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Chapter 0
Introduction and Summary

Symmetries are used to study the dynamics of a physical system. In classical

mechanics symmetries are usually induced by point transformations, that is, they

come exclusively from symmetries of the configuration space. The symmetry

based techniques are implemented using integrals of motion which are quantities

that are conserved along the flow of that system. This idea can be generalized

to many symmetries of the entire phase space of the dynamical system. This is

done by associating a map from the phase space to the dual of the Lie algebra of

the Lie group which is acting on the phase space encoding the symmetry. This

map, whose level sets are preserved by the dynamics of any symmetric system

is referred as the Momentum map (Standard Momentum map) of the symmetry.

Momentum maps are at the centre of many geometrical facts that are useful in

variety of fields of both pure and applied Mathematics. Also these maps are very

much useful in Physics and Engineering applications.

This thesis grew out of our study on Momentum maps. In this thesis we

present the existence results, elementary properties, convexity properties and cer-

tain generalizations of the standard momentum maps. The thesis contains four

3



CHAPTER 0. INTRODUCTION AND SUMMARY 4

chapters.

In the first chapter main focus is on the standard momentum map associated

to Lie group action on a symplectic manifold. The concept of momentum map and

some existence results are given. Also some elementary properties of momentum

map are discussed. This chapter contains five sections.

In the first section we have given the basic ideas required. Many of the standard

results are recalled. First we give the definitions of Lie group action, proper action,

Lie algebra action, symplectic manifold, symplectomorphism, Lagrange subman-

ifold. Also we state some basic theorems on symplectic manifolds. Then the

definitions of Hamiltonian vector field, Hamiltonian functions, Poisson manifold,

Poisson tensor, canonical mappings, Hamiltonian and Poisson dynamical systems

are given. The canonical Lie group and Lie algebra actions, almost Hamiltonian

actions and Hamiltonian actions are also discussed.

In section 2 the notion of Noether momentum map on a symplectic manifold

is introduced.

Definition 1.2.1 Let (M, {., .}) be a Poisson manifold and G (respectively

G) a Lie group (respectively Lie algebra) acting canonically on it. Let S be a set

and J : M → S a map. We say that J is a Noether momentum map for the G-

action (respectively G-action) on (M, {., .}) when the flow Ft of any Hamiltonian

vector field associated to any G-invariant (respectively G-invariant) Hamiltonian

function h ∈ C∞(M) preserves the fibers of J . That is,

J ◦ Ft = J |Dom(Ft) .

Then given Chu momentum map whose definition makes essential use of the sym-

plectic structure and some properties are also proved in section 3.

Definition 1.3.1 Let (M,ω) be a symplectic manifold and G be a Lie algebra
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acting canonically on it. The Chu map is defined as the map Ψ : M → Z2(G)

given by

Ψ(m)(ξ, η) = ω(m)(ξM(m), ηM(m)),

for every ξ, η ∈ G. The fact that Ψ maps into Z2(G) is a consequence of the

closedness of the symplectic form ω and the canonical character of the G- action.

Apart from its intrinsic interest as a Noether momentum map, this construc-

tion will be extremely important in the statement and proof of a symplectic version

of slice theorem, presented in chapter 3.

In section 4 the standard momentum map, whose values are in the dual of Lie

algebra of symmetries, is given.

Definition 1.4.1 Let G be a Lie algebra acting canonically on the symplectic

manifold (M,ω). Suppose that for any ξ ∈ G, the vector field ξM , (infinitesimal

generator) is globally Hamiltonian with Hamiltonian function Jξ ∈ C∞(M). The

map J : M → G∗ defined by the relation

< J(z), ξ >= Jξ(z),

for all ξ ∈ G and z ∈ M, is called a standard momentum map or simply a

momentum map of the G-action.

After giving examples of such momentum maps, we consider the problem of

existence of momentum maps. Its existence is guaranteed when the infinitesimal

generators of this action are Hamiltonian vector fields. In other words, if the

Lie algebra G acts canonically on the Poisson manifold (M, {., .}), then for each

ξ ∈ G, we require the existence of a globally defined function Jξ ∈ C∞(M) such

that ξM = XJξ . In general this is not guaranteed even if there is a canonical Lie
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algebra action.

Then various situations on the existence of such momentum maps is given. The

following result characterizes the existence of momentum maps in the symplectic

case.

Proposition 1.4.8 Let (M,ω) be a symplectic manifold and G a Lie algebra

acting canonically on it . There exists a momentum map associated to this action

if and only if the linear map ρ : G
[G,G]

→ H1(M,<), by ρ([ξ]) = [iξM
ω] is identically

zero.

As a consequence of this proposition we have the following theorem.

Theorem 1.4.9 Let (M,ω) be a symplectic manifold and G be a Lie algebra

acting canonically on it . There exists a momentum map associated to this action

if and only if one of the following is true.

(i) H1(M,<) = 0.

(ii) G = [G,G].

(iii) H1(G,<) = 0.

(iv) G is semisimple.

Then we look at the coadjoint or G-equivariant momentum maps. Existence

results of such momentum maps are given using fixed points of the action, Lie al-

gebra cohomology, G-invariant 1-form on M and compact Lie group action. The

existence of coadjoint equivariant moment maps for the action of semidirect prod-

uct G1×σ G2 is also given using conditions on G1. We have proved two theorems

on the existence of coadjoint equivariant momentum maps on the product mani-

fold.

Theorem 1.4.19 Let (M1, ω1) and (M2, ω2) be two symplectic manifolds and let

G be a Lie group acting canonically on both M1 and M2 . Suppose the above

actions admit coadjoint equivariant momentum maps. Then G has a coadjoint

equivariant momentum map on (M1×M2, π
∗
1ω1− π∗2ω2) where π1 and π2 are pro-
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jections on M1 and M2 respectively.

Theorem 1.4.20 Let G1 and G2 be Lie groups acting canonically on connected

symplectic manifolds (M1, ω1) and (M2, ω2) with G1 is connected and H1(G1,<) =

0. Suppose the above actions admits coadjoint equivariant momentum maps. If

G = G1 ×σ G2 then G has a coadjoint equivariant momentum map on (M1 ×

M2, π
∗
1ω1 − π∗2ω2) where π1 and π2 are projections on M1 and M2 respectively.

Infinitesimally equivariant momentum map is defined for the Lie algebra action

and the results on existence using the extension of Lie algebra is also given.

In general it is not possible to choose a coadjoint equivariant momentum map,

but we could ask whether one can define another action on this space with respect

to which we have equivariance.

Definition Let G be a Lie group acting canonically on the connected symplec-

tic manifold (M,ω) with associated momentum map J : M → G∗. If σ : G −→ G∗

is the non-equivariance one cocycle of J , we define the affine action of G on G∗

with cocycle σ by

Θ : G× G∗ −→ G∗, given by

Θ(g, µ) = Ad∗g−1µ+ σ(g).

Proposition 1.4.34 : The affine action Θ of G on G∗ determines a left

action. The momentum map J : M → G∗ is equivariant with respect to the

symplectic action φ on M and the affine action Θ on G∗.

In the last section we discuss certain properties of momentum maps. First we

prove that the momentum map J is a submersion on the open dense subset of

principal orbits in M. Then the Noether’s theorem, that is, they are constant on

the dynamics of any symmetric Hamiltonian vector field is given. An equivalent



CHAPTER 0. INTRODUCTION AND SUMMARY 8

condition for the moment map to be constant on the orbits is given. We establishes

a link between the symmetry of a point and the rank of the momentum map at

the point, called bifurcation lemma. Also proved that the zero level set of the

moment map is locally arc wise connected.

In chapter 2 we consider the action of a torus T n on a symplectic manifold

(M,ω). Hamiltonian actions of tori of maximal dimension are a special case of

integrable systems. More than that they are the local form of all integrable

systems with compact level sets. Convexity property of momentum map for the

torus action using Morse theory is also discussed. This chapter contains 2 sections.

In the first section we define Hamiltonian torus action and give examples of it.

Then we prove a Hamiltonian circle action on a compact symplectic manifold has

fixed point.

One of the most striking aspects of momentum maps is the convexity properties

of its image. In section 2 we discuss the convexity properties of momentum map.

We discuss the developments in this area starting from the first convexity result

by Atiyah, Guillemin and Sternberg. They have proved the convexity theorem for

compact M on which a torus acts in a Hamiltonian fashion. Then Guillemin and

Sternberg conjectured and partially proved the convexity theorem to actions of

non-abelian compact groups on compact manifolds. This was completely proved

by Kirwan .

First we strengthen the Poincare Lemma to deal with invariant forms. Then

Darboux theorem for momentum maps is given using the G-relative Darboux

theorem.

Theorem 2.2.9 If J is the momentum map for a Hamiltonian action of a

torus T on the symplectic manifold (M,ω) and m a T -fixed point then there is an

invariant neighborhood U of m in M and a neighborhood U ′ of J(m) in T ∗ such
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that J(U) is U ′ ∩ (J(m) + C(α1, α2, ..., αn)) where T is the Lie algebra of T and

C(α1, α2, ..., αn)) is the positive cone spanned by the weights α1, α2, ..., αn of the

action of T on M.

Now to improve it again, that is, for M compact J(M) is a compact convex

polytope, Morse theory is used. Then Atiyah - Guillemin -Sternberg convexity

theorem is proved.

Theorem 2.2.27 Let (M,ω) be a compact connected symplectic manifold, and let

T be a torus acts in a Hamiltonian fashion with associated invariant momentum

map J : M → T ∗. Here T denotes the Lie algebra of T and T ∗ its dual. Then the

image J(M) of J is a compact convex polytope, called the T -momentum polytope.

Moreover, it is equal to the convex hull of the image of the fixed point set of the

T -action. The fibers of J are connected.

As a corollary of this convexity theorem, if the T -action is effective, then there

must be at least m+ 1 fixed points and dimM ≥ 2m where 2m is the dimension

of the torus.

Then prove the convexity theorem to actions of non-abelian compact groups

on compact manifolds.

Theorem 2.2.30 Let M be a compact connected symplectic manifold on which

the compact connected Lie group G acts in a Hamiltonian fashion with associated

equivariant momentum map J : M → G∗. Here G denotes the Lie algebra of G

and G∗ is its dual. Let T be a maximal torus of G, T its Lie algebra, T ∗ its dual,

and T ∗
+ the positive Weyl chamber relative to a fixed ordering of the roots. Then

J(M)∩T ∗
+ is a compact convex polytope, called the G-momentum polytope. The

fibers of J are connected.

In general Morse theory is not sufficient to study convexity properties of the

image of the momentum map. The case of compact symplectic manifolds is rich
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but quite particular. For noncompact manifolds the results in the previous chap-

ter no longer hold. Convexity results to compact group actions on noncompact

manifolds with proper momentum maps were given by Condevaux, Dazord, and

Molino and later by Hilgert, Neeb and Plank. The Lokal-global-prinzip is the main

tool in these works. Yael Karshon And Christina Marshall gave a generalization

of Lokal-global-prinzip for a proper map. But Petre Birtea, Juan-Pablo Ortega

and Tudor S.Ratiu gave a generalization of Lokal-global-prinzip for a closed map.

Using this, many stronger results in convexity are obtained.

In chapter 3 we discuss the convexity property for a general Lie group action

using topological properties. This chapter contains 3 sections. The essential at-

tributes underlying the convexity theorems for momentum maps are the openness

of the map onto its image and the local convexity data. The classical convexity

theorems given in Chapter 2 are also satisfy these conditions. In this chapter more

general theorems on convexity are given using the topological ingredients.

To do convexity results using topological properties we need normal form for

the momentum map which we have discussed in section 1. Most of the technical

behavior of proper Lie group action is a direct consequence of the existence of slices

and tubes; they provide a privileged system of semiglobal coordinates in which

the group action takes on a particularly simple form. Proper symplectic Lie group

actions turnout to behave similarly: the tubular chart can be constructed in such

a way that the expression of the symplectic form is very natural and, moreover,

if there is a momentum map associated to this canonical action, this construction

provides a normal form for it. We start with the Witt-Artin decomposition of the

tangent space. Then the construction of a symplectic tube (Yr, ωYr) at a point m

of a symplectic manifold (M,ω) is given. Then the symplectic slice theorem is

given.

Theorem 3.1.7 Let (M,ω) be a symplectic manifold and G be a Lie group acting
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properly and canonically on it. Let m ∈M, and let (Yr, ωYr) be the G-symplectic

tube at that point constructed in proposition 3.1.6. Then there is a G- invariant

neighborhood U of m in M and a G-equivariant symplectomorphism φ : U −→ Yr

satisfying φ(m) = [e, 0, 0].

Tubewise Hamiltonian action is defined and sufficient conditions for the action

to be tubewise Hamiltonian also given. Then the expression of the momentum

map in the slice coordinate, which is usually referred to as the Marle-Guillemin-

Sternberg normal form is given.

Theorem 3.1.12 Let (M,ω) be a connected symplectic manifold and G be a Lie

group acting properly and canonically on it. Suppose that this action has an asso-

ciated momentum map J : M −→ G∗ with non equivariance cocycle σ : G −→ G∗.

Let m ∈M, and (Yr, ωYr) be the symplectic tube at m that models a G-invariant

open neighborhood U of the orbit G.m via the G-equivariant symplectomorphism

φ : (U, ωU) −→ (Yr, ωYr). Then the canonical left G-action on (Yr, ωYr) admits a

momentum map JYr : Yr −→ G∗ given by the expression

JYr : Yr = G×Gm (Mr)
∗ × Vr −→ G∗given by

JYr([g, ρ, υ]) = Ad∗g−1(J(m) + ρ+ JV (υ)) + σ(g).

The map JYr × φ is a momentum map for the canonical G-action on (U, ωU).

Moreover, if the group G is connected, this momentum map satisfies J |U= JYr×φ.

In section 2 we discuss the convexity properties of the image of the momentum

map. We give the statement of Lokal-global-prinzip and a generalization of it for

a closed map using some topological vector space results.

Theorem 3.2.14 Let f : X → V be a closed map with values in a finite di-

mensional Euclidean vector space V and X a connected, locally connected, first

countable, and normal topological space. Assume that f has local convexity data
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and is locally fiber connected. Then

(i) All the fibers of f are connected.

(ii) f is open on to its image.

(iii) The image f(X) is a closed convex set.

Using this we obtained that the convexity is rooted on the map being open

onto its image and having local convexity data. Next we look at the convexity for

momentum maps. Then a generalization of Atiyah-Guillemin-Sternberg Convex-

ity theorem for non compact manifolds is given.

Theorem 3.2.21 Let M be a paracompact connected symplectic manifold on

which a torus T acts in a Hamiltonian fashion. Let JT : M → T ∗ be an asso-

ciated momentum map which we suppose is closed. Then the image JT (m) is a

closed convex locally polyhedral subset in T ∗. The fibers of JT are connected and

JT is open on to its image.

Further generalization of convexity results are obtained in two cases: when

the momentum map has connected fibers and the case when the momentum map

has only the locally fiber connectedness property. In the first case we have the

theorem :

Theorem 3.2.28 Let JT : M → T ∗ be the momentum map of a torus ac-

tion which has connected fibers. Then JT is open on to its image if and only

if CJT (M reg) := JT (M)\JT (M reg) (where M reg denotes the union of all regular

orbits) does not disconnect any region in JT (M). Moreover, the image of the

momentum map is locally convex and locally polyhedral.

In the second case suppose that MJT
is a Hausdorff space. Then we have the

following theorem.

Theorem 3.2.34 Let JT : M → T ∗ be the momentum map of a torus action

of a connected symplectic manifold (M,ω). Suppose that MJT
is a Hausdorff

space. Then JT is open on to its image if and only if JT (M) is locally compact,
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CJT (M reg) does not disconnect any region in JT (M) , and JT satisfies the con-

nected component fiber condition . Moreover under these hypothesis the image

of the momentum map is locally convex and locally polyhedral.

Next a generalization of Kirwan’s convexity result for a paracompact connected

symplectic manifold (M,ω) is given.

Theorem 3.2.39 Let M be a paracompact connected Hamiltonian G-manifold

with G a compact connected Lie group. If the momentum map JG is closed then

JG(M)∩ T ∗
+ is a closed convex locally polyhedral set. Moreover, JG is G-open on

to its image and all its fibers are connected.

Also we prove non-abelian analogues of the Theorems 3.2.28 and 3.2.34.

Pull backs by J of smooth functions on G∗ are called collective functions. A

collective function is clearly constant on the level sets of the momentum map. The

converse need not be true. A momentum map has the division property if any

smooth function on M that is locally constant on the level set of Φ is a collective

function. In section 3 we generalize a result on division property of momentum

map by replacing the compactness of the Lie group with proper and effective

action.

Theorem 3.3.13 Let G be a connected abelian Lie group acting properly and

effectively on a connected symplectic manifold (M,ω). Let J : M −→ G∗ be a

proper momentum map associated to this action. Then J has the division property

if and only if every smooth function on M that is locally constant on the level

sets of J is a formal pull back with respect to J.

Then we prove that Torus action has division property if JT is closed and

semi-proper.

Theorem 3.3.17 Let M be a paracompact connected symplectic manifold on

which a torus T acts in a Hamiltonian fashion. If the associated momentum map
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JT is closed and semi proper as a map into some open subset of T ∗, then J has

the division property.

Then considered the general case. Let G be a compact connected Lie group

acting on a compact connected symplectic manifold M in a Hamiltonian fashion

with a momentum map J : M −→ G∗. Put a G-invariant metric on G∗, and use it

to identify G∗ with G. Let Greg be the elements of G whose stabilizers under the

coadjoint action of G are tori, that is, if,

Greg = {ξ ∈ G : stabilizer of ξ is a torus }.

Then we prove the following theorem.

Theorem 3.3.21 Let M be a paracompact connected symplectic Hamiltonian

G-manifold with G a compact connected Lie group. If the associated momentum

map J is closed and semi proper as a map into some open subset of G∗, then J

has the division property if the image J(M) is contained the G∗reg.

In chapter 4 we discuss certain generalizations of standard momentum map.

This chapter contains 3 sections. The first section is on cylinder valued momen-

tum maps, which has the important property of being always defined, unlike the

standard momentum map. To introduce cylinder valued momentum maps, we

need connections on a principal fiber bundle. Then we define holonomy bundle

and some properties are discussed. The definition of cylinder valued momentum

map is given as a generalization of the standard momentum map.

Definition 4.1.12 For (z, µ) ∈M ×G∗, let M ×G∗(z, µ) be the holonomy bundle

through (z, µ) and let ~(z, µ) be the holonomy group of α with reference point

(z, µ). The reduction theorem guarantees that (M×G∗(z, µ),M, π/M×G∗(z,µ), ~(z, µ))

is a reduction of (M ×G∗,M, π,G∗) For simplicity we use (M̃,M, P̃ , ~) instead of

(M ×G∗(z, µ),M, π/M×G∗(z,µ), ~(z, µ)). Let K̃ : M̃ ⊂M ×G∗ → G∗ be the projec-

tion into the G∗-factor.
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Consider now the closure ~ of ~ in G∗. Since ~ is a closed subgroup of (G∗,+),

the quotient D := G∗
~ is a cylinder, that is, it is isomorphic to the abelian Lie

group <a × T b for some a, b ∈ ℵ. Let πD : G∗ → G∗
~ be the projection. Define

K : M → G∗
~ to be the map that makes the following diagram commutative:

M̃
eK−→ G∗

P̃ ↓ ↓ πD

M
K−→ G∗

~
.

In other words, K is defined by K(m) = πD(v), where v ∈ G∗ is any element such

that(m, v) ∈ C. This is well defined because if we have two points (m, v), (m, v
′
) ∈

M̃ , then (m, v), (m, v
′
) ∈ P̃−1(m), that is, there exists ρ ∈ ~ such that v′ = v+ ρ.

So πD(v) = πD(v′).

Then the map K : M → G∗
~ is referred as a cylinder valued momentum map

associated to the canonical G action on (M,ω). The definition of K depends on

the choice of the holonomy bundle, that is, if we let M̃1 and M̃2 are two holonomy

bundles of (M × G∗,M, π,G∗). Then

K
gM1

= K
gM2

+ πD(τ)

where τ ∈ G∗.

We look at certain properties of Cylinder valued momentum maps. Cylinder

valued momentum maps are genuine generalizations of the standard ones in the

sense that whenever a Lie algebra action admits a standard momentum map, there

is a cylinder valued momentum map that coincides with it.

Proposition 4.1.16 Let (M,ω) be a connected paracompact symplectic manifold

and G a Lie algebra acting canonically on it. Let K : M → G∗
~ be a cylinder valued

momentum map . Then there exists a standard momentum map if and only if
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~ = {0}. In this case K is a standard momentum map.

In section 2 we discuss Lie group valued momentum maps. We define Lie

group valued momentum maps and then show that it is a Noether Momentum

Map.

Definition 4.2.1 Let G be an Abelian Lie Group whose Lie algebra G acts canon-

ically on a symplectic manifold (M,ω). Let (., .) be some bilinear symmetric non-

degenerate form on the lie algebra G. The map J : M → G is called a G-valued

momentum map for the G action on M whenever

iξM
ω(m).vm = (Tm(LJ(m)−1 ◦ J)(vm), ξ),

for any ξ ∈ G, m ∈M, and vm ∈ TmM.

For abelian symmetries, cylinder valued momentum maps are closely related

to the so- called Lie group valued momentum maps. This relation ship is discussed

in detail.

Theorem 4.2.4 Let (M,ω) be a connected paracompact symplectic manifold and

G Abelian Lie algebra acting canonically on it. Let ~ ⊂ G∗ be the holonomy group

associated to the connection α associated to the G-action and let (., .) : G×G → <

be a bilinear symmetric non degenerate form on G. Let f : G → G∗, f̃ : G
T →

G∗
~

and let T := f−1(~) be as in the statement of above proposition. Let G be

a connected Abelian Lie group whose Lie algebra is G and suppose that there

exists a G-valued momentum map A : M → G associated to the G-action whose

definition uses the form (., .)

(i) If exp : G → G is the exponential map , then ~ ⊂ f(Ker exp).

(ii) ~ is closed in G∗.

Let J := f̃−1 ◦ K : M → G
T , where K is a cylinder valued momentum map for

the G-action on (M,ω). If f(Ker exp) ⊂ ~, then J : M → G
T = G

Ker exp
' G is a

G-valued momentum map that differs from A by a constant in G. Conversely, if
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~ = f(Ker exp), then J : M → G
Ker exp

' G is a G-valued momentum map.

In section 3 we discuss a generalization of the standard momentum map not

involving the group action. The classical notion of momentum map from Wein-

stein’s point of view is given first. To do this we recall some ideas related to the

symplectic category. Then we look at the standard momentum map in a more

general set up as a map J̃ : M ×G→ G∗. In this case we have shown that J̃ is a

momentum map. Then introduce the notion of generalization of the momentum

map, where the group action is replaced by a family of symplectomorphisms.

Let (M,ω) be a symplectic manifold, S an arbitrary manifold and fs, s ∈ S,

a family of symplectomorphisms of M depending smoothly on s. For p ∈ M and

so ∈ S, let gso,p : S → M be the map, gso,p(s) = fs ◦ f−1
so

(p). Then the derivative

at so is given by

(dgso,p)so : TsoS → TpM.

From this we get the linear map

˜(dgso,p)so
: TsoS → T ∗pM.

Now, let J be the map of M×S into T ∗S which is compatible with the projection,

M × S → S in the sense

M × S
J−→ T ∗S

↘ ↓

S

commutes; and for so ∈ S let Jso : M → T ∗so
S be the restriction of J to M ×{so}.
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Definition 4.3.14 J is a momentum map if, for all so and p,

(dJso)p : TpM → T ∗so
S

is the transpose of the map ˜(dgso,p)so
.

Then a sufficient condition for the existence of momentum map can be done in

a more general set up. We do it in a more general set up which does not involve the

group action. After giving a sufficient condition for the existence of momentum

map, we have recaptured a generalization of standard momentum map by family

of symplectomorphisms and the momentum map associated to Hamiltonian group

action.

Let (M,ω) be a symplectic manifold . Let Z,X and S be manifolds and

suppose that π : Z → S is a fibration with fibers diffeomorphic to X. Let G :

Z →M be a smooth map and let

gs : Zs →M,Zs := π−1s

denote the restriction of G to Zs. We assume that gs is a Lagrangian embedding

and let Λs := gs(Zs) denote the image of gs. Thus, for each s ∈ S, G imbeds

the fiber, Zs = π−1s, into M as the Lagrangian submanifold, Λs. Let s ∈ S and

ξ ∈ TsS. For z ∈ Zs and w ∈ TzZs tangent to the fiber Zs,

dGzw = (dgs)zw ∈ TG(z)Λs.

So, dGz induces a map, which by abuse of language, we will continue to denote

by dGz

dGz :
TzZ

TzZs

→ TmM

TmΛs

, m = G(z).
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But dπz induces an identification TzZ
TzZs

= TsS.

Furthermore, we have an identification TmM
TmΛs

= T ∗mΛs.

Using the identifications, we have dGz : TsS −→ T ∗s Zs. Now, let J : Z → T ∗S

be a lifting of π : Z → S, so that

Z
J−→ T ∗S

π ↘ ↓

S

commutes, and for s ∈ S, let Js : Zs → T ∗s S be the restriction of J to Zs.

Definition 4.3.16 J is a momentum map if, for all s and all z ∈ Zs,

(dJs)z : TzZs → T ∗s S

is the transpose of dGz.

We have an embedding (G, J) : Z → M × T ∗S. from the momentum map

J : Z → T ∗S. Then we prove a theorem on the existence of momentum maps.

Theorem 4.3.17 Let (M,ω) be a symplectic manifold . Let Z,X and S be

manifolds and suppose that π : Z → S is a fibration with fibers diffeomorphic to

X. Let G : Z →M be a smooth map and J is a momentum map. The pull back

by (G, J) of the symplectic form on M ×T ∗S is the pull back by π of a closed two

form ρ on S. If [ρ] = 0, there exists a momentum map, J , for which the imbedding

(G, J) is Lagrangian.

Theorem 4.3.18 Let J be a map of Z into T ∗S lifting the map, π, of Z into

S. Then, if the imbedding (G, J) is Lagrangian, J is a momentum map.



Chapter 1
Existence and Certain Properties of the

Standard Momentum Map

The concept of momentum map is a generalization of that of a Hamiltonian func-

tion. Its importance is given by the fact that it is able to describe some of the

conservation laws associated to a symmetry of the system. The notion of the mo-

mentum map associated to a group action on a symplectic manifold formalizes the

Noether principle, which states that to every symmetry, such as a group action

in a mechanical system there corresponds a conserved quantity. In this chapter

main focus is on the standard momentum map associated to Lie group action on

a symplectic manifold.

In the first section we have given the basic ideas required. Many of the standard

results are recalled. First we give the definitions of Lie group action, proper action,

Lie algebra action, symplectic manifold, symplectomorphism, Lagrange subman-

ifold. Also we state some basic theorems on symplectic manifolds. Then the

definitions of Hamiltonian vector field, Hamiltonian functions, Poisson manifold,

Poisson tensor, canonical mappings, Hamiltonian and Poisson dynamical systems

20
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are given. The canonical Lie group and Lie algebra actions, almost Hamiltonian

actions and Hamiltonian actions are also discussed.

In section 2 the notion of Noether momentum map on a symplectic manifold

is introduced. Then Chu momentum map is introduced and some properties are

proved in section 3. In section 4 the standard momentum map, whose values are

in the dual of Lie algebra of symmetries, is given. After giving examples of such

momentum maps, a thorough discussion on the existence of such momentum maps

is given. Existence results of momentum maps are given using fixed points of the

action, Lie algebra cohomology, G-invariant 1-form on M and compact Lie group

action. The existence of coadjoint equivariant momentum maps for the action of

semidirect product G1 ×σ G2 is also given using conditions on G1. Using this, we

prove two results on existence of momentum maps for M1×M2. Then the results

on existence using the extension of Lie algebra is also given. In general it is not

possible to choose a coadjoint equivariant momentum map, but we define another

action with respect to which we have equivariance.

In section 5 we discuss certain properties of the momentum map. First we

prove J is a submersion on the open dense subset of principal orbits in M. Then

Noether’s theorem, that is, they are constant on the dynamics of any symmetric

Hamiltonian vector field is given. An equivalent condition for the momentum map

to be constant on the orbits is given. We establishes a link between the symmetry

of a point and the rank of the momentum map at the point, called bifurcation

lemma. Also proved that the level sets of the momentum map is locally arcwise

connected.
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1.1 Preleminaries

In this section we have given the basic ideas required. Many of the standard results

are recalled. First we give the definitions of Lie group action, proper action, Lie

algebra action, symplectic manifold, symplectomorphism, Lagrange submanifold.

Also we state some basic theorems on symplectic manifolds. Then the definitions

of Hamiltonian vector field, Hamiltonian functions, Poisson manifold, Poisson ten-

sor, canonical mappings, Hamiltonian and Poisson dynamical systems are given.

The canonical Lie group and Lie algebra actions, almost Hamiltonian actions

and Hamiltonian actions are also discussed. [32], [33], [23], [22], [40], [3], [37],

[2], [35], [34], [29], [28] .

Definition 1.1.1. Let M be a manifold and G a Lie group. A left action of G

on M is a smooth mapping φ : G×M →M such that

(i) φ(e,m) = m, for all m ∈M and

(ii) φ(g, φ(h,m)) = φ(gh,m) for all g, h ∈ G and m ∈M.

We sometimes write g.m := φ(g,m) := φg(m) := φm(g). For any g ∈ G, the map

φg : M → M is a diffeomorphism of M with inverse φg−1 . We will denote by AG,

the subgroup of diffeomorphism group Diff(M) of M associated to the G-action

on M, that is, AG = {φg|g ∈ G}. The triple (M,G, φ) is called a G-space or a

G-manifold.

Similarly we can define right action of G on M .

Example 1.1.2. Translation and Conjugation : The left translation on G defined

by g ∈ G, that is, the map Lg : G→ G, given by Lg(h) = gh, induces a left action

of G on itself. Right translation, Rg : G → G, given by Rg(h) = hg, defines a

right action of G on itself. The inner automorphism ADg ≡ Ig : G→ G, given by

Ig = Rg−1 ◦ Lg defines a left action of G on itself called conjugation.

Example 1.1.3. Adjoint and Coadjoint actions : The differential TeIg at the
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identity of the conjugation mapping defines a linear left action of G on the Lie

algebra G of G called the adjoint representation Adg of G on G. That is Adg :=

TeIg : G → G.

If Ad∗g : G∗ → G∗ is the dual of Adg, then the map

φ : G× G∗ → G∗ by φ((g, v)) = Ad∗g−1(v)

defines also a linear left action of G on the dual space G∗ of G called the coadjoint

representation of G on G∗.

Definition 1.1.4. Let M be a manifold and G a Lie group with Lie algebra G.

Given a (left) action φ : G ×M → M, the infinitesimal generator ξM ∈ X (M),

the collection of vector fields on M , associated to ξ ∈ G is the vector field on

M defined by ξM(m) = d
dt
|t=0 φexptξ(m) = Teφ

m.ξ. Thus we can define a map

φ̇ : G → X (M), by φ̇(ξ) = ξM .

The infinitesimal generators are complete vector fields. Moreover the map φ̇

is a Lie algebra antihomomorphism.

Definition 1.1.5. Let G be a Lie algebra and M a smooth manifold. A right(left)

Lie algebra action of G on M is a Lie algebra (anti) homomorphism ξ ∈ G → ξM ∈

X (M) such that the mapping (m, ξ) ∈M×G → ξM(m) ∈ TM is smooth. Given a

Lie group action, we will refer to the Lie algebra action induced by its infinitesimal

generators as the associated Lie algebra action.

Definition 1.1.6. The isotropy subgroup or stabilizer of an element m in the

manifold M acted upon by the Lie group G is the closed subgroup Gm := {g ∈

G | φg(m) = m} whose Lie algebra Gm equals Gm = {ξ ∈ G | ξM(m) = 0}.

In particular if one considers the coadjoint representation, the stabilizer is

called the coadjoint isotropy subgroup of G. Its Lie algebra is the coadjoint isotropy
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subalgebra Gµ = {ξ ∈ G | ad∗ξµ = 0}, where ad∗ξ : G∗ → G∗ (coadjoint represen-

tation of G on G∗) the dual of adξ : G → G (the adjoint representation of G on

itself) defined by adξη = [ξ, η], ξ, η ∈ G.

The orbit Om of the element m ∈ M under the group action φ is the set

Om ≡ G.m := {φg(m) | g ∈ G}. In particular, in the case of the adjoint and

coadjoint representations, the orbits will be called the adjoint and coadjoint orbits

respectively.

The group action on M is said to be transitive if there is only one orbit, free

if the isotropy subgroup of every element in M consists only the identity element,

and effective or faithful if φg = idM implies that g = e. . A Lie algebra action on

M is locally free when Gm = 0, for any m ∈M.

Definition 1.1.7. A subset S ⊂M of the G-space (M,G, φ) is called G-invariant

or G-saturated if φg(S) = S, for all g ∈ G or, equivalently, if it is a union of G-

orbits. Functions in C∞(M) which satisfy f ◦ φg = f, for all g ∈ G are called

smooth G-invariant functions on the G-space M denoted by C∞(M)G.

Definition 1.1.8. A mapping φ : M1 → M2, between two G-spaces M1 and M2

is said to be G-equivariant provided that for any g ∈ G and z ∈M1, the mapping

φ satisfies the identity φ(g.z) = g.φ(z).

Definition 1.1.9. Let G be a Lie algebra acting on the manifold M . We say

that a function f ∈ C∞(M) is G-invariant if ξM [f ] = 0, for any ξ ∈ G. We will

denote by C∞(M)G the set of G-invariant functions on M . Let M and N be two

manifolds acted upon by the same Lie algebra G. A smooth map F : M → N is

said to be G-equivariant if ξN(F (m)) = TmF.ξM(m) for any m ∈M and ξ ∈ G.

Definition 1.1.10. A continuous map between two topological spaces with Haus-

dorff domain is said to be proper if it is closed and all its fibers are compact subsets

of its domain.
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Definition 1.1.11. Let G be a Lie group acting on the manifold M via the

map φ : G × M → M. We say that φ is a proper action whenever the map

Φ : G×M →M ×M defined by Φ(g, z) = (z, φ(g, z)) is proper. The properness

of the action is equivalent to the following condition : for any two convergent

sequences {mn} and {gn.mn}in M , there exists a convergent subsequence {gnk
}

in G. We say that the action φ is proper at the point z in M when for any two

convergent sequences {mn} and {gn.mn}in M such that mn → z and gn.mn → z,

there exists a convergent subsequence {gnk
} in G.

Compact group actions are proper.

Theorem 1.1.12. Let M be a manifold and G be a Lie group acting on M via

the map φ : G×M →M. If the action is free and proper then M
G
, space of orbits,

is a smooth manifold and has a principal G-bundle structure M
π−→ M

G
.

Definition 1.1.13. Let G be a Lie group and H ⊂ G a subgroup. Suppose that

H acts on the left on the manifold A. The twisted action of H on the product

G× A is defined by

h.(g, a) = (gh, h−1a), h ∈ H, g ∈ G and a ∈ A.

Note that this action is free and proper. The twisted product G×H A is defined

as the orbit space (G×A)
H

corresponding to the twisted action. The elements of

G×H A will be denoted by [g, a], g ∈ G, a ∈ A.

Definition 1.1.14. Let M be a manifold and G be a Lie group acting properly

on M . Let m ∈ M and denote H = Gm. A tube around the orbit G.m is

a G-equivariant diffeomorphism φ : G ×H A → U, where U is a G-invariant

neighborhood of G.m and A is some manifold on which H acts.

Definition 1.1.15. Let M be a manifold and G be a Lie group acting properly

on M . Let m ∈M and denote H = Gm. Let S be a submanifold of M such that
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m ∈ S and H.S = S. We say that S is a slice at m if the G-equivariant map

φ : G×H S → U is a tube about G.m for some G-invariant open neighborhood U

of G.m. Notice that if S is a slice at m, then φg(S) is a slice at the point φg(m).

Lemma 1.1.16. Let H be a compact Lie group that acts on the manifold M.

Assume that m ∈M is a fixed point of the action, that is, H.m = {m}. Then any

open neighborhood of m contains an H-invariant open neighborhood of m.

Proof : Let φ : H × M −→ M be the group action and U an arbitrary

neighborhood of m. The set φ−1(U) is clearly open and contains H × {m}. Now,

for any g ∈ H, there exists neighborhoods Wg of g in H and Vg of m in M

such that Wg × Vg ⊂ φ−1(U). Since by hypothesis H is compact, the open cover

{Wg | g ∈ H} of H has a finite subcover Wg1 ,Wg2 , ....Wgn . Let V := ∩n
i=1Vgi

. Then

the H-invariant set W : φ(H, V ) ⊂ U is clearly open since W = ∪g∈Hφg(V ), and

by construction, contains the point m. •

Lemma 1.1.17. Let H be a compact Lie group that acts on the manifold M

and let m ∈ M be such that H.m = {m}. Then there exists an H-invariant

Riemannian metric defined on some H-invariant neighborhood of m.

Proof : Let ϕ : U −→ ϕ(U) ⊂ <n be a local chart of M around the point m.

By the previous lemma, the open neighborhood U can be chosen to beH-invariant.

The pull back of the Euclidean metric on ϕ(U) ⊂ <n gives a Riemannian metric

g on U. Let now g′ be the averaged metric on U given by

g′(z)(u, v) :=

∫
H

g(h.z)(Tzφh.u, Tzφh.v)dh

where the integral is defined using the normalized Haar measure on H. By con-

struction, g′ is an H-invariant Riemannian metric on U. •

Theorem 1.1.18. (Tube theorem) Let M be a manifold and G be a Lie group

acting properly on M at the point m ∈ M , H := Gm. There exists a tube
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φ : G ×H B → U about G.m. B is an open H-invariant neighborhood of 0 in

a vector space H-equivariantly isomorphic to TmM/Tm(G.m) on which H acts

linearly by

h.(v + Tm(G.m)) := Tmφh.v + Tm(G.m).

Proof : Since the G-action is proper, the isotropy subgroup H := Gm is com-

pact. Let g be an H-invariant Riemannian metric defined on some H-invariant

neighborhood ofm, whose existence is guaranteed by the lemmas 1.1.16 and 1.1.17.

Let Exp be the corresponding Riemannian exponential and Nm the orthogonal

complement to G.m in TmM with respect to the inner product induced by g(m).

The vector subspace Nm is clearly H-invariant and equivariantly isomorphic to

TmM/Tm(G.m) via the map v 7−→ v+G.m; recall that G.m = Tm(G.m). Now, an

elementary fact in Riemannian geometry guarantees the existence of a neighbor-

hood W of the origin in TmM such that the restriction of Riemannian exponential

map Expm to W is a diffeomorphism onto its image. By lemma 1.1.16, W can

be chosen to be H-invariant. Let V := W ∩ Nm. The open set V is H-invariant

by construction and hence the twisted product G ×H V is well-defined. Let now

τ be the map defined by

τ : G×H V −→ M given by,

τ([g, υ]) = g.Expmυ.

The map τ is well defined due to the H-equivariance of Exp and is obviously

G-equivariant. Then we can show that T[e,0]τ is an isomorphism.

The Local Diffeomorphism Theorem implies the existence of a neighborhood

W ′ of [e, 0] in G ×H V such that the restriction of τ to W ′ is a diffeomorphism

onto its image. In particular, there exists an open neighborhood V ′ of 0 in V
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such that for any υ ∈ V ′, the point [e, υ] is contained in W ′. Since τ |W ′ is a

diffeomorphism, it follows thus that its tangent map T[e,υ]τ is an isomorphism.

The equivariance of τ implies that T[g,υ]τ is an isomorphism for any g ∈ G and

n ∈ V ′. Hence, τ restricted to G×H V
′ is a local diffeomorphism. Then using the

properness condition on the G-action there exists an open H-invariant subset B

of V ′ containing 0 such that the restriction of τ to G×H B is injective.

The restriction of τ to G ×H B is an injective local G-equivariant diffeomor-

phism onto its image and therefore a diffeomorphism onto an open G-invariant

neighborhood of m ∈M. This is the map ϕ needed in the statement of the theo-

rem. •

Theorem 1.1.19. (Slice theorem)Let M be a manifold and G be a Lie group

acting properly on M at the point m ∈M. Then there exists a slice at m.

Corollary 1.1.20. Let M be a manifold and G be a Lie group acting properly

on M at the point m ∈M. The orbit is a closed embedded submanifold of M .

Definition 1.1.21. A Symplectic manifold is a pair (M,ω) where M is a manifold

and ω ∈ Ω2(M) is a closed nondegenerate 2-form on M , that is, dω = 0 and, for

every m ∈ M , the map v ∈ TmM → ω(m)(v, .) ∈ T ∗mM is a linear isomorphism

between the tangent space TmM to M at m and the cotangent space T ∗mM.

Definition 1.1.22. If ω is allowed to be degenerate, (M,ω) is called a presym-

plectic manifold.

Definition 1.1.23. A submanifold W of a symplectic manifold (M,ω) is called

(i)isotropic if TxW ⊂ (TxW )⊥,

(ii) coisotropic if (TxW )⊥ ⊂ TxW,

(iii) Lagrangian if it is a maximal isotropic submanifold of M ,
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(iv)symplectic in (M,ω) if TxW ∩ (TxW )⊥ = 0 , for each x ∈ W.

Here (TxW )⊥ is the symplectic orthogonal complement of TxW.

Let (M,ω) be a 2n-dimensional symplectic manifold. A submanifoldW ofM is

a Lagrangian submanifold if, at each p ∈ W, TpW is a Lagrangian subspace of TpM,

that is, ωp |TpW = 0 and dimTpW = 1
2
dimTpM. Equivalently, if i : W → M is the

inclusion map, then W is Lagrangian if and only if i∗ω = 0 and dimW = 1
2
dimM.

Definition 1.1.24. Let M be a manifold and G be a Lie group acting on M . Let

H a closed subgroup of G. Then the set MH = {z ∈ M/H = Gz} is called the

isotropy type submanifold.

Theorem 1.1.25. Let (M,ω) be a symplectic manifold. Let G be a Lie group

acting on the manifold M via the map φ : G×M →M. Let H a closed subgroup

of G. If the action is proper then the isotropy type submanifold MH is symplectic.

Definition 1.1.26. Let M a proper G-space and z ∈M such that H := Gz, the

local orbit type manifold through the point z is the subset M lz
(H) of M containing

all the points x ∈ M for which there exists a G-invariant open neighborhood

Ux around x and a G-equivariant diffeomorphism from Ux onto a G-invariant

neighborhood of z.

Theorem 1.1.27. Let M a proper G-space and z ∈ M such that H := Gz. If G

is connected and M/G connected , then there is a unique orbit type (H) in M

for which M(H) is an open dense subset of M. Moreover M(H)/G is a connected

manifold.

Definition 1.1.28. Let M a proper G-space and z ∈ M such that H := Gz.

The G-orbit G.z is called principal if its corresponding local orbit type manifold

through the point z is the subset M lz
(H) is open in M.

Definition 1.1.29. Let (M1, ω1), (M2, ω2) be 2n-dimensional symplectic mani-

folds, let φ : M1 → M2 be a diffeomorphism. Then φ is a symplectomorphism if

φ∗ω2 = ω1. If M1 = M2, then φ is called a canonical transformation.
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Definition 1.1.30. Let (M,ω) be a 2n-dimensional symplectic manifold. A vec-

tor field X on M is called a symplectic vector field if its flow preserves the sym-

plectic form.

On the symplectic 2-Torus (T 2, dθ1 ∧ dθ2) vector fields X1 = ∂
∂θ1
, X2 = ∂

∂θ2
are

symplectic vector fields.

Proposition 1.1.31. The following assertions are equivalent.

(i) X is a symplectic vector field.

(ii) The Lie derivative LXω = 0.

(iii) iXω = df locally for some function f ∈ C∞(M).

Definition 1.1.32. Let (M,ω) be a symplectic manifold. A vector field X ∈ X

(M) , the space of vector fields on M, is called a Hamiltonian vector field if iXω

is exact, that is, there exists f ∈ C∞(M) such that iXω = df.

Then X is denoted by Xf and f is called the Hamiltonian function. The set

of Hamiltonian vector fields on a symplectic manifold (M,ω) will be denoted by

XH(M,ω). Thus we can assign a map j : C∞(M) → XH(M,ω) by j(f) = Xf .

If the one form iXω is only closed, then we say that X is a locally Hamiltonian

vector field. Using Cartan’s formula and the closedness of symplectic form ω, we

get X is a locally Hamiltonian vector field if and only if LXω = 0. The set of

locally Hamiltonian vector fields on a symplectic manifold (M,ω) will be denoted

by XLH(M,ω).

The Lie bracket [X, Y ] of two locally Hamiltonian vector fields is Hamil-

tonian with ω(Y,X) as the associated Hamiltonian function. Then the quotient

XLH(M,ω)/XH(M,ω) gets an induced Lie algebra structure. So we have an exact

sequence of Lie algebras

0 → XH (M,ω) → XLH (M,ω) → H1(M,R) → 0.
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The map j : C∞(M) → XH(M,ω) is a homomorphism of Lie algebras. Thus we

have another exact sequence of Lie algebras

0 → < i→ C∞(M)
j→ XH (M,ω) → 0,

where i denotes the inclusion map.

Proposition 1.1.33. Let (M,ω) be a symplectic manifold .

(i) A smooth vector field onM is symplectic if and only if it is locally Hamiltonian.

(ii) Every locally Hamiltonian vector field on M is globally Hamiltonian if and

only if H1
dR(M) = 0.

Definition 1.1.34. Let (M,ω) be a symplectic manifold . A Hamiltonian dy-

namical system is a triple (M,ω, h) where h ∈ C∞(M) is called the Hamiltonian

function of the system.

Definition 1.1.35. Let (M,ω) be a 2n-dimensional symplectic manifold. The

Poisson bracket of two functions f, g ∈ C∞(M) is the function {f, g} := ω(Xf , Xg).

Definition 1.1.36. A Poisson Manifold is a pair (M, {., .}) whereM is a manifold

and {., .} is a bilinear operation on C∞(M) such that (C∞(M), {., .}) is a Lie

algebra and {., .} is a derivation in each argument. The pair (C∞(M), {., .}) is

also called a Poisson algebra. The functions in the center of the Lie algebra

(C∞(M), {., .}) are called Casimir functions . The set of all casimir functions is

denoted by C(M).

Definition 1.1.37. Let (M, {., .}) be a Poisson Manifold . Then any h ∈ C∞(M)

induces a vector field on M via the expression Xh = {., h}, called the Hamiltonian

vector field associated to the Hamiltonian function h. The triplet (M, {., .}, h) is

called a Poisson dynamical system.

The Lie algebra mapping (C∞(M), {., .}) → (X (M),[.,.]) that assigns to each
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function f ∈ C∞(M) the associated Hamiltonian vector field Xf ∈ X (M) is a Lie

algebra antihomomorphism, that is, X{f,g} = −[Xf , Xg] for all f, g ∈ C∞(M)

Any Hamiltonian system on a symplectic manifold is a Poisson dynamical

system relative to the Poisson bracket induced by the symplectic structure.

Definition 1.1.38. Let (M,ω, h) be a Hamiltonian dynamical system. Then we

define a contravariant antisymmetric two-tensor B ∈ Λ2(T ∗M) by B(z)(αz, βz) =

{f, g}(z) where df(z) = αz ∈ T ∗zM and dg(z) = βz ∈ T ∗zM. This tensor is called

Poisson tensor of M. The vector bundle map B# : T ∗M → TM naturally associ-

ated to B is defined by B(z)(αz, βz) = (αz, B
#(βz)). Its range D := B#(T ∗M) ⊂

TM is called the characteristic distribution.

Definition 1.1.39. A smooth mapping φ : M1 → M2 between two Poisson

manifolds (M1, {., .}1) and (M2, {., .}2) is called canonical or Poisson if for all

f, g ∈ C∞(M2) we have φ∗{f, g}2 = {φ∗g, φ∗f}1.

Proposition 1.1.40. Let (M,ω) be a symplectic manifold and B ∈ Λ2(T ∗M)

be the associated Poisson tensor. Then for any m ∈ M and any vector space

V ⊂ TmM, V ω = B#(m)(V o), where V ω is the ω-orthogonal complement of V in

TmM.

Proposition 1.1.41. Let φ : M1 → M2 be a smooth map between two Poisson

manifolds (M1, {., .}1) and (M2, {., .}2). Then φ is a Poisson map if and only if

Tφ ◦Xh◦φ = Xh ◦ φ, ∀h ∈ C∞(M2). In particular if F 2
t is the flow of Xh and F 1

t is

the flow of Xh◦φ, then F 2
t ◦ φ = φ ◦ F 1

t .

Definition 1.1.42. Let (M,ω) be a symplectic manifold . Let G be a Lie group

acting smoothly on M through the map φ : G×M →M. We say that the action

φ is canonical or symplectic if φ acts by canonical transformations,that is, for any

g ∈ G we have φ∗gω = ω.
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The infinitesimal analogue of this concept is the canonical action of a Lie

algebra G. We say that an action of the Lie algebra G is canonical if LξM
ω = 0

where ξM ∈ X (M), ξ ∈ G.

Note 1.1.43. Let G be a Lie group and φ be a symplectic action of G on (M,ω).

Then for ξ ∈ G∗, φ̇(ξ) ∈ XLH(M,ω). Thus we have the following picture.

0

↓

0 → < i→ C∞(M)
j→ XH (M,ω) → 0

↓

G φ̇→ XLH (M,ω)

↓

H1(M,R)

↓

0

Proposition 1.1.44. Let (M,ω) be a symplectic manifold and B ∈ Λ(T ∗M) be

the associated Poisson tensor. Let G be a Lie group acting canonically on M.

Then, for any m ∈M and any vector subspace V ⊂ T ∗mM

(i) B](m) : T ∗mM → TmM is Gm-equivariant.

(ii) If the Poisson bracket {., .} is induced by ω, then B](m)(V Gm) = (B](m)(V ))Gm .

Note 1.1.45. Let (M,ω) be a symplectic manifold and G be a Lie group acting

canonically on M. For a G-invariant system (M,ω, h) the associated Hamiltonian

vector field Xh is G-equivariant and consequently the associated flow Ft is G-

equivariant. The converse implication is only true up to casimir functions.

Let (M,ω, h) be a G-invariant Hamiltonian system. The G-equivariance of Xh

guarantees that its flow Ft leaves the connected components of the isotropy type
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manifolds corresponding to the G-action invariant. We will refer to this fact as

law of conservation of the isotropy.

Definition 1.1.46. Let φ be a symplectic action of a Lie group G on a symplectic

manifold (M,ω) . We say that the action is almost Hamiltonian if the vector field

ξM for any ξ ∈ G is a Hamiltonian vector field.

Proposition 1.1.47. Let φ be a symplectic action of a Lie group G on a sym-

plectic manifold (M,ω) . If either H1
dR(M) = 0, or [G,G] = G, then the action of

G is almost Hamiltonian.

Suppose G is finite dimensional. Then the map j : C∞(M) → XH(M,ω)

defined by j(f) = Xf in Definition 1.1.32 is onto. Then we define;

Definition 1.1.48. We say that an action φ of G on (M,ω) is Hamiltonian if

there is a homomorphism λ : G → C∞(M) with j ◦ λ(ξ) = ξM .

But for an almost Hamiltonian action we can choose a linear map λ : G →

C∞(M) with j ◦ λ(ξ) = ξM . Then we have ;

Proposition 1.1.49. An almost Hamiltonian action φ is a Hamiltonian action if

the linear map λ : G → C∞(M), f → Xf is a homomorphism.

Theorem 1.1.50. To each almost Hamiltonian action φ of G on a symplectic

manifold (M,ω) there is a cohomology class in H2G which vanishes if and only if

there is a homomorphism λ : G → C∞(M) making the action Hamiltonian.

Proof: We have the exact sequence

0 → < i→ C∞(M)
j→ XH (M,ω) → 0,

and a map φ : G → XH(M,ω) with φ̇(ξ) = ξM .

Given the action is almost Hamiltonian, therefore we can choose λ : G →
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C∞(M) with j ◦ λ(ξ) = ξM . Suppose λ is not a homomorphism, define c as

c(ξ, η) = {λ(ξ), λ(η)} − λ([ξ, η]).

From the antihomomorphism property of infinitesimal generators, we have c is

actually a constant and so defines a 2-cochain with values in < viewed as trivial

coefficients. But the Jacobi identity implies that c is infact a 2-cocycle. If we

choose another linear map λ′, then we get another 2-cochain c′. From these we get

a constant function b as b(ξ) = λ(ξ)− λ′(ξ), and so a 1-cochain. Also we have

c′(ξ, η) = c(ξ, η)− db(ξ, η).

Thus c only changes by a coboundary when we choose another linear map. So we

have associated canonically to the action φ a cohomology class cφ in H2G.

Conversely, suppose that cφ = 0, and we calculate cφ using a linear map

µ : G → C∞(M) then we have some 1-cochain b with

{µ(ξ), µ(η)} − µ([ξ, η]) = −b([ξ, η]).

Define λ : G → C∞(M) as λ = µ− b, then λ is a homomorphism. •

Corollary 1.1.51. If H2G = 0 then every almost Hamiltonian action is Hamil-

tonian for some homomorphism λ.

Remark 1.1.52. Given a symplectic manifold (M,ω), the set C∞(M) is endowed

not only with a commutative ring structure relative to pointwise multiplication,

but also with a real Lie algebra structure relative to the Poisson bracket. These

two algebraic structures on C∞(M) are linked with the property that the Pois-

son bracket is a ring derivation in each of its arguments, that is, the Leibinitz

rule holds. Therefore if (M,ω) is a 2n-dimensional symplectic manifold, then
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(C∞(M), {., .}) is a Poisson algebra. Thus every symplectic manifold is a Poisson

manifold.

The converse of this statement is provided by the Symplectic Foliation The-

orem. We can prove that the maximal integral manifolds of the characteristic

distribution mentioned in Definition 1.1.38 are symplectic with the unique sym-

plectic form that makes the inclusion into the Poisson manifold is a Poisson map.

These maximal integral manifolds of the characteristic distribution are called sym-

plectic leaves of (M, {., .}).

1.2 Noether Momentum Map

In this section we introduce the concept of Noether momentum map [32].

Definition 1.2.1. Let (M, {., .}) be a Poisson manifold and G (respectively G)

a Lie group (respectively Lie algebra) acting canonically on it. Let S be a set

and J : M → S a map. We say that J is a Noether momentum map for the G-

action (respectively G-action) on (M, {., .}) when the flow Ft of any Hamiltonian

vector field associated to any G-invariant (respectively G-invariant) Hamiltonian

function h ∈ C∞(M) preserves the fibers of J . That is,

J ◦ Ft = J |Dom(Ft) . (1.1)

Condition 1.1is known as Noether’s condition.

Note 1.2.2. In most cases , the set S in the above definition has additional

structures. S is sometimes a Poisson manifold itself and Noether momentum map

J in that case is a Poisson map. In other situations, S is a G-space and J is

G-equivariant.
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Remark 1.2.3. If G is a Lie group acting canonically on (M, {., .}) and J : M →

S is a Noether momentum map for the associated canonical Lie algebra G-action,

then J is also a Noether momentum map for the G-action.

1.3 Chu Momentum Map

We present a Noether momentum map whose definition makes essential use of the

symplectic structure. Apart from its intrinsic interest as a Noether momentum

map, this construction will be extremely important in the statement and proof of

a symplectic version of slice theorem, presented in chapter 3 [32], [25], [26].

Definition 1.3.1. Let (M,ω) be a symplectic manifold and G be a Lie algebra

acting canonically on it. The Chu map is defined as the map Ψ : M → Z2(G)

given by

Ψ(m)(ξ, η) = ω(m)(ξM(m), ηM(m)), (1.2)

for every ξ, η ∈ G. The fact that Ψ maps into Z2(G) is a consequence of the

closedness of the symplectic form ω and the canonical character of the G- action.

The main properties of the Chu map are summarized in the following propo-

sition.

Proposition 1.3.2. Let (M,ω) be a symplectic manifold and G a Lie algebra

acting canonically on it. Then the corresponding Chu map Ψ : M → Z2(G)

satisfying the following properties.

(i) TmΨ(vm)(ξ, η) = ω(m)([ξ, η]M(m), vm) for any m ∈ M , vm ∈ TmM and

ξ, η ∈ G.

(ii) KerTmΨ = ([G,G]M(m))⊥.

(iii) Ψ is a Noether momentum map for the G-action on M.
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Proof : (i) For any vm ∈ TmM

TmΨ(vm)(ξ, η) = d(ω(ξM , ηM))(m).vm

= i[ξM ,ηM ]ω(vm)

= −i[ξ,η]Mω(vm)

= ω(m)([ξ, η]M(m), vm).

(ii) It directly follows from (i)

(iii) Let h ∈ C∞(M)G and let Xh be the corresponding Hamiltonian vector field

with flow Ft. Then for any m ∈M and ξ, η ∈ G, we have

{h,Ψ(.)(ξ, η)}(m) = −d[Ψ(.)(ξ, η)](m).Xh(m)

= −ω(m)([ξ, η]M(m), Xh(m))

= dh(m).[ξ, η]M(m)

= [ξ, η]M [h](m) = 0.

where we have used (i) and the G-invariance of h. This computation shows that the

function Ψ(.)(ξ, η) is constant along the flow Ft of Xh. As ξ, η ∈ G are arbitrary,

we have that Ψ ◦ Ft = Ψ/Dom(Ft), as required. •

Proposition 1.3.3. Let G be a Lie group acting canonically on (M,ω) via the

map φ : G×M →M and whose Lie algebra is G. Suppose that the canonical Lie

algebra action associated to this group action.

(i) Let φm be the orbit map through m, that is, φm : G → M by φm(g) = g.m,

then Ψ(m) = (φm)∗ω.

(ii) The Chu map is G-equivariant. That is , for any m ∈ M and any g ∈ G we

have that Ψ(g.m) = Ad∗g−1Ψ(m).
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Proof : (i) For every ξ, η ∈ G,

(φm)∗ω(ξ, η) = ω(m)(Teφ
mξ, Teφ

mη)

= ω(m)(ξM(m), ηM(m))

= Ψ(m)(ξ, η).

(ii) Using (i), for every g ∈ G and m ∈M,

Ψ(gm) = (φgm)∗ω

= (φmrg)
∗ω

= r∗g(φ
m)∗ω

= r∗gΨ(m)

= (Adg−1)
∗Ψ(m).

•

1.4 Standard Momentum Map and Its Existence

The Chu map is always well defined as soon as we have a canonical action on a

symplectic manifold. However, it has the disadvantage of not reproducing well

known conservation laws and of giving trivial results in some relevant situations .

Some of these drawbacks are overcome with the use of standard momentum

map, which we will refer as the momentum map. The momentum map is a gen-

eralization of the standard linear and angular momentum in classical mechanics.

The definition of momentum map only requires a canonical Lie algebra action.

Existence is not guaranteed always.
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In this section the standard momentum map, whose values are in the dual of

Lie algebra of symmetries, is presented. After giving examples of such momentum

maps, a thorough discussion on the existence of such momentum maps is given.

Existence results of such momentum maps are given using fixed points of the

action, Lie algebra cohomology, G-invariant 1-form on M and compact Lie group

action. The existence of coadjoint equivariant momentum maps for the action of

semidirect product G1 ×σ G2 is also given using conditions on G1. Using this, we

prove two results on existence of momentum maps for M1×M2. Then the results

on existence using the extension of Lie algebra is also given. In general it is not

possible to choose a coadjoint equivariant momentum map, but we define another

action with respect to which we have equivariance. [10], [18], [34], [32], [25],

[26], [2].

Definition 1.4.1. Let G be a Lie algebra acting canonically on the symplectic

manifold (M,ω). Suppose that for any ξ ∈ G, the vector field ξM is globally

Hamiltonian with Hamiltonian function Jξ ∈ C∞(M). The map J : M → G∗

defined by the relation

< J(z), ξ >= Jξ(z), (1.3)

for all ξ ∈ G and z ∈ M, is called a standard momentum map or simply a

momentum map of the G-action. (For Poisson manifolds also the same definition

holds.)

Let G be a Lie group acting canonically on the symplectic manifold (M,ω).

Suppose that for any ξ ∈ G, Jξ ∈ C∞(M) is the Hamiltonian function correspond-

ing to the globally Hamiltonian vector field ξM . Therefore ξM = XJξ . Hence

iξM
ω = iX

Jξ
ω = dJξ = d < J, ξ > .
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Hence the above expression 1.3 is equivalent to

iξM
ω = d < J, ξ > ∀ξ ∈ G. (1.4)

Proposition 1.4.2. Let G be a Lie group acting canonically on the symplectic

manifold (M,ω). Then the momentum maps for the associated Lie algebra G-

action are not uniquely determined. In fact,

(i) J1 and J2 are momentum maps for the same canonical action if and only if for

any ξ ∈ G, Jξ
1 − Jξ

2 ∈ C(M), where C(M) is the set of all casimir functions.

(ii) If M is connected, then momentum maps are determined up to a constant in

G∗.

Proof : (i) J1 and J2 are momentum maps for the same canonical action if and

only if for any ξ ∈ G,

ξM = XJξ
1

= XJξ
2

⇔ XJξ
1
(f) = XJξ

2
(f),∀f ∈ C∞(M)

⇔ {f, Jξ
1} = {f, Jξ

2},∀f ∈ C∞(M)

⇔ {f, Jξ
1 − Jξ

2} = 0,∀f ∈ C∞(M)

⇔ XJξ
1−Jξ

2
= 0

⇔ Jξ
1 − Jξ

2 ∈ C(M).

(ii)Suppose M is connected. Let J1 and J2 are momentum maps for the same

canonical action. Let J = J1−J2 and fix m ∈M. Then for every ξ ∈ G and every
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vm ∈ TmM we have

(TmJ)(vm)ξ = dJξ(m)vm

= dJξ
1 (m)vm − dJξ

2 (m)vm

= ω(m)(XJξ
1
(m)−XJξ

2
(m), vm)

= ω(m)(ξM(m)− ξM(m), vm)

= 0.

Hence TmJ vanishes for every m ∈ M. Since M is connected we get J = µo for

some µo ∈ G∗. •

Example 1.4.3. (i) Linear momentum : Take the phase space of the N -particle

system, that is, T ∗<3N . The additive group <3 acts on it by spacial translation on

each factor : v.(qi, p
i) = (qi + v), pi), with i = 1, 2, ....N. This action is canonical

and has an associated momentum map that coincides with the classical linear

momentum J : T ∗<3N → <3, (qi, p
i) →

∑N
i=1 pi.

(ii) Angular momentum : Let SO(3) act on <3 and then, by lift, on T ∗<3, that

is, A.(q, p) = (Aq,Ap). This action is canonical and has an associated momentum

map J : T ∗<3 → <3, (q, p) → q × p.

(iii) Lifted actions on cotangent bundles : Let G be a Lie group acting on

the manifold M and then by lift on its cotangent bundle T ∗M. Any such lifted

action is canonical with respect to the canonical symplectic form on T ∗M and

has an associated momentum map J : T ∗M → G∗ given by < J(αm), ξ >=<

αm, ξM(m) > for any αm ∈ T ∗M and ξ ∈ G.

Proposition 1.4.4. Let G be a Lie algebra acting canonically on the Poisson

manifold (M, {., .}), and J : M → G∗ an associated momentum map. Let L be a

symplectic leaf of (M, {., .}). Then,

(i) The G-action on (M, {., .}) restricts to a canonical G-action on (L, ωL).
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(ii) JL := J |L: L −→ G∗ is a momentum map for this action.

Proof : (i) Let m ∈ L and ξ ∈ G arbitrary. Then ξM(m) = XJξ(m) ∈ TmL,

hence the G-action leaves L-invariant and thus G acts canonically on L since the

inclusion L ↪→M is a Poisson map.

(ii) follows from the canonical character of the inclusion L ↪→M. •

Note 1.4.5. We consider the problem of existence of momentum maps. Its ex-

istence is guaranteed when the infinitesimal generators of this action are Hamil-

tonian vector fields. In other words, if the Lie algebra G acts canonically on the

Poisson manifold (M, {., .}), then for each ξ ∈ G, we require the existence of a

globally defined function Jξ ∈ C∞(M) such that ξM = XJξ . In general this is not

guaranteed even if there is a canonical Lie algebra action, as the next example

shows.

Example 1.4.6. Let T 2 = {(eiθ1 , eiθ2)} be the two-torus considered as a sym-

plectic manifold with the area form ω := dθ1 ∧ dθ2. The circle S1 = {eiφ} acts

canonically on T 2 by

eiφ.(eiθ1 , eiθ2) := (ei(θ1+φ, eiθ2).

Then the infinitesimal generators generated by this action cannot be integrated

to a Hamiltonian vector field.

The following results characterizes the existence of momentum maps.

Proposition 1.4.7. Let (M,ω) be a symplectic manifold and G be a Lie algebra

acting canonically on it . Then there exists a momentum map if and only if the

action is almost Hamiltonian.

Proof : From the definition of momentum map, the existence of it is guaran-

teed when the infinitesimal generators of the action are Hamiltonian vector fields.

In other words, if the Lie algebra G acts canonically on the symplectic mani-
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fold (M,ω), then, for each ξ ∈ G, we require the existence of a globally defined

functionJξ ∈ C∞(M), such that ξM = XJξ . But this is same as the action is

almost Hamiltonian. •

Proposition 1.4.8. Let (M,ω) be a symplectic manifold and G a Lie algebra

acting canonically on it . There exists a momentum map associated to this action

if and only if the linear map ρ : G
[G,G]

→ H1(M,<), by ρ([ξ]) = [iξM
ω] is identically

zero.

Proof : We start by showing that the map ρ is well defined. It suffices to show

that if η ∈ [G,G], then iηM
ω is exact. The element η can be written as a sum of

brackets of elements in G. For simplicity suppose that η = [ξ, ζ]. Now, as the Lie

algebra action is canonical we have that

LξM
ω = LζM

ω = 0,

that is , ξM and ζM are locally Hamiltonian vector fields and consequently their Lie

bracket [ξM , ζM ] is Hamiltonian with associated Hamiltonian function ω(ζM , ξM).

Therefore

iηM
ω = i[ξ,ζ]Mω = −i[ξM ,ζM ]ω = −d(ω(ζM , ξM)),

which is an exact form, as required. The map ρ is clearly linear.

Now, notice that there exist a momentum map J : M → G∗ if and only if for any

ξ ∈ G we can write iξM
ω = dJξ. This is equivalent to [iξM

ω] = 0 ∈ H1(M,<),

which in turn can be written as ρ[ξ] = 0, for any ξ ∈ G. •

As a consequence of this proposition we have the following theorem.

Theorem 1.4.9. Let (M,ω) be a symplectic manifold and G be a Lie algebra

acting canonically on it . There exists a momentum map associated to this action

if and only if one of the following is true.
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(i) H1(M,<) = 0.

(ii) G = [G,G].

(iii) H1(G,<) = 0.

(iv) G is semisimple.

Proof : The cases (i) , (ii) and (iii) trivially imply that ρ ≡ 0. In case (iv), if G

is semisimple, the first Whitehead lemma implies that H1(G,<) = 0 and therefore

a momentum map always exists. •

Theorem 1.4.10. Let (M,ω) be a symplectic manifold and G a Lie group acting

canonically on it . There exists a momentum map associated to this action if and

only if H1
deRham(G) = 0.

Proof : We have H1
deRham(G) = H1(G, R). Using the above theorem we have

there exist a momentum map associated to this action if and only if

H1
deRham(G) = 0. •

Theorem 1.4.11. Let (M1, ω1) and (M2, ω2) be two symplectic manifolds and let

G be a Lie algebra acting canonically on both M1 and M2. Let φ : M1 →M2 be a

canonical G-equivariant diffeomorphism. Then the existence of momentum map

for the G-action on M1 is a necessary and sufficient condition for the existence of

momentum map for the G-action on M2.

Proof : Suppose there exist a momentum map J1 : M1 → G∗ for the G-action

on M1. Then J2 : M2 → G∗ defined by J2 = J1 ◦ φ−1 is a momentum map for

the G-action on M2. Conversely, if J2 : M2 → G∗ is a momentum map for the

G-action on M2 and φ is a G-equivariant immersion, then J1 : M1 → G∗ defined

by J1 = J2 ◦ φ is a momentum map for the G-action on M1. •

The momentum map J maps the G-manifold M into the G-manifold G∗. Now

we look at the equivariance of momentum maps.

Definition 1.4.12. Let G be a Lie group acting canonically on the symplectic

manifold (M,ω). Then the momentum map J for the Lie algebra G-action as-
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sociated to the Lie group action is called coadjoint equivariant if and only if J

satisfies

Ad∗g−1
◦ J = J ◦ Φg, ∀g ∈ G. (1.5)

Proposition 1.4.13. Let (M,ω) be a connected symplectic manifold and let φ

be a symplectic action by a Lie group G with the momentum map J. If the action

has a fixed point, then it has a coadjoint equivariant momentum map.

Proof : Momentum map exists, so the action is almost Hamiltonian. Thus there

exists a linear map Ĵ : G → C∞(M) satisfying j ◦ Ĵ(ξ) = ξM . Then for every

g ∈ G,

j((φg)
∗Ĵ(ξ)) = (φg)∗jĴ(ξ)

= (φg)∗ξM

= (Adg−1ξ)M

= j ◦ Ĵ(Adg−1ξ).

That is, (φg)
∗Ĵ(ξ)− Ĵ(Adg−1ξ) is a constant function on M and so

(φg)
∗Ĵ(ξ)− Ĵ(Adg−1ξ) = (φg)

∗Ĵ(ξ)(mo)− Ĵ(Adg−1ξ)(mo),

for any given point mo ∈M.

Let mo be a fixed point for the symplectic action φ, that is , φg(mo) = mo for

each g ∈ G. Then we have

(φg)
∗Ĵ(ξ)− Ĵ(Adg−1ξ) = Ĵ(ξ)(mo)− Ĵ(Adg−1ξ)(mo),

for every g ∈ G.
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Define λ : G → C∞(M) by λ(ξ) = Ĵ(ξ) − Ĵ(ξ)(mo). Then λ is linear and

satisfies j ◦ λ(ξ) = ξM .

Moreover we have

(φg)
∗λ(ξ) = (φg)

∗Ĵ(ξ)− Ĵ(ξ)(mo)

= Ĵ(Adg−1ξ)− Ĵ(Adg−1ξ)(mo)

= λ(Adg−1ξ).

Thus λ defines a coadjoint equivariant momentum map for the symplectic action

φ. Hence the proposition. •

Theorem 1.4.14. Let G be a Lie group acting canonically on a connected sym-

plectic manifold (M,ω). If H1(G,<) = H2(G,<) = 0, then there exist a coadjoint

equivariant momentum map for the associated Lie algebra action.

Proof : Since H1(G,<) = H2(G,<) = 0, we have the coboundary operator δ :

G∗ → Z2(G) is bijective. Then we can define J : M → G∗ by J(m) = δ−1(φm)∗ω.

Since

d < J, [ξ, η] > = −d < δJ, ξ ∧ η >

= −d < (φm)∗ω, ξ ∧ η >

= ω([ξ, η]M , .)

and [ξ, η] generates G. Therefore J is a momentum map.
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Also

J(gm) = δ−1(φgm)∗ω

= δ−1(φmrg)
∗ω

= δ−1r∗g(φ
m)∗ω

= δ−1Ad(g−1)∗(φm)∗ω

= Ad(g−1)∗δ−1(φm)∗ω

= Ad(g−1)∗J(m)

that is, J is coadjoint equivariant. •

Theorem 1.4.15. Let G be a Lie group acting canonically on a connected sym-

plectic manifold (M,ω). If ω = dθ, where θ a G-invariant 1-form, then there exist

a coadjoint equivariant momentum map for the associated Lie algebra action.

Proof : Since ω = dθ, define J : M → G∗ as J(m) = (φm)∗θ. Then ∀X ∈ X (M),

d < J, ξ > (X) = d < (φm)∗θ, ξ > (X) = d((φm)∗θ(ξ))(X)

= iXd((φ
m)∗θ(ξ)) = LX((φm)∗θ(ξ))

= LX(θ(φm
∗ )e(ξ)) = LX(θ(ξM))

= iXd(θ(ξM)) = dθ(ξM)(X)

= dθ(ξM , X) = ω(ξM , X).
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Hence J is a momentum map.To prove the coadjoint equivariancy

J(gm) = (φgm)∗θ

= (φmrg)
∗θ

= r∗g(φ
m)∗θ

= r∗gJ(m)

= (Adg−1)
∗J(m)

Thus J is a coadjoint equivariant momentum map. •

Theorem 1.4.16. Let G be a compact Lie group acting canonically on a sym-

plectic manifold (M,ω) with an associated momentum map J : M → G∗. Then

there exists a momentum map that is equivariant.

Proof : For each g ∈ G,m ∈M we define

Jg(m) = Ad∗g−1
J(g−1.m).

or, equivalently

Jξ
g = JAdg−1ξ ◦ Φg−1 .

Then Jg is also a momentum map for the G-action on M. Indeed, if m ∈M, ξ ∈ G,
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and f ∈ C∞(M) we have

{f, Jξ
g}(m) = −dJξ

g (m).Xf (m)

= −dJAdg−1ξ(g−1.m).TmΦg−1 .Xf (m)

= −dJAdg−1ξ(g−1.m).(Φ∗
gXf )(g

−1.m)

= −dJAdg−1ξ(g−1.m).XΦ∗
gf (g

−1.m)

= {Φ∗
gf, J

Adg−1ξ}(g−1.m)

= (Adg−1ξ)M [Φ∗
gf ](g−1.m)

= (Φ∗
gξM)[Φ∗

gf ](g−1.m)

= df(m).ξM(m)

= {f, Jξ(m)}.

Therefore, {f, Jξ
g − Jξ} = 0 for every f ∈ C∞(M), that is, Jξ

g − Jξ is a casimir

function on M for every g ∈ G and every ξ ∈ G.

Now define ,< J >=
∫

G
Jgdg, where dg denotes the Haar measure on G nor-

malized such that the total volume of G is one. Equivalently, this definition states

that < J >ξ=
∫

G
Jξ

gdg, for every ξ ∈ G.

By the linearity of the Poisson bracket in each factor, it follows that

{f,< J >ξ} =

∫
G

{f, Jξ
g}dg

=

∫
G

{f, Jξ}dg = {f, Jξ}.

Thus < J > is also a momentum map for the G-action on M and < J >ξ −Jξ is

a casimir function on M for every ξ ∈ G.
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The momentum map < J > is equivariant. Noting that

Jg(h.m) = Ad∗h−1
Jh−1g(m)

and using invariance of the Haar measure on G under translations, for any h ∈ G,

we indeed have,

< J > (h.m) =

∫
G

Ad∗h−1
Jh−1g(m)dg

= Ad∗h−1

∫
G

Jh−1g(m)dg

= Ad∗h−1

∫
G

Jk(m)dk, where k = h−1g

= Ad∗h−1
< J > (m).

•

Definition 1.4.17. Let G1 and G2 be Lie groups. The semi direct product G1×σ

G2 of G1 and G2 is the set G1×G2 relative to the multiplication (g1, h1)(g2, h2) =

(g1g2, h1(g1.h2)).

Theorem 1.4.18. Let G1 and G2 be Lie groups acting canonically on a connected

symplectic manifold (M,ω) with G1 is connected and H1(G1,<) = 0. Suppose the

above actions admits coadjoint equivariant momentum maps. If G = G1×σ G2 is

the semi direct product, then G has a coadjoint equivariant momentum map.

Proof : Let J1 and J2 be the coadjoint equivariant momentum maps correspond-

ing to the Lie group actions by G1 and G2 respectively. Then J = J1 + J2 is a

momentum map for the action by the Lie group G. To prove coadjoint equivari-

ance, it is enough to prove < J(gm)−Ad∗g−1J(m), η >= 0 for two cases (i) g ∈ G2

and η ∈ G1 or (ii) g ∈ G1 and η ∈ G2.

For the case (i), since H1(G1,<) = 0, we may assume η = [η1, η2] where η1 and η2
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are in G1. Then we have

< J(gm)− Ad∗g−1J(m), η >=< J(gm)− Ad∗g−1J(m), [η1, η2] >= 0.

Hence the coadjoint equivariancy of J.

For the case (ii), consider the map G 3 g →< J(gm)− Ad∗g−1J(m), η > . Differ-

entiating this map to the direction ξ ∈ G1, we have

iξM
d < J, η > − < J, ad(ξ)η >= ω(ξM , ηM)− < J, [ξ, η] >= 0.

Thus < J(gm) − Ad∗g−1J(m), η > is constant on G1. If G1 is connected , <

J(gm)− Ad∗g−1J(m), η >= 0 identically. Hence J is coadjoint equivariant. •

Theorem 1.4.19. Let (M1, ω1) and (M2, ω2) be two symplectic manifolds and

let G be a Lie group acting canonically on both M1 and M2 . Suppose the above

actions admit coadjoint equivariant momentum maps. Then G has a coadjoint

equivariant momentum map on (M1×M2, π
∗
1ω1− π∗2ω2) where π1 and π2 are pro-

jections on M1 and M2 respectively.

Proof : Suppose J1 and J2 are the coadjoint equivariant momentum maps cor-

responding to the Lie group actions by G on M1 and M2 respectively. Then

J = J1◦π1−J2◦π2 is a momentum map for theG-action on (M1×M2, π
∗
1ω1−π∗2ω2).

To prove this it is enough to prove iξM
ω = d < J, ξ >, for any ξ ∈ G. Then for
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every ξ ∈ G and m ∈M,

iξM
ω(m) = iξM

(π∗1ω1 − π∗2ω2)(m)

= iξM
(π∗1ω1(m))− iξM

(π∗2ω2(m))

= π∗1iξM
ω1(m)− π∗2iξM

ω2(m)

= idπ1(m)ξM
ω1(π1(m))− idπ2(m)ξM

ω2(π2(m))

= iξM1
ω1(π1(m))− iξM2

ω2(π2(m))

= d < J1, ξ > (π1(m))− d < J2, ξ > (π2(m))

= d < J1 ◦ π1 − J2 ◦ π2, ξ > (m)

= d < J, ξ > (m).

Thus J is a momentum map. Also

J(gm) = (J1 ◦ π1 − J2 ◦ π2)(gm)

= J1(gm1)− J2(gm2)

= Ad∗g−1J1(m1)− Ad∗g−1J2(m2)

= Ad∗g−1(J1 ◦ π1(m)− J2 ◦ π2(m)) = Ad∗g−1J(m),∀g ∈ G.

Thus J is a coadjoint equivariant momentum map. •

Theorem 1.4.20. Let G1 and G2 be Lie groups acting canonically on con-

nected symplectic manifolds (M1, ω1) and (M2, ω2) with G1 is connected and

H1(G1,<) = 0. Suppose the above actions admits coadjoint equivariant momen-

tum maps. If G = G1 ×σ G2 then G has a coadjoint equivariant momentum map

on (M1 ×M2, π
∗
1ω1 − π∗2ω2) where π1 and π2 are projections on M1 and M2 re-

spectively.

Proof : Given G1 and G2 are Lie groups acting canonically on a connected sym-

plectic manifold (M1, ω1) with G1 is connected and
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H1(G1,<) = 0. Suppose the above actions admits coadjoint equivariant momen-

tum maps J1 and J2 respectively. Then from the theorem 1.4.18 , J
′
= J1 +J2 is a

coadjoint equivariant momentum map for the G-action on M1. Similarly, if J3 and

J4 are coadjoint equivariant momentum maps corresponding to the G1 and G2 ac-

tions on (M2, ω2) respectively, then J” = J3+J4 is a coadjoint equivariant momen-

tum map for the G-action on M2. Then using theorem 1.4.19, J = J
′ ◦π1−J” ◦π2

is a coadjoint equivariant momentum map for the G-action on M1 ×M2. •

For the Lie group action we look at the G-equivariance of momentum maps.

For the Lie algebra action we look at the case when the map G → C∞(M) is a Lie

algebra homomorphism, which is an infinitesimal version of the G-equivariance.

Definition 1.4.21. Let G be a Lie algebra acting canonically on the symplectic

manifold (M,ω). Then the momentum map J : M → G∗ for this action is called

infinitesimally equivariant if and only if J satisfies

J [ξ,η] = {Jξ, Jη}, ξ, η ∈ G. (1.6)

Theorem 1.4.22. Let G be a Lie group acting canonically on the symplectic

manifold (M,ω). Then there exists an infinitesimally equivariant momentum map

for the associated Lie algebra action if and only if the action is Hamiltonian.

Proof : Let J : M → G∗ be the infinitesimally equivariant momentum map .

That is, J satisfies

J [ξ,η] = {Jξ, Jη}, ξ, η ∈ G.

That is if and only if there exist a map τ : (G, [., .]) → (C∞(M), {., .}) defined by

ξ → Jξ, ξ ∈ G, is a Lie algebra homomorphism. Also for j : C∞(M) → XH(M,ω)
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defined by j(f) = Xf , in 1.1.32, we have

j ◦ τ(ξ) = j(Jξ) = ξM

from the definition of Jξ. That is if and only if the action is Hamiltonian. . •

When G is connected Guillemin and Sternberg proved that the G-equivariance

and G-equivariance are equivalent.

Proposition 1.4.23. Let J be the momentum map for the Hamiltonian action

of the connected group G on the symplectic manifold (M,ω). Then J is an

equivariant momentum map.

Proof : It is sufficient to prove the infinitesimal version. We consider an element

ξ of G and we prove TmJ.ξM(m) = −ad∗ξJ(m).

For any ζ ∈ G,

< TmJ.ξM(m), ζ > = < ξM(m), TmJ
t(ζ) >

= < ξM(m), (iζM
ω)m >

= ωm(ζM , ξM)

= −{Jξ, Jζ}(m)

= −J [ξ,ζ](m)

= − < J(m), [ξ, ζ] >

= < −ad∗ξJ(m), ζ > .

•

Definition 1.4.24. Given a Lie algebra G, an exact sequence 0 → Z i→ E j→

G → 0 of the Lie algebras is called an extension of G by Z. If i(Z) is contained

in the center of E we call it a central extension.

Example 1.4.25. 0 → < → C∞(M) → XH(M,ω) → 0 is a central extension of
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XH(M,ω) by <.

Theorem 1.4.26. Let G be a Lie group acting canonically on the symplectic

manifold (M,ω) via the action φ. Suppose there exist a momentum map for the

associated Lie algebra action. Then there is a central extension G(φ) of G by <

such that the action of G(φ) has an infinitesimally equivariant momentum map.

Proof: Given that there exist a momentum map, so the action is almost

Hamiltonian. Therefore we have a sequence

0 → < i→ C∞(M)
j→ XH (M,ω) → 0.

Let φ be an almost Hamiltonian action of G on (M,ω). This gives a central

extension Ĝ of G by < which we denote by G(φ) to indicates its dependence on

the action. Explicitly

G(φ) = {(ξ, f) ∈ G × C∞(M)/φ̇(ξ) = Xf}, and

i(z) = (0, z), j(ξ, f) = ξ.

The homomorphism j exponentiates to a homomorphism of Lie groupsG(φ) →

G where G(φ) is the simply connected Lie group with Lie algebra G(φ), and allows

us to get an action φ1 of G(φ) on M which is symplectic. It differentiates to give

φ̇ ◦ j, so is almost Hamiltonian,with φ̇1(ξ, f) = Xf . It follows that if we define

λ(ξ, f) = f then λ is Hamiltonian for this action. •

Definition 1.4.27. If we choose Z = H2(G)∗, then the corresponding central

extension Eo is called the Universal central extension of G.

Theorem 1.4.28. Let G be a Lie group acting canonically on the symplectic

manifold (M,ω). Then there exists an infinitesimally equivariant momentum map

if the action of G passing to the universal central extension of G by H2(G)∗.
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Proof: It directly follows from the theorem 1.4.26. •

Note 1.4.29. In general it is not possible to choose a coadjoint equivariant mo-

mentum map, but we could ask whether one can define another action on this

space with respect to which we have equivariance.

Definition 1.4.30. Let (M,ω) be a connected symplectic manifold and G a Lie

group acting on M in a canonical fashion with an associated momentum map

J : M → G∗. Define the non-equivariance one cocycle associated to J as the map

σ : G −→ G∗, given by

σ(g) = J(φg(z))− Ad∗g−1(J(z)).

Proposition 1.4.31. Let (M,ω) be a connected symplectic manifold and G a

Lie group acting on M in a canonical fashion with an associated momentum map

J : M → G∗ and non-equivariance one cocycle σ. Then :

(i) The definition of σ does not depend on the choice of z ∈M.

(ii) The mapping σ is a G∗-valued one-cocycle on G with respect to the coadjoint

representation of G on G∗.

(iii) If J ′ is another momentum map for the same canonical action of G on M,

then its non-equivariance one-cocycle σ′ is in the same Lie group cohomology class

as σ; that is , σ − σ′ is a one-boundary.

Proof: (i) Let g ∈ G be fixed and τg : M −→ G∗ the mapping defined by

τg(z) = J(φg(z)) − Ad∗g−1(J(z)), z ∈ M. Now, for any ξ ∈ G and vz ∈ TzM we
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have that

< Tzτg.vz, ξ > = dJξ(g.z).Tzφg.vz − dJAdg−1ξ(z).vz

= ω(g.z)(ξM(g.z), Tzφg.vz)− ω(z)((Adg−1ξ)M(z), vz)

= ω(g.z)(Tzφg.(Adg−1ξ)M(z), Tzφg.vz)− ω(z)((Adg−1ξ)M(z), vz)

= (φ∗gω)(z)((Adg−1ξ)M(z), vz)− ω(z)((Adg−1ξ)M(z), vz)

= ω(z)((Adg−1ξ)M(z), vz)− ω(z)((Adg−1ξ)M(z), vz) = 0.

Since vz and ξ are arbitrary, this shows that Tτg = 0 and hence, asM is connected,

the function τg is constant. This proves that the definition of σ does not depend

on the choice of z ∈M.

(ii) On the one hand we have that for any g, h ∈ G

σ(gh) = J(gh.z)− Ad∗(gh)−1J(z). (1.7)

Using the independence of the definition of σ on the choice of the point in the

manifold , we take the point h.z and we write σ(g) = J(gh.z) − Ad∗g−1J(h.z).

We now take the point z ∈ M and write σ(h) = J(h.z) − Ad∗h−1J(z). Hence

σ(g) + Ad∗g−1σ(h) = J(gh.z) − Ad∗(gh)−1J(z) which, by 1.7, coincides with σ(gh)

establishing the cocycle identity.

(iii) The defining property of a momentum map implies that for any ξ ∈ G,

d(Jξ − J ′ξ) = iξM
ω − iξM

ω = 0. The connectedness of M implies that J − J ′ is a

constant function. Now, using this fact, we have that for any g ∈ G :

σ(g)− σ′(g) = J(g.z)− J ′(g.z)− Ad∗g−1(J(z)− J ′(z))

= J(z)− J ′(z)− Ad∗g−1(J(z)− J ′(z)).

Hence, if we set µ = J(z)− J ′(z) we have that σ(g)− σ′(g) = µ−Ad∗g−1µ, which
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is a coboundary. •

Remark 1.4.32. This proposition identifies the cohomology class [σ] in the first

group cohomology as the obstruction to the equivariance of a momentum map. If

the Lie group G is semisimple, Whitehead’s Lemma for groups implies that any

non-equivariance one-cocycle is actually a coboundary. Therefore, by part(iii)

of the proposition, any momentum map can be modified in this case to be G-

equivariant.

Using the non-equivariance one-cocycle we can define a new action of G on G∗,

with respect to which a given momentum map J is equivariant.

Definition 1.4.33. Let G be a Lie group acting canonically on the connected

symplectic manifold (M,ω) with associated momentum map J : M → G∗. If

σ : G −→ G∗ is the non-equivariance one cocycle of J , we define the affine action

of G on G∗ with cocycle σ by

Θ : G× G∗ −→ G∗, given by

Θ(g, µ) = Ad∗g−1µ+ σ(g).

Proposition 1.4.34. The affine action Θ of G on G∗ determines a left action.

The momentum map J : M → G∗ is equivariant with respect to the symplectic

action φ on M and the affine action Θ on G∗.

Proof: Since σ satisfying the cocycle identity, Θ of G on G∗ determines a left

action. The equivariance of J with respect to with respect to the affine action is

clear from the Definition 1.4.33. •

Note 1.4.35. Next we show that the mathematical object that measures the lack

of infinitesimal equivariance is a Lie algebra two-cocycle that, in the presence of a

canonical group action, can be obtained as the derivative of the non-equivariance

group cocycle.
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Definition 1.4.36. Let G be a Lie algebra acting canonically on the connected

symplectic manifold (M,ω) with associated momentum map J : M → G∗. Define

the infinitesimal non-equivariance two-cocycle associated to J as the element

Σ ∈ Λ2(G) given by

Σ(ξ, η) = J [ξ,η](z)− {Jξ, Jη}(z), z ∈M, ξ, η ∈ G

Theorem 1.4.37. Let G be a Lie algebra acting canonically on the connected

symplectic manifold (M,ω) with associated momentum map J and the infinitesi-

mal non-equivariance two-cocycle associated to J is Σ. Then:

(i) The definition of Σ does not depend on the choice of z ∈M.

(ii) For any ξ, η ∈ G we have X{Jξ,Jη} = XJ [ξ,η] .

(iii) Σ ∈ Z2(G,<), that is, Σ is a Lie algebra two-cocycle, that is, it satisfies the

two-cocycle identity

Σ([ξ, η], ζ) + Σ([η, ζ], ξ) + Σ([ζ, ξ], η) = 0,∀ξ, η, ζ ∈ G. (1.8)

(iv) For arbitrary z ∈M and η ∈ G, we have

TzJ.ηM(z) = −ad∗ηJ(z) + Σ(η, .). (1.9)

(v) If J : M → G∗ is a momentum map associated to the canonical action of Lie

group G that has σ : G → G∗ as non-equivariance cocycle, then Σ ∈ Z2(G,<) is

given by

Σ : G × G −→ <, given by ,

Σ(ξ, η) = dσ̂η(e).ξ, (1.10)

where σ̂η : G −→ < is defined by σ̂η(g) =< σ(g), η > .
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Proof: (i) Define the function τξ,η ∈ C∞(M) by τξ,η(z) = J [ξ,η](z)−{Jξ, Jη}(z).

We now compute its derivative:

dτξ,η = dJ [ξ,η] − d({Jξ, Jη})

= i[ξ,η]Mω − iX{Jξ,Jη}
ω

= −i[ξM ,ηM ]ω + i[X
Jξ ,XJη ]ω

= −i[ξM ,ηM ]ω + i[ξM ,ηM ]ω = 0.

The connectedness of M implies that τξ,η is constant and that therefore the defi-

nition of Σ does not depend on the point z ∈M used in its definition.

(ii) By point (i) the functions {Jξ, Jη} and J [ξ,η] differ by a constant, and

hence X{Jξ,Jη} = XJ [ξ,η] .

(iii) It is a straightforward consequence of the Jacobi identities satisfied by

the brackets [., .] and {., .} as well as of point (ii).

(iv) For any z ∈M and ξ, η ∈ G, we have that

< TzJ.ηM(z), ξ > = dJξ(z).ηM(z) = {Jξ, Jη}(z) = J [ξ,η](z)− Σ(ξ, η)

= − < J(z), adηξ > +Σ(η, ξ) = − < −ad∗ηJ(z), ξ > +Σ(η, ξ).

Since the element ξ is arbitrary, the relation follows.

(v) Using the relation in the previous point, as well as the definition of the
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non-equivariance cocycle, we can write, for any ξ, η ∈ G

Σ(ξ, η) = < TzJ.ηM(z), η > + < ad∗ξJ(z), η >

=
d

dt
|t=0< J(exptξ.z), η > + < ad∗ξJ(z), η >

=
d

dt
|t=0 (< σ(exptξ), η > + < Ad∗exp(−tξ)J(z), η >)+ < ad∗ξJ(z), η >

=
d

dt
|t=0< σ(exptξ), η >= dσ̂η(e).ξ.

•

Remark 1.4.38. In general the existence of momentum map is not guaranteed

even if there is a canonical Lie algebra action. But there is a generalization of

the standard momentum map, namely cylinder valued momentum maps, which

has the important property of being always defined, unlike the standard momen-

tum map. Cylinder valued momentum maps are genuine generalizations of the

standard ones in the sense that whenever a Lie algebra action admits a standard

momentum map, there is a cylinder valued momentum map that coincides with

it. For Abelian symmetries, cylinder valued momentum maps are closely related

to the so called Lie group valued momentum maps. We discuss them in the fourth

chapter.

1.5 Properties of the Standard Momentum Map.

In this section we discuss certain properties of the momentum map. First we

prove J is a submersion on the open dense subset of principal orbits in M. Then

Noether’s theorem, that is, they are constant on the dynamics of any symmetric

Hamiltonian vector field is given. An equivalent condition for the momentum map

to be constant on the orbits is given. We establishes a link between the symmetry

of a point and the rank of the momentum map at the point, called bifurcation
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lemma. Also proved that the level sets of the momentum map is locally arcwise

connected. [32], [2], [3], [35].

Proposition 1.5.1. Let G be a Lie algebra acting canonically on the symplectic

manifold (M,ω). Assume that this action admits a momentum map J : M → G∗.

Then the annihilator in G of ImTmJ ⊂ G∗ is Gm.

Proof: The tangent map TmJ : TmM → G is the transpose of TmJ
t : G → T ∗mM ;

by ξ → (iξM
ω)m. To prove the proposition it is enough to prove that the annihilator

in G∗ of Gm is the subspace ImTmJ.

We have ImTmJ is the annihilator in G∗ of KerTmJ
t. But

KerTmJ
t = {ξ ∈ G|(iξM

ω)m = 0}

= {ξ ∈ G|(ξM)m = 0}

= Lie algebra Gm of Gm.

•

Proposition 1.5.2. Let G be a Lie algebra acting canonically on the symplectic

manifold (M,ω). Assume that this action admits a momentum map J : M → G∗.

The momentum map J is a submersion at the point m if and only if the stabilizer

Gm is discrete.

Proof: From the above proposition the rank of TmJ is the dimension of the

annihilator in G∗ of Gm. That is, rank of TmJ = dim(G/Gm) = dim(G/Gm). Thus

J is a submersion at the point m if and only if the stabilizer Gm is

discrete. •

Corollary 1.5.3. Let G be a commutative Lie group acting effectively on a

symplectic manifold (M,ω). Assume that this action admits a momentum map

J : M → G∗. Then J is a submersion on the open dense subset of principal orbits

in M.
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Proof: If G is commutative and the action is effective, then the stabilizer of the

principal orbits is discrete subgroup of G. Using the definition 1.1.28 and theorem

1.1.27 we have the result. •

If G is not commutative, it may happen that the momentum mapping J is

nowhere submersive, even if the action is effective, as the next example shows.

Example 1.5.4. Let the group SO(3) of rotations act on S2×M by the usual(effective)

action on S2 and by the trivial action onM . it preserves any ”product” symplectic

form ω1 ⊕ ω2, and the image of the momentum mapping

µ : S2 ×M → so(3)∗ = <3

is a sphere S2 and, in particular ,contains no open dense subset of so(3)∗ so that

J is nowhere submersive.

Proposition 1.5.5. Let G be a Lie algebra acting canonically on the symplectic

manifold (M,ω). Assume that this action admits a momentum map J : M → G∗.

Then the kernel TmJ is the orthogonal (for ωm) on the tangent space to the orbit

through m.

Proof: We have TmJ(Y ) = 0 if and only if < TmJ(Y ), ξ >= 0 for all ξ ∈ G,

that is, if and only if ωm((ξM)m, Y ) = 0 for all ξ ∈ G, that is, if and only if Y is

orthogonal to the subspace generated by the infinitesimal generators . •

Theorem 1.5.6 (Noether’s Theorem ). Let G be a Lie algebra acting canoni-

cally on the symplectic manifold (M, {., .}) . Assume that this action admits a

momentum map J : M → G∗. Then the momentum map is a constant of the

motion for the Hamiltonian vector field associated to any G - invariant function

h ∈ C∞(M)G, that is, it satisfies Noether’s condition.
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Proof: It suffices to notice that for any ξ ∈ G we have

{f, Jξ}(m) = df(m).XJξ(m)

= df(m).ξM(m) = ξM [f ](m) = 0.

•

Remark 1.5.7. The above theorem means that the Hamiltonian vector field Xh

is tangent to the level set J−1(µ) of the momentum map.

Theorem 1.5.8. Let G be a Lie algebra acting canonically on the Poisson mani-

fold (M, {., .}) and J : M → G∗ an associated momentum map. Let m ∈ M and

let L ⊂M be the symplectic leaf containing m. Then

TmJ(TmL) = (Gm)o,

where (Gm)o denotes the annihilator in G∗ of the isotropy subalgebra Gm of m.

When M is a symplectic manifold then the above expression can be written as

range(TmJ) = (Gm)o.

This result is sometimes known as bifurcation lemma since it establishes a link

between the symmetry of a point and the rank of the momentum map at the

point.

Proof : Let υm ∈ TmL, ξ ∈ Gm, and let f ∈ C∞(M) be such that υm = Xf (m).

Then,

< TmJ.υm, ξ > = < TmJ.Xf (m), ξ >

= dJξ(m).Xf (m) = {Jξ, f}(m)

= −df(m).XJξ(m) = −df(m).ξM(m) = 0.
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which proves that

TmJ(TmL) ⊂ (Gm)o.

We now show that

(Gm)o ⊂ TmJ(TmL)

or, equivalently,

[TmJ(TmL)]o ⊂ Gm.

Let ξ ∈ [TmJ(TmL)]o, that is ξ ∈ G is such that for any f ∈ C∞(M) we have that

0 =< TmJ.Xf (m), ξ >= dJξ(m).Xf (m) = {Jξ, f}(m) = df(m).ξM(m).

Since the function f is arbitrary ξM(m) = 0 necessarily, and hence ξ ∈ Gm.

If M is a symplectic manifold, then TmL = TmM. •

Corollary 1.5.9. Let G be a Lie algebra acting canonically and locally free on

the Poisson manifold (M, {., .}) and J : M → G∗ an associated momentum map.

Then J is a submersion onto some open subset of G∗.

Proof: Since the action is locally free we have that Gm = {0} for any m ∈ M.

Therefore the above proposition guarantees that J is a submersion and thereby

an open map. In particular J(M) is an open subset of G∗. •

Note 1.5.10. For a regular value µ ∈ G∗ of J, call Vµ = J−1(µ). As J is equivari-

ant, the subgroup Gµ ⊂ G keeps the set Vµ invariant : if m ∈ Vµ and g ∈ Gµ,

then J(g.m) = g.J(m) = g.µ = µ.

Look now at what happens to the symplectic form when we restrict by the
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inclusion map iµ : Vµ ⊂M

Lemma 1.5.11. Let G be a Lie algebra acting canonically on the symplectic

manifold (M,ω). Assume that this action admits a momentum map J : M → G∗.

The kernel of the pulled back 2-form i∗µω at a point m is the subspace Tm(Gµ.m).

The rank of this 2-form is constant (namely, it does not depend on m) and

rank(i∗µω) = 2dimVµ + dim(G.µ)− dimM

Proof: We have , Ker(i∗µω)m = TmVµ ∩ (TmVµ)o.

Also TmVµ = KerTmJ and from Proposition 1.5.5

KerTmJ = (Tm(G.m))o.

Thus

Ker(i∗µω)m = KerTmJ ∩ Tm(G.m).

The tangent space Tm(G.m) to the orbit is generated by the infinitesimal genera-

tors ξM . From the above proof ξM(m) is inKerTmJ if and only if the corresponding

infinitesimal generator in G∗ vanishes at J(m), that is, if and only if ξ belongs to

the Lie algebra GJ(m) of the stabilizer GJ(m). Thus Ker(i∗µω)m = Tm(Gµ.m), its

dimension is

dimGµ − dimGm = dimGµ
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(because µ is a regular value so that Gm is discrete) . Its rank is

rank(i∗µω) = dimVµ − (dimGµ − dimGm)

= dimVµ − dimGµ + dimG− dimM + dimVµ

= 2dimVµ − dimM + dim(G.µ)

and thus is constant on Vµ. •

Proposition 1.5.12. Let G be a connected Lie group acting effectively on a

symplectic manifold (M,ω) with momentum map J. The following three properties

are equivalent.

(i) The orbits of G are isotropic .

(ii) The momentum map J is constant on orbits.

(iii) The group G is commutative.

In this case , dimM ≥ 2dimG.

Proof : The orbit G.m is isotropic if and only if

Tm(G.m) ⊂ (Tm(G.m))o = KerTmJ.

That is, if and only if TmJ(vm) = 0,∀vm ∈ Tm(G.m). That is, if and only if the

momentum map J is constant on G.m.

In this case, for any ξ, ζ ∈ G, the map m→ −ωm(ξM(m), ζM(m)) is identically

zero. But we have its differential is the 1-form i[ξM ,ζM ]ω. Thus i[ξM ,ζM ]ω = 0,

for which it follows that [ξM , ζM ] = 0 and , due to the fact that the infinitesimal

generator of the bracket is the bracket of infinitesimal generators , that is , [ξ, ζ] =

0 for any ξ, ζ ∈ G, so that G is commutative.

Conversely, if G is commutative , Gµ = G for all µ ∈ G∗ and thus Ker(i∗µω) is

the whole tangent space to the orbit which is thus isotropic. •
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Proposition 1.5.13. Let (M,ω) be a symplectic manifold endowed with a Hamil-

tonian action of a compact connected Lie group G, with momentum map J. Let

T be a maximal torus in G. If J is submersive in at least one point in W, then

dimG+ dimT ≤ dimM

Proof : It is sufficient to observe that the rank of (i∗µω)m is a non negative integer,

and to compute:

rank(i∗µω) = 2dimVµ + dim(G.µ)− dimM

= 2(dimM − dimG) + dim(G.µ)− dimM

= dimM − 2dimG+ dimG− dimGµ.

Hence dimM ≥ dimG+ dimGµ ≥ dimG+ dimT. •

Note 1.5.14. Next we show that the level set of the momentum map is locally arc

wise connected. To do this we find a local normal form for a coadjoint equivariant

momentum map of a proper Hamiltonian action near a fixed point in its zero level

set.

Let φ : G ×M → M be a proper Hamiltonian action of a Lie group G on a

symplectic manifold (M,ω) with coadjoint equivariant momentum map J : M →

G∗. For µ ∈ G∗ let m be a point in the level set J−1(µ). Let Gm be the isotropy

group of m under the G-action φ and let Gµ be the isotropy group of µ under the

coadjoint action of G on G∗. Note that the linear ω(m)-symplectic action

φ̂ : Gm × TmM → TmM : (h, vm) → Tmφh.vm
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has a Gm-coadjoint equivariant momentum map Ĵ : TmM → G∗m, where

Ĵ(vm)ξ =
1

2
ω(m)(Xξ(vm), vm),

for ξ ∈ Gm and vm ∈ TmM. Here the vector field Xξ is the infinitesimal generator

of the Gm-action φ̂ in the direction ξ.

Proposition 1.5.15. We have the following decomposition for TmM .

TmM = H⊕ (X ⊕ T ∗m(Gµ.m)),

where X is the complement to W = (KerTmJ) ∩ (KerTmJ)ω(m) in KerTmJ and

H is a subspace of G which is isomorphic to G
Gm
, that is , H is isomorphic to

Tm(G.m).

Proof : Using the Witt decomposition, starting with the subspace KerTmJ of

the symplectic vector space (TmM,ω(m)), we obtain the decomposition

TmM = X ⊕ Y ⊕ Z

whereX, Y and Z are the ω(m)-symplectic subspaces of TmM defined byKerTmJ =

X ⊕W, (KerTmJ)ω(m) = Y ⊕W and Z = (X ⊕Y )ω(m). From the Witt decompo-

sition it follows that W is a Lagrangian subspace of Z. Therefore Z is isomorphic

to W ⊕W ∗. Thus we have

TmM = (Y ⊕W )⊕ (X ⊕W ∗)

= (KerTmJ)ω(m) ⊕ (X ⊕W ∗).
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To prove the result it is enough to prove that

Tm(G.m) = (KerTmJ)ω(m) (1.11)

Tm(Gµ.m) = (KerTmJ) ∩ (KerTmJ)ω(m) = W. (1.12)

We have from the definition of the momentum map

ω(m)(Xξ(m), v) = dJξ(m)v

= (TmJ(v))ξ,

for every ξ ∈ G. Therefore if v ∈ KerTmJ , then ω(m)(Xξ(m), v) = 0 for every

ξ ∈ G. In other words , v ∈ (Tm(G.m))ω(m).

Conversely, if v ∈ (Tm(G.m))ω(m), then ω(m)(Xξ(m), v) = 0 for every ξ ∈ G.

Hence we have (TmJ(v))ξ = 0, for every ξ ∈ G, that is ,v ∈ KerTmJ. Thus

Tm(G.m) = (KerTmJ)ω(m).

To prove 1.12 we begin by showing that

Tm(Gµ.m) = Tm(G.m) ∩ (KerTmJ) (1.13)

Let vm ∈ Tm(Gµ.m). Then for some ξ ∈ Gµ vm = Xξ(m). Differentiating the

relation J(φexpsξ(m)) = Adt
exp−sξ(J(m)) with respect to s and then setting s = 0

gives

TmJX
ξ(m) = Xξ

G∗(J(m))

= Xξ
G∗(µ) = 0,

where Xξ
G∗(µ) = d

ds
/s=0Ad

t
exp−sξ(µ) and the last equality follows because ξ ∈
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Gµ. Therefore Xξ(m) ∈ KerTmJ. That is , vm ∈ KerTmJ. Hence Tm(Gµ.m) ⊆

KerTmJ. Since Gµ ⊆ G, Tm(Gµ.m) ⊆ Tm(G.m). Hence we have

Tm(Gµ.m) ⊆ Tm(G.m) ∩KerTmJ (1.14)

To prove the reverse inclusion suppose that vm ∈ Tm(G.m) ∩ KerTmJ. Then

there is a ξ ∈ G such that vm = Xξ(m)Teφmξ. Because vm ∈ KerTmJ it follows

from TmJX
ξ(m) = Xξ

G∗(µ) that Xξ
G∗(µ) = 0, that is, ξ ∈ Gµ. Consequently ,

vm ∈ Tm(Gµ.m). Hence

Tm(G.m) ∩KerTmJ ⊆ Tm(Gµ.m) (1.15)

Combining 1.14 and 1.15 we get 1.13. Substitute 1.13 in 1.11 we get 1.12. So we

get the decomposition. •

Corollary 1.5.16. When µ = 0 the above decomposition reads

TmM = H⊕X ⊕W ∗ (1.16)

where H = W = Tm(G.m).

Proof : When µ = 0 the isotropy subgroup Gµ equals G. Therefore from (1) and

(2) we obtain

Tm(G.m) = (KerTmJ)ω(m)

= (KerTmJ) ∩ (KerTmJ)ω(m) = W.

Hence by definition Y = {0}. •

Corollary 1.5.17. The space X , Y , W and W ∗ in the Witt decomposition,

TmM = X ⊕ Y ⊕ (W ⊕W ∗) (1.17)
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can be chosen to be Gm invariant.

Proof : Since J−1(µ) is invariant under the action φ/Gm×M , KerTmJ) = TmJ
−1(µ)

is invariant under the linear ω(m)-symplectic action φ̂. Consequently ,(KerTmJ)ω(m)

and W = (KerTmJ)ω(m) are also invariant under φ̂.

Let γ be an inner product on TmM. Then averaging over Gm, which is compact

because G-action is proper, we may assume that γ is φ̂-invariant. Let X, Y be the

orthogonal complement of W in KerTmJ and (KerTmJ)ω(m), respectively. Then

X and Y are φ̂-invariant ω(m)-symplectic subspaces of (TmM,ω(m)). Therefore Z,

which is orthogonal complement of X⊕Y in TmM, is φ̂-invariant ω(m)-symplectic

subspace. Hence we have obtained the φ̂-invariant Witt decomposition

TmM = X ⊕ Y ⊕ Z.

Since W is φ̂-invariant Lagrangian subspace of Z, its orthogonal complement W⊥

in Z is φ̂-invariant. Since W⊥ is isotropic and hence Lagrangian, it is isomorphic

to W ∗. Hence the corollary. •

Theorem 1.5.18. Let m ∈ J−1(0). Using the decomposition (6) we write the

tangent space TmM toM atm as the sumH⊕X⊕W ∗. Let (η, x, α) be coordinates

on TmM with respect to this decomposition. Then there is a local diffeomorphism

ϑ : TmM →M with ϑ(0) = m and Tov = idTmM such that for every vm = (η, x, α)

sufficiently close to 0 ,

ϑ∗J(η, x, α) = Adt
exp−η(Ĵ(x) + α).

Proof : We prove the theorem in 4 steps. In step 1 we symplectically identify a

neighborhood of 0 in (TmM,ω(m)) with a neighborhood of m in (M,ω) in such a

way that the Gm-action φ/Gm×M becomes the linear ω(m)-symplectic Gm-action
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Ĵ .

In step 2, after identifying the momentum map J with a locally defined Gm-

coadjoint equivariant map J : TmM → G∗, we split J into a sum of two locally

defined Gm-coadjoint equivariant maps J ′
: TmM → G∗m, and J ” : TmM → H∗

with J ′
(0) = 0,J ”(0) = 0.

In step 3, we analyze the map J ′
. Because J ′

(0) = 0 we have J ′
= Ĵ . We

then use the decomposition

TmM = X ⊕ (W ⊕W ∗), (1.18)

where the summands are Gm-invariant and symplectically perpendicular symplec-

tic subspaces of (TmM,ω(m)) , to show that W ∗ ⊆ KerĴ. Since H = W, it follows

that H∗ = W ∗.

In step 4 we show that J ” is a local submersion. Changing coordinates on

TmM by local diffeomorphism θ such that θ∗J ” is locally a projection on to H∗

and θ/(X⊕W ) is the identity map , we see that for (x, 0, α) ∈ TmM = X⊕(W⊕W ∗)

near (0, 0, 0) we have

θ∗J (x, 0, α) = Ĵ(x) + α. (1.19)

Using the exponential map from H to G, the G-action φ, and the local diffeomor-

phism of step 1, we bring the momentum map J into the local normal form. •

Corollary 1.5.19. For every µ ∈ G∗ the level set J−1(µ) is locally arc wise

connected.

proof : Using the following device, called the shifting trick, we reduce the proof

of the corollary to the case of the 0-level of a G-coadjoint equivariant momentum

map K of a proper G-action. Consider the symplectic manifold M × Oµ with
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symplectic form Ω = π∗1ω + π∗2ωOµ , where ω is a symplectic form on M and ωOµ

is the symplectic form on the G-coadjoint orbit Oµ. Here πi is the projection on

the ith factor of M ×Oµ. Define a G-action on M ×Oµ by

((g, (m, v))) → (φg(m), Adt
g−1(v)). (1.20)

This action is proper and has coadjoint equivariant momentum mapK : M×Oµ →

G∗ given by K(m, v)ξ = Jξ(m)− v(ξ) for every ξ ∈ G.

First we can prove the level sets J−1(µ) × Oµ and K−1(0) are locally diffeo-

morphic.

Let U be a neighborhood of µ ∈ Oµ. Suppose that σ : U → G is a local section

of the bundle G → G
Gµ

such that σ(µ) = e and Adt
σ(v)−1µ = v. Observe that the

map

α : M × U →M × U : (m, v) → (φσ(v)(m), v) = (σ(v).m, v)

is local diffeomorphism. For every ξ ∈ G we have

K(α(m, v))ξ = K(σ(v).m, v)ξ

= (J(σ(v).m)− v)(ξ)

= (Adt
σ(v)−1J(m)− v)ξ.

Thus K(α(m, v)) = 0 if and only if J(m) = Adt
σ(v)v = µ and v ∈ U . Hence the

level sets J−1(µ)×Oµ and K−1(0) are locally diffeomorphic.

We have Oµ is locally arc wise connected. therefore K−1(0) is locally arc wise

connected if and only if J−1(µ) is. Thus it suffices to prove the corollary when

µ = 0. Applying the normal form to the value 0 of the coadjoint equivariant
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momentum map J, we see that

u = J(x, α, η) ∈ J−1(0) ⇔ 0 = Adt
exp−η(Ĵ/X(x) + α)

⇔ 0 = Ĵ/X(x)andα = 0.

But Ĵ is the canonical quadratic momentum map of a linear symplectic Gm-action.

Hence (Ĵ/X)−1(0) is a cone in X, which is locally arc wise connected. Therefore

J−1(0) is locally arc wise connected. •

Remark 1.5.20. A striking aspect of momentum map is the convexity properties

of its image. The convexity results for torus actions on compact manifolds can

be done using Morse theory. Torus actions are important because an integrable

dynamical system is local torus action. The convexity theorem to actions of non-

abelian compact groups on compact manifolds also done using Morse theory. We

discuss it in Chapter 2. But, in general, Morse theory is not sufficient to study

convexity properties of the image of the momentum map. In Chapter 3 we discuss

the developments in this area in general cases.



Chapter 2
Torus Actions on Symplectic Manifolds

Among the group actions torus group action is of special interest. The momentum

map of an effective Hamiltonian torus action on a symplectic manifold of the

dimension double that of the torus is an integrable system. So Hamiltonian actions

of tori of maximal dimension are a special case of integrable systems. More than

that they are the local form of all integrable systems with compact level sets.

In this chapter we consider the action of a torus T n on a symplectic manifold

(M,ω). In the first section we define Hamiltonian torus action and give examples

of it. Then proved that a Hamiltonian circle action on a compact symplectic

manifold has fixed point.

One of the most striking aspects of momentum maps is the convexity properties

of its image. In 1982 Atiyah and, independently, Guillemin and Sternberg proved

that the image of the momentum map J associated to the action of a torus T

on a compact symplectic manifold is a compact convex polytope, called the T -

momentum polytope and it is equal to the convex hull of the image of the fixed

point set of the T -action. Also the fibers of J are connected. In 1984 Guillemin

and Sternberg proved that if a non-abelian compact Lie group G acts on a compact

77
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symplectic manifold M with associated equivariant momentum map J : M → G∗

and let T be a maximal torus of G. J(M) ∩ T ∗ is a union of compact convex

polytopes and Kirwan showed that this set is connected thereby concluding that

J(M)∩T ∗
+ is a compact convex polytope. We will refer to this as the G-momentum

polytope. In section 2 we discuss these convexity properties of the momentum

map.

2.1 Hamiltonian Torus Actions

In this section we define Hamiltonian torus action and give examples of it. Then

proved that a Hamiltonian circle action on a compact symplectic manifold has

fixed point. [31] , [3], [2]

Consider the action of a torus T n on a symplectic manifold (M,ω). The coad-

joint action is trivial on a torus. Hence if G = T n is an n-dimensional torus

with Lie algebra and its dual both identified with Euclidean space, G ' <n and

G∗ ' <n, we can define the momentum map as follows.

Definition 2.1.1. A momentum map for torus action is a map J : M −→ <n

satisfying, for each basis vector ξ of <n, the function Jξ is a Hamiltonian function

for ξM and is invariant under the action of the torus.

If J is the momentum map for the torus action, then clearly any of its trans-

lation J + c, c ∈ <n is also a momentum map for the action.

Example 2.1.2. On (C, ωo = i
2
dz ∧ dz), consider the action of circle S1 = {t ∈

C :| t |= 1} by rotation ψt(z) = tkz, t ∈ S1, where k ∈ Z fixed. The action

φ : S1 −→ Diff(C) is Hamiltonian with momentum map J : C −→ < by

J(z) = −1
2
k|z|2.
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Example 2.1.3. Let T n = {(t1, t2, ........, tn) ∈ Cn : |ti| = 1,∀i} be a torus acting

diagonally on Cn by

(t1, t2, ........, tn).(z1, z2, ........, zn) = (tk1
1 z1, t

k2
2 z2, ........, t

kn
n zn),

where k1, ........, kn ∈ Z are fixed. Then this action is Hamiltonian with momentum

map J : Cn −→ <n by

J(z1, z2, ........, zn) =
−1

2
(k1|z1|2, , ........, kn|zn|2) + constant.

Example 2.1.4. Consider the circle S1-action on any smooth manifold M. Since

the Lie algebra of S1 is one dimensional, one only needs to consider a single

associated vector field. That is, if G = S1 is acting smoothly on a closed smooth

manifold, M, then the associated vector field, X, is defined by

X(x) =
d

dt
[exp(2πit)x] |t=0,

for all x ∈M.

If the action is Hamiltonian then iXω = dh for some h ∈ C∞(M); and h is the

momentum map.

Note 2.1.5. Let G = S1 and suppose that G is acting smoothly on a closed

symplectic manifold (M,ω). Let Ω∗
inv be the subcomplex of the de Rham complex

of M consisting of invariant forms: that is, a differential form θ is in Ω∗
inv if

LXθ = 0, where X is the associated vector field of the circle action. Let t be an

indeterminate of degree 2, and form the polynomial ring Ω∗
inv[t].Define a derivation

D, on Ω∗
inv[t] by setting D(t) = 0 and D(θ) = dθ+ iX(θ)t, for any θ ∈ Ω∗

inv, where

d is the ordinary de Rham differential. Then D2 = 0.

Proposition 2.1.6. Let (M,ω) be a closed symplectic manifold with a symplectic
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action of the circle group G = S1. Let ω = [ω] ∈ H2(M,<). Then the action is

Hamiltonian if and only if

ω ∈ im[i∗ : H2
G(M,<) −→ H2(M,<)].

Proof : If ω ∈ im[i∗ : H2
G(M,<) −→ H2(M,<)], then there is an invariant

1-form θ and an invariant function h ∈ C∞(M) such that D(ω+ dθ+ ht) = 0. So

iXω = −dh− iXdθ = d(−h+ iXθ.

Conversely, if iXω = dh, then D(ω− ht) = 0; and so ω is in the image of i∗. •

Note 2.1.7. If G = S1 × S1.... × S1 = T r, the r-torus then an action of G on a

symplectic manifold is Hamiltonian if and only if the actions of each of the factor

circles is Hamiltonian, and hence, if and only if the action of every subcircle is

Hamiltonian. Indeed, it is not hard to show that this generalizes to any compact

connected Lie group G : that is, the action of G is Hamiltonian if and only if the

action of every subcircle is Hamiltonian; and it is sufficient that the action of at

least one maximal torus is Hamiltonian.

Theorem 2.1.8. Let (M,ω) be a compact symplectic manifold endowed with an

action of S1. Assume action is Hamiltonian. Then it has fixed point.

Proof : A momentum map for an S1-action is simply a function H : M −→ <.

The manifold being compact, any function on it must have critical points. Let

x be such a point, namely x is such that (dH)x = 0, and hence such that the

Hamiltonian vector field XH vanishes at x. But the latter is the fundamental

vector field associated with the action. Thus, x is a fixed point. •

Remark 2.1.9. Since M is compact, if the action is non-trivial, then H must

have a maximum and minimum distinct from one another; and so MS1
must be

nonempty with at least two components. There are symplectic S1-actions without
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fixed points. For instance, rotations on one factor S1 on the torus S1 × S1,

namely the formula t.(x, y) = (t.x, y) defines a symplectic action (which is not

Hamiltonian).

2.2 Convexity Property of Torus Actions

In this section we discuss the convexity theorem for compact symplectic manifold

M on which a torus acts in a Hamiltonian fashion and also convexity theorem to

actions of non-abelian compact groups on compact symplectic manifolds. First

we strengthen the Poincare lemma to deal with invariant forms. Then Darboux

theorem for momentum maps is given using the G-relative Darboux theorem.

Next shown that locally the image of the momentum map of a torus action near

a fixed point is a convex set and proved for any point rather than fixed points.

Now to improve it again, that is, for M compact J(M) is a compact convex

polytope, Morse theory is used. Then proved the convexity theorem to actions of

non-abelian compact groups on compact manifolds. [24], [14], [15], [21], [34],

[16], [3], [2].

For this we need to assume the group G is compact in addition to being

connected, and we make this assumption in this section.

Theorem 2.2.1 ( Equivariant Poincare Lemma ). If mo is a fixed point of the

action of G on M and β is any invariant closed p-form then there is an invariant

neighborhood U of mo and an invariant (p− 1)-form α on U with β = dα on U .

Proof : Suppose G is compact and connected. The set of Riemannian metrics

on a manifold M is a convex set, so the average of a metric is a metric, and in

addition is invariant. Thus invariant metrics always exist, and can be used to

give invariant geodesic neighborhoods. If mo is a fixed point of the G-action
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then a sufficiently small geodesic ball around mo will be a contractible invariant

neighborhood U of mo. Then by Poincare Lemma there exist an invariant (p− 1)-

form α on U with β = dα on U . •

Note 2.2.2. If β is any invariant closed p-form, then itsG-average
∫

G
σ∗gβdg is also

an invariant p-form. Differentiating the above we have d
∫

G
σ∗gβdg =

∫
G
σ∗gdβdg.

Thus if an invariant form is exact then it is the differential of an invariant form

by averaging the equation.

Theorem 2.2.3 (The G-relative Darboux Theorem). Let M be a manifold and

ωo and ω1 be two symplectic forms on it. Let G be a Lie group acting properly

and symplectically with respect to both ωo and ω1. Let m ∈M and assume that

ωo(g.m)(υg.m, wg.m) = ω1(g.m)(υg.m, wg.m) (2.1)

for all g ∈ G and υg.m, wg.m ∈ Tg.mM. Then there exist two open G-invariant

neighborhoods Uo and U1 of G.m and a G-equivariant diffeomorphism Ψ : Uo −→

U1 such that Ψ |G.m= Id and Ψ∗ω1 = ωo.

Proof : Construct a smooth map φ : [0, 1]×U −→ U where U is a G-invariant

neighborhood of G.m satisfying the following properties:

(i) φt : φ(t, .) : U −→ U is G-equivariant,

(ii) φt |G.m is the identity map on G.m,

(iii) φ0 is the identity map on U,

(iv) φ1(U) = G.m,

(v) φt is a diffeomorphism for t 6= 1.

We recall that in the proof of the Theorem 1.1.18, there exist a Gm-invariant

Riemannian metric on some Gm-invariant neighborhood of m with associated
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exponential map Expm and such that the mapping

τ := G×Gm Vm −→M given by,

τ([g, υ]) = g.Expmυ,

is a G-equivariant diffeomorphism onto some open G-invariant neighborhood U of

the orbit G.m. We recall that Vm is some Gm-invariant neighborhood of the origin

in the orthogonal complement to G.m. Define for any u = g.Expmυ ∈ U the map

φt(u) := g.Expm(1− t)υ. This map clearly satisfies properties (i) through (v).

We now use the diffeomorphisms φt, for t 6= 1, to construct a one-form α on a

G-invariant neighborhood W of the orbit G.m, W ⊂ U satisfying:

(a) ω0 − ω1 = dα.

(b) α(g.m) = 0, for any g ∈ G.

(c) α is G-invariant.

Let Yt be the time-dependent vector field whose flow is φt for t 6= 1. Now, by

the property (iv) of φt and the hypothesis 2.1 we have that

ω0 − ω1 = φ∗1(ω1 − ω0)− (ω1 − ω0)

=

∫ 1

0

d

dt
φ∗t (ω1 − ω0)dt

=

∫ 1

0

φ∗t (£Yt(ω1 − ω0))dt

=

∫ 1

0

φ∗t (diYt(ω1 − ω0))dt

= d

∫ 1

0

φ∗t (iYt(ω1 − ω0))dt.

Define α :=
∫ 1

0
φ∗t (iYt(ω1 − ω0))dt. This form satisfies (a) by construction. Hy-

pothesis 2.1 and property (ii) of φt guarantee that (b) is also satisfied. Property

(c) is trivially verified.



2.2. Convexity Property of Torus Actions 84

We now define ωt := ωo+t(ω1−ωo). By equation 2.1 we have ωt(g.m) = ωo(g.m)

for any g ∈ G and any t ∈ [0, 1], and consequently ωt(g.m) is non-degenerate. The

G-invariance of ωt implies the existence of a G-invariant neighborhood Ut ⊂ U of

G.m and a real number εt > 0 such that ωs(z) is non-degenerate for every s ∈ It :=

(t − εt, t + εt) and z ∈ Ut. Cover the interval [0, 1] with a finite number of such

intervals {It1 , ....., Itn} and let {Ut1 , ....., Utn} be the corresponding G-invariant

neighborhoods of G.m. Then, the form ωt is non-degenerate on W := ∩n
i=1Uti for

every t ∈ [0, 1], guarantees the existence of a G-equivariant time-dependent vector

field Xt on W satisfying

iXtωt = α. (2.2)

Let Ψt be the flow of Xt. Therefore,

d

dt
Ψ∗

tωt = Ψ∗
t (£Xtωt +

d

dt
ωt)

= Ψ∗
t (iXtdωt + diXtωt + ω1 − ω0)

= Ψ∗
t (diXtωt + ω1 − ω0)

= Ψ∗
t (dα+ ω1 − ω0) = 0,

where in the last two equalities we used equation 2.2 and the property (a) of the

one-form α. Since Ψ0 = Id we get Ψ∗
1ω1 = ω0. If we take U0 = W,U1 = Ψ1(W )

and Ψ = Ψ1 : U0 −→ U1, the theorem is proved. •

Corollary 2.2.4 (Equivariant Darboux Theorem). Let (M,ωi), i = 0, 1 be sym-

plectic G-spaces, m a fixed point for the G-action such that ωo and ω1 agree at m,

then there is an invariant neighborhood U of m and an equivariant diffeomorphism

f of U into M with f ∗ω1 = ωo and f(m) = m.

Proof : Here ω1 − ωo is invariant and vanishes at m, it is exact on some
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invariant neighborhood of m for an invariant form α also vanishing at m. If

ωt = ωo+t(ω1−ωo) it is symplectic for t ∈ [0, 1] on some G-invariant neighborhood

of m and so α gives an invariant vector field Xt which can be integrated to give

a necessarily equivariant map f with f(m) = m. •

Theorem 2.2.5. Let (M,ω) be a symplectic G-manifold with m a fixed point for

the G-action. Then there is an invariant neighborhood U of m and an equivariant

diffeomorphism φ of U onto a neighborhood of 0 in TmM with φ(m) = 0, and

such that if ω̂m is the constant extension of ωm to a symplectic structure on TmM

then φ∗ω̂m = ω on U.

Proof : By averaging if necessary we can take an invariant Riemannian metric

on M. Its exponential map ε = Expm : TmM → M is equivariant, sends 0 to m

and is a diffeomorphism on some neighborhood of 0 with differential at 0 the

identity map on TmM. Then ε∗ω is a G-invariant symplectic form on an invariant

neighborhood of 0 agreeing with ω̂m at 0. Thus there is an invariant neighborhood

of 0 and an equivariant diffeomorphism f with f(0) = 0 and f ∗ε∗ω = ω̂m. Taking

φ = (ε ◦ f)−1 gives the required map on the appropriate neighborhood of m. •

Theorem 2.2.6 (Darboux Theorem for Momentum Maps). If J is the momentum

map for a Hamiltonian action of G on (M,ω) and m a fixed point then there is

a connected invariant neighborhood U of m and an equivariant diffeomorphism

φ of U onto an open neighborhood of 0 in TmM with φ(m) = 0, φ∗ω̂m = ω and

J = J(m)+ρ∗ ◦Jo ◦φ on U where Jo : TmM → SP (TmM,ωm)∗ is the momentum

map for the linear action of symplectic group SP (TmM,ωm) on (TmM,ωm) and

ρ is the Lie group homomorphism between G and SP (TmM).

Proof : Here Jo : TmM → SP (TmM,ωm)∗ be the momentum map for the

linear action of SP (TmM,ωm) on (TmM,ωm). Then ρ∗ ◦ Jo is a momentum map

for the linear action of G on (TmM, ω̂m) when m is a fixed point for G. Thus J and

ρ∗ ◦ Jo ◦ φ are both momentum maps for G on (U, ω) where U and φ are as in the
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above theorem. Taking U to be connected, these momentum maps must differ by

a constant in G∗. Therefore J(y)− ρ∗ ◦ Jo ◦ φ(y) = J(m)− ρ∗ ◦ Jo ◦ φ(m) = J(m),

since φ(m) = 0 and Jo vanishes at the origin. Hence for every y ∈ U, J(y) =

J(m) + ρ∗ ◦ Jo ◦ φ(y). •

Definition 2.2.7. If J is the momentum map for a Hamiltonian action of G on

(M,ω) and m a fixed point then the form J = J(m) + ρ∗ ◦ Jo ◦ φ is called the

Normal form for the momentum map J at a fixed point.

Note 2.2.8. Any action near a fixed-point is equivalent to a linear action, we

examine such linear actions when G = T is abelian and hence a torus. Thus let

(V,Ω) be a symplectic vector space with a linear symplectic action of a torus group

T. We can find an endomorphism J of V with J 2 = −1, defines a complex inner

product (., .) on V with Ω as its imaginary part. We say J is a positive complex

structure compatible with Ω. Then there exist an orthonormal basis f1, f2, .....fn

of V with respect to (., .) and elements α1, α2, ..., αn of T ∗, where T ∗ is the dual of

the Lie algebra T of T such that ξfi = −
√
−1αi(ξ)fi, ξ ∈ T . We call α1, α2, .....αn

the weights of the action of T on V. Since they are eigenvalues of endomorphisms,

they are independent of the choice of the basis, but may depend on the choice of

the complex structure J .

It is possible for some of the αi to be zero, there can be repetitions and the non-

zero, distinct elements need not be linearly independent or spanning. Obviously,

we can always choose a subset of them which is a basis for the subspace of T ∗

which they all span.

Consider these weights from a real point of view. If f1, f2, .....fn is a com-

plex orthonormal basis as above then setting ei = J fi, we get a real basis

(e1, e2, .....en, f1, f2, .....fn) for V and

Ω(ei, ej) = Ω(fi, fj) = 0, Ω(ei, fj) = δij,
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so we have a symplectic basis for V.

Theorem 2.2.9. If J is the momentum map for a Hamiltonian action of a torus

T on the symplectic manifold (M,ω) and m a T -fixed point then there is an

invariant neighborhood U of m in M and a neighborhood U ′ of J(m) in T ∗ such

that J(U) is U ′ ∩ (J(m) +C(α1, α2, ..., αn)) where C(α1, α2, ..., αn) is the positive

cone spanned by the weights α1, α2, ..., αn of the action of T on M.

Proof : If ρ : T → SP (TmM,ωm) is the map giving the action of T, then the

momentum map

ρ∗ ◦ Jo : TmM → T ∗given by

< ρ∗ ◦ Jo(v), ξ >=
1

2
ωm(v, ρ∗ξ(v)).

If v =
∑

i qiei + pifi, where f1, f2, ....fn is a complex orthonormal basis and ei =
√
−1fi, gives symplectic co-ordinates q1, q2, ....qn, p1, p2, ....pn then

ρ∗ξfi = −
√
−1αi(ξ)fi = −αi(ξ)ei.

So, < ρ∗ ◦ Jo(v), ξ >=
1

2

∑
i

(p2
i + q2

i )αi(ξ).

Thus the momentum map is

ρ∗ ◦ Jo(v) =
1

2

∑
i

(p2
i + q2

i )αi.

That is, the image of the momentum map of a linear symplectic torus action is

the positive cone spanned by the weights denoted by C(α1, α2, ..., αn).

From the quadratic nature of the momentum map ρ∗ ◦Jo we have the image of

an open neighborhood U of the origin in TmM is the intersection of an open set

U ′ ⊂ T ∗ with C(α1, α2, ..., αn). Then using the Darboux Theorem for Momentum

Maps we have the result. •
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Theorem 2.2.10. Let T be a torus with Hamiltonian action on (M,ω) with

momentum map J . Then each point m ∈ M has a neighborhood U for which

there is a neighborhood U ′ of J(m) in T ∗ that J(U) = U ′ ∩ C(m) where

C(m) = J(m) + (i∗m)−1C(α1, α2, ..., αn),

and α1, α2, ..., αn are the weights of the linear action of the stabilizer Tm on TmM,

and im be the inclusion map of Tm in T .

Proof : Since im be the inclusion map of Tm in T, then i∗m◦J is the momentum

map for Tm. Then from the above theorem we have a neighborhood U1 of m ∈M

and a neighborhood U ′′ of i∗m(J(m)) in T ∗
m such that i∗m(J(U)) is U ′′∩(i∗m(J(m))+

C(α1, α2, ..., αn)). If we let U ′ = (i∗m)−1(U ′′) and U = J−1(U ′) then obviously

J(U) = U ′ ∩ J(m) + (i∗m)−1C(α1, α2, ..., αn).

Since i∗m is a linear map, (i∗m)−1C(α1, α2, ..., αn) is convex, and is a subset of the

fixed space T ∗ as m varies. Set

C(m) = J(m) + (i∗m)−1C(α1, α2, ..., αn),

a convex cone in T ∗ with vertex J(m). Hence the theorem. •

Note 2.2.11. In Theorem 2.2.9 we have seen that locally the image of the mo-

mentum map of a torus action near a fixed point is a convex set and in Theorem

2.2.10 it is proved for any point rather than fixed points. Now to improve it again,

that is, for M compact J(M) is a compact convex polytope, Morse theory is used.

Definition 2.2.12. Let M be a manifold and f ∈ C∞(M) then c ∈ < is a local

maximum of f if there is m ∈ M with c = f(m), and a neighborhood U of m

such that f(y) ≤ c for all y ∈ U.
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Definition 2.2.13. Let M be a manifold and f ∈ C∞(M) then c ∈ < is a critical

value of m if there is m ∈ M with c = f(m), and (df)m = 0. Such a point m is

called a critical point. The set of all critical points is called the critical set of f

and denoted by Cf .

Obviously, local maxima are critical values.

Definition 2.2.14. Form ∈ Cf , define Hessian of f atm to be the quadratic form

Hf |m: TmM −→ < that satisfies Hf |m (υ) = 1
2
(f ◦γ)′′(0) when γ : (−ε, ε) −→M

is a smooth curve satisfying γ(0) = m and γ′(0) = υ.

Definition 2.2.15. A critical point m ∈ Cf is said to be nondegenerate if the

quadratic form Hf |m: TmM −→ < is nondegenerate.

Definition 2.2.16. Let M be a manifold and f ∈ C∞(M). A submanifold N of

M is called a critical submanifold of f if each component of N is a connected

component of Cf . A nondegenerate critical submanifold of f is a critical subman-

ifold of N such that the Hessian Hf |m is nondegenerate in normal directions at

each point of N.

Definition 2.2.17. A function is said to be a Morse function if all of its critical

points are nondegenerate.

Definition 2.2.18. A smooth function f : M −→ < is said to be a Morse-Bott

function on M if

(i) Cf is a smooth submanifold of M.

(ii) For each m ∈ Cf , the null space of the quadratic form Hf |m: TmM −→ < is

TmCf .

Definition 2.2.19. Let M be a manifold and f ∈ C∞(M) then f is said to be

clean if each connected component of Cf is a nondegenerate critical submanifold.

If f is clean and N is a connected component of Cf then the rank of the

Hessian Hf |m is constant (equal to the co-dimension of N) and so the index is

also constant. It is called the index of the critical submanifold N.
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Note 2.2.20. Suppose M is equipped with a Riemannian metric. Then f defines

a gradient vector field on M which is complete if M is compact. Let φt : M −→

M,−∞ < t < ∞ be the flow generated by this gradient vector field. If we let

Ci be the connected components of Cf then we let Wi be all points m such that

φt(m) → Ci as t→∞. That is,

Wi = {m ∈M | φt(m) → Ci as t→∞}.

A basic result of Morse theory is that, if f is clean then each Wi is a cell bundle

over Ci with fiber dimension equal to the index Ci and M is the disjoint union of

the Wi. It follows that when Ci has index 0 then Wi is an open subset of M and

in general Wi has codimension index Ci.

Proposition 2.2.21. Let f ∈ C∞(M) be clean where M is compact and con-

nected. If each component Ci of Cf has even dimension and index then f has a

unique local maximum.

Proof : Let C1, C2, ....Ck be the connected components of Cf of index 0 and

Ck+1, Ck+2....., CN the remaining components. Then f is a constant on each Ci,

say ci. These c1, ....ck are the local maxima of f and

M = W1 ∪ ..... ∪Wk ∪Wk+1...... ∪WN

with Wi open for i ≤ k and for i > k, each Wi has codimension at least 2. But if

Wi is of codimension ≥ 2 it cannot disconnect M. It follows that

M − ∪i>kWi = ∪i=kWi

is connected and hence that k = 1 so that f has only one local maximum. •

Theorem 2.2.22. If M is compact and the interval [a, b] ∈ < contains no critical
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value of f, then Ub := {m ∈M | f(m) ≤ b} is diffeomorphic to Ua.

Proof : Choose a Riemannian metric on M, thus getting a gradient vector

field grad f, which does not vanish on f−1[a, b]. Modify it with the help of a

differentiable function g on M which takes the value 1/‖gradf‖2 on f−1[a, b] and

which vanishes outside a neighborhood as X = g.gradf. Let ϕt be the flow of X,

then ϕb−a sends Ub to Ua. •

Note 2.2.23. If c ∈ [a, b] is the unique critical value of f in this interval, the

homotopy type of Ub is described by the addition to Ua of the negative normal

bundle of the critical submanifold at level c.

Theorem 2.2.24. Let f be a nondegenerate function which has no critical sub-

manifold of index 1 or n − 1. Then it has a unique local minimum and a unique

local maximum. Moreover, all of its nonempty levels are connected.

Proof : From the above note the homotopy type of Ua can change only by

crossing a critical level, in which case it changes by adding to Ua the negative

normal bundle of the critical submanifold. If the critical submanifold has index

0, that is if this is a local minimum, we add a connected component. To connect

all pieces later on, as M connected, we must go through a new critical level, for

which the sphere bundle of the negative bundle must be connected. But this is

impossible except if the submanifold is 1. Thus it is seen that there can be only

one local minimum, and applying the result to −f, only one local maximum.

Moreover, Ua is connected, and, for the same reasons,

M − Ua = {x | f(x) ≥ a}

is connected as well. Assume Vc = f−1(c) is nonconnected level. Any component

of Vc thus defines a nontrivial element in Hn−1(Uc). But this group is zero: Indeed,

if c is strictly contained between the minimum and the maximum of f, the critical
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submanifolds of critical levels lower than c all have negative normal bundles of

dimension ≤ n− 2 which cannot create nonzero elements of Hn−1. •

Theorem 2.2.25. Let J be the momentum map of a Hamiltonian action of a

compact Lie group G on the compact symplectic manifold (M,ω). For each ξ ∈ G

the function Jξ has a unique local maximum on M .

Proof : We shall show that Jξ is clean and has only critical manifolds which

are even dimensional with even indices.

Let f = Jξ, then f is the momentum map for the action t.m = exptξ.m of <

generated by ξ on M. In particular, any critical point m of f is a fixed point of this

action. We can replace {exptξ|t ∈ <} by its closure in G (which will be a torus).

Any critical point of f will be a fixed point for this torus and vice-versa. Then we

apply Darboux Theorem for Momentum Maps to this torus and conclude that the

action near a critical point m is symplectically equivalent to the linearized action

near 0 in the tangent space at m by a diffeomorphism which takes the momentum

map into a quadratic function. The fixed points near m get mapped to the critical

points of this quadratic function, and these form a linear subspace, and hence a

submanifold. This shows that f is clean.

We have < ρ∗ ◦ Jo(v), ξ >= 1
2

∑
i(p

2
i + q2

i )αi(ξ). Therefore

Rankd2f = 2×#{αi|αi(ξ) 6= 0} and Indexd2f = 2×#{αi|αi(ξ) < 0.}

Hence the dimension and index of Ci are even. Then using Proposition 2.2.21 Jξ

has a unique local maximum on M . •

Corollary 2.2.26. For any m ∈M we have J(M) ⊂ C(m).

Proof : The cone C(α1, α2, ..., αn) ⊂ T ∗
m is a closed convex set and as such it

is an intersection of half-spaces. In other words, there is a set
a

of elements ξ of
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Tm such that

α ∈ C(α1, α2, ..., αn) ↔ α(ξ) ≥ 0,∀ξ ∈
i

.

It follows that

C(x) = J(x) + {α ∈ T ∗|α(ξ) ≥ 0,∀ξ ∈
i
}.

For ξ ∈
a

consider Jξ. By Theorem 2.2.10, Jξ(m) is a local maximum and by

Theorem 2.2.25 this must be a global maximum. Thus

< J(m)− J(y), ξ > ≥ 0,∀ξ ∈
i

and hence J(y) ∈ C(m). •

Theorem 2.2.27 (Atiyah - Guillemin -Sternberg). Let (M,ω) be a compact

connected symplectic manifold, and let T be a torus acts in a Hamiltonian fashion

with associated invariant momentum map J : M → T ∗. Then the image J(M)

of J is a compact convex polytope, called the T -momentum polytope. Moreover,

it is equal to the convex hull of the image of the fixed point set of the T -action.

The fibers of J are connected.

Proof: Each C(m) is a convex polyhedron, so to prove the first part of the

theorem it is enough to prove J(M) is an intersection of finite number of these.

For each m ∈M we know that there are open sets Um ⊂M and U ′
m ⊂ T ∗ with

m ∈ Um and J(Um) = U ′
m ∩ C(m). Clearly, {Um}m∈M forms an open covering of

M, so by compactness there are points m1,m2, ...mN in M such that M = ∪iUmi
.

From the above corollary we have J(M) ⊂ ∩iC(mi). We claim that in fact

J(M) = ∩iC(mi). If not there is some f ∈ ∩iC(mi) J(M), and a nearest point

fo ∈ J(M) to f in some Euclidean structure. Let fo = J(m) then m ∈ Umj
for
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some j. Then fo and f are both in C(mj) along with the segment joining them.

Since m ∈ Umj
, fo ∈ U ′

mj
, so part of the segment from fo to f is in U ′

mj
and

hence is in U ′
mj
∩ C(mj) = J(Umj

), which contradicts the assumption that fo is

nearest to f. Thus f cannot exist and we have the desired equality. Thus J(M)

is a convex polyhedron.

In the proof of Theorem 2.2.25 we have seen that Jξ has only critical manifolds

which are even dimensional with even indices. Then using Theorem 2.2.24, the

fibers of J are connected. •

Corollary 2.2.28. Let T r be the torus of dimension r. Under the conditions of

the Theorem 2.2.27, if the T r -action is effective, then there must be at least r+1

fixed points.

Proof : At a point p of an r-dimensional orbit the momentum map is a

submersion, that is, (dJ1)p, ........, (dJr)p are linearly independent. Hence J(p) is

an interior point of J(M) and J(M) is a non-degenerate convex polytope. Any

nondegenerate convex polytope in <r must have at least r + 1 vertices. The

vertices of J(M) are images of fixed points. •

Theorem 2.2.29. Let (M,ω, T r, J) be a Hamiltonian T r-space. If T r- action is

effective, then dimM ≥ 2r.

Proof : Since the momentum map is constant on an orbit O, for p ∈ O the

exterior derivative dJp : TpM −→ G∗ maps TpO to zero.

Then, TpO ⊆ KerdJp = (TpO)ω,

where (TpO)ω is the symplectic orthogonal to TpO. This shows that orbits O of

a Hamiltonian torus action are always isotropic submanifolds of M. In particular

by symplectic linear algebra we have that dimO ≤ 1/2dimM. If we consider an

r-dimensional orbit we get the theorem. •
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Suppose a compact Lie group G acts on a compact symplectic manifold M

with associated equivariant momentum map J : M → G∗ and let T be a maximal

torus of G. In this case Guillemin and Sternberg proved that J(M) ∩ T ∗ is a

union of compact convex polytopes and Kirwan showed that this set is connected

thereby concluding that J(M) ∩ T ∗
+ is a compact convex polytope which will be

called the G-momentum polytope.

Theorem 2.2.30 (Guillemin-Sternberg-Kirwan). Let M be a compact connected

symplectic manifold on which the compact connected Lie group G acts in a Hamil-

tonian fashion with associated equivariant momentum map J : M → G∗. Let T

be a maximal torus of G, T its Lie algebra, T ∗ its dual, and T ∗
+ the positive

Weyl chamber relative to a fixed ordering of the roots. Then J(M) ∩ T ∗
+ is a

compact convex polytope, called the G-momentum polytope. The fibers of J are

connected.

Proof : First fix a G-invariant inner product on G and use it to identify G∗

with G. Let ‖‖ be the associated norm on G.

If M is given a Riemannian metric we can consider the function ‖J‖2 as a

Morse function on M. Although ‖J‖2 is not nondegenerate, Kirwan showed that

nevertheless ‖J‖2 induces a smooth stratification {Sβ | β ∈ B} of M for some

appropriate choice of G-invariant metric on M. The stratum to which a point of

M belongs is determined by the limit set of its positive trajectory under the flow

−grad‖J‖2. The indexing set B is a finite subset of the positive Weyl chamber

T+.

Also the strata Sβ are all locally closed submanifolds of M of even dimension.

Since it is impossible to disconnect a manifold by removing submanifolds of codi-

mension at least two, there must be a unique open stratum. Hence the subset of

points of M where ‖J‖2 takes its minimum value is connected.



2.2. Convexity Property of Torus Actions 96

Consider the product M ×G/T, or more generally at M ×G/H where H is a

centralizer of the torus in G. If α is any point in G there is a natural G-invariant

symplectic structure on the coadjoint orbit of α in G. This orbit has the form

G/H where H is the centralizer in G of α or the torus generated by α. The

inclusion of the orbit in G is a momentum map for the action of G.

Let ωα denote the negative of the kähler form on G/H associated to α. This

also gives G/H a symplectic structure, and thus the product M ×G/H becomes

a symplectic manifold. The map

Jα : M ×G/H 7−→ G∗ by

Jα(m, gH) = J(m)− Ad(g)α

is a momentum map for the action of G on this manifold.

From now on identify G∗ with G and T ∗ with T using the fixed inner product.

Suppose that J(M) ∩ T+ is not convex. Our aim is to obtain a contradiction.

First we prove a Lemma

Lemma 2.2.31. For any sufficiently small ε > 0 there exist α ∈ T+ such that

the ball of radius ε and centre α meets J(M) ∩ T+ in precisely two points α1

and α2 neither of which lies in the interior of the ball. We may assume that the

centralizer of α in G fixes both α1 and α2.

Proof: Guillemin and Sternberg proved that J(M) ∩ T+ is a finite union

of compact convex polytopes, P1, P2, ....., Pm say. Therefore the intersection of

J(M) ∩ T+ with any ball of small radius centered at a point ξ ∈ J(M) ∩ T+ is a

cone with vertex ξ. By assumption J(M) ∩ T+ is not convex. It is compact and

also connected since if it were the disjoint union of closed sets A and B then J(M)

would be the disjoint union of the closed sets Ad(G)A and Ad(G)B. Therefore

there must exist some ξ such that J(M) ∩ T+ is not convex in any neighborhood
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of ξ. (Otherwise the shortest path in J(M)∩T+ between any two points would be

a straight line.) The set S of all such ξ ∈ J(M)∩T+ is a union of convex compact

polytopes.

Choose ξ ∈ S such that the number of the polytopes P1, P2, ....., Pm containing

ξ is minimal. Then every point of S sufficiently close to ξ is contained in precisely

the same polytopes Pj as ξ. We may assume that ξ belongs to the interior of S,

so that there is a linear subspace V of T whose translation V + ξ coincides with

S in a neighborhood of ξ.

If P is any polytope containing V + ξ near ξ then P decomposes as

P = ((V ⊥ + ξ) ∩ P )⊕ V

in a sufficiently small neighborhood of ξ. Hence the same is true of J(M) ∩ T+.

The choice of V implies that (V ⊥+ ξ)∩J(M)∩T+ is locally a cone C with vertex

ξ which is not convex but is such that every point other than ξ has a convex

neighborhood in C. It follows from this local convexity property that for small

δ > 0 there exist distinct points η, ζ ∈ C − {ξ} with

‖ζ − ξ‖ = ‖η − ξ‖ = δ

such that the line segment L(η, ζ) joining η to ζ meets C only at its endpoints

and such that ‖η − ζ‖ is minimal among all η, ζ satisfying these conditions.

To see this let K be the infimum of all values of ‖η− ζ‖ for η and ζ satisfying

these conditions. Then K < 2δ. Choose ηn and ζn satisfying the conditions for

n ≥ 1 such that ‖ηn− ζn‖ converges to K as n −→∞. Without loss of generality

there exist η, ζ ∈ C with ‖ζ − ξ‖ = ‖η − ξ‖ = δ such that ηn −→ η and ζn −→ ζ.

It is enough to show that L(η, ζ) meets C only at its endpoints. Suppose not.
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Then since ‖η − ζ‖ = K the whole line segment L(η, ζ) must be contained in C

by the definition of K. Since η and ζ have convex neighborhoods in C, if n is large

enough the line segments L(η, ηn) and L(ζ, ζn) are contained in C. Therefore if n

is large there is a path from ηn to ζn in C of length less than 2δ, and hence the

shortest path in C from ηn to ζn does not pass through ξ. Since every point of

C − {ξ} has a convex neighborhood in C this path must be a straight line, that

is, L(ηn, ζn) ⊆ C which is a contradiction.

Let α = 1
2
(η + ζ) and let ε be the distance from α to L(η, ξ) or equivalently

from L(ζ, ξ). Then the ball Bε(α) of radius ε and centre α meets J(M)∩ T+ at a

point α1 on the line L(η, ξ) and a point α2 on the line L(ζ, ξ).

To prove the first statement it is enough to prove that no points of Bε(α) other

than α1 and α2 lie in the cone C.

Now, we know that if a Line L through ξ meets Bε(α) at a point distinct

from α1 and α2 then the angle which it makes with each of L(η, ξ) and L(ζ, ξ) is

strictly smaller than the angle between L(η, ξ) and L(ζ, ξ). So if L lies in C by the

minimality assumption every line segment joining a point of L to a point of either

L(η, ξ) or L(ζ, ξ) is contained in C. But this implies that L(η, ζ) also contained

in C by the local convexity property. This is a contradiction.

It remains to check that the centralizer H of α in G fixes both α1 and α2.

This is equivalent to requiring that if τ is the unique face of T+ containing α in

its interior then the closure of τ contains α1 and α2. By restricting our attention

to a sufficiently small neighborhood of ξ we may assume that if any face of T+

contains a point of C − {ξ} in its interior then it contains the entire open line

segment joining the point to ξ in its interior. In particular if the interior of a face

contains α then it also contains 1
2
(α1 + α2). Since α1 and α2 both lie in T+ and

since T+ is convex, this can only happen if the closure of the face contains both
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α1 and α2.

This completes the proof of the Lemma.

Now consider the function ‖Jα‖2 on M×G/H where α satisfies the conditions

of the above Lemma for some small ε > 0. To obtain a contradiction and thus

to prove the theorem it is enough to prove that this function takes its minimum

value precisely at those points (m, gH) such that J(g−1m) = αj for j = 1, 2. For

the set of all such points is the disjoint union of the nonempty closed subsets

G(J−1(αj)× {H}), j = 1, 2

of M ×G/H which is a contradiction the fact that subset of points of M ×G/H,

where ‖Jα‖2 takes its minimum value, is connected.

So it remains to prove

Lemma 2.2.32. The function ‖Jα‖2 on M × G/H takes its minimum value

precisely at those points (m, gH) such that J(g−1m) = αj for j = 1, 2.

Proof : Since ‖J‖2 is a G-invariant function we need consider points of the

form (m,H). Then the point (m,H) is critical for ‖J‖2 if and only if the vector

field on M × G/H induced by Jα(m,H) ∈ G has a fixed point at (m,H). In

particular

Jα(m,H) = J(m)− α

lies in the Lie algebra H of H. Since α ∈ T ⊆ H this happens if and only if

J(m) ∈ H. Then as T is a maximal torus of H there exists h ∈ H such that

J(hm) ∈ T . Thus a point of M × G/H is critical if and only if it lies in the G-

orbit of a critical point of the form (m,H) with J(m) ∈ T . Therefore it is enough
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to show that all points m ∈M with J(m) ∈ T satisfy

‖J(m)− α‖ ≥ ε

with equality if and only if J(m) = α1 or α2.

Since α ∈ T+ we have

‖wξ − α‖ > ‖ξ − α‖

for any ξ ∈ T+ and w in the Weyl group such that wξ 6= ξ. Therefore it is

enough to consider the case when J(m) ∈ T+. But from the above lemma we

have ‖J(m)−α‖ ≥ ε. This completes the proof of the Lemma, and hence also the

proof of the Theorem. •

Remark 2.2.33. The case of compact symplectic manifolds is rich but quite par-

ticular. For noncompact manifolds the results in this chapter no longer hold. In

general, Morse theory is not sufficient to study convexity properties of the im-

age of the momentum map. The convexity results on compact group actions on

non compact manifolds with proper momentum maps were proved by Condevaux,

Dazord, and Molino [30]. Hilgert, Neeb and Plank [18] also proved it in many in-

teresting situations. The underlying ideas in their proof is of topological in nature.

Karshon and Marshall [20] generalized this technique (local to global convexity)

and recovered the convexity theorems of Atiyah [24], Guillemin and Sternberg [14].

Petre Birtea, Juan-Pablo Ortega and Tudor S.Ratiu [4] also generalized the lokal-

global prinzip and worked out numerous application in symplectic geometry. In

fact in [4] they give generalization of several convexity results that are available

in the literature. We discuss these things in the next chapter.



Chapter 3
Convexity - Topological Approach

In chapter 2 we have discussed the convexity property of torus actions using Morse

theory. In general Morse theory is not sufficient to study convexity properties of

the image of the momentum map. The case of compact symplectic manifolds is

rich but quite particular. For noncompact manifolds the results in the previous

chapter no longer hold. Convexity results to compact group actions on noncom-

pact manifolds with proper momentum maps were given by Condevaux, Dazord,

and Molino [30] and later by Hilgert, Neeb and Plank [18]. The Lokal-global-

prinzip is the main tool in these works. Yael Karshon And Christina Marshall [20]

gave a generalization of Lokal-global-prinzip for a proper map. But Petre Birtea,

Juan-Pablo Ortega and Tudor S.Ratiu [4] gave a generalization of Lokal-global-

prinzip for a closed map. Using this, many stronger results in convexity are

obtained.

The essential attributes underlying the convexity theorems for momentum

maps are the openness of the map onto its image and the local convexity data.

The classical convexity theorems we have given in chapter 2 are also satisfy these

conditions. In this chapter more general theorems on convexity are given using

101



CHAPTER 3. CONVEXITY - TOPOLOGICAL APPROACH 102

the topological ingredients.

To do convexity results using topological properties we need normal form for

the momentum map which we have discussed in section 1. Most of the technical

behavior of proper Lie group action is a direct consequence of the existence of slices

and tubes; they provide a privileged system of semiglobal coordinates in which

the group action takes on a particularly simple form. Proper symplectic Lie group

actions turnout to behave similarly: the tubular chart can be constructed in such

a way that the expression of the symplectic form is very natural and, moreover,

if there is a momentum map associated to this canonical action, this construction

provides a normal form for it. We start with the Witt-Artin decomposition of the

tangent space. Then we construct a symplectic tube at a point of a symplectic

manifold. The statement and proof of the symplectic slice theorem is given. Define

tubewise Hamiltonian action and gives sufficient conditions for the action to be

tubewise Hamiltonian. Then the expression of the momentum map in the slice

coordinate, which is usually referred to as the Marle-Guillemin- Sternberg normal

form is given.

In section 2 we discuss the convexity properties of the image of the momentum

map using some topological vector space results. We give the statement of Lokal-

global-prinzip and a generalization of it for a closed map using some topological

vector space results. Using this we obtained that the convexity is rooted on the

map being open onto its image and having local convexity data. Next we look at

the convexity for momentum maps. Then a generalization of Atiyah-Guillemin-

Sternberg Convexity theorem for non compact manifolds is given. Much more

generalization of convexity results are obtained in two cases: when the momentum

map has connected fibers and the case when the momentum map has only the

locally fiber connectedness property. Then we give a generalization of Kirwan’s

convexity result.
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Pull backs by J of smooth functions on G∗ are called collective functions. A

collective function is clearly constant on the level sets of the momentum map. The

converse need not be true. A momentum map has the division property if any

smooth function on M that is locally constant on the level set of J is a collective

function. In section 3 we generalize a result on division property of momentum

map by replacing the compactness of the Lie group with proper and effective

action. Then proved that torus action has division property if JT is closed and

semi-proper. Also we prove that for a paracompact connected symplectic manifold

with G a compact connected Lie group. If the associated momentum map J is

closed and semi proper as a map into some open subset of G∗, then J has the

division property if the image J(M) is contained the G∗reg, where denote G∗reg the

elements of G∗ whose stabilizers under the coadjoint action of G are tori.

3.1 Normal Form

Most of the technical behavior of proper Lie group action is a direct consequence

of the existence of slices and tubes; they provide a privileged system of semiglobal

coordinates in which the group action takes on a particularly simple form. Proper

symplectic Lie group actions turnout to behave similarly: the tubular chart can

be constructed in such a way that the expression of the symplectic form is very

natural and, moreover, if there is a momentum map associated to this canonical

action, this construction provides a normal form for it.

To construct a normal form we use some reduction theory namely, the Marsden-

Weinstein-Meyer theorem for symplectic reduction. We start with the Witt-Artin

decomposition of the tangent space. Then we construct a symplectic tube at

a point of a symplectic manifold. The statement and proof of the symplectic

slice theorem is given. Define tubewise Hamiltonian action and gives sufficient
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conditions for the action to be tubewise Hamiltonian. Then the expression of

the momentum map in the slice coordinate, which is usually referred to as the

Marle-Guillemin- Sternberg normal form is given. [32], [13].

Theorem 3.1.1 (Symplectic point reduction ). Let Φ : G×M −→ M be a free

proper canonical action of the Lie group G on the connected symplectic manifold

(M,ω). Suppose that this action has an associated momentum map J : M −→ G∗

with non-equivariance one-cocycle σ : G −→ G∗. Let µ ∈ G∗ be a value of J and

denote by Gµ the isotropy group of µ under the affine action of G on G∗. Then:

(i) The space Mµ := J−1(µ)/Gµ is regular quotient manifold and, moreover,

it is a symplectic manifold with symplectic form ωµ uniquely characterized by the

relation

π∗µωµ = i∗µω. (3.1)

The maps iµ : J−1(µ) ↪→M and πµ : J−1(µ) −→ J−1(µ)/Gµ denote the inclu-

sion and the projection, respectively. The pair (Mµ, ωµ) is called the symplectic

point reduced space.

(ii) Let h ∈ C∞(M)G be a G-invariant Hamiltonian. The flow Ft of the

Hamiltonian vector field Xh leaves the connected components of J−1(µ) invariant

and commutes with the G-action, so it induces a flow F µ
t on Mµ defined by

πµ ◦ Ft ◦ iµ = F µ
t ◦ πµ.

(iii) The vector field generated by the flow F µ
t on (Mµ, ωµ) is Hamiltonian

with associated reduced Hamiltonian function hµ ∈ C∞(Mµ) defined by

hµ ◦ πµ = h ◦ iµ.
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The vector fields Xh and Xhµ are πµ-related. The triple (Mµ, ωµ, hµ) is called the

reduced Hamiltonian system.

(iv) Let k ∈ C∞(M)G be another G-invariant function. Then {h, k} is also

G-invariant and {h, k}µ = {hµ, kµ}Mµ , where {., .}Mµ denotes the Poisson bracket

associated to the symplectic form ωµ on Mµ.

Proof : From Bifurcation lemma we know that for a symplectic manifold

range(TmJ) = (Gm)o. Also here we have the freeness of the action, therefore J is

a submersion onto some open subset of G∗ and consequently, the level set J−1(µ)

is a Gµ-invariant(by the equivariance of J), closed and embedded submanifold of

M. The free and proper G-action on M restricts to a free and proper Gµ-action

on J−1(µ) and from Theorem 1.1.12 the quotient Mµ := J−1(µ)/Gµ is regular

quotient manifold.

Then we show that for any m ∈ J−1(µ), every vector υm ∈ TmJ
−1(µ) can be

written as Tmiµ(υm) = Xf (m), where f ∈ C∞(M)G, and iµ : J−1(µ) ↪→ M is the

canonical injection. This is indeed a consequence of the freeness of the action.

Also we have

TmJ
−1(µ) = kerTmJ = (G.m)ω = {Xf (m) | f ∈ C∞(M)G}.

We use this fact to define a two-form ωµ on Mµ by

ωµ([m]µ)(Tmπµ(υ), Tmπµ(w)) = {f, g}(m),

where [m]µ := πµ(m), {.,.} is the Poisson bracket associated to the symplectic

form ω on M , and f, g ∈ C∞(M)G are two G-invariant functions such that

Tmiµ(υ) = Xf (m) and Tmiµ(w) = Xg(m).

Now we check that the above expression is a good definition for the form ωµ
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on the quotient Mµ. Let m,m′ ∈ J−1(µ) be such that πµ(m) = πµ(m′) and let

υ′, w′ ∈ Tm′J−1(µ) be such that

Tmπµ(υ) = Tm′πµ(υ′),

Tmπµ(w) = Tm′πµ(w′).

Let f ′, g′ ∈ C∞(M)G be such that

υ′ = Xf ′(m
′) and m′ = Xg′(m

′).

The condition πµ(m) = πµ(m′) implies there exist k ∈ Gµ such that m′ = Φk(m).

We also have that

Tmπµ = Tm′πµ ◦ TmΦk.

Analogously, because of the equalities

Tmπµ(υ) = Tm′πµ(υ′),

Tmπµ(w) = Tm′πµ(w′),

there exists two elements ξ1, ξ2 ∈ Gµ such that

Xf ′(m
′)− TmΦk.Xf (m) = ξ1

J−1(µ)(m
′) = XJξ1 (m

′)

and, Xg′(m
′)− TmΦk.Xg(m) = ξ2

J−1(µ)(m
′) = XJξ2 (m

′)

or, analogously, Xf ′(m
′) = XJξ1+f◦Φk−1

(m′) = XJξ1+f (m
′),

and, Xg′(m
′) = XJξ2+g◦Φk−1

(m′) = XJξ2+g(m
′).
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Hence, ωµ(πµ(m′))(υ′, w′) = {f ′, g′}(m′) = {Jξ1

+ f, Jξ2

+ g}(m′)

= {Jξ1

+ f, Jξ2

+ g}(Φk(m))

= {f ◦ Φk, g ◦ Φk}(m) + {f ◦ Φk, J
ξ2 ◦ Φk}(m)

+{Jξ1 ◦ Φk, g ◦ Φk}(m) + {Jξ1 ◦ Φk, J
ξ2 ◦ Φk}(m).−−(∗)

Given that for any ξ ∈ G and any k ∈ G

Jξ ◦ Φk = JAdk−1ξ+ < σ(k), ξ >,

we can conclude that the functions Jξ ◦ Φk and JAdk−1ξ differ by a constant. As

the Poisson bracket depends only on the first derivative and the functions f and

g are G-invariant, we get

ωµ(πµ(m′))(υ′, w′) = {f, g}(m) + {f, JAdk−1ξ2}(m)

+{JAdk−1ξ1

, g}(m) + {JAdk−1ξ1

, JAdk−1ξ2}(m).

The G-invariance of the functions f and g implies by Noether’s Theorem that

{f, JAdk−1ξ2} = {JAdk−1ξ1
, g} = 0. Moreover, as the Lie algebra Gµ is invariant by

the adjoint action of the group Gµ, we have that Adk−1ξ2 ∈ Gµ and hence that

(Adk−1ξ2)M(m) ∈ TmJ
−1(µ) = kerTmJ. Consequently,

{JAdk−1ξ1

, JAdk−1ξ2}(m) = dJAdk−1ξ1

(m)(X
J

Ad
k−1ξ2 (m))

= dJAdk−1ξ1

(m)((Adk−1ξ2)J−1(µ)(m))

= < TmJ((Adk−1ξ2)J−1(µ)(m)), Adk−1ξ1 >= 0.

All these facts inserted in (*) imply that

ωµ(πµ(m′))(υ′, w′) = {f, g}(m) = ωµ(πµ(m))(υ, w)



3.1. Normal Form 108

and hence ωµ defines indeed a two form on Mµ.

Next we want to prove π∗µωµ = i∗µω. Let m ∈ J−1(µ) and let υ, w ∈ TmJ
−1(µ).

We can write Tmiµ(υ) = Xf (m) and Tmiµ(w) = Xg(m), for some f, g ∈ C∞(M)G.

Then,

(π∗µωµ)(m)(υ, w) = {f, g}(m) = ω(m)(Xf (m), Xg(m)) = (i∗µω)(m)(υ, w).

Conversely, the above chain of equalities shows that

ωµ([m]µ)(Tmπµ(υ), Tmπµ(w)) = {f, g}(m).

Since πµ is a surjective submersion, this shows that π∗µωµ = i∗µω, which is equiv-

alent to the above, which uniquely determines ωµ and that ωµ is a smooth two

form on the quotient Mµ. The Jacobi identity for the bracket {., .} on M and its

antisymmetry imply that ωµ is closed and antisymmetric.

Finally we show that ωµ is nondegenerate. Indeed, if

ωµ([m]µ)(Tmπµ(υ), Tmπµ(w)) = 0

for any w ∈ TmJ
−1(µ), then ω(m)(υ, w) = 0, for any for any w ∈ TmJ

−1(µ),

which implies

w ∈ kerTmJ ∩ (kerTmJ)ω = (G.m)ω ∩ ((G.m)ω)ω = (G.m)ω ∩ (G.m) = (Gµ.m).

This shows that Tmπµ.υ = 0, as required. The pair (Mµ, ωµ) is therefore a sym-

plectic manifold.

(ii) By Noether’s Theorem the flow Ft leaves invariant the connected compo-

nent of J−1(µ). The G-invariance of h and the canonical character of the action



3.1. Normal Form 109

imply that Ft is G-equivariant from the Note 1.1.45. Let F µ
t be the flow on Mµ

that makes the following diagram commutative:

J−1(µ)
Ft◦iµ−→ J−1(µ)

πµ ↓ ↓ πµ

Mµ
F µ

t−→ Mµ.

(iii) Due to the G-invariance of h, the function hµ ∈ C∞(Mµ) is uniquely

determined by the identity hµ ◦ πµ = h ◦ iµ. Let Y ∈ X (Mµ) be the vector

field on Mµ whose flow is F µ
t . By construction, Y is πµ-related to Xh. Indeed

differentiating the relation

πµ ◦ Ft ◦ iµ = F µ
t ◦ πµ

with respect to the time t, we obtain

Tπµ ◦Xh ◦ iµ = Y ◦ πµ.

We now verify that Y is a Hamiltonian vector field with Hamiltonian function hµ,

that is, Y = Xhµ . Let m ∈ J−1(µ) and υ ∈ TmJ
−1(µ) be arbitrary. Then,

ωµ(πµ(m))(Y (πµ(m)), Tmπµ(υ)) = ωµ(πµ(m))(Tmπµ(Xh(m)), Tmπµ(υ))

= ω(m)(Xh(m), υ) = dh(m).υ

= d(hµ ◦ πµ)(m).υ

= dhµ(πµ(m))(Tmπµ(υ))

= ωµ(πµ(m))(Xhµ(πµ(m)), Tmπµ(υ)),

which shows that Y = Xhµ .
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(iv) The G-invariance of {h, k} is a straightforward consequence of the canon-

ical character of the action. Indeed, for any g ∈ G we have

{h, k} ◦ Φg = Φ∗
g{h, k} = {Φ∗

gh,Φ
∗
gk} = {h, k}.

The function {h, k}µ ∈ C∞(Mµ) is uniquely characterized by the identity {h, k}µ◦

πµ = {h, k} ◦ iµ. By the definition of the Poisson bracket on (Mµ, ωµ), πµ-

relatedness of the relevant Hamiltonian vector fields, so we have for any m ∈

J−1(µ)

{hµ, kµ}Mµ([m]µ) = ωµ([m]µ)(Xhµ([m]µ), Xkµ([m]µ))

= ωµ([m]µ)(Tmiµ(Xh(m)), Tmiµ(Xk(m)))

= {h, k}(m),

that is, the function {hµ, kµ}Mµ also satisfies the relation {hµ, kµ}Mµ◦πµ = {h, k}◦

iµ which proves the desired equality {hµ, kµ}Mµ = {h, k}µ. •

Lemma 3.1.2. Let (E, ω) be a symplectic representation space of the compact

Lie group H. Then any H-invariant Lagrangian subspace of (E, ω) admits an

H-invariant Lagrangian complement.

Proof : Let < ., . > be an H-invariant inner product on E always available

by the compactness of H. Let J : E −→ E be the H-equivariant map uniquely

determined by the relation < u, v >= Ω(u, J(v)) for any u, v ∈ V.

By construction J2 = −IE and Ω(u, J(v)) = Ω(J(u), v) for all u.v ∈ E. Let F

be an H-invariant Lagrangian subspace of E. We will now show that J(F ) is an

H-invariant Lagrangian complement of F in E.

First, the H-invariance of J(F ) is obvious by the H-equivariance of J and the
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H-invariance of F. Second, we have that

dimJ(F )Ω = dimE − dimJ(F ) = dimE − dimF = dimF,

where the last equality we used the Lagrangian character of F.

Third, J(F ) ⊂ J(F )Ω. Indeed, for any u, v ∈ F we have that

Ω(J(u), J(v)) = −Ω(u, J2(v)) = Ω(u, v) = 0.

So J(F ) = J(F )Ω which shows that J(F ) is Lagrangian.

Finally, since J(F ) ⊂ .

J(F )Ω = {v ∈ E | Ω(v), J(u)) = 0forallu ∈ F}

= {v ∈ E |< v, u >= 0forallu ∈ F} = F⊥

it follows that J(F ) = F⊥ is a complement to F.

Hence the proof of the Lemma. •

Note 3.1.3. Next we discuss the Witt-Artin decomposition of the tangent space

TmM at a point m ∈ M of the symplectic manifold (M,ω) acted upon properly

and canonically by a Lie group G. The first step in the construction of the Witt-

Artin decomposition is the splitting of the Lie algebra G of G into three parts.

The first summand is defined by

L = {ξ ∈ G | ξM(m) ∈ (G.m)ω(m)};

L is clearly a vector subspace of G that contains the Lie algebra Gm of the isotropy

subgroup Gm of the point m ∈ M. Hence we can fix an AdGm-invariant inner



3.1. Normal Form 112

product < ., . > on G (always available by the compactness of Gm) and write

L = Gm ⊕M and G = Gm ⊕M⊕Q.

where M is the < ., . >- orthogonal complement of Gm in L and Q is the < ., . >-

orthogonal complement of L in G. The above splittings induce similar ones on the

duals

L∗ = G∗m ⊕M∗ and G∗ = G∗m ⊕M∗ ⊕Q∗.

Each of these spaces in this decomposition should be understood as the set of

covectors in G∗ that can be written as < ξ, . >, with ξ in the corresponding

subspace. For example, Q∗ = {< ξ, . >| ξ ∈ Q}.

Theorem 3.1.4 ( Witt-Artin decomposition). Let (M,ω) be a symplectic mani-

fold and let G be a Lie group acting properly and canonically on it. Then for any

m ∈M

TmM = L.m⊕Q.m⊕ V ⊕W.

The definitions and properties of the spaces in this splitting are the following:

(i) L := {ξ ∈ G | ξM(m) ∈ (G.m)ω(m)} a Lie subalgebra of G.

(ii) Q.m = {ηM(m) | η ∈ Q} is a symplectic vector subspace of (TmM,ω(m)).

(iii) Let << ., . >> be a Gm invariant innerproduct in TmM. Define V as the

orthogonal complement to G.m ∩ (G.m)ω(m) = L.m in (G.m)ω(m) with respect to

<< ., . >>, that is,

(G.m)ω(m) = (G.m ∩ (G.m)ω(m))⊕ V = L.m⊕ V.
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The subspace V is a symplectic Gm-invariant subspace of (TmM,ω(m)) such that

V ∩Q.m = {0}.

(iv) L.m := {ξM(m) | ξ ∈ G} is a Lagrangian subspace of (V ⊕Q.m)ω(m).

(v) W is a Gm-invariant Lagrangian complement to L.m in (V ⊕Q.m)ω(m).

(vi) The map f : W −→M∗ defined by

< f(w), η >:= ω(m)(ηM(m), w), forall η ∈M

is a Gm-equivariant isomorphism.

Proof : (i) L is clearly a vector subspace of G. To show it is a Lie subalgebra,

we shall prove first that for any ξ, η, ζ ∈ G we have

dω(ξM , ηM , ζM) = ω([ξ, η]M , ζM) + ω([η, ζ]M , ξM) + ω([ζ, ξ]M , ηM).

To verify this identity we start by computing dω for the infinitesimal generators

ξM , ηM , ζM :

dω(ξM , ηM , ζM) = ξM [ω(ηM , ζM)] + ηM [ω(ζM , ξM)] + ζM [ω(ξM , ηM)]

−ω([ξM , ηM ], ζM)− ω([ηM , ζM ], ξM) + ω([ζM , ξM ], ηM).

However

ξM [ω(ηM , ζM)] = (LξM
ω)(ηM , ζM) + ω(ηM , [ξM , ζM ])

= ω([ξM , ηM ], ζM) + ω(ηM , [ξM , ζM ])

since LξM
ω = 0, the G-action being canonical. Replacing this and the analogous

two identities, we get the result.
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In particular, since dω = 0, if ξ, η ∈ L and any ζ ∈ G,

ω([ξ, η]M , ζM) = −ω([η, ζ]M , ξM)− ω([ζ, ξ]M , ηM) = 0,

which shows that [ξ, η] ∈ L and hence that L is a Lie subalgebra of G.

(ii) We show that ω(m) |Q.m is nondegenerate. Let ξ ∈ Q be such that for any

η ∈ Q

ω(m)(ξM(m), ηM(m)) = 0.

Since any element ζ ∈ G can be written as ζ = η + σ, with η ∈ Q, σ ∈ L we have

that

ω(m)(ξM(m), ζM(m)) = ω(m)(ξM(m), ηM(m)) + ω(m)(ξM(m), σM(m)) = 0.

Consequently, ξM(m) ∈ (G.m)ω and hence ξ ∈ L ∩Q = {0}.

(iii) We start by noting that both G.m and (G.m)ω(m) are Gm-invariant. There-

fore, the Gm-invariance of << ., . >> guarantees that V is Gm-invariant. We now

prove that V is symplectic.

Let v ∈ V be such that ω(m)(v, v′) = 0, for any v′ ∈ V, that is, v ∈ V ω(m).

Since V ⊂ (G.m)ω(m) ⊂ (L.m)ω(m), we have

v ∈ V ω(m) ∩ (L.m)ω(m) = (V ⊕ L.m)ω(m) = ((G.m)ω(m))ω(m) = G.m.

Hence, v ∈ V ∩G.m ⊂ (G.m)ω(m)∩G.m = L.m and, therefore, v ∈ L.m∩V = {0}.

We now show that V ∩Q.m = {0}. First notice that L.m ∩Q.m = {0}.

Indeed, if ξ ∈ L ad η ∈ Q are such that ξM(m) = ηM(m), then ξ − η ∈ Gm ⊂ L
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and therefore, η ∈ L ∩Q = {0}.

Therefore, G.m = L.m⊕Q.m,

(G.m)ω(m) = (L.m)ω(m) ∩ (Q.m)ω(m).

Now, V ∩Q.m = V ∩Q.m⊕ (L.m ∩Q.m)

⊂ (V ⊕ L.m) ∩Q.m

= (G.m)ω(m) ∩Q.m

= (L.m)ω(m) ∩ (Q.m)ω(m) ∩ (Q.m)

= (L.m)ω(m) ∩ {0} = {0}.

(iv) Part (iii) guarantees that the sum V +Q.m is direct. Moreover, since V

and Q.m are symplectic subspaces of TmM, so is V ⊕Q.m. This provides the first

step in the Witt - Artin decomposition of TmM into symplectic subspaces:

TmM = V ⊕Q.m⊕ (V ⊕Q.m)ω(m).

We now show that L.m ⊂ (V ⊕Q.m)ω(m), which is equivalent to V ⊂ (L.m)ω(m)

and Q.m ⊂ (L.m)ω(m).

The first inclusion holds because V ⊂ (G.m)ω(m) ⊂ (L.m)ω(m). As the second

one, note that Q.m ⊂ G.m ⊂ (L.m)ω(m) since G.m ∩ (G.m)ω(m) = L.m.

Finally we show that L.m is a Lagrangian subspace of (V ⊕Q.m)ω(m), that is,

(L.m)ω(m) |(V⊕Q.m)ω(m)= L.m,

or, equivalently, (L.m)ω(m) ∩ (V ⊕Q.m)ω(m) = L.m.
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To prove this equality note that the definition of the subspace V implies that

G.m = (L.m)ω(m) ∩ V ω(m).

Additionally, recall that if A,B, and C are vector subspaces of a vector space E,

such that A ⊂ B, and A ∩ C = {0}, then

(B ∩ C)⊕ A = B ∩ (C ⊕ A).

Therefore, (L.m)ω(m) ∩ (V ⊕Q.m)ω(m) = (L.m+ (V ⊕Q.m))ω(m)

= (G.m+ V )ω(m)

= (G.m)ω(m) ∩ V ω(m)

= ((L.m)ω(m) ∩ V ω(m))ω(m) ∩ V ω(m)

= [((L.m)ω(m) ∩ V ω(m))⊕ V ]ω(m)

= [(L.m)ω(m) ∩ (V ω(m) ⊕ V )]ω(m)

= [(L.m)ω(m) ∩ TmM ]ω(m)

= L.m.

(v) The existence of W is a consequence of the Lie algebraic lemma 3.1.2. Hence,

we have that (V ⊕Q.m)ω(m) = L.m⊕W.

So we have the decomposition

TmM = L.m⊕Q.m⊕ V ⊕W.

(vi) The map f is clearly linear and H-equivariant. In order to show that f is

injective let w ∈ W be such that f(w) = 0. This means that ω(m)(ηM(m), w) = 0,

for all η ∈M or equivalently, w ∈ (M.m)ω(m) = ((Gm⊕M).m)ω(m) = (L.m)ω(m).
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Now the definition of W in (v) gives (V ⊕Q.m)ω(m) = L.m⊕W and hence

w ∈ (L.m)ω(m) ∩W ⊂ (L.m)ω(m) ∩ (V ⊕Q.m)ω(m) = L.m.

Therefore w ∈ L.m ∩W = {0}. Hence f is surjective.

Since W and L.m are Lagrangian complements in (V ⊕ Q.m)ω(m), it follows

that

dimW = dimL.m = dimL − dimGm = dimM = dimM∗,

which shows that f is an isomorphism. •

Definition 3.1.5. Let (M,ω) be a symplectic manifold and G be a Lie group

acting properly and canonically on it. Let m ∈ M, V be a symplectic Gm space

constructed in part (iii) of Theorem 3.1.4. Any such space will be called a symplec-

tic normal space at m. Since the Gm action on (V, ω(m) |V ) is linear and canonical

it has a standard associated momentum map to be denoted by JV : V −→ G∗m.

Proposition 3.1.6. Let (M,ω) be a symplectic manifold and G be a Lie group

acting properly and canonically on it. Let m ∈ M, V be a symplectic normal

space at m, and M ⊂ G the subspace introduced in the splitting L = Gm ⊕M.

Then there exist Gm-invariant neighborhoods M∗
r and Vr of the origin in M∗ and

V respectively such that the twisted product

Yr := G×Gm (M∗
r × Vr)
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is a symplectic manifold with the two form ωYr defined by

ωYr ([g, ρ, v]) (T(g,ρ,v)π(TeLg(ξ1), α1, u1), T(g,ρ,v)π(TeLg(ξ2), α2, u2))

:= < α2 + TvJV (u2), ξ1 > − < α1 + TvJV (u1), ξ2 >

+ < ρ+ JV (v), [ξ1, ξ2] > +Ψ(m)(ξ1, ξ2) + ω(m)(u1, u2), (3.2)

where Ψ : M −→ Z2(G) is the Chu map in the Definition ?? associated to the

G-action on (M,ω), π : G × (M∗
r × Vr) −→ G ×Gm (M∗

r × Vr) is the projection,

[g, ρ, v] ∈ Yr, ξ1, ξ2 ∈ G, α1, α2 ∈M∗, and u1, u2 ∈ V.

The Lie group G acts canonically on (Yr, ωYr) by g.[h, η, ν] := [gh, η, ν], for

any g ∈ G and any [h, η, ν] ∈ Yr.

The symplectic manifold (Yr, ωYr) is called a symplectic tube of (M,ω) at the

point m.

Proof : First we construct a G-invariant symplectic form on a neighborhood

of the zero section of the trivial bundle G× L∗.

The splitting

L∗ = G∗m ⊕M∗ and G∗ = G∗m ⊕M∗ ⊕Q∗.

provides an injection i : G × L∗ ↪→ G × G∗ that will be used to pull back the

canonical symplectic form of G×G∗ ∼= T ∗G to G×L∗ in order to obtain a closed

two form ω1 on G× L∗.

Define on G× L∗ the skew symmetric two form ω2 by

ω2(g, ν)((TeLg(ξ), ρ), (TeLg(η), σ)) = ω(m)(ξM(m), ηM(m)) = Ψ(m)(ξ, η),
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for any (g, ν) ∈ G× L∗, ξ, η ∈ G, ρ, σ ∈ L∗.

We now prove that there exists a Gm-invariant neighborhood L∗r of the origin

in L∗ such that the restriction of the form

Ω = ω1 + ω2 (3.3)

to Tr = G× L∗r is a symplectic form.

Ω is closed: The two form ω1 is clearly closed. In order to show that ω2 is

closed we define for any ξ ∈ G, and ρ ∈ L∗, the vector field (ξ, ρ) ∈ X (G × L∗)

given by (ξ, ρ)(g, ν) = (TeLg(ξ), ν), whose flow is

Ft(g, ν) = (g.exptξ, ρ+tν). It is easy to see that the Lie bracket of two such vector

fields is given by [(ξ, ρ), (η, σ)] = ([ξ, η], 0).

We have

dω2((ξ, ρ), (η, σ), (λ, τ)) = (ξ, ρ)[ω2((η, σ), (λ, τ))]− (η, σ)[ω2((ξ, ρ), (λ, τ))]

+ (λ, τ)[ω2((ξ, ρ), (η, σ))]− ω2([(ξ, ρ), (η, σ)], (λ, τ))

+ ω2([(ξ, ρ), (λ, τ)], (η, σ))− ω2([(η, σ), (λ, τ)], (ξ, ρ))

for any ξ, η, λ ∈ G and any ρ, σ, τ ∈ L∗. Now note that for any (g, ν) ∈ G×L∗ we

have, for instance, that

((ξ, ρ)[ω2((η, σ), (λ, τ))])(g, ν)

=
d

dt
|t=0 ω2(gexptξ, ν + tρ) ( (η, σ)(gexptξ, ν + tρ), (λ, τ)(gexptξ, ν + tρ))

=
d

dt
|t=0 ω(m)(ηM(m), λM(m)) = 0,
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and also,

ω2([(ξ, ρ), (η, σ)], (λ, τ))(g, ν) = ω(m)([ξ, η]M(m), λM(m)).

The last three equalities imply that

dω2(g, ν)((TeLg(ξ), ρ), (TeLg(η), σ), (TeLg(λ), τ))

= −ω(m)([ξ, η]M(m), λM(m)) + ω(m)([ξ, λ]M(m), ηM(m))

−ω(m)([η, λ]M(m), ξM(m))

= dω(m)(ξM(m), ηM(m), λM(m)) = 0.

which guarantees the closedness of ω2.

Ω is nondegenerate on G× {0} : Let ξ = ξ1 + ξ2 and η = η1 + η2 be arbitrary

elements in G, with ξ1, η1 ∈ L and ξ2, η2 ∈ Q. Let also (g, ν) ∈ G× L∗, ρ, σ ∈ L∗

and suppose that for all η ∈ G, and σ ∈ L∗ we have that

Ω(g, ν)((TeLg(ξ), ρ), (TeLg(η), σ)) = 0,

or equivalently

< g, ξ1 > − < ρ, η1 > + < ν, [ξ, η] > +ω(m)((ξ2)M(m), (η2)M(m)) = 0.

We show that when ν = 0 this implies that ξ = 0 and ρ = 0. Indeed suppose

that ν = 0. Setting η = 0 in the last equality and letting σ vary, we obtain

ξ1 = 0. Also, setting η2 = 0 and letting η1 vary, we obtain ρ = 0. Finally,

since ω(m)((ξ2)M(m), (η2)M(m)) = 0 for all η ∈ G, this implies that (ξ2)M(m) ∈

G.m ∩ (G.m)ω and hence ξ2 ∈ L ∩Q = {0} and, consequently, ξ = 0 and ρ = 0.

Since nondegeneracy is an open condition, we can choose an Ad(Gm)-invariant
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neighborhood L∗r of 0 in L∗ where the last expression is nondegenerate. Also, as

the expression does not depends on G (the form Ω is by construction G-invariant),

it follows that Ω is nondegenerate on Tr = G×L∗r and hence (Tr,Ω) is a symplectic

manifold.

The symplectic form ωYr on Yr is obtained by a symplectic reduction of the

symplectic forms of Tr and V. First consider the left action R of Gm on Tr defined

by Rh(g, ν) = (gh−1, Ad∗h−1ν), h ∈ Gm and (g, ν) ∈ Tr.

Using the definition of Ω it is straightforward to verify that this action is

globally Hamiltonian on Tr with equivariant momentum map JR : Tr −→ G∗m,

given by

JR((g, (η, ρ))) = −η, for any (η, ρ) ∈ G∗m ⊕M∗
r = L∗r.

As we already pointed out, the Gm-action on V is globally Hamiltonian with

momentum map JV : V −→ G∗m. Putting together these two actions, we construct

a product action of Gm on the symplectic manifold Tr × V, which is Hamiltonian,

with Gm-equivariant momentum map K : Tr×V ∼= G×M∗
r× (G∗m)r×V −→ G∗m,

given by the sum JR + JV from [10], that is,

K : G×M∗
r × (G∗m)r × V −→ G∗m,

(g, ρ, η, υ) 7−→ JV (υ)− η.

The Gm-action on Tr × V is free and proper and 0 ∈ G∗m is clearly a regular value

of K. Therefore from Theorem 3.1.1 K−1(0)/Gm is a well defined symplectic point

reduced space that can be identified with Yr = G×Gm (M∗
r ×Vr) by means of the
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quotient diffeomorphism L induced by the Gm-equivariant diffeomorphism l

l : G×M∗
r × Vr −→ K−1(0) ⊂ G×M∗

r × (G∗m)r × Vr,

(g, ρ, υ) 7−→ (g, ρ, JVm(υ), υ),

where the Gm-invariant neighborhood of the origin Vr has been chosen so that

JVm(Vr) ⊂ (G∗m)r. We define the symplectic form ωYr on Yr as the pull back by

L of the reduced symplectic form Ω0 on K−1(0)/Gm. Thus we have the following

commutative diagram with the lower arrow a symplectic diffeomorphism

G×M∗
r × Vr

l−→ K−1(0) ⊂ G×M∗
r × (G∗m)r × Vr,

π ↓ ↓ π0

(G×Gm (M∗
r × Vr), ωYr) −→ (K−1(0)/Gm,Ω0).

We now show that the symplectic form ωYr that we just defined coincides with

the one given in the statement, namely, with expression 3.2. First notice that

by definition ωYr = L∗Ω0. As the projection π is a submersion, this is equivalent

to π∗ωYr = π∗(L∗Ω0). Using the maps in the above diagram we can express this

equality as π∗ωYr = l∗(π∗0Ω0) = l∗i∗0(Ω + ωV ), where ωV := ω(m) |V is the sym-

plectic form on the symplectic normal space V. We now check that this coincides

with the expression 3.2. Indeed, for any [g, ρ, v] ∈ Yr, ξ1, ξ2 ∈ G, α1, α2 ∈M∗, and
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u1, u2 ∈ V, we have

ωYr ([ g, ρ, v])(T(g,ρ,v)π(TeLg(ξ1), α1, u1), T(g,ρ,v)π(TeLg(ξ2), α2, u2))

= (π∗ωYr)(g, ρ, v)((TeLg(ξ1), α1, u1), (TeLg(ξ2), α2, u2))

= ((i0 ◦ l)∗(Ω + ωV ))(g, ρ, v)((TeLg(ξ1), α1, u1), (TeLg(ξ2), α2, u2))

= (Ω + ωV )(g, ρ, JV (v), v)((TeLg(ξ1), α1, TvJV (u1), u1),

(TeLg(ξ2), α2, TvJV (u2), u2))

= Ω(g, ρ, JV (v))((TeLg(ξ1), α1, TvJV (u1)), (TeLg(ξ2), α2, TvJV (u2)))

+ωV (v)(u1, u2)

= < α2 + TvJV (u2), ξ1 > − < α1 + TvJV (u1), ξ2 >

+ < ρ+ JV (v), [ξ1, ξ2] > +Ψ(m)(ξ1, ξ2) + ω(m)(u1, u2).

•

Theorem 3.1.7 (The Symplectic slice Theorem ). Let (M,ω) be a symplectic

manifold and G be a Lie group acting properly and canonically on it. Let m ∈M,

and let (Yr, ωYr) be the G-symplectic tube at that point constructed in Proposition

3.1.6. Then there is a G- invariant neighborhood U of m in M and a G-equivariant

symplectomorphism φ : U −→ Yr satisfying φ(m) = [e, 0, 0].

Proof : Consider the tube

Yr := G×Gm (M∗
r × Vr)

and f : W −→M∗ the Gm-equivariant linear isomorphism introduced in part(vi)

of Theorem 3.1.4.

Let f−1
r : M∗

r −→ Wr where Wr = f−1(M∗
r) ⊂ W be the restriction of the

inverse f−1 of f to M∗
r.
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In the proof of the Theorem 1.1.18, we established the existence of a Gm-

invariant Riemannian metric on some Gm-invariant neighborhood of m with as-

sociated exponential map Expm such that, for r small enough, the mapping

τ := G×Gm (Wr × Vr) −→M given by,

τ([g, w, υ]) = g.Expm(w + υ),

is a G-equivariant diffeomorphism onto some open G-invariant neighborhood of

the orbit G.m. Therefore the composed map

Ψ : Yr = G×Gm (M∗
r × Vr) −→ U given by,

Ψ([g, ρ, υ]) = g.Expm(f−1
r (ρ) + υ)

has the same properties. Consequently, the open G-invariant neighborhood U can

be endowed with two symplectic forms ω |U and Ψ∗ωYr .

We now prove that these two symplectic forms coincide on G.m. Since both

forms are G-invariant it suffices to show that ω(m) = Ψ∗ωYr(m). Let u1, u2 ∈ TmM

arbitrary. The Witt-Artin decomposition guarantees the existence of ξ1, ξ2 ∈ G,

w1, w2 ∈ W, and v1, v2 ∈ V such that ui = (ξi)M(m) + wi + vi, i = 1, 2.
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Hence Proposition 3.1.6 and the definition of fr imply

Ψ∗ωYr(m)(u1, u2) = ωYr([e, 0, 0, ])(TmΨ−1((ξ1)M(m) + w1 + v1),

TmΨ−1((ξ2)M(m) + w2 + v2)))

= ωYr([e, 0, 0, ])(T(e,0,0)π(ξ1, fr(w1), v1), T(e,0,0)π(ξ2, fr(w2), v2))

= < fr(w2), ξ1 > − < fr(w1), ξ2 > +

ω(m)((ξ1)M(m), (ξ2)M(m)) + ω(m)(v1, v2)

= ω(m)((ξ1)M(m), w2)− ω(m)((ξ2)M(m), w1) +

ω(m)((ξ1)M(m), (ξ2)M(m)) + ω(m)(v1, v2)

= ω(m)(u1, u2).

The last equality follows from the fact that

ω(m)((ξ1)M(m), v2) = ω(m)((ξ2)M(m), v1) = 0 since V ⊂ (G.m)ω. Moreover,

ω(m)(w1, w2) = 0 since W is Lagrangian in (V ⊕ Q.m)ω(m), and ω(m)(w1, v2) =

ω(m)(w2, v1) = 0 because W ⊂ V ω(m).

In these circumstances, Theorem 2.2.3 guarantees the existence of two open

G-invariant neighborhoods Uo and U1 of G.m in U and a G-equivariant symplecto-

morphism ∆ : (Uo,Ψ∗ωYr |Uo) −→ (U1, ω |U1) which is the identity on G.m. Take,

without loss of generality, U1 = U. Then the composed map ∆ ◦Ψ : (Yr, ωYr) −→

(U, ω |U) gives us, for r > 0 small enough, the inverse of the map needed in the

statement of the theorem. •

Definition 3.1.8. Let (M,ω) be a symplectic manifold and G be a Lie group

acting canonically on it. For any point m ∈M we say that the G-action on M is

tubewise Hamiltonian at m if there exists a G-invariant open neighborhood U of

the orbit G.m such that the restriction of the action to the symplectic manifold

(U, ω |U) has an associated momentum map.

Proposition 3.1.9. Let (M,ω) be a symplectic manifold and let G be a Lie
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group with Lie algebra G acting properly and canonically on M. For m ∈ M

let Yr := G ×Gm (M∗
r × Vr) be the slice model around the orbit G.m. If the

G-equivariant G∗-valued one form γ ∈ Ω1(G;G∗) defined by

< γ(g)(TeLg(η)), ξ >:= −ω(m)((Adg−1ξ)M(m), ηM(m)) (3.4)

for any g ∈ G and ξ, η ∈ G is exact, then the G-action on Yr given by g.[h, η, υ] :=

[gh, η, υ], for any g ∈ G and any [h, η, υ] ∈ Yr, has an associated momentum map

and thus the G-action on (M,ω) is tubewise Hamiltonian at m.

Proof: The construction of the symplectic form ωYr on Yr in Proposition

3.1.6 reveals that the existence of a standard momentum map for the G-action on

Yr is guaranteed by the existence of a momentum map for the G-action on the

symplectic manifold (G×L∗r,Ω) introduced in the proof of Proposition 3.1.6. This

action is given by g.(h, η) := (gh, η), for any g, h ∈ G, η ∈ L∗r. The existence of this

momentum map is in turn equivalent to the vanishing of the map in Proposition

1.4.8

[ξ] ∈ G/[G,G] 7−→ [iξG×L∗Ω] ∈ H1(G× L∗r), for any ξ ∈ G. (3.5)

By the definition of Ω we have that for any ξ, η ∈ G, g ∈ G, and ν, σ ∈ G∗

iξG×L∗Ω(g, ν)(TeLg(η), σ) =< σ,Adg−1ξ > + < ν, [Adg−1ξ, η] >

+ω(m)((Adg−1ξ)M(m), ηM(m)).

The first two terms on the right-hand side of the previous expression are the

differential of the real function f ∈ C∞(G× L∗r) given by

f(g, ν) :=< ν,Adg−1ξ >;
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hence the vanishing of 3.5 is equivalent to the exactness of the G∗-valued one form

γ in the statement. •

The following proposition provides a characterization of the exactness of 3.4

and therefore gives another sufficient condition for the tubewise Hamiltonian char-

acter of the action.

Proposition 3.1.10. Let (M,ω) be a symplectic manifold and let G be a Lie

group with Lie algebra G acting properly and canonically on M. For m ∈ M,

let Yr := G ×Gm (M∗
r × Vr) be the slice model around the orbit G.m. Let ΣC :

G × G −→ < be the two cycle induced by the Chu map, that is,

ΣC(ξ, η) := ω(m)(ξM(m), ηM(m)), ξ, η ∈ G, (3.6)

and let Σb
C : G −→ G∗ be defined by Σb

C(ξ) = ΣC(ξ, .), ξ ∈ G. Then the form 3.4 is

exact if and only if there exists a G∗-valued group one-cocycle θ : G −→ G∗ such

that

Teθ = Σb
C (3.7)

In such a case the action is tubewise Hamiltonian at the point m. Also, in the

presence of this cocycle, the map Jθ : G× L∗ −→ G∗ given by

Jθ(g, ν) := Ad∗g−1ν − θ(g) (3.8)

is a momentum map for the G-action on the presymplectic manifold G×L∗ with

non-equivariance cocycle equal to −θ.

Proof: Suppose first that the form γ in equation 3.4 is exact. In such a

case, there exists a function θ : G −→ G∗ such that γ(g) = dθ(g), that is for any
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ξ, η ∈ G and g ∈ G we have

< Tgθ(TeLg(η)), ξ >=< γ(g)(TeLg(η)), ξ >

= −ω(m)((Adg−1ξ)M(m), ηM(m)). (3.9)

This expression determines uniquely the derivative of θ and hence choosing θ(e) =

0 fixes the map θ : G −→ G∗. We now show that θ is a cocycle by checking that it

satisfies the cocycle identity. Indeed, for any g, h ∈ G and any ξ, η ∈ G, we have

< Tg(θ ◦ Lh)(TeLg(η), ξ > = < (Thgθ ◦ TeLhg)(η)), ξ >

= < γ(hg)(TeLhg(η)), ξ >

= < Ad∗h−1(γ(g)(TeLg(η))), ξ >

= < Tg(Ad
∗
h−1 ◦ θ)(TeLg(η)), ξ > .

Therefore, for any g, h ∈ G we have Tg(θ ◦ Lh) = Tg(Ad
∗
h−1 ◦ θ) and consequently,

θ ◦ Lh = Ad∗h−1 ◦ θ + c(h, n),

where c(h, n) ∈ G∗, for any h ∈ G, and any n ∈ [1, Card(G/Go)], n ∈ ℵ. Equiva-

lently, for any g, h ∈ G we can write

θ(hg) = Ad∗h−1θ(g) + c(h, n). (3.10)

Set in this equality g = e and use θ(e) = 0 to get θ(h) = c(h, n), for all h ∈ G,

and n ∈ [1, Card(G/Go)], n ∈ ℵ. Hence 3.10 becomes

θ(hg) = Ad∗h−1θ(g) + θ(h), (3.11)

which is the group one-cocycle identity.
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Finally, note that from equation 3.9 it is easy to see that Teθ = γ(e) = Σb
C and

therefore θ is the one-cocycle in the statement of the Proposition. The converse

is straightforward.

The fact that the expression 3.8 produces a momentum map for the G-action

on G× L∗ follows from the equality

iξG×L∗Ω(g, ν)(TeLg(η), σ) =< σ,Adg−1ξ > + < ν, [Adg−1ξ, η] >

+ω(m)((Adg−1ξ)M(m), ηM(m))

=< σ,Adg−1ξ > + < ν, [Adg−1ξ, η] >

− < Tgθ(TeLg(η)), ξ >, from 3.9

= d < ν,Adg−1ξ > (TeLg(η), σ)− d < θ(g), ξ > (g, ν)(TeLg(η), σ)

= d < Jθ, ξ > (g, ν)(TeLg(η), σ).

•

Theorem 3.1.11. Let (M,ω) be a symplectic manifold and G be a Lie group

with Lie algebra G acting properly and canonically on it. If either

(i) H1(G) = 0, or

(ii) the orbit G.m is isotropic,

then the G-action on (M,ω) is tubewise Hamiltonian at m.

Proof : (i) If H1(G) = 0, the map 3.5 vanishes. Hence the G-action is tubewise

Hamiltonian at m.

(ii) If the orbit G.m is isotropic then by Proposition 1.5.12 the group G is com-

mutative. Therefore G = [G,G]. Hence the map 3.5 vanishes. Hence the G-action

is tubewise Hamiltonian at m. •

Theorem 3.1.12 (The Marle-Guillemin- Sternberg normal form). Let (M,ω)

be a connected symplectic manifold and G be a Lie group acting properly and

canonically on it. Suppose that this action has an associated momentum map J :
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M −→ G∗ with non equivariance cocycle σ : G −→ G∗. Let m ∈M, and (Yr, ωYr)

be the symplectic tube at m that models a G-invariant open neighborhood U of

the orbit G.m via the G-equivariant symplectomorphism φ : (U, ωU) −→ (Yr, ωYr).

Then the canonical left G-action on (Yr, ωYr) admits a momentum map JYr :

Yr −→ G∗ given by the expression

JYr : Yr = G×Gm (Mr)
∗ × Vr −→ G∗given by

JYr([g, ρ, υ]) = Ad∗g−1(J(m) + ρ+ JV (υ)) + σ(g).

The map JYr ◦ φ is a momentum map for the canonical G-action on (U, ωU).

Moreover, if the group G is connected, this momentum map satisfies J |U= JYr ◦φ.

Proof : Define θ : G −→ G∗ by θ(g) := −Ad∗g−1J(m)−σ(g), g ∈ G. We can prove

that θ satisfies the condition Teθ = Σb
C . Indeed, for any ξ, η ∈ G we have that

< Teθ(ξ), η > = − d

dt
|t=0< Ad∗exp(−tξ)J(m), η > − < Teσ(ξ), η >

= < ad∗ξJ(m), η > −Σ(ξ, η)by 1.10

= − < TmJ.ξM(m), η > by 1.9

= −ω(m)(ηM(m), ξM(m)) =< Σb
C(ξ), η > .

Then by using the characterization in Proposition 3.1.10 the action is tubewise

Hamiltonian. Therefore the canonical left G-action on (Yr, ωYr) have an associated

standard momentum map JYr : Yr −→ G∗ exists.

We now check that JYr is well defined. For any [g, ρ, υ] ∈ Yr and h ∈ Gm we

have

JYr([gh, h
−1.ρ, h−1.υ]) = Ad∗(gh)−1(J(m) + Ad∗hρ+ JV (h−1.υ)) + σ(gh)

= Ad∗g−1(Ad∗h(J(m) + Ad∗hρ+ Ad∗hJV (υ))) + σ(g) + Ad∗g−1σ(h)

= Ad∗g−1(J(m) + ρ+ JV (υ)) + σ(g) = JYr([g, ρ, υ]),
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where we used the fact that as h ∈ Gm, we have that σ(h) = J(h.m)−Ad∗h−1J(m) =

J(m)− Ad∗h−1J(m).

It only remains to show that JYr is a momentum map for the left canonical

G-action on (Yr, ωYr). Let [g, ρ, υ] ∈ Yr, ξ, ζ ∈ G, α ∈ M∗, and u ∈ V arbitrary.

Then on the one hand we have that

< dJYr [g, ρ, υ](TeLg(ξ), α, u), ζ >

=
d

dt
|t=0 [< Ad∗(gexptξ)−1(J(m) + ρ+ tα+ JV (υ + tu)), ζ >

+ < σ(gexptξ), ζ >]

=
d

dt
|t=0 [< Ad∗g−1Ad∗(exptξ)−1(J(m) + ρ+ tα+ JV (υ + tu)), ζ >

+ < σ(g), ζ > + < Ad∗g−1σ(exptξ), ζ >]

= < J(m) + ρ+ JV (υ), [Adg−1ζ, ξ] > + < α + TυJV (u), Adg−1ζ >

+Σ(ξ, Adg−1ζ). (3.12)

On the other hand, notice that the infinitesimal generators associated to the

G-action on Yr take the form

ζYr [g, ρ, υ] =
d

dt
|t=0 [exptζ, ρ, υ] = T(g,ρ,υ)π(TeLg(Adg−1ζ), 0, 0),

where π : G × (Mr)
∗ × Vr −→ G ×Gm (Mr)

∗ × Vr is the projection. By the

expression for the symplectic form ωYr on Yr, we have

ωYr([g, ρ, υ])(ζYr [g, ρ, υ], (TeLg(ξ), α, u))

=< α + TυJV (u), Adg−1ζ > + < ρ+ JV (υ), [Adg−1ζ, ξ] >

+ω(m)((Adg−1ζ)M(m), ξM(m)). (3.13)
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But we have

ω(m)((Adg−1ζ)M(m), ξM(m)) = dJAdg−1ζ(m)(ξM(m))

=< −ad∗ξJ(m) + Σ(ξ, .), Adg−1ζ >=< J(m), [Adg−1ζ, ξ] > +Σ(ξ, Adg−1ζ),

which substituted in the above expression 3.13 and compare to 3.12 gives

iζYr
ωYr = dJζ

Yr
,

for any ζ ∈ G, that is JYr is a momentum map for the G-action on (Yr, ωYr).

Finally the map JYr ◦ φ is a momentum map for the canonical G-action on

(U, ω |U). The map JU also has this property and coincides with JYr ◦ φ at the

point m. We now recall that two different momentum maps for the same canonical

action on a connected manifold differ by a constant. Consequently, if the group

G is connected, so are Yr and U, which implies that JYr ◦ φ = JU . •

3.2 Convexity using Topology

In chapter 2 we discussed the convexity property of torus actions using Morse

theory. In general Morse theory is not sufficient to study convexity properties of

the image of the momentum map. The case of compact symplectic manifolds is

rich but quite particular. For noncompact manifolds the results in the previous

chapter no longer hold. The topological approach gives many stronger results in

convexity.

In this section first the definitions of local convexity data and locally fiber

connected condition are given. We give the statement of Lokal-global-prinzip and

a generalization of it for a closed map using some topological vector space results.
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Using this it is obtained that the convexity is rooted on the map being open onto

its image and having local convexity data. Next we look at the convexity for mo-

mentum maps. Then a generalization of Atiyah-Guillemin-Sternberg Convexity

theorem for non compact manifolds is given. Much more generalization of con-

vexity results are obtained in two cases: when the momentum map has connected

fibers and the case when the momentum map has only the locally fiber connect-

edness property. Then we give a generalization of Kirwan’s convexity result. We

also give non-abelian analogues of the above two cases. [4] , [19], [18], [12],

[8], [19] , [36] , [9].

Definition 3.2.1. Let V be a topological vector space. A set C ⊂ V is called

a cone with vertex v0 if for each λ ≥ 0 and for each v ∈ C, v 6= vo, we have

(1− λ)vo + λv ∈ C. If the set C is, in addition, convex then C is called a convex

cone. Not that, by definition, the vertex vo ∈ C.

Definition 3.2.2. The continuous map f : X → V defined on a connected,

locally connected Hausdorff topological space X with values in a locally convex

topological vector space V is said to have local convexity data if for each x ∈ X and

every sufficiently small neighborhood Ux of x there exists a convex cone Cx,f(x),Ux

in V with vertex at f(x) such that

(1)f(Ux) ⊂ Cx,f(x),Ux is a neighborhood of the vertex f(x) in the cone Cx,f(x),Ux

and

(2) f/Ux : Ux → Cx,f(x),Ux is an open map and for any neighborhood U ′
x ⊂ Ux of

x, the set f(U ′
x) is a neighborhood of the vertex f(x) in the cone Cx,f(x),Ux ,

where the cone Cx,f(x),Ux is endowed with the subspace topology induced from V.

If the associated cones Cx,f(x),Ux are such that Cx,f(x),Ux ∩ f(X) is closed in f(X),

then we say that f has local convexity data with closed cones.

Definition 3.2.3. Let X and Y be two topological space and f : X → Y a

continuous map. The subset A ⊂ X satisfies the locally fiber connected condition
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(LFC) if A does not intersect two different connected components of the fiber

f−1(f(x)), for any x ∈ A.

Let X be a connected, locally connected, Hausdorff topological space and V a

locally convex topological vector space. The continuous map f : X → V is said to

be locally fiber connected if for each x ∈ X, any open neighborhood of x contains

a neighborhood Ux of x such that Ux satisfies the (LFC) condition.

Let f : X → V be a continuous map defined on a connected Hausdorff topo-

logical space X with values in a locally convex vector space V. On the topological

space X define the following equivalence relation: two points x, y ∈ X to be

equivalent if and only if f(x) = f(y) = v and they belong to the same con-

nected component of f−1(v). The topological quotient space will be denoted by

Xf := X/R, the projection map by πf : X → Xf , and the induced map on Xf by

f̃ : Xf → V . Thus f̃ ◦ πf = f uniquely characterizes f̃ . The map f̃ is continuous

and if the fibers of f are connected then it is also injective. Note that a subset

A ⊂ X satisfies locally fiber connected condition if and only if f̃ |πf (A) is injective.

Similarly f is locally fiber connected if and only if for any x ∈ X, any open neigh-

borhood of x contains an open neighborhood Ux of x such that the restriction of

f̃ to πf (Ux) is injective.

Theorem 3.2.4. Let f : X → V be a closed map onto its image that has local

convexity data. If f has connected fibers then it is open onto f(X).

Proof: The hypothesis implies that the induced map f̃ : Xf → f(X) uniquely

determined by the equality f̃ ◦ πf = f, is a homeomorphism. Indeed, closedness

of f̃ follows from the identity f̃(A) = f(π−1
f (A)) for any subset A of Xf . Since f̃

is open onto f(X) it follows that f = f̃ ◦ πf is also open onto its image. •

Theorem 3.2.5 (Lokal-global-prinzip ). Let f : X → V be a locally fiber con-

nected map from a connected locally connected Hausdorff topological space X
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to a finite dimensional vector space V, with local convexity data (Cx)x∈X such

that all convex cones Cx are closed in V . Suppose that f is a proper map. Then

f(X) is a closed locally polyhedral convex subset of V, the fibers f−1(v) are all

connected, and f : X → f(X) is an open mapping.

In spite of its generality the theorem 3.2.5 cannot be applied to situations

where the fibers f−1(v) are either not compact or the map f is not closed because

both conditions are necessary for f to be a proper map.

Note 3.2.6. To generalize the Lokal-global-prinzip for a map that is closed and

having normal topological space as domain, instead of being proper the following

results are obtained first.

Lemma 3.2.7. Let f : X → Y be a continuous map between two topological

spaces. Assume that f has connected fibers and is open or closed. Then for every

connected subset C of Y the inverse image f−1(C) is connected.

Proof : Suppose that f is an open map, C ⊂ Y is connected, and f−1(C) is

not connected. Then there exist two open sets U1, U2 in X such that f−1(C) =

(U1 ∩ f−1(C)) ∪ (U2 ∩ f−1(C)), U1 ∩ f−1(C) 6= φ, U2 ∩ f−1(C) 6= φ, and U1 ∩ U2 ∩

f−1(C) = φ. Note that C = f(f−1(C)) = f((U1 ∩ f−1(C)) ∪ (U2 ∩ f−1(C))) =

f(U1 ∩ f−1(C)) ∪ f(U2 ∩ f−1(C)) ⊂ (f(U1) ∩ C) ∪ (f(U2) ∩ C).

Conversely, since f(U1) ∩ C ⊂ C and f(U2) ∩ C ⊂ C it follows that (f(U1) ∩

C) ∪ (f(U2) ∩ C) ⊂ C which proves that (f(U1) ∩ C) ∪ (f(U2) ∩ C) = C. Also,

f(U1) ∩ C ⊃ f(U1 ∩ f−1(C)) 6= φ and f(U2) ∩ C ⊃ f(U2 ∩ f−1(C)) 6= φ. By

openness of f, the sets f(U1) and f(U2) are open in Y so that connectedness of

C implies that f(U1) ∩ f(U2) ∩ C 6= φ.

If c ∈ f(U1) ∩ f(U2) ∩ C then f−1(c) = (U1 ∩ f−1(c)) ∪ (U2 ∩ f−1(c)). The

inclusion ⊃ is obvious. To prove the reverse inclusion ⊂, let x ∈ f−1(c) ⊂ f−1(C).

Thus x ∈ U1 ∩ f−1(C) or x ∈ U2 ∩ f−1(C). Since x ∈ f−1(c) by hypothesis, this
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implies that x ∈ U1 ∩ f−1(C) or x ∈ U2 ∩ f−1(C) which proves the inclusion ⊂ .

Note also that U1 ∩ f−1(C) 6= φ since c ∈ f(U1). Similarly, U2 ∩ f−1(C) 6= φ.

Finally, U1 ∩ U2 ∩ f−1(c) ⊂ U1 ∩ U2 ∩ f−1(C) = φ. Thus the fiber f−1(c) can be

written as the disjoint union of the two nonempty sets U1∩f−1(c) and U2∩f−1(c),

which contradicts the connectedness hypothesis of the fibers of f.

The proof for f a closed map is identical to the one above by repeating the

same argument for U1 and U2 closed subsets of X. •

Theorem 3.2.8. Let X be a connected Hausdorff topological space, V a locally

convex topological vector space, and f : X → V a continuous map that has local

convexity data. If f is open on to its image then f(X) is a locally convex subset

of V. Moreover, if f(X) is closed in a convex subset of V then it is convex.

Proof : Let v ∈ f(X) be arbitrary and take x ∈ f−1(v). By the condition

(1) of the definition of local convexity data, there exists a neighborhood Ux ⊂ X

of x such that f(Ux) ⊂ Cx,f(x) is open in f(X); Cx,f(x) is the convex cone with

vertex at v = f(x) given in the definition of local convexity data 3.2.2. Then

shrinking Ux if necessary, using condition (2) of 3.2.2, and the local convexity of

the topological vector space V, we can find a convex neighborhood Vv of v in V

such that f(Ux) = Vv ∩ Cx,f(x). Since f is open onto its image, the neighborhood

Vv can be shrunk further to a convex neighborhood of v, also denoted by Vv, such

that f(Ux) = Vv ∩ f(X). Taking this as the neighborhood of v and shrinking Ux

if necessary, we get Vv ∩ Cx,f(x) = f(Ux) = Vv ∩ f(X). Since the intersection of

two convex sets is convex, it follows that Vv ∩ Cx,f(x) is also convex. Thus the

point v ∈ f(X) has a neighborhood Vv in V such that Vv ∩ f(X) is convex, that

is, f(X) is locally convex.

If, in addition, f(X) is closed, then it is also connected and locally convex.

Since each closed connected and locally convex subset of a topological vector space

is convex, f(X) is convex. •
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Corollary 3.2.9. Let f : X → V be a closed map onto its image that has local

convexity data. If f has connected fibers then it is locally convex. Moreover if

f(X) is closed then it is also convex.

Proof : By Theorem 3.2.4 f is open onto its image. Then using the above

theorem we have the result. •

Note 3.2.10. We have seen that a necessary condition for the map f that has

connected fibers to be open onto its image is that the inverse image of any con-

nected set in f(X) is connected in X. The next proposition states that if f has

local convexity data with closed cones, this condition is also sufficient.

Proposition 3.2.11. Let f : X → V be a continuous map that has local con-

vexity data with closed cones. If the fibers of f are connected and for every point

v ∈ f(X) and for all small neighborhoods Vv of v the set f−1(Vv) is connected,

then f is open onto its image.

Proof : Suppose that f is not open onto its image, has local convexity data

with closed cones, and connected fibers. So there exists a point x ∈ X and an open

neighborhood Ux in the definition of local convexity data such that Vf(x)∩Cx,f(x) =

f(Ux) ⊆ Vf(x)∩f(X) for some open neighborhood Vf(x) of f(x) in V. Consequently,

(Vf(x) ∩ f(X)) f(Ux) 6= φ is open in f(X) since f(Ux) = Vf(x) ∩ Cx,f(x) ∩ f(X) is

closed in the topology of Vf(x) ∩ f(X) due to the fact that Cx,f(x) ∩ f(X) is closed

in f(X). We can also choose Vf(x) small enough so that the hypothesis holds for

it, that is, f−1(Vf(x) ∩ f(X)) is connected.

Note that connectedness of the fibers, and thus bijectivity of f̃ , implies that

f̃−1(f(A)) = πf (A) for any subset A of X.

The sets that enter in the equality

f̃−1(Vf(x) ∩ f(X)) = f̃−1((Vf(x) ∩ f(X))\f(Ux)) ∪ f̃−1(f(Ux))
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or equivalently

πf (f
−1(Vf(x) ∩ f(X))) = f̃−1((Vf(x) ∩ f(X))\f(Ux)) ∪ πf (Ux)

are all open because πf is open and we also have that f̃−1((Vf(x)∩f(X))\f(Ux))∩

f̃−1(f(Ux)) = φ. But this contradicts the connectivity of πf (f
−1(Vf(x) ∩ f(X))). •

Remark 3.2.12. Let f : X → V be a continuous map such that f has local

convexity data and is locally fiber connected. Then for every point [x] ∈ Xf there

is a neighborhood Ũ[x] of [x] such that f̃ : Ũ[x] −→ Cx,f(x) is a homeomorphism

onto its open image. Eventually, after shrinking Ũ[x], we can suppose that its

image is convex. Note that Xf is connected since X is connected. Also Xf is

locally path connected. Therefore Xf is path connected.

Definition 3.2.13. Let V be a Banach space. Define a distance d on Xf in

the following way: for [x], [y] ∈ Xf let d([x], [y]) be the infimum of all the lengths

l(f ◦γ), where γ is a curve in Xf that connects [x] and [y]. The length is calculated

with respect to the distance dV defined by the norm on V. From the definition it

follows that dV (f̃([x]), f̃([y])) ≤ d([x], [y]) and from the above note equality holds

for [x] and [y] sufficiently close.

Theorem 3.2.14. [Generalization of the lokal-global-prinzip] Let f : X → V be

a closed map with values in a finite dimensional Euclidean vector space V and

X a connected, locally connected, first countable, and normal topological space.

Assume that f has local convexity data and is locally fiber connected. Then

(i) All the fibers of f are connected.

(ii) f is open on to its image.

(iii) The image f(X) is a closed convex set.

Proof : Let [x]0, [x]1 ∈ Xf be two arbitrary points and c := d([x]0, [x]1). By

the definition of d, we have that for every n ∈ ℵ there exist a curve γn defined
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on the interval [a, b] connecting [x]0 and [x]1, and satisfying l(f̃ ◦ γn) ≤ c + 1
n
.

Also, for every n ∈ ℵ, let vn = (f̃ ◦ γn)(t0) be the point on the curve f̃ ◦ γn

such that l(f̃ ◦ γn |[a,t0]) = 1
2
l(f̃ ◦ γn). Then there exists a finite set of points

{[x]n1 , ......., [x]nkn
}in Xf such that f̃−1(vn) ∩ range(γn) = {[x]n1 , ......., [x]nkn

} ⊂

Bc+1([x]0), where Bc+1([x]0) := {[x] ∈ Xf | d([x]0, [x]) ≤ c + 1} is compact.

Relabelling the elements of the set ∪n∈ℵ{[x]n1 , ......., [x]nkn
} we obtain a sequence

included in the compact set Bc+1([x]0) and consequently, it will have an accumu-

lation point denoted by [x] 1
2
.

The definition of d implies that d([x]0, [x] 1
2
) = d([x] 1

2
, [x]1) = c

2
. Repeating this

process for the pair of points ([x]0, [x] 1
2
) and ([x] 1

2
, [x]1) we obtain the points [x] 1

4

and [x] 3
4

satisfying d([x]0, [x] 1
4
) = d([x] 1

4
, [x] 1

2
) = d([x] 1

2
, [x] 3

4
) = d([x] 3

4
, [x]1) = c

4
.

Inductively, we obtain points [x] n
2m
, [x] n′

2m′
for 0 ≤ n ≤ 2m, 0 ≤ n′ ≤ 2m′

, such that

d([x] n
2m
, [x] n′

2m′
) = c | n

2m
− n′

2m′ | . (3.14)

We can extend the map n
2m −→ [x] n

2m
to a continuous map γ : [0, 1] −→ Xf such

that

d(γ(t), γ(t′)) = c | t− t′ | . (3.15)

To see this, note that every t ∈ [0, 1] can be approximated by a sequence of the

type nk

2mk
. The corresponding points are contained in the compact set Bc+1([x]0)

and hence they have an accumulation point [x]t. It is now easy to see, using 3.14,

that [x]t does not depend on the sequence nk

2mk
and that the curve γ constructed

in this way is continuous.

Remark 3.2.12 and equation 3.15 imply that locally dV ((f̃ ◦γ)(t), (f̃ ◦γ)(t′)) =

c | t − t′ | which shows that f̃ ◦ γ is locally a straight line. Due to equation

3.15, f̃ ◦γ is necessarily a straight line that goes through f̃([x]0) and f̃([x]1). This
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proves the convexity of f(X). Since f is a closed map the set f(X) is closed in V

which proves (iii).

In order to prove the connectedness of the fibers of f let [x]0, [x]1 ∈ Xf be

two arbitrary points such that v := f̃([x]0) = f̃([x]1) and c := d([x]0, [x]1). Any

curve that connects these two points is mapped by f̃ into a loop based at v. We

shall prove that c = 0, which implies that [x]0 = [x]1and hence that the fibers of

f are connected. Let γ be the curve constructed above. Then the range of f̃ ◦ γ

is a segment that contains v. We will prove by contradiction that this segment

consists of just one point which is v itself.

Suppose that this is not true. Since f̃ ◦γ is a loop based at V and at the same

time a straight line, there exists a turning point v0 := (f̃ ◦ γ)(t0) on the segment

f̃ ◦ γ such that for t ≤ t0 we approach v0 and for t′ ≥ t0 we move away from

v0 staying on the same segment which is the range of f̃ ◦ γ. Otherwise stated,

range(f̃ ◦ γ |[t,t0]) = range(f̃ ◦ γ |[t0,t′]) and hence in a neighborhood of γ(t0)

the map f̃ is not injective. However, since f is locally fiber connected the map

f̃ is locally injective, which is a contradiction. This proves (i). Note that from

c = d([x]0, [x]1) and dV (f̃([x]0), f̃([x]1)) = dV (v, v) = 0 we cannot conclude that

c = 0 since the equality between the two metrics holds only locally.

The openness of f is implied by Corollary 3.2.9. •

Remark 3.2.15. The Theorem 3.2.14 remains true if we replace the vector space

V by a convex subset C of V. This is a fact used in the generalization of several

classical convexity theorems. We have seen that the convexity is rooted on the

map being open onto its image and having local convexity data. Now we look at

the convexity for momentum maps. First a generalization of Atiyah-Guillemin-

Sternberg Convexity theorem for non compact manifolds is given.

For the remaining part in this section we assumed that all manifolds considered
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to be are Hausdorff.

Definition 3.2.16. Let V be a finite dimensional vector space.

(i) A subset K ⊂ V is called polyhedral if it is the intersection of a finite family

of closed half spaces of V. Consequently, a polyhedral subset of V is closed and

convex.

(ii) A subset K ⊂ V is called locally polyhedral if for every x ∈ K there exists

a polytope Px in V such that x ∈ int(Px) and K ∩ Px is a polytope.

Note 3.2.17. The original version of the Marle-Guillemin-Sternberg Normal form

Theorem 3.1.12 provides the twisted product (T0 × T1) ×T0 (T ∗
1 × V ) as a local

T -invariant local model for M. This is equivariantly diffeomorphic to T1×T ∗
1 ×V )

via the map

(T0 × T1)×T0 (T ∗
1 × V ) −→ T1 × T ∗

1 × V

((t1, t0), η, v) 7−→ (t1, η, t0.v).

Therefore Marle-Guillemin-Sternberg Normal form Theorem 3.1.12 to the case

of torus actions can be stated as follows.

Theorem 3.2.18. Let (M,ω) be a symplectic manifold and let T be a torus acting

properly on M in a globally Hamiltonian fashion with invariant momentum map

JT : M → T ∗. Let m ∈ M and T0 = (Tm)0 be the connected component of the

stabilizer Tm. Let T1 ⊂ T be a subtorus such that T = T0 × T1. Then:

(i) There exists a symplectic vector space (V, ωV ), a T -invariant open neigh-

borhood U ⊂M of the orbit T.m, and a symplectic covering of a T -invariant open
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subset U ′ of (T1×T ∗
1 )×V onto U under which the T-action on M is modelled by

(T0 × T1)× (T1 × T ∗
1 )× V → (T1 × T ∗

1 )× V

((t0, t1), (t
′
1, β, v)) 7→ (t1t

′
1, β, π(t0)v)

where π : T0 → Sp(V ) is a symplectic representation.

(ii) There exist a complex structure I on V such that < v, ω >:= ωV (Iv, ω)

defines a positive scalar product on V. Then V = ⊕α∈PV
Vα, where Vα := {v ∈ V |

Y.v = α(Y )Iv, for all Y ∈ t0} and

PV := {α ∈ T ∗
0 | Vα 6= {0}}. The corresponding T -momentum map Φ : (T1 ×

T ∗
1 )× V → T ∗

1 × T ∗
0 ' T ∗ is given by

Φ((t1, β),
∑

α

vα) = Φ(1, 0, 0) + (β,
1

2

∑
α∈PV

‖vα‖2α).

Theorem 3.2.19. Let (M,ω) be a symplectic manifold and let T be a torus

acting on M in a globally Hamiltonian fashion with invariant momentum map

JT : M → T ∗. Then there exists an arbitrarily small neighborhood U of m and a

convex polyhedral cone CJ(m) ⊂ T ∗ with vertex JT (m) such that

(i) JT (U) ⊂ CJT (m) is an open neighborhood of JT (m) in CJT (m).

(ii) JT : U → CJT (m) is an open map.

(iii) If To is the Lie algebra of the stabilizer Tm of m, then CJT (m) = JT (m) +

T ⊥
o + cone(PV ); where PV := {α ∈ T ∗

o |Vα 6= {0}}.

(iv) J−1
T (JT (m)) ∩ U is connected for all m ∈ U.

Proof : Here is a sketch of the proof. For details see [18]. Recall that

cone(PV ) := {
∑

j ajαj | aj ≥ 0}. By the above theorem it suffices to work with

the momentum map J. For small neighborhoods BT ∗1 and BV of the origin in

T ∗
1 and V respectively, the restriction of J to U := T1 × BT ∗1 × BV takes values

in the polyhedral closed convex cone CJT (m) = JT (m) + T ∗
1 + cone(PV ), where
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cone(PV ) denotes the cone generated by the finite set PV := {α1, α2, ....αn} of

To-weights for the action on V ; cone(PV ) is clearly closed. In order to prove

that JT satisfies the conditions of the theorem, we decompose it in two maps

ϕ1 : (t1, β,
∑

α vα) 7→ (β, ‖vα‖2) and ϕ2 : (β, a1, ....an) 7→ (β, 1
2

∑
j ajαj}. We have

JT = ϕ2 ◦ϕ1 +JT (m). One proves that ϕ1, ϕ2 are open onto their images and have

connected fibers so JT have the same properties. •

Note 3.2.20. The above result shows that the momentum maps of globally Hamil-

tonian torus actions always have local convexity data with closed cones and are

locally fiber connected. In fact the associated cones are closed in T ∗. Hence the

following generalization of the Atiyah-Guillemin-Sternberg Convexity theorem for

non compact manifolds.

Theorem 3.2.21. Let M be a paracompact connected symplectic manifold on

which a torus T acts in a Hamiltonian fashion. Let JT : M → T ∗ be an associated

momentum map which we suppose is closed. Then the image JT (m) is a closed

convex locally polyhedral subset in T ∗. The fibers of JT are connected and JT is

open on to its image.

Proof : This is a consequence of the above theorem and the generalization of

the Lokal-global-prinzip. The image is locally polyhedral since JT is open onto its

image and the associated cones are polyhedral. •

This approach to convexity also generalizes a result due to Prato [9].

Theorem 3.2.22. Let M be a paracompact connected symplectic manifold on

which a torus T acts in a Hamiltonian fashion. Let JT : M → T ∗ be an associated

momentum map . If there exists ξ ∈ T such that the map Jξ
T ∈ C∞(M) defined

by Jξ
T :=< JT , ξ > is proper, then the image JT (m) is a closed convex locally

polyhedral subset in T ∗. Moreover, the fibers of JT are connected and JT is open

on to its image.
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Proof : The proof is done using the generalization of the Lokal-global-prinzip

3.2.14. Then it is enough to prove JT is a closed map.

Note that the map Jξ
T ∈ C∞(M) can be written as Jξ

T = b ◦ π ◦ JT , where

π : T ∗ → span{ξ}∗ is the dual of the inclusion span{ξ} ↪→ T and b : span{ξ}∗ →

< is the linear isomorphism obtained as the map that assigns to each element

in span{ξ}∗ its coordinate in the dual basis of {ξ} as a basis of span{ξ}. Let

µ ∈ JT (A) be arbitrary and {µn}n∈N ⊂ JT (A) a sequence such that µn → µ.

Let {xn}n∈N ⊂ A a sequence such that JT (xn) = µn. By continuity we have

Jξ
T (xn) = b ◦ π ◦ JT (xn) → b ◦ π(µ). Since by hypothesis Jξ

T is a proper map there

exists a convergent subsequence xnk
→ x ∈ A and hence JT (xnk

) → JT (x) = µ,

which shows that µ ∈ JT (A). Thus JT (A) ⊂ JT (A). •

Note 3.2.23. The openness of a map that has local convexity data is considered

in two cases: when the map has connected fibers and the case when map has only

the locally fiber connectedness property. First we give the necessary and sufficient

topological conditions for JT to be open on to its image when JT has connected

fibers.

Definition 3.2.24. Let M be a manifold and G a Lie group acting properly on

it. The orbit G.m is called regular if the dimension of nearby orbits coincides

with the dimension of G.m. Let M reg denote the union of all regular orbits. For

every connected component M o of M the subset M reg ∩M o is connected, open

and dense in M o.

Proposition 3.2.25. Let JT : M → T ∗ be the momentum map of a torus action

on the connected symplectic manifold (M,ω). Suppose that JT is open on to

its image. Then the complement CJT (M reg) := JT (M)\JT (M reg) (where M reg

denotes the union of all regular orbits) does not disconnect any region in JT (M).

Proof : Suppose there exists a region V ⊂ JT (M) (relative to induced topol-

ogy from T ∗) such that V \CJT (M reg) is disconnected. So
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V \CJT (M reg) = A ∪ B, where A and B are open in V and A ∩ B = ∅. We have

JT (M reg) is dense in JT (M), therefore

JT (M reg) ∪ V = V \CJT (M reg) = A ∪B

is dense in JT (M) ∪ V = V. Hence

A ∪B ∩ V = V + (A ∩ V ) ∪ (B ∩ V ).

Claim : There exists an element v ∈ CJT (M reg)∩V such that any neighborhood

Vv ⊂ V of V in v is disconnected by CJT (M reg) ∩ V.

Suppose that this claim is false. Then for every v ∈ CJT (M reg)∩V there would

exist a neighborhood Vv ⊂ V of V in v such that Vv\CJT (M reg) is connected.

Therefore we have either

Vv\CJT (M reg) ⊂ A or Vv\CJT (M reg) ⊂ B.

Thus, either

v ∈ A ∩ V or v ∈ B ∩ V.

But v ∈ CJT (M reg) ∩ V is arbitrary, therefore,

(A ∩ V ) ∩ (B ∩ V ) = ∅.

This contradicts the connectivity of V and hence there exists an element v ∈

CJT (M reg) ∩ V such that any neighborhood Vv ⊂ V of V in v is disconnected by

CJT (M reg).
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Take an arbitrary element x ∈ J−1
T (v) and Ux a small neighborhood of x such

that JT (Ux) ⊂ V is an open neighborhood of v in JT (M); this holds because JT

is open onto its image by hypothesis. Then by assumption JT (M) ∩ JT (M reg) is

disconnected. Taking the T-saturation of Ux we get a T -invariant neighborhood

whose image is in V since JT is T -invariant. Thus we can assume that Ux is T -

invariant and then the set of regular points for the induced T -action on Ux equals

the set Ux ∩M reg which in turn is open, dense, and connected in Ux.

Let E := {z ∈ Ux|JT (z) ∈ CJT (M reg)}.

Since we can write Ux = E ∪ D with D := Ux\E, by the construction of E we

have

JT (E) = JT (Ux) ∩CJT (M reg) and JT (D) = JT (Ux) ∩ JT (M reg).

Now since E ⊂ Ux\M reg, the inclusion Ux ∩ M reg ⊂ D, also holds. Because

Ux ∩M reg is dense and connected in Ux so is D in Ux. But this is a contradiction

with the fact that JT (D) = JT (Ux) ∩ JT (M reg) is disconnected. This proves the

result. •

Lemma 3.2.26. Let (M,ω) be a connected symplectic manifold and JT : M →

T ∗ be the invariant momentum map associated to the canonical torus action on

M. Then JT |Mreg : M reg → JT (M) is an open map. In particular JT (M reg) is an

open dense subset of JT (M).

Proof :We shall prove that for each point in M reg there is an open neighbor-

hood such that the restriction of JT to this neighborhood is an open map onto

its image. Let x0 ∈ M reg be an arbitrary point. By the openness and the T -

invariance of M reg we can find an open connected T -invariant neighborhood Ux0

of x0 included in M reg. Therefore, for x ∈ Ux0 , we have dimT.x = dimT.x0 =

dimT/T0 = dimT1, where T0 := (Tx0)
0 and T = T0 × T1. Eventually shrinking
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Ux0 , using theorem 3.2.18, we can work with the normal form. Recall that the

original action is symplectically and T -equivariantly transformed to the action

(T0 × T1)× (T1 × T ∗
1 )× V → (T1 × T ∗

1 )× V

((t0, t1), (t
′
1, β, v)) 7→ (t1t

′
1, β, π(t0)v)

where π : T0 → Sp(V ) is a symplectic representation. Since the isotropy subgroup

of this action at the point (t
′
1, β, υ) equals {t0 ∈ T0 | π(t0)υ = υ}× {e} ⊂ T0×T1,

the condition that it be equal to T × {e} implies that the representation π is

trivial. Therefore all its weights are zero. By theorem 3.2.19 we conclude that

CJT (x0) = JT (x0) + T ∗
1 + cone(PV ) = JT (x0) + T ∗

1 and that JT : Ux0 → CJT (x0) =

JT (x0) + T ∗
1 is an open map.

Note that JT (M reg) ⊂ JT (x0) + T ∗
1 for some (and hence any) x0 ∈ M reg

and T1 is the torus whose Lie algebra is T ⊥
0 , where T0 is the isotropy algebra

of a regular point in M and the perpendicular is taken relative to an a priori

chosen T -invariant inner product on T . Indeed, using the well-chained property

of M reg any two points in M reg can be linked by a finite chain formed by the open

neighborhoods constructed above. The image of each such neighborhood lies in

a translate of T ∗
1 and since the neighborhoods intersect pairwise, all these affine

spaces coincide. Thus, JT (M reg) lies in just one translate of T ∗
1 . By the density

of M reg in M and the closedness of the affine space in T ∗ it follows that JT (M)

lies in the same affine space.

Hence, we have shown that for any x0 ∈ M reg there exists an open neighbor-

hood Ux0 ⊂M reg such that JT (Ux0) is open in a given translate of T ∗
1 . Therefore,

JT (Ux0) is open in JT (M). •

Proposition 3.2.27. Let JT : M → T ∗ be the momentum map of a torus action.

Assume that JT has connected fibers and that CJT (M reg) := JT (M)\JT (M reg)
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does not disconnect any region in JT (M). Then JT is open on to its image.

Proof : If M has more than one connected component then the JT -images

of any two components do not intersect, for otherwise this would contradict the

connectedness of the fibers. Since connected components of M are necessarily

T -invariant, we can suppose without loss of generality that M is connected. The

proof is done by using Proposition 3.2.11. In order to apply this result it is enough

to prove for any v ∈ JT (M) and any neighborhood Vv, the pre image J−1
T (Vv) is

connected in M.

From the above Lemma we have JT |Mreg : M reg → JT (M) is an open map.

Let T ∗
1 be the dual of the subtorus whose translate contains JT (M).

Since M is path connected, JT (M) is also path connected and thus it is also

locally connected. Let JT (x) ∈ JT (M) be arbitrary. Choose a small neighbor-

hood VJT (x) of JT (x) in T ∗
1 such that V := VJT (x) ∩ JT (M) is a region in JT (M).

Then Vo := VJT (x) ∩ JT (M reg) is connected due to the hypothesis that the region

V := VJT (x) ∩ JT (M) cannot be disconnected by removing CJT (M reg). Note that

JT |Mreg : M reg → JT (M) is an open map and just showed that Vo ⊂ JT (M reg) is

connected. Any fiber of JT is connected by hypothesis. Since such a fiber is T -

invariant, the set of its regular points for the T -induced action is open dense and

connected in it. If v ∈ JT (M reg), then J−1
T (v) ∩M reg is connected. Thus JT |Mreg

is open and has connected fibers , therefore J−1
T (Vo) ∩M reg is connected. Since

J−1
T (Vo) ∩M reg is dense in J−1

T (Vo) it follows that Uo := J−1
T (Vo) is connected.

Next show that Uo is dense in U := J−1
T (V ). Indeed, if this is not true, then

there exist an element xo ∈ U\Uo and a neighborhood Uxo that does not intersect

Uo. For the open set U ′ = U ∩ Uxo ∩ M reg 6= ∅ we have that JT (U ′) ⊂ Vo is

open in Vo. So there exist an element vo ∈ JT (U ′) such that J−1
T (vo)∩Uxo 6= ∅ and

J−1
T (vo)∩Uo 6= ∅. But J−1

T (vo) ⊂ Uo which contradicts the assumption Uxo∩Uo = ∅.
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By the connectedness of Uo and the fact that it is dense in U we obtain that

U is connected and hence the result follows from Proposition 3.2.11. •

Thus from Propositions 3.2.27 and 3.2.25 we have the characterization for JT

to be open onto its image in the case when JT has connected fibers.

Theorem 3.2.28. Let JT : M → T ∗ be the momentum map of a torus ac-

tion which has connected fibers. Then JT is open on to its image if and only

if CJT (M reg) := JT (M)\JT (M reg) (where M reg denotes the union of all regular

orbits) does not disconnect any region in JT (M). Moreover, the image of the

momentum map is locally convex and locally polyhedral.

Note 3.2.29. Next we discuss the above characterization when the map JT has

only the locally fiber connectedness property.

Definition 3.2.30. A metric space is called a generalized continuum if it is locally

compact and connected. In a topological space a quasi-component of a point is

the intersection of all closed and open sets that contain that point. A topological

space is called totally disconnected if the quasi component of any point consists

of the point itself. A continuous map f : X → Y is called light if all fibers f−1(y)

are totally disconnected. We say that a subset of a topological space is non-dense

if and only if it contains no open subsets.

Theorem 3.2.31 (Whyburn). Let X and Y be locally connected generalized

continua and let f : X → Y be an onto light mapping which is open on X\f−1(F ),

where F is a closed non-dense set in Y which separates no region in Y and is such

that f−1(F ) is non-dense. Then f is open on X.

Definition 3.2.32. Let JT : M → T ∗ be the momentum map of a torus action of

a connected symplectic manifold (M,ω). We say that JT satisfies the connected

component fiber condition if JT (x) = JT (y) and Ex∩M reg 6= ∅, then Ey∩M reg 6= ∅,

where Ex and Ey are the connected components of the fiber J−1
T (JT (x)) that

contain x and y respectively.
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Proposition 3.2.33. Let JT : M → T ∗ be the momentum map of a torus action

of a connected symplectic manifold (M,ω). Suppose thatMJT
is a Hausdorff space,

JT (M) is locally compact, CJT (M reg) does not disconnect any region in JT (M),

and JT satisfies the connected component fiber condition. Then JT is open on to

its image.

Proof : Take f := J̃T : MJT
→ JT (M) ⊂ T ∗, that is the quotient map

uniquely defined by JT = πJT
◦ J̃T and F := CJT (M reg), which is closed and non

dense in JT (M) by Lemma 3.2.26.

By hypothesis MJT
is a Hausdorff space. Using the fact that M is locally

compact, and πJT
is open we obtained that MJT

is locally compact. Since M is

connected, the quotient MJT
is connected. Then MJT

is a metric space since it

is Hausdorff. Therefore, MJT
is a generalized continuum. The same is true for

JT (M). Both are locally connected since M is path connected.

Now we prove that J̃T : MJT
→ JT (M) is a light map. For this take v ∈ JT (M).

We want to show that J̃T

−1
(v) is totally disconnected. Let [x] ∈ J̃T

−1
(v) be

arbitrary and choose x ∈ M a representative of this class. Since JT has local

convexity data and locally fiber connected, we can find a small neighborhood Ux of

x in M such that πJT
(Ux) is open in MJT

and is such that J̃T

−1
(v)∩πJT

(Ux) = [x].

Thus J̃T : MJT
→ JT (M) is a light map.

Now we prove that J̃T

−1
(F ) is non-dense in MJT

. By contradiction, suppose

that this is not true. Then there exists an open set U ⊂ J̃T

−1
(F ). Because

πJT
(M reg) is dense in MJT

we have that U ∩ πJT
(M reg) 6= ∅. Thus there exists

an element [x] ∈ J̃T

−1
(F ) ∩ πJT

(M reg) and hence there is an x ∈ M reg such that

JT (x) = J̃T ([x]) ∈ F. This contradicts the definition of F.
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Then we prove J̃T restricted t MJT
\J̃T

−1
(F ) is an open map. Note that

J̃T

−1
(F ) = J̃T

−1
(CJT (M reg))

= CJ̃T

−1
(JT (M reg)) ⊂ CπJT

(M reg)

shows that MJT
\J̃T

−1
(F ) ⊃ πJT

(M reg). Now we shall prove the reverse inclusion.

Let [x] ∈ MJT
\J̃T

−1
(F ). If the connected component Ex of the fiber J−1

T (JT (x))

intersects M reg, then [x] ∈ πJT
(M reg). If not, then we have JT (x) = J̃T ([x]) is

not element of F. that is, JT (x) ∈ CF = JT (M reg). Therefore, there is some

y ∈ M reg such that JT (x) = JT (y). By CCF condition Ex ∩M reg 6= ∅, and hence

[x] ∈ πJT
(M reg) which proves the equalityMJT

\J̃T

−1
(F ) = πJT

(M reg). Thus, since

J̃T is open in πJT
(M reg), we have the requirements of the Whyburns Theorem. •

Theorem 3.2.34. Let JT : M → T ∗ be the momentum map of a torus ac-

tion of a connected symplectic manifold (M,ω). Suppose that MJT
is a Hausdorff

space. Then JT is open on to its image if and only if JT (M) is locally compact,

CJT (M reg) does not disconnect any region in JT (M) , and JT satisfies the con-

nected component fiber condition . Moreover under these hypothesis the image

of the momentum map is locally convex and locally polyhedral.

Proof : It is enough to prove that if JT : M → JT (M) is open onto its

image then CCF condition holds. Suppose that the condition does not hold. So

there exist a fiber with at least two connected components Ex and Ey such that

Ex ∩M reg 6= ∅ and Ey ∩M reg = ∅.

Consequently we can suppose that x ∈ M reg and y is contained in a stratum

of the T -action. Then we have the strict inclusion CJT (y) = v+ T ⊥
0 + cone(PV ) ⊂

CJT (x) = v + T ⊥
1 , where v = JT (x) = JT (y). By condition (1) in the definition of

the local convexity data there exists open neighborhoods Ux and Uy of x and y

respectively, such that JT (Ux) is an open ball in T ∗
1 centered at v and JT (Uy) is
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the intersection of an open ball in T ∗
1 centered at v with a closed proper cone in

T ∗
1 with vertex v. This contradicts the openness onto its image of JT . •

Note 3.2.35. In the case of a compact, connected, and non-abelian group, the

momentum map JG : M → G∗ is, in general, not open onto its image even if

it is a proper map. Nevertheless, it can be shown that results obtained in the

abelian case hold for the quotient map jG : M → G∗/G ' T ∗
+ , where jG =

πG ◦ JG and πG : G∗ → T ∗
+ is the projection map which is always proper if G

is compact. The quotient map jG has local convexity data due to the following

result of Sjamaar [36].

Theorem 3.2.36. Let M be a connected Hamiltonian G - manifold. Then for

every x ∈ M there exist a unique, closed, polyhedral convex cone Cx in T ∗
+ with

vertex at jG(x) such that for every sufficiently small G-invariant neighborhood U

of x the set jG(U) is an open neighborhood of jG(x) in Cx.

Using Lerman’s symplectic cut technique [8], Knop [12] proved that the map

jG is locally fiber connected. So we have the following theorem.

Theorem 3.2.37. The map jG is locally fiber connected and has local convexity

data.

Using the above theorem and the generalization of lokal-global-prinzip we ob-

tain the following generalization of Kirwan’s convexity result.

Definition 3.2.38. The map j̃G : M/G→ T ∗
+ defined by the identity jG = π◦ j̃G,

where π : M → M/G is the projection. Also a G-equivariant momentum map

JG : M → G∗ is said to be G-open on to its image whenever j̃G is open on to its

image.

Theorem 3.2.39. Let M be a paracompact connected Hamiltonian G-manifold

with G a compact connected Lie group. If the momentum map JG is closed then
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JG(M)∩ T ∗
+ is a closed convex locally polyhedral set. Moreover, JG is G-open on

to its image and all its fibers are connected.

Proof : We have jG is open on to its image and consequently that JG is

G-open on to its image. Additionally, the set jG(M) = JG(M) ∩ T ∗
+ is a closed

convex locally polyhedral set and jG has connected fibers.

It remains to be proved that JG has connected fibers. To see this, note that

since jG has connected fibers, the pre-images J−1
G (Oµ) are connected as topological

subspaces of M for every coadjoint orbit Oµ ⊂ JG(M). Note now that J−1
G (Oµ)

can also be endowed with the initial topology induced by the map

J
Oµ

G : J−1
G (Oµ) −→ Oµ by, J

Oµ

G (z) = JG(z),

where the orbit Oµ comes with its orbit smooth structure induced by the ho-

mogeneous manifold G/Gµ. Since G is compact, the orbit Oµ is an embedded

submanifold of G∗ and hence the initial topology for JG(Oµ) is weaker than the

subspace topology. Indeed, the sets of the form

(J
Oµ

G )−1(U ∩ Oµ) = J−1
G (U) ∩ J−1

G (Oµ),

with U open in G∗, form a sub basis of the initial topology of J
Oµ

G and since they

are open in M by the continuity of JG, the claim follows. Therefore, J−1
G (Oµ is

also connected for the initial topology. Also we have if J−1
G (Oµ is endowed with

its initial topology then the map

f : G×Gµ J
−1
G (µ) −→ J−1

G (Oµ) by, f([g, z]) = g.z,

is a homeomorphism, where G ×Gµ J
−1
G (µ) denotes the orbit space of the free

and continuous action h.(g, z) := (gh, h−1.z), h ∈ Gµ, g ∈ G, z ∈ J−1
G (µ), of
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the compact connected group Gµ on the product G × J−1
G (µ). The set J−1

G (µ) is

considered with its subspace topology. Let πµ : G× J−1
G (µ) −→ G×Gµ J

−1
G (µ) be

the continuous and open projection. Since the fibers of πµ are connected and πµ

is open it follows that the pre-image of any connected set is connected. Therefore,

G× J−1
G (µ) is connected and hence so is J−1

G (µ) since G is connected. •

Note 3.2.40. next we give non-abelian analogues of the Theorems 3.2.28 and

3.2.34.

Theorem 3.2.41. Let G be a compact connected Lie group and M be a con-

nected Hamiltonian G-Manifold with equivariant momentum map JG : M → G∗.

Suppose that JG has connected fibers. Then JG is G-open on to its image if

and only if C((πG ◦ JG)(M reg)) does not disconnect any region in JG(M) ∩ T ∗
+ .

Moreover, in this context, the image JG(M) ∩ T ∗
+ is a locally convex and locally

polyhedral set.

Proof : Suppose that JG is G-open on to its image. That is, the map j̃G :

M/G→ T ∗
+ defined by the identity jG = j̃G ◦π is open on to its image. Therefore

jG : M → T ∗
+ is open on to its image. Then proceed as in the proof of Proposition

3.2.25 by replacing jG instead of JT : M → T ∗ we get C(jG(M reg)) does not

disconnect any region in jG(M). But we have jG = πG ◦ JG. Hence C((πG ◦

JG)(M reg)) does not disconnect any region in jG(M) = JG(M) ∩ T ∗
+ .

Conversely, assume that JG has connected fibers and C((πG ◦JG)(M reg)) does

not disconnect any region in JG(M)∩ T ∗
+ . That is, C(jG(M reg)) does not discon-

nect any region in jG(M). Therefore by Proposition 3.2.27 jG is open on to its

image. Hence j̃G is open on to its image. Then by definition JG is G-open on to

its image.

From Theorem 3.2.39 the image JG(M) ∩ T ∗
+ is a locally convex and locally

polyhedral set. •
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Theorem 3.2.42. LetG be a compact connected Lie group andM be a connected

Hamiltonian G-Manifold with the momentum map JG : M → G∗. Suppose that

(M/G)
fjG

is a Hausdorff space. Then JG is G-open on to its image if and only if

JG(M) is locally compact, C((πG ◦ JG)(M reg)) does not disconnect any region in

JG(M) ∩ T ∗
+ and satisfies the connect component fiber condition. Moreover, in

this context, the image JG(M)∩T ∗
+ is a locally convex and locally polyhedral set.

Proof : Suppose that (M/G)
fjG

is a Hausdorff space and JG(M) is locally

compact, C((πG ◦ JG)(M reg)) does not disconnect any region in JG(M) ∩ T ∗
+ and

satisfies the connect component fiber condition. Then proceed as in the proof of

Proposition 3.3.17 by replacing jG instead of JT we get jG is open on to its image.

Hence JG is G-open on to its image.

Conversely, suppose that JG is G-open on to its image. So j̃G, and hence

jG : M → T ∗
+ is open on to its image. Then applying Theorem 3.2.34 to jG we

have the result. •

3.3 Division Property

In this section we look at the division property of the momentum maps. Let

J : M −→ G∗ be a momentum map associated to a Hamiltonian action of a

compact Lie group G on a connected symplectic manifold (M,ω). If this map

J is proper, Y.Karshon and E.Lerman proved that every formal pull back with

respect to J is a collective function. We can generalize this theorem by replacing

the compactness condition on the Lie group by proper and effective action. We

prove that Torus action has division property if JT is closed and semi-proper.

Also we proved that for a paracompact connected symplectic manifold with G

a compact connected Lie group. If the associated momentum map J is closed
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and semi proper as a map into some open subset of G∗, then J has the division

property if the image J(M) is contained the G∗reg, where denote G∗reg the elements

of G∗ whose stabilizers under the coadjoint action of G are tori. [11] , [41] , [7],

[6] , [13].

Definition 3.3.1. Let J : M −→ G∗ be a momentum map associated to a Hamil-

tonian action of a connected Lie group G on a symplectic manifold (M,ω). Pull

backs by J of smooth functions on G∗ are called collective functions. They form

Poisson subalgebra of the algebra of smooth functions on M.

Note 3.3.2. A collective function is clearly constant on the level sets of the

momentum map. The converse need not be true. For example, the standard

linear action of the group G = SU(2) on C2 has a momentum map J(u, v) =

(uv, 1
2
(| u |2 − | v |2)) when we identify the vector space G∗ with < × C. The

function f(u, v) =| u |2 + | v |2 is constant on the level sets of J because it is

equal to (| uv |2 +(1
2
(| u |2 − | v |2))2)

1
2 = 1

2
‖ J ‖. It is not collective because the

function ‖ x ‖ is not smooth on <×C.

As a corollary of Marle-Guillemin- Sternberg local normal form Theorem 3.1.12

we have

Theorem 3.3.3 (Local normal form near an isotropic orbit). Let J : M −→ G∗

be a momentum map associated to a proper Hamiltonian action of a Lie group G

on a symplectic manifold (M,ω). Suppose that the orbit G.m is isotropic in M.

Let Gm denote the stabilizer of m in G, let G0
m denote the annihilator of its Lie

algebra in G∗, and let Gm −→ Sp(V ) denote the symplectic slice representation.

Given a Gm-equivariant embedding, i : G∗m −→ G∗, there exist a G-invariant

closed two form, ωY , on the manifold Y = G×Gm (G0
m × V ), such that

1. the form ωY is nondegenerate near the zero section of the bundle Y −→ G/Gm,

2. a neighborhood Um of the orbit of m in M is equivariantly symplectomorphic
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to a neighborhood of the zero section in Y, and

3. the action of G on (Y, ωY ) is Hamiltonian with a momentum map JY : Y −→ G∗

given by JY ([g, η, υ]) = Ad∗(g)(η + i(JV (υ))) where Ad∗ is the coadjoint action,

and JV : V −→ G∗m is the momentum map for the slice representation of Gm.

Consequently the equivariant embedding i : Um −→ Y intertwines the two mo-

mentum maps, up to translation : J |Um= JY ◦ i+ J(m).

Remark 3.3.4. Let J : M −→ G∗ be a momentum map associated to a proper

Hamiltonian action of a Lie group, G on a symplectic manifold (M,ω). Then

any two points in a connected component of a level set of J can be joined by a

piece-wise smooth curve that lies in the level set.

Note 3.3.5. A non-trivial consequence of the local normal form theorem is the

image under the momentum map of a small invariant neighborhood of an orbit

G.m does not change as m varies along a connected component of the level set

J−1(J(m)).

Theorem 3.3.6. Let (M,ω) be a symplectic manifold andG be a Lie group acting

properly and canonically on it. Suppose that this action is Hamiltonian with an

associated momentum map J : M −→ G∗. Also suppose that J be equivariant

with respect to the given action of G on M and the coadjoint action on G∗. Then

the centralizer of the algebra of G-invariant functions in the Poisson algebra on

M is the set of smooth functions that are locally constant on the level sets of the

momentum map.

Proof: The Hamiltonian flow of an invariant function preserves the level sets

of the momentum map, the Poisson bracket of an invariant function and a function

that is locally constant on the level sets of the momentum map is zero. This shows

the centralizer of the invariant functions contains the functions that are locally

constant on the level sets of the momentum map.

Let h be a function in the centralizer of the invariant functions. Let γ(t) be
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any smooth curve contained in the level set of the momentum map J. Since any

two points in a connected component of a level set of J can be connected by a

piece wise smooth curve, we are done if we can prove that the derivative of h(γ(t))

is zero for all t. This derivative is equal to ω(γ̇, Xh) where Xh is the Hamiltonian

vector field of h.

For any vector ξ in the Lie algebra G we have 0 =< γ̇, dJξ >= ω(γ̇, ξM).

Hence if γ(t) is a smooth curve contained in a level set of the momentum map,

the tangent vectors γ̇ lie in the symplectic perpendiculars to the G-orbits.

Now it suffices to show that the Hamiltonian vector field, Xh, of a function h

in the centralizer of the invariant functions is tangent to the G-orbits. Let σ(t)

be an integral curve of the vector field Xh. Then for any G-invariant function,

f, we have d
dt

(f(σ(t))) = (Xhf)(σ(t)) = 0 that is, f is constant along σ(t). Here

the G-invariant functions separate orbits, the integral curve σ(t) is contained in

a single G-orbit. Hence the vector field Xh is tangent to G-orbits. •

Corollary 3.3.7. Let J : M −→ G∗ be a momentum map associated to a proper

Hamiltonian action of a connected Lie group G on a symplectic manifold (M,ω).

The algebra of collective functions and the algebra of invariant functions are mu-

tual centralizers in the Poisson algebra C∞(M) if and only if every smooth function

on M that is locally constant on the level sets of the momentum map is collective.

Definition 3.3.8. A smooth map ψ : M −→ N between two smooth manifolds

has the division property if any smooth function on M that is locally constant on

the level sets of ψ is the pull back via ψ of a smooth function on N.

The Corollary 3.3.7 can be restated as follows:

Corollary 3.3.9. Let J : M −→ G∗ be a momentum map associated to a proper

Hamiltonian action of a connected Lie group G on a symplectic manifold (M,ω).

The algebra of collective functions and the algebra of invariant functions are mu-
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tual centralizers in the Poisson algebra C∞(M) if and only if the momentum map

J has division property.

Definition 3.3.10. Let ψ : M −→ N be a smooth map between two smooth

manifolds. A smooth function f on M is a formal pullback with respect to ψ if

for every point y in the image ψ(M) there exists a function, ϕ on N such that

f − ψ∗ϕ is flat at all the points of ψ−1(y).

Since the pull back of functions induces a well defined pull back of Taylor’s

series, being a formal pull back with respect to a smooth function ψ : M −→ N

if and only if for every y ∈ N there exists a power series ϕ on N, centered at y,

such that for all x in the level set ψ−1(y), the power series of f at x is the pull

back of the power series ϕ.

Remark 3.3.11. Every formal pull back with respect to ψ is constant on the

level sets of ψ; if f − ψ∗ϕ is flat, f(x) = ϕ(y) for all x ∈ ψ−1(y).

Definition 3.3.12. Let ψ : A −→ B is semi-proper if for every compact set

L ⊂ B there is a compact set K ⊂ A such that ψ(K) = L ∩ ψ(A).

Theorem 3.3.13. Let G be a connected abelian Lie group acting properly and

effectively on a connected symplectic manifold (M,ω). Let J : M −→ G∗ be a

proper momentum map associated to this action. Then J has the division property

if and only if every smooth function on M that is locally constant on the level

sets of J is a formal pull back with respect to J.

Proof. Let m be a point in M, and let Gα be the stabilizer of its image ,

α = J(m) ∈ G∗ under the coadjoint action. Since the action is effective and G is

a connected abelian Lie group, the G-orbits are isotropic by Proposition 1.5.12.

So α is fixed under the coadjoint action of G, for every α ∈ G∗. Since α is fixed,

the translation J−α of the momentum map by −α is still a momentum map. So,

without loss of generality we can assume that α = 0.
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For the proper action, by Theorem 3.3.3 we have a neighborhood of an isotropic

orbit G.m,

Y = G×Gm (Go
m ⊕ V ),

where Gm is the stabilizer of m , Gm is its Lie algebra, G0
m is the annihilator of Gm

in G∗, and V is the symplectic slice at m. The action of G on Y is Hamiltonian

with a momentum map JY : Y −→ G∗ given by

JY ([g, η, υ]) = Ad∗(g)(η + i(JV (υ))),

where Ad∗ is the coadjoint action, and JV : V −→ G∗m is the quadratic momentum

map for the slice representation of Gm and i is a Gm-equivariant embedding of

G∗m in G∗. Moreover there exists a neighborhood Um of the orbit G.m in M and

an equivariant embedding i : Um −→ Y , of Um onto a neighborhood of the zero

section of the bundle Y −→ G/Gm, such that J = JY ◦ i.

As a consequence of the normal form the image under the momentum map of a

small neighborhood of an orbit G.m does not change as m varies along a connected

component of the level set J−1(J(m)). Also this image is the intersection of the

cone JY (Y ) with a neighborhood of the origin in G∗.

Note that the hypothesis that the momentum map is proper can be replaced

by the hypothesis that it is semi-proper as a map into some open subset of G∗ and

that its level sets are connected. So we can choose a neighborhoodWm of the origin

in G∗ and shrink the neighborhood Um of G.m so that J(Um) = J(M) ∩Wm =

JY (Y ) ∩Wm.

The map JY is analytic with respect to the natural real analytic structures of

the model Y and of the vector space G∗. If we endow Um with the real analytic
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structure induced by its embedding , i, into Y, then the restriction J |Um : Um −→

Wm is a real analytic map.

Consider the action of <+ on Y given by λ.[g, η, υ] = [g, λη,
√
λυ]. The map

JY : Y −→ G∗ is homogeneous of degree one with respect to the action of <+.

After possibly shrinking Um and Wm further, we can assume that the open set

i(Um) ⊆ Y is preserved under multiplication by any λ < 1; for such λ we define

λ : Um −→ Um by i(λ.m) = λ.i(m). Let K be a compact subset of the open

set Wm. Then there exist a positive number λ < 1 such that K is contained in

λWm. By homogeneity K ∩ J(Um) ⊂ J(λ.Um). Then L := closure(λ.Um) ∩ J−1K

is a compact subset of Um whose image is K ∩ J(Um). Thus the restriction J |Um :

Um −→ Wm is semi-proper.

Since the map JV is algebraic, its image JV (V ) is a semialgebraic subset of G∗m.

Furthermore, since Ad∗(G) ⊆ GL(G∗) is algebraic, the set JY (Y ) = Ad∗(G)(G0
m×

JV (V )) a semialgebraic subset of G∗. Restricting to the open subset Wm, we see

that J(Um) = JY (Y ) ∩Wm is a semi-analytic subset of Wm.

Thus there exist a neighborhood Um of the orbit G.m inM and a neighborhood

Wm of the point J(m) in G∗ with the following properties:

(1). J(Um) = J(M) ∩Wm.

(2). The restriction J |Um : Um −→ Wm is semi-proper.

(3). There exist real analytic structures on Um and on Wm, compatible with their

smooth structures, such that the restriction J |Um : Um −→ Wm is a real analytic

map and the image J(Um) is a semi analytic subset of Wm.

Moreover the neighborhoods Um and Wm can be chosen to be arbitrarily small,

that is, can be chosen to be contained in any given neighborhoods U ′ of G.m and

W ′ of J(m).

Let N be an open subset of G∗ containing the moment image J(M) with the
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property that the momentum map J : M −→ N is semi-proper. Also the image

of any semi-proper map is closed. Therefore J(M) is closed subset of N.

Then we can prove that the set of pull backs by the map J coincides with the

set of formal pull backs with respect to J.

Clearly every pull back is a formal pull back. Conversely, let f ∈ C∞(M) be a

formal pull back with respect to J. Let m be a point in M, and let Um and Wm be

as obtained above. Since f is a formal pull back with respect to J, its restriction

f |Um is a formal pull back with respect to the map J |Um : Um −→ Wm.

If M and N be real analytic manifolds. Let ψ : M −→ N be a real analytic

map that is semi-proper and whose image ψ(M) is semi-analytic. Then a function

f is a formal pull back with respect to ψ if and only if it is the pull back via ψ

of a smooth function on N [5]. So we can apply this to the map J |Um because

of conditions (2) and (3). Hence there exists a smooth function ϕm on Wm such

that f = ϕm ◦ J on Um. This equality holds on all J−1(J(Um)) because f, being

formal pull back with respect to J, is constant on the level sets of J.

Condition (1) implies that J−1(J(Um)) = J−1(Wm) so, f = ϕm ◦ J on all of

J−1(Wm). The open sets Wm together with the complement of the image J(M)

form an open cover of N. Using a partition of unity subordinate to this cover we

piece together the functions ϕm to form a function ϕ on N such that f = ϕ ◦ J.

Then taking N = G∗, we have the theorem. •

Note 3.3.14. Next we consider the torus actions. Let JT : M −→ T ∗ be a

momentum map associated to a Hamiltonian action of a torus T on a connected

symplectic manifold (M,ω).

Theorem 3.3.15. Let M be a compact connected symplectic manifold on which

a torus T acts in a Hamiltonian fashion. If the associated momentum map JT :
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M → T ∗ is proper, then it has the division property.

Proof : Given that the momentum map JT : M → T ∗ is proper, therefore

it is semi-proper as a map into some open subset of T ∗ and that its level sets

are connected. If the level sets of JT are connected, then centralizer of invariant

functions is locally collective in a neighborhood of an orbit [6].

We know that the image of Y = G×Gm (M∗ × V ) under the momentum map

JY is a linear cone. So under the momentum map J : M −→ G∗ the image of a

sufficiently small neighborhood of the orbit G.m is of the form (α+C)∩W where

W is an open set in G∗ about α = J(m) Also the image of a small neighborhood

of a point in J−1(α) is an open subset of some cone C
′
translated to α.

Claim : There exist a neighborhood U of the level set J−1(α) such that under

J it is of the form (α + C) ∩W ′where W ′ is an open set in G∗ about α. That is,

the cone does not vary along the level set.

This follows from two observations, first of all J−1(α) is connected, so it is

enough to show that the cone does not vary locally. But the local behavior is

modelled by (Y, JY ), and along the zero level set of JY the cone does not vary.

Therefore for any q in J−1(α) there exists open sets Uq in M containing q and Wq

in G∗ containing α so that J(Uq) = (α+C)∩Wq. Since J−1(α) is compact, there

exists q1, ....qL in J−1(α) such that the corresponding sets U1, ....UL cover J−1(α).

The claim follows with W ′ = W1 ∩W2 ∩ .... ∩WL.

Thus J |U is an open map into the translated cone α+C. So for any open set

U0 ⊂ U there exists an open set W ′
0 ∈ G∗ such that J(U0) = (α+ C) ∩W ′

0.

Next we show that the centralizer of invariants is collective not just in a neigh-

borhood of an orbit but in a neighborhood of the whole level set.

Take any f ∈ (C∞(M)G)c, that is, f commutes with all G-invariant functions
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on M. Choose an open set U in M about J−1(α) as in the claim. Then J(U) =

(α+C)∩W ′ for some open set W ′ ⊂ G∗. Since centralizer of invariants is locally

collective, for any q in J−1(α) there exist an open set U(q) and a function φq ∈

C∞(G∗) so that f |U(q)= φq ◦ J |U(q) . We may assume that U(q) ⊂ U for all q.

Since J−1(α) is compact, we can cover J−1(α) by finitely many U(q), say U1 =

U(q1), .....UL = U(qL). Let φ1, ...., φL be the corresponding functions in C∞(G∗).

Since J−1(α) is connected, we may assume that Ui ∩ Ui+1 is non empty for i =

1, ...L.

We proceed on induction on L. Suppose for simplicity that L = 2, so J−1(α) ⊂

U1 ∩ U2. Now f |Ui
= φi ◦ J |Ui

for i = 1, 2 implies that φ1 |(U1∩U2)= φ2 |(U1∩U2) .

By 3.3.15 there exists an open set W ′′ in G∗ so that J(U1 ∩ U2) = (α+ C) ∩W ′′.

Let φ = φ1, and Uα = J−1(W ′′) ∩ (U1 ∩ U2). Then f |Uα= φ ◦ J |Uα .

Thus we have for any point α ∈ J−1(α) there exists an open set Uα in M,

J−1(α) ⊂ Uα an open set W (α) ∈ G∗, a cone Cα and a function φα ∈ C∞(G∗) so

that

(i) J(Uα) = (α+ Cα) ∩W (α) and

(ii) f |Uα= φα ◦ J |Uα .

J(M) is compact, hence there exist α1, ....αs in G∗ such thatW1 = W (α1), .....Ws =

W (αs) cover J(M). Let φ1, ...., φs be the corresponding functions in G∗. Let W0

be the complement of J(M) in G∗, that is, let W0 = G∗\J(M). Choose a par-

tition of unity {ρ0, ...ρs} on G∗ subordinate to {W0, ...Ws}, then {J∗ρ1, ...J
∗ρs}

is a partition of unity on M subordinate to {U1, ...Us}. Let φ = Σρiφi. Then

J∗φ = ΣJ∗ρiJ
∗φi = Σ(J∗ρi)f = f. Hence the Theorem. •

Remark 3.3.16. We give a generalization of theorem 3.3.15 for paracompact

manifolds.
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Theorem 3.3.17. Let M be a paracompact connected symplectic manifold on

which a torus T acts in a Hamiltonian fashion. If the associated momentum map

JT is closed and semi proper as a map into some open subset of T ∗, then J has

the division property.

Proof : Given that M be a paracompact connected symplectic manifold on

which a torus T acts in a Hamiltonian fashion with the associated momentum

map JT is closed. Then by the Theorem 3.2.21 the level sets of JT are connected.

Also JT is semi-proper as a map into some open subset of T ∗. Thus JT is a proper

momentum map. Then using the above theorem JT has the division property. •

Note 3.3.18. Let G be a compact connected Lie group acting on a compact

connected symplectic manifold M in a Hamiltonian fashion with a momentum

map J : M −→ G∗. Put a G-invariant metric on G∗, and use it to identify G∗ with

G. Let Greg be the elements of G whose stabilizers under the coadjoint action of

G are tori, that is, if,

Greg = {ξ ∈ G : stabilizer of ξ is a torus }.

Theorem 3.3.19. Let J : M −→ G∗ be a proper momentum map associated to

a Hamiltonian action of a compact Lie group G on a symplectic manifold (M,ω).

Suppose the image J(M) is contained the Greg. Then J has the division property.

Proof : Given that the momentum map J : M → G∗ is proper, therefore it

is semi-proper as a map into some open subset of G∗ and that its level sets are

connected.

By assumption J(M) ⊂ Greg. Fix a maximal torus T in G, let T be its Lie

algebra and let R be a connected component of T ∩Greg. G is a principal T -bundle
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over G/T. The map

G×R −→ Greg,

(g, ξ) −→ Adg(ξ)

is a surjection. It induces a G-equivariant bijection G×T R −→ Greg. Here G×T R

denotes the associated fiber bundle over G/T with fiber R. The momentum map

J is transversal to R, so F = J−1(R) is a submanifold of M. Moreover F is

symplectic. Since the inverse image of R under j equals the inverse image of its

closure, F is closed. The fact that M = J−1(Greg) and equivariance of J imply

that M is diffeomorphic to G×T F as a G-space. More explicitly let

p1 : G× F −→ G×T F

be the projection. Then the map G ×T F −→ M is given by p1(g, f) = g.f. We

know that G/T is simply connected. Since M is a connected fiber bundle with a

simply connected base its fiber F is connected.

Let j = J |F . Then F is a Hamiltonian T -space, and j is a corresponding T -

momentum map. The map id×j : G×F −→ G×R induces a G-equivariant map

of fiber bundles G ×T F −→ G ×T R. Since J is also G-equivariant the induced

map equals J .

Let p2 : G×R −→ G×T R be the projection. Then the map G×T R −→ Greg

is given by p2(g, r) = g.r. Let µ : U −→ G be a local section of G −→ G/T . The
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map µ induces trivializations of π1 : G×T F −→ G/T and π2 : G×T R −→ G/T :

φ1 : U × F −→ G×T F, by (u, q) −→ p1(µ(u), q)

φ2 : U ×R −→ G×T R, by (u, r) −→ p2(µ(u), r).

Now,J(φ1((u, q))) = J(p1(µ(u), q)) = J(µ(u).q)

= µ(u).J(q) = µ(u).j(q)

= φ2(µ(u), j(q)).

Thus with respect to the identifications, J |π−1
1 (U): π

−1
1 (U) −→ π−1

2 (U) is given by

J(u, q) = (u, J(q)).

Since M = G×T F there exists a 1-1 correspondence between G-invariant func-

tions on M and T -invariant functions on F. In one direction the correspondence

is simply restriction to the fiber. In the other direction, a T -invariant function

on F pulls up to a G and T -invariant function on G × F and so descends to a

G-invariant function G×T F.

This carries over to the correspondence between Hamiltonian vector fields.

(Recall that F is a symplectic manifold.) That is, given a G-invariant function

f , restricting it to F and taking the Hamiltonian vector field of the restriction is

the same as taking the Hamiltonian vector field Ξf of f and restricting it to F.

To prove this it is enough to show that Ξf is tangent to F. So let p be a point in

F −→ G×T F. Since f is constant along the orbit G.p, Ξf (p) lies in the symplectic

perpendicular Tp(G.p)
⊥. We know that Tp(G.p)

⊥ = kerdJp. But F = J−1(R) and

J intersect R transversely. Hence TpF contains kerdJp and therefore Ξf (p) lies in

TpF.

Consider h in (C∞(M)G)c. Assume for a moment that the support of h is

contained in π−1
1 (U) and G −→ G/T is trivial over U. Then π−1

1 (U) = U ×F, and
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it follows from the discussions above that h is killed by the Hamiltonian vector

fields of the T -invariant functions on F. Using Theorem 4.3 we can find a function

h′ in C∞(U × T ) so that h(u, f) = h′(u, j(f)). Thus H = J∗φ for some φ in

C∞(G) = C∞(G∗)).

In general let {Ui} be a cover of G/T such that the G | Ui are trivial. Choose a

partition of unity {σi} subordinate to the cover. Then {π∗i σi} is a partition of unity

on G×T F and each π∗i σi is supported in π−1
1 (Ui). Moreover, since π1 = π2◦J, π∗i σi

is collective. Therefore if h is in (C∞(M)G)c, then (π∗i σi).h are also in (C∞(M)G)c.

But by the discussion above (π∗i σi).h are collective, and so h = Σ(π∗i σi).h is also

collective. Hence the theorem. •

Note 3.3.20. We give a generalization of Theorem 3.3.19 by replacing the proper-

ness of the momentum map by closedness of it.

Theorem 3.3.21. Let M be a paracompact connected symplectic Hamiltonian

G-manifold with G a compact connected Lie group. If the associated momentum

map J is closed and semi proper as a map into some open subset of G∗, then J

has the division property if the image J(M) is contained the G∗reg.

Proof : Given that M be a paracompact connected symplectic Hamiltonian

G-manifold with G a compact connected Lie group with the associated momen-

tum map JG is closed. Then using the Theorem 3.2.39, the level sets of JG are

connected. Also J is semi-proper as a map into some open subset of G∗. Thus J

is a proper momentum map.. Then from the above theorem J has the division

property if the image J(M) is contained the Greg. •



Chapter 4
Generalizations of the Standard

Momentum Maps

In this chapter we discuss certain generalizations of standard momentum map.

The first section is on cylinder valued momentum maps, which has the important

property of being always defined, unlike the standard momentum map. Cylin-

der valued momentum maps are genuine generalizations of the standard ones in

the sense that whenever a Lie algebra action admits a standard momentum map,

there is a cylinder valued momentum map that coincides with it. In section 2

we discuss Lie group valued momentum maps. For Abelian symmetries, cylinder

valued momentum maps are closely related to the so- called Lie group valued

momentum maps. This relation ship is discussed in detail. In the third section

we give a generalization of momentum map in which the group action not in-

volved. After giving a sufficient condition for the existence of momentum map,

we have recaptured a generalization of standard momentum map by family of

symplectomorphisms and the momentum map associated to Hamiltonian group

action.

169
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4.1 Cylinder valued Momentum Maps

To introduce cylinder valued momentum maps, we need connections on a principal

fiber bundle. Then we define holonomy bundle and some properties are discussed.

The definition of cylinder valued momentum map is given as a generalization of

the standard momentum map. We look at certain properties of Cylinder valued

momentum maps. Cylinder valued momentum maps are genuine generalizations

of the standard ones in the sense that whenever a Lie algebra action admits a stan-

dard momentum map, there is a cylinder valued momentum map that coincides

with it [32] , [33].

Definition 4.1.1. Let (P,M, π,G) be a principal fiber bundle. Denote by R : P×

G→ P the right action whose orbit space is P
G

= M . A connection on (P,M, π,G)

is a G valued one form A ∈ Ω1(P,G) such that for any ξ ∈ G, g ∈ G, z ∈ P, and

vz ∈ TzP, we have that

(i) A(z) : TzP → G is linear.

(ii) A(z).ξM(z) = ξ.

(iii) A(Rgz).(TzRg.vz) = Adg−1(A(z).vz)

Note 4.1.2. The connection A provides a splitting of the tangent bundle TP =

V ⊕ H, where V is the bundle of vertical vectors defined by V = KerTπ and

H, that of the horizontal vectors given by H = KerA, that is, H(z) = {vz ∈

TzP |A(z).vz = 0}.

Definition 4.1.3. A curve C : I ⊂ < → P is horizontal if C ′(t) ∈ H(C(t)) for any

t ∈ I. Given a curve d : [0, 1] →M on M and a point z ∈ P, there exist a unique

horizontal curve C : [0, 1] → P such that C(0) = z and (π◦C)(t) = d(t),∀t ∈ [0, 1].

This curve C is called the horizontal lift of the curve d through z.

Definition 4.1.4. Each point z ∈ P and each loop d : [0, 1] → M at the point
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π(z) determine an element in G. Indeed, let C : [0, 1] →M be the horizontal lift of

d through z. Since d(0) = d(1) = π(z). We have that z = C(0), C(1) ∈ π−1(π(z))

and hence there exists a unique element g ∈ G such that C(1) = Rg(C(0)). The

elements in G determined by all the loops at π(z) form a closed subgroup ~(z) of

G called the holonomy group of connection A with reference point z ∈ P . If two

points z1, z2 ∈ P can be joined by a horizontal curve, then ~(z1) = ~(z2). If two

points z1, z2 ∈ P are in the same fiber of π, then there exists g ∈ G such that

z2 = Rgz1 and hence ~(z2) = g−1~(z1)g.

Note 4.1.5. Let (P,M, π,G) be a principal fiber bundle. Let i : Q → P be an

injectively immersed submanifold of P andH a Lie sub group of G (not necessarily

embedded) that leaves Q invariant. If (Q,M, π
′
, H) is a principal fiber bundle,

where π
′

: Q → Q
H

= M is the projection. We say that (Q,M, π
′
, H) is the

reduction of (P,M, π,G). Given a reduction (Q,M, π
′
, H) of principal bundle

(P,M, π,G), a connection A ∈ Ω1(P,G) is said to be reducible to the connection

A
′ ∈ Ω1(Q,H) where H is the Lie algebra of H, if

A
′
(q)(uq) = A(i(q))(Tqi(uq)),

for every q ∈ Q and all uq ∈ TqQ.

Definition 4.1.6. Let A ∈ Ω1(P,G) be a connection on (P,M, π,G) where M

is connected and paracompact. Let P (z) be a set of points in P which can be

joined to z by a horizontal curve. P (z) is called holonomy bundle through z. The

reduction theorem states that (P (z),M, π
′
, ~(z)) is a reduction of (P,M, π,G) and

that the connection A reducible to a connection in (P (z),M, π
′
, ~(z)).

Note 4.1.7. We discuss certain properties of the holonomy bundle.

(i) Holonomy bundles are initial submanifolds of P : The tangent space to the
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holonomy bundle P (z) at any point y ∈ P (z) can be written as the direct sum

TyP (z) = H(y)⊕ Lie(~(z)).y.

where H(y) is the horizontal space at y ∈ P (z) ⊂ P of the connection A ∈

Ω1(P,G) .

The collection of the tangent spaces to the holonomy bundles form a smooth

and involutive distribution on P whose maximal integral manifolds are the holonomy

bundles themselves. This implies that the holonomy bundles are not only injec-

tively immersed submanifolds but initial submanifolds of P.

(ii) All the holonomy bundles are isomorphic as principal bundles via the group

action: that is, given any two points z1, z2 ∈ P there exist an element g ∈ G such

that Rg : P (z1) → P (z2) is a principal bundle isomorphism whose associated

structure group isomorphism is conjugation by g−1. Then three possibilities are

there.

(a) z1, z2 ∈ P are two points that can be joined by a horizontal curve, then

P (z1) = P (z2) by definition.

(b) z1, z2 ∈ P are two points in the same fiber, that is , ∃g ∈ G 3 z2 = Rg(z1). Since

the group action maps horizontal curves to horizontal curves we have Rg(P (z1)) =

P (z2). In addition Rg : P (z1) → P (z2) is principal bundle isomorphism relative

to the group isomorphism ~(z1) → ~(z2) implemented by conjugation using the

element g−1 ∈ G.

(c) If none of the above possibility holds, any two points z1, z2 ∈ P are such

that π(z1) and π(z2) can be joined by a smooth curve (connectedness of the

base). Horizontally lift this curve through z1. Its end point z3 lies in the fiber

of z2. Therefore P (z1) = P (z3) by point (a) and there exists a g ∈ G such that

z2 = Rg(z3). Therefore, by point (b) Rg : P (z3) → P (z2) is principal bundle

isomorphism between P (z1) = P (z3) and P (z2).
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Definition 4.1.8. Let (P,M, π,G) be a principal fiber bundle where M is a

connected and paracompact manifold. Let now A ∈ Ω1(P,G) be a connection on

(P,M, π,G). Given any vector vz ∈ TzP we will denote vH
z ∈ ~(z) its horizontal

part. A curvature form Ω ∈ Ω2(P,G) of the connection form A is defined as

Ω(z)(vz, wz) = dA(z)(vH
z , w

H
z ).

A connection A is said to be flat when its curvature form is identically zero.

Note 4.1.9. From the holonomy theorem given any point z ∈ P , the Lie algebra

of the holonomy group ~(z) of A with reference point z equals the subspace of G

spanned by all the elements of the form Ω(p)(vp, wp), p ∈ P (z), vp, wp ∈ H(p).

The holonomy theorem implies the connection form is flat if and only if its

holonomy groups are discrete. This is equivalent to the horizontal subbundle being

an involutive distribution that has the holonomy bundles as maximal integral

manifolds.

Proposition 4.1.10. Let A be a flat connection on the principal bundle (P,M, π,G)

with connected and paracompact baseM and let (P (z),M, π
′
, ~(z)) be the holonomy

reduced bundle at a point z ∈ P . Then π
′
: P (z) →M is a covering map.

Proof: Since the connection is flat, the Lie algebra Lie(~(z)) of the holonomy

group is trivial by the holonomy theorem and hence ~(z) is a discrete group.

As (P (z),M, π
′
, ~(z)) is locally trivial bundle, any point m ∈ M has an open

neighborhood U such that (π
′
)−1(U) is diffeomorphic to U × ~(z). Since ~(z) is

discrete, each subset U × {g}, g ∈ ~(z), is an open subset diffeomorphic to U.

Hence π
′
is a covering map. •

Note 4.1.11. Let (M,ω) be a connected and paracompact symplectic manifold

and G a Lie algebra acting canonically on it.
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Let π : M ×G∗ →M be the projection onto M. Consider π as the bundle map

of the trivial principal bundle (M × G∗,M, π,G∗) that has (G∗,+) as an abelian

structure group. The group (G∗,+) acts on M × G∗ by v.(m,µ) := (m,µ − v),

with m ∈ M and µ, v ∈ G∗. Let α ∈ Ω1(M × G∗,G∗) be the connection one form

defined by

< α(m,µ).(vm, v), ξ > := (iξM
ω)(m).vm− < v, ξ >,

where (m,µ) ∈ M × G∗, (vm, v) ∈ TmM × G∗,ξ ∈ G and < ., . > denotes the

natural pairing between G∗ and G. Then α is a well-defined connection one form

on M × G∗.

The vertical subbundle V ⊂ T (M × G∗) of π : M × G∗ → M is given for any

(m,µ) ∈M × G∗ by

V (m,µ) := {(0, ρ) ∈ T(m,µ)(M × G∗)|ρ ∈ G∗}.

Also the horizontal subspace determined by α at the point (m,µ) ∈ M × G∗ is

given by

H(m,µ) = {(vm, v) ∈ T(m,µ)(M × G∗)| < α(m,µ).(vm, v), ξ >= 0,∀ξ ∈ G}

= {(vm, v) ∈ T(m,µ)(M × G∗)|(iξM
ω)(m).vm− < v, ξ >= 0,∀ξ ∈ G}(4.1)

consequently, given any vector (vm, v) ∈ T(m,µ)(M × G∗), its horizontal (vm, v)
H

and the vertical(vm, v)
V parts are such that

(vm, v)
H = (vm, ρ) and (vm, v)

V = (0, ρ
′
),
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where ρ, ρ
′ ∈ G∗ are uniquely determined by the relations

< ρ, ξ >= (iξM
ω)(m).vm and ρ

′
= v − ρ,∀ξ ∈ G

Also α is a flat connection.

Definition 4.1.12. For (z, µ) ∈M×G∗, let M×G∗(z, µ) be the holonomy bundle

through (z, µ) and let ~(z, µ) be the holonomy group of α with reference point

(z, µ). The reduction theorem guarantees that (M×G∗(z, µ),M, π/M×G∗(z,µ), ~(z, µ))

is a reduction of (M × G∗,M, π,G∗). For simplicity we use (M̃,M, P̃ , ~) instead

of (M × G∗(z, µ),M, π/M×G∗(z,µ), ~(z, µ)). Let K̃ : M̃ ⊂ M × G∗ → G∗ be the

projection into the G∗-factor.

Consider now the closure ~ of ~ in G∗. Since ~ is a closed subgroup of (G∗,+),

the quotient D := G∗
~ is a cylinder, that is, it is isomorphic to the abelian Lie

group <a × T b for some a, b ∈ ℵ. Let πD : G∗ → G∗
~ be the projection. Define

K : M → G∗
~ to be the map that makes the following diagram commutative:

M̃
eK−→ G∗

P̃ ↓ ↓ πD

M
K−→ G∗

~
.

In other words, K is defined by K(m) = πD(v), where v ∈ G∗ is any element such

that(m, v) ∈ C. This is well defined because if we have two points (m, v), (m, v
′
) ∈

M̃ , then (m, v), (m, v
′
) ∈ P̃−1(m), that is, there exists ρ ∈ ~ such that v′ = v+ ρ.

So πD(v) = πD(v′).

Then the map K : M → G∗
~ is referred as a cylinder valued momentum map

associated to the canonical G action on (M,ω). The definition of K depends on

the choice of the holonomy bundle, that is, if we let M̃1 and M̃2 are two holonomy
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bundles of (M × G∗,M, π,G∗). Then

K
gM1

= K
gM2

+ πD(τ)

where τ ∈ G∗.

Example 4.1.13. Here we compute the cylinder valued momentum map for the

canonical circle action on a torus that does not have a standard momentum map.

Consider a torus T 2 = {(eiθ1 , eiθ2)} as a symplectic manifold with the area form

ω := dθ1 ∧ dθ2 and a circle S1 = {eiφ} acting canonically on it by

eiφ.(eiθ1 , eiθ2) = (ei(θ1+φ), eiθ2).

Consider the trivial principal bundle T 2×< → T 2 with (<,+) as structure group.

Now the connection form is

< α(m, a).(vm, b), ξ > := (iξM
ω)(m).vm− < b, ξ > .

Therefore the Horizontal vectors in T (T 2×<) with respect to the connection α are

of the form ((a, b), b), with a, b ∈ <. Therefore the holonomy groups at any point

is (Z,+). Thus we can define a cylinder valued momentum map K : T 2 → <
Z ' S1

by using the diagram

T̃ 2
eK−→ <

P̃ ↓ ↓ πD

T 2 K−→ <
Z
' S1.

More specifically, we have that by K(eiθ1 , eiθ2) = eiθ2 , for any (eiθ1 , eiθ2) ∈ T 2.

We look at certain properties of cylinder valued momentum maps
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Theorem 4.1.14. Let (M,ω) be a connected and paracompact symplectic man-

ifold and G a Lie algebra acting canonically on it. Then any cylinder valued

momentum map K : M → D associated to this action has the following proper-

ties.

(i) K is a smooth Noether momentum map.

(ii) For any vm ∈ TmM,m ∈M we have that

TmK(vm) = TµπD(v)

where µ ∈ G∗ is any element such that K(m) = πD(µ), and v ∈ G∗ is uniquely

determined by

< v, ξ > = (iξM
ω)(m).vm

for any ξ ∈ G.

(iii) KerTmK = ((Lie(~))o.m)ω.

(iv) Bifurcation Lemma :

range(TmK) = TµπD((Gm)o),

where µ ∈ G∗ is any element such that K(m) = πD(µ).

Proof : As G∗
~ is a homogeneous manifold, we have that πD : G∗ → G∗

~ is a

surjective submersion. Moreover, K ◦ P̃ = πD ◦ K̃ is a smooth map and P̃ is a

surjective submersion, the map K is necessarily smooth.

(ii) Let m ∈M and (m,µ) ∈ P̃−1(m). If vm = T(m,µ)P̃ (vm, v), then

TmK(vm) = TmK(T(m,µ)P̃ (vm, v))

= TµπD(T(m,µ)K̃(vm, v))

= TµπD(v).
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(i) We now check that K satisfies Noether’s condition. Let h ∈ C∞(M)G and let

Ft be the flow of the associated Hamiltonian vector field Xh. Using the expression

for the derivative TmK in (ii) we have TmK(Xh(m)) = TµπD(v) where µ ∈ G∗ is

any element such that K(m) = πD(µ), and v ∈ G∗ is uniquely determined by

< v, ξ > = (iξM
ω)(m).(Xh(m))

= −dh(m)(ξM(m))

= ξM [h](m) = 0,

for any ξ ∈ G, which proves that v = 0 and hence

TmK(Xh(m)) = 0,∀m ∈M.

Also,
d

dt
(K ◦ Ft)(m) = TFt(m)K(Xh(Ft(m))) = 0,

we have K ◦ Ft = K/Dom(Ft).

Hence K satisfies the Noether’s condition.

(iii) Due to the expression in (ii), a vector vm ∈ KerTmK if and only if there

exist unique element v ∈ G∗ determined by

< v, ξ > = (iξM
ω)(m).vm,∀ξ ∈ G.

Also TµπD(v) = 0,

that is, v ∈ Lie(~) ⇔ < v, ξ >= 0,∀ξ ∈ (Lie(~))o ⊂ (G∗)∗ = G

⇔ (iξM
ω)(m).vm = 0,∀ξ ∈ (Lie(~))o

⇔ vm ∈ ((Lie(~))o.m)ω.

Hence KerTmK = ((Lie(~))o.m)ω.
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(iv) Let TmK(vm) ∈ range(TmK). Let v ∈ G∗ determined by

< v, ξ > = (iξM
ω)(m).vm,∀ξ ∈ G.

Thus, TmK(vm) = TµπD(v).

Therefore for any ξ ∈ Gm,

< v, ξ > = (iξM
ω)(m).vm

= ω(m)(ξM(m), vm) = 0,

which implies v ∈ (Gm)o.

Thus, range(TmK) ⊂ TµπD((Gm)o).

Also, rank(TmK) = dimM − dim(Ker(TmK))

= dimM − dimM + dim((Lie(~))o.m)

= dim((Lie(~))o)− dim(Gm ∩ (Lie(~))o)

= −dim((Lie(~)) + dim(G)

−dim([(Lie(~)) + (Gm)o]o)

= dim(G)− dim(Gm)− dim(Lie(~))

−dim(Gm)o + dim(Lie(~) + (Gm)o)

= dim(G)− dim(Gm)− dim(Lie(~) ∩ (Gm)o)

= dim(G)− dim(Gm)− dim(KerTµπD ∩ (Gm)o)

= dim(Gm)o − dim(KerTµπD/(Gm)o)

= dim(TµπD((Gm)o)).

This implies, range(TmK) = TµπD((Gm)o).
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•

Note 4.1.15. Cylinder valued momentum maps are generalizations of standard

momentum maps. It can be proved that given a canonical Lie algebra action on

a connected symplectic manifold, there exists a standard momentum map if and

only if the holonomy ~ is trivial. Moreover in such situations the cylinder valued

momentum maps are the standard momentum maps.

Proposition 4.1.16. Let (M,ω) be a connected paracompact symplectic mani-

fold and G a Lie algebra acting canonically on it. Let K : M → G∗
~ be a cylinder

valued momentum map. Then there exists a standard momentum map if and only

if ~ = {0}. In this case K is a standard momentum map.

Proof : Suppose that the cylinder valued momentum map K : M → G∗
~ has

been constructed using the reduced bundle

(M×G∗(z, µ),M, π/M×G∗(z,µ), ~(z, µ)), (z, µ) ∈M×G∗. We now show that if there

exists a standard momentum map J : M → G∗ associated to this action, then

~ = {0}. Indeed, if τ ∈ ~, then there exist a loop C : [0, 1] → M at m, that is,

C(0) = C(1) = m such that one of its horizontal lifts C̃ : [0, 1] → M̃ given by the

function C̃(t) = (C(t), ρ(t)) is such that ρ(0) = ρ ∈ G∗ and ρ(1) = ρ+ τ, ρ ∈ G∗.

Now since C̃ is horizontal we have that

< α(C(t), ρ(t))(C ′(t), ρ′(t)), ξ >= 0,∀ξ ∈ G

⇔ (iξM
ω)(C(t))(C ′(t)) =< ρ′(t), ξ >

⇔ dJξ(C(t))(C ′(t)) =< ρ′(t), ξ >

⇔ d

dt
Jξ(C(t)) =

d

dt
< ρ(t), ξ >
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Integrating we obtain

Jξ(C(t))− Jξ(m) =

∫ t

0

d

ds
Jξ(C(s))ds

=

∫ t

0

d

ds
< ρ(s), ξ > ds

= < ρ(t), ξ > − < ρ, ξ >

If we take t = 1, then

< τ, ξ > = < ρ(1)− ρ(0), ξ >

= Jξ(C(1))− Jξ(C(0))

= Jξ(m)− Jξ(m) = 0.

Since ξ ∈ G is arbitrary, we have τ = 0 and consequently ~ = 0.

Conversely, suppose that ~ = 0. Let C : [0, 1] → M be a loop at an arbitrary

point z ∈M, that is, C(0) = C(1) = z. Let v ∈ P̃−1(z) and let C̃(t) = (C(t), v(t))

be the horizontal lift of C starting at the point (z, v) ∈ M̃. Since (z, v) belongs

to the same holonomy bundle as (m, v) we have that the holonomy group with

reference at that point is zero. This implies that

0 =< v(1)− v(0), ξ > =

∫ 1

0

d

ds
< v(s), ξ > ds

=

∫ 1

0

(iξM
ω)(C(s))(C ′(s))ds

=

∫
C

iξM
ω

Since the equality
∫

C
iξM

ω = 0 holds for any loop C at any point M, the deRham

theorem implies the cohomology class [iξM
ω]of the form iξM

ω is trivial, that is, for

any ξ ∈ G, the existence of a standard momentum map is guaranteed by choosing

J : M → G∗ such that < J(m), ξ >= Jξ(m), for any ξ ∈ G and m ∈M.
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Also the graph Graph(J) := {(m, J(m)) ∈ M × G∗|m ∈ M} integrates the

horizontal distribution associated to α. Indeed, choose J such that J(m) = v.

Then by equation 4.1, we have for any (z, ρ) ∈ M̃

H(z, ρ) = {(vz, τ) ∈ T(z,ρ)(M × G∗)| < τ, ξ >= (iξM
ω)(z)(vz),∀ξ ∈ G}

= {(vz, τ) ∈ T(z,ρ)(M × G∗)| < τ, ξ >= dJξ(z)(vz),∀ξ ∈ G}

= {(vz, τ) ∈ T(z,ρ)(M × G∗)| < τ, ξ >=< TzJ(vz), ξ >,∀ξ ∈ G}

= {(vz, TzJ(vz))|vz ∈ TzM} = T(z,J(z))Graph(J).

Since J is defined up to a constant in G∗, it can be chosen so that Graph(J) = M̃

and hence the momentum map J can be chosen to coincide with K which make

K a standard momentum map. •

4.2 Lie group valued Momentum Maps

In this section we discuss Lie group valued momentum maps. We define Lie group

valued momentum maps and then show that it is a Noether Momentum Map. For

abelian symmetries, cylinder valued momentum maps are closely related to the

so- called Lie group valued momentum maps. This relation ship is discussed in

detail. [1] , [32].

Definition 4.2.1. Let G be an abelian Lie Group whose Lie algebra G acts

canonically on a symplectic manifold (M,ω). Let (., .) be some bilinear symmetric

nondegenerate form on the lie algebra G. The map J : M → G is called a G-valued

momentum map for the G action on M whenever

iξM
ω(m).vm = (Tm(LJ(m)−1 ◦ J)(vm), ξ),
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for any ξ ∈ G, m ∈M, and vm ∈ TmM, where LJ(m)−1 : G −→ G.

Proposition 4.2.2. Let G be an abelian Lie Group whose Lie algebra G acts

canonically on a symplectic manifold (M,ω). Let J : M → G be a G-valued

momentum map for this G action on M. Then

(i) J : M → G is a Noether Momentum Map .

(ii) KerTmJ = (G.m)ω for any m ∈M.

Proof : (i) Let Ft be the flow of the Hamiltonian vector field Xh associated

to a G-invariant function h ∈ C∞(M)G. By the definition of Lie group valued

momentum map we have for any m ∈M and any ξ ∈ G

((TJ(Ft(m))(LJ(Ft(m))−1) ◦ TFt(m)J)(Xh(Ft(m))), ξ) =

(TFt(m)(LJ(Ft(m))−1 ◦ J))(Xh(Ft(m))), ξ)

= iξM
ω(Ft(m))(Xh(Ft(m)))

= −dh(Ft(m))(ξM(Ft(m))) = 0.

Consequently ,

(TJ(Ft(m))(LJ(Ft(m))−1 ◦ TFt(m)J)(Xh(Ft(m))) = 0

⇔ TFt(m)J(Xh(Ft(m))) = 0

⇔ d

dt
(J ◦ Ft)(m) = 0

⇔ J ◦ Ft = J |Dom(Ft),

since t and m are arbitrary elements.

(ii) A vector vm ∈ KerTmJ if and only if TmJ(vm) = 0. This is equivalent

to ((TJ(m)LJ(m)−1 ◦ TmJ)(vm), ξ) = 0, for any ξ ∈ G and by the definition of Lie
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group valued momentum maps

iξM
ω(m).vm = 0,∀ξ ∈ G

⇔ vm ∈ (G.m)ω.

•

Proposition 4.2.3. Let (M,ω) be a connected paracompact symplectic mani-

fold and G an abelian Lie algebra acting canonically on it. Let ~ ⊂ G∗ be the

holonomy group associated to the connection α and (., .) : G × G → < some bi-

linear symmetric nondegenerate form on G. Let f : G → G∗ be the isomorphism

given by f(ξ) = (ξ, .), ξ ∈ G and T := f−1(~). The map f induces an abelian

group isomorphism f̃ : G
T →

G∗
~ by f(ξ+ T ) := (ξ, .) + ~. Suppose that ~ is closed

in G∗ and define J := f̃−1 ◦K : M → G
T , where K is a cylinder valued momentum

map for the G-action on (M,ω). Then

iξM
ω(m).vm = (Tm(LJ(m)−1 ◦ J)(vm), ξ), (4.2)

for any ξ ∈ G, m ∈ M, and vm ∈ TmM. Consequently, the map J : M → G
T

constitutes a G
T -valued momentum map for the canonical action of the Lie algebra

G of ( GT ,+) of (M,ω).

Proof : We start by noticing that the right hand side of 4.2 makes sense due

to the closedness hypothesis on ~. Indeed, this condition and the fact that ~ is

discrete due to the flatness of α implies that G∗
~ , and therefore G

T , are abelian Lie

groups whose Lie algebras can be naturally identified with G∗ and G respectively.

This identification is used in 4.2, where Tm(LJ(m)−1 ◦ J)(vm) ∈ Lie( GT ) as an

element of G.

Given µ ∈ G∗ arbitrary, we denote ξµ ∈ G by the unique element such that
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µ = (ξµ, .). Let µ+ ~ := K(m) and hence J(m) = ξµ + T . Then we have

TmJ(vm) = Tm(f̃−1 ◦K)(vm)

= Tµ+~f̃
−1(TmK(vm))

= Tµ+~f̃
−1(TµπD(ν)) where,

< ν, η > = iηM
ω(m).vm,∀η ∈ G.

Since (f̃−1 ◦ πD)(ρ) = ξρ + T for any ρ ∈ G∗, we can write

Tµ+~f̃
−1(TµπD(ν)) = Tµ(f̃−1 ◦ πD)(ν)

=
d

dt
/t=0(f̃

−1 ◦ πD)(µ+ tν)

=
d

dt
/t=0(ξµ + tξν + T ).

Hence ,

TmJ(vm) =
d

dt
/t=0(ξµ + tξν + T ) ∈ Tξµ+T (

G
T

).

Now,

(Tm(LJ(m)−1 ◦ J)(vm), ξ) = (TJ(m)LJ(m)−1(TmJ(vm)), ξ)

= (
d

dt
/t=0(ξµ + T ) + (ξµ + tξν + T ), ξ)

= (ξν , ξ) =< ν, ξ >= iξM
ω(m).vm.

•

Next we shall isolate hypothesis that guarantees that a Lie group valued mo-

mentum map naturally induces a cylinder valued momentum map.

Theorem 4.2.4. Let (M,ω) be a connected paracompact symplectic manifold

and G abelian Lie algebra acting canonically on it. Let ~ ⊂ G∗ be the holonomy



4.2. Lie group valued Momentum Maps 186

group associated to the connection α associated to the G-action and let (., .) :

G × G → < be a bilinear symmetric non degenerate form on G. Let f : G → G∗,

f̃ : G
T →

G∗
~ where T := f−1(~). Let G be a connected abelian Lie group whose Lie

algebra is G and suppose that there exists a G-valued momentum map J : M → G

associated to the G-action whose definition uses the form (., .)

(i) If exp : G → G is the exponential map , then ~ ⊂ f(Ker exp).

(ii) ~ is closed in G∗.

Let J := f̃−1 ◦K : M → G
T , where K is a cylinder valued momentum map for

the G-action on (M,ω). If f(Ker exp) ⊂ ~, then J : M → G
T = G

Ker exp
' G is a

G-valued momentum map that differs from J by a constant in G.

Conversely, if ~ = f(Ker exp), then J : M → G
Ker exp

' G is a G-valued

momentum map.

Proof : Assume that the G-action on (M,ω) has an associated G-valued

momentum map J : M → G. Then we can prove ~ ⊂ f(Ker exp).

Let µ ∈ ~. Then there exists a piecewise smooth loop m : [0, 1] → M at the

point m, that is, m(0) = m(1) = m ∈M, whose horizontal lift m̃(t) = (m(t), µ(t))

starting at the point (m, 0) satisfies µ = µ(1). From the horizontality of m̃(t), we

have

< µ̇(t), ξ >= iξM
ω(m(t))(ṁ(t))

= (Tm(t)(LJ(m(t))−1 ◦ J)(ṁ(t)), ξ),∀ξ ∈ G

⇔ µ̇(t) = f(
d

ds
/s=0J(m(t))−1J(m(s))).

Fix to ∈ [0, 1]. Since the exponential map exp : G → G is a local diffeomorphism,

there exists a smooth curve ξ : Ito := (to − ε, to + ε) → G, for ε > 0 sufficiently
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small such that for any s ∈ (−ε, ε)

J(m(t0 + s)) = expξ(t0 + s)J(m(t0)).

Then we have µ̇(t) = f(ξ̇(t)).

We now cover the interval [0, 1] with a finite number of intervals I1, I2, .....In such

that in each of them we define a function ξi : Ii → G that satisfies the above

two expressions. We now write Ii = [ai, ai+1], with i ∈ {1, 2, ...n}, a1 = 0, and

an+1 = 1. Using these intervals, since µ(0) = 0, we have

µ = f(ξ1(a2)− ξ1(a1) + ....+ ξn(an+1)− ξn(an)).

But from the construction of the intervals Ii we have

J(m(ai)) = expξi(ai)J(m(ai))

⇔ expξi(ai) = e

⇔ ξi(ai) ∈ Ker exp, ∀i ∈ {1, 2, ...n}.

Also we have

J(m(1)) = exp(ξ1(a2) + ξ2(a3) + ....+ ξn(an+1))J(m(0)).

Since m(0) = m(1) = m we have J(m(0)) = J(m(1)) and therefore

exp(ξ1(a2) + ξ2(a3) + ....+ ξn(an+1)) = e

⇔ ξ1(a2) + ξ2(a3) + ....+ ξn(an+1) ∈ Ker exp.

Thus we get ~ ⊂ f(Ker exp).

(ii) To show that ~ is closed in G∗. The closedness of Ker exp in G, the fact that
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f is an isomorphism and (i) imply that ~̄ ⊂ f(Ker exp) = f(Ker exp). Because G

is abelian, Ker exp is discrete subgroup of (G,+) and hence ~̄ is discrete subgroup

of G∗. This implies that ~̄ ⊂ ~. Hence ~ is closed in G∗.

Assume that f(Ker exp) ⊂ ~. Therefore from (i) f(Ker exp) = ~ and that

~ is closed in G∗. Hence J : M → G
Ker exp

' G is a G-valued momentum map for

the G-action on (M,ω). We now show that J and J are differ by a constant in G.

We have for any ξ ∈ G and vm ∈ TmM,

(Tm(LJ(m)−1 ◦ J)(vm), ξ) = iξM
ω(m)(vm)

= (Tm(LJ(m)−1 ◦ J)(vm), ξ)

which implies that TJ = TJ. Since the manifold M is connected, we have that J

and J coincide up to a constant element in G. •

4.3 Another Generalization of the Standard Mo-

mentum Map

Here we discuss a generalization of the standard momentum map not involving

the group action. The classical notion of momentum map from Weinstein’s point

of view is given first. Then we look at the standard momentum map in a more

general set up as a map J̃ : M × G → G∗. In this case we have shown that J̃ is

a momentum map. Then introduce the notion of generalization of Hamiltonian

actions using Hamiltonian symplectomorphisms. We discuss the generalization of

the momentum map, where the group action is replaced by a family of symplec-

tomorphisms. Then we give a more general set up which does not contains the
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group action. After giving a sufficient condition for the existence of momentum

map, we have recaptured a generalization of standard momentum map by family

of symplectomorphisms and the momentum map associated to Hamiltonian group

action. [38] , [10], [17].

To give the classical notion of momentum map from Weinstein’s point of view

we recall some ideas related to the symplectic category.

Definition 4.3.1. If V is a symplectic vector space, let V − denote the same vec-

tor space but with the form ω of V replaced by −ω. If V1 and V2 are symplectic

vector spaces, let V −
1 ×V2 denote the symplectic vector space with the direct sum

symplectic structure. A Lagrangian subspace Γ of V −
1 ×V2 is called a linear canon-

ical relation from V1 to V2. Then define the category, LinSymp whose objects

are symplectic vector spaces, whose morphisms are linear canonical relations and

whose composition law is given by composition of relations. More explicitly, if V3

is a third symplectic vector space and Γ1 is a Lagrangian subspace of V −
1 ⊕V2 and

Γ2 is a Lagrangian subspace of V −
2 ⊕ V3, then as a set the composition

Γ2 ◦ Γ1 ⊂ V1 × V3

is defined by

(x, z) ∈ Γ2 ◦ Γ1 ⇔ ∃y ∈ V2 such that (x, y) ∈ Γ1and(y, z) ∈ Γ2.

Then the composition defined above is a Lagrangian subspace of V −
1 × V3. Also

the diagonal subspace of V − × V acts as the identity morphism and that the

associative law holds. Thus the composite of two linear canonical relations is a

linear canonical relation. So Linsymp is a category.

Definition 4.3.2. Let (Mi, ωi), i = 1, 2 be symplectic manifolds. A Lagrangian

submanifold Γ of M−
1 × M2 is called a canonical relation. For example, if f :
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M1 →M2 is a symplectomorphism, then Γf = graphf is a canonical relation.

If Γ1 ⊂ M−
1 ×M2 and Γ2 ⊂ M−

2 ×M3, then take the composition as in the

above definition.

Definition 4.3.3. Let π : Γ1 −→M2 denote the restriction to Γ1 of the projection

of M1 ×M2 onto the second factor, and let ρ : Γ2 −→ M2 denote the restriction

to Γ2 of the projection of M2 × M3 onto the first factor. Let F as the subset

M1 × M2 × M3 consisting of all points (m1,m2,m3) with (m1,m2) ∈ Γ1 and

(m2,m3) ∈ Γ2. The clean intersection hypothesis says that F is a manifold and

TmF consists of all (v1, v2, v3) ∈ Tm1M1 ⊕ Tm2M2 ⊕ Tm3M3 such that (v1, v2) ∈

T(m1,m2)Γ1 and (v2, v3) ∈ T(m2,m3)Γ2.

Note 4.3.4. In general Γ2◦Γ1 need not be a Lagrangian submanifold of M−
1 ×M3.

But if the canonical relations Γ1 ⊂M−
1 ×M2 and Γ2 ⊂M−

2 ×M3 intersect cleanly,

then their composition Γ2◦Γ1 is an immersed Lagrangian submanifold ofM−
1 ×M3.

In the symplectic category, choose point object to be the unique connected

zero dimensional symplectic manifold and call it ”pt.”. Then a canonical relation

between pt. and a symplectic manifold M is a Lagrangian submanifold of pt.×M

which may be identified with a Lagrangian submanifold of M. These are the points

in our symplectic category.

Suppose that Λ is a Lagrangian submanifold of M1 and Γ ∈ Morph(M1,M2)

is a canonical relation. Consider Λ as an element of Morph(pt.,M1), then if Γ

and Λ are composible, form Γ ◦Λ ∈Morph(pt.,M2) which may be identified with

a Lagrangian submanifold of M2.

Note 4.3.5. We can modify the Definition 1.4.1 as follows:

Let (M,ω) be a symplectic manifold. G a connected Lie group and φ an action

of G on M preserving the symplectic form. From Definition 1.1.4, corresponding
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to φ there is an infinitesimal action φ̇ : G → X (M) by φ̇(ξ) = ξM .

In particular, for p ∈M, there exists a linear map

dφp : G → TpM, ξ → ξM(p);

and from ωp, a linear isomorphism,

Tp → T ∗p , v → ivωp;

thus there exists a linear map

d̃φp : G → T ∗pM, ξ → iξM
ωp.

Therefore we can redefine Definition 1.4.1 as :

Definition 4.3.6. A G-equivariant map J : M → G∗ is a momentum map, if for

every p ∈M,

dJp : TpM → G∗

is the transpose of the map d̃φp.

Definition 4.3.7. A symplectomorphism f : M → M is Hamiltonian if there

exists a family of symplectomorphisms, ft : M → M, 0 ≤ t ≤ 1, depending

smoothly on t with fo = idM and f1 = f, such that the vector field

vt = f−1
t

dft

dt

is Hamiltonian for all t.

Proposition 4.3.8. ξM is Hamiltonian for all ξ ∈ G if and only if the symplecto-

morphism, φg, is Hamiltonian for all g ∈ G.
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Proof ξM is Hamiltonian for all ξ ∈ G if and only if ξM = Xf , for some f ∈

C∞(M). Let ρt : M −→M, t ∈ < be the one parameter family of diffeomorphisms

generated by Xf :

ρ0 = idM

Xf (ρt(m)) =
dρt

dt
(m).

Here each diffeomorphism ρt preserves ω, that is, ρt is a symplectomorphism.

Also Xf = ξM = d
dt
|t=0 φexptξ. This implies (φg)t = ρt. So the family of sym-

plectomorphisms ρt : M → M, 0 ≤ t ≤ 1, makes φg Hamiltonian for all g ∈ G.

•

Remark 4.3.9. From the left action of G on T ∗G, one gets a trivialization,

T ∗G = G× G∗

and using this trivialization one gets a Lagrangian submanifold

Γφ = {(m,φg(m), g, J(m));m ∈M, g ∈ G},

of M ×M− × T ∗G, which is called the moment Lagrangian. This can be viewed

as a canonical relation between M ×M− and T ∗G, or as a map

Γφ : M− ×M → T ∗G.

From the modulo clean intersection hypotheses, such a map maps Lagrangian sub-

manifolds of M−×M onto Lagrangian submanifolds of T ∗G and vice versa. Also

the diagonal in M− ×M gets mapped by Γφ into a disjoint union of Lagrangian

submanifolds of T ∗G.

Note 4.3.10. Next we look at momentum maps in a more general set up.
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Definition 4.3.11. Let G be a Lie group acting canonically on the symplectic

manifold (M,ω) via the action φ. Suppose there exist a momentum map J : M →

G∗ for the associated Lie algebra action. Then J can be viewed as J : M ×{e} →

G∗. Using right translation we can extend J to the whole of M×G. We know that

if the action is symplectic r∗g = (Adg−1)∗. Therefore we can define J̃ : M×G→ G∗

as

< J̃(mg), ξ >:=< J(m), Adg−1ξ >, ∀ξ ∈ G.

Theorem 4.3.12. The map J̃ : M ×G→ G∗ satisfies

d < J̃(mg), ξ >= i(φg)∗ξM
ω,∀ξ ∈ G.

Proof: For any m ∈M, g ∈ G and ξ ∈ G,

d < J̃, ξ > (mg) = d < J,Adg−1ξ > (m)

= i(Adg−1ξ)M
ω ( since J is a momentum map)

= i(φg)∗ξM
ω.

Thus J̃ is a momentum map. •

Note 4.3.13. We discuss the generalization of the momentum map, where the

group action is replaced by a family of symplectomorphisms.

Let (M,ω) be a symplectic manifold, S an arbitrary manifold and fs, s ∈ S,

a family of symplectomorphisms of M depending smoothly on s. For p ∈ M and

so ∈ S, let gso,p : S → M be the map, gso,p(s) = fs ◦ f−1
so

(p). Then the derivative
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at so is given by

(dgso,p)so : TsoS → TpM.

From this we get the linear map

˜(dgso,p)so
: TsoS → T ∗pM.

Now, let J be the map of M×S into T ∗S which is compatible with the projection,

M × S → S in the sense

M × S
J−→ T ∗S

↘ ↓

S

commutes; and for so ∈ S let

Jso : M → T ∗so
S

be the restriction of J to M × {so}.

Definition 4.3.14. Let (M,ω) be a symplectic manifold, S an arbitrary manifold

and fs, s ∈ S, a family of symplectomorphisms of M depending smoothly on s.

The map of J : M × S −→ T ∗S is a momentum map if, for all so and p,

(dJso)p : TpM → T ∗so
S

is the transpose of the map ˜(dgso,p)so
.

Note 4.3.15. Now we analyze in a more general set up which does not involve
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group action and prove a sufficient condition for the existence of momentum map.

We will generalize by assuming that the fs’s are canonical relations rather

than canonical transformations. Then replace M ×M− by M itself and canonical

relations by Lagrangian submanifolds of M.

Let (M,ω) be a symplectic manifold . Let Z,X and S be manifolds and

suppose that

π : Z → S

is a fibration with fibers diffeomorphic to X. Let

G : Z →M

be a smooth map and let

gs : Zs →M,Zs := π−1s

denote the restriction of G to Zs. We assume that gs is a Lagrangian embedding

and let

Λs := gs(Zs)

denote the image of gs. Thus, for each s ∈ S, G imbeds the fiber, Zs = π−1s, into

M as the Lagrangian submanifold, Λs. For z ∈ Zs and w ∈ TzZs tangent to the

fiber Zs,

dGzw = (dgs)zw ∈ TG(z)Λs.
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So, dGz induces a map, denoted again by dGz

dGz :
TzZ

TzZs

→ TmM

TmΛs

, m = G(z).

But dπz induces an identification

TzZ

TzZs

= TsS.

From the linear isomorphism

TmM −→ T ∗mM by u −→ ωm(u, .) (4.3)

we have an identification

TmM

TmΛs

= T ∗mΛs.

Using the identifications, we have

dGz : TsS −→ T ∗z Zs. (4.4)

Now, let J : Z → T ∗S be a lifting of π : Z → S, so that

Z
J−→ T ∗S

π ↘ ↓

S

commutes, and for s ∈ S, let

Js : Zs → T ∗s S
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be the restriction of J to Zs.

Definition 4.3.16. J is a momentum map if, for all s and all z ∈ Zs,

(dJs)z : TzZs → T ∗s S

is the transpose of dGz.

Note that this condition determines Js up to an additive constant νs ∈ T ∗s S

and hence, determines J up to a section s→ νs, of T ∗S.

We have an embedding

(G, J) : Z →M × T ∗S.

from the momentum map J : Z → T ∗S.

Theorem 4.3.17. Let (M,ω) be a symplectic manifold . Let Z,X and S be

manifolds and suppose that π : Z → S is a fibration with fibers diffeomorphic to

X. Let G : Z →M be a smooth map and J is a momentum map. The pull back

by (G, J) of the symplectic form on M ×T ∗S is the pull back by π of a closed two

form ρ on S. If [ρ] = 0, there exists a momentum map, J , for which the imbedding

(G, J) is Lagrangian.

Proof: Consider the map dGz : TsS −→ T ∗z Zs.

Claim I: If s fixed, but let z vary over Zs, then for each ξ ∈ TsS gives rise to

a one form τ ξ on Zs with dτ ξ = 0.

Proof of Claim I: Let us choose a trivialization of the bundle around Zs to give

an identification H : Zs × U −→ π−1(U) where U is a neighborhood of s in S. If

t −→ s(t) is any curve on S with s(0) = s, s′(0) = ξ, we get a curve of maps hs(t)

of Zs −→ M where hs(t) = gs(t) ◦H. We thus get a vector field vξ along the map
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hs

vξ : Zs −→ TM, vξ(z) =
d

dt
hs(t)(z) |t=0 .

Then define, τ ξ = h∗s(ivξω).

Now, the general form of the Weil formula and the fact that dω = 0 gives

(
d

dt
h∗s(t)ω) |t=0= dh∗si(v

ξ)ω

and the fact that Λs is Lagrangian for all s implies that the left hand side is zero.

Therefore dτ ξ = 0. Hence claim I.

Assume that for all s and ξ the one form τ ξ is exact. Then τ ξ = dJξ for some

C∞ function Jξ on Zs. The function Jξ is uniquely determined up to an additive

constant (if Z is connected) which can fix so that it depends smoothly on s and

linearly on ξ.

Then for a fixed z ∈ Zs, the number Jξ(z) depends linearly on ξ. Hence we

get a map

Jo : Z → T ∗S, with

Jo(z) = λ⇔ λ(ξ) = Jξ(z).

If Z is connected, the choice determines Jξ up to an additive constant µ(s, ξ)

which we can assume to be smooth in s and linear in ξ. Replacing Jξ by Jξ+µ(s, ξ)

has the effect of making the replacement

Jo 7−→ J = Jo + µ ◦ π

where µ : S → T ∗S is the one form < µ(s), ξ >= µ(s, ξ). Thus we get a map
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J : Z → T ∗S defined by J := Jo + µ ◦ π.

Claim II: J is a momentum map.

Proof of Claim II: For, the restriction of J to the fiber Zs maps Zs → T ∗s S.

Hence, for z ∈ Zs,

dJz : TzZs → T ∗s S

is a linear map. Also we have the map

dGz : TsS −→ T ∗z Zs.

Now, for each ξ ∈ TsS gives rise to a one form τ ξ on Zs, the value of this one

form at z ∈ Zs is exactly dGz(ξ).

Indeed, for any w ∈ TzZs

τ ξ(w) = h∗s(ivξω)(w)

=
d

dt
hs(t)(z) |t=0 by the identification 4.3

= (dgs)z(ξ)(w) = dGz(ξ)(w).

The function Jξ was defined on Zs so as to satisfy dJξ = τ ξ. In other words, for

v ∈ TzZ

< dGz(ξ), v >=< dJz(v), ξ > .

Thus the maps dJz and dGz defined above are transposes of one another.

Also the Kernel of dGz is the annihilator of the image of the map dJz. In

particular , z is a regular point of the map J : Zs → T ∗s S if the map dGz is
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injective. Also the Kernel of the map dJz is the annihilator of the image dGz.

Hence claim II.

Claim III: Let ωS denote the canonical two form on T ∗S. Then there exists

a closed two form ρ on S such that

G∗ω + J∗ωS = π∗ρ. (4.5)

If [ρ] = 0, then there is a one form ν on S such that if we set J = Jo + ν ◦ π,

then G∗ω + J∗ωS = 0. As a consequence, the map G̃ : Z → M × T ∗S, given by

G̃(z) = (G(z), J(z)) is a Lagrangian embedding.

Proof of Claim III : We first prove a local version of the statement. Locally

we may assume that Z = X × S. This means that we have an identification of Zs

with X for all s. We may assume that M = T ∗X and that for a fixed s0 ∈ S the

Lagrangian submanifold Λs0 is the zero section of T ∗X and that the map

G : X × S −→ T ∗X is given by G(x, s) = dXψ(x, s)

where ψ ∈ C∞(X × S). So, in terms of these choices, the maps hs(t) used in the

proof of claim I are given by hs(t)(x) = dXψ(x, s(t)) and hence the one form τ ξ is

given by

dSdXψ(x, ξ) = dX < dSψ, ξ > .

So, we may choose J(x, s) = dSψ(x, s).

Thus, G∗αX = dXψ and J∗αS = dSψ. Hence, G∗ωX + J∗ωS = −ddψ = 0, which

proves the local version of the statement.

We now pass from the local to global: By uniqueness, our global J0 must agree
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with our local J up to the replacement J −→ J + µ ◦ π. Therefore, we know that

G∗ω + J∗0ωS = (µ ◦ π)∗ωS = π∗µ∗ωS.

Here µ is a one form on S regarded as a map S −→ T ∗S. But

dπ∗µ∗ωS = π∗µ∗dωS = 0.

So, we know that G∗ω + J∗0ωS is a closed two form which is locally and hence

globally of the form π∗ρ where dρ = 0.

Now, suppose that [ρ] = 0 and hence ρ = dν for some one form ν on S.

Replacing J0 by J0 + ν replaces ρ by ρ+ ν∗ωS, but

ν∗ωS = −ν∗dαS = −dν = −ρ.

Hence claim III.

From the equation 4.5 the pull back by (G, J) of the symplectic form on

M × T ∗S is the pull back by π of a closed two form ρ on S. If [ρ] = 0, from claim

II J is a momentum map and from claim III the imbedding (G, J) is Lagrangian.

•

Theorem 4.3.18. Let J be a map of Z into T ∗S lifting the map, π, of Z into S.

Then, if the imbedding (G, J) is Lagrangian, J is a momentum map.

Proof It suffices to prove for Z = X × S,M = T ∗X and G(x, s) = dXψ(x, s)

where ψ ∈ C∞(X×S). If J : X×S → T ∗S is a lifting of the projectionX×S → X,

then (G, J) can be viewed as a section of T ∗(X × S), that is as a one form β on

X ×S. If (G, J) is a Lagrangian embedding, then β is closed. Moreover the (1, 0)

component of β is dXψ so β − dψ is a closed form and hence is of the form µ ◦ π
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for some closed form on S. This shows that

J = dSψ + π∗µ

and hence, as above, J is a momentum map. •

Note 4.3.19. The Definition 4.3.14 can be treated as a special case of Definition

4.3.16.

Let (M,ω) be a symplectic manifold, S a manifold and F : M × S → M a

smooth map such that fs : M → M is a symplectomorphism for each s, where

fs(m) = F (m, s). Let Λs ⊂M ×M− is the graph of fs and G is the map

G : M × S →M ×M−, by G(m, s) = (m,F (m, s)).

Apply the results in the above section there exists a map

J : M × S → T ∗S.

Assume that J exists, then consider the analogue for J of Weinstein’s moment

Lagrangian, ΓJ = {(m, fs(m), J(m, s));m ∈ M, s ∈ S}, and consider the imbed-

ding of M × S into M ×M− × T ∗S given by the map J of Weinstein’s moment

Lagrangian,

G : M × S →M ×M− × T ∗S where G(m, s) = (m, fs(m), J(m, s)).

From Theorem 4.3.17 we get the following theorems.

Theorem 4.3.20. The pull back by G of the symplectic form on M ×M−×T ∗S

is the pull back by the projection, M × S → S of a closed two-form, µ, on S.
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If µ is exact, that is, if, µ = dν, we can modify J by setting

Jnew(m, s) = Jold(m, s)− νs,

and for this modified J , the pull back by G on the symplectic form on M ×M−×

T ∗S will be zero; so, the theorem:

Theorem 4.3.21. If µ is exact, there exist a momentum map, J : M ×S → T ∗S,

for which ΓJ is Lagrangian.

The following converse result is also true.

Theorem 4.3.22. Let J be a map of M × S into T ∗S which is compatible with

the projection of M×S onto S. Then, if ΓJ is Lagrangian, J is a momentum map.

Note 4.3.23. The definition of the momentum map for Hamiltonian group actions

can be treated as a special case of Definition 4.3.16.

Suppose that a compact Lie group K acts as fiber bundle automorphisms of

π : Z → S and act as symplectomorphisms of M. Suppose further that the fibers

of Z are compact and equipped with a density along the fiber which is invariant

under the group action. Also the map G is equivariant for the group actions of

K on Z and on M. Then, the map J is equivariant for the actions of K on Z and

the induced action of K on M × T ∗S.

Assume that S is a Lie group K and that F : M ×K → M is a Hamiltonian

group action. This gives a map

G : M ×K →M ×M−, G(m, a) = (m, am).

Let K act on Z = M × K via its left action on K. Thus a ∈ K acts on Z as

a(m, b) = (m, ab). To say that the action, F, is Hamiltonian with momentum map
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J : M → K∗ is to say that i(ξM)ω = −d < J, ξ > where K is the Lie algebra of

K.

Thus under the left invariant identification of T ∗K with K×K∗, J determines

a momentum map

J̃ : M ×K → T ∗K, J̃(m, a) = (a, J(m)).

So J̃ is indeed a generalization of the momentum map for Hamiltonian group

actions.

Remark 4.3.24. Mikami and Weinstein [27] shown that some of the momentum

maps above introduced can be interpreted as the momentum maps associated to

some groupoid action naturally defined on the symplectic manifold.

Thus a Hamiltonian action of a Lie group should be seen as a special case

of more flexible notion of symmetry-the action of a symplectic groupoid. Such

an action always comes equipped with a momentum map. It is natural to ask

whether properties of momentum maps of Hamiltonian group actions extend to

the groupoid case. In this direction Weinstein [39] has given an extension of the

Theorem 2.2.30.
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