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ABSTRACT

Classical data acquisition systems are based on uniform sampling, and
they do not exploit the signal variations. Many samples are generated while
sampling low-activity sporadic signals without any relevant information, which
increase the system activity and power consumption. The Nyquist rate for
sampling is specified for a general signal, and for efficient encoding, the
sampling rate must be specific to signals and applications. Level-crossing
sampling (LCS) is an activity-dependent sampling method that results in the
compressed encoding of sparse and bursty signals. The systems that have scarcity
in computational power, bandwidth, and memory will be benefited from LCS.
Presently LCS methods have been widely applied for sampling bio-potential
signals. While sampling speech signals, LCS with a constant temporal resolution
demands the time-to-digital converter (TDC) to have wide dynamic ranges

resulting in increased bits per sample.

Vibration signals are utilized to monitor the mechanical systems and
have the highest frequency among all the other sensor outputs. The analysis of
these signals becomes extremely difficult due to the enormous amount of
vibration data acquired at the Nyquist rate. Besides, there is a limitation on the
available bandwidth in launch vehicles and wireless nodes. Wireless
transmissions in sensor nodes consume a significant portion of its power, and
hence data compression must be done before transmission. Traditional data
compression methods have to operate on all the samples acquired at the uniform

rate, which increase the computational complexity at the transmitter.

This thesis explores the application of level-crossing methods for (i) the
compressed encoding of speech and vibration signals and (ii) the activity
detection of the signals. The concept of frequency-scaling is applied to LCS,

adaptive LCS, and extremum sampling to achieve multiple resolutions in time.



Due to the reduction in the dynamic range of TDC, the number of bits per sample
and the total data size are decreased. Extremum sampling is proposed for the
encoding of vibration signals that results in excellent compression. Since the
level-crossing sampling accomplishes compression during the sampling process,
the additional burden at the transmitter for subjecting all the acquired samples to

a compression algorithm is evaded.

Faults in the machines usually create an increase in the frequency or the
amplitude of the vibration signal. This thesis proposes anomaly detection in
mechanical systems with average level-crossing rate (ALCR), a parameter
indicating the rate of change of the vibration signals. ALCR is also applied for
detecting the activity of signals, based on which specific control action can be
triggered. A voice-controlled audio mixer is simulated, in which the activity of
the input speech signal is monitored with its ALCR values. Based on the ALCR,
the attenuation of a background music signal is controlled. An acoustic feedback
suppressor in which the feedback detection is performed with 4LCR and the
feedback frequency estimation with zero-crossing time, has been simulated. The
feedback suppression is performed with notch and low-pass filters. The methods
based on ALCR work on the analog output of sensor and does not require the
conventional steps like sampling, framing, feature extraction, classification, or

computation of the spectrum.

vi
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CHAPTER 1

INTRODUCTION

In most data acquisition systems, analog signals are sampled at the
Nyquist rate, which is twice the highest frequency fn.: present in the signal. It is a
uniform sampling method, in which the sampling rate is independent of the
instantaneous frequency of the input signal. The conventional sampling is
inefficient while sampling sparse and bursty signals. Signals are over-sampled if
the instantaneous frequency is much less than fy... Non-uniform and event-driven
sampling methods have advantages compared to uniform and synchronous
sampling while processing sparse and bursty signals. Non-uniform sampling
methods reduce the sampling and computation costs, taking advantage of the

sparsity of the signals.

Conventional data compression methods are based on a two-step process:
sample-then-compress, which consume the already limited resources. Many
samples are discarded at a later stage, wasting resources like storage and
computation. Non-uniform sampling methods generate a compressed set of
samples with which the input signal can be reconstructed accurately. In
compressed sensing (CS), the signal reconstruction is possible with fewer
samples than those acquired at the Nyquist rate. The signal is reconstructed by
finding a solution to an under-determined linear system of equations. The
reconstruction methods are based on optimization algorithms, which make the
real-time reconstruction difficult. The sensing part may also involve

multiplication by large size matrices.

Level Crossing Sampling (LCS) is a form of non-uniform sampling in
which a sample is generated when the amplitude of the signal crosses any of the

fixed numbers of reference levels. It is an activity-dependent sampling method,



in which more samples are acquired when the signal is bursty, and none during
the idle period. The signal need not be passed through an anti-aliasing filter to
limit its frequency. LCS has inherent noise reduction property because amplitude
variations within the limits of two nearby reference levels are automatically
removed. Several signals, including telemetry, biopotential, and speech, are
sparse in time. For a sparse signal, LCS combines sampling and compression into
a single step. It results in economic consumption of power and is suitable for

battery-operated implantable or wearable devices.

Vibration signals are used for the condition monitoring of mechanical
systems. Among all the telemetry signals from a launch vehicle, vibration signals
have the highest frequency and must be sampled at higher sampling frequencies.
In industries, vibration data must be sent to remote servers for processing. Hence,
there is a necessity for compressing vibration signals to reduce the total data size

and transmission bandwidth.

Most engineering systems have rotating parts, and various parameters
must be closely monitored to maintain their health. The situation is very critical
in systems such as aircraft and spacecraft in which failure may cause loss of
lives. The faults of machines used in industries must be detected long before they
become severe to schedule the planned repair work. Most of the faults such as
imbalance, resonance, misalignment, looseness, drive belt problems, and
eccentricity occurring in machines cause a few variations in the vibration signals.
Hence vibration analysis serves as a means for identifying machine deterioration.
Further damage and its severe effects can be avoided if preventive maintenance

is carried out soon after a warning signal is received.

Fault diagnosis and prognosis are mainly dependent on sensors and their
sensing strategies. A wide variety of sensors are used for condition monitoring of
equipments nowadays. The data output from the sensors must be processed to

extract useful information about the machine's health. For vibration data,



frequency or wavelet domain are suitable for fault detection or condition
monitoring. Failures in the systems cause changes in power, entropy, spectrum,
and amplitude. From the massive data, useful information must be extracted for
detecting anomalies or faults. All the present methods for anomaly detection
involve either sophisticated analysis or require processing on a massive amount
of data collected for this purpose. The number of vibration signals transmitted to
the ground can be reduced to a minimum if on-board anomaly detection is used,
and its output alone needs to be transmitted to earth instead of sending the real

sensor data.

The zero-crossing rate (ZCR) and energy of the signals are usually
employed for the activity detection of the signals. Both ZCR and energy are
computed with the digital samples of the input signal. Average level-crossing
rate (ALCR) measured from the analog input signal can be used for activity
detection in speech signals. Voice-controlled mixers used in radio stations and
other announcement systems attenuate the background signal depending upon the
intensity of speech signal. Another application for which ALCR has been used in
this thesis is for the howling detection. Public address systems usually suffer
from acoustic feedback, and annoying howling noise is generated. Presently used
howling detection systems require sampling, digitization, and framing of the

acoustic signal.
1.1 MOTIVATION

The primary motivations for carrying out this research work are

summarized as follows:

e There exist non-uniform sampling methods that are economical

compared to conventional sampling methods.

e LCS has been employed successfully for the compressed encoding of

biopotential signals.



e An efficient encoding of the level-crossing time is essential for
reducing the dynamic range of the time-to-digital converter (TDC)

employed in LCS while sampling speech signals.

e Extremum sampling can generate compressed samples of signals

which have an oscillatory nature, including vibration signals.

e The parameter, “average level-crossing rate (ALCR),” can be
employed for real-time activity detection and abnormality detection

using vibration signals.
1.2 OBJECTIVES
The objectives of this work are to:

1. Design non-uniform samplers which employ Level-Crossing Sampling
(LCS), adaptive LCS, and extremum Sampling for speech signals and
compare their performance in compressing the signals.

2. Design level-crossing samplers with multiple resolutions in time to
reduce the dynamic range of the TDC and minimize the bits per
sample.

3. Design a non-uniform sampler based on extremum sampling to
produce a compressed set of samples from vibration signals.

4. Use Level-Crossing Rate for

- the identification of the speech activity
- acoustic feedback detection

- the anomaly detection in mechanical systems using vibration
signals

1.3 CONTRIBUTIONS

Level-crossing methods have been applied for the compressed encoding

of the signals and activity detection. Speech and vibration signals have been



encoded with level-crossing sampling methods. Activity detection has been

performed based on the level-crossing rate of the input signals. The following are

the contributions of this thesis.

1.

Designed and simulated a level-crossing sampling (LCS) system
for the compressed encoding of speech signals that perform

sampling, quantization, encoding, and compression in a single step.

Simulated 2-level adaptive level-crossing sampler (ALCS) in which
the inter-level distance Av is varied according to the slope of the

input signal. The data size is reduced compared to LCS.

Simulated sampler based on extremum sampling (ES) in which a
signal is represented with its peak values and the interval between
the peaks. ES has been applied to speech and vibration signals. ES
has resulted in the highest compression ratio compared to LCS and

ALCS.

Simulated LCS, ALCS, and ES with multiple temporal resolutions
to reduce the dynamic range of the time-to-digital converter. The
concept of frequency-scaling is introduced to adaptively change the
clock frequency during the active and silent portions of the speech
signal. The frequency-scaling has resulted in the reduction of the
bits per sample and also the overall data size. The dynamic power
consumption in a system is directly proportional to the clock
frequency, and hence, decreasing the clock frequency during
inactive periods saves power, increases battery life, and reduces the

heat emission.

Devised a method for the real-time anomaly detection in
mechanical systems based on the parameter, average level-crossing
rate (ALCR) of the vibration signals. Abnormalities in the bearings

cause an increase in the amplitude and frequency of the signals,
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which produce a corresponding increase in the ALCR. The
proposed system works on the analog output of the sensor and does
not require conventional steps like sampling, feature extraction,

classification, or computation of the spectrum.

6. A voice-controlled audio mixer has been simulated in which the
background music is attenuated based on the intensity of the speech
signal. Instead of measuring both the zero-crossing rate and the
signal’s energy, variations in the ALCR are sufficient for activity

detection.

7. Simulated an acoustic feedback suppression system, in which the
feedback discrimination is performed with ALCR, and howling
frequency identification with the zero-crossing time. In
conventional methods, the frequency resolution and delay are
dependent on the frame size. The method based on ALCR works on
the analog input, and the sampling, encoding and framing are

evaded.
1.4 THESIS ORGANIZATION
The remaining chapters of the thesis are organized as follows.

Chapter 2 provides a comprehensive review of the literature on non-
uniform sampling and level-crossing sampling. The review is divided into four
sections. These sections are the literature on

1. level-crossing sampling

2. compression of vibration signals

3. anomaly detection using vibration signals and

4. voice-controlled mixer and acoustic feedback detection.
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Chapter 3 gives an overview of the sampling process, starting with
uniform sampling and its limitations. A brief history of non-uniform sampling
methods is also provided. The chapter is concluded with an introduction to the

random sampling method known as compressed sensing.

Chapter 4 introduces LCS, various blocks for its implementation, and the
design procedure for the sampler. The signal-to-noise ratio due to the
quantization error in time is explained in this chapter. Adaptive and extremum
sampling methods are also introduced. The effect of noise in level-crossing

samplers, and samplers with hysteresis are discussed in this chapter.

Chapter 5 introduces LCS with multiple temporal resolutions, which
provides an efficient encoding of the silence regions in speech signals. The
concept of frequency-scaling, which is used for achieving multi-temporal
resolution, is also explained. The performance comparison of frequency-scaled
LCS, adaptive LCS, extremum sampling and the reconstruction algorithm for

each type are also detailed in this chapter.

Chapter 6 deals with the application of level-crossing methods on
vibration signals. The compressed representation of vibration signals achieved
with extremum sampling is demonstrated. The chapter also explains the anomaly
detection of mechanical systems performed by monitoring the variations in the

ALCR of the signal.

Chapter 7 presents the applications of ALCR for activity detection in
speech or audio signals. The applications explained are voice-controlled audio
mixer and acoustic feedback detection in public address systems. The use of
ALCR for feedback discrimination and zero-crossing time for howling frequency

estimation is illustrated.



1.5 SUMMARY

This chapter summarizes the limitations of the conventional sampling
techniques and the advantages offered by non-uniform sampling. Among various
non-uniform sampling methods, level-crossing sampling has gained popularity in
sampling biopotential signals. There is further scope for improving the efficiency
of LCS while sampling the speech signals. The organization of the remaining
chapters is also provided. The next chapter presents a literature review on non-
uniform sampling, level-crossing sampling, compression methods for vibration
signals, anomaly detection using vibration signals, and voice-activity detection

for mixer and howling- noise detection.



CHAPTER 2

LITERATURE REVIEW

This chapter presents a review of the literature available on various
sampling methods, compression schemes for vibration signals, anomaly detection

in mechanical systems using vibration signals, and activity detection.
2.1 INTRODUCTION

Sampling is the process of converting an analog signal into a discrete-
time signal, which is the primary step in digital signal processing or digital
communication. Shannon, in his paper [1], specifies the condition for the exact
reconstruction of the input signal from the samples. Uniform sampling methods
acquire samples even if there is no variation in the signal amplitude. Drawbacks
of uniform sampling methods are detailed in [2, 3]. The factors on which
dynamic power consumption of CMOS circuit depends are explained in [4].
Battery-operated devices such as implantable devices are available in the form of
microchips, usually implemented with CMOS logic. The dynamic power
consumption in a CMOS device is proportional to the activity factor. Devices
based on level-crossing sampling (LCS) are asynchronous circuits in which the
switching rate is proportional to the activity of the signal. Hence the average
switching rate is less in circuits which are based on LCS compared to
synchronous circuits. Activity-dependent sampling methods minimize the
dynamic power consumption of a system exploiting the local properties of the
signal. The power-savings achieved with non-uniform sampling techniques have
been presented in [5, 6]. Signal-dependent sampling methods are suitable for
wireless sensor nodes with minimal resources [7]. The development of event-
based signal processing techniques has led to the concept of continuous-time

digital signal processing (CT-DSP) [8, 9].



Compressed sensing was introduced for acquiring a reduced number of
samples from a sparse signal compared to that obtained at the Nyquist rate [10-
13]. It involved multiplication by large-sized matrix for encoding, and

optimization algorithms for reconstruction of the signal.
2.2 LEVEL-CROSSING SAMPLING

Level-crossing sampling (LCS) is another non-uniform sampling scheme
suitable for sparse signals, which is easy to implement. LCS was first introduced
as a data compression technique in [14]. Analog-to-digital converter based on
LCS was proposed in [15]. In [16], a level-crossing detector (LCD) which
resembles the flash type analog-to-digital converter is employed. Instead, LCD
can also be implemented as an asynchronous delta modulator [17]. Different

realizations of time-to-digital converters are detailed in [18].

The design of a level-crossing sampler is explained in [19]. Several
structures for analog-to-digital conversion based on LCS have been proposed in
literature [20-22]. Continuous -time LCS with charge sharing has been proposed
in [23].

Adaptive LCS, in which the inter-level distance is varied according to
the slope of the input signal, is introduced in [24]. Peak sampling was introduced
in [25] for signals which have an oscillatory nature. Peak sampling is also known
as extremum sampling [2] and minimax sampling [26]. Peak sampling can be

implemented with level-crossing sampling [27].

LCS has been used for sampling signals in low-power IoT devices in
[28] and has been successfully employed for sensing biopotential signals [29-34].
A single-chip implementation of LCS has been done in [35] for acquiring ECG
signals. QRS detection from ECG has been performed with LCS in [36]. Digital

filters have been implemented in [37], that operate on the samples acquired with
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LCS. The processing of signals using the samples obtained with LCS is
introduced in [38].

Speech signals have been applied to LCS in [15,19,39-41], in which the
use of time-to-digital converters (TDC) with a constant temporal resolution has
resulted in a large number of bits per sample. LCS with multiple temporal
resolutions achieved with the frequency-scaling technique is proposed in this
thesis. Frequency-scaling is employed in computer architecture for the dynamic

power reduction based on the CPU activity [42-44].

23 COMPRESSION OF VIBRATION SIGNALS

Data compression is used to reduce memory space requirements,
communication bandwidth, and power consumption [45]. Compression
algorithms are generally classified into lossless and lossy. Vibration signals are
employed to detect the anomaly in mechanical systems and have the highest
frequency among other telemetry signals. Hence, there is a high demand for
compressing vibration signals. Lossless compression has been applied to the
accelerometer signals in [46], where time delay estimation with differential pulse
code modulation is used. However, the compression gained is less and is
approximately equal to 70%. An adaptive compression scheme for vibration
signals is proposed in [47], which applies lifting discrete wavelet transform with
set-partitioning of embedded blocks. The compression of vibration signals from
wireless sensor nodes with a modified discrete cosine transform has been
proposed in [48]. Run-length encoding has been applied to telemetry data in a
multichannel acquisition system in [49]. However, the method involves
oversampling and averaging before performing run-length encoding. The
compression of vibration signals collected from airplane engines has been
achieved in [50] using discrete cosine transform. In [51], the authors propose a
compression method referred to as sub-band adaptive quantization for vibration

signals from aircraft engines. In all the above methods, samples are acquired at
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the Nyquist rate based on the maximum signal frequency fn.:, and most of the

samples are discarded during the compression process, wasting the resources.

CS has been employed for encoding vibration signals in [52] for high-
speed rail monitoring in China. Vibration signals are found to have a sparse
representation in discrete cosine transform (DCT). A sparsity-adaptive subspace
pursuit CS algorithm has been applied in [53] to represent vibration signals from
the wireless sensors, used for the health monitoring of structures. Even though
CS stands for sensing the signals in a compressed form, in most cases, the
vibration signals are first uniformly sampled and encoded. Subsequently, they are
multiplied with a measurement matrix using the sparsity of the signal in a

particular domain.
2.4 ANOMALY DETECTION USING VIBRATION SIGNALS

Various approaches for condition-based maintenance (CBM) of systems
and prognostics and health management (PHM) are explained in [54]. In CBM,
conditions of the machines are determined from the run-time data to schedule
repair and maintenance. PHM predicts future behaviour, the remaining useful life
(RUL) from the present data, and schedule the steps needed for the machine to
operate for a long time. The general approaches for CBM and PHM are classified
into (i) model-based methods, (ii) data-driven methods, and (iii) hybrid methods.
In the model-based method, a mathematical model is created to describe the
damage in the equipment [55]. In the data-driven approach, the measured data is
used for fault detection or prediction [56]. Hybrid methods make use of both
techniques [57].

Vibration signals are used for anomaly detection because the damages in
moving parts, especially the bearing faults, create changes in vibration. Various
feature extraction methods are used for this purpose. Time-domain methods have
been applied for fault detection in the planetary gear set in [58], which is based

on the change in the peak amplitude of the stator current. In another time-domain
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method [59], artificial modulation of the current signal is done to extract the
frequency components due to faults. However, the accuracy of failure detection
is dependent on the careful selection of the frequency and measurement of the

time gap between the zero-crossings.

Features extracted from the vibration signals have been used for bearing
fault detection. Statistical features in the time domain were used in [60], and time
domain and frequency domain features were used in [61]. Fifty-nine features
from the time, frequency, and wavelet domains were used in [62]. Empirical
mode decomposition and time-domain statistics were used to extract features
from vibration signals in [63]. Several wavelet-based methods are also available

in the literature [64-66].

Even though efforts have been made to reduce the amount of data by
employing compressed sensing [67, 68], the process involved for feature
extraction is very much involved. Damage-detection using the vibration signal is
not limited to machines only but extended to civil structures also [69]. Machine
learning techniques have been used for anomaly detection in [70]. Even though
several deep-learning methods have been developed [71-74] for anomaly
detection in machines, they need vast numbers of normal and faulty data for
training. A simple mechanism for anomaly detection from the analog input signal

is proposed in this thesis.

2.5 VOICE-CONTROLLED MIXER AND ACOUSTIC FEEDBACK
DETECTION

Voice-activity detection has been employed for the separation of speech
and silence into different time intervals. There are certain situations in which
intensity of a particular signal is monitored, and a control action is initiated if the
intensity crosses a threshold value. One such application is a voice-controlled
mixer in which a background signal is suppressed, either entirely or partially, if

another signal of sufficient intensity appears from a different source. For
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implementing an automatic voice-controlled audio amplifier, envelope detection
is used for activity detection [75]. Short-term energy (STE) and zero-crossing
rate (ZCR) are used in [76] for detecting the speech signal for controlling the
background music. Another more straightforward method based on the average

level-crossing rate is proposed in chapter 7.

Howling noise is produced in public address systems due to the acoustic
feedback, and is quite annoying to the audience. In notch-based howling
suppression, the first step is to identify the feedback signal. The peak spectral
component is picked, and it is compared with other components. The feature,
Peak-to-Threshold Power Ratio, is used in [77], and in [78], Peak-to-Average
Power Ratio is used to detect feedback signal. Similarly, Peak-to-Harmonic
Power Ratio [79] and Peak-to-Neighbouring Power Ratio [80] are also employed.
Literature is available, where Inter-frame Peak Magnitude Persistence [81] and
Inter-frame Magnitude Slope- Deviation [82] are used for detecting the feedback.
In frame-based methods, the frequency resolution increases with the length of the
frame, but the delay also increases. A technique based on the average level-
crossing rate, which detects howling directly from the analog signal, is proposed

in Chapter 7.
2.6 SUMMARY

This chapter reviews the literature on level-crossing sampling,
compression of vibration signals, and anomaly detection in mechanical systems
using vibration signals. Non-uniform sampling methods are gaining popularity
since they generate a compressed set of samples. Processing based on the
samples acquired with non-uniform sampling has been proposed in various
literature available. Most of the compression methods for vibration signals are
based on a sample-then compress scheme, discarding most of the acquired
samples, wasting the resources like power and storage. Even though speech

signals are applied to LCS, the dynamic range of TDC is very high, resulting in
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higher bits per sample and data size. Hence there is a requirement for efficiently
encoding the samples acquired with LCS, which is addressed in this thesis.
Anomaly detection in mechanical systems is based on the complex processing of
a massive amount of vibration data. A simple method based on the level-crossing
rate is proposed in this thesis for anomaly detection. Basics of uniform sampling
scheme, its limitations, and the evolution of non-uniform sampling are discussed

in the next chapter.
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CHAPTER 3

SAMPLING PROCESS-A REVIEW

3.1 INTRODUCTION

In the real world, all the signals appear in the analog form. Present-
generation computers store and process the signals in the digital domain.
Moreover, noise and interference have lesser effect on digital signals during the
transmission. Hence analog signals must be converted into the corresponding
digital equivalent. Sampling is the first step for this conversion, in which a
continuous-time signal is converted into a discrete-time signal, satisfying the
conditions for the perfect reconstruction. Due to the robust technology and ease
of processing, uniform sampling has been adopted as the standard sampling

scheme for more than half a century.

Very often, uniform sampling leads to a number of redundant samples
being acquired, which have to be further reduced to a compact form with the help
of suitable compression techniques. Researches for acquiring samples from
analog signals, which are just sufficient for the reproduction, have led to the
invention of several non-uniform sampling techniques. In this chapter, a review
of uniform sampling scheme, its limitations, and the evolution of non-uniform
sampling are presented. Compressed sensing, a method which samples the signal
in a compressed form, making use of the sparsity of the input signal is

introduced.
3.2 UNIFORM SAMPLING

The foundation for digital communication was set with the paper
published by Shannon in 1949 [1]. According to Shannon, if a function x(7)
contains no frequencies higher than fu. Hz, it is completely determined by

giving its ordinates at a series of points spaced 1/ (2fuax) seconds apart. The rate,



2fmax samples per second is known as the Nyquist rate. The function x(¢) can be
reconstructed using sinc (2m. funax.t), which is sin 2n. fuat)/ 27 fuart. In
frequency domain, this is equivalent to an ideal low pass filter which has a flat
pass band up to fn. Hz, and stop-band with gain zero outside this band. Analog-
to-digital converters (ADC) are the interface between the real-world analog
signals and digital signals which are stored and processed by computers.
Sampling theorem is the basis for the conversion of analog quantity to digital.
Once the sampling frequency is chosen as 2., any frequency component above
Jfmax Hz present in the input signal causes spectral overlap called aliasing during
the sampling process. Hence it is a necessity to limit the frequency of the input

signal to fmax Hz using a filter known as anti-aliasing filter.

In Shannon’s paper, there was no restriction that samples are to be
uniformly spaced in time. But standard rates were fixed for acquiring regularly
spaced samples from band-limited signals. For example, 8 kHz was selected as
the sampling rate for telephone signals and 16 kHz for some other applications.
The ease of sampling and reconstruction, and the existence of the well-
established theory have been the basic reasons for most of the existing digital
systems to be based on uniform sampling. Even today, the number of samples
selected for converting an analog signal into its digital equivalent is based on the

Nyquist—Shannon sampling theorem.
3.2.1 Need for compression

A uniformly sampled and digitized data may not be represented in an
efficient manner. The representation is said to be inefficient because there is
redundant data which do not convey any information. In general, data
compression is termed as the process of redundancy-reduction. Redundancy-
reduction is a reversible process because the removed redundancy can be
reinserted into the data afterwards. There are always situations in which the

resources such as memory, transmission bandwidth, and energy for transmission
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are limited. For efficient utilization of the resources, data compression is a
necessity. Wireless sensor networks consist of a number of wireless nodes that
are employed for the monitoring of various parameters such as temperature,
pressure, vibration, etc. The sensor nodes have constrained resources like
processing speed, memory capacity, and communication bandwidth. Wireless
transmissions in sensor nodes consume the major portion of its power, and hence
data must be compressed before transmission. The basic techniques for data
compression are run-length encoding, statistical methods, dictionary methods,

and specific methods for audio, image and video data [45].

Conventional data compression methods have to operate on all the
samples acquired at the Nyquist rate, which increases the computational
complexity at the transmitter, and consumes more battery power [7]. This extra
burden at the transmitter side can be minimized if samples are acquired such that
they are just sufficient for the reproduction of the signal. Generating a lesser
number of samples leads to lesser computation, storage, communication, and

power requirements.
3.2.2 Limitations of uniform sampling

In the conventional sampling methods, the sampling rate is independent
of the instantaneous frequency of the signal. It is inefficient because the part of
the signal with frequency content much less than the highest frequency is over-
sampled by this method. Another drawback is that, in order to avoid aliasing, the
signal is band-limited to half of the sampling frequency, which can cause missing
of any abrupt change present in it. Therefore, sampling must be specific to the
signals and their applications. Systems with multiple sampling rates and systems
with distributed computing face severe difficulties with fixed sampling rates [2].
The complexity of the multi-rate systems depends critically on the ratio between
different sampling rates. The clocks must be synchronized in distributed systems

where jitter and delays create difficulties.
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Electrocardiogram and seismic signals fall in the category of sparse and
bursty signals. A signal is said to be sparse in a domain if it has few numbers of
non-zero elements in that domain. However, there may be sudden changes in
amplitude in the form of bursts occurring for short durations. If sampling is done
at the Nyquist rate, redundant samples are generated during the quiescent period
also [3]. Hence signal-dependent sampling methods are more adequate for these

classes of signals.

The common issues associated with the synchronous circuits are higher
dynamic power consumption, the clock distribution problem, electromagnetic
emission, etc. [3]. The synchronous logic circuits have reached the technical
limits in dealing with these problems. The asynchronous circuits have emerged
as an alternative to the synchronous circuits in many applications. They are
having properties like less power consumption, less electromagnetic emission,
higher speed of operation, and they are robust against variations in supply

voltage and temperature.
3.3 NON-UNIFORM SAMPLING (NUS)

Non-uniform sampling has advantages compared to uniform and
synchronous sampling while processing low activity signals. There are many
situations in which the dynamic power consumption has to be reduced for longer
battery life, and the size of the data is to be small to reduce the transmission
bandwidth, which is expensive. The dynamic power consumption P in CMOS

circuits is stated in Eqn. 3.1.
12
P=aCV*f, (3.1)

Where a is the activity factor, C denotes the switched capacitance, V'
denotes the supply voltage, and f is the frequency of the clock used [4]. Many
studies have been carried out in literature to minimize the dynamic power

consumption by reducing the values of C, V, or f.. Non-uniform sampling allows
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the exploitation of the local properties of the signal to avoid sampling at a high
rate when the local bandwidth is low thereby reducing the activity factor. For
perfect reconstruction from non-uniform samples, the mean sampling rate must
exceed the Nyquist rate [83]. Several sampling methods have been evolved,

which generate samples at non-uniform rates.
3.3.1 A brief history of non-uniform sampling

In non-uniform sampling, samples are not equally spaced in time axis.
This idea started appearing in the papers published in the 1950s. Aperiodic
sampling was suggested by Ellis [84] in 1959. It was pointed out that periodic
sampling was not necessary for transmitting data through a channel.
Transmission can take place only when the value of data changes from one
possible value to the next. Several papers appeared in the 1960s about increasing
the efficiency of the sampling process. Asynchronous delta modulation was
invented by H. Inose et al. [85]. Delta modulation is based on a clock signal, and
a pulse output is transmitted in synchronization with each clock signal, which
depends on whether the amplitude of the signal has changed by a step size or not.
However, in asynchronous delta modulation, there is no clock signal, and a pulse
output is transmitted only when the signal has changed by a step size, thus
reducing the transmission rate. In synchronous delta modulation systems, there
will be slope-overload distortion and granular noise occurring at fast changing
and quiescent regions of the signals respectively. In asynchronous sampling, in
order to minimize the effects of slope-overload and granular noise, input signal is
sampled at a higher rate during the fast-changing regions compared to the slowly
changing regions. Comparison of uniform and non-uniform sampling was done
in [86]. In the event-based sampling methods, analog signals have a discrete
representation in terms of the levels which are equally distributed in the
amplitude domain. An event could be a significant change in the measured value
of a signal. Hence, they are termed as Lebesgue sampling. Uniform sampling is

usually termed as Riemann sampling.
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A non-uniform sampler based on level-crossing was discovered by Mark
and Todd in 1981 [14] which resulted in data compression. It consists of a level-
crossing detector (LCD), in which the input signal is compared to a number of
uniformly spaced threshold levels. A pulse is generated at the output of the LCD
and a sample is taken whenever the input signal crosses any of the threshold
levels. If the pulse is transmitted as such, then it is equivalent to an asynchronous
delta modulator. However, in a wireless system, the pulse output cannot be
transmitted as such without performing the encoding operation. The information
about the signal is in the interval between the level-crossing instants, and also in
the direction of the level-crossing. The interval is a continuous variable that
could not be stored or transmitted. Hence the interval between level-crossing
instants is encoded before transmission. Binary strings “00” is used to represent
the time between level-crossings and “01” and “10” denote upward and
downward level-crossings respectively. 7, is the time quantum with which the
interval is measured. Hence an interval is represented as a sequence of “00”
followed by either “01” or “10”. This representation had long sequences of 0s
which was coded with run-length encoding to reduce its length. Fig. 3.1 depicts

the block diagram of this method [14].

Analog Level-crossing

i — detector > Interval » Distortion-less Digital
ks (LCD) Encoding Encoding > output

Fig. 3.1 Block diagram of the non-uniform sampler proposed
by Mark et al.

Fig. 3.2 is the block diagram for non-uniform sampling based on level-
crossing sampling suggested for analog-to-digital conversion by Sayiner et al. in
[15]. The input signal is compared to ‘N’ threshold levels. The intervals between
level-crossing instants are recorded in terms of the number of clock cycles with
frequency f., which has the total duration equal to this interval. Time resolution is

proportional to the value of f.. Output of the quantizer, which are the non-
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uniform samples are fed to an interpolator to convert them into uniform samples.

These uniform samples are fed to a decimator to convert the rate to Nyquist rate

nyq .

Clock signal
l fe
Uniform
Input signal -_ samples
fi  — N-leve — Interpolator  jempp! Decimator =i
quantizer P P
out qu

Fig. 3.2 Block diagram of the non-uniform sampler proposed
by Sayiner et al.

Lebesgue sampling is also known as “Send on delta” scheme in the
context of transmission in the sensor networks. It is a signal-dependent sampling
method in which the sampling is triggered if the signal has a significant change
of ‘A’ volts in its amplitude. Hence, between the samples there is a difference in
amplitude which is equal to A. The quantitative evaluations of the sampling rate
in send-on-delta and the comparison with uniform sampling are given in [87].

This scheme is illustrated in Fig. 3.3.

x(?)

Fig. 3.3 Illlustration of the principle of send-on-delta scheme

The distance between adjacent levels can be expressed as,
[x(2)1-1x(z: DI=A (3.2)

Where x(#) is the i sample, i=1, 2, ..n.
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The threshold A determines the resolution of the signal representation.

The smaller the value of the threshold A, the higher will be the resolution.

The number of samples in the case of periodic sampling and that in the

send-on-delta scheme are compared in Fig. 3.4. The resolution in both cases is

the same and is equal to 0.2v.
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Fig. 3.4 (a) Number of samples in periodic sampling
(b) number of samples in send-on-delta scheme

A comparison of ADCs based on uniform and level-crossing sampling is

shown in table 3.1 [19].

Table 3.1 Comparison of Uniform and level-crossing
sampling
Parameter Uniform sampling Level-crossing sampling
Conversion trigger Clock Level-crossing
Amplitude Quantized value Exact value
Time Exact value Quantized value
SNR dependency Number Of.blts in the Timer period of TDC
representation
Converter output amplitude (amplitude, time)
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3.4 COMPRESSED SENSING

Compressed sensing (CS), also known as compressive sampling is
another sensing technique of acquiring samples at a reduced rate. Candes et al.
proved [10] that if a signal has a sparse representation in a particular basis, the
number of samples required for perfect reconstruction can be less than that
acquired at the Nyquist rate. A signal of length 7 is said to be sparse in a domain
if it has m<n non-zero samples in that domain. The name “compressed sensing”
is due to the fact that the data is compressed during the sensing process. In
classical sampling, a continuous-time signal which has infinite length is being
sampled at the Nyquist rate. However, CS theory does not treat the signal as a
continuous one [88]. It projects finite dimensional vectors in R” to lower
dimensional vectors in R”. CS linearly projects a signal to a known basis. The
reconstruction of the signal from the CS-domain is done by complex convex-
optimization methods, whereas in classical sampling, the reconstruction is done

by simple sinc interpolation.

Let x be an input signal with sample vector length n. The output y
obtained by performing compressed sensing on the input x can be expressed in

matrix form as given below.

y=¢x (3.3)

The output y is of length m < n, and ¢ is a measurement matrix of size m
x n. In most of the cases, the input x will be expressed in terms of an ortho-

normal basis function, y as shown in Eqn. 3.4.
X=ya 3.4)

¥ is the n x n sampling basis, and a is the coefficient sequence of length
n. If x is sparse in wavelet domain, then y is the inverse wavelet transform matrix

which converts the wavelet coefficients a into x.
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Eqn. 3.3 and Eqn. 3.4 can be combined as

y=0Oaq (3.5)
where
O=dy (3.6)

which is known as the sensing matrix. Since the number of
measurements m is very less than n, compression is achieved during the sensing
process. The two requirements for implementing CS on a signal x are sparsity

and incoherence.
Sparsity- The signal x must be sparse in some domain.

Incoherence- The sampling matrix y, and the measurement matrix ¢

must be incoherent.

The coherence between y and ¢ is expressed as

Ky )=V, max |(w.4,)] (37

O<k,j<n

Coherence is a measure of the largest correlation between any two
elements of y and ¢. The reconstruction of the signal x from y can be performed

as

R=¢"'y (3.8)

However, there are just m known values in y and there are » unknown
values of the signal x, where m<n. Hence the problem is under-determined with
many possible solutions. One of the methods for finding the solution is with /i-

norm minimization as

min||a| |11, subject to y=®ya (3.9)
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where /i-norm of a function z is defined as
1], = %l (3.10)

Compressed sensing has applications in various fields including medical
imaging. MRI images can be reconstructed from fewer Fourier coefficients using
the optimization techniques of compressed sensing. The need for executing
complex optimization algorithms have restricted the use of compressed sensing

for real-time applications.
3.5 SUMMARY

The famous Nyquist-Shannon sampling theorem laid the foundation for
analog-to-digital conversion and digital communication. However, uniform
sampling is inefficient while sampling sparse signals. Several non-uniform
sampling techniques have been developed, which efficiently sample the signals
with a rate which is dependent on the activity. The evolution of non-uniform
sampling has been discussed in this chapter. Compressed sensing, another
technique that allows reconstruction of the signals sampled at sub-Nyquist rates,
is also introduced. In CS-based methods, sensing generally requires
multiplication by large-sized matrices. In addition to this, the need for iterative
optimization methods makes the real-time reconstruction a difficult task. An
efficient non-uniform sampling method which is suitable for sparse and bursty

signals is level-crossing sampling (LCS) and it is discussed in the next chapter.
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CHAPTER 4

LEVEL-CROSSING SAMPLING

4.1 INTRODUCTION

Level-crossing sampling (LCS) is an efficient non-uniform sampling
method which is suitable for sparse and bursty signals. In order to reduce the
number of samples acquired while the signal has sudden variations in its
amplitude, adaptive level-crossing sampling is used. Extremum sampling is
another form of non-uniform sampling in which samples are taken at the local
extrema points. In this chapter, basic theory of level-crossing sampling, and the
design of LCS sampler are discussed. Adaptive LCS, extremum sampling, and

the noise tolerance of level-crossing methods are also introduced.
4.2 PRINCIPLE OF LEVEL-CROSSING SAMPLING

The concept of LCS is depicted in Fig. 4.1. The horizontal dotted lines
represent different reference levels /n. The signal x(7) is compared with the pre-
fixed reference levels. A pulse signal is produced at the output of a level-crossing
detector (LCD) whenever the signal crosses any of these reference levels. The
LCD output triggers a time-to-digital converter (TDC), to produce a digital
count, which is a representation of the interval between level-crossing instants
dt,. Each sample is represented by a couple (L, Dt,), which are the digital
representations of a particular threshold level /, and the time interval between the
present and previous level-crossing instants df,, respectively. Hence the signal is
represented by an ordered sequence of amplitude-time pairs with non-uniformly

spaced time values.



x(7)

Fig. 4.1 lllustration of the level-crossing sampling scheme

The general block diagram of a level-crossing sampler is depicted in Fig.
4.2. The major blocks are (i) a level-crossing detector (LCD) and (ii) a time-to-
digital converter (TDC). LCD sets the required number of threshold levels, which

spans the dynamic range of the input signal.

N Level-crossing Time-to-digital
Input signal detector (LCD) convertor (TDC) =Di>gita| colint
x(1) Di,
Logic Circuit
Digital count

n

Fig. 4.2 The block diagram of a general level-crossing
sampler

We require at least [logzL] bits to encode the level which the signal has

crossed, where L is the total number of crossing levels, and [.] indicates the

rounding operation towards the nearest higher integer. The number of bits needed

to represent the time-gap between successive level-crossings is [ZogZ(a’t /T, c)],
n
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where T. is the time-period of the clock signal used for measuring dt,. The bit

representation of each sample is depicted in Fig. 4.3.

L D1y L; Dt L; 00 B

Sample 1 Sample 2 Sample 3

Fig. 4.3 The representation of the samples in LCS

In order to reduce the number of bits required to represent each level, a
differential form can be used as illustrated in Fig. 4.4 [16]. Instead of
representing L, in the couple (L, Dt,), a single bit ‘DIR’ can be used to indicate
the direction of change in the input amplitude, and each sample is represented by
the pair (DIR, Dt,). The advantage of this differential representation is that the
amplitude variations in the signal can be monitored by the DIR bit. In a wired
system, the signal can be reconstructed using the DIR signal alone with the

knowledge of x¢ and the step size Av.

N Level-crossing Time-to-digital =>
Input signal detector (LCD) convertor (TDC) Digital couit

x(1) Dty

Logic Circuit —>
DIR

Fig. 4.4 The block diagram of a level-crossing sampler with
differential representation

The representation of sample values is depicted in Fig. 4.5. The initial
value of the input signal xp must be transmitted before transmitting the DIR and

Dt, values of succeeding samples.

Xo DIR Dt DIR 10 2 e ———

Initial value Sample 1 Sample 2

Fig. 4.5 The bit representation in differential LCS
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Let 7, be the n'' time instant at which a non-uniform sample is acquired,
x(t») the corresponding amplitude of the sample, Av the inter-level distance, and
b, =1 for DIR=1 &b, =-1 for DIR=0. The present time ¢, is updated from the

previous time instant #,.; using the sample value (DIR, Dt,) as shown in Eqn. 4.1.
In = th-1 + DtnT, (4.1)
The value of x(#,) can be updated from the previous value x(#,-/) as,
X(tn) = x(tn-1) + bulAv (4.2)
4.2.1 Level-crossing detector

Level-crossing detector (LCD) can be implemented with various
methods. A number of voltage comparators arranged in the form of a flash type
ADC circuit can be used [16] for implementing LCS. As shown in Fig. 4.6,
different threshold levels are connected as one of the inputs to each of the
comparators, with the signal input connected as the common input. The number
of comparators required is equal to the number of threshold levels, and hence the

hardware complexity of this type of circuit increases with the number of levels.

Comparators
| +

5 - ’
e 3
g - E o Digital
1] o ® output
[ [T ®
2 o
5 [ ] -
= [ ]
] °
[T}
[

[ o 2
| |

INPUt O d

Fig. 4.6 The block diagram of a flash-type LCD
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LCS can also be realized in the form of an asynchronous delta modulator
as depicted in Fig. 4.7, in which the input signal is fed to a window comparator.
At any instant, the input amplitude is compared with the present reference levels
Vi and Vi. Vi and V;, are the upper and lower thresholds, based on the amplitude
of the signal during the previous level-crossing instant. Based on the output of
the comparators, Vy and V. are increased or decreased by the step size Av. If the
input crosses any of the present reference levels, LCD output stores the present

count of the TDC counter, resets it, and then starts counting the next interval.

’— S Qj—e DIR
—iR
LCD
output TDC Output
] EXOR CLR Counter
1 CLK
Input \ INC
x(f) / )
— Logic DAC |- R
\ Circuit
— +
/ DEC
Ve
+35

Fig. 4.7  The block diagram of the level-crossing sampler with
differential representation

4.2.2 Time-to-digital converters

Time-to-digital converters (TDC) are used for the measurement of time
intervals between physical events in various applications in science and industry.
The simplest case of time interval measurement is illustrated in Fig.4.8 [89].
Physical events in the form of variations in temperature, pressure, etc. are
detected, which are fed to the time discriminators to produce pulses. The leading
edges of the pulses are applied to the START and STOP inputs of the TDC.
Instead of having two separate inputs for START and STOP, a common pulse
input can also be used. The leading edge of the pulse will trigger the conversion

process and the trailing edge will stop the counting. The TDC converts a time
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interval into a binary word. There are several areas of applications of TDCs
including nuclear physics, dynamic testing of integrated circuits, high-speed data

transfer and laser ranging systems.

—>»|  Detector | Disc;'m"}f‘ator - »{START
Physical J\-T TDC
Events i Digital
Time .’\_ Count
— ™ Detector [ piscriminator [ P°TOP

Fig. 4.8  The block diagram for time interval measurement

The initial TDCs developed were based on time-to-amplitude converters
in which the basic element was a capacitor. Based on this, several analog TDCs
were developed which fall into the category of first generation of TDCs [18].

Recently developed converters are completely based on digital approaches.
The important parametrs used to evaluate the performance of a TDC are,
i.  Time resolution

It is the minimum time input that a TDC can correctly measure, which

depends on the lower significant bit (LSB).
ii.  Dynamic range

It indicates the maximum time input that a TDC can measure. For
counter-based converters, this parameter is dependent on the number of bits of

the counter.
iii.  Conversion time

It is the minimum time with which a TDC performs a conversion, which
is measured from the beginning of the START trigger. Conversion time is an

important parameter for high-speed applications.
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iv. Dead time

It is the shortest time needed after the stop event, for a converter to

produce the digital word.

The simplest method for time-to-digital conversion is based on a digital
counter which is fed with a reference clock signal of time period 7 as shown in
Fig. 4.9. The counter must be reset before enabling it for a fresh measurement.
The time interval 7 will be measured in terms of the number of clock pulses. The

result will be available as a count » such that

T=n.T, (4.3)

with a measurement error 8t = T — T which has a value within [0, T.].
The signal-to-noise ratio of LCS due to this measurement error is derived in

section 4.3.

ENABLE
— T —> ——

CLOCK DIGITAL
COUNTER
s : Digital
P RESET Count
T " Bt B|

Fig. 4.9 The block diagram of a TDC based on counter

The clock signal must be highly stable and the delay in the counter
circuit must be very small. In order to increase the resolution of the
measurement, each clock cycle can be further sub-divided. A TDC counter with a
large dynamic range can be used as a coarse counter, and one or two counters
with short dynamic ranges used as fine counters. A ring oscillator with p delay
stages can generate p equally spaced versions of the clock signal. Higher values
of resolution can be achieved by delaying the clock signal using a series of
digital delay elements. In this case the resolution will be dependent on the delay

provided by the delay elements. The resolution can be further doubled by making
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use of CMOS inverters in place of delay-lines in which both the rising and the

falling transitions are used for measurement [18].

4.3 SIGNAL-TO-NOISE RATIO (SNR) OF LEVEL-CROSSING
SAMPLERS

In classical ADCs, regular sampling is done at the Nyquist rate, and the
amplitudes are quantized. Amplitude of each sample is represented by an N-bit
word, where N is the resolution of the converter. Since the sampling interval is
constant, the information regarding the sampling time is not needed. The SNR for

classical ADC is specified as shown in Eqn. 4.4.
SNRyz = 1.76 + 6.02N (4.4)

In LCS, each sample is taken when the signal amplitude crosses any of
the threshold levels. In regular sampling, the uncertainty lies in the amplitude of
the samples, and the sample times are exactly known. Assuming that ideal levels
are considered, and the amplitudes in LCS are exactly known, the interval
between successive samples are quantized with the precision 7. of the timer used

for representing d#, as shown in Fig. 4.10.

In-I

>

JERNpERERE N

> 7. |l

Fig. 4.10 Illustration of the error due to time quantization

Input signal x(¢) is crossing level /,.; at point A, and the next upper-level

[, at point B. The interval dt, between these two points is measured as the number
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of clock cycles, the total duration of which lie completely within d#,. Since the
time measurement is synchronized with the leading edge of the clock as shown in

the figure, there is an error in time by a quantity oz. Instead of dt,, the time

interval is measured as d,. 8¢ can be any value within the range [0, 7¢]. In order
to find an expression for the SNR, the error 67 is converted to an equivalent error
ov in the amplitude [19] as illustrated in figure. Assuming a linear variation of the

input signal within Av,

dx
Sv="-0t (4.5)

dx . . . d
Where d—: is the slope of the input signal x(¢). d—: and of can be taken as

independent random variables. Then the noise power due to quantization will be,
dx
P(6v) =P (E) P(5t) (4.6)

ot is uniformly distributed in the interval [0, T¢].

Therefore,
2
P(8t) = = (4.7)

SNR can be calculated as,

P(x)
SNRg=10log, , (+ (m) (4.8)
Thus,
_ 3P(x)
SNRgz = 10log,, (—P (%)%2) (4.9)

Splitting Eqn. 4.9 into two terms,
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SNRgp = 10log, (%_’,5) +20log, , (Ti) (4.10)

The first term in Eqn. 4.10 is dependent on the statistical properties of
the input signal. In the case of LCS, SNR is not dependent on the number of
quantization levels, but on the time period 7. of the clock signal used for
measuring dt,. By dividing 7. by two, SNR increases by 6.02 dB. From Eqn. 4.4,
it is clear that if the number of bits N is doubled, the SNR of a synchronous ADC
increases by 6.02 dB. Hence dividing the value of Tc by two is equivalent to the

addition of a bit in a classical ADC.

4.4 DESIGN OF A LEVEL-CROSSING SAMPLER

The complete design methodology of an A/D converter based on level-
crossing sampling (LCS) is presented by E. Allier et al. in [19]. A timer with

time period 7 is used to represent dty.

If the converter resolution M and the maximum value of the input Vi

are known, then the inter-level distance Av will be,
= Vimax
Av = T (4.11)

Let d be the total delay of the conversion loop, which is the time gap
between a level-crossing instant and the time at which the reference levels Vy
and V; are updated. When a conversion is triggered, the input signal must not
change its amplitude by Av until the conversion corresponding to the previous
level-crossing is reflected in the output. This restriction which is stated as a
tracking condition of the asynchronous converter, can be expressed as

dv,-n

Av
i (4.12)

d

The design of the level-crossing sampler is explained below.

Characteristics of the input signal and the desired effective number of bits ENOB
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are the input parameters required. Substituting the expected SNR value in the
equation for classical ADCs, ENOB can be calculated. Input signal parameters

arc

i)  Power spectral density
ii) Bandwidth, fuax
iii) Maximum amplitude of the signal, Vax

iv) Probability density of the input, p(x)
The parameters of LC sampler to be computed are

i) Resolution M which fixes the number of quantization levels
ii)  The maximum loop delay dmax, to satisfy the tracking condition
iii) The time period T, of the timer and

iv) The inter-level distance, Av

Design procedure:

(a) Computation of M

In synchronous ADCs, the number of samples is selected to satisfy the
Nyquist criterion. However, in asynchronous ADCs, the number of samples is
dependent on the resolution M which fixes the number of threshold levels. If the
value of M is high, the average number of samples per second will be high. As
pointed out in section 3.3, the average sampling rate f, must be greater than twice
the maximum frequency of the signal. Using statistical methods, the average

sampling ratefs can be calculated. In order to minimize the power, the value of M

and hence, f; are selected as the minimum values which satisfy the condition for

reconstruction.

(b) Computation of d and Av

Using the values of Ve and frar, maximum value of the slope can be

found based on Bernstein theorem as
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dv,-n

dt

21 Vi (4.13)

For a given M, the number of quantization levels will be 2™ — 1.
According to the tracking condition (Eqn. 4.12) and the Bernstein inequality
(Eqn. 4.13), the loop delay d must be less than dynax, Where

_ 1
dmax_ 2f (ZM-I)

max

(4.14)

Av can be calculated based on the condition for duax.

(¢) Computation of 7.

The first term in Eqn. 4.10 for computing SNR can be found from the
power spectral density of the input signal. The desired SNR for LCS can be
calculated from Eqn. 4.4, substituting the equivalent value of N in a synchronous

ADC. Then from Eqn. 4.10, the value of 7¢ can be calculated.

4.5 ADAPTIVE LCS

In LCS, the dynamic range of input signals must be known for selecting
the crossing levels. The distance between the levels is a constant. Enough
samples are not taken if the input signal has a slow variation between two
threshold levels. This increases the time between successive level-crossings,
causing Dt, to be a high value. More number of bits are required to represent D¢,
which increases the data size. Similarly, redundant samples are acquired when
the input signal has a higher slope. In order to address this problem, an adaptive
LCS scheme (ALCS) has been proposed in [24]. The distance between the levels
is adapted to the slope of the input signal. In a 2-level ALCS, two values, d; and
d> with d;>d> are used as distances between the levels. A threshold value for the
slope is fixed, and if the slope of the input signal is above the threshold, d; is
used as the inter-level distance. During the portions where the slope is less, d> is
used as the distance ensuring that enough samples are acquired. The

representation of dt, is similar to that of normal LCS. However, we require two

38



bits to represent each level-crossing, one bit for indicating whether the sample
belongs to a low-slope or a high-slope region and the second DIR bit to represent

the direction of change in the amplitude.
x(?)

Iy
Ig
I
Is
Is
Iy
I3}
L

h

Fig. 4.11 Illustration of adaptive LCS

Two-level adaptive LCS is illustrated in Fig. 4.11. The level-crossing
instants are shown with alphabets A to S. During the initial portion (from points
A to G) the slope is high, and hence samples are not acquired at the intermediate
points B, D and F. In this case d; will be twice the value of d>. Between the
adjacent points H and I, the signal slope is low, and hence samples are taken at
both the points. For a standard level-crossing scheme, the slope of the signal
between two nearby levels can be specified as,

_Av
slope = m (4.15)

However, the interval between level-crossings is represented as a digital

count, Dt,. Hence, the interval can be expressed as
dt,=Dt,.T, (4.16)

Therefore, the slope becomes

A
slope=
Dt T,

(4.17)
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If Av and T. are constant, the slope is dependent on the TDC count D,
only, higher will be the slope if Dt is less. In this scheme, the inter-level distance
is adapted to the signal slope. Distance will be changed to a larger value if the
signal slope crosses a threshold. The block diagram for ALCS is similar to that in
Fig. 4.7, slightly modified by providing feedback from the counter output to the
logic circuit. Dt, is compared with the threshold, and based on the result, the
inter-level distance and the reference voltages to the comparators are updated. An
example is a two-level LCS in which the distance changes between Av and 2Av
depending upon the slope of the input. Additional indication bit is needed to
differentiate between different modes. Data representation of a sample value in a

differential, adaptive LCS is shown in Fig. 4.12.

Xo ADA DIR Dt 4ADA | DIR By | s

Initial value Sample 1 Sample 2

Fig. 4.12 The bit representation in two-level adaptive LCS

DIR is the direction bit, ADA is the indication for the inter-level distance,
and Dt, is the TDC count.

In order to reconstruct the signal from ALCS samples, Eqn. 4.2 is
modified to include the additional bit, ADA. Let a, =2 if ADA 1s 1, and a,= 1 if

ADA is 0. The value of x(#,) can be updated from the previous value x(#,-7) as,
4.6 EXTREMUM SAMPLING

The advantage of LCS is that the sampling density adapts to the local
activity of the signal. If there is no activity in the signal, LCS does not acquire
samples. However, if the value of Av selected is very small, the time interval
between successive samples may be very small. If Av is high, there could be a

loss of information that increases the error in the reconstruction. In LCS, the
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sampling density depends on the input signal, and on the placement of the levels.
Hence the advantages of LCS are dependent on the proper placement of the
threshold levels within the dynamic range of the input signal. Another non-
uniform sampling method for which the sampling density depends only on the
input signal is extremum sampling (ES). In extremum sampling (ES), samples
are acquired at the zero-crossings of the first derivative of the signal. A sample is
captured whenever a local maximum or minimum value of the input signal is
detected. The most significant points that characterize a signal are its local
extrema. Extremum sampling is suitable for the representation of the signals like
speech and vibrations that have an oscillatory nature. ES can be implemented
with level-crossing sampling (LCS) [27]. In ES, whenever the input signal
crosses a threshold level, it checks whether the slope of the signal has changed
from positive to negative or vice versa. If so, the amplitude corresponding to that
threshold level is selected as a local extremum point. Hence, the accuracy of
peak detection is dependent on the value of the inter-level distance Av. The idea
of extremum sampling is illustrated in Fig. 4.13. The input signal is compared

with the threshold levels /; to /;9, which are equally spaced at Av.

Amplitude x(7)

— dtn —’I

Fig. 4.13 Illustration of extremum sampling
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Samples acquired with ES are represented by a triplet (S, P., Dt,) as
shown in Fig. 4.14. If the bit S, is ‘1, it indicates that the present sample is
representing a positive peak, and it is a negative peak if the bit is ‘0.” P, is the
digital equivalent of the differences in amplitude between the successive peaks
expressed in terms of Av. If the difference between two adjacent peaks is Vp,
then P, is equal to [V,,/Av], where [.] is the ceiling operation, which is
rounding towards the nearest higher integer value. The number of bits required to
represent Pyis log, [V, / Av]. Dty represents the time gap between the successive
peaks dt,, which is measured in terms of the number of cycles of the clock signal

as in the case of LCS.

Xo S1 P, Dt S, P> o | -

_ Initial value Sample 1 Sample 2

Fig. 4.14 Representation of a sample in extremum sampling

The signal-to-noise-ratio of the reconstructed signal depends on Av, and
the period of the clock signal Tc. If Av is large, there can be a significant change
from the actual peak and the nearest threshold level, which causes quantization
error in the amplitude. Similarly, there can be quantization error in time due to a
large value of the clock time period 7.. For each sample, the amplitude of the
peak and the time information are to be coded. Compressed output is obtained if
ES is applied to speech or vibration signals. The block diagram of extremum

sampling is shown in Fig. 4.15.

The comparators and the logic circuit produce an approximation, R; of
the input signal. V' and V}, are the upper and lower threshold levels with which
the input is compared. If the present amplitude of the input crosses either Vy or
Vi, the value of R, Vu, and V; are increased or decreased by Av. Dt, is
represented by the output of the time-counter. The counter increments with the

clock signal, and resets with a change of S,, which indicates the occurrence of a
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local extremum. The number of threshold levels between successive peaks is

measured by the level-counter, which increments at the instant of each level-

crossing. This counter is also reset with a change in §,. During the

reconstruction, each sample is updated with the present S,, P, and Dt,. Assuming

b, =t+1 for S, =1, and b, =-1 for S, =0, the present sample value x(#,) is computed

from the previous sample value x(,-/) as

x(tn)z x(tn-l) + annAv

CLK

S Counter
D n
— R % RST (Time) :> .
» S,
—1RST Counter :> P
EX OR INC (Level) :
—
\
_ INC
Input / LGei
>~— ogic DAC R
\ Circuit
— +
/ DEC
Vi )
+
Vi =
N4

Fig. 4.15 The block diagram for extremum sampling

4.7 EFFECT OF NOISE IN LEVEL-CROSSING SAMPLING

(4.19)

Level-crossing sampling has inherent noise tolerance. If noise alone with

peak-to-peak value less than Av is applied to LCS, no sample will be generated.

However, if the same noise signal is present along with a slowly varying signal,

large number of un-necessary samples are generated. This happens if one of the

updated reference levels occupies the previous position of the other reference

level. Such a situation can be avoided if the concept of hysteresis is incorporated

in LCS, which is explained below.
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For illustrating the effect of noise in the system, a sine wave of 100 Hz is
used as a signal. Initially, the sinusoidal signal alone is subjected to the system.
The signal and the variations in the reference levels Vy and V. are shown in Fig.
4.16(a). There are 20 level-crossings taking place, and at each level-crossing, Vi
and V; change by Av. Hence 20 samples are generated in LCS, and just two
samples are taken in ES implemented with LCS, which are the peak values. In
order to illustrate the noise tolerance of LCS and ES, a triangular signal of peak-
to-peak amplitude (V,,) which is slightly less than Av is used to represent the
noise. If the triangular wave alone is applied to the system, there is no level-
crossing taking place, and no samples are acquired in LCS or ES, since the
amplitude variations are within Av. The triangular wave is then added with the
sine wave to generate a noisy signal. The added signal is then applied to the
system. As illustrated in Fig. 4.16(b), Vx and V), are updated by Av at each level-
crossing. Near the positive and negative peak of the sine wave, the amplitude
variations are within Av, and there is no level-crossing taking place. However, a
total of 180 samples are generated in LCS in the present situation, and 150 in ES.
From Fig 4.16(b), it is observed that level-crossings are taking place even for the
slightest amplitude variations in the signal. One such region near the negative
peak of the sine wave is encircled in Fig 4.16(b), and it is shown magnified in
Fig. 4.16(c). At the instant A, the input sine has a small increase in amplitude,
and it crosses Vu, and both the reference levels increase by Av. A sample is
acquired at this instant. Soon after this instant, the peak of the triangular wave
has a very small fall in its amplitude, but this causes the signal to cross Vi. Vi
and V, are decreased by Av, and again one sample is generated. This has
happened because, while V' and V; increased by Av, the updated V', occupies the
level of the previous V. Soon after crossing Vy, if the signal has a decrease in its
amplitude, which is much less than Av, it then crosses the present Vi, and a

sample is generated. This can be avoided if hysteresis is incorporated in LCS.

44



(@

1=
05+

Amplitude
. ©
- o O
= .

A i 1 A i A A A 1
0.001 0.002 0.003 0004 0005 0006 0007 0.008 0.009 0.01
Tima (sac)

o

(b)

Amplitude

0 0.001 0.002 0003 0004 0005 0.006 0.007 0.008 0.009 001
Time (sec)

(©)

Amplitude

1 1

1 L 1 . 1 1 1 i
0 0.001 0002 0003 0.004 0005 0006 0007 0008 0009 0.01
Time (sec)

Fig. 4.16 (a) Input and the reference levels while sine wave is
applied to LCS (b) Noisy input applied to LCS without
hysteresis (c) Magnified form of the encircled portion
(d) Noisy input applied to LCS with hysteresis

In order to incorporate hysteresis, a finite offset of J is maintained
between present V; and previous Vy if the slope of the signal is positive.
Similarly, the same offset is maintained between the present Vx and the previous
V1 if the signal slope is negative. The same input signal is applied to LCS with
hysteresis, and the corresponding Vx and V', are shown in Fig. 4.16(d). Here the

45



offset ¢ is selected as Av itself. Similar to the output obtained for the noiseless
input signal, as shown in Fig. 4.16(a), there are just 20 level-crossings. Hence the
number of samples generated in LCS is 20, and just two samples are generated in
ES. The disadvantage of using ES with hysteresis is that the maximum error in
amplitude is Av + J, compared to Av, as in the case of ES without hysteresis.
Depending upon the estimated value of the noise level, the value of ¢ can be
selected. If the peak-to-peak value of the noise is greater than Av, additional

filtering must be done before applying to LCS or ES.
4.8 SUMMARY

In this chapter, the basic principle of LCS, the block diagram for its
implementation, derivation of the signal-to-noise-ratio, and the steps for design
are discussed. Adaptive level-crossing scheme (ALCS), in which the inter-level
distance is altered according to the slope of the input signal, is introduced.
Extremum sampling (ES) is another form of LCS, in which digital
representations of the local extrema points are recorded. The algorithms for the
reconstruction of the signal from LCS, ALCS and ES are also explained. The
effect of noise in LCS, and ES based on LCS are also illustrated. LCS generates
lesser number of samples compared to the uniform sampling scheme. However,
the use of large number of bits to represent Dz, in each sample results in an
excessive amount of data. A significant reduction in the data size is possible by
changing the frequency of the clock used in the TDC according to the activity in

the input signal which is discussed in the next chapter.
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CHAPTER 5

LEVEL-CROSSING SAMPLER WITH MULTIPLE
TEMPORAL RESOLUTIONS

5.1 INTRODUCTION

In this chapter, the inherent property of LCS is exploited for compressing
speech signals. Due to the presence of long silence periods, the interval between
level-crossings df,, and hence the word-size of the TDC count becomes large.
The ratio of dt, between active and silent portions becomes worse than 1:1000.
Even if a reduced word size is sufficient for active portions, it is insufficient for
representing the long silence portions. If the word-size required for encoding dt,
during the silent portions is used for representing all the dt, values, the data size
becomes large resulting in a poor compression ratio. If a reduced word-size is
used, the TDC counter overflows several times during the silent regions since
there are no level-crossings taking place for a long duration. An efficient
encoding for the silence period is proposed, utilizing the concept of frequency-
scaling, which is a technique used for the reduction of dynamic power in
processors. As explained in section 4.3, the temporal resolution of LCS is
dependent on the time period 7c of the clock used. Hence the proposed LCS
scheme results in multiple temporal resolutions, which is also extended to
adaptive LCS and extremum sampling. Extremum sampling with frequency-
scaling results in extremely good compression compared to all the other LCS

schemes.
5.2 LEVEL-CROSSING SAMPLING OF SPEECH SIGNALS

A speech signal consists of voice-active and silence regions. Silence is
an integral part of a speech signal because speech is not intelligible without the

presence of it. If we perform sampling at the Nyquist rate, samples are generated



uniformly during the silence region also. However, in LCS, there are no level-
crossings during the silence period, and no samples are acquired from a noiseless
voice signal. The interval between level-crossing instants dt, is represented by a
‘B’ bit word Dt, which is the output of a TDC counter. The choice of ‘B’ fixes

the maximum value of df, (dtnax) that is represented by,
dtyx=(2%-1)T, (5.1)

The choice of a higher value of B increases the circuit complexity and
the volume of data. The data-size is large because each sample generated by
LCS, irrespective of whether it is from the active or silence regions, must be
represented by these B bits. The TDC counter increments uniformly during the
silence period as time progresses. If the silence period exceeds dtnax, the counter
overflows and restarts counting from zero, which is repeated until a level-
crossing is detected. The TDC is of constant resolution if the clock frequency fcis

fixed.

As an illustration, a sample voice signal of duration 0.5 Seconds, which
is the initial portion of the speech signal ‘sp02’ from the NOIZEUS database is
subjected to LCS, and the corresponding outputs are shown in Fig. 5.1. Fig.
5.1(b) is the output of the level-crossing detector (LCD). It is a pulse signal
generated while the input signal crosses any of the threshold levels. The darker
portion indicates that dt, is very small, and the pulses are very close. The first
level-crossing occurs at 0.2153s, after the duration of the initial silence region.
The equivalent analog values of the TDC counter output are shown in Fig. 5.1(c).
The counter resets at each level-crossing instant, and then counts up during each
dtn,. Hence, they are in the shape of ramp waveforms with the height depending
upon the duration df,. Frequency f. is selected as 100 kHz at which the
reconstructed signal has reasonably good clarity. Fig. 5.1(c) shows the TDC

output with a 16-bit counter.
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The entire silence period is represented by a 16-bit word at the expense
of using 16 bits for all the 2430 samples. At the end of the silence region, the
TDC count is 21532, whereas values of the counts generated during the voice-
active region are well below this count, and hence they are not visible in Fig.
5.1(¢c). Fig. 5.1(d) is the counter output, in which level-crossing intervals in the
voice-active region are shown magnified. An 8-bit word could have represented

the TDC counts except for the one that occurred at the end of the silence region.

Fig. 5.1(e) shows the counter output with an 8-bit TDC counter, which
has a dtna of 2.55 ms with f. equal to 100kHz. This resulted in 2514 samples
because the silence region is represented by a sequence of 84 counts each of
value 255, followed by a count of value 28. Even though there is an increase of
84 samples compared to the earlier case, there is a significant saving in data-size
because each count is of & bits. A single 8-bit count could have represented the
entire silence region if the value of 7. were sufficiently high. However, T. is
selected to satisfy the SNR value in the reconstructed signal in accordance with
Eqn. 4.10. An alternate solution is to use a clock signal of a higher 7. during the

silence period, which is explained in the next section.
53 FREQUENCY-SCALING

According to the Eqn. 3.1, the dynamic power consumption is directly
proportional to the clock frequency, and hence, decreasing the clock frequency
during the inactive periods saves power, increases battery life and reduces heat
emission. Dynamic voltage and frequency-scaling (DVFS) is a technique adopted
to increase the energy efficiency of processors in computing systems [90].
Generally, there are two schemes with which DVFS is implemented. The first
scheme employs specific frequencies and associated voltages for selected modes
like power saver mode. In the second scheme, the CPU load is continuously

monitored, and the frequency of the clock is lowered if the CPU workload is less.
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It is an adaptive method that selects the clock frequency depending upon the

activity.

During the voice-active region, the time gap between the instants of
level-crossing is minimal. Hence a high-frequency clock which satisfies the
condition for the required SNR according to Eqn. 4.10 is used for TDC during
this region. During the silence region, the clock signal to the TDC is from a low-
frequency pulse generator so that there is a reduction in the dynamic power
consumption, and lesser bits are sufficient to represent longer durations. Since

there is no voice activity during this period, SNR is not affected.

CLK1

TDC
Counter

/l

CLK2 ——°

1
Silence
detector

Fig. 5.2 A simplified block diagram of the frequency-scaling
scheme

As shown in Fig. 5.2, CLK1 and CLK2 are the two clock signal
generators with their corresponding periods having a relation, 7,;<<T¢,. Instead
of using two separate clock generators, CLK2 can be derived from CLKI1 by
dividing it by a factor K. Normal level-crossings are occurring during the voice-
active region, and the switch remains connected to CLK1. While voice activity is
absent for the duration of dfuax, the counter overflows, and the clock signal to the
counter is switched to CLK2. The concept of frequency-scaling is illustrated in
Fig. 5.3. Two speech segments are shown, which are separated by a silence
region. The word-size of the counter B is selected such that it satisfies the
condition for the required SNR. CLK1 is having a time period of 7, and CLK2 is
the scaled version of CLK1 with time period K7.. Since CLK2 has a longer
period, large durations can be represented with small TDC counts during the

silence periods.
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(b) lllustration of the concept of frequency-scaling

A detailed block diagram of the frequency-scaling scheme is shown in
Fig. 5.4. A single clock generator is used (CLK1), and CLK2 is derived from
CLK1 by scaling its period by a factor K. During the voice-active region, there
are many level-crossings causing input R of the SR flip-flop to become high.
During this region, the input S remains low, and CLK1 is directly applied to the
TDC counter as the clock signal. While voice activity is absent for a duration of
dtmax, overflow turns S to high, and R remains low, and the counter is switched to
CLK2. If an extra bit is used to represent this change of clock frequency to the
TDC, we need as many additional bits as the number of samples, and this affects
the compression ratio. This is because, the indication bit must accompany each
sample representation. In the proposed method, there is no need for a redundant
bit because, the change of mode takes place at the instant of overflow in the
counter, and the corresponding sample value is (DIR, Dtnax). Dtnax is the TDC
count corresponding to dfmax. The occurrence of a sample (DIR, Dtuax) 1S an
indication that the next sample is acquired with CLK?2. If there is silence for a
prolonged duration, the counter overflows with CLK2, and there are repeated
counts of Dtyq: in which the first one is due to CLKI1, and others are due to
CLK2. Instead, frequency-scaling can be extended to higher levels by using

CLK3, which is a time-scaled version of CLK2. In this mode, the first, second,
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and third Dftuar in succession correspond to CLKI1, CLK2, and CLK3,

respectively.

CLK1 Clock

Clock > pulses TDC output
CLK2 Switch —
Reset Counter Overflow
»| Frequency Q
il divider R &

Level
crossing
detector

Fig. 5.4 A detailed block diagram of the frequency-scaling
scheme with multiple resolutions

The signal, which is shown in Fig. 5.1(a) is subjected to LCS with
frequency-scaling, and the corresponding TDC output is shown in Fig. 5.5. The
frequency of the clock is 100 kHz, and the dividing factor K is selected as 100.
There are 2431 samples acquired by LCS with frequency-scaling, compared to
2430 samples with B = 16 as described in section 5.2. The initial overflow count
of 255 is an indication of the beginning of the silence region, and after this, the
counter is triggered by the low-frequency clock signal. With a clock signal of
100 kHz and an 8-bit counter, the first overflow (Dt,=Dtns) occurs at 2.55
milliseconds after the last level-crossing instant. With CLK1, the increment in

the count takes place at every 10 ps (i.e., 1/fc;), and it is 1 ms with CLK?2 if the
value of K is 100.
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Fig. 5.5 The frequency-scaled output of the 8-bit TDC counter
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Speech signal ‘sp03°with babble noise and having signal-to-noise-ratio
(SNR) of 20dB is applied to LCS. The speech signal, TDC counter output, and
the reconstructed signal are shown in Fig. 5.6. TDC counter automatically
switches between the two clock signals depending upon the input activity. The
noise gets removed from the signal since the amplitude variations due to this fall

within the inter-level distance.

(a)

0.4}

0.2}

Amplitude

-0.2¢

-0.4 -

0 0.5 | 1.5 2
Time (seconds)

(b)

N

a

=]
T

N
=
S

@
o

Counter output
)
o

53
=)

o

0 0.5 1 15 2
Time (seconds)

©

W WMM o

|
0 0.5 1 15 2
Time (seconds)

Fig. 5.6  (a) The input speech signal (b) Output of the TDC
counter (c) Reconstructed signal
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The quantization error in time with CLK2 connected to the TDC counter
is in the range [0, K.T¢], which is high compared to its value with CLK1. The
error in the last count causes a change in the duration of the silence region in the
reconstructed output. In applications where this error cannot be tolerated, a

correction word can be used, which follows the last count with CLK2. This word
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must be the count of CLK1 pulses starting from the leading edge of the last
CLK2 pulse, up to the instant at which level-crossing takes place after the silence
period. This correction word is transferred to the output when the clock input to
the TDC counter switches back to CLK1 from CLK2. This is equivalent to the
coarse and fine time measurements used in some of the TDCs for accurate
measurement of time as discussed in section 4.2.2. In this thesis, frequency-
scaling is applied to normal LCS, adaptive LCS, and extremum sampling. In all

these cases a significant reduction in the number of samples is observed.
5.4 ALGORITHMS FOR RECONSTRUCTION

Let t, be the n™ time instant at which a non-uniform sample is acquired,
x(t,) the corresponding amplitude of the sample and Av the distance between two
adjacent threshold levels. 7¢ is the period of the clock signal, K the frequency-
scaling factor, len, the length of the block, and let b, = 1 for DIR = 1 &b, = -1 for
DIR = 0. Let the initial value of the input signal be xo. The decision on whether
the present LCS sample is acquired under the normal mode or the frequency-
scaled mode is dependent on the previous D¢, value. Hence, #; and x(#1) are

computed first.
5.4.1 LCS with frequency-scaling

Initialization: 7o = 0, x(#0) = xo

ti= Dt T,

If Dt1=Dtyax
x(t1) = xo

else

x(t1) =xo0+ biAv
end if
forn=2:len
If Ditn-1 = Ditmax
tr= th-1t DK Te
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x(tn) = x(ts-1)
else
tr= tw-1+ Dtn T
xX(tn) = x(ts-1) + brAv
end if

end for

5.4.2 Adaptive LCS with frequency-scaling

As explained in section 4.5, the ADA bit is used in a two-level adaptive
LCS to indicate whether the present sample differs in amplitude from the
previous one by Av or 2Av. The adaptive LCS with frequency-scaling is the
complex one since it is adaptive in amplitude and time. The flowchart for the

reconstruction is shown in Fig. 5.7.
5.4.3 Extremum sampling with frequency-scaling

As mentioned in section 4.6, there is an additional parameter, level count
P, to represent the change of amplitude from the previous peak. Upon receiving
each sample, amplitude of the reconstructed signal must be updated by either Av
or 2Av in two-level adaptive LCS. However, in extremum sampling, the
amplitude must be changed by P,Av during the reconstruction. The sample
values x(#/) and x(#,) in the algorithm explained in section 5.4.1 are computed

using Eqn. 4.19.
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5.5 SIMULATION RESULTS

The proposed algorithm is tested using speech signals from the
NOIZEUS database and the ‘Open Speech Repository.” NOIZEUS database
contains speech signals, each with one Harvard test sentence. Noise-free and
noisy signals are included in the database. Open Speech Repository includes test
signals, each containing ten Harvard test sentences. The signals available in the
‘wav’ format are converted to ‘.mat’ format with a sampling rate of 8000 Hz,
and each sample is represented by 16 bits. Each signal is interpolated to treat
them as a continuous signal, before sampling with various level-crossing
methods. Simulation is done using Matlab and Simulink. Five numbers of male
and five female speech signals, each consisting of five test sentences are applied
to standard level-crossing sampling (LCS), adaptive LCS (ALCS), and extremum
sampling (ES) with a fixed value of 7. and Av. The proposed method differs from
the standard level-crossing methods with the inclusion of frequency-scaling (FS).
All the signals are again sampled with the corresponding frequency-scaled

methods (LCS-FS, ALCS-FS, and ES-FS).

Mean opinion score (MOS) was calculated from the response from a
group of 35 persons. Based on the perceived quality of the reconstructed output,
each person was asked to give their individual rating R,, in the range from 1 to 5,

as shown in Table 5.1.

Table 5.1 Rating and the corresponding label for
calculating MOS

Rating Ry Label
5 Excellent
4 Good
3 Fair
2 Poor
1 Bad
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Mean opinion score was calculated as the arithmetic mean of the

individual rating as given below. N is the total number of persons, which is 35.
N
MOS =n=ife (5.2)
Table 5.2 shows the comparison of the data size of the output obtained
with LCS and LCS-FS. The value of compression ratio (CR) obtained with LCS-

FS is compared with the corresponding CR obtained with LCS, and the

percentage increase is listed in the table. The value of CR is computed as

Input data size

Compression Ratio (CR) = Output data size (5.3)
Table 5.2 Comparison of the data size in LCS and LCS-FS
methods
Input LCS LCS-FS
Sj - data | Data Data Percentage
ignal | Duration . increase in | MOS
S1Z€ size CR size CR CR
(kb) | (kb) (kb)
us_11 16s 2048 | 361.1 | 5.67 | 337.1 | 6.08 7.12 4.06
us_12 18s 2304 | 4543 | 5.07 | 4258 | 541 6.69 4.09
us_13 17s 2176 | 397.1 | 548 | 368.9 | 5.90 7.64 4.00
us_14 15s 1920 | 327.5 | 586 | 306.1 | 6.27 6.99 4.03
us_15 20s 2560 | 387.8 | 6.60 | 358.7 | 7.14 8.11 4.06
us_35 18s 2304 | 963.6 | 239 | 9369 | 246 2.85 4.38
us 36 20s 2560 | 7282 | 352 | 686.6 | 3.73 6.06 422
us_37 20s 2560 | 9352 | 2.74 | 901.7 | 2.84 3.72 4.25
us_39 20s 2560 | 9749 | 2.63 | 9444 | 271 3.23 4.28
us_57 17s 2176 | 6674 | 326 | 642.1 | 3.39 3.94 4.31

The amount of reduction in the data-size in LCS-FS depends on the total
duration of the silence region in each signal, and also on the value of K. The
maximum value of CR obtained in LCS and LCS-FS are 6.60 and 7.14
respectively. The maximum improvement in the value of CR in LCS-FS over the
standard LCS is obtained as 7.12%. The perceived quality of the output signal is

represented in the form of Mean Opinion Score (MOS) and is shown in the table.
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The same set of signals are again applied to ALCS and ALCS-FS, and the values
of CR obtained are tabulated in Table 5.3.

Table 5.3 Comparison of the data size in ALCS and ALCS-
FS methods
ALCS ALCS-FS
Signal | Data size CR Data size CR inf:)ferZ:: tiigg R MOs
(kb) (kb)
us 11 269.4 7.60 241.4 8.48 11.60 4.00
us_12 330 6.98 295 7.81 11.86 4.03
us_13 288.5 7.54 255.7 8.51 12.83 3.88
us_14 244.9 7.84 219.9 8.73 11.37 4.00
us_15 303.5 8.43 271.4 9.43 11.83 4.06
us_35 636.3 3.62 607 3.80 4.83 4.19
us_36 499 5.13 451.2 5.67 10.59 4.13
us_37 628 4.08 588 435 6.80 4.06
us_39 663.9 3.86 628.9 4.07 5.57 4.06
us_57 453.5 4.80 425 5.12 6.71 4.25

There is an increase in the value of CR compared to that obtained with
LCS and LCS-FS methods. The maximum value of CR obtained with AL.CS and
ALCS-FS are 8.43 and 9.43 respectively. The maximum improvement in the
value of CR with ALCS-FS over ALCS is obtained as 12.83%. The signals are
again applied to ES and ES-FS methods, and the values of CR obtained are listed
in table 5.4.

ES and ES-FS provides the maximum compression compared to other
methods. The maximum value of CR obtained for ES is 17.07, and for ES-FS it is
19.81. The maximum increase in CR obtained for ES-FS compared to ES is
17.38%. It is observed that if the SNR is below 20dB, additional steps are needed

to remove noise from the silence portion to apply the proposed method.
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Table 5.4 Comparison of the data size in ES and ES-FS methods

ES ES-FS
Percentage

Signal Data Data increase in MOS

size CR size CR CR

(kb) (kb)
us_11 120 | 17.07 | 103.4 19.81 16.05 4.16
us_12 151.8 | 15.18 | 1325 17.39 14.57 4.25
us_13 137.5 | 1583 | 119.6 18.19 14.97 4.16
us_14 130.5 | 14.71 | 116.7 16.45 11.83 4.28
us_15 181.2 | 14.13 | 162 15.80 11.85 4.25
us_35 296.6 | 7.77 | 276.8 8.32 7.15 4.31
us_36 2175 | 11.77 | 1853 13.82 17.38 4.25
us_37 301.1 | 850 | 2747 9.32 9.61 4.28
us_39 319.5 | 8.01 | 2954 8.67 8.16 4.16
us_57 211.8 | 1027 | 192.4 11.31 10.08 4.28

Fig.5.8 shows the variations in the data size of three signals selected
from Table 1 which are sampled with different methods. ALCS offers better
compression compared to the conventional LCS method. But extremum sampling
has less data-size compared to ALCS. But the frequency-scaling methods have

better compression ratio compared to their corresponding conventional methods.

500 -

LCS
LCS-FS

450

LCS
LCS-FS

400 -

LCS
LCS-FS
ALCS
ALCS-FS

350 +

ALCS

ALCS-FS
ALCS
ALCS-FS

300 -

250

200

Data size in Kb

ES
ES-FS
ES
ES-FS

150 4

ES
ES-FS

100 -

50 1

us_11 us_12 us_13

Signal

Fig. 5.8 The comparison of data size obtained using various
methods
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Taking the data size obtained with LCS as the reference, the performance
of all the other methods listed in Table 5.2 to 5.4 are given in Table 5.5. The
value of CR obtained with all the other methods are compared with the
corresponding value obtained with LCS, and the percentage increase is listed in

the table.

Table 5.5 The performance of various level-crossing methods

over the LCS method
Data size Percentage increase in CR over LCS

Signal in LCS

(kb) LCS-FS ALCS ALCS-FS ES ES-FS
us 11 361.1 7.12 34.04 49.59 200.92 249.23
us_12 4543 6.69 37.67 54 199.28 242.87
us_13 397.1 7.64 37.64 55.3 188.8 232.02
us_14 327.5 6.99 33.73 48.93 150.96 180.63
us_15 387.8 8.11 27.78 42.89 114.02 139.38
us_35 963.6 2.85 51.44 58.75 224.88 248.12
us_36 728.2 6.06 45.93 61.39 234.8 292.98
us_37 935.2 3.72 48.92 59.05 210.59 240.44
us_39 974.9 3.23 46.84 55.02 205.13 230.03
us_57 667.4 3.94 47.17 57.04 215.11 246.88

plotted in Fig. 5.9 for the signal “us_11”. Extremum sampling with frequency

The ratio, (data size in standard LCS)/ (data size in a specific method), is

scaling, ES-FS has the highest ratio with value 3.49.
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The frequency-scaled method just differs from the corresponding
conventional method in the representation of the sample values, and hence none
of the parameters that affect the SNR is altered. Hence, it is observed that there is

no degradation in the quality due to the introduction of frequency-scaling.

As seen in Figs. 5.5 and 5.6(b), the occurrence of the TDC count
corresponding to Ditmax is a real-time indication of the beginning of the silence
region in the voice signal. The value of B must be selected, such that Dtyax is
greater than the most prolonged interval between level-crossing instants in a
speech signal. The duration of the silence region is verified with the software

‘praat,” and it is matching with the TDC count.

Most of the speech encoders operate on digital samples which are
acquired at regular intervals based on the sampling frequency. The proposed

encoding schemes are based on LCS, and hence produce a lesser number of
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samples depending on the activity. Compression of the signal is achieved in the
sampling process itself and evades the requirement of an additional compression
algorithm. Hence the computational complexity is very less compared to the

conventional compression schemes.
5.6 SUMMARY

The temporal resolution of LCS depends on the clock frequency of the
TDC counter. Standard LCS methods have a constant resolution, even during the
silence region, resulting in a higher bits/ sample value. A level-crossing sampler
for speech signals, which have multiple temporal resolutions achieved by
frequency-scaling of the TDC clock, is presented in this chapter. The method
identifies the silence regions and then feeds a low-frequency clock to the TDC
counter. Silence regions with long durations are represented with smaller words
that reduce the total data size, maintaining the reconstruction accuracy. In
conventional ALCS, the distance between the threshold levels is varied according
to the slope of the input signal. By introducing frequency-scaling to ALCS, they
also become adaptive in time, resulting in further data compression. The
frequency-scaling method is also extended to extremum sampling. Several
speech signals have been sampled with the conventional LCS methods and also
with the frequency-scaling scheme. In all these cases, the frequency-scaled
method offers a better performance compared to the conventional LCS methods

in reducing the data size.

Vibration signals acquired from mechanical systems are used for fault
detection and condition monitoring. A simple method for fault detection using
average level-crossing rate of the signal, without storing the data samples, is
discussed in the next chapter. The chapter also proposes extremum sampling as
an efficient method for sampling and compressing vibration signals, without the

use of any complex compression algorithm.
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CHAPTER 6

COMPRESSION OF VIBRATION SIGNALS USING
EXTREMUM SAMPLING, AND ANOMALY
DETECTION IN MECHANICAL SYSTEMS

6.1 INTRODUCTION

Vibration signals are generally utilized for condition monitoring of the
mechanical systems, including launch vehicles. Wireless sensor nodes are
employed for sensing the vibrations and transmitting the data to remote locations.
Vibration signals have the highest frequency among all the other sensor outputs.
The analysis of these signals becomes extremely difficult due to the enormous
amount of data acquired by sampling the signals at the Nyquist rate. Besides,
there is a limitation of the available bandwidth in launch vehicles and wireless
nodes. Wireless transmissions in sensor nodes consume a major portion of its

power, and hence data compression must be done before transmission.

In this chapter, two methods for processing the vibration signals are

discussed.

(a) Wherever vibration data is to be transmitted to a receiver at a remote
location, extremum sampling can be used, which evades the application
of a compression algorithm to all the samples acquired at the Nyquist

rate.

(b) Wherever vibration data is used for the anomaly detection in mechanical
systems, the variations in the average level-crossing rate of the vibration
signals can be monitored, which provides a real-time indication of the

faults.



Vibration signals from standard databases are subjected to extremum
sampling, and the performance has been analyzed with compression ratio, mean
square error, peak signal-to-noise ratio, and R-squared value. Excellent values of
compression ratios have been achieved with minimum error in reconstruction.
Since the method accomplishes compression during the sampling process, the
additional burden at the transmitter for subjecting all the acquired samples to a

compression algorithm is avoided.

The method for anomaly detection, which is based on the average level-
crossing rate, works on the analog output of the sensor and does not require
conventional steps like sampling, feature extraction, classification, or
computation of the spectrum. It is a simple system that performs real-time
detection of anomalies in the bearing of a machine using vibration signals. Faults
in the machines usually create an increase in the frequency of the vibrations. The
amplitude of the signal also changes in some situations. The increase in
amplitude or frequency leads to a corresponding increase in the level-crossing
rate, which is a parameter indicating the rate of change of a signal. Based on the
percentage increase in the average value of the level-crossing rate (ALCR), a

suitable warning signal can be issued.

The algorithm has been tested with standard data sets. There is a clear
distinction between the ALCR values of normal and faulty machines, which has
been used to release accurate indication about the fault. If the noise conditions do
not vary much, the pre-processing of the input signal is not needed. The vibration
signals from faulty bearings have ALCR values, ranging from 3.48 times to 10.71
times the average value of ALCR obtained with normal bearing. Hence the

system offers bearing fault detection with100% accuracy.
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6.2 COMPRESSION OF VIBRATION SIGNALS

Vibration is observed as an oscillating motion about an equilibrium
point. In mechanical systems, vibrations occur due to the effects of
manufacturing tolerances, and rubbing contacts between different parts. Small
vibrations can trigger resonances in other mechanical parts, which cause
significant vibrations. Hence, it is necessary to monitor the vibrations for the
condition monitoring of mechanical systems that have rotating parts.
Piezoelectric accelerometers are the universally used transducers for vibration
measurement. It is robust and has a wide frequency range with excellent linearity
throughout the ranges. Piezoelectric accelerometers do not require a power
supply, since they are self-generating, and there is no wear and tear due to the

absence of moving parts.

The staging phase of a rocket is the shutdown of one stage and the
separation and ignition of the next stage [91]. During the staging phase, signals
exhibit wide variations, and only a little signal compression is possible. The
sampling frequency must be sufficient to capture these signals during the staging
phase. However, very high compression is possible in between the staging phases
due to the quiescent nature of various parameters. The use of a constant sampling
frequency captures redundant data between the staging phases. Hence, an event-
driven sampling method is ideally suited for this situation. Since the vibration
signals have a linear variation between the peak values, the extremum sampling
method, which captures samples at the local extrema of the signal, is the right

choice.

Vibration signals have the highest frequency among all the other
telemetry signals transmitted from a launch vehicle. Parameters like altitude,
attitude, velocity, and acceleration are sampled at a much lower frequency. The
sampling frequency of vibration signals selected for Indian launch vehicles is

6000 Hz with an 8-bits resolution. The data-rate for the vibration signal is
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48 kbps, and there are around 10 vibration signals to be encoded, and the total bit
rate required is 480 kbps. The total bit-rate available for telemetry is reported to
be around 1Mbps. Other telemetry signals like pressure and temperature are
sampled at 60 Hz, and velocity and acceleration signals at 120 Hz approximately,
which is very less compared to the sampling frequency used for vibration signals.
Hence, there is a necessity for compressing the vibration signals to reduce the
total bit-rate. In industries, vibration data has to be sent to remote servers for
processing. Reducing the amount of data and hence the transmission bandwidth

is a significant requirement.

The Consultative Committee for Space Data Systems (CCSDS) has
recommended standards [92] for lossless data compression applications of space
missions with packetized telemetry. The encoder consists of a pre-processor
followed by an adaptive entropy encoder. At the pre-processor stage, a reversible
function is applied to the input samples to reduce the entropy, which results in
the reduction of the average number of bits in the representation. The adaptive
entropy coder provides a set of coding options based on the redundancy in the
block of data, which is the output from the pre-processor. Rice’s adaptive coding
technique is used, which produces variable-length codes. The samples are
encoded with fundamental sequence codes, which consist of words with a
number of ‘0’s followed by a ‘1’ at the end. Sequences of ‘0’s are further

compressed with run-length coding.

Vibration signals received from the launch vehicles are generally used
for condition monitoring. In this chapter, extremum sampling has been proposed
for encoding vibration signals which produce compressed set of samples in real-
time. As explained in section 4.6, in extremum sampling, the local maxima and
minima of signals are acquired along with the time gap between the peaks. With
this information, a vibration signal, which is having an oscillatory nature, can be
reconstructed. It is a non-uniform sampling method achieving compression

during the sampling process itself. Being an activity-dependent sampling method,
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the number of samples is proportional to the frequency content present in the
signal. A significant reduction in the data size has been achieved, and the
reconstructed signal preserves the essential features of the original signal. The
advantages of the proposed method are a reduction in the dynamic power

dissipation, transmission bandwidth, and storage requirement.
6.2.1 Extremum sampling of vibration signals-Performance measures

As an alternative to the conventional methods in which a compression
process follows the uniform sampling, extremum sampling is applied to vibration
signals to produce a compressed set of samples. The parameters that measure the
effectiveness of compression of the signal are, mean square error (MSE), peak
signal-to-noise ratio (PSNR), R-squared value (R?), and the compression ratio
(CR). MSE, PSNR, and R’ evaluate the distortions caused by the sampling

process. CR measures the performance of size-reduction defined in Eqn. 6.1.

__Original data size
CR Compressed data size 6.1

Let y; be the i value of the reconstructed signal and x; the value of the
input at the same instant. MSE measures the average of the squares of the error
between the input and the reconstructed signal. The reconstruction is better if the
value of MSE is closer to zero. For a group of n samples, MSE is defined as

shown in Eqn. 6.2.
MSE =-¥1L(xrv,) (6.2)

PSNR compares the maximum level of the signal power to the level of
the noise power, noise being the difference between the original and
reconstructed signals. PSNR is expressed in Eqn. 6.3. Xue is the maximum

amplitude of the input signal.
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(max)”
PSNRz=10log, , ———— 6.3

n

R-squared (R?) is a statistical measure having a value between 0 and 1,
representing the proportion of the variance between the variables. R? with a value closer
to 1 indicates that the reconstructed signal has a close similarity to the input signal. R%s

computed as

Z?=1(xi'y,-)2

2L (02 64)

R®=1-

X is the mean of the input signal.
6.2.2 Simulation results

Bearing vibration-data from the data set provided by Case Western
Reserve University [93] is used for the simulation. It is available as uniform
samples with a sampling rate of 12000 per second. These samples are
interpolated to convert them into the analog form, and extremum sampling is

performed on selected input signals. Simulation is done with Matlab/ Simulink.

As an illustration, a short duration of the vibration signal ‘X097 DE’,
which is subjected to extremum sampling, and the corresponding reconstructed
outputs are shown in Fig. 6.1. The input signal and the reconstructed output are

shown with dotted and bold lines, respectively.
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Fig. 6.1 Input vibration signal and the reconstructed output
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Details of input signals which are subjected to extremum sampling, and

the corresponding values of CR, MSE, PSNR, and R? are listed in Table 6.1. It is

observed from the table that the signals have been reproduced with minimal

error. High values of compression ratios have been achieved with an excellent

correlation between the input and output signals. The inter-level distance Av is

selected as 5 mv, and the frequency of the timer counter f: is 100 kHz.

Table 6.1 Compression ratio (CR), Mean square error
(MSE), Peak signal-to-noise ratio (PSNR) and
R? value of vibration signals
Signal CR MSE PSNR R? value
X097 DE 4.8979 7.2511x10* 31.3960 0.8975
X097 _FE 4.7291 9.0239x107* 30.4461 0.9176
X098 DE 3.7065 5.6830x10™ 32.4542 0.8667
X098 FE 3.2653 2.7450x10™ 35.6135 0.9225
X099 DE 3.4285 2.0814x10™ 36.8164 0.9376
X099 FE 3.5165 5.0327x10™ 32.9820 0.9105
X100_DE 3.1894 1.8088x10 37.4262 0.9548
X100_FE 3.6090 4.2044x10™ 33.7629 0.9106
X106_BA 3.7860 0.0011 29.6950 0.8712
X121 _BA 3.5165 3.8623x10-* 34.1315 0.8628

As discussed in section 4.3, the signal-to-noise ratio of a standard level-

crossing sampler is dependent only on the frequency of the clock used. In

extremum sampling, the local peak is detected by a change in the direction of the

slope at the level-crossing instant. Hence, extremum sampling suffers an error in

the amplitude also. The variation of CR and R’ values attained for the signal

‘X097 DE’ with respect to Av are plotted in Fig. 6.2. Even though CR increases

with Av, as shown in Fig. 6.2(a), the error in amplitude values also has a

proportional increase, which is reflected in the R? values, and is shown in Fig.

6.2(b).
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The reproduced signals exhibit great similarity with the input signals. As
an example, a vibration signal ‘X097 DE’ and its spectrum are shown in Fig.
6.3(a) and Fig. 6.3(b), respectively. The reconstructed outputs in the time domain
and spectral domain are shown in Fig. 6.3(c) and Fig. 6.3(d), respectively. All the

peak values in the time domain and all the significant frequency components in

the input are preserved.

(a) Compression ratio (CR) versus Av

(b) R? value versus Av
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Vibration signals acquired with normal and faulty bearings are available

in the database. On analysis, it is observed that the signals from faulty bearings
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have higher values of P, and lower values of Dt,. The compression ratio achieved
for a signal from a faulty bearing is slightly less than that with a normal one, but
it maintains the reconstruction accuracy. The reconstruction accuracy is

proportional to f., and inversely proportional to Av.

6.3 ANOMALY DETECTION IN MECHANICAL SYSTEMS USING
VIBRATION SIGNALS

Most of the engineering systems have rotating parts, and various
parameters must be closely monitored for maintaining their health. The situation
is very critical in systems such as aircraft and spacecraft in which failure may
cause loss of lives or a tremendous amount of money invested [57]. The faults in
machines used in industries must be detected long before they become severe so
that planned repair work can be scheduled. Most of the faults like imbalance,
resonance, misalignment, looseness, drive belt problems, and eccentricity
occurring in machines cause some changes in the vibration signals. Hence
vibration analysis serves as a means for identifying machine deterioration.
Further damage and its severe effects can be avoided if preventive maintenance

is carried out soon after a warning signal is received.

Fault diagnosis and prognosis are mainly dependent on sensors and their
sensing strategies. A wide variety of sensors are used for condition monitoring of
equipment nowadays. The data output from the sensors must be processed for
extracting useful information. The processed data must be in the reduced form,

preserving the features which are needed for detecting the anomalies.

All the present methods for anomaly detection involve either
sophisticated analysis methods or require processing on a massive amount of data
collected for this purpose. As discussed in section 6.2, the available bit rate in
launch vehicles is very much limited. Several vibration signals are to be
telemetered to the ground, which requires a very high data rate. The number of

vibration signals transmitted to the ground can be reduced to a minimum if on-

74



board anomaly detection is used, and its output alone needs to be transmitted to

earth instead of sending the whole sensor data.

A simple signal processing method that provides real-time indications of
anomalies in bearings is presented in this section. It is based on the changes in
the average level-crossing rate of the vibration signals. It is also free from the
steps involved in conventional fault detection methods, including sampling,
compression, feature extraction, and classification. The system is free from the
complex analysis procedures or the big data analysis problem in traditional

methods.
6.3.1 Average level crossing rate (ALCR)

A change in the instantaneous value of a vibration signal cannot be used
for detecting the faulty condition of a machine. Hence a parameter which is
estimated over a short time interval must be selected for this purpose. If there is a
faulty condition in the bearing of a machine, there is an increase in the frequency
of the vibration signal. In most of the cases, there is also an increase in the
amplitude. Irrespective of the peak value, the average amplitude of a vibration
signal is nearly zero, and cannot be used as a parameter for detecting anomalies.
Similarly, the energy of a signal cannot be considered for this purpose because it
may not change with respect to a change in frequency. Average Level-Crossing
Rate (ALCR) of a signal is the best choice for detecting the variations in the
vibration signal due to a faulty condition in a machine. The level-crossing rate
(LCR) is a measure of the rapidity of a signal. LCR is defined as the number of
times a signal crosses a certain amplitude level in unit time [94]. ALCR is
obtained by summing up the LCR values of all the levels in unit time. It is a
time-domain parameter that increases with an increase in either the amplitude or

frequency of a signal, which is illustrated in Fig. 6.4.

The computation of ALCR value has been explained in [94]. Let x(7) be
the analog input signal for which ALCR has to be computed. A level crossing,
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c(j, to) at a particular level /; is detected at time fo, if (x(to)-g)(x(to-ﬁt)-lj)<0;
where 01 is a short time interval. If the above condition is satisfied, c(j, f%) = 1,
and it is 0 otherwise. Level-crossing rate (LCR), L(j, t0)) can be computed at a

particular instant #o for an interval Af as shown in Eqn. 6.5.

L(jty) = Zc(j’ t)
At (6.5)
The average level-crossing rate, ALCR, is defined in Eqn. 6.6, where N is

the total number of reference levels.

N
ALCR =Y L(j,1,)
= (6.6)

The value of ALCR depends on Av, the inter-level distance, and At¢, the

duration for which it is computed.
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Fig. 6.4 Number of level-crossings

Three sinusoidal signals xi1(¢), x2(¢), and x3(r) of equal durations are
shown in Fig. 6.4. Denoting the number of level-crossings occurring in a duration
‘t’ as ‘Ny, its value for xi(7) is 16. The frequency of the signal x»(¢) is equal to
that of x1(¢), but its peak value is almost half of xi(¢). The value of N; for x2(z) is
eight. The peak amplitude of x3(¢) is almost equal to that of xi(¢), but the
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frequency is almost double. The value of N; for x3(¢) is 32, which is double that of
x1(f). If a fault condition occurs in a machine, there will be an increase in
frequency and amplitude of the vibration signal, which causes a corresponding
increase in the value of ALCR. ALCR has been used in [94] for automatic speech

segmentation.

As shown in Fig.6.5(a), an arbitrary analog signal x(¢), is applied to a
level-crossing detector (LCD). The reference voltage levels /1 to /s are placed
uniformly at Av apart. The instantaneous amplitude of the signal x(¢) is compared
with these levels. The dark dots on x(#) indicate the instants at which level-
crossings take place. These instants are marked as #1 to #13 on the time axis. The
signal crosses the level [, at time instant #;. The corresponding output of the
level-crossing detector (LCD) is shown in Fig. 6.5(b). LCR is dependent on the
value of Av, the signal amplitude 4, and the frequency of the signal.
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Fig. 6.5(a) Input signal (b) LCD output
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The ALCR of a signal can be monitored by comparing the instantaneous
value of the signal with a set of reference levels. LCD output is fed to a counter
which counts the number of level-crossings in a particular duration, Az for which

ALCR is computed. For this purpose, a timer, which resets the counter at the end

of every At is used.
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Fig. 6.6 (a) Vibration signal (X097 DE) (b) ALCR with
At= 0.1 second (c) ALCR with At= 1 second

The data set provided by the Case Western Reserve University is the
output from accelerometers which are attached to the housing of the motor using
magnetic bases. Vibration data is also collected after introducing faults in the
bearings with the electro-discharge machining technique. A vibration signal,
‘X097 DE’, is shown in Fig. 6.6(a), and its ALCR in Fig. 6.6(b), and Fig. 6.6(c).
In Fig. 6.6(b), ALCR values are computed, taking Az as 0.1 seconds, and in Fig.
6.6(c), it is taken as one second. Even though ALCR computed with Az of one
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second shows a smooth variation in ALCR, the maximum delay for delivering the
warning signal is one second compared to 0.1 seconds in the earlier case. If a
signal is applied to the LCD, the value of ALCR will be computed at the end of
every At seconds. Hence, in Fig. 6.6 (b) and Fig. 6.6 (¢), ALCR is seen to be zero

during the initial time period of Ar.
6.3.2 Anomaly detection using ALCR

A vibration signal, ‘X100 _FE’ acquired from a normal bearing, and its
spectrum are shown in Fig. 6.7(a), and Fig. 6.7(b), respectively. The significant
frequency components in the spectrum extend approximately up to 2 kHz. ALCR
values of this signal are computed and are shown in Fig. 6.7 (c). The average
value of ALCR is 1500. Fig. 6.7(d) shows another signal, X106 _FE’, acquired
from the same machine with a faulty bearing. The spectrum of this signal is
shown in Fig. 6.7(e) in which the significant frequency components are seen to
be extended above 4kHz. There is also an increase in the maximum amplitude of
the signal acquired from the faulty machine. The corresponding ALCR is plotted
in Fig. 6.7(f). There is a huge increase in the ALCR values of this signal

compared to the previous case and is computed as 8391.

All the vibration signals collected from the machine, which is having a
faulty bearing, is spread in its bandwidth with some increase in the peak
amplitude. This is illustrated in Fig. 6.7, where a significant increase in the ALCR
value of a vibration signal, collected from a faulty bearing, is compared to that
from a normal bearing. Variations in ALCR values are used for the detection of
faults. Fig. 6.8 depicts the method of detection of anomalies in the machine using

ALCR values.
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Fig.6.7  Illustration of Variation in ALCR Values of Vibration
Signals from Normal and Faulty Bearings

Vibration . ALCR
4 Logic Normal/
signal  ® LCD Circguit Comparator[— ¢ i

Reference

Fig. 6.8 The block diagram for the anomaly detection using
ALCR values

The input signal is applied to the LCD, which produces non-uniformly

spaced pulse signals at the instant of each level-crossing. The logic circuit counts
the number of pulses produced in a fixed duration, which is the value of ALCR. A
threshold value of ALCR can be manually set with a prior knowledge of the

vibrations produced under normal working conditions. Alternatively, the initial
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ALCR value can be stored as a reference for detecting a specified percentage

increase in the observed value.
6.3.3 Simulation Results

The vibration data from standard databases, which are samples acquired
at the Nyquist rate, are interpolated to convert them into the analog form. These
analog signals are analyzed by observing the variations in their ALCR values, as
shown in Fig. 6.8. Simulation has been performed with Simulink. The bandwidth
of the signals collected with faulty bearing has increased, and a small increase in

the amplitude is observed in some signals.

Table 6.2 Vibration signals and their ALCR values

Signal Normal/ ALCR value
faulty
X097_DE Normal 1308
X098 FE Normal 1302
X098 DE Normal 1157
X099 DE Normal 1265
X099 FE Normal 1366
X100 _DE Normal 1345
X100 _FE Normal 1500
X105 _DE Faulty 12200
X105_FE Faulty 9296
X106_DE Faulty 12160
X106 _FE Faulty 8391
X108_DE Faulty 12890
X119 DE Faulty 7340
X121 _DE Faulty 8006
X130_FE Faulty 14140
X133 _DE Faulty 13240
X169 _FE Faulty 5960
X172_DE Faulty 6353
X185 DE Faulty 5648
X200 _DE Faulty 4595
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A significant increase in ALCR values has been noticed in the signals
collected from the faulty machines, compared to the values corresponding to a
normal machine. The inter-level distance Av is selected as 25mv, and ALCR is

computed as the total number of level-crossings during a period of 0.1 seconds.

The simulation results are shown in Table 6.2. The first column indicates
the signal, and the second one indicating whether the signal was acquired under
the normal or faulty conditions. The corresponding ALCR values are entered in
the third column. The abbreviations DE and FE, along with the signal number,
represent “Door End and Fan End,” which are the positions of the sensors. ALCR
values of each signal are also plotted in Fig. 6.9. The increase in ALCR values is
used for anomaly detection in the proposed method. Besides offering a real-time
operation, the system avoids the necessity of sampling the signal, storing the

data, feature extraction, classification, and big data analysis.
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Fig. 6.9 The plot of ALCR vs signals

The algorithm has also been tested with NASA bearing data set [95]. The
data set includes three sets of vibration data, which are the output of

accelerometers placed at different locations inside the bearing housing of an AC
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motor. The rotation speed of the motor was 2000 rpm, with a radial load of 6000
Ibs. Each data set was the output of a test-to-failure experiment and consists of
data acquired under failure conditions. It was reported that the inner race defect
occurred in bearing 3 at the end of the experiment, which is shown in Fig.
6.10(a). Vibration signals of channel 5 from bearing 3 acquired during the last 45
seconds of the test are shown in Fig.6.10(a). At around 13 seconds, there is a
gradual change in the amplitude and spectrum, and another sudden hike occurs at
around 42 seconds. The corresponding values of ALCR are plotted in Fig.
6.10(b). It can be noticed that there is a significant change in the ALCR values at
13 and 42 seconds.
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Fig. 6.10 (a) NASA signal (bearing 3, channel 5) (b) ALCR of
NASA signal

The output from channel 6 of the same bearing is shown in Fig. 6.11(a),
and the corresponding ALCR values are plotted in Fig. 6.11(b). Similar to the
ALCR values obtained for channel 5, sudden increase in the value of ALCR is
observed at 13™ and 42" seconds for channel 6 also. An increase in the ALCR
values is the indication for the faults that occurred at the instants explained

above.
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6.4 SUMMARY

Conventional compression algorithms and CS-based methods adopt
complex procedures for the compressed encoding of the vibration data.
Compressed-sensing demands iterative optimization algorithms to be executed
for the reconstruction of the original signal. But extremum sampling produces
compressed set of data directly from the analog input signal enabling real-time
encoding and reconstruction. In this chapter, extremum sampling has been
proposed for vibration signals as an alternative to conventional sampling
methods and CS-based methods. Samples at the local extrema of the input signal
are acquired, which are sufficient for the reproduction of vibration signals. Even
though the proposed method falls in the category of lossy compression, the peak
values of the input and the time gap between them are retained in the
reconstructed output. The method offers high compression ratios with minimal
error with less computational complexity. The proposed method is suitable for
telemetry systems in launch vehicles and other wireless sensor networks. Even if

the samples are non-uniformly spaced, the number of bits per sample remains the
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same, which enables easy multiplexing. The compression ratio achieved with any
of the level-crossing methods is the benefit gained from a non-uniform sampling
method, and the possibility of achieving further compression from these samples

needs to be explored.

A signal processing method based on ALCR is also proposed for
detecting bearing faults in machines. ALCR-based method is the low-cost
alternative to the conventional condition-monitoring systems. Bearing faults in
machines cause observable changes in the ALCR values of vibration signals. By
monitoring the variations in the 4LCR, anomalies in machines can be detected
very easily. It is capable of delivering real-time indications about the operating
conditions of a machine. It is especially suitable for systems where
computational requirements and big data analysis cannot be afforded. The bit-
rate requirement in launch vehicle telemetry can be reduced to a minimum if on-
board anomaly detection mechanism is used, which works directly on the sensor
output. Instead of transmitting the entire vibration data from a spacecraft, a few
numbers of ALCR values are sufficient for fault analysis. The analog sensor
output can be directly applied to the LCD for ALCR measurement, and it
provides a real-time indication of faults in the machine. ALCR can be used as a
parameter for predicting the remaining useful life, which requires a massive
amount of vibration data otherwise. The same task can be achieved by making
use of ALCR values, which are very few in number compared to the number of
samples in the vibration data. Further study is required to find the effect of noise

under varying noise conditions.

ALCR can be used for the activity detection in any signal. As pointed out
in section 6.3.2, it was used for automatic speech segmentation in [94]. In the
next chapter, ALCR has been used to automatically control the gain of an
amplifier, based on the activity in a voice signal. Another application of ALCR
explained in the next chapter is acoustic feedback detection in public address

systems.
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CHAPTER 7

ACTIVITY-DETECTION BASED ON LEVEL-
CROSSING RATE

7.1 INTRODUCTION

Temporal features are more reliable to analyze the signal-variations
because they retain both the magnitude and phase information. As discussed in
section 6.3.2, ALCR is a time-domain parameter sensitive to changes in both the
amplitude and frequency of the signal. ALCR has been applied for anomaly
detection of mechanical systems in chapter 6 and has various applications like
detection of channel fading and speech segmentation. In this chapter, ALCR is
applied for detecting the activity of signals, based on which specific control
action can be triggered. ALCR is used for the activity-detection of signals in the

following applications.

(a) A voice-controlled audio mixer is implemented, in which the activity of
the input speech signal is monitored with its ALCR values. Based on the
ALCR, the attenuation of a background music signal is controlled. Such
voice-controlled audio mixers have broad applications in announcement

systems at radio and TV broadcasting stations and announcement systems.

(b) An acoustic feedback suppressor in which the feedback detection is done
with ALCR, and the feedback frequency estimation is made with zero-
crossing time. The feedback suppression is demonstrated with notch and

low-pass filters.

In a voice-controlled mixer, the amplitude of the background music is
controlled by the intensity of a speech signal. The intensity of the speech signal is

monitored with ALCR. A two-level mixer is implemented such that the amplitude



of the music signal is reduced to one-fourth its actual amplitude, if a speech
signal is detected. In the acoustic feedback suppression system, howling is
detected with the ALCR of the output signal. The acoustic feedback was created
with a single microphone, an amplifier, and a loudspeaker. Howling signals with
and without the presence of speech were recorded. Acoustic feedback is detected
using the variations in the ALCR values. Based on the zero-crossing time, a
corresponding path is selected with notch filters, designed for the fundamental
and second harmonic frequencies of the howling signal. The notch filters in each
path are cascaded by a low-pass filter to remove the frequency components
outside the speech-band. This study aims to illustrate the potential of ALCR for
activity detection by emphasizing the howling-detection part rather than its

suppression.
7.2 VOICE-CONTROLLED MIXER

There is a standard requirement in any announcement system to adjust
the volume of music, which is presently being played in the background, while
an announcement is made using a voice signal. Earlier, this was done by
manually adjusting the volume of the background signal. However, the manual
method has the drawback that the level of attenuation is highly subjective.
Automatic voice-controlled amplifiers have been developed in the announcement
systems to tackle this problem, the general block diagram of which is shown in

Fig. 7.1.

" Line il :
Music ——P| Amplifier Attenuator — Mixer —— Output
Computation
of signal
strength
> MIC f
MiC Amplifier

Fig. 7.1 General block diagram of a voice-controlled audio
mixer
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A recorded music signal is fed to a line amplifier, and its output is
connected to an attenuator. The attenuation is controlled by the intensity of a
voice signal, which is the output from a MIC amplifier. The attenuated music and

the voice signal are added in a mixer amplifier, and the output is broadcasted.

There are various methods for sensing the intensity of the voice signal
which is used to control the background signal. Attenuation is varied according
to the average value of the voice signal, using a circuit similar to an envelope
detector in [96]. A capacitor maintains a voltage that is proportional to the new
peak value of the signal. Another method makes use of short-term energy (STE)
and zero-crossing rate (ZCR) for detecting the voice activity [76]. ZCR is used to
check whether the input signal is a voice signal or not. Based on the energy of the

voice signal, the attenuation of the background music is varied.
7.2.1 Voice-controlled mixer based on ALCR

In the method explained in this thesis, ALCR is used to detect the activity
of the speech signal, which evades the step of computing the short-term energy.
ALCR has been defined in section 6.3.2. The ALCR values for the speech signal
are computed for every Af seconds, and the attenuation is increased if the ALCR
increases above a threshold value. The noise input with peak-to-peak amplitude
less than the inter-level distance Av does not create a level-crossing. Hence the

ALCR value is not affected by the noise.

Music —| Amplifier |———®] Attenuator —l

Computation Mixer —
of ALCR o

A

L

MIC ——P1  Amplifier

Fig. 7.2 Block diagram of a voice-controlled audio mixer
based on ALCR values
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7.2.2 Simulation results

The noise tolerance of level-crossing sampling has been explained in
section 4.7. The voice-activated mixer does not respond to the noise present at
the microphone input if the peak-to-peak amplitude is within Av. The noise
tolerance is illustrated in Fig. 7.3, in which the speech signal is in the magnified
form, and the number of level-crossings between A¢ are shown. At the beginning
portion there is no speech signal present, except the noise whose amplitude
variations are within Av. Hence there is no level-crossing taking place during this
time. Since the ALCR is computed for a specific duration of Az, the system does
not react to the undesired input variations in the form of impulse noise.
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Fig. 7.3 Speech signal and the number of level-crossings

The input and output of a two-level-mixer are shown in Fig. 7.4. The
speech signal used for controlling the mixer and its ALCR values are depicted in
Fig. 7.4(a) and Fig. 7.4(b). The music signal, which is played in the background,
is shown in Fig 7.3(c). If the ALCR increases above the threshold value which is
previously set, the music signal is attenuated to 25% of the original amplitude, as
illustrated in Fig. 7.4(d). The attenuated signal is added with the original speech
signal in the mixer, as seen in Fig. 7.4(e). The value of Av is selected as 0.1v, and
At is chosen as 0.1s. ALCR has a variation from 0 to 1816. The threshold value is

chosen as 100.
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7.3 ACOUSTIC FEEDBACK SUPPRESSION

Acoustic feedback, which is also known as Larson effect, occurs in
public address (PA) systems and hearing aids when a closed loop is formed
between the audio input and the speaker output. It is the undesired acoustic
coupling between loudspeakers and microphones, as shown in Fig. 7.5. The
feedback signal is again amplified and fed to the loudspeaker. If the loop-gain
approaches unity, the system becomes unstable, and a steady sinusoidal signal is
produced, resulting in the howling noise. The howling noise is annoying to the
speaker and the audience, and manual intervention is needed to control its effect.
Manual controls include a reduction in the gain of the amplifier and changing the
location of the loudspeakers. Even after several years of research in automatic
acoustic feedback suppression, a reliable solution has not been derived. Manual

intervention is still required to reduce the gain while using PA systems.

4>@—>D—D Amplifier —DI]:}—
Audio/speech

i Mi ho
input B Loudspeaker

Attenuation |«

Fig. 7.5 Model for acoustic feedback

The frequency of oscillation developed by the acoustic feedback is
dependent on the delay of the feedback signal. Based on the zero-degree
locations, there are peaks in the closed-loop response with a frequency-spacing,
which is equal to the reciprocal of the delay time. If the delay is increased, the
frequency-spacing in the closed-loop response gets decreased, and the number of
peaks at which oscillations occur increases. However, the rate at which the

oscillations build-up is inversely proportional to the delay.
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7.3.1 Methods for controlling acoustic feedback

There are various methods used for suppressing acoustic feedback. A
widely adopted method is adaptive feedback cancellation (AFC), in which the
feedback signal from the speaker is estimated by an adaptive filter to subtract it
from the input signal for removing the feedback [97]. In the frequency shifting
method, frequencies are shifted up or down by a few hertz. The frequency shifter
continuously moves the generated feedback frequency until the feedback is
attenuated. Another method used is the gain reduction method, in which the
forward path gain is reduced to move the system away from the point of
instability [98]. The gain reduction can be implemented in different ways. The
gain is reduced equally in all the frequency bands in automatic gain control
(AGC) methods. In automatic equalization methods (AEQ), the gain is reduced
in the frequency bands where the loop gain is close to unity. The gain is reduced
in narrow frequency bands in notch-filter-based howling suppression (NHS)
methods [99]. The steps involved in implementing NHS methods are feedback

discrimination, frequency identification, and deployment of notch frequencies.

There is proactive and reactive instability detection in gain reduction
methods [100]. Proactive methods detect howling before it is perceived, based on
a measurement of the magnitude response of the feedback path or by observing
the critical frequency components in the microphone signal. The commonly used
gain reduction techniques are based on reactive method, in which howling is

perceived before detecting it.
7.3.2 Feedback discrimination

At a particular instant, oscillation occurs at a single frequency, and hence
the microphone signal frequency having the highest magnitude can be treated as
a howling signal. Several algorithms, based on both spectral and temporal criteria
for discriminating howling signal from the speech and music signals are

available. In spectral methods, the power ratio of the candidate howling signal to
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the entire spectrum, and the ratio between its harmonics and the neighboring
frequency components are evaluated. There are also methods based on temporal
criteria for feedback discrimination [98]. Some of the temporal methods are
based on the observations that the howling frequency component has
exponentially increasing amplitude before getting a steady value. Another
property used in the temporal method is that the howling frequency persists for a

long time, compared to the speech signal frequency.
7.3.3 Frequency identification

Identification of the howling frequency can be performed by using FFT
algorithms in which the peak values of frequency are selected. The frequency can
also be identified from the coefficient values of adaptive notch filters. In both
these methods, identification of lower frequencies is challenging. In the FFT
method, the frame size selected must be long enough for achieving the required
frequency resolution, resulting in a slow response. Greater precision is required

in the case of adaptive notch filters.
7.3.4 Acoustic feedback detection based on ALCR

Conventional acoustic feedback detection algorithms require digitization
of the input signals and framing of the samples. As discussed in section 7.3.3, the
frame size selection is a compromise between the speed of operation and the
frequency resolution. These limitations can be overcome with algorithms based
on the level-crossing rate, in which no sampling, digitizing, and framing is
required. In this chapter, the emphasis is given on the feedback discrimination
and the frequency identification of the howling signal. From the analog input,
acoustic feedback is detected with ALCR, and the howling frequency is identified
with the zero-crossing time. The howling signal rapidly increases in amplitude to
reach a steady level, which results in a noticeable change in the ALCR values.
During the period of howling oscillation occurs at a single frequency, which can

be measured with the zero-crossing time of the feedback signal.
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Fig. 7.6 Block diagram of the acoustic feedback suppression
system based on ALCR

The block diagram for the acoustic feedback suppression based on ALCR
is depicted in Fig. 7.6. ALCR is computed from the output of the microphone. A
threshold can be fixed for the ALCR value, above which the signal corresponds to
howling. The microphone output is fed to a zero-crossing detector, from which
frequency is measured. The frequency of howling is found from the time gap
between zero-crossing instants, measured using a clock signal with a known
frequency. Based on the measured frequency, a particular notch filter is selected,
the centre frequency of which is nearer to the howling frequency. The notch filter
and the microphone output are the two inputs of a switch controlled by the
howling detector. If acoustic feedback is detected, the output of the notch filter is
passed to the amplifier; otherwise, output of the microphone is passed. The
switched output is passed through a low-pass filter to remove the abrupt changes

due to switching
7.3.5 Simulation Results

Acoustic feedback was created with a microphone, amplifier, and a
speaker, and the microphone output was recorded for analysis. Several signals
were recorded, and the variations in the ALCR values were observed during the

howling period.

A feedback signal which consists of howling noise alone is shown in Fig.
7.7 (a). The spectrum of the signal is depicted in Fig. 7.7 (b). The significant
component present is 890 Hz, which is the only frequency present during the

initial period. There is an exponential increase in the peak values. After reaching
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the saturation level, there is a flattening at the peak amplitude, which creates the
harmonics of 890 Hz. The ALCR values with At = 0.1s are plotted in Fig. 7.7 (¢).
The ALCR value updated at a particular instant is corresponding to the signal
activity during the past 0.1s. The zero-crossing time remains the same, with
which the fundamental frequency of oscillation can be measured. A digital
counter is used to measure the time period of ten cycles at a time. A magnified
portion of the howling signal is presented in Fig. 7.7 (d) showing the counter
output that measures the zero-crossing time of ten cycles and the peak values of
the counter output. The zero-crossing time remains constant for almost the entire
duration, indicating the presence of a constant howling frequency. In Fig. 7.7 (d),
after every ten cycles, the counter output has a mean peak value of 1125. With
100 kHz clock, the time duration of a single cycle is measured as 0.00125s. The
corresponding frequency is 888.89 Hz, which is very close to howling measured
from the spectrum. The signal is passed through notch filters with centre
frequencies equal to the fundamental and second harmonics. It is also passed
through a low pass filter to limit the high-frequency content. The output of the
filter and the corresponding spectrum are shown in Fig. 7.7 (e) and Fig. 7.7 (f),
illustrating that the howling frequency component is attenuated by 35 dB.

A speech signal which has howling noise during the period from 2.8s
onwards is shown in Fig. 7.8 (a). ALCR values with Ar selected as 0.1 s are
plotted in Fig.7.8 (b). The first ALCR value appears at 0.1s in the figure because
it is calculated for the previous 0.1s. There is a distinct margin between the
ALCR values during the period of howling, and otherwise. A suitable value of the
threshold is fixed to differentiate between the normal and feedback conditions.
The zero-crossing time of the feedback signal is measured, based on which a

suitable notch filter is selected for removing the howling frequency.
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Fig 7.8 (a) Speech signal with howling noise (b) ALCR of the
speech signal (c) Output of the notch filter

For accurate measurement of the frequency of howling, the time duration
for several successive zero-crossings is measured to estimate a single time
period. The clock frequency for measuring the time period is selected as 100
kHz, and the time taken for ten cycles are measured. The filtered output is

depicted in Fig. 7.8 (d).

There is always a delay of Af in detecting the howling because, the
change in ALCR value due to the presence of howling noise is reflected after this
time. A reduction in the value of Af causes unnecessary variations in the ALCR
values, especially when the peak value of the signal is nearer to the saturation

level. The simulation was conducted with a limited number of recorded signals,
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and a few numbers of notch filters were used. The emphasis of this work was on
the feedback discrimination using ALCR, and frequency identification using

zero-crossing time, which is suitable for any NHS system.
7.4 SUMMARY

In this chapter, two examples in which the activity detection is
performed with ALCR of the input signal are presented. The voice-controlled
mixer based on ALCR has the advantage that noise levels up to the inter-level
distance Av are suppressed. Instead of computing the zero-crossing rate and
energy of the signal, computations of ALCR values are sufficient for controlling
the mixer. Since the ALCR value is computed for a specific duration A¢, any
sudden change in the input of the microphone does not appear at the output. The
system is capable of real-time operation, and compressed samples can be
transmitted if time-to-digital converter (TDC) is also incorporated. ALCR values
are calculated for the analog input, and hence, the input signal need not be

digitized.

Time-domain methods for feedback discrimination and frequency
identification, suitable for notch-based howling suppression systems are
presented in this chapter. The system operates with the analog signal. In the
conventional methods, the choice of frame size decides the frequency resolution
and the delay. In the method based on ALCR, the conventional steps of sampling,
digitization, and framing are avoided, and the computation of the spectrum is not

needed.
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CHAPTER 8

CONCLUSIONS AND FUTURE SCOPE

In this thesis, the potential of non-uniform sampling schemes to save
resources like bandwidth, memory, and power is exploited. The possibility of
low-cost activity and anomaly detection schemes that require an analog input

signal instead of its digital samples are explored.

A level-crossing sampling (LCS) system for the compressed encoding of
speech signals is designed and simulated. Two-level adaptive level-crossing
sampler (ALCS), in which the inter-level distance Av is changed according to the
slope of the input signal, is also simulated. Speech and vibration signals have
been applied to extremum sampling (ES), which is suitable for encoding signals
with an oscillatory nature. It was observed that ES provides the maximum value
of compression ratio, compared to LCS and ALCS. The signal-to-noise ratio
(SNR) due to the quantization of time is proportional to the clock frequency of
the time-to-digital converter (TDC) employed in LCS. LCS, ALCS, and ES with
multiple temporal resolutions are simulated to reduce the dynamic range of the
TDC, leading to a reduction in the bits per sample. The frequency-scaling
technique is incorporated in conventional level-crossing samplers to achieve
multiple resolutions for the efficient encoding of the silence regions in the
signals. Each frequency-scaled method has a lesser data-size than its equivalent

level-crossing method that does not employ frequency-scaling.

A method is devised for the real-time anomaly detection in mechanical
systems based on the average level-crossing rate (ALCR) of vibration signals.
The proposed system works on the analog output of the sensor and does not
require conventional steps like sampling, feature extraction, classification, or
computation of the spectrum. A voice-controlled mixer is simulated in which the

attenuation of the background music is controlled with the ALCR value of the



speech signal. An acoustic feedback suppression system has been simulated, in
which the feedback discrimination is performed with ALCR values. The zero-
crossing time is used for measuring the howling frequency. All the methods
based on ALCR work on analog input, and the sampling, encoding, and framing

operations are evaded.

The compression ratio achieved with level-crossing methods is not the
outcome of a compression algorithm but the result achieved with a non-uniform
sampling process. The possibility of achieving further compression from these
non-uniform samples needs to be explored. ALCR can be used as a parameter for
predicting a machine's remaining useful life (RUL). Generally, for the prediction
of RUL, a massive amount of vibration data is needed. The same task can be
achieved using ALCR values, which are very few compared to the number of
samples in the vibration data. Level-crossing methods can also be applied for the
analysis of power quality. Synchronous logic has reached its technological limits
while dealing with power consumption, clock distribution, and electromagnetic
emission, and hence, non-uniform sampling is a promise for the future digital

world.
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