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Introduction

Ever since Paul Dirac introduced the so-called delta function and

made use of the notion in the study of quantum mechanics in the

late 1920’s attempts were made by several mathematicians to give

a mathematical basis for the idea. This led to the formulation and

study of the concept called ‘generalized functions’. Early attempts

in this direction were made by Bochner S. in 1932 and Sobolev S. L.

in 1936. With the publication of the monograph ‘Theorie des Distri-

butions’ by L. Schwartz in 1950–51, the study of generalized func-

tions attained wide popularity. The first major contribution in this

area which can be qualified as a milestone was a book of the same

name in two volumes by L. Schwartz [37]. From then on, the theory

of generalized functions was developed intensively by many math-

ematicians. The application of integral transforms to generalized

functions has been effectively used to solve problems which can be

expressed in terms of differential equations or boundary value prob-

lems involving generalized functions.

Several attempts are being made to develop the theory of gen-

eralized functions and application of integral transforms to general-

ized functions. Zemanian [50] has extended several integral trans-

forms to generalized functions using the method of adjoints. The

idea of Boehmians motivated by T. K. Boehme [3] and studied and

developed by P. Mikusinski [21] and others has been used for the

application of integral transforms to generalized functions. J. F.
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Colombeau [7] has studied the generalized functions by admitting

an operation of multiplication. Recently, the theory and applica-

tion of more general objects than generalized functions called hy-

perfunctions have been developed by Sato [34], Zahrinov [48], Ko-

matsu et al [16].

The extensions of various integral transforms like the Laplace,

the Hankel, the Mellin, the Weierstrass and the convolution trans-

forms have been done by Zemanian [50]. V. S. Vladimirov [44] has

studied the properties of generalized functions, the application of

integral transforms and Tauberian theorems for the Laplace trans-

form. H. H. Schaefer [36], Anthony L. Peressini [29] have stud-

ied ordered topological vector spaces, the order relation being in-

troduced through the notion of positive cones. Based on the works

of Zemanian and Vladimirov we have applied the notion of ordered

topological vector spaces to the test function spaces and their duals.

The space D of smooth functions with compact support in Rp

with the inductive limit topology and its dual D′, the space of distri-

butions are the basic background in the study of distribution theory

[33]. It has been observed that when D′ is ordered by the dual cone

C ′ of the cone of non-negative functions in D, D+, the order dual

of D is a proper subset of D′ with the topology of pointwise con-

vergence assigned to D′. However, when the topology of bounded

convergence is assigned to D′, since the dual cone C ′ is a normal

cone it follows that D′ is a reflexive space ordered by a closed nor-

mal cone, the order dual and the topological dual of D coincide and
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that D′ is both order complete and topologically complete. Thus D′

is a vector lattice.

We have applied the above idea to the spaces E , ζ , La,b, L(w, z),

Mm
a,b,M

m
a,b,c and to the corresponding dual spaces E ′, ζ ′,L′a,b,L′(w, z),

(Mm
a,b)

′, (Mm
a,b,c)

′ and extended the Fourier, the Laplace, the Stieltjes

transforms to the corresponding dual spaces. The order properties

and continuity properties of the above integral transforms and the

inverses defined on these dual spaces with respect to the topology

of bounded convergence are subjected to study. Comparison of the

solutions of differential equations which can be solved by the appli-

cation of the above integral transforms to generalized functions is

done using illustrations.

The preliminary chapter contains the definitions and basic prop-

erties of ordered topological vector spaces, order topology, multi-

normed spaces, countable union spaces, Schwartz topology on D.

In the first chapter, the notions of ordered multinormed space,

ordered countable union space, normal cone, b-cone, topology of

bounded convergence in the dual of ordered multinormed space, or-

dered countable union space are defined. The convolution and direct

product of elements in D′ are defined and their order properties and

continuity properties are studied. The compatibility of the above

operations with the lattice properties in D′ is also proved.

In the second chapter, the spaces E , ζ and their duals E ′, the

space of distributions with compact support and ζ ′, the space of tem-

pered distributions are studied as ordered topological vector spaces.
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E ′, ζ ′ are equipped with the topology of bounded convergence. Or-

der property and continuity of convolution and direct product on E ′,

ζ ′ are proved. Fourier transform is applied to the elements of ζ ′.

Comparison of fundamental solutions of two differential equations

which can be solved by the application of the Fourier transform is

also done.

In the third chapter, the ordered multinormed spaces La,b, the

ordered countable union space L (w, z) and their respective duals

L′a,b, L′(w, z) with the topology of bounded convergence assigned

to them are studied. The Laplace transform is applied to the ordered

topological space of Laplace transformable functions and the order

properties of the transform and its inverse are studied. Comparison

of the solutions of differential equations solved by the application

of Laplace transform is also done.

In the fourth chapter the Stieltjes transform is applied to the or-

dered linear space (Mm
a,b)

′ of generalized functions to which the

topology of bounded convergence is assigned. The Abelian and

Tauberian theorems for the Stieltjes transform in the new context

are proved. Corollaries extending the result to monotone nets are

also proved.

In the fifth chapter, we have applied a combination of the Laplace

and the Stieltjes transforms to an ordered vector space of general-

ized functions to which the topology bounded convergence is as-

signed. Some of the order properties of the transform and its inverse

are studied. Also we establish the operational transform formula.
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In the sixth chapter, the notions of the asymptotic of a function of

order α in the wedge W , that of the strongasymptotic of a general-

ized function in ζ ′(W ) of order α at∞ are defined and the compati-

bility of these notions with the lattice properties inD′(W ), ζ ′(W ) is

proved. The holomorphic functions defined on T V , the tube region,

form a convolution algebraH(W ) which is isomorphic to ζ ′(W ) via

the Laplace transformation. We define an order relation on H(W )

by identifying a cone in H(W ) and assign a topology to H(W )

with respect to which the above cone is normal. The notion of ele-

ments in H(W ) having strongasymptotic is defined and is observed

to be compatible with the lattice properties inH(W ). The Tauberian

and Abelian theorems in this new background for the Laplace trans-

form are proved. Corollaries extending the result of the theorems

to monotone nets are also proved. A special case of the Tauberian

theorem applied to the one dimensional case is also proved.

Relevance of the study. In all the ordered linear spaces we have

studied the respective positive cones are generating so that it was

sufficient if the results were studied on the positive cone. In the

present background the duals of all test function spaces form topo-

logical vector lattices. So, further lattice theoretic properties of these

spaces, order preserving transforms on them and concerned char-

acterization theorems may be taken up for study. We have illus-

trated that solutions of differential equations under various bound-

ary value conditions are comparable. These comparable solutions
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form a chain. Further lattice properties of such chains can also be

subjected to study.
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CHAPTER 0

Preliminary

The basic background used in our study are ordered topological

vector spaces, countable union spaces, order topology, the topolog-

ical vector space D and the space of distributions D′. The prelim-

inary chapter contains the definitions and some properties of the

above ideas which have been taken from [29, 33, 36] and [50].

DEFINITION 0.1.1. [29] An ordered vector space is a real vector

spaceE equipped with a transitive, reflexive, antisymmetric relation

≤ satisfying the following conditions

(1) If x, y, z ∈ E and x ≤ y then x+ z ≤ y + z

(2) If x, y ∈ E, α ∈ R, α ≥ 0 then x ≤ y ⇒ αx ≤ αy.

Note. Schaefer [36] defines a real underlying space of a vector space

as follows: If L is a vector space (or a topological vector space)

over a field K = H(i) containing i then the restriction of scalar

multiplication to H × L to L turns L into a vector space (or a tvs)

L0 over H . L0 is called the real underlying space of L. A vector

space E over C, the complex numbers is said to be ordered if its

underlying real space E0 is an ordered vector space over R.

DEFINITION 0.1.2. [29] The positive cone C in an ordered real

vector space E is defined by C = {x ∈ E : x ≥ 0}.
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Note. The cone C has the following properties.

(1) C + C ⊆ C

(2) αC ⊆ C, for α > 0, α ∈ R

(3) C ∩ (−C) = {0}.

DEFINITION 0.1.3. Let E be a vector space over C, the complex

numbers. If C is the positive cone of E when the field of scalars is

restricted to R then the cone in E is C + iC which is also denoted

as C.

Note. [29] A subset C of E as defined in 0.1.2 defines an order

relation ≤ on E as follows: for x, y ∈ E, x ≤ y if y − x ∈ C. With

respect to this order relation E is an ordered vector space whose

positive cone is C.

DEFINITION 0.1.4. [29] A subset W of E containing 0 and sat-

isfying

(1) W +W ⊆ W

(2) αW ⊆ W , α > 0, α ∈ R

is called a wedge.

DEFINITION 0.1.5. [29] If E is an ordered vector space and

x, y ∈ E, x ≤ y, the set [x, y] = {z ∈ E : x ≤ z ≤ y} is the

order interval between x and y.

DEFINITION 0.1.6. [29] IfE is an ordered vector space with pos-

itive cone C and if A is subset of E, the full hull of A denoted as
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[A] is defined as

[A] = {z ∈ E : x ≤ z ≤ y, x, y ∈ A}

i.e., [A] = (A+ C) ∩ (A− C). If A = [A], A is said to be full.

DEFINITION 0.1.7. [29] A subset B of E is said to be order-

bounded if there exists x, y ∈ E such that B ⊆ [x, y].

DEFINITION 0.1.8. [29] A subset D of E is majorized (resp. mi-

norized) inD if there exists an element z ∈ E such that z ≥ d (resp.

z ≤ d) for all d ∈ D.

DEFINITION 0.1.9. [29] If every pair of elements of a subset D

of E is majorized (minorized) in D then D is directed (≤) (resp.

directed ≥).

DEFINITION 0.1.10. [50] If V is a linear space, a seminorm on

V is a rule γ that assigns a real number γ(φ) to each φ ∈ V and

satisfies

(1) γ(αφ) = |α|γ(φ), φ ∈ V , α ∈ C

(2) γ(φ+ ψ) ≤ γ(φ) + γ(ψ), φ, ψ ∈ V .

Note. [50] (1) Clearly γ(0) = 0, γ(φ) ≥ 0, ∀φ ∈ V .

(2) A seminorm is a norm if it satisfies the additional condition

γ(φ) = 0 ⇒ φ = 0.

9



DEFINITION 0.1.11. [50] Let S = {γα}α∈J be a collection of

seminorms on a linear space V . The collection S is said to be sep-

arating if for every φ ∈ V , φ 6= 0, there is at least one γα ∈ S

such that γα(φ) 6= 0. If S is separating, S is called a countable

multinorm.

DEFINITION 0.1.12. [50] Let V be a linear space and S =

{γα}α∈J be a collection of seminorms, not necessarily separating.

Given a finite collection of seminorms {γαi
}n

i=1, a balloon centered

at ψ ∈ V is the set of all φ ∈ V such that γαi
(φ − ψ) < εi,

i = 1, 2, . . . , n where ε1, ε2, . . . , εn are arbitrary positive real num-

bers.

Note. [50] Clearly the intersection of two ballons centered at the

same point ψ is also a ballon at ψ.

DEFINITION 0.1.13. [50] A neighbourhood of ψ ∈ V is any set

in V that contains a balloon centered at ψ. The collection of all

neighbourhoods of all points of V is the topology of V generated

by the multinorm S.

DEFINITION 0.1.14. [50] A multinormed space V is a linear

space having a topology generated by a multinorm S. If S is count-

able, V is called a countably multinormed space.

DEFINITION 0.1.15. [50] Let {Vm}∞m=1 be a sequence of count-

ably multinormed spaces such that V1 ⊆ V2 ⊆ . . . . Also assume
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that the topology of each Vm is stronger than the topology induced

on it by Vm+1.

Let V = ∪∞m=1Vm. V is a linear space. A sequence (φi)
∞
i=1 is

said to converge to φ ∈ V if all φi and φ belong to the same Vm

and φi → φ in Vm (and hence in Vm+1,Vm+2, . . .). In this case V is

called a countable union space.

DEFINITION 0.1.16. [50]A countable union space V = ∪∞m=1Vm

is called a strict countable union space if for each m the topology of

Vm is identical to the topology induced on it by Vm+1.

DEFINITION 0.1.17. [33] A multi-index is an ordered n-tuple

α = (α1, . . . , αn) of non-negative integers and Dα = ( ∂
∂x1

)α1 · · ·

( ∂
∂xn

)αn whose order is |α| = α1 + · · ·+ αn. If α = 0, Dαf = f .

DEFINITION 0.1.18. [33] A complex-valued function f defined

on some non-empty open set I ⊆ Rn belongs to C∞(I) if Dαf ∈

C (I) for every multi-index α, where C (I) denotes the set of all

continuous functions defined on I .

DEFINITION 0.1.19. [33] If K is any compact set in Rn, DK

denotes the linear space of all f ∈ C∞(Rn) whose support lies in

K.

DEFINITION 0.1.20. [33] Let (Ki) be a sequence of compact sets

in Rn such that Ki ⊆ K0
i+1 for i ∈ N and let I = ∪∞i=1Ki. Define

pn(f) = max{|Dαf(x)| : x ∈ Kn, |α| ≤ n}. The seminorms

{pn}∞n=1 define a metrizable, locally convex topology on C∞(I)

11



with respect to which C∞(I) is a Frechet space. For each K ⊆ I

DK is a closed subspace of C∞(I) and hence is a Frechet space.

DEFINITION 0.1.21. [33] If I is any non-empty open set in Rn,

D(I) = ∪DK as K varies over compact subsets of I is the test

function space D(I). When I = Rn, D(I) is denoted as D.

Note. [33] D(I) is a linear space with respect to the addition and

scalar multiplication of complex functions. φ ∈ D(I) if and only if

φ ∈ C∞(I) and the support of φ is a compact subset of I .

DEFINITION 0.1.22. [33] For φ ∈ D(I) define

‖φ‖n = max{|Dαφ(x)| : x ∈ I, |α| ≤ n}, φ ∈ D(I),

n = 0, 1, 2, . . . . The collection {‖ ‖n} is a collection of seminorms

on D(I) and induce a topology on Dn(I) such that the restriction

of these norms to any fixed DK induce the same topology on DK

as defined in 0.1.8. This topology on D(I) is called the Schwartz

topology on D(I).

DEFINITION 0.1.23. [29] If A,B are subsets of a vector space E

then A absorbs B if there is a constant λ0 > 0 such that λB ⊂ A

for all scalars λ such that |λ| ≤ λ0.

DEFINITION 0.1.24. [29] A subset B of a topological vector

space E(τ) is τ -bounded if B is absorbed by each neighbourhood

of 0 in E(τ).
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DEFINITION 0.1.25. [29] Let L(E,F ) denote the linear space of

all continuous linear mappings of a topological vector space E(τ1)

into F (τ2) and let N(G, V ) = {T ∈ L(E,F ) : T (G) ⊂ V }, where

G is a τ1-bounded subset of E(τ1) and V is a neighbourhood of 0

in F for τ2. If V is convex, N(G, V ) is convex for each τ1-bounded

subset G of E. The topology on L(E,F ) having the collection of

all sets N(G, V ) as mentioned above as a neighbourhood basis for

0 is a locally convex topology if τ2 on F is locally convex. This

topology on L(E,F ) is called the topology of bounded convergence

on L(E,F ).

DEFINITION 0.1.26. [29] A linear map T : E1 → E2 where E1,

E2 are orderd topological vector spaces is said to be orderbounded

if T maps every orderbounded set in E1 to an orderbounded set in

E2.

DEFINITION 0.1.27. [29] In L(E,R), the linear space of all con-

tinuous linear functionals defined on an ordered vector space E, let

Eb denote the linear subspace of L(E,R) of all orderbounded linear

functionals. If C∗ = C(E,R) is the wedge of all non-negative lin-

ear functionals of E, the order dual of E, denoted as E+, is defined

to be the linear hull of C∗ in Eb. i.e., E+ = C∗ − C∗ in Eb. In

L(E,C), the order dual of E is E+ + iE+ which is also denoted as

E+.

13



DEFINITION 0.1.28. [29] If E is an ordered vector space the or-

der topology τ0 on E is the finest locally convex topology for which

every orderbounded set is τ -bounded.
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CHAPTER 1

Duals of ordered multinormed spaces, ordered countable union

spaces

In this chapter, we define the notions of ordered multinormed

spaces, ordered countable union spaces, thus assigning an ‘order’ to

multinormed spaces, countable union spaces. The notions of nor-

mal cone, b-cone and strict b-cone on ordered multinormed spaces

are also specified. We assign the topology of bounded convergence

to the dual V ′ of the ordered multinormed space V . As illustration,

the space of test functions D and its dual D′, the space of distribu-

tions are studied. The convolution and direct product of elements

in D′ are proved to be continuous and order preserving with respect

to the topology of bounded convergence. We also prove that these

operations are compatible with the lattice properties in D′.

1.1. Duals of ordered multinormed spaces, ordered countable

union spaces

Zemanian [50] has studied in detail the notions of multinormed

spaces, countable union spaces. We assign an order relation to these

spaces by identifying positive cones. An order relation is assigned to

their dual spaces also via the dual cone. It is observed by Peressini

[29] that in the case of the test function space D and its dual D′,
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when an order relation is defined on D′ via the dual cone of non-

negative functions in D, the order dual D+ is only a subspace of the

topological dual D′, when D′ is assigned the topology of pointwise

convergence. But when the topology of bounded convergence is

assigned to D′, the order dual and the topological dual of D become

identical [29]. In what follows we apply the above ideas to duals of

ordered multinormed spaces, ordered countable union spaces. We

define first some basic notions on multinormed spaces, countable

union spaces thus extending notions like positive cone, normal cone,

b-cone defined by Peressini [29] on ordered vector spaces to ordered

multinormed spaces.

DEFINITION 1.1.1. A multinormed space V on which a positive

cone C is specified is an ordered multinormed space.

DEFINITION 1.1.2. The positive coneC generates the multinorm-

ed space V if V is spanned by C i.e., if V = C − C.

DEFINITION 1.1.3. Let V (τ) be an ordered multinormed space

with positive cone C. C is said to be normal for the topology τ

generated by the multinorm S if there is a neighborhood basis of 0

for τ consisting of full sets. (Refer Definition 0.1.6)

DEFINITION 1.1.4. Let S be a saturated class of τ -bounded sub-

sets of an ordered multinormal space V (τ) such that V = ∪{S :

S ∈ S}. The positive cone C in V (τ) is a strict S-cone (an S-cone)

if the class
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SC = {(S ∩ C)− (S ∩ C) : S ∈ S} (S̄C = {(S ∩ C)− (S ∩ C) :

S ∈ S}) is a fundamental system for S. A strict S-cone (an S-cone)

for the class of all τ -bounded sets in V (τ) is called a strict b-cone

(b-cone).

Note 1. [36] A family S 6= {φ} of bounded sets of a locally convex

space E is said to be saturated if

(1) it contains arbitrary subsets of each of its members

(2) it contains scalar multiples of each of its members

(3) it contains the closed, convex, circled hull of the union of

each finite sub family.

Note 2. [36] A fundamental system of bounded sets of a topolog-

ical vector space E is a family B of bounded sets such that every

bounded subset of E is contained in a suitable member of B.

DEFINITION 1.1.5. If the supremum, sup{φ, ψ} = φ ∨ ψ and

the infimum inf{φ, ψ} = φ ∧ ψ of every pair φ, ψ ∈ V an ordered

multinormed space V , exists in V , then V is a multinormed vector

lattice.

DEFINITION 1.1.6. A subset B of V , an ordered multinormed

space is order complete if every directed subset D of B that is ma-

jorized in B has a supremum in B.

DEFINITION 1.1.7. If in an ordered multinormed space V the

property [0, φ] + [0, ψ] = [0, φ + ψ], for all φ, ψ ∈ V is satisfied

then V is said to have the decomposition property.
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DEFINITION 1.1.8. A net (φα)α∈J in a multinormed vector lattice

V order converges to φ0 ∈ V if

(i) {φα}α∈J is an order bounded subset of V

(ii) there is a net (ψα)α∈J in V that decreases to 0 such that

|φα − φ0| ≤ |ψα|, ∀α ∈ J.

Order and topology on V ′. Let V ′ denote the linear space of

all continuous linear functionals defined on an ordered multinormed

space V and ordered by the dual cone C ′(V ′) = {f ∈ V ′, f(φ) ≥

0,∀φ ∈ C}. Let σ(V ,V ′) denote the topology of pointwise conver-

gence on V ′. The collection of all polars B0 of B as B varies over

all σ(V ,V ′)-bounded subsets of V form a neighborhood basis of 0

in V ′. This topology on V denoted as β(V ′,V ) is the topology of

bounded convergence on V ′.

The topology β(V ′,V ) on V ′ may also be described as follows:

using Definitions 0.1.23 and 0.1.24, a σ(V ,V ′)-bounded subset B

of V is of the form B = {ψ : |f(ψ)| < tε for some f ∈ V ′}, ε > 0

for all t > s, t, s ∈ R. Then B0 = {f ∈ V ′ : |f(ψ)| < 1, ∀ψ ∈ B}

is the polar of B. The class of all B0 as B varies over σ(V ,V ′)-

bounded subsets of V is a neighborhood basis of 0 in V ′ for a locally

convex topology β(V ′,V ) on V ′.

By Proposition 3.7, Chapter 2, [29] it follows that if V ′ is equipped

with the topology of bounded convergence and is ordered by the

dual cone C ′ of the cone C of non negative functions in V , then V ′
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is order complete if the dual cone C ′ is a closed normal cone with

respect to β(V ′,V ).

THEOREM 1.1.1. The topology of pointwise convergence is weaker

than the topology of bounded convergence on V ′ where V ′ is the

dual of the ordered multinormed space V .

PROOF. It is enough if we prove that every sequence (fn) of el-

ements in V ′ which converges to 0 with respect to the topology of

pointwise convergence converges to 0 with respect to the topology

of bounded convergence in V ′. We say that (fn) converges to 0 with

respect to the topology of pointwise convergence if, for every ε > 0

there exists k ∈ N such that

|fn(ψ)| < ε for all ψ ∈ V , n ≥ k. (1)

We say that a sequence (fn) in V ′ converges to 0 with respect to the

topology of bounded convergence on V ′ if given any neighborhood

basis of 0, B0, if there exists k ∈ N such that fn ∈ B0 for n ≥ k.

i.e., |fn(ψ)| < 1, ∀ψ ∈ B, n ≥ k.

Taking ε = 1, ψ ∈ B in (1) it follows that (fn) converges to 0 with

respect to the topology of bounded convergence on V ′ if (fn) con-

verges to 0 with respect to the topology of pointwise convergence

on V ′. �

We assign an order to the (strict) countable union space as follows:
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DEFINITION 1.1.9. Let V = ∪∞m=1Vm be a (strict) countable

union space. We say that φ ≥ ψ for φ, ψ ∈ V if φ − ψ ∈ Cm for

any m = 1, 2, . . . where Cm denotes the positive cone in Vm.

The dual of a (strict) countable union space is defined as follows:

DEFINITION 1.1.10. Let V = ∪∞m=1Vm be a (strict) countable

union space. V ′, the dual of V is the linear space of all continuous

linear functionals on V , the topology on V ′ being β(V ′,V ), the

topology of bounded convergence.

We apply the notions of positive maps, strictly positive maps in

Peressini [29] to linear maps on ordered multinormed spaces, or-

dered countable union spaces.

DEFINITION 1.1.11. Let U,V be ordered multinormed spaces or

ordered countable union spaces with positive cones C(U), C(V )

respectively. A linear map T : U → V is

(i) positive if T (C(U)) ⊆ C(V ) i.e., if T (φ) ≥ 0 whenever φ > 0,

φ ∈ U .

(ii) strictly positive if T (φ) > 0 whenever φ > 0, φ ∈ U .

Note. Peressini [29] has observed that every strictly positive linear

map is positive and every positive linear map is orderbounded.

The notion of the adjoint of a linear map defind on multinormed

spaces, countable union spaces used by Zemanian [50] may be ap-

plied to linear maps on ordered multinormed spaces, ordered count-

able union spaces. If T : U → V is a continuous linear map where
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U,V are either ordered multinormed spaces or ordered (strict) count-

able union spaces the adjoint T ′ of T is T ′ : V ′ → U ′ defined by

(T ′f)(φ) = f(T (φ)), f ∈ V ′, φ ∈ U.

THEOREM 1.1.2. If T : U → V is linear and continuous its

adjoint T ′ : V ′ → U ′ is also linear and continuous where U,V

are ordered multinormed spaces or ordered (strict) countable union

spaces with the topology of bounded convergence assigned to U ′,

V ′.

PROOF. For φ, ψ ∈ V , α, β ∈ C, f ∈ V ′,

(T ′f)(αφ+ βψ) = f(T (αφ+ βψ))

= f(αT (φ) + βT (ψ))

= f(αT (φ)) + f(βT (ψ))

= αf(T (φ)) + βT (ψ))

= α(T ′f)(φ) + β(T ′f)(ψ).

so that T ′f is a linear functional on U .

Let (φα)α∈J be a net converging to 0 in U .

Since T : U → V is continuous T (φα) → 0 as α→∞with respect

to the topology induced by the multinorm on V . Then (T ′f)(φα) =

f(T (φα)) → 0 as α→∞, since f ∈ V ′ is continuous with respect

to the topology of bounded convergence on V ′. This implies that
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T ′f is a continuous linear functional on U , i.e., T ′ is a mapping of

V ′ to U ′. Also

T ′(αf + βg)(φ) = (αf + βg)T (φ),

= αf(T (φ)) + βg(T (φ))

= α(T ′f)(φ) + β(T ′g)(φ)

= (α(T ′f) + β(T ′g))(φ),

f, g ∈ V ′, φ ∈ U , α, β ∈ C. Thus, T ′ : V ′ → U ′ is linear.

Let (fα)α∈J be a net converging to 0 in V ′ with respect to the

topology of bounded convergence. We prove that (T ′fα)α∈J con-

verges to 0 in U ′ with respect to the topology of bounded conver-

gence in U ′. We observe that if BU is a σ(U,U ′)-bounded subset

of U , since T : U → V is linear and continuous, T (BU) = BV

is a σ(V ,V ′)-bounded subset of V . To prove the convergence of

(T ′fα)α∈J to 0 in U ′ we assume that B0
U is a neighbourhood of 0 in

U ′ for the topology of bounded convergence. Since T (BU) = BV

is a σ(V ,V ′)-bounded subset of V , B0
V is a basis element for the

topology of bounded convergence in V ′ containing 0. Since fα → 0

in V ′ with respect to the above topology fα ∈ B0
V for α ≥ β, β ∈ J .

i.e., |fα(ψ)| < 1, for all ψ ∈ BV , α ≥ β, β ∈ J .

For φ ∈ BU , |T ′(fα)(φ)| = |fα(T (φ))| < 1 for α ≥ β, β ∈ J ,

since T (φ) ∈ BV . We conclude that (T ′fα)α∈J converges to 0 with
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respect to the topology of bounded convergence on U ′ and hence

T ′ : V ′ → U ′ is continuous. �

Remark. The above theorem assures that though the usual weak

topology (topology of pointwise convergence) used on duals of multi-

normed spaces (see [50]) is replaced by the topology of bounded

convergence, the basic properties like continuity of adjoint maps on

duals of multinormed spaces are preserved.

The following theorem pertains to the order properties of the ad-

joint of a linear map. The theorem proves that the order properties

of a linear map are followed by its adjoint also.

THEOREM 1.1.3. Let U,V be ordered multinormed spaces or

ordered counable union spaces. If T : U → V is a strictly positive

map, its adjoint T ′ : V ′ → U ′ is also strictly positive.

PROOF. Let f > 0, f ∈ V ′. For φ ∈ U , φ > 0, T (φ) > 0

since T is strictly positive. T (φ) ∈ V , T (φ) > 0 ⇒ f(T (φ)) > 0

since f > 0. But f(T (φ)) = T ′(f(φ)). Thus φ > 0, φ ∈ U ⇒

(T ′f)(φ) > 0.

Thus f > 0 ⇒ T ′f > 0, i.e., T ′ is strictly positive. It follows

that T ′ is positive and order bounded (see Note following Defini-

tion 1.1.11.) �

Remark. The ideas developed in section 1.1, we subsequently apply

to particular countable union spaces E , ζ , L (a, b), Mm
a,b and their

dual spaces E ′, ζ ′, L ′(a, b), (Mm
a,b)

′ etc.
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1.2. The test function space D and the space of distributions D′

In the preliminary chapter we have mentioned the test function

space D, the linear space of smooth complex-valued functions with

compact support in Rp with the Schwartz topology (Definition 0.1.21,

0.1.22 and 0.1.23). The dual D′ of D is called the space of distribu-

tions [33]. Anthony L. Peressini in his book ‘Ordered Topological

Vector Spaces’ [29] has defined an order relation on D by identify-

ing the positive cone C to be the set of all non-negative functions

in D. D and D′ are actually examples for the notion of ordered

multinormed spaces and their ordered duals introduced in 1.1. Per-

essini has observed that the cone of D is a strict b-cone (Example

1.17(c), Chapter 2, [29]). The order dual of D, D+ = C∗ − C∗

is the linear hull of C∗ where C∗ is the wedge C(D,R) of non-

negative elements in Lb(D,R), the subspace of orderbounded lin-

ear functionals (see page 24, [29]). Peressini has also observed

that the topological dual D′ of D contains the order dual D+ of D

(Example 2.20(c), Chapter 2, [29]). The space of distributions D′

equipped with the strong topology β(D′,D) (also called the topol-

ogy of bounded convergence) and ordered by the dual coneC ′ of the

cone C of non-negative functions in D is a reflexive space ordered

by a closed normal cone (Example 3.8, Chapter 2, [29]). The nor-

mality of C ′ for β(D′,D) follows from corollary 1.26, Chapter 2,

[29] and the fact that C is a strict b-cone (Example 1.17(c), Chapter

2, [29]). By proposition following Example 3.8, Chapter 2, [29], it
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follows thatD′ equipped with the topology of bounded convergence

β(D′,D) is order complete and hence coincides with the order dual

D+ = C∗ − C∗. Also it follows that the cone in D′ is generating,

since D′ = D+ = C∗ − C∗ = C ′ − C ′. Thus D′ is both order

complete and topologically complete with respect to β(D′,D).

Though order has been introduced onD′ and it has been observed

that the order dual D+ and the topological dual D′ coincide when

the topology of bounded convergence is assigned to D′ [29], a com-

paritive study of the order topology and the topology of bounded

convergence on D′ has not been made. From the properties of the

ordered topological vector spaces we make the following observa-

tions.

(1) D′ is regularly ordered. (An ordered vector space E is reg-

ularly ordered if the order dual E+ separates points of E,

i.e., if there exists an order bounded linear functional f on E

such that if φ 6= 0, φ ∈ E, f(φ) 6= 0.) By proposition 1.29,

Chapter 2, [29] it follows that the order dual of D′ separates

points of D′.

(2) The order topology and the topology of bounded conver-

gence on D′ are the same.

By proposition 1.16, Chapter 3, [29] if E is a regularly ordered

vector space with the decomposition property and τ is a locally con-

vex topology on E then τ is the order topology on E if and only if τ

is the finest locally convex topology onE for which the coneK inE
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is normal. By the above paragraph D′ is regularly ordered. Being a

vector lattice D′ has the decomposition property. (see page 8, [29]).

Since the topology of bounded convergence β(D′,D) is the finest

locally convex topology for which the cone C ′ is normal it follows

that the order topology and the topology of bounded convergence

on D′ are the same.

Vladimirov [44] has studied the notions of direct product and

convolution of elements on D′ with the topology of pointwise con-

vergence assigned to D′. We next study the above notions applied

to the ordered topological vector space D′ with the topology on D′

changed to the topology of bounded convergence. We observe that

the direct product and convolution which are continuous with re-

spect to the topology of pointwise convergence continue to remain

so with respect to the topology of bounded convergence. These op-

erations are proved to be order preserving and compatible with the

lattice properties in D′.

Direct product and convolution in D′. The following defini-

tions and notations have been taken from Vladimirov [44].

Let f(x), g(y) be locally integrable functions defined on open

sets I1 ⊆ Rn, I2 ⊆ Rm respectively. The function f(x) × g(y) is

locally integrable on I1×I2. It defines a regular generalized function

f(x)g(y) = g(y)f(x) in D′(I1 × I2) operating on test functions

φ(x, y) in D(I1 × I2) via the formula
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〈f(x)g(y), φ〉 =

∫
I1×I2

f(x)g(y)φ(x, y)dxdy

=

∫
I1

f(x)

∫
I2

g(y)φ(x, y)dydx

=

∫
I2

g(y)

∫
I1

f(x)φ(x, y)dxdy

=

∫
I1×I2

g(y)f(x)φ(x, y)dxdy

i.e., 〈f(x)g(y), φ〉 = 〈f(x), 〈g(y), φ(x, y)〉〉

〈g(y)f(x), φ〉 = 〈g(y), 〈f(x), φ(x, y)〉〉

Vladimirov [44] takes the above two equations as starting in-

equalities for defining the direct product f(x)×g(y) and g(y)×f(x)

of the generalized functions f ∈ D′(I1) and g ∈ D′(I2).

〈f(x)× g(y), φ〉 = 〈f(x), 〈g(y), φ(x, y)〉〉 (2)

〈g(y)× f(x), φ〉 = 〈g(y), 〈f(x), φ(x, y)〉〉 (3)

where φ ∈ D(I1 × I2). Vladimirov [44] proves that the right hand

side of (2) (and hence of (3) also) defines a continuous linear func-

tional onD(I1×I2) by proving that the operation φ(x, y) → ψ(x) =

〈g(y), φ(x, y)〉 is linear and continuous from D(I1× I2) into D(I1).

Thus the right hand side of (2) which is equal to 〈f, ψ〉 defines a con-

tinuous linear functional onD(I1×I2) so that f(x)×g(y) ∈ D′(I1×

I2). In a similar manner it follows that g(y)× f(x) ∈ D′(I2 × I1).
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THEOREM 1.2.1. If g ∈ D′(I2) the operation f → f × g is

linear, continuous and order preserving operation from D′(I1) into

D′(I1 × I2) with respect to the topology of bounded convergence.

PROOF. The linearity of the operation is obvious. Vladimirov

[44] has proved the following result. The operation φ(x, y) →

ψ(x) = 〈g(y), φ(x, y)〉 is linear and continuous from D′(I1 × I2)

into D(I1) (Corollary, sec 3.1, [44]). We prove that the adjoint of

the above operator is f → f × g.

Let T : D(I1 × I2) → D(I1) be defined by

T (φ(x, y)) = ψ(x) = 〈g(y), φ(x, y)〉.

The adjoint operator T ′ : D′(I1) → D′(I1 × I2) is defined by

(T ′f)(φ) = f(T (φ))

= 〈f(x), 〈g(y), φ(x, y)〉〉

= 〈f × g, φ〉

Being the adjoint of a continuous operator f → f × g is continuous

from D′(I1) to D′(I1 × I2) with the topology of bounded conver-

gence assigned to D′(I1), D′(I1 × I2) by Theorem 1.1.2.

Now, let φ(x, y) ≥ 0, f ≥ 0, g ≥ 0.

Since 〈g(y), φ(x, y)〉 ≥ 0, 〈f(x) × g(y), φ(x, y)〉 ≥ 0, it follows

that f × g ≥ 0. Hence the theorem. �
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Remark By proving the above theorem we have obtained the ad-

ditional feature that direct product is order preserving without los-

ing the linearity and continuity of the operation in the new situation

when the topology on D′(I1 × I2) is changed to the topology of

bounded convergence.

The following definitions of convolution of locally integrable

functions, Notes 1, 2 and definition of convolution of elements in

D′ have been taken from Vladimirov [44].

Let f, g be locally integrable functions defined on Rn. If the

integral
∫
f(y)g(x − y)dy exists for almost all x ∈ Rn and defines

a locally integrable function on Rn then it is called the convolution

of the functions f and g and is represented as f ∗ g. Thus

(f ∗ g)(x) =

∫
f(y)g(x− y)dy

=

∫
g(y)f(x− y)dy = (g ∗ f)(x).

Note 1. [44] The convolution f ∗ g defines a regular functional on

D(Rn) via the rule

〈f ∗ g, φ > =

∫
(f ∗ g)(x)φ(x)dx

=

∫
φ(x)

∫
f(y)g(x− y)dydx

=

∫
f(y)

∫
g(x− y)φ(x)dxdy

=

∫
f(y)

∫
g(ξ)φ(y + ξ)dξdy
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Thus

〈f ∗ g, φ〉 =

∫
f(x)g(y)φ(x+ y)dxdy, φ ∈ D (4)

Note 2. [44] A sequence (ηk) of functions in D(Rn) converges to 1

in Rn if

(i) for any compact set K there is a number n = n(K) such that

ηk(x) = 1, x ∈ K, k ≥ n and

(ii) the functions (ηk) are uniformly bounded together with all their

derivatives, i.e.,

|∂αηk(x)| < Mα, x ∈ Rn, k = 1, 2, . . . , α = 0, 1, 2, . . ..

Vladimirov [44] has proved that equation (4) can be rewritten as

〈f ∗ g, φ〉 = lim
k→∞

〈f(x)× g(y), ηk(x, y)φ(x+ y)〉, φ ∈ D

where ηk is any sequence of functions in D(Rn) that converges to 1

in Rn.

Let f, g ∈ D′(Rn) be such that their direct product admits of an

extension 〈f(x)× g(y), φ(x+ y)〉 to functions of the form φ(x+ y)

where φ is any function in D(Rn) in the following sense: if (ηk) is

any sequence of functions in D(R2n) which converges to 1 in R2n

there exists a limit to the numerical sequence,

lim
k→∞

〈f(x)× g(y), ηk(x; y)φ(x+ y)〉 = 〈f(x)× g(y), φ(x+ y)〉

the convolution f ∗ g is the functional defined by
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〈f(x) ∗ g(y), φ〉 = 〈f(x)× g(y), φ(x+ y)〉

= lim
k→∞

〈f(x)× g(y), ηk(x; y)φ(x+ y)〉, φ ∈ D(Rn).

We now prove that if f, g ∈ D′, f(x)∗g(y) is a continuous operation

onD(Rn) with the topology of bounded convergence assigned toD′.

THEOREM 1.2.2. If f , g are elements of D(Rn) as above, f ∗

g ∈ D′(Rn) with the topology of bounded convergence assigned to

D′(Rn).

PROOF. Vladimirov [44] has proved that f ∗ g ∈ D′(Rn) with

the topology of pointwise convergence assigned to D′(Rn) in the

following manner: If (φi) is any sequence of functions in D(Rn)

such that φi → 0 as i → ∞, ηk(x, y)φi(x + y) → 0 as i → ∞ in

D(Rn). Since the functional f(x)× g(y) is continuous on D(R2n),

the numerical sequence

〈f(x)× g(y), ηk(x; y)φ(x+ y)〉 → 0 as i→∞.

i.e., 〈f ∗ g, φi〉 → 0 as i→∞.

This implies that f ∗ g is a member of D′(Rn) with the topology

of pointwise convergence assigned to D′(Rn). Since the topology

of pointwise convergence is weaker than the topology of bounded

convergence by Theorem 1.1.1 it follows that f ∗ g ∈ D′(Rn) with
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the topology of bounded convergence assigned to D′(Rn). Hence

the theorem. �

THEOREM 1.2.3. The operation f → f ∗ g is order preserving

on D′(Rn).

PROOF. Let f, g ∈ D′(Rn), φ ∈ D(Rn), f ≥ 0, g ≥ 0, φ ≥ 0.

Then 〈f(x) × g(y), ηk(x; y)φ(x + y)〉 ≥ 0 for each k, so that

limk→∞〈f(x)× g(y), ηk(x; y)φ(x+ y)〉 ≥ 0.

By definition (see Vladimirov [44], page 52) the above limit, it

it exists is independent of the sequence (ηk). So we conclude that

f ∗ g ≥ 0. �

Remark. As in the case of direct product we have obtained that

convolution of elements in D′(Rn) is order preserving, without los-

ing the continuity of the operation when the topology on D′(Rn) is

changed to the topology of bounded convergence. We also prove

the following theorem which involves the order property of direct

product and convolution in D′(Rn).

THEOREM 1.2.4. The operations of direct product and convolu-

tion of comparable elements in D′ are compatible with lattice op-

erations i.e., if f1, f2 and g1, g2 are comparable elements in D′ then

fi × gi, i = 1, 2 and fi ∗ gi, i = 1, 2 are comparable with
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(f1 × g1) ∨ (f2 × g2) = (f1 ∨ f2)× (g1 ∨ g2)

(f1 × g1) ∧ (f2 × g2) = (f1 ∧ f2)× (g1 ∧ g2)

and

(f1 ∗ g1) ∨ (f2 ∗ g2) = (f1 ∨ f2) ∗ (g1 ∨ g2)

(f1 ∗ g1) ∧ (f2 ∗ g2) = (f1 ∧ f2) ∗ (g1 ∧ g2)

PROOF. By definition,

〈f1 × g1, φ〉 = 〈f1(x), 〈g1(y), φ(x, y)〉〉

=

∫
f1(x)

∫
g1(y)φ(x, y)dydx

=

∫
f1(x)g1(y)φ(x, y)dydx

so that

(f1 × g1) ∨ (f2 × g2) = (

∫
f1(x)g1(y)φ(x, y)dydx)

∨ (

∫
f2(x)g2(y)φ(x, y)dydx)

(f1 × f2) ∨ (g1 × g2) =

∫
(f1 ∨ f2)(x)(g1 ∨ g2)(y)φ(x, y)dydx.
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Since ∫
f1(x)g1(y)φ(x, y)dydx ∨

∫
f2(x)g2(y)φ(x, y)dydx

=

∫
(f1 ∨ f2)(x)(g1 ∨ g2)(y)φ(x, y)dydx

for any φ ∈ D, it follows that (f1 × g1) ∨ (f2 × g2) = (f1 ∨ f2) ×

(g1 ∨ g2). Since∫
f1(x)g1(y)φ(x, y)dydx ∧

∫
f2(x)g2(y)φ(x, y)dydx

=

∫
(f1 ∧ f2)(x)(g1 ∧ g2)(y)dydx

for any φ ∈ D, it follows that (f1 × g1) ∧ (f2 × g2) = (f1 ∧ f2) ×

(g1 ∧ g2).

By definition, 〈f∗g, φ〉 = limk→∞〈f(x)×g(y), ηk(x; y)φ(x+y)〉

we obtain (f1 ∗ g1) ∨ (f2 ∗ g2) = (f1 ∨ f2) ∗ (g1 ∨ g2).

Since

lim
k→∞

(〈f1(x)g1(y), ηk(x; y)φ(x+ y)〉) ∨ (〈f2(x)g2(y), ηk(x; y)φ(x+ y)〉)

= lim
k→∞

〈(f1 ∨ f2)(x)(g1 ∨ g2)(y), ηk(x; y)φ(x+ y)〉

Similarly it follows that (f1∗g1)∧(f2∗g2) = (f1∧f2)∗(g1∧g2). �
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CHAPTER 2

The Fourier Transformation

In this chapter we apply the notion of ordered countable union

spaces and their ordered dual spaces developed in Chapter 1, sect 1

to the spaces E , ζ and there dual spaces E ′, ζ ′ respectively called the

distributions with compact support and the tempered distributions.

By changing the usual weak topology on E ′, ζ ′ and assigning the

topology of bounded convergence on these spaces we observe that

the order dual and the topological dual of E and ζ coincide. We

observe that the direct product and convolution of elements in E ′, ζ ′

are continuous and order preserving with respect to the new topol-

ogy. The Fourier transform and its inverse applied to the elements

of ζ ′ by Vladimirov [44] are applicable in the present situation also

to the elements of ζ ′ which can be used to solve differential equa-

tions involving tempered distributions. As the solutions belong to

an ordered vector space comparison of solutions is also possible.

This is an additional feature achieved by the introduction of order

relation on ζ ′. Illustrations of the comparison of solutions of differ-

ential equations solved by the application of Fourier transforms are

also done in the chapter.
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2.1. The space E of smooth complex valued functions and its

dual E ′, the distributions with compact support

Zemanian [50] has treated E as a multinormed space and stud-

ied its dual E ′, the distributions with compact support. We have

assigned an order relation on E by identifying a positive cone in it.

The dual space E ′ is also ordered by the dual cone C ′ of the cone

C of non-negative functions in E . Using the fact that D′ is a dense

subspace of E and using the properties of ordered topological vector

spaces we observe that the positive cone C of E is not normal. As

proved by Peressini [29] in the case of the positive cone in D, it can

be proved that the positive cone in E is a strict b-cone.

The topology of bounded convergence is assigned to E ′. Apply-

ing some properties of ordered topological vector spaces we make

some useful observations about E ′. We also compare the order and

topology on E ′ and D′.

Consider E , the linear space of all smooth complex-valued func-

tions defined on Rn. Let (Km) be a sequence of compact subsets of

Rn such that K1 ⊆ K2 ⊆ · · · and such that each compact subset of

Rn is contained in some Km. Let

γKm,k
(φ) = sup

t∈Km

|Dkφ(t)|, φ ∈ E , k = 0, 1, 2, . . .

{γKm,k
}m,k is a multinorm and generates a topology τE on E with re-

spect to which E is complete. (The completeness of E with respect
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to τE follows in the same method as Zemanian [50] proves that DK

is complete in Example 1.6.1, Chapter 1, [50]).

Note. D is dense in E [33].

DEFINITION 2.1.1. The positive cone C of E when E is re-

stricted to real-valued functions is the set of all non-negative func-

tions in E . When the elements of E are allowed to take complex

values also, C + iC is the positive cone in E which is also denoted

as E .

THEOREM 2.1.1. The cone C of E is not normal.

PROOF. Anthony L. Peressini [29] has proved that the cone C

of the non-negative functions in D is not normal (Example 1.9.c,

p.66, [29]). He has also observed that if the cone C of E an ordered

topological vector space is normal and if M is a linear subspace of

E then K ∩ M is a normal cone in M for the subspace topology

(Proposition 1.8, Chapter 1, [29]). From this result it follows that

the cone of E is not normal. �

THEOREM 2.1.2. The cone C is a strict b-cone in E .

PROOF. Let E be restricted to real valued functions. Let B be

the saturated class of all bounded, circled subsets E for τE . Then

E = ∪B∈BB. The collection

BC = {(B ∩ C) − (B ∩ C) : B ∈ B} is a fundamental system for

B and by Definition 1.1.4 it follows that C is a strict b-cone since B

is the class of all τE -bounded subsets of E . �
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Order and topology on the dual of E . Let E ′ denote the lin-

ear space of all continuous linear functionals defined on E , which is

referred to as functions with compact support. An order relation is

defined on E ′ by identifying the positive cone of E ′ to be the dual

cone C ′ of the cone C of non-negative functions in E . The class of

all B0, the polars of B as B varies over all σ(E ,E ′)-bounded sub-

sets of E is a neighbourhood basis of 0 in E ′ for the locally convex

topology β(E ′,E ). When E ′ is ordered by the dual cone C ′ and

is equipped with the topology β(E ′,E ), it follows that C ′ is a nor-

mal cone since C is a strict b-cone in E for the topology τE of E .

(Proposition 1.2.7, Chapter 2, [29]). Since E ′ is an ordered topo-

logical vector space we note that E ′ has the following properties.

(An ordered vector space E is regularly ordered if the order dual

E+ separates points of E, i.e., there exists an orderbounded linear

functional f on E such that if φ 6= 0, φ ∈ E, f(φ) 6= 0)

(1) E ′ is regularly ordered (See Proposition 1.29, Chapter 2,

[29]).

(2) The order topology and the topology of bounded conver-

gence on E ′ are the same.

By Proposition 1.16, Chapter 3, [29], if E is a regularly

ordered vector space with the decomposition property and if

τ is a locally convex topology on E, τ is the order topology

on E, if and only if τ is the finest locally convex topology

on E for which the cone K in E is normal. By (1), E ′ is
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regularly ordered. Being a vector lattice, E ′ has the decom-

position property (see page 8, [29]). Since the topology of

bounded convergence β(E ′,E ) is the finest locally convex

topology for which the cone C ′ is normal, it follows that the

order topology and the topology of bounded convergence on

E ′ are the same.

(3) The order dual E + and the topological dual E ′ (with respect

to the topology of bounded convergence) of E are the same.

Since D is a subspace of E their dual spaces D′ and E ′ are such that

E ′ ⊆ D′ . In the following theorem we make a comparative study

of the order and topology on E ′, D′.

THEOREM 2.1.3. E ′ is a subspace of the space of distributions

D′, the topology on E ′ being the same as the topology of bounded

convergence. Also, the order induced on E ′ by D′ is the same as the

order on E ′.

PROOF. Clearly E ′ is a subspace of D′. We prove that Bo
E =

Bo
D ∩ E ′ where Bo

E , Bo
D denote respectively the polar of BE in E ′

and the polar of BD in D′.

BE = {ψ ∈ E : |f(ψ)| < tε for some f ∈ E ′}, ε > 0, ∀t > s,

t, s ∈ R

BD = {ψ ∈ D : |f(ψ)| < tε for some f ∈ D′}, ε > 0, ∀t > s,

t, s ∈ R.

The elements of E ′ are the elements of D′ having compact support.

So if f1 ∈ Bo
E , |f1(ψ)| < 1, for all ψ ∈ BE , f1 ∈ E ′.
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Since BD = BE ∩ D it follows that f1 ∈ Bo
D ∩ E ′. Conversely if

f1 ∈ Bo
D ∩ E ′ then f1 ∈ E ′ and |f1(ψ)| < 1, ∀ψ ∈ BD.

If ψ ∈ BD, |f(ψ)| < tε for some f ∈ D′, ε > 0, for all t > s,

t, s ∈ R. Since E ′ ⊆ D′, ψ ∈ BD it follows that ψ ∈ BE , f1 ∈ Bo
E

and we conclude that Bo
E = Bo

D ∩ E ′.

Since the order on E ′ is defined by the dual cone C ′ of the cone

C of non negative functions in E it follows that the order of E ′ and

the order induced on E ′ by D′ are the same. (See Proposition 1.8,

Chapter 1, [29]) �

Since E ′ is a subspace of D′, the order and topology on E ′ being

the same as the order and topology induced by D′, the notions of

direct product and convolution defined on D′ are applicable to the

elements of E ′ also. We make the following observations.

(1) For g ∈ E ′ the operation f → f × g is linear, continuous

(with respect to the topology of bounded convergence) and

order preserving from E ′ to E ′.

(2) For f, g ∈ E ′ the operation f → f ∗ g is continuous (with

respect to the topology of bounded convergence) and order

preserving from E ′ to E ′.

(3) The operations of convolution and direct product of compa-

rable elements in E ′ are compatible with lattice operations

i.e. if f1, f2 and g1, g2 are comparable elements in E ′ then

fi ∗ gi, i = 1, 2 and fi × gi, i = 1, 2 are comparable and
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(f1 ∗ g1) ∨ (f2 ∗ g2) = (f1 ∨ f2) ∗ (g1 ∨ g2)

(f1 ∗ g1) ∧ (f2 ∗ g2) = (f1 ∧ f2) ∗ (g1 ∧ g2)

and

(f1 × g1) ∨ (f2 × g2) = (f1 ∨ f2)× (g1 ∨ g2)

(f1 × g1) ∧ (f2 × g2) = (f1 ∧ f2)× (g1 ∧ g2).

2.2. The space ζ of rapidly decreasing test functions and its

dual ζ ′, the tempered distributions

Rudin [33] and Vladimirov [44] have studied the test function

space ζ and its dual ζ ′, the tempered distributions with the topology

of pointwise convergence assigned to ζ ′. We study ζ as an ordered

strict countable union space and define an order relation on ζ ′ via the

dual cone C ′ of the cone of non negative functions in ζ and assign

the topology of bounded convergence to ζ ′.

Functions of slow growth. [30] A function f(x) = f(x1, . . . , xn)

in Rn is of slow growth if f(x) together with all its derivatives grows

at ∞ more slowly than some polynomial. This means that there ex-

ists constants C, m and A such that |Dkf(x)| ≤ C|x|m, |x| > A.

Test functions of rapid decay. [30] The space ζ of test func-

tions of rapid decay contains the complex valued functions

41



φ(x) = φ(x1, . . . , xn) having the following properties

(i) φ(x) is infinitely differentiable

(ii) φ(x) as well as its derivatives of all orders vanishes at ∞ faster

than the reciprocal of any polynomial. Property (2) may be ex-

pressed as |xpDkφ(x)| < Cρk, where p = (p1, . . . , pn) and k =

(k1, . . . , kn) are n tuples of non-negative integers and Cρk is a con-

stant depending on p, k and φ(x).

Let (Km) denote a sequence of compact subsets of Rn such that

K1 ⊆ K2 ⊆ · · · and such that each compact subset of Rn is con-

tained in some Kj, j = 1, 2, . . .. On each Kj define

‖φ‖p = sup
x ∈ Kj

|α| ≤ p

(1 + |x|2)p/2|∂αφ(x)|, φ ∈ τ, p = 0, 1, 2, . . .

{‖ ‖p} is a multinorm on ζKj
where ζKj

is the linear subspace of ζ

consisting of functions with support in Kj. The above multi norm

generates a topology τKj
on ζKj

. If m < p, ζKj
⊆ ζKp

and the

topology of ζKm
is the same as the topology induced on it by τKp

.

Then ζ = ∪∞m=1ζKm
is the strict countable union space. By defini-

tion 0.1.14, a sequence (φi) in ζ converges to φ in ζ if all φi, φ ∈ ζKm

for some m and (φi) converges to φ with respect to topology τKm
.

Since ζKm
is complete, ζ is also complete. (That ζKm

is complete

can be proved in the same method as Zemanian proves that DK is

complete in Example 1.6.1, Chapter 1, [50]. Being a strict countable

union space it follows that ζ is also complete.).
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DEFINITION 2.2.1. Restricting ζ to real-valued functions an or-

der relation is defined on ζ by identifying the positive cone to be the

set of all non-negative functions in ζ . When the elements of ζ are

allowed to take complex-values also, C + iC is a positive cone in ζ

which is also denoted as C.

Note. C defines an order relation on ζ , φ ≤ ψ if ψ − φ ∈ C where

ψ, φ ∈ ζ .

Vladimirov [44] has observed (see pages 74, 75 [44]) that D is a

dense proper subspace of ζ . This result along with the comparison

of the order relation in D and ζ we state as a theorem.

THEOREM 2.2.1. D is a dense proper subspace of ζ , the order

on D being the same as the order induced on D by ζ .

PROOF. For φ ∈ ζ , the sequence of functions (φk) in D defined

by

φk(x) = φ(x)η(
x

k
), k = 1, 2, 3, . . .

where η(x) = 1, |x| < 1, η ∈ D is such that φk → φ. So D is

dense in ζ . However e−|x|
2

belongs to ζ but not to D. Since D is a

subspace of ζ , the order on D induced by ζ is determined by Cζ ∩D

where Cζ is the cone in ζ . Clearly Cζ ∩ D is the positive cone in

D. �

Note. As in the case of E it can be proved that the cone of ζ is not

normal but is a strict b-cone.

43



Order and topology on the dual of ζ . Let ζ ′ denote the linear

space of all continuous linear functionals (continuous with respect

to the topology of pointwise convergence) defined on ζ . An order

relation is defined on ζ ′ by identifying the positive cone of ζ ′ to be

the dual cone C ′ of the cone C of non-negative functions in ζ . The

class of all B0, the polars of B as B varies over all σ(ζ, ζ ′)-bounded

subsets of ζ is a neighbourhood basis of 0 in ζ ′ for the locally convex

topology β(ζ ′, ζ). When ζ ′ is ordered by the dual cone C ′ and is

assigned the topology of bounded convergence β(ζ ′, ζ) it follows

that C ′ is a normal cone for β(ζ ′, ζ), since C is a strict b-cone in ζ

for the topology defined on ζ .

As in the case of D′, E ′ we observe that ζ ′ has the following

properties

(1) ζ ′ is regularly ordered.

(2) The order topology and the topology of bounded conver-

gence on ζ ′ are the same.

(3) The order dual ζ+ and the topological dual ζ ′ (with respect

to the topology of bounded convergence) of ζ are the same.

We observe in the following theorem that as a subspace of D′, the

topology induced on ζ ′ by D ′ is the same as the topology of bounded

convergence defined on ζ ′. Also the order relation induced on ζ ′ by

D′ is the same as the order relation ζ ′ has.

THEOREM 2.2.2. The space of tempered distributions ζ ′ is a sub-

space of the space of distributions D′, the topology on ζ ′ being the
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same as the topology induced on ζ ′ by D′. Also the order relation

on ζ ′ is the same as the order relation induced on ζ ′ by D′.

PROOF. In Theorem 2.1.3 we have proved that B0
E = BD ∩ E ′

and C ′
E ′ = CD′ ∩ E ′. Similarly we can prove that B0

ζ = B0
D ∩ ζ ′ and

Cζ ′ = CD′ ∩ ζ ′ from which the theorem follows �

In the next theorem we observe that certain operations defined

on ζ ′ are continuous with respect to the topology of bounded con-

vergence defined on ζ ′. Vladimirov [44] has proved that these oper-

ations on ζ ′ are continuous with respect to the topology of pointwise

convergence (see page 79, [44]).

THEOREM 2.2.3. (i) If f ∈ E ′ then f ∈ ζ ′ and 〈f, φ〉 = 〈f, ηφ〉

φ ∈ ζ , where η ∈ D and η = 1 in the support of f .

(ii) If f ∈ ζ ′ then every derivative ∂αf ∈ ζ ′ and the operation

f → ∂αf is continuous and linear on ζ ′ (when ζ ′ is assigned the

topology of bounded convergence).

(iii) If f ∈ ζ ′ and det A 6= 0 then f(Ax+ b) ∈ ζ ′ and the operation

f(x) → f(Ax + b) is linear and continuous on ζ ′ (with respect to

the topology of bounded convergence).

(iv) If f ∈ ζ ′ and a ∈ θM then af ∈ ζ ′ and the operation f → af is

linear and continuous on ζ ′ (with respect to the topology of bounded

convergence).

(Suppose that the function a ∈ C∞ grows at infinity together

with all its derivatives not faster than the polynomial |∂αa(x)| ≤
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Cα(1 + |x|)mα. Denote by θM the set of all such functions. This set

is called the set of all multipliers in ζ . See page 76, [44]).

PROOF. Vladimirov [44] has proved the above results with the

topology of pointwise convergence assigned to ζ ′. Since the topol-

ogy of bounded convergence is finer than the topology of pointwise

convergence (Theorem 1.1.1) the required results follow. �

2.3. Direct product and convolution of tempered generalized

functions

Since ζ ′ is a subspace of D′ the notions of direct product and

convolution defined on D′ are applicable to the elements of ζ ′ also.

Vladimirov [44] has proved that since ζ ′ ⊆ D′, for f(x) ∈ ζ ′(Rn)

and g(y) ∈ ζ ′(Rm), f(x) × g(y) ∈ ζ ′(Rm+n) (see section 5.5,

chapter 1, [44]), Vladimirov [44] has also defined the convolution

of f, g ∈ ζ ′ to be the limit limk→∞(fηk) ∗ g in ζ ′ if this limit

exists for any sequence (ηk) converging to 1 in Rn. The above

limit, if it exists, is independent of (ηk). Thus in this case f ∗ g =

limk→∞(fηk) ∗ g. Also f ∗ g = g ∗ f . For f ∈ ζ ′, g ∈ E ′ the

convolution f ∗ g belongs to ζ ′ and can be represented as

〈f ∗ g, φ〉 = 〈f(x)× g(y), η(y)φ(x+ y)〉, φ ∈ ζ

where η is any function from D equal to 1 in a neighbourhood of

the support of g; here the operation f → f ∗ g is continuous from
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ζ ′ to ζ ′ and the operation g → f ∗ g is continuous from E ′ to ζ ′ (see

5.6.1., chapter 1, [44]).

Though the topology of pointwise convergence assigned to ζ ′ and

E ′ has been replaced by the topology of bounded convergence by us,

the above definitions of direct product and convolution of tempered

generalized functions hold good and their continuity properties are

retained by virtue of Theorem 1.1.1 in the new situation when ζ ′,

E ′ are treated as ordered duals of ordered (strict) countable union

spaces, ordered multinormed spaces respectively, with the topology

of bounded convergence assigned to them. The relevant results we

state and prove as follows:

THEOREM 2.3.1. Let f ∈ ζ ′, g ∈ E ′. The convolution f ∗ g ∈ ζ ′

and can be represented as

〈f ∗ g, φ〉 = 〈f(x)× g(y), η(y)φ(x+ y)〉, φ ∈ ζ

where η is any function in D equal to 1 in a neighbourhood of the

support of g. The operation f → f ∗ g is orderpreserving and

continuous from ζ ′ to ζ ′ and g → f ∗ g is orderpreserving and

continuous from E ′ to ζ ′ when the topology of bounded convergence

is assigned to ζ ′ and E ′.

PROOF. Vladimirov [44] has proved that the operations f →

f ∗ g from ζ ′ to ζ ′ is continuous and g → f ∗ g from E ′ to ζ ′ is

continuous when E ′, ζ ′ are assigned the topology of pointwise con-

vergence (5.6.1, chapter 1, [44]). By Theorem 1.1.1 it follows that
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the above operations are continuous when E ′, ζ ′ are assigned the

topology of bounded convergence.

Let f ≥ 0, g ≥ 0, φ ≥ 0. Since

〈f(x)× g(y), ηk(x; y)φ(x+ y)〉 ≥ 0 for ηk(x) = η(
x

k
).

k = 1, 2, 3, . . . where η ∈ D, η(x) = 1, |x| < 1 and since

limk→∞〈f(x) × g(y), ηk(x; y)φ(x + y)〉, if it exists, is independent

of (ηk) it follows that f ∗ g ≥ 0. �

THEOREM 2.3.2. The operations of convolution and direct prod-

uct of comparable elements in ζ ′ are compatible with lattice oper-

ations i.e. if f1, f2 and g1, g2 are comparable elements in ζ ′ then

fi ∗ gi, i = 1, 2 and fi × gi, i = 1, 2 are comparable and

(f1 ∗ g1) ∨ (f2 ∗ g2) = (f1 ∨ f2) ∗ (g1 ∨ g2)

(f1 ∗ g1) ∧ (f2 ∗ g2) = (f1 ∧ f2) ∗ (g1 ∧ g2)

and

(f1 × g1) ∨ (f2 × g2) = (f1 ∨ f2)× (g1 ∨ g2)

(f1 × g1) ∧ (f2 × g2) = (f1 ∧ f2)× (g1 ∧ g2).

PROOF. Similar to the proof of Theorem 1.2.4. �
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2.4. Fourier transform of tempered generalized functions

Vladimirov [44] has studied the integral transforms of gener-

alized functions in detail. We have used the definition and prop-

erties of Fourier transform of tempered generalized functions in

Vladimirov [44] to illustrate our idea that comparison of solutions of

differential equations involving generalized functions can be done.

DEFINITION 2.4.1. [44] If f is an integrable function on Rn its

Fourier transform is defined as

F (f)(ξ) =

∫
Rn

f(x)ei(ξ·x)dx

which is a continuous function on Rn and hence determines a regular

tempered generalized function by the formula

〈F (f), φ〉 =

∫
F (f)(ξ)φ(ξ), φ ∈ ζ

The inverse of the Fourier transform F−1 : ζ ′ → ζ ′ is defined as

F−1(f) = 1
(2π)nF [f(−x)] where f(−x) is the reflexion of f(x).

F−1(ψ)(x) =
1

(2π)n

∫
Rn

ψ(ξ)e−i(x·ξ)dξ

=
1

(2π)n
F (ψ)(−x)

=
1

(2π)n

∫
Rn

ψ(−ξ)ei(x·ξ)dξ

=
1

(2π)n
F (ψ)(−ξ).
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The following are some observations made on the basis that the

topology of pointwise convergence is weaker than the topology of

bounded convergence on ζ ′. The following results with the topology

of pointwise convergence assigned to ζ ′ have been proved in detail

by Vladimirov (section 6.2, chapter 2, [44]).

(1) Since the operation φ → F (φ) is linear and continuous on

ζ , being the adjoint of the operation, f → F (f) is linear and

continuous on ζ ′ with the topology of bounded convergence

assigned to ζ ′.

(2) The operation f → F (f) is an isomorphism on ζ ′ with the

topology of bounded convergence assigned to ζ ′.

(3) For f(x, t) ∈ ζ ′(Rn+m) where x ∈ Rn, y ∈ Rm the restricted

Fourier transform Fx(f) with respect to x acts on φ(ξ, y) ∈

ζ(Rn+m) by the equation 〈Fx(f), φ〉 = 〈f, Fξ(φ)〉.

(4) The operation f → Fx(f) is an isomorphism on ζ ′(Rn+m)

with the topology of bounded convergence assigned to

ζ ′(Rn+m).

2.5. Application of Fourier transforms to solve non-zero linear

differential equations with constant coefficients and

comparison of solutions

Rudin [33] and Vladimirov [44] have worked out in detail the

method of solving non-zero linear differential equations with con-

stant coefficients by applying Fourier transform and its inverse to
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tempered distributions. We give a brief outline of obtaining tem-

pered fundamental solutions to such differential equations. Our

main objective in this section is to illustrate that comparison of such

solutions of differential equations is possible since we have assigned

an order relation to the linear space of tempered distributions.

Fundamental solutions in D′ [44]

If P (∂) =
∑

|α|≤m aα∂
α,

∑
|α|=m aα 6= 0 is a partial differential

operator of the mth order with constant coefficients there exist ε(x)

in D′ such that

P (∂)ε(x) = δ(x) (5)

where δ is the delta function of Dirac which operates via the rule

〈δ, φ〉 = φ(0), φ ∈ D

ε(x) is called the fundamental solution of P (∂) in D′. Every differ-

ential operator with constant coefficients P (∂) 6≡ 0 has a fundamen-

tal solution in D′. Having a fundamental solution ε of the operator

P (∂) we can construct a solution u ∈ D′ of the equation

P (∂)u = f, f ∈ D′ (6)

in the form of the convolution u = ε ∗ f for those f ∈ D′ for which

the convolution exists in D′. The solution of (6) is unique in the

class of generalized functions from D′ for which the convolution

with ε exists.
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Fundamental solution in ζ ′ [44]

The equation (6) in the class ζ ′ is equivalent to the algebraic equa-

tion

P (−i ξ)ε̃(ξ) = 1, (7)

with respect to the Fourier transform F (ε) = ε̃. Thus the problem of

seeking a tempered fundamental solution turns out to be the problem

of finding a solution u in ζ ′ of the equation

P (ξ)u = f (8)

where P 6≡ 0 is a polynomial and f is a specified member of ζ ′. It

has been proved that every equation of the form (8) has a tempered

fundamental solution.

Illustration

(1) Vladimirov [44] has derived a fundamental solution of the

heat conduction operator

∂ε

∂t
− a2∆ε = δ(x, t), where ∆ =

∂2

∂x2

as

ε(x, t) =
θ(t)

(2a
√
πt)n

e−
|x|2

4a2t

(15.4.5, chapter 3, [44]). As ε(x, t) is a member of ζ ′ it is

possible to compare different solutions obtained correspond-

ing to different values of x, t.
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Corresponding to x = x1, t = t1, t = t2 we get two

different solutions

ε(x1, t1) =
θ(t1)

(2a
√
πt1)n

e
− |x1|

2

4a2t1

ε(x1, t2) =
θ(t2)

(2a
√
πt2)n

e
− |x1|

2

4a2t2

The two solutions obtained corresponding to two different

values of t, say t = t1 and t = t2 are comparable since

ε(x1, t1) and ε(x1, t2) as elements of ζ ′ satisfy the relation

ε(x1, t1) ≥ ε(x1, t2) with respect to the order relation defined

on ζ ′ if t1 ≤ t2. On the other hand the two solutions obtained

corresponding to two different values of x, say x = x1, x =

x2, t = t1 satisfy the relation ε(x1, t1) ≤ ε(x2, t1) if x1 ≤ x2.

(2) Fundamental solution of the Schrodinger operator

i
∂ε

∂t
+

1

2m
∆ε = δ(x, t) is

ε(x, t) = −1 + i√
2
θ(t)

√
m

2πt
eim

2tx
2

(15.4.10, Chapter 2, [44]) For a fixed value of x, say x = x1,

the two solutions ε(x1, t1) and ε(x1, t2) are comparable as

elements of ζ ′ since t1 ≥ t2 ⇒ ε(x1, t1) ≤ ε(x1, t2).

Also for t = t1, x = x1 , x = x2 the solutions ε(x1, t1)

and ε(x2, t1) satisfy x1 ≤ x2 ⇒ ε(x1, t1) ≤ ε(x2, t1).
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CHAPTER 3

The Laplace Transformation

Zemanian [50] has studied the two-sided Laplace transform of

generalized functions. In chapter 1 we have introduced the notions

of ordered multinormed spaces, ordered (strict) countable union spaces

and their ordered dual spaces with the topology of bounded conver-

gence assigned to the dual spaces. We have adapted the techniques

applied by Zemanian [50] to the present situation by applying the

two-sided Laplace transformation to generalized functions which

are elements of ordered topological vector spaces. Without losing

any of the original properties of the Laplace transformation and its

inverse by the changes we have made, we observe that comparison

of solutions of differential equations involving generalized functions

is possible in the present situation.

3.1. The spaces La,b, L(w, z) and their duals

We begin by defining the testing function spacesLa,b andL(w, z).

Though our definitions are based on the definitions ofLa,b andL(w, z)

by Zemanian (see section 3.2, chapter 3, [50]), our definitions differ

from that of Zemanian since we treat La,b as the (strict) countable

union space of La,b,Km
. Let a, b, c, d, t ∈ R, s ∈ C and let
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La,b(t) = eat, 0 ≤ t <∞

= ebt, −∞ < t < 0.

Let (Km) be a sequence of compact subsets of R such that K1 ⊆

K2 ⊆ · · · and such that each compact subset of R is contained in

some Km, m = 1, 2, 3, . . .. Let La,b,Km
denote the linear space of

smooth complex-valued functions defined on R having support in

Km. Define

γKm,k(φ) = sup
t∈Km

|La,b(t)D
kφ(t)|, k = 0, 1, . . . , φ ∈ La,b,Km

{γKm,k}∞k=0 is a multinorm onLa,b,Km
and generates a topology τa,b,Km

on La,b,Km
. Each La,b,Km

is complete with respect to the topology

La,b,Km
. LetLa,b = ∪∞m=1La,b,Km

be the strict countable union space.

Since eachLa,b,Km
is complete, La,b is also complete. (Proof follows

as in the case of Example 1.17, chapter 1, [50]).

We now define an order relation on La,b by identifying a positive

cone in La,b.

DEFINITION 3.1.1. The positive cone C of La,b when La,b is re-

stricted to real-valued functions is the set of all non-negative func-

tions in La,b. In the general case when the field of scalars is C the

complex numbers C + iC is the positive cone of La,b which is also

denoted as C.
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Note. The positive cone defines an order relation on La,b by setting

φ ≤ ψ if and only if ψ − φ ∈ C.

As done in Chapter 2 in the case of D, E , ζ it can be proved that

the cone C of La,b is not normal but is a strict b-cone.

Order and topology on the dual L′a,b of La,b. An order relation

is defined on the dual L′a,b, the linear space of all continuous linear

functionals on La,b by identifying the positive cone in L′a,b to be

the dual cone C ′ of the cone C of La,b. The class of all B0, the

polars of B as B varies over all σ(La,b,L′a,b)-bounded subsets of

La,b is a neighbourhood basis of 0 in L′a,b for the locally convex

topology β(L′a,b,La,b). When L′a,b is ordered by the dual cone C ′

and is equipped with the topology β(L′a,b,La,b) it follows that C ′ is

a normal cone since C is a strict b-cone by corollary 1.26, chapter

2, [29].

As in case ofD′, E ′, ζ ′ we observe that when the topology onL′a,b

is changed to the topology of bounded convergence, L′a,b is order

complete and topologically complete, the order dual and the topo-

logical dual ofLa,b coincide and the order topology and the topology

of bounded convergence on L′a,b coincide. Also the cones of La,b,

L′a,b are generating.

We make the following observations from the results proved by

Zemanian [50].
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(1) Let a ≤ c, d ≤ b. The restriction of any f ∈ L′a,b to Lc,d is in

L′c,d when the topology of bounded convergence is assigned

to L′a,b, L′c,d.

When a ≤ c, d ≤ b, Lc,d ⊆ La,b and the topology τc,d

on Lc,d is stronger than the topology induced on Lc,d by

La,b. Also the restriction of any f ∈ L′a,b to Lc,d is in L′c,d
when L′a,b, L′c,d are assigned the topology of pointwise con-

vergence (see pages 49, 50, [50]). The above results remain

true when the topology of bounded convergence is assigned

to L′a,b, L′c,d by Theorem 1.1.1.

(2) If a < b or d < b, L′a,b cannot be identified in one-to-one

correspondence with a subspace of L′c,d.

Zemanian [50] has illustrated that two different members

of L′a,b have the same restriction to Lc,d if a < c or d < b

when L′a,b, L′c,d are assigned the topology of pointwise con-

vergence (see Example 3.2.1, Chapter III, [50]). By Theo-

rem 1.1.1 it follows that the above result is true when L′a,b,

L′c,d are assigned the topology of bounded convergence.

The ordered countable union spaceL(w, z) and its dualL′(w, z).

Zemanian [50] has defined the space L(w, z) (see page 50, [50]) as

follows.

DEFINITION 3.1.2. [50] Let w ∈ R or w = −∞, z ∈ R or

z = +∞. Let (ai), (bi) be sequence of real numbers such that

57



ai → w+, bi → z−. The strict countable union space ∪∞i=1Lai,bi
is

denoted as L(w, z).

Each Lai,bi
is an ordered topological linear space, the order be-

ing assigned by identifying a positive cone in each Lai,bi
and the

topology of each Lai,bi
being τai,bi

as described in the beginning of

Section 3.1. Being a strict countable union space L(w, z) is also an

ordered topological vector space, the order relation on L(w, z) be-

ing determined as follows: for φ, ψ ∈ L(w, z) we say that φ ≤ ψ

if φ, ψ ∈ Lai,bi
for some ai, bi and φ ≤ ψ with respect to the order

relation defined on Lai,bi
. The topology on L(w, z) is determined

by the notion of convergence defined on L(w, z) as follows: a se-

quence (φn) inL(w, z) converges to φ ∈ L(w, z) if all φn, φ ∈ Lai,bi

for some ai, bi and (φn) converges to φ with respect to the topology

τai,bi
. Since each Lai,bi

is complete it follows that L(w, z) is com-

plete.

From the result I and II (pages 51, 52, Zemanian [50]) we make

the following observation: D ⊆ La,b ⊆ E andD is not dense in La,b

but D is dense in L(w, z) for every w, z. In particular, D is dense in

L(a, b) though not in La,b.

The dual L′(w, z) is ordered by the dual cone C ′(L′(w, z)) of the

cone C(L(w, z)) of L(w, z) and we assign the topology of bounded

convergence β(L′(w, z),L(w, z)) on L′(w, z). Since C(L(w, z)) is

a strict b-cone it follows that C ′(L′(w, z)) is a normal cone with re-

spect to β(L′(w, z),L(w, z)) by corollary 1.26, chapter 2, [29]. As

58



in the cases of D′, E ′, ζ ′ it follows that the order dual and the topo-

logical dual of L(w, z) coincide and since L′(w, z) = L+(w, z) =

C ′ − C ′ it follows that the cone in L′(w, z) is generating. Also,

since β(L′(w, z),L(w, z)) is the finest locally convex topology on

L′(w, z) for which the cone C ′ is normal, it follows that the order

topology and the topology of bounded convergence on L′(w, z) co-

incide.

3.2. Linear maps on La,b, L(w, z) and their adjoints on L′a,b,

L′(w, z)

Zemanian [50] has studied some linear maps and their adjoints

(see pages 42, 43, 61, 62, 63, [50]). We make some observations

on these maps defined on the ordered multinormed spaces La,b, or-

dered countable union spaces L(w, z) and their adjoints on the or-

dered dual spaces L′a,b and L′(w, z) with the topology of bounded

convergence assigned to the dual spaces. Without losing any of the

properties of the linear maps and their adjoints mentioned by Zema-

nian we obtain some additional order properties for the adjoints of

these maps.

A linear partial differential operator and its adjoint on general-

ized functions

Zemanian [50] has discussed a type of operator that may be ap-

plied to generalized functions under certain conditions. The opera-

tor in question is defined as the adjoint of a linear partial differential

operator acting on testing function spaces.
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Let I be an open set either in Rn or Cn and let for t = (t1, . . . , tn) ∈

I , θv(t) (v = 0, 1, . . . ,m) denote complex-valued smooth functions

on I . Considers the partial differential operator

R = (−1)|k|θ0D
k1θ1D

k2 · · · θm−1D
kmθm

where kv now denote non negative integers in Rn and |k| is the one-

dimensional integer |k1| + · · · + |km|. The order of R is |k|. (The

above symbol R denotes the sequence of operations: multiply by

θm, differentiate according to Dkm, multiply by θm−1 etc. Moreover

when I is an open set in Cn, D has the customary definition when

the limit is required to be independent of the direction in which the

complex increment goes to zero.) Finally let U(I) and V (I) be test-

ing function spaces on I . If R : U(I) → V (I) is linear and continu-

ous its adjoint R′ : V ′(I) → U ′(I) defined by 〈R′f, φ〉 = 〈f,Rφ〉 is

also linear and continuous. Note that the order of differentiation in

each Dkv , |kν| > 1 can be changed in any fashion without altering

Rφ because φ and the θv are smooth functions. Therefore R′f also

does not depend on this order. On the other hand, Rφ and therefore

R′f do depend on the order in which multiplication by θv and the

differential operators Dkv are applied.

When I is an open set in Rn and when f is a smooth function

whose support is a compact subset of I (i.e., f ∈ D(I)) f and each

of its derivatives define regular distributions in E ′(I). For f ∈ D(I),
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φ ∈ U(I)

〈R′f, φ〉 = 〈f,Rφ〉 =

∫
I

f(t)Rφ(t)dt.

By successive integration by parts this becomes∫
I

φ[θmD
km · · · θ1D

k1θ0f ]dt.

Thus in this case we can identify R′ as the operator

θmD
km · · · θ1D

k1θ0

where D denotes the conventional differentiation. When R′ acts

upon f ∈ ν ′(I), D denotes the generalized differentiation.

The following theorem proves that generalized differentiation is

a continuous operation onL′a,b, L′(w, z) with respect to the topology

of bounded convergence.

THEOREM 3.2.1. The generalized differentiation is a continuous

mapping of L′a,b into itself and of L′(w, z) into itself with the topol-

ogy of bounded convergence assigned to the dual spaces.

PROOF. For φ ∈ C(La,b), φ ∈ C(L′a,b,Km
) for some compact set

Km in R. By the definition of seminorms {γKm,k}∞k=0 on La,b,Km
,

γKm,k(−Dφ) = γKm,k+1(φ). By Lemma 1.10.1, [50]
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(−D) is a continuous linear mapping of C(La,b,Km
) into itself and

hence of C(La,b) into itself. It follows that (−D) is a continuous

linear mapping of L′a,b into itself, since the cone in La,b is gener-

ating. By Theorem 1.1.2 its adjoint operator, the generalized dif-

ferentiation is a continuous linear mapping of L′(w, z) into itself.

Since L(w, z) is the countable union of the spaces La,b, it follows

that (−D) is a continuous linear mapping of L(w, z) into itself and

its adjoint operator D, the generalized differentiation is a continu-

ous linear mapping of L′a,b into itself with respect to the topology of

bounded convergence. �

Remark. As the cone in La,b is generating it is enough if we prove

the continuity of the operator (−D) on the elements of the cone of

La,b.

Zemanian [50] has made the following observation: θM is the

space of smooth functions defined as follows: θ(t) is in θM if and

only if it is smooth on −∞ < t < ∞ and for each non-negative

integer k there exists an integer Nk for which (1 + t2)−NkDkθ(t) is

bounded on −∞ < t < ∞. For φ ∈ Lc,d and for arbitrary real

numbers a, b with a < c, d < b, for any θ ∈ θM the operation

φ→ θφ is a continuous linear mapping of Lc,d into La,b. Let (φi) be

a sequence in L(w, z) that converges in L(w, z). Then there exist

real numbers a, b, c, d such that w < a < c, d < b < z such that (φi)

converges in Lc,d. By what proved above, (θφi) converges in La,b
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and hence in L(w, z). Thus φ→ θφ is a continuous linear mapping

of L(w, z) into itself.

The following theorem makes use of the above result to prove

that f → θf , f ∈ L′(w, z), θ ∈ θM is a continuous linear operator

on L′(w, z) with respect to the topology of bounded convergence.

THEOREM 3.2.2. For θ ∈ θM , f → θf is a continuous linear

operator on L′(w, z) with respect to the topology of bounded con-

vergence.

PROOF. For θ ∈ θM , φ ∈ L(w, z), φ → θφ is a continuous

linear mapping of L(w, z) into itself. The adjoint of this map is

f → θf , f ∈ L′(w, z). Being the adjoint of a continuous linear

map on L(w, z), f → θf is a continuous linear map on L′(w, z)

with respect to the topology of pointwise convergence and hence

with respect to the topology of bounded convergence on L′(w, z) by

Theorem 1.1.1. �

THEOREM 3.2.3. Let α be a fixed complex number and r =

Re · α. The mapping f → e−αtf from L′a,b onto L′a−r,b−r is lin-

ear, continuous, strictly positive and hence orderbounded. The map

is a strictly positive, orderbounded isomorphism from L′(w, z) onto

L′(w − r, z − r).

PROOF. The map φ(t) → e−αtφ(t) and its inverse are linear

and strictly positive. Zemanian [50] has proved that the map from

La−r,b−r onto La,b and its inverse are continuous. By Theorem 1.1.2

63



its adjoint map f → e−αtf , f ∈ L′a−r,b−r is linear and continuous

with respect to the topology of bounded convergence. By Theo-

rem 1.1.3 it follows that the adjoint map and its inverse are strictly

positive and hence are orderbounded. We conclude that the map is a

strictly positive, orderbounded isomorphism fromL′a,b ontoL′a−r,b−r

with respect to the topology of bounded convergence. By the defini-

tion of L(w, z) corresponding results follow in the case of the map

from L′(w, z) onto L′(w − r, z − r) with the topology of bounded

convergence assigned to these dual spaces. �

THEOREM 3.2.4. Let λ be a fixed positive real number. For ev-

ery a, b, w, z, f(t) → f(t − λ) from L′a,b to itself is linear, con-

tinuous, strictly positive and orderbounded. Hence the map is an

orderbounded automorphism on L′a,b with respect to the topology of

bounded convergence. The map is an orderbounded automorphism

on L′(w, z) with respect to the topology of bounded convergence.

PROOF. Zemanian [50] has observed that for a fixed real number

λ, φ(t) → φ(t + λ) is linear and continuous L(w, z). We observe

that for λ > 0, φ(t) → φ(t + λ) is strictly positive on La,b and

hence on L(w, z). The adjoint of this map f(t) → f(t+ λ) on L′a,b

is continuous with respect to the topology of bounded convergence

by Theorem 1.1.2 and strictly positive and hence orderbounded by

Theorem 1.1.3. The unique inverse mapping of φ(t) → φ(t + λ) is

φ(t) → φ(t−λ) and it mapsLa,b into itself andL(w, z) into itself. It
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follows that f(t) → f(t−λ) is continuous with respect to the topol-

ogy of bounded convergence, strictly positive and orderbounded on

L′a,b, L′(w, z). �

3.3. The two-sided Laplace transformation: Definition and

some basic properties

For defining the two-sided Laplace transformation and its in-

verse, we follow the methods of Zemanian [50]. But the dual space

on which the Laplace transform is applied is an ordered vector space

on which the topology of bounded convergence is applied. By mak-

ing these changes on the dual space we obtain the additional feature

that comparison of solutions of differential equations which can be

solved by applying the Laplace transform is possible.

DEFINITION 3.3.1. Let f be a linear functional defined on Lf , a

linear space of conventional functions which satisfies the following

properties.

(i) La,b ⊆ Lf for at least one pair of real numbers a, b with a < b.

(ii) For every La,b ⊆ Lf the restriction of f to La,b is in L′a,b.

We call f a Laplace transformable generalized function.

DEFINITION 3.3.2. Let f be a Laplace transformable generalized

function. We define a set Λf to be the union of all open intervals

(a, b) such that La,b ⊆ Lf , i.e., Λf = ∪{(a, b) : La,b ⊆ Lf}.

Note. Λf is an open set.
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THEOREM 3.3.1. The collectionW of all Laplace transformable

functions is a linear space.

PROOF. Let f, g ∈ W . Then there exists real numbers a, b and

c, d such that La,b ⊆ Lf , Lc,d ⊆ Lg. Then we can find real numbers

l,m such that Ll,m ⊆ La,b and Ll,m ⊆ Lc,d so that f + g can be

defined on Lf ∩ Lg by

〈f + g, φ〉 = 〈f, φ〉+ 〈g, φ〉.

Also for λ ∈ C, λf ∈ W if f ∈ W so that W is a linear space. �

As a prelude to defining the Laplace transformation we state and

prove the following theorem.

THEOREM 3.3.2. Let σ1 = inf Λf , σ2 = sup Λf . Given a func-

tional f defined on a linear space Lf of conventional functions f

can be extended to a functional f1 on Lf ∪L (σ1, σ2) such that

(i) the restriction of f1 to L(σ1, σ2) is a member of L′(σ1, σ2)

(ii) the restriction of f1 to Lf coincide with f .

PROOF. Since σ1 = inf Λf , σ2 = sup Λf , there exists two se-

quences (ci), (di) of real numbers such that ci → σ+
1 and di → σ2−,

ci, di ∈ Λf , ci < di, ∀i. Then f ∈ L′ci,ci
, f ∈ L′di,di

, ∀i. (see pages

53, 54, [50]). Let λ(t) be a fixed smooth function on R such that

λ(t) = 0 for t < −1

= 1 for t > 1
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f can be extended to Lci,di
as follows:

Let ψ ∈ Lci,di
. Define f(ψ) = f(λψ)+f((1−λ)ψ). f is continuous

and linear on Lci,di
. Using the above method f may be extended to

L(σ1, σ2). This extension of f is unique. �

For a given Laplace transformable function f let Ωf denote the

open strip in the complex s-plane:

Ωf = {s : σ1 < Re s < σ2}, where σ1 = infΛf .

σ2 = sup Λf . Then the Laplace transform L(f) is defined by

F (s) = (Lf)(s) = 〈f(t), e−st〉, s ∈ Ωf

Note.

(1) By the notation 〈f(t), e−st〉, s ∈ Ωf we mean

〈f(t), e−st〉 =

∫ ∞

−∞
f(t)e−stdt.

(2) For any fixed s ∈ Ωf , the right hand side has a meaning as

the application of f ∈ L′(σ1, σ2) to e−st ∈ L(σ1, σ2).

The following two theorems deal with the order relation intro-

duced by us on L′a,b, L′(w, z), L′(σ1, σ2). The proof of Theorem

3.3.3 is based on the results proved by Zemanian [50] in section 3.2

(v), Chapter 2.

THEOREM 3.3.3. If f(t) is a positive locally integrable function

such that f(t)
La,b(t)

is absolutely integrable on −∞ < t < ∞ then
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〈f, φ〉 =
∫∞
−∞ f(t)φ(t)dt is positive and so f ∈ C ′(L′a,b). Also,

if f(t) is a positive locally integrable function such that f(t)
La,b(t)

is

absolutely integrable on −∞ < t < ∞ for every choice of a and b

satisfying w < a and b < z, f generates a positive regular member

of C ′(L′w,z).

PROOF. Zemanian [50] has proved that if f(t) is a locally inte-

grable function such that f(t)
La,b(t)

is absolutely integrable on −∞ <

t <∞, the functional defined by 〈f, φ〉 =
∫∞
−∞ f(t)φ(t)dt, φ ∈ La,b

is continuous and linear on La,b (see pages 53, 54, [50]). Since the

topology of pointwise convergence is weaker than the topology of

bounded convergence it follows that f ∈ L′a,b with the topology on

L′a,b replaced by the topology of bounded convergence. A linear

functional f on a linear space X of scalar valued functions on a set

T is said to be positive if f(x) ≥ 0, for all x ∈ X such that x(t) ≥ 0,

for all t ∈ T ([18]). If φ(t) ≥ 0,
∫∞
−∞ f(t)φ(t)dt ≥ 0 and it follows

that f ∈ C ′(L′a,b). i.e., f is a member of the dual cone defined on

L′a,b.

Zemanian [50] has also proved that if f(t) is a locally integrable

function such that f(t)
La,b(t)

is absolutely integrable on −∞ < t < ∞,

for every choice of a and b satisfying w < a and b < z then f

generates a regular member of L′(w, z) by the definition

〈f, φ〉 =

∫ ∞

−∞
f(t)φ(t)dt, φ ∈ L(w, z).

As in the above case, it follows that f is a linear functional on
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L(w, z), continuous with respect to the topology of bounded con-

vergence. Also, it follows that f ∈ C ′(L′(w, z)). �

THEOREM 3.3.4. The Laplace transform is continuous, strictly

positive and orderbounded map on L′(σ1, σ2).

PROOF. For f ∈ L′(σ1, σ2), Lf ∈ L′(σ1, σ2) and acts upon ele-

ments of L(σ1, σ2) in the following way:

〈Lf, φ〉 =

∫ ∞

−∞
f(t)e−stφ(t)dt = 〈f,Lφ〉.

The mapping φ → Lφ is the conventional Laplace transform on

L(σ1, σ2) and is continuous on L(σ1, σ2). The adjoint of this map

is f → Lf which is continuous on L′(σ1, σ2) with respect to the

topology of bounded convergence (by Theorem 1.1.2). Defining an

order relation on the field of complex numbers by identifying the

positive cone to be the set of complex numbers α + iβ, α > 0,

β > 0, it follows that if f > 0, f ∈ L′(σ1, σ2), then Lf > 0

so that the Laplace transformation is strictly positive and hence is

orderbounded. �

3.4. Inversion and Uniqueness

The results on the inversion of the Laplace transform and Unique-

ness Theorems [50] hold good in the ordered dual spaces when they

are assigned the topology of bounded convergence. The theorems

are stated without proof.
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LEMMA 3.4.1. Let L(f) = F (s) for σ1 < Re s < σ2, let φ ∈

C(D) and set ψ(s) =
∫∞
−∞ φ(t)estdt. Then for any fixed real number

r with 0 < r <∞,
∫ τ

−τ〈f(t), esτ〉ψ(s)dω = 〈f(τ),
∫ τ

−τ e
−sτψ(s)dω〉

where s = σ + iω and σ is fixed with σ1 < σ < σ2.

LEMMA 3.4.2. Let a, b, σ and τ be real numbers with a < σ < b,

φ ∈ C(D). Then 1
π

∫∞
−∞ φ(t + τ)eσt sin rt

t dt converges in C(La,b) to

φ(τ) and hence in La,b as r →∞.

THEOREM 3.4.1. Let L(f) = F (s) for s ∈ Ωf and L(h) =

H(s) for s ∈ Ωh and if Ωf ∩ Ωh 6= φ and if F (s) = H(s) for

s ∈ Ωf ∩ Ωh then f = h in L′(w, z) where the interval w < σ < z

is the intersection of Ωf ∩ Ωh with the real axis.

3.5. Operational calculus and solution and comparison of

solutions of differential equations

The Laplace transform and its inverse may be applied to differ-

ential equations involving generalized functions to find solutions to

such differential equations. We give below a brief sketch of the

method applied to solve differential equations involving Laplace

transformable functions. Zemanian [50] has proved a few results

required to establish the operational calculus. We state below these

results with out proof.

RESULT 3.5.1. [50] Let F (s) be a strictly positive function. The

necessary and sufficient condition for F (s) to be the Laplace trans-

form of a positive generalized function f and for the corresponding
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strip of definition to be Ωf = {s : σ1 < Re s < σ2} is that F (s) be

analytic on Ωf and for each closed substrip {s : a ≤ Re · s ≤ b}

of Ωf where σ1 < a < b < σ2 is that there be a polynomial P such

that F (s) ≤ P (|s|) for a < Re · s < b. The polynomial will in

general depend on the choices of a and b.

RESULT 3.5.2. [50] Let F (s) be a strictly positive function and

let L(f) = F (s) for s ∈ Ωf . Choose three fixed real numbers a, σ

and b such that a < σ < b and choose a polynomial Q(s) that has

no zeros for a ≤ Re · s ≤ b and such that

F (s)

Q(|s|)
≤ k

|s|2
, a < Re · s < b, k a constant.

Then in the sense of equality in L′(a, b)

F (t) = Q(Dt)
1

2πi

∫ σ+i∞

σ−i∞

F (s)

Q(s)
estds, a < σ < b.

where Dt denotes the generalized differentiation in L′(a, b) and the

integral converges in the conventional sense to a continuous func-

tion that generates a regular member of L′(a, b).

Operational Calculus. Consider the linear differential equation

L(u(t)) = (anD
n + an−1D

n−1 + · · ·+ a0)u(t) = g(t)

where the ai’s are constants, an 6= 0 and g(t) is a given Laplace

transformable generalized function. Applying the Laplace transform
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to both sides,

B(s)U(s) = G(s)

where B(s) = ans
n + an−1s

n−1 + · · ·+ a0.

U(s) = L(u), G(s) = L(g), s ∈ Ωg = {s : σg1
< Re · s < σg2

}.

If B(s) has no zeros in Ωg then by Theorem 3.5.1 there exists a gen-

eralized function u(t) whose Laplace transform is G(s)
B(s) on Ωg. u(t)

is a unique member of L′(σg1
, σg2

) and satisfies the given equation.

If B(s) has a finite number of zeros in Ωg there exists a set of m

adjoint substrips

σg1
= σ0 < Re · s < σ1, σ1 < Re · s < σ2, . . . , σm−1

< Re · s < σm = σg2

on which G(s)
B(s) is analytic and satisfies the growth condition of Re-

sult 3.5.2. For a given substrip, say, σi < Re · s < σi+1 there exists

a unique member u(t) of L′(σi, σi+1) and whose Laplace transform

is G(s)
B(s) on σi < Re · s < σi+1. For any other choice of the substrip

there will be a different solution.

Given below is an illustration of the fact that comparison of dif-

ferent solutions of a differential equation which can be solved by the

application of Laplace transform since we have introduced an order

on the linear space of Laplace transformable functions.
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ILLUSTRATION 3.5.1. In Zemanian [50] the solution of the non-

homogeneous wave equation is given as follows.

(D2
x − c−2D2

t )u(x, t) = g(x, t) (9)

where x, t ∈ R, g(x, t) is a given Laplace transformable function, c

is a + ve real number, the speed of the wave

h(x, t) = −c
2
(1 + ct− |x|)

is an elementary solution to the wave equation in one dimensional

space. The solution to (9) is now given by

u(x, t) = h(x, t) ∗ g(x, t).

If x = x1, t = t1, t = t2 are such that t1 ≤ t2

h(x1, t1) ≤ h(x1, t2).

Since the operation of convolution is orderpreserving, it follows that

u(x1, t1) ≤ u(x1, t2).

If |x1| ≤ |x2| we get h(x1, t1) ≥ h(x2, t1) and accordingly

u(x1, t1) ≥ u(x2, t1).
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CHAPTER 4

The Stieltjes Transformation

Arora [2] has studied the Stieltjes transformation by defining the

test function space Mm
a,b and its dual (Mm

a,b)
′ with the weak topol-

ogy and has applied the Stieltjes transformation of the form f̂(x) =∫∞
0

f(t)
(xm+tm)ρdt, m, ρ > 0 to the elements of (Mm

a,b)
′. We treat Mm

a,b

as a countable union space and assign an order relation on Mm
a,b

by identifying a positive cone in it. The dual space (Mm
a,b)

′ is or-

dered by the dual cone of the cone of Mm
a,b and the topology of

(Mm
a,b)

′ is changed to the topology of bounded convergence so that

the order dual and the topological dual of Mm
a,b coincide. The Stielt-

jes transform of the above form is applied to the ordered vector

space (Mm
a,b)

′ with the topology of bounded convergence assigned

to (Mm
a,b)

′. Without losing any of the properties the transformation

originally had, we get some additional order properties satisfied by

it. John J. K. [13] has studied the asymptotic behaviour of a distribu-

tion f ∈ ζ ′+ at ∞ with respect to a regularly varying function v(k)

using the techniques used by Troger [42]. In our study since the

topology of bounded convergence which is also called the strong

topology is assigned to ζ ′ we call the above behaviour the strong

asymptotic behaviour of f ∈ ζ ′+. Results connecting the strong as-

ymptotic behaviour of f ∈ (Mm
a,b)

′ at ∞ with respect to v(k) and
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that of Sm
ρ (f) ∈ (Mm

a,b)
′ at ∞ with respect to k1−mρv(k) are proved.

Using the fact that (Mm
a,b)

′ and (Mm
α,β)

′ are order complete we apply

the above results to monotone nets in these spaces.

4.1. The testing function space Mm
a,b and its dual (Mm

a,b)
′

Let (Km) be a sequence of compact subsets of R+ such that

K1 ⊆ K2 ⊆ . . . and such that each compact subset of (0,∞) is

contained in one Kj, j = 1, 2, 3, . . . . Let Ma,b,Kj
denote the linear

space of all (infinitely) smooth complex-valued functions defined on

R having compact support in Kj, on which is defined

µm
a,b,Kj ,k

(φ) = sup
t∈kj

tm(1−a+k)(1− tm)a−b|(t1−m d

dt
)kφ(t)|,

a, b ∈ R, k = 0, 1, 2, . . . , m ∈ (0,∞). {µm
a,b,Kj ,k

}∞k=0 is a multinorm

on Mm
a,b,Kj

and generates a topology τm
a,b,Kj

on Mm
a,b,Kj

. Mm
a,b,Kj

is

complete with respect to τm
a,b,Kj

. Denote the strict countable union

space ∪∞j=1M
m
a,b,Kj

as Mm
a,b. Since Mm

a,b,Kj
is complete with respect

to τm
a,b,Kj

, as in the case of La,b, it follows that Mm
a,b is complete. On

each Mm
a,b,Kj

an equivalent multinorm is given by

µ̄m
a,b,Kj ,k

(φ) = sup
0≤k′≤k

µm
a,b,Kj ,k′

(φ), see [13].

We define an order relation on Mm
a,b by identifying a positive cone

in it.

DEFINITION 4.1.1. The cone C of Mm
a,b when Mm

a,b is restricted

to real-valued functions is the set of all non-negative functions in
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Mm
a,b. When the field of scalars is C, the complex numbers. C + iC

is the positive cone in Mm
a,b which is also denoted as C.

Note We say that φ ≤ ψ in Mm
a,b when ψ − φ ∈Mm

a,b.

As in the case of previous examples it can be proved that the cone

C in Mm
a,b is not normal but is a strict b-cone.

Order and topology on the dual of Mm
a,b. An order relation is

defined on the dual (Mm
a,b)

′ the linear space of all continuous linear

functionals on Mm
a,b by identifying the positive cone in (Mm

a,b)
′ to

be the dual cone C ′ of the cone of Mm
a,b. The class of all B0, the

polars of B as B varies over all σ(Mm
a,b, (M

m
a,b)

′)-bounded subsets

of Mm
a,b is a neighbourhood basis of 0 in (Mm

a,b)
′ for a locally con-

vex topology β((Mm
a,b)

′,Mm
a,b). When (Mm

a,b)
′ is ordered by the dual

cone C ′ and is equipped with the topology of bounded convergence

β((Mm
a,b)

′,Mm
a,b) it follows thatC ′ is a normal cone sinceC is a strict

b-cone, by Corollary 1.26, Chapter 2. [29].

As in the case of previous examples we observe that when the

topology on (Mm
a,b)

′ is changed to the topology of bounded con-

vergence, (Mm
a,b)

′ is order complete and topologically complete, the

order dual and the topological dual of Mm
a,b coincide and the order

topology and the topology of bounded convergence on (Mm
a,b)

′ coin-

cide. Also the cones of Mm
a,b, (Mm

a,b)
′ are generating.
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4.2. The Stieltjes transformation

For φ ∈Mm
α,β the Stieltjes transformation is defined as

Sm
ρ (φ) = φ̂(x) =

∫ ∞

0

φ(t)

(xm + tm)ρ
dt for a fixed m > 0, ρ ≥ 1.

John J. K. [13] has proved the following result:

Let α > 1− 1
m , β < ρ + 1− 1

m . Then the Stieltjes transform maps

Mm
α,β continuously into Mm

a,b if a ≤ 1, a ≤ 1
m + α − ρ and a < 1

if α = ρ + 1 − 1
m; b ≥ 1 − ρ, b ≥ 1

m + β − ρ and b > 1 − ρ,

if β = 1 − 1
m . We use this result in a modified form where we

claim that the Stieltjes transform maps the positive cone of Mm
α,β

continuously to the positive cone of Mm
a,b.

THEOREM 4.2.1. Let α > 1 − 1
m , β < ρ + 1 − 1

m . Then the

Stieltjes transformation maps C ∩Mm
α,β continuously into C ∩Mm

a,b

if a < 1, a ≤ 1
m + α − ρ and a < 1 if α = ρ + 1 − 1

m , b ≥ 1 − ρ,

b ≥ 1
m + β − ρ and b > 1− ρ if β = 1 + 1

m .

PROOF. By definition, the Stieltjes transform is order preserving.

From the result quoted above it follows that the transform maps the

positive cone of Mm
α,β to the positive cone of Mm

a,b under the spec-

ified conditions. Since the cones of Mm
α,β and Mm

a,b are generating

it follows that the Stieltjes transform maps Mm
α,β continuously into

Mm
a,b. �
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With suitable integrability properties the double integral∫ ∞

0

∫ ∞

0

f(x)φ(t)

(xm + tm)ρ
dt dx

can be evaluated in two different ways so that

〈Sm
ρ (f), φ〉 = 〈f̂ , φ〉 = 〈f, φ̂〉 = 〈f, Sm

ρ (φ)〉, φ ∈Mm
α,β, f ∈ (Mm

α,β)
′.

Thus the Stieltjes transform of a generalized function f ∈ (Mm
α,β)

′

is defined to be adjoint of the map φ→ Sm
ρ (φ), φ ∈Mm

α,β.

THEOREM 4.2.2. The Stieltjes transform is strictly positive, or-

derbounded and continuous with respect to the topology of bounded

convergence.

PROOF. Being the adjoint of strictly positive map, f → Sm
ρ (f)

is strictly positive and hence is orderbounded. By the same reason,

f → Sm
ρ (f) is continuous with respect to the topology of bounded

convergence. �

Note. John J. K. [13] has observed that the Stieltjes transform of φ ∈

Mm
α,β may be inverted by the application of a differential operator Ln

where n is a non-negative integer, defined by

Ln = Ln(φ(x)) =
(−1)nm1−2nΓ(ρ)

Γ(n+ 1
m)Γ(ρ+ n− 1

m)

d

dx
(x1−m d

dx
)n−1

x2mn+mρ−m(x1−m d

dx
)nφ(x)

for ρ+ n > 1
m . The formal adjoint of this operator is itself.
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We make the following conclusions from the results proved by

John J. K. [13], modified to suit the present situation.

RESULT 4.2.1. If ρ+ n > 1
m ,

∫∞
0 Ln,x(x

m + tm)−ρdt = 1.

RESULT 4.2.2. Ln,t maps C ∩Mm
a,b continuously into C ∩Mm

α,β

provided α > 1− 1
m , β < ρ+1− 1

m , a = 1
m +α−ρ, b = 1

m +β−ρ.

RESULT 4.2.3. If Ln is the differential operator and S is the

Stieltjes transform operator then either x1−mρLn and Sxmρ−1 or

Lnx
1−mρ and xmρ−1S commute on Mm

a,b where a = 1
m + α − ρ,

b = 1
m + β − ρ.

i.e. xmρ−1Sm
ρ (Ln,t(φ)) = xmρ−1(Ln,t(φ))∧

= Ln,x

∫ ∞

0
(xm + tm)−ρtmρ−1φ(t)dt

= Ln,xS
m
ρ (tmρ−1φ).

RESULT 4.2.4. If α > 1 − 1
m , β < ρ + 1 − 1

m , the sequence

(Ln,xφ̂(x)) converges in C ∩Mm
α,β to φ(x).

RESULT 4.2.5. Let a = 1
m +α−ρ, b = 1

m +β−ρ. Then (Ln(φ)∧)

converges to φ in Mm
a,b as n→∞.

RESULT 4.2.6. Let f ∈ (Mm
a,b)

′. Then f ∈ C ′ if and only if

for every non-negative integer n, LnS
m
ρ (f) ∈ C ′ where C ′ is the

positive cone in (Mm
a,b)

′. It follows that Ln is strictly positive and

hence is orderbounded.
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RESULT 4.2.7. For f ∈ (Mm
α,β)

′, φ ∈Mm
α,β

〈Sm
ρ (Ln(f)), φ〉 = 〈f, LnS

m
ρ (φ)〉 → 〈f, φ〉 as n→∞.

For f ∈ (Mm
a,b)

′, φ ∈Mm
a,b

〈Ln(S
m
ρ (f), φ)〉 = 〈f, Sm

ρ Ln(φ)〉 → 〈f, φ〉.

4.3. Abelian and Tauberian theorems

We have studied ζ ′, linear space of tempered distributions as an

ordered vector space with the topology of bounded convergence de-

fined on it in Chapter 2. The elements f of ζ ′ whose support is

contained in [0,∞) form a subspace of ζ ′ denoted as ζ ′+. ζ ′+ is or-

dered by the order derived from ζ ′ and has the topology derived

from the topology of bounded convergence assigned to ζ ′. Using

the techniques applied by Troger [42],John J. K. [13] has studied

the asymptotic behaviour of a distribution f ∈ ζ ′+ at ∞ with re-

spect to a regularly varying function, the topology on ζ ′ being the

topology of pointwise convergence. We define a similar notion on

ζ ′+ with the topology of bounded convergence assigned to ζ ′+ and

call it the strong asymptotic behaviour of f ∈ ζ ′+. Besides obtaining

results similar to the abelian and Tauberian theorems proved in [13],

since (Mm
α,β)

′ and (Mm
a,b)

′ are ordercomplete we have extended the

above results to monotone nets in these space.

A function v(k) which is positive and continuous on (0,∞) is

said to be regularly varying of order r, r ∈ R if for any a > 0 the
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limit

lim
k→∞

v(ak)

v(k)
= ar exists.

DEFINITION 4.3.1. A distribution f ∈ ζ ′+ is said to have the

strong asymptotic behaviour at ∞ with respect to a regularly vary-

ing function v(k) if the limit limk→∞
f(kt)
v(k) = F (t) exists, in the

sense of convergence in ζ ′ with respect to the topology of bounded

convergence, provided F 6= 0.

Note.

(1) F is a homogeneous function of order r and hence F ∈ ζ ′

and support of F ⊆ (0,∞).

(2) By saying that limk→∞
f(kt)
v(k) = F (t) exists in ζ ′ with respect

to the topology of bounded convergence what we mean is

that if F (t) ∈ B0 where B0 is a basis element for the topol-

ogy of bounded convergence on ζ ′, f(kt)
v(k) ∈ B

0 for k ≥ k0,

i.e.
∣∣〈f(kt)

v(k)
, ψ〉

∣∣ < 1, ∀ψ ∈ B, k ≥ k0

whenever |〈F (t), ψ〉| < 1, ∀ψ ∈ B, where B = {ψ ∈

ζ ′ : |g(ψ)| < s′ε for some g ∈ ζ ′}, ε > 0, for all s′ > s,

s′, s ∈ R.

LEMMA 4.3.1. Let a = 1
m + α − ρ, b = 1

m + β − ρ, then the set

A = {Sm
ρ (φ) : φ ∈Mm

α,β} is dense in Mm
a,b.

PROOF. Let φ ∈ Mm
a,b, φn = Sm

ρ [Ln,t(φ)]. Then φn ∈ A and

φn → φ in Mm
a,b. �
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THEOREM 4.3.1. Let f ∈ (Mm
a,b)

′ and v(k) be a regularly vary-

ing function of order r > (−ma). Then the following statements

are equivalent

(i) f has in C ′ ∩ (Mm
a,b)

′ strong asymptotic behaviour at ∞ with re-

spect to v(k)

(ii) Sm
ρ (f) has in C ′ ∩ (Mm

α,β)
′ strong asymptotic behaviour at ∞

with respect to k1−mρv(k) and 1
k1−mρv(k)Ln,xS

m
ρ (f)(kx), for k > 0 is

uniformly continuous with respect to the topology of bounded con-

vergence in C ′ ∩ (Mm
a,b)

′ for all values of n.

PROOF. (i) ⇒ (ii)

Let φ ∈Mm
α,β. Also let

lim
k→∞

f(kt)

v(k)
= g(t), f ∈ C ′ ∩ (Mm

a,b)
′.

Then we have

lim
k→∞

1

v(k)
〈f(kt), φ(t)〉 = 〈g(t), φ(t)〉.

For φ1 ∈Mm
α,β, Sm

ρ (φ1) ∈Mm
a,b.

Hence 〈g(t), Sm
ρ (φ1)(t)〉 = lim

k→∞

1

v(k)
〈f(kt), Sm

ρ (φ1)(t)〉

= lim
k→∞

1

k1−mρv(k)
〈Sm

ρ (f)(kx), φ1(x)〉.

But 〈g(t), Sm
ρ (φ1)(t)〉 = 〈Sm

ρ (g)(x), φ1(x)〉.

So we conclude that
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lim
k→∞

1

k1−mρv(k)
Sm

ρ (f)(kx) = Sm
ρ (g)(x).

This means that Sm
ρ (f) has in C ′ ∩ (Mm

α,β)
′ strong asymptotic be-

haviour at ∞ with respect to k1−mρv(k).

| 1

k1−mρv(k)
〈LnS

m
ρ (f)(kx), φ(x)〉| = |〈f(kt)

v(k)
, Sm

ρ Ln(φ)(t)〉|.

Since limk→∞
f(kt)
v(k) = F (t) in ζ ′,

|〈f(kt)

v(k)
, ψ(t)〉| < 1

for all ψ ∈ B, k ≥ k0 whenever

|〈F (t), ψ(t)〉| < 1

for all ψ ∈ B where B = {ψ ∈ ζ ′ : |f(ψ)| < s′ε for some f ∈ ζ ′},

ε > 0 for all s′ > s, s′, s ∈ R. Since f(kt)
v(k) is a continuous linear

functional there exists a positive constant C1, and integers j, q such

that

∣∣ 1

k1−mρv(k)
〈LnS

m
ρ (f)(kx), φ(x)〉

∣∣ ≤ C1µ̄
m
a,b,Kj ,q

(Sm
ρ Ln(φ))

µ̄m
a,b,Kj ,q

(Sm
ρ Ln(φ)) ≤ µ̄m

a,b,Kj ,q
(Sm

ρ Ln(φ)− φ) + µ̄m
a,b,Kj ,q

(φ)
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Using Results 4.2.3, 4.2.4, 4.2.5.

µ̄m
a,b,Kj ,q

(Sm
ρ Ln(φ)− φ) = µ̄m

a,b,Kj ,q
(x1−mρLnS

m
ρ (tmρ−1φ(t)))− φ(x))

≤ C2µ̄
m
α,β,Kj ,q

(LnS
m
ρ (φ0)− φ0)

where

φ0(t) = tmρ−1φ(t) ∈Mm
α,β,Kj

≤ εnC3µ̄
m
α,β,Kj ,q+1(φ).

Consequently µ̄m
a,b,Kj ,q

(Sm
ρ Ln(φ)) ≤ C4µ̄

m
a,b,kj ,q+1(φ), for all n, uni-

formly for k ≥ k0 where C4 is a constant depending only on f, j

and q. Hence we conclude that 1
k1−mρv(k)Ln,xS

m
ρ (f)(kx), for k > 0

is uniformly continuous with respect to the topology of bounded

convergence in C ′ ∩ (Mm
α,β)

′ for all values of n.

(ii) ⇒ (i)

Let lim
k→∞

Sm
ρ (f)(kt)

k1−mρv(k)
= Sm

ρ (g)(t), say.

Then

lim
k→∞

1

k1−mρv(k)
〈Sm

ρ (f)(kx), φ(x)〉 = 〈Sm
ρ (g)(x), φ1(x)〉

= 〈g(t), Sm
ρ (φ1)(t)〉.

But

lim
k→∞

1

k1−mρv(k)
〈Sm

ρ (f)(kx), φ1(x)〉 = lim
k→∞

1

v(k)
〈f(kt), Sm

ρ (φ1)(t)〉.
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It follows that limk→∞
f(kt)
v(k) = g(t) on a dense set of elements of

the space Mm
a,b. Now we prove that {f(kt)

v(k) : k ≥ k0} is bounded in

(Mm
a,b)

′. By the theorem of uniform convergence it follows that f

has strong asymptotic behaviour at ∞ with respect to v(k).

Let φ ∈Mm
a,b. Since 1

k1−mρv(k)Ln,xS
m
ρ (f)(kx), k ≥ 0 is uniformly

continuous in (Mm
a,b)

′ there exists a constant C1 > 0 and integers j, q

such that

∣∣ 1

k1−mρv(k)
〈LnS

m
ρ (f)(kx), φ(x)〉

∣∣ ≤ C1µ̄
m
a,b,Kj ,q

(φ)

for k ≥ k0, for all n ∈ N . Since

∣∣ 1

k1−mρv(k)
〈LnS

m
ρ (f)(kx), φ(x)〉

∣∣ =
∣∣ 1

v(k)
〈f(kt), Sm

ρ (Lnφ)(t)〉
∣∣,

it follows that

∣∣ 1

v(k)
〈f(kt), φ(t)〉

∣∣ ≤ C2µ̄
m
a,b,Kj ,q+1(φ)

Hence the theorem. �

REMARK. As the dual cone C ′ in (Mm
a,b)

′ is generating it is

enough if we state and prove equivalence of (i) and (ii) for elements

of the dual cone and the results for elements of the whole space

(Mm
a,b)

′ follow automatically.

COROLLARY 4.3.1. If (fα)α∈J is a monotone net in C ′ ∩ (Mm
a,b)

′

having strong asymptotic behaviour at ∞ with respect to a regu-

larly varying function v(k) and if (fα)α∈J converges to f in C ′ ∩
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(Mm
a,b)

′ with respect to the topology of bounded convergence then

(Sm
ρ (fα))α∈J converges to Sm

ρ (f) in C ′ ∩ (Mm
α,β)

′ where Sm
ρ (f) has

strong asymptotic behaviour at ∞ with respect to k1−mρv(k). Also
1

k1−mρv(k)Ln,xS
m
ρ (f)(kx), for k ≥ k0 is uniformly continuous with

respect to the topology of bounded convergence in C ′ ∩ (Mm
a,b)

′ for

all values of n.

PROOF. Follows from Theorem 4.3.1 since (Mm
a,b)

′, (Mm
α,β)

′ are

order complete. �

REMARK. Studies have been made earlier about the asymptotic

behaviour at ∞ of generalized functions and their integral trans-

forms. (see for example [13, 44]). The relative merits of our method

which studies the strong asymptotic behaviour at ∞ of elements of

(Mm
a,b)

′ and their Stieltjes transforms are the following:

(i) As the elements of (Mm
a,b)

′, (Mm
α,β)

′ are ordered and since these

spaces are ordercomplete the results proved regarding the strong

asymptotic behaviour at ∞ could be extended to monotone

nets in these spaces.

(ii) As the cones in (Mm
a,b)

′ and (Mm
α,β)

′ are generating it was enough

if we verify the results for the elements of the cones of these

spaces.

From the proof of (i) ⇒ (ii) of Theorem 4.3.1 we obtain the fol-

lowing result.

Let f ∈ (Mm
a,b)

′ and v(k) be a regularly varying function of order

r > (−ma). If Sm
ρ (f) has strong asymptotic behaviour at ∞ with
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respect to k1−mρv(k) in C ′ ∩ (Mm
α,β)

′ then

1

k1−mρv(k)
Ln,xS

m
ρ (f)(kx) for k ≥ k0

is uniformly continuous with respect to the topology of bounded

convergence in C ′ ∩ (Mm
a,b)

′ for all values of n. Since (Mm
α,β)

′,

(Mm
a,b)

′ are ordered vector spaces the above results may be extended

to monotone nets in (Mm
a,b)

′.

THEOREM 4.3.2. Let (fα)α∈J be a monotone net in C ′ ∩ (Mm
a,b)

′

such that (Sm
ρ (fα))α∈J has strong asymptotic behaviour at ∞ with

respect to k1−mρv(k) in C ′∩ (Mm
α,β)

′ where v(k) is a regularly vary-

ing function of order r > (−ma). Then (Sm
ρ (fα))α∈J converges to

a function f in C ′ ∩ (Mm
α,β)

′ and

1

k1−mρv(k)
Ln,xS

m
ρ (f)(kx), for k ≥ k0

is uniformly continuous with respect to the topology of bounded con-

vergence in C ′ ∩ (Mm
a,b)

′ for all values of n.

PROOF. Follows from the proof of (i) ⇒ (ii) of Theorem 4.3.1,

extending the result to monotone nets since (Mm
α,β)

′ is order com-

plete and the cone in (Mm
α,β)

′ is generating. �
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CHAPTER 5

The Laplace-Stieltjes transformation

Geetha K. V. and John J. K. [11] in a paper titled ‘The Laplace-

Stieltjes Transform’ has combined the Laplace transformation and

the Stieltjes transform of the form

f̂(x) =

∫ ∞

0

f(t)

(xm + tm)ρ
dt, m, ρ > 0

and applied it the elements of the dual space (Mm
a,b,c)

′ of a testing

function space Mm
a,b,c. The application of the combination transform

was done in the conventional way based on the methods adopted

by Zemanian [50]. In this chapter, we apply the same combination

transform to (Mm
a,b,c)

′, the dual of the testing function space Mm
a,b,c.

The difference from the earlier method and the present one are the

following

(1) We treat the testing function spaceMm
a,b,c as a strict countable

union space.

(2) Mm
a,b,c and its dual (Mm

a,b,c)
′ are ordered topological vector

spaces.

(3) The pointwise convergence topology on (Mm
a,b,c)

′ is replaced

by the topology of bounded convergence.

We observe that without losing any of the original properties of the

combination transform some additional features like order proper-
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ties of the transform can be studied. The features of operational

calculus and solution of initial value problems are retained. Com-

parison of initial value problems is possible in the present situation.

5.1. The testing function space Mm
a,b,c and its dual (Mm

a,b,c)
′ as

ordered vector spaces

Let (Km) be a sequence of compact subsets of R+ × R+ such

that K1 ⊆ K2 ⊆ . . . and such that each compact subset of R+×R+

is contained in one Kj, j = 1, 2, . . .. Let Mm
a,b,c,Kj

denote the linear

space of all smooth complex-valued functions defined on R+ × R+

whose support is contained in Kj on which is defined

µm
a,b,c,Kj ,

(φ)

= sup
(u,t)∈Kj

|euuq+1Dq
ut

m(1−a+l)(1 + tm)a−b(t1−mDl
t)φ(u, t)|

where a, b, c ∈ R, q, l = 0, 1, 2, . . .,m ∈ (0,∞),Du ≡ ∂
∂u ,Dt ≡ ∂

∂t .

{µm
a,b,c.Kj ,q,l

}∞q,l=0 is a multinorm on Mm
a,b,c,Kj

and generates topology

τm
a,b,c,Kj

on Mm
a,b,c,Kj

. Mm
a,b,c,Kj

is complete with respect to τm
a,b,c,Kj

.

Mm
a,b,c = ∪∞j=1M

m
a,b,c,Kj

is a (strict) countable union space. Since

each Mm
a,b,c,Kj

is complete with respect with respect to τm
a,b,c,Kj

it fol-

lows that Mm
a,b,c is complete. On each Mm

a,b,c,Kj
an equivalent multi-

norm is given by

µm
a,b,c,Kj ,q,l

(φ) = sup
0 ≤ q′ ≤ q

0 ≤ l′ ≤ l

µm
a,b,c,Kj ,q′,l′

(φ).
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We define an order relation on Mm
a,b,c by identifying a positive cone

in it.

DEFINITION 5.1.1. The positive cone of Mm
a,b,c when Mm

a,b,c is

restricted to real valued functions is the set of all non-negative func-

tions inMm
a,b,c. When the field of scalars is C, the complex numbers,

the positive cone in Mm
a,b,c is C + iC which is also denoted as C.

Note. We say that φ ≤ ψ in Mm
a,b,c when ψ − φ ∈ C in Mm

a,b,c.

As in the previous cases it can be proved that the positive cone in

Mm
a,b,c is not normal but is a strict b-cone.

Order and topology on the dual of Mm
a,b,c. An order relation is

defined on the dual (Mm
a,b,c)

′, the linear space of all continuous linear

functionals on Mm
a,b,c, by identifying the positive cone in (Mm

a,b,c)
′ to

be the dual cone C ′ of the cone C in Mm
a,b,c. The class of all B0 , the

polars of B as B varies over all σ(Mm
a,b,c, (M

m
a,b,c)

′)-bounded subsets

of Mm
a,b,c is a neighbourhood basis of 0 in (Mm

a,b,c)
′ for the locally

convex topology β((Mm
a,b,c)

′,Mm
a,b,c). When (Mm

a,b,c)
′ is ordered by

the dual cone C ′ and is equipped with the topology of bounded con-

vergence β((Mm
a,b,c)

′,Mm
a,b,c) it follows thatC ′ is a normal cone since

C is a strict b-cone by Corollary 1.2.6, Chapter 2, [29].

As in the case of the previous examples we observe that when the

topology on (Mm
a,b,c)

′ is changed to the topology of bounded conver-

gence, (Mm
a,b,c)

′ is order complete and topologically complete, the
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order dual and the topological dual of Mm
a,b,c coincide and the or-

der topology and the topology of bounded convergence on (Mm
a,b,c)

′

coincide. Also the cones of Mm
a,b,c and (Mm

a,b,c)
′ are generating.

5.2. The Laplace-Stieltjes transformation

For φ(u, t) ∈ Mm
α,β,γ the Laplace-Stieltjes transformation is de-

fined as

SLm
ρ φ(u, t) = φ̂(y, x) =

∫ ∞

0

∫ ∞

0
e−yu(xm + tm)−ρφ(u, t)dudt

for a fixed m > 0, ρ ≥ 1. With suitable integrability conditions the

multiple integral∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
e−yu(xm + tm)−ρf(x, y)φ(u, t)dudtdxdy

for f ∈ (Mm
α,β,γ)

′, φ ∈Mm
α,β,γ can be evaluated in two different ways

so that

〈f̂ , φ〉 = 〈f, φ̂〉.

Geetha K. V. and John J. K. [11] has proved that for α > 1− 1
m , β <

ρ+1− 1
m , the Laplace-Stieltjes transform mapsMm

α,β,γ continuously

into Mm
a,b,c if

a ≤ 1, a ≤ 1
m + α− ρ and a < 1 if α = ρ+ 1− 1

m

b ≥ 1− ρ, b ≥ 1
m + β − ρ and b > 1− ρ if β = 1− 1/m.

Now, let f ∈ (Mm
a,b,c)

′. For each φ ∈ Mm
α,β,γ we have SLm

ρ (φ) ∈

Mm
a,b,c. Then the adjoint mapping
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〈SLm
ρ (f), φ〉 = 〈f,SLm

ρ (φ)〉

defines the Laplace-Stieltjes transform

SLm
ρ (f) ∈ (Mm

α,β,γ)
′ of f ∈ (Mm

a,b,c)
′.

THEOREM 5.2.1. The Laplace-Stieltjes transform is strictly pos-

itive and orderbounded.

PROOF. (Mm
a,b,c)

′, (Mm
α,β,γ)

′,Mm
a,b,c,M

m
α,β,γ are ordered vector spaces.

Let f > 0, f ∈ (Mm
a,b,c)

′. For φ ∈ Mm
α,β,γ, φ > 0, SLm

ρ (φ) > 0,

SLm
ρ (f) ∈ Mm

a,b,c. Thus φ→ SLm
ρ (φ) is a strictly positive map. Be-

ing the adjoint of this map, f → SLm
ρ (f) is a strictly positive map

from (Mm
a,b,c)

′ to (Mm
α,β,γ)

′. Since every strictly positive map is order

bounded, the theorem follows. �

5.3. Inversion

For a non-negative integer n for ρ+n > 1
m a differential operator

can be defined by

Ln,y,xφ(y, x)

= My2n+1(DyDx)(Dyx
1−mDx)

n−1x2mn+mρ−m(Dyx
1−mDx)

nφ(y, x)

where M =
m1−2nΓ(ρ)

Γ(n+ 1
m)Γ(ρ+ n− 1/m)Γ(2n+ 1)

.

The Laplace-Stieltjes transform can be inverted by the applica-

tion of this differential operator. The formal adjoint of this operator

is itself.
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Geetha K. V. and John J. K. [11] have proved the following re-

sults which are true in the present situation also.

RESULT 5.3.1. If ρ+ n > 1
m ,∫ ∞

0

∫ ∞

0
Ln,y,xe

−yx(xm + tm)−ρdudt = 1.

RESULT 5.3.2. Ln,u,t maps Mm
a,b,c continuously into Mm

α,β,γ pro-

vided α > 1− 1
m , β < ρ+ 1− 1

m , a = 1
m + α− ρ, b = 1

m + β − ρ.

RESULT 5.3.3. If Ln is the differential operator and SLm
ρ is the

Laplace-Stieltjes transform operator then either y−2nx1−mρLn and

SLm
ρ x

mρ−1y−2n or Lnx
1−mρy−2n and y−2nxmρ−1SLm

ρ commute on

Mm
a,b,c where a = 1

m + α− ρ, b = 1
m + β − ρ

i.e., y−2nxmρ−1SLm
ρ (Ln,u,t(φ)) = y−2nxmρ−1(Ln,u,t(φ))∧

= Ln,y,x

∫ ∞

0

∫ ∞

0
e−yu(xm + tm)−ρu−2ntmρ−1φ(u, t)dudt

= Ln,y,xSLm
ρ (u−2ntmρ−1φ) for φ ∈Mm

a,b,c.

RESULT 5.3.4. Let α > 1− 1
m , β < ρ+1− 1

m , then the sequence

{Ln,y,xφ̂(y, x)} converges in Mm
α,β,γ to φ(y, x).

RESULT 5.3.5. Let a = 1
m + α− ρ, b = 1

m + β − ρ then (Ln(φ̂))

converges to φ in Mm
a,b,c as n→∞.

The following result proved in [11] has been suitably modified

to suit the present situation.
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RESULT 5.3.6. Let f ∈ (Mm
a,b,c)

′. Then f ∈ C ′ if and only if for

every non-negative integer n, Ln,y,xSLm
ρ (f) ∈ C ′ where C ′ is the

positive cone in (Mm
a,b,c)

′. It follows that Ln,y,x is strictly positive

and hence is orderbounded.

We summarize the above results as follows:

For f ∈ (Mm
α,β,γ)

′, φ ∈Mm
α,β,γ

〈SLm
ρ Ln,y,x(f), φ〉 = 〈f, Ln,y,xSLm

ρ (φ)〉 → 〈f, φ〉 as n→∞.

For f ∈ (Mm
a,b,c)

′, φ ∈Mm
a,b,c

〈Ln,y,xSLm
ρ (f), φ〉 = 〈f,SLm

ρ Ln,y,x(φ)〉 → 〈f, φ〉.

5.4. Operational calculus

SLm
ρ [DuDt(φ)] = (mρ)ySLm

ρ+1[t
m−1φ(u, t)]

provided

lim
t→∞

Du(φ(u, t)) = 0 = lim
t→0

Du(φ(u, t))

lim
u→∞

φ(u, t) = 0 = lim
u→0

φ(u, t).

Consider the differential equation

(DuDt)φ(u, t) = f(u, t), u > 0, t > 0

where f(u, t) is a generalized function upon which the
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Laplace-Stieltjes transform can be applied.

Let F1(u, t) =
∫
f(u, t)dt be such that

lim
t→∞

F1(u, t) = 0 = lim
t→0

F1(u, t) and

F2(u, t) =

∫
F1(u, t)du be such that

lim
u→∞

F2(u, t) = 0 = lim
u→0

F2(u, t)

Applying the operational calculus

(mρ)ySLm
ρ+1[t

m−1φ(u, t)] = (mρ)ySLm
ρ+1[t

m−1F2(u, t)].

Inverting using the differential operator Ln,y,x for ρ+ 1 + n > 1
m ,

tm−1φ(u, t) = tm−1F2(u, t)

so that φ(u, t) = F2(u, t) where F2(u, t) =
∫ ∫

f(u, t)dtdu. Com-

parison between different solutions arising out of different initial

value conditions is possible since they belong to an ordered vector

space.
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CHAPTER 6

Abelian and Tauberian theorems

In this chapter we study distributions which are bounded on the

sides of a wedge W in Rn, tempered distributions having their sup-

port in a wedge W in Rn and holomorphic generalized functions

defined on the tube region T V . The notion of distributions having

asymptotic, strongasymptotic of order α is defined and the compat-

ibility of these notions with the lattice properties in D′(W ), ζ ′(W )

respectively is proved. Those functions which are holomorphic in

T V form a convolution algebraH(W ) which is isomorphic to ζ ′(W )

via the Laplace transformation. We define an order relation on

H(W ) by identifying a cone in H(W ) with respect to which the

above cone is normal. The notion of elements in H(W ) having

strongasymptotic is defined and is observed to be compatible with

lattice properties in H(W ). The Tauberian and Abelian theorems

in this new background for the Laplace transform are proved. Two

corollaries extending the results of the theorem to monotone nets are

also stated. A special case of the Tauberian theorem applied to the

one-dimensional case is also stated.

The basic definitions have been taken from Vladimirov [44].
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6.1. Basic definitions

DEFINITION 6.1.1. [44] A wedge in Rn with vertex at 0 is a

subsetW of Rn containing 0 and satisfying the conditionsW+W ⊆

W , αW ⊆ W for α > 0, α ∈ R.

DEFINITION 6.1.2. [44] The intersection ofW with the unit sphere

with center at 0 is denoted as pr W and a wedge W ′ is said to be

compact in the wedge W if pr W ′ ⊆ pr W .

DEFINITION 6.1.3. [44] The wedge W ∗ = {ξ : 〈ξ, x〉 ≥ 0, x ∈

W} is said to be conjugate to the wedge W .

Note. W ∗ is a closed convex wedge with vertex at 0.

DEFINITION 6.1.4. [44] A set A ⊆ Rn is said to be bounded on

the side of the wedge W if A ⊆ W +K where K is a compact set

in Rn.

DEFINITION 6.1.5. [44] The collection of all distributions in D′

whose supports are bounded on the side of the wedge W is denoted

as D′(W+).

DEFINITION 6.1.6. Let (fα)α∈J be a net of functions inD′(W+),

with the topology of bounded convergence defined on D′. We say

that fα → 0 in D′(W ) if fα → 0 in D′ with respect to the topology

of bounded convergence and suppfα ⊆ W + K for each α ∈ J

where the compact set K does not depend on α ∈ J .
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DEFINITION 6.1.7. [44] A wedge W is said to be acute if there

exists a plane of support for chW that has unique point in common

with the chW where chW is the convex hull of W .

DEFINITION 6.1.8. [44] Let W be a closed convex acute cone in

Rn with vertex at 0 and let V = int W ∗. Then T V denote the tubular

domain in Cn with base V i.e., T V = Rn + iV = {z = x+ iy : x ∈

Rn, y ∈ V }

DEFINITION 6.1.9. [44] Let W be a connected open wedge in

Rn with vertex at 0 and let W ∗ be the conjugate wedge. Then

KW (z) =

∫
W ∗
ei〈z,ξ〉dξ ≡ L(χW ∗) = F (χW ∗e−〈y,ξ〉)

where L represents the Laplace transformation and F represents the

Fourier transformation is called the Cauchy kernel of the tubular

region T V . Here χW ∗ is the characteristic function of W ∗.

DEFINITION 6.1.10. [44] Let W be an acute convex open wedge

such that the Cauchy kernel κW (z) 6= 0 in the tube T V = Rn + iV .

Such wedges are said to be regular.

In what follows W represents a closed convex acute solid wedge

and V = int W ∗ is a regular wedge with vertex at 0. κW (z) is

the Cauchy kernel of the tube domain T V = Rn + iV and χα
W =

L−1(κα
W ), −∞ < α <∞.
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Some properties of χα
W .

(1) χα
W ∗ χβ

W = χα+β
W , −∞ < α, β <∞.

(2) χα
W (tξ) = tn(α−1)χα

W (ξ), t > 0

(3) For any m = 0, 1, . . . there exists N such that

χα
W ∈ Cm(Rn), α > N

where Cm(Rn) denote the set of all functions that are contin-

uous in Rn together with all derivatives ∂αf(x), |α| ≤ m.

(4) |∂mχα
W (ξ)| ≤M |ξ|n(α−1)−m, ξ ∈ Rn, α > N .

DEFINITION 6.1.11. [44] Let f ∈ ζ ′(W ). The convolution χα
W ∗

f is called the primitive of f of order α with respect to the wedge

W and is denoted as f (−α)(ξ), i.e.,

f (−α)(ξ) = χα
W ∗ f (10)

Note. From Vladimirov [44] it follows that for f ∈ ζ ′(W ) the

primitive f (−α) for all sufficiently large α > N is continuous in

Rn and

f (−α)(ξ) = 〈f(ξ′), η(ξ′)χα
W (ξ − ξ′)〉 (11)

and

|f (−α)(ξ)| ≤M‖f‖−m|ξ|r, (12)

M > 0, r ≥ 0 where m is the order of f .
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6.2. Asymptotic, strongasymptotic

DEFINITION 6.2.1. [44] A generalized function f(ξ) is said to

have an asymptotic g(ξ) of order α in the wedge W as |ξ| → α if

for any ξ ∈ int W

lim
|ξ|→∞

f(ξ)

|ξ|α
= g(

ξ

|ξ|
)

and there exists constants M and r such that

|f(ξ)|
|ξ|α

≤M, |ξ| > r, ξ ∈ int W.

EXAMPLE 6.2.1. Let n = 1, W = [0,∞], intW = (0,∞). Con-

sider the generalized function P 1
x which coincides with the regular

generalized function 1
x for x 6= 0. P 1

x ∈ D
′(W ). For any ξ ∈ int W

lim
|ξ|→∞

|ξ|P 1

ξ
= ±1 = g(

ξ

|ξ|
)

and there exists constants M and r such that

|ξ||P 1

ξ
| ≤M, |ξ| > r, ξ ∈ (0,∞)

so that P 1
x has an asymptotic of order (-1).

DEFINITION 6.2.2. A generalized function f ∈ ζ ′(W ) is said to

have a strongasymptotic g of order α at ∞ if

lim
k→∞

f(kξ)

kα
= g(ξ) in ζ ′

with respect to the topology of bounded convergence in ζ ′ or equiv-

alently,
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DEFINITION 6.2.3. A generalized function f in ζ ′ has a stron-

gasymptotic g of order α at 0 if

lim
ρ→0+

ραf(ρx) = g(x)

with respect to the topology of bounded convergence in ζ ′.

Note. Definition 6.2.2 implies that if g(ξ) ∈ B0, a basis element for

the topology of bounded convergence in ζ ′

f(kξ)

kα
∈ B0 for k > k0, k0 ∈ N

i.e., if |〈g, ψ〉| < 1, ∀ψ ∈ B,

where B = {ψ ∈ ζ : |f(ψ)| < tε for some f ∈ ζ ′, ε > 0, t > s,

t, s ∈ R} then

|〈f(kξ)

kα
, ψ〉| < 1, ∀ψ ∈ B, k ≥ k0, k0 ∈ N.

Note. From Definition 6.2.2 it follows that the strongasymptotic g

of order α at ∞ if it exists is a homogeneous generalized function

of degree α which belongs to ζ ′(W ) of homogeneity degree α+N .

THEOREM 6.2.1. For f ∈ ζ ′(W ) to have the strongasymptotic

g of order α at ∞ it is necessary and sufficient that the Fourier

transform F (f) has the strongasymptotic F (g) of order α+ n at 0.
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PROOF. We know that

F (f(Ax)(ξ)) =
1

|det A|
F (f)((A−1)t(ξ)), detA 6= 0

F (kαf(kξ)) = ρα+nF (f)(ρx), ρ =
1

k
> 0.

From the definitions 6.2.2, 6.2.3 and from the fact that the Fourier

transform is a continuous operation on ζ ′ with respect to the topol-

ogy of bounded convergence the required result follows. �

COROLLARY 6.2.1. If f ∈ ζ ′(W ) has the strongasymptotic g of

order α at ∞ then f (−N), −∞ < N <∞ has the strongasymptotic

g(−N) of order α+N at ∞.

LEMMA 6.2.1. If a function f(ξ) in ζ ′(W ) has the asymptotic

g(ξ) of order α > −n in the wedge W as |ξ| → ∞ then f has the

strongasymptotic g of the same order α at ∞.

PROOF. From Definition 6.2.1 it follows that

k−∞f(kξ) → |ξ|αg( ξ
|ξ|

) = g(ξ), k →∞

almost everywhere in Rn (assume that g is continued by zero onto

the whole of Rn) and

|k−αf(kξ)| ≤M |ξ|α, |ξ| > R

k
, ξ ∈ Rn.
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Let φ ∈ ζ . Then

〈k−αf(kξ), φ〉 = k−α

∫
f(kξ)φ(ξ)dξ

=

∫
|ξ|>R

k

k−αf(kξ)φ(ξ)dξ + k−α

∫
|ξ|<R

k

f(kξ)φ(ξ)dξ

→
∫
g(ξ)φ(ξ)dξ = 〈g, φ〉, k →∞

since one can pass to the limit under the integral sign in the first term

and the second which is equal to

k−n−α

∫
|ξ|<1

f(ξ)φ(
ξ

k
)dξ → 0 as k →∞ if n+ α > 0.

It follows that f has the strongasymptotic g of order α at ∞. �

THEOREM 6.2.2. For f ∈ ζ ′(W ) to have the strongasymptotic

g of order α at ∞ it is necessary and sufficient that there exists

N > −1 − α
n such that the function f (−N)(ξ) has the asymptotic

g(−N)(ξ) of order α+ nN in the wedge W and

|ξ|−α−nNf (−N)(ξ) → g(−N)(
ξ

|ξ|
),

ξ

|ξ|
∈ pr W, |ξ| → ∞

and the function g(−N)(ξ) is continuous in Rn with support in W ,

g(−N) ∈ C0(W ).

PROOF. That the conditions are sufficient follows from corol-

lary 6.2.1 and theorem 6.2.1.
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Now we prove the necessity. By assumption f(kξ)
kα converges in

ζ ′ as k →∞ with respect to the topology of bounded convergence.

The set of functions

{ξ′ → η(ξ′)χN
W (e− ξ′) : |e| = 1}

is bounded in ζ for sufficiently large N > −1− α
n . Also,

η(kξ)f(kξ) → η(ξ)f(kξ) as k →∞.

Using the above results,

k−α−nNf (−N)(ke) = 〈k−α−nNf(ξ′), η(ξ′)χN
W (ke− ξ′)〉

= 〈k−α−nf(ξ′), η(ξ′)χN
W (e− ξ′

k
)〉

= 〈k−αf(ξ′), η(ξ)χN
W (e− ξ)〉

→ 〈g(ξ), η(ξ)χN
W (e− ξ)〉, |e| = 1

= g(−N)(e), (13)

By (12) |f (−α)(ξ)| ≤M‖f‖−m|ξ|r, so that

|ξ|−α−nN |f (−N)(ξ)| ≤M sup
k≥1

‖k−αf(kξ)‖−m ≤M ′, |ξ| ≥ 1

Thus by Definition 6.2.1, f (−N)(ξ) has the asymptotic g(−N)(ξ) of

order α + nN in the wedge W . Supp g(−N) ∈ W , hence g(−N) ∈

C0(W ). �
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THEOREM 6.2.3. The property of comparable generalized func-

tions having asymptotic is compatible with lattice operations i.e., if

f1, f2 are comparable elements in ζ ′ with asymptotics g1, g2 respec-

tively of order α in W then f1 ∨ f2, f1 ∧ f2 have the asymptotics

g1 ∨ g2, g1 ∧ g2 respectively of order α.

PROOF. Let f1(ξ)
|ξ|α → g1(

ξ
|ξ|) as |ξ| → ∞.

f2(ξ)

|ξ|α
→ g2(

ξ

|ξ|
) as |ξ| → ∞, for ξ ∈ int W.

with respect to the topology of bounded convergence and let there

exist constants M1,M2, r1, r2 such that

|f1(ξ)|
|ξ|α

≤M1,
|f2(ξ)|
|ξ|α

≤M2

|ξ| > r1, |ξ| > r2, ξ1, ξ2 ∈ int W.

Then
(f1 ∨ f2)(ξ)

|ξ|α
→ g(

ξ

|ξ|
) as |ξ| → ∞

where g( ξ
|ξ|) is either g1(

ξ
|ξ|) or g2(

ξ
|ξ|). Also,

|(f1 ∨ f2)(ξ)|
|ξ|α

≤M for |ξ| > r, ξ ∈ intW .

It follows that f1∨f2 has an asymptotic in ζ ′ of order α in the wedge

W . Similarly it can be proved that f1∧ f2 has an asymptotic in ζ ′ of

order α in the wedge W . �
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COROLLARY 6.2.2. The property of comparable generalized func-

tions in ζ ′(W ) having strongasymptotic are compatible with the lat-

tice operations in ζ ′.

PROOF. Follows from Theorem 6.2.2, 6.2.3. �

LEMMA 6.2.2. Let f ∈ D′(W ) and k−αf(kξ) → g(ξ) as k →∞

in D′ with respect to the topology of bounded convergence. Then

f ∈ ζ ′(W ) and f has the strongasymptotic g ∈ ζ ′(W ) of order α at

∞.

PROOF. The support of all functions

{ξ′ → η(ξ′)χN
W (e− ξ′) : |e| = 1}

are contained in a ball U . Let m be the order of f ∈ D′(W ) in U

and N > −1− α
n be such that the above functions belong to Cm(Ū)

and are bounded and continuous with respect to e in this space. It

follows from (13) that the sequence of continuous functions

k−α−nNf (−N)(ke), k →∞

converges uniformly with respect to e, |e| = 1 to the continuous

function g(−N)(e).

This fact together with the following inequality

|ξ|−α−nN |f (−N)(ξ)| ≤ sup
k≥1,|e|=1

‖k−αf(kξ)‖Cm′(Ū)‖η(ξ)χN
W (e−ξ)‖Cm(Ū)
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for |ξ| > 1 shows that f (−N) has the asymptotic g(−N) of order

α + nN in the wedge W and f (−N) ∈ ζ ′(W ). Hence f ∈ ζ ′(W ).

By Theorem 6.2.2, f (−N) has the strongasymptotic g(−N) of order

α+nN . Thus f = f (−N)N has the strongasymptotic g of order α at

∞. �

COROLLARY 6.2.3. Let f ∈ D′(W ). If the set of generalized

functions

{k−αf(kξ) : k ≥ 1} is bounded in D′ then it is bounded in ζ ′(W )

also.

6.3. The algebras H+(W ) and H(W ) as ordered topological

vector spaces

The following definitions of the spacesHa(W ) andH+(W ) have

been taken from Vladimirov [44].

Let W be an open connected wedge with vertex at 0. Denote by

H(α,β)(W ), α ≥ β, β ≥ 0 the set of all functions that are holomor-

phic in T V and that satisfy the following growth condition

|f(z)| ≤Mea|y|(1 + |z|2)α/2[1 + ∆−β(y)], z ∈ T V (14)

A topology is introduced on H(α,β)
a (W ) via the norm

‖f‖(α,β)
a = sup

z∈TV

|f(z)|e−a|y|

(1 + |z|2)α/2[1 + ∆−β(y)]
(15)
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The spaces H(α,β)
a (W ) are Banach spaces and

H(α,β)
a (W ) ⊆ H

(α′,β′)
a′ (W ), α′ ≥ α, β′ ≥ β, a′ ≥ a (16)

with the inclusion (16) to be understood together with the appropri-

ate topology by virtue of the obvious inequality

‖f‖(α′,β′)
a′ ≤ 2‖f‖(α,β)

a .

Define Ha(W ) = ∪α≥0,β≥0H
(α,β)
a , H+(W ) = ∪a≥0Ha(W ).

The set H+(W ) form an algebra of functions that are holomor-

phic in T V and satisfy the estimate (14) for certain a ≥ 0, α ≥ 0,

β ≥ 0 relative to the operation of ordinary multiplication. This al-

gebra is associative, commutative, contains a unit element but does

not contain divisors of zero. The spaces Ha(W ) and H+(W ) are

endowed with the inductive limit topology.

RESULT 6.3.1. From Vladimirov [44] it follows that the alge-

bra H+(W ) and ζ ′(W+) and also the subalgebra H(W ) and ζ ′(W )

are isomorphic and that the isomorphism is accomplished via the

Laplace transformation.

We prove the next theorem that the algebraH+(W ) is a complete

ordered topological vector space.

THEOREM 6.3.1. The algebra H+(W ) is an ordered topological

vector space, complete with respect to the topology τβ.
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PROOF. We have seen in chapter 3 that ζ ′ is an ordered topo-

logical vector space, the order relation being determined by the

dual cone C ′ and the topology being the the topology of bounded

convergence with respect to which C ′ is a normal cone, ζ ′(W ∗
+)

is a subspace of ζ ′ and is ordered by C ′ ∩ ζ ′(W ∗
+). The topol-

ogy on ζ ′(W ∗
+) is the subspace topology whose basis elements are

B0 ∩ ζ ′(W ∗
+) where B0 is the polar of B consisting of elements

ψ ∈ ζ such that |f(ψ)| < tε for some f ∈ ζ ′, ε > 0, t > s,

t, s ∈ R. The cone C ′ ∩ ζ ′(W ∗
+) is normal with respect to this

subspace topology. The isomorphism from ζ ′(W ∗
+) to H+(W ) is

derived via the Laplace transformation, the isomorphism being de-

noted as L∗. {L∗(B0 ∩ ζ ′(W ∗
+)) : B0 is a basis element for the

topology of bounded convergence in ζ ′} generates a topology τβ on

H+(W ). Since L∗ is orderpreserving and continuous it follows that

{L∗(f) : f ∈ C ′ ∩ ζ(W ∗
+)} is a cone in H+(W ) which is normal

with respect to τβ. It also follows that the order topology and the

topology τβ are identical and H+(W ) is order complete and topo-

logically complete. �

COROLLARY 6.3.1. The subalgebraH(W ) is ordercomplete and

topologically complete with respect to the subspace topology de-

rived from τβ.
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6.4. Abelian and Tauberian theorems

DEFINITION 6.4.1. A function f(z) holomorphic in T V is said

to have an asymptotic h(z) of order α in T V if

(i)

lim
ρ→0+

ραf(ρz) = h(z), z ∈ T V (17)

with respect to the topology of bounded convergence defined on

H(W ) and

(ii) there exist numbers M , a and b such that

ρα|f(ρz)| ≤M
1 + |z|a

∆b
W (y)

, 0 < ρ ≤ 1, z ∈ T V (18)

THEOREM 6.4.1. If f1 and f2 are holomorphic functions in T V

having asymptotics h1, h2 respectively of order α at 0 in T V then

f1 ∨ f2 and f1 ∧ f2 also have the asymptotic h1 ∨ h2 and h1 ∧ h2

respectively of order α at 0 in T V .

PROOF. Follows as in the proof of Theorem 6.2.3. �

Note. Let f ∈ ζ ′(W ). Then f̂(z) = L(f)(z) = 〈f(ξ), η(ξ)ei〈z,ξ〉〉

belongs to the H(W )-algebra of functions that are holomorphic in

T V and satisfy the growth condition

|f̃(z)| ≤M
1 + |z|c

∆d
W (y)

, z = x+ iy ∈ T V for some M, c, d.

THEOREM 6.4.2. In order that f ∈ ζ ′(W ) has the strongasymp-

totic g of order α at ∞ it is necessary that f̃(z) has the asymptotic

h(z) of order α+ n at 0 in T V . i.e.,
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(1)

lim
ρ→0+

ρα+nf̃(ρz) = h(z), z ∈ T V (19)

with respect to the topology of bounded convergence defined

on H(W ).

(2)

ρα+n|f(ρz)| ≤M
1 + |z|a

∆b
W (y)

, 0 < ρ ≤ 1, z ∈ T V (20)

and it is sufficient that the following conditions hold:

(a) there exists a solid subwedge W ′ ⊆ W such that f̃(iy) has an

asymptotic h(iy) of order α+ n at 0 in the wedge W ′, i.e.,

lim
ρ→0

ρα+nf̃(iρy) = h(iy), y ∈ W ′ (21)

(b) there exist numbers M , q and β ∈ [0, 1) and a vector e ∈ W

such that

ρα+n|f̃(ρx+ iρλe)| ≤Mλ−q, 0 < ρ ≤ 1, 0 < λ ≤ 1, |x| ∈ λβ

(22)

In this case the equalities

h(z) = L(g)(z) = g̃(z), z ∈ T V (23)

KN
W (z)h(z) = Γ(α+ n+ nN)

∫
pr W

g(−N)(σ)dσ

〈−iz, σ〉α+n+nN
, z ∈ T V

(24)

hold for all sufficiently large N .
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PROOF. If f(ξ) has the strongasymptotic of order α at ∞

ρα+nf(ρz) = ρα+n〈f(ξ), η(ξ)ei(ξ,ρz)〉

= 〈ραf(
ξ′

ρ
), η(ξ′)ei(ξ′,z)〉

→ 〈g(ξ′), η(ξ′)ei〈ξ′,z〉〉 = g̃(z), ρ→ 0, z ∈ T V

Also,

ρα+n|f̃(ρz)| ≤M
1 + |z|a

∆b
W (y)

, 0 < ρ ≤ 1, z ∈ T V (25)

Conversely assume that (a) and (b) hold. First we prove that

{ραf(ξ/ρ) : 0 < ρ ≤ 1} = {k−αf(kξ) : k > 1}

is bounded in ζ ′. By Corollary 6.2.3 it is enough if we prove that the

above set is bounded on D. It can be proved that

|k−α−nf̃(
x

k
+ i

e

k
)| ≤ K(1 + |x|s), k ≥ 1, x ∈ Rn (26)

where K and s do not depend on k. Since

ρα+n|f̃(ρz)| ≤M
1 + |z|a

∆b
W (y)

, 0 < ρ ≤ 1, z ∈ T V

and since

{ραf(
ξ

ρ
) : 0 < ρ ≤ 1} = {k−αf(kξ) : k ≥ 1} (27)
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it follows that the set of numbers

{k−α〈f(kξ), φ〉 : k ≥ 1} is bounded for any φ ∈ D.

Condition (a) implies that the sequence (27) converges as k → ∞

on the functions {η(ξ)e−〈y,ξ〉, y ∈ W ′} to the function h(iy), by

virtue of

ρα+nf̃(iρy) = 〈k−αf(kξ), η(ξ)e−〈y,ξ〉〉, ρ→ 0, y ∈ W ′ (28)

We now prove that the linear hull of functions {η(ξ)e−(y,ξ), y ∈ W ′}

is dense in the set of functions {ψ = ηφ, φ ∈ ζ}. If g1 ∈ ζ ′ vanishes

on these functions then g̃1(iy) = 〈g1(ξ), η(ξ)e
−〈y,ξ〉〉 = 0, y ∈ W ′.

By the Uniqueness Theorem for holomorphic functions we de-

duce that

g̃1(z) = 0, z ∈ T V , hence g1 = 0. This fact and the Hahn-Banach

theorem imply that the sequence of functionals

{η(ξ)k−αf(kξ) = k−αf(kξ), 1 ≤ k <∞}

is bounded and hence converges in ζ ′ to a function g ∈ ζ ′(W ). From

(28) we conclude that

h(iy) = 〈g(ξ), η(ξ)e−〈y,ξ〉〉 = g̃(iy).

Thus f ∈ ζ ′(W ) has the strongasymptotic g of order α at ∞ and

h(z) = L(g)(z) = g̃(z), z ∈ T V . �
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COROLLARY 6.4.1. If (fα)α∈J is a monotone net in C ′ ∩ ζ ′(W )

having strongasymptotic gα of order α at ∞ with respect to the

topology of bounded convergence and if fα → f , gα → g in ζ ′(W )

the net (L(fα))α∈J converges to L(f) where L(f) has the asymp-

totic L(g) of order α+ n at 0 in T V .

PROOF. Follows from Theorem 6.4.2 since ζ ′(W ), H(W ) are

ordercomplete. �

COROLLARY 6.4.2. If there exists a solid subwedge W ′ ⊆ W

such that the monotone net (L(fα(iy)))α∈J in H+(W ) has an as-

ymptotic h(iy) of order α + n at 0 in the wedge W ′ and there exist

numbers M , q and β ∈ [0, 1] and a vector e ∈ W such that

ρα+n|L(fα)(ρx+ iρλe)| ≤Mλ−q

0 < ρ ≤ 1, 0 < λ ≤ 1, |x| ≤ λβ

and if L(fα(iy)) converges to (αf)(iy) in H+(W ) then (fα)α∈J

in ζ ′(W ) converges to f in ζ ′(W ) with respect to the topology of

bounded convergence where f has the strongasymptotic g of order

α at ∞ where h = L(g).

6.5. Abelian and Tauberian theorems for one dimension

The algebraD′(R̄1
+) is denoted asD′

+. For−∞ < α <∞ define

fα ∈ D′
+ as
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fα(x) =


θ(x)xα−1

Γ(α) , α > 0

f ′α+1, α ≤ 0

where θ(x) is the Heaviside unit function defined by

θ(x) = 0, x < 0

= 1, x ≥ 0.

It can be proved that fα ∗ fβ = fα+β.

Consider the convolution operator fα∗ in the algebra D′
+. Since

f0 = θ′ = δ it follows that the fundamental solution f−1
α of the

operator fα∗ exists and is equal to f−α i.e., f−1
α = f−α. For integers

n < 0, fn = δ(−n) and so, fn ∗u = δ(n) ∗u = u(n) which means that

fn∗ is the operator of n-fold differentiation. For integers n > 0

(fn ∗ u)(n) = f−n ∗ (fn ∗ u) = (f−n ∗ fn) ∗ u = δ ∗ u = u

so that fn ∗u is the antiderivative of order n of the generalized func-

tion u.

In what follows we take n = 1, W = [0,∞), V = int W ∗ =

(0,∞), T V = T 1, χv(z) = 1
iz .

LEMMA 6.5.1. If g ∈ ζ ′+ is a homogeneous generalized function

of degree α, g(ξ) = M ′fα+1(ξ) where M ′ is a constant.

THEOREM 6.5.1. For f ∈ ζ ′+ to have a strongasymptotic of order

α at ∞ the following conditions are necessary
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(1)

lim
ρ→0+

ρα+1f̃(φz) = M ′(iz)−α−1, z ∈ T 1

(2)

ρα+1|f̃(ρz)| ≤M(
1 + |z|α

yb
), 0 < ρ ≤ 1, z ∈ T 1

and the following conditions are sufficient

(a)

lim
y→0+

y1+αf̃(iy) = M ′

there exist numbers M , q, r0 and β ∈ [0, 1) such that

(b)

rα+1|f̃(reiφ)| ≤M sin−q(φ), 0 < r ≤ r0, |x| ≤ yβ.

In this case for all sufficiently large q the function f (−q)(ξ) is con-

tinuous with respect to ξ > 0 and has the asymptotic

lim
ξ→∞

f (−q)(ξ)

ξq+α+1 =
M ′

Γ(α+ 1 + q)
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