18
0.0 0.0 0.0 0.48 0.52
0.0 0.0 0.0 0.0 1.0




The cost rate funcitons are as follows:

h1(i) = 18 + 2i, c1(i) = 46 + i, R1(i, C) = 55 + i, R1(i, R) = 0

h2(i) = 15 + 2i, c2(i) = 41 + i, R2(i, C) = 50 + i, R2(i, R) = 0

145



Now, it is assumed that the continuous discount factor is α = 0.45, and

(t1F , t11, t
1
2, t

1
3, t

1
4) = (0.46, 0.73, 0.74, 0.76, 0.78, 0.80),

(t2F , t21, t
2
2, t

2
3, t

2
4) = (0.57, 0.78, 0.79, 0.80, 0.82, 0.86).

Thus for i=0,1,2,3,4

r′(1, i, C) =
t1i

λ1 + α
(21.496 + 2.076i), r′(2, i, C) =

t1i
λ1 + α

(18.731 + 2.093i),

r′(1, i, R) =
t1F

λ1 + α
(46 + i), r′(2, i, R) =

t1F
λ1 + α

(41 + i),

Now we compute the finite-horizon optimal values Vn(k, i) iteratively by

Vn+1(k, i, C) = r′(k, i, C) +
λkt

k
i

λk′ + α

∑

k′∈K

ψkk′
∑
j∈S

qk
ijVn(k′, j) +

∑
j∈S

pk
ij(1− tkj )Vn(k, j),

Vn+1(k, i, R) = r′(k, i, R) +
λkt

F
i

λk′ + α

∑

k′∈K

ψkk′Vn(k′, 0) + (1− tkF )Vn(k, 0),

Vn+1(k, i) = min{Vn+1(k, i, C)− Vn+1(k, i, R)}

for n ≥ 0 with V0(k, i, C) = V0(k, i, R) = 0, ∀ k, i (5.6.1)

The numerical results are shown in Table 1 and Table 2 when n=26

|Vn+1(k, i, a)− Vn(k, i, a)| ≤ 0.01 for all (k, i, a),

so we take the optimal valueV ∗(k, i) = V27(k, i). Now v(k, i) is shown in the last line

of Table (5.1) and thus the optimal limits for both the environments 1 and 2 is 3.

Namely,

v∗(1) = 3, v∗(2) = 3.

The optimal policy in this example, is to initiating a rejuvenating treatment strategy

if and only if the state of the patient reaches or exceeds 3 in both the environments

1 and 2.
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Table-5.1 Computed Values of Vn(k, i)
Vn(1, i) (Environment.1) Vn(2, i) (Environment.2)

n i = 0 1 2 3 4 i = 0 1 2 3 4
1 129.69 144.16 161.09 178.72 197.02 105.87 119.20 132.83 148.57 168.85
2 225.48 247.43 270.47 291.30 295.11 195.97 219.98 246.56 273.52 284.67
3 297.28 324.65 346.80 384.85 402.44 289.54 324.08 358.84 389.73 412.60
4 355.19 384.76 407.90 459.72 477.68 350.36 389.05 428.46 460.69 464.82
5 398.77 429.02 451.97 510.15 515.60 391.23 431.43 470.73 494.62 498.75

6 430.30 459.77 480.78 538.91 542.71 418.94 458.48 496.05 518.92 523.05
7 452.28 480.17 499.12 557.72 561.52 437.53 475.89 512.38 535.75 539.89
8 467.18 493.55 511.09 570.46 574.26 449.91 487.25 523.23 547.14 551.27
9 477.14 502.36 519.05 578.96 582.76 458.13 494.74 530.46 554.73 558.86
10 483.76 508.19 524.34 584.61 588.42 463.59 499.70 535.29 559.78 563.91

11 488.15 512.05 527.86 588.37 592.17 467.21 502.99 538.50 563.14 567.27
12 491.07 514.62 530.21 590.86 594.66 469.61 505.17 540.63 565.36 569.49
13 493.01 516.32 531.76 592.52 596.32 471.21 506.62 542.05 566.84 570.97
14 494.30 517.45 532.79 593.61 597.42 472.27 507.59 542.99 567.82 571.95
15 495.15 518.20 533.48 594.34 598.15 472.97 508.23 543.61 568.48 572.61

16 495.72 518.70 533.94 594.83 598.63 473.44 508.65 544.03 568.91 573.04
17 496.10 519.03 534.24 595.15 598.95 473.75 508.93 544.30 569.20 573.33
18 496.35 519.25 534.44 595.36 599.17 473.95 509.12 544.49 569.39 573.52
19 496.51 519.40 534.57 595.51 599.31 474.09 509.25 544.61 569.51 573.64
20 496.62 519.50 534.66 595.60 599.40 474.18 509.33 544.69 569.60 573.73

21 496.70 519.56 534.72 595.66 599.46 474.24 509.38 544.74 569.65 573.78
22 496.74 519.61 534.76 595.70 599.51 474.28 509.42 544.78 569.69 573.82
23 496.78 519.63 534.79 595.73 599.53 474.31 509.44 544.80 569.72 573.85
24 496.80 519.65 534.80 595.75 599.55 474.33 509.46 544.82 569.73 573.86
25 496.81 519.67 534.81 595.76 599.56 474.34 509.47 544.83 569.74 573.87

26 496.82 519.67 534.82 595.77 599.57 474.34 509.48 544.84 569.75 573.88
v(k, i) -87.54 -68.49 -57.15 2.28 13.99 -83.01 -52.01 -20.78 5.58 16.40

5.7 Discussion

In this chapter, we studied an optimal treatment strategy of a patient in a semi-

Markov environment. It considered the performance/health status both by the patient
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itself in a semi-Markov setup and by the influence of the environment to the patient.

For both the finite- and infinite-horizon discounted criterions, it was shown that

there exist optimal control limit policies. A special case for a Markov environment

was discussed.When the control limits are bounded for each environment state, the

countable states of the patient was simplified equivalently to a finite one. Finally, a

numerical example was illustrated to prove the correctness and validity of the analysis.
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A.

Concluding Remarks
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Modeling of any system, physical or biological, involve several variables which

are random and most of the measurements of these variables are subjected to random

measurement errors. Hence almost all the models describing the real life situations

are stochastic models. The stochastic models have become an important branch of

study in many scientific areas. They can be very effectively used for the improved

understanding and interpretation of clinical trials as well as for life studies. The

work reported in this thesis augment great deal towards the development of modern

methodologies in stochastic models on clinical/survival trials.

We presented a method for analyzing longitudinal data that imposes minimal

structure or restrictions on the mean responses over time and on the covariance among

the repeated measures in Chapter 3. The method focusses on analyzing response

profiles and can be applied to longitudinal data when the design is balanced, with the

timing of the repeat measures common to all individuals in the study. This is method

of modeling mean response. Although the method is applied to problems drawn from

the health sciences they apply equally to the other areas of application. A numerical

illustration with recent stock market data, emphasis the point. Application of method

in problems in education, psychology, and other branches of the behavioral and social

sciences is an interesting research problem in this regard.

A distinctive characteristic of survival data is that the event of interest may

not be observed on every observational unit. This feature is known as censoring. In

clinical and epidemiological studies, censoring is mainly caused by time restriction

of the study. Chapter 4 contributes a clinical study model under a more flexible
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and practical censoring scheme namely Type II progressive interval censoring with

random removals( PICR), based on probability structure of Generalized Exponential

Distribution. The Type II PICR inherits wonderful features of type II censoring,

interval censoring and progressive censoring with the provision to discard the subjects

at end of any interval at will. The Generalized Exponential Distribution has some

interesting features very similar to those of Weibull family and gamma family but

a nice alternative to them in many situations. Maximum likelihood estimation of

parameters of the generalized exponential model is discussed and their properties are

studied in this Chapter. An illustrative example towards the application of the model

is also given. The generalized exponential model is suggested as a better alternative

for analysis of life time data.Thus we showed that one can assume an underlying

random effect model with a parametric distribution such as generalized exponential

and apply this methodology in a clinical or biological setting. One may set out to do

this with added proviso that assuming prior information, one can then further extend

the methodological application to the Bayesian framework.

The Markov decision processes are simple yet powerful models for sequential

decision problems. In our proposed model of optimum treatment strategy in the last

chapter, we assume that there is a state space; at each time the system occupies a

certain state, and the decision maker, or controller, has a set of feasible actions for

that state that can be applied. Semi-Markov stochastic model is a useful tool for

predicting the evolution of infection of infectious diseases and the probability of an

infected patients survival. In SMDP models allow patients’ state transition to occur
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in continuous time and allow to assume any probability distribution for sojourn time

in a state.

In this chapter we proposed an optimal treatment strategy for subject/patient

lives in varying random environments, imparting significant effects on performance/health

status; using semi-markov decision process. The environment is modelled as a Semi-

Markov Process and in each environment state, the patient goes through several states

of disease according to a Semi-Markov Process. A special case for a Markov environ-

ment was discussed. When the control limits are bounded for each environment state,

the countable states of patient was simplified equivalently to a finite one. Finally, a

numerical example was illustrated to prove the correctness and validity of the anal-

ysis. Further studies should include the properties of monotone of optimal policies,

rejuvenating treatments with varying success rate and so on. It is likely that the

semi-Markov models will be more and more applied to epidemiology and this will be

facilitated by the development of more flexible estimation methods, increasing power

of computing and the availability of data from large cohort studies.

Obviously this model does not show all the potential of the semi-Markov envi-

ronment. Indeed, by means of the backward recurrence time process it is possible to

assess different transition probabilities as a function of the duration inside the states.

Moreover, it is possible to attach a reward structure to the process that allows the

possibility of doing a cost analysis that considers, for example, the cost of antiretro-

viral treatment and/or other social costs related to the dynamic evolution of the HIV

infection. These features will be the object of future research.
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#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#include<math.h>
#include<iostream.h>

#define alpha 0.045
double *v_alloc(int n)
{ double *v;

v=(double *) calloc(n,sizeof(double));
if(v==NULL)
{ fprintf(stderr,"could not allocate memory");

exit(1);}
return v;

}
void init_vector(double *vector, int NoOfElements)
{ int i;

for(i=0; i< NoOfElements; i++)
    vector[i] = 0.0;}

double **m_alloc(int n, int k)
{ int i;

double **mat;
mat=(double **) calloc(n,sizeof(double *));
if(mat == NULL) 
{

fprintf(stderr,"could not allocate memory");
exit(1);}

for(i=0; i<n; i++) 
{

mat[i]=(double *) calloc(k,sizeof(double));
if(mat[i] == NULL) 
{ fprintf(stderr,"could not allocate memory");

exit(1);}}
return mat;}

void init_matrix(double **matrix, int dim1, int dim2)
{ int i, j;

for (i=0; i<dim1; i++)
for(j=0; j<dim2; j++)

matrix[i][j] = 0.0;}
void free_matrix(double **matrix, int dim1)



{ int i;
for (i=0; i<dim1; i++)

free(matrix[i]);
free(matrix);}

double ***m3_alloc(int n, int k, int v)
{

int i,j;
double ***mat;
mat=(double ***) calloc(n,sizeof(double **));
if(mat == NULL) 
{ fprintf(stderr,"could not allocate memory");

exit(1);}
for(i=0; i<n; i++) 
{ mat[i]=(double **) calloc(k,sizeof(double *));

if(mat[i] == NULL) 
{ fprintf(stderr,"could not allocate memory");

exit(1);}

for(j=0; j<k; j++) 
{ mat[i][j]=(double *) calloc(v,sizeof(double));

if(mat[i][j] == NULL) 
{ fprintf(stderr,"could not allocate memory");

exit(1);}}}

return mat;}
void init_3dimmatrix(double ***matrix, int dim1, int dim2, int dim3)
{ int i, j, k;

for (i=0; i<dim1; i++)
    for(j=0; j<dim2; j++)

for(k=0; k<dim3; k++)
matrix[i][j][k] = 0;}

void free_3dimmatrix(double ***matrix, int dim1, int dim2)
{ int i;

for (i=0; i<dim1; i++)
    free_matrix(matrix[i],dim2);
free(matrix);}

double mcm(double *m1, double *m2, int n)
{ double sum=0.0;

for(int i=0; i<n; i++)
sum = sum + m1[i] * m2[i];

return sum;}



int main()
{ int i, j, k;

double *O1, *R1, *O2, *R2;

double phi[2][2]=
{ {0.72, 0.28},

{0.57, 0.43}};
double lamda[2]={0.076, 0.091};
double P[2][5][5]={{ {0.66, 0.23, 0.11, 0.0,  0.0},

{0.08, 0.62, 0.26, 0.04, 0.0},
{0.0,  0.13, 0.53, 0.28, 0.06},
{0.0,  0.0,  0.12, 0.65, 0.23},
{0.0,  0.0,  0.0,  0.0,  1.0},},

{ {0.78, 0.2,  0.02, 0.0,  0.0},
{0.06, 0.64, 0.28, 0.02, 0.0},
{0.0,  0.12, 0.58, 0.24, 0.06},
{0.0,  0.0,  0.14, 0.61, 0.25},
{0.0,  0.0,  0.0,  0.0,  1.0},}};

double Q[2][5][5]={{ {0.54, 0.24, 0.16, 0.06, 0.0},
{0.11, 0.56, 0.28, 0.05, 0.0},
{0.0,  0.07, 0.51, 0.27, 0.15},
{0.0,  0.0,  0.0,  0.42, 0.58},
{0.0,  0.0,  0.0,  0.0,  1.0},},

{ {0.64, 0.26, 0.1,  0.0,  0.0},
{0.06, 0.55, 0.27, 0.12, 0.0},
{0.0,  0.10, 0.57, 0.29, 0.04},
{0.0,  0.0,  0.0,  0.48, 0.52},
{0.0,  0.0,  0.0,  0.0,  1.0},}};

double T[2][6]=
{ { 0.82, 0.83, 0.85, 0.86, 0.90, 0.49},

{ 0.80, 0.81, 0.82, 0.84, 0.88, 0.53}};
O1=v_alloc(5);
init_vector(O1, 5);
O2=v_alloc(5);
init_vector(O2, 5);
R1=v_alloc(5);
init_vector(R1, 5);
R2=v_alloc(5);
init_vector(R2, 5);



clrscr();
double R[2][5];
double r[2][5];
cout<<"\n 1&&";
for(i=0; i<5; i++)
{ O1[i] = (T[0][i]/(lamda[0]+alpha))*(25+3.08*i);

R[0][i] = (T[0][5]/(lamda[0]+alpha))*(55+i);
  r[0][i] = O1[i];//< R[0][i] ? O1[i]: R[0][i];
  printf("%6.2f", r[0][i]);

cout<<"&";} cout<<"&";
for(i=0; i<5; i++)
{ O2[i]=(T[1][i]/(lamda[1]+alpha))*(24.5+3.1*i);

R[1][i]=(T[1][5]/(lamda[1]+alpha))*(50+i);

 r[1][i] = O2[i] ;//< R[1][i] ? O2[i]: R[1][i];
 printf("%6.2f", r[1][i]);
 cout<<"&";}

double VO1[5][5];
double VR1[5][5];
double v[2][5];
cout<<"\n 2&";

for(k=0; k<2; k++)
{ cout<<"&";

for(i=0; i<5; i++)
{ VO1[k][i] = r[k][i] + ((1-T[k][i])*mcm(r[k], P[k][i], 5))

  + (lamda[k]*T[k][i])/(lamda[k]+alpha)*(phi[k]
[0]*mcm(r[0], Q[k][i], 5)

  + phi[k][1]*mcm(r[1], Q[k][i], 5));

VR1[k][i] = R[k][i] + (lamda[k]*T[k][5])/(lamda[k]+alpha)*(phi[k][0]* 
r[0][0]

  + phi[0][1] * r[1][0]) + (1 - T[k][5])* r[0][0] ;

  v[k][i]=VO1[k][i]<VR1[k][i]? VO1[k][i]:VR1[k][i] ;
  printf("%6.2f", v[k][i]);

cout<<"&";}}



int flag; 
  int n;
for(n=3;n<30 ;n++)

{ printf("\n%2d", n);
for(k=0; k<2; k++)
{       cout<<"&";

for(i=0; i<5; i++)
{  VO1[k][i] = r[k][i] + ((1-T[k][i])*mcm(v[k], P[k][i], 5))

  + (lamda[k]*T[k][i])/(lamda[k]+alpha)*(phi[k]
[0]*mcm(v[0], Q[k][i], 5)

  + phi[k][1]*mcm(v[1], Q[k][i], 5));
  VR1[k][i] = R[k][i] + (lamda[k]*T[k][5])/(lamda[k]

+alpha)*(phi[k][0]* v[0][0]
  + phi[0][1] * v[1][0]) + (1 - T[k][5])* v[0][0] ;

v[k][i]=VO1[k][i]<VR1[k][i]? VO1[k][i]:VR1[k][i] ;

printf("%6.2f", v[k][i]);
 cout<<"&";} }

/*if(flag==10) break;
flag=0;

for(k=0; k<2; k++)
{for(i=0; i<5; i++)
       { int a=v[k][i]*100;

int b=v[k][i]*100; }}
      int d=a-b;
      if(d==1 || d==0) flag++;

for(k=0; k<2; k++)
for(i=0; i<5; i++)

v[k][i]= VO1[k][i];*/ }

cout<<"\n\n ";
for(k=0; k<2; k++)
{       cout<<"& ";

for(i=0; i<5; i++)
{printf("%6.2f ", VO1[k][i]-VR1[k][i] );
cout<<"&"; } }

cout<<"\n\n     Optimum attained at "<<(n-1)<< "th iteration";
getch();
return 0;

}
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