A STUDY OF NORMED DIVISION DOMAINS AND THEIR ANALOGUES
WITH APPLICATIONS TO NUMBER THECRY

Thesis Submitted to the University of Calicut
in partial fulfilment of the requirements

for the award of the degree of

DOCTOR OF PHILOSOPHY
IN MATHEMATICS

By
RAJENDRAN VALIAVEETIL

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CALICUT

OCTOBER 1996



.o

R. SIVARAMAKRISHNAN,
Professor of Mathematics (retired)
UNIVERSITY OF CALICUT 3rd October 1996

CERTTIVFTICATE

This is to certify that the dissertation entitled
A STUDY OF NORMED DIVISION DOMAINS AND THEIR ANALOGUES
WITH APPPLICATIONS TO NUMBER THEOREY
is a bonafide record of the investigations written by Sri
Rajendran Valiaveetil in partial fulfilment of the
requirements for the award of the Degree of Doctor of
Philosophy in Mathematics and that it has been carried out

under my supervision and guidance.

Also certified that he has not taken up sizeable

quantities of material from any printed publication.
Whenever results are quoted, they have been duly
acknowledged.

It is further certified that this dissertation or anyv
part thereof has not been presented to any other

university/institution for the award of a research degree

Pl

R. SIVARAMAKRISHNAN

Diploma or title.



DECLARATTION

I, Rajendran Valiaveetil do hereby declare that the
dissertation entitled
A STUDY OF NORMED DIVISION DOMAINS AND THEIR ANALOGUES

WITH APPLICATIONS TO NUMBER THEORY

is a bonafide record of investigation done by me under the
supervision and guidance of Dr. R. Sivaramakrishnan. 1
also declare that this has not been previously formed the
basis for the award of any degree diploma, associateship,

fellowship other similar title or recognition.

Department of Mathematics j>ié§f{:]

UNIVERSITY OF CALICUT
Dated 3 October 1996. RAJENDRAN VALTAVEETIL



-~

ACKNOWLEDGEMENTS

It is a matter of great pleasure for me to express my
heart-felt gratitude to my supervising teacher
Dr. R. Sivaramakrishnan for his stimulating guidance,
constant encouragement and sincere cooperation. Without his
creative approach and tremendous help 1t would not have
been possible for me to shape this dissertation 'in 1its

present form.

I am grateful to Dr. V. Krishnakumar, Head of the
Department of Mathematics, University of Calicut for his
helpful advice and for providing the facilities in the
department to carry out the research work. My sincere thanks
are also due to the other members of the faculty of
Mathematics for all the ‘couragement given to me while
making academic discussions with them. 1 also place on
record my thanks to Prof. K. Balagangadharan, Visiting

Professor with whom I had fruitful discussions.

I wish to thank my colleagues in the Department of
Mathematics, P.S.M.O. College, Tirurangadi for their
assistance and words of goodwill during the period of my
research. I am also indebted and grateful to the former

~

Principals Prof. K. Ahammed Kutty, Dr. T. Mohammed and

Prof. ©P. Abdul Latheef and the present Principal



.

Prof. P. Abdul Azeez. 1 take this opportunity to express my
sincere thanks to Janab C.H.Kunhahamed Haji, the Manager of
P.S.M.0. College for permitting to register for part-time
research and to the authorities of the University of Calicut

for enrolment as a part—-time research scholar.

I would also like to express my gratitude to my wife
and children for the troubles and pains they have taken
during my frequent absence from home in connection with the

academic work of a prolonged nature.
Finally my sincere thanks go to Miss M. Sujava ‘Megha

Xerox and Computers’, Thokkottu, Mangalore for the excellent

job of typing.

Dated 3 October 1996 Rajendran Valiaveetil



INTRODUCTION

CHAFTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CONTENTS

MULTIPLICATIVELY NORMED DOMAINS

1.1

1.2

1.3

1.4

MULTIPLICATIVELY NORMED DOMAINS
DIVISIBILITY
RING OF POLYNOMIALS OVER AN MND

THE FIELD OF QUOTIENTS OF AN MND

IDEALS IN A MULTIPLICATIVELY NORMED DOMAIN

2.1

2.2

THE DIRICHLET ALGEBRA OF ARITHMETIC FUNCTIONS

3.1

3.2

THE MND Z[4-p]

QUASI-PRIME IDEALS

THE MND «

CHAINS OF IDEALS IN «

CERTAIN NORM PRESERVING LINEAR OPERATORS

AND

ARITHMETICAL IDENTITIES

A NORM PRESERVING LINEAR OPERATOR
TWO LINEAR OPERATORS

A LINEAR OPERATOR VIA L.C.M CONVOLUTION

Page No.

15-27

28-37

38-46

47-58



CHAPTER 5§

CHAPTER 6

APPENDIX

REFERENCES

CERTAIN MULTIPLICATIVELY NORMED RINGS

THE RING G([0.1])
THE LUCAS RING OF ARITHMETIC FUNCTIONS

THE UNITARY CONVOLUTION RING

CAUCHY ALGEBRA OF EVEN FUNCTIONS (MOD r)
THE MNR %r(C)

SOME LINEAR OPERATORS ON %r(C)

THE SUBSPACE OF COMPLETELY EVEN

FUNCTIONS (MOD r)

k-FOLD NIL RADICAL OF AN IDEAL

59-63

64-78

79-81

82-85



INTRODUCTION

Rajendran Valiaveetil “A study of normed division domains and their analogues
with applications to number theory” Thesis. Department of Mathematics ,
University of Calicut, 1996



INTRODUCTION

It was E. Kummer (1810-1893) who introduced the notion
of rings and ideals while studying the structure and
propérties of cyclotomic fields. The contributions of
R. Dedekind (1831-1916) and Emmy Noether (1882-1935) to the
development of the theory of rings and ideals are well-
known. It may be remarked that we find examples of
commutative rings with unity outside the realm of algebraic
numbers such as convolution rings of arithmetic functions.
The motivation for this dissertation is from the idea of
the so-called normed division domains introduced by Solomon
W. Golomb in [17] where an algebraic structure endowed with

a norm is considered.

Definition : A nonempty set S with a partial order £ which
is reflexive and transitive together with a norm N which
maps S into the set Z° of positive 1integers 1s called a

normed division domain written NDD if

(i) whenever a« < B for a«, B € S, N(a)|N(B) and

(ii) if N(u) =1 for u € S, then u £ o« for all « in S.

Among other things S.W. Golomb [17]), considers the set
S of all nonzero Gaussian intergers as an NDD with the
customary notion of divisibility as the partial order and

with the usual norm : N (a + bi) = a2 + b2, a + bi € 8S.



Noting that the norm N on S is multiplicative in the sense

that N (@) = N(a¢) N(B) , we make the following

Definition : Let R be an integral domain with unity. A
multiplicative norm N on R is a function N : R —— Z, the
set of nonnegative 1integers satisfying the following

properties

(i) N(a) = 0 if and only if a = 0

(ii) N(aB) = N(a) N(B) for all «,B in R.

An integral domain endowed with a multiplicative norm
is called a multiplicatively normed domain, abbreviated MND.
(In [16], J.B. Fraleigh also mentions about the

multiplicative norm).

The theme of the dissertation 1s about <certain
properties of mutlipicatively normed domains and their
analogues with reference to situations arising in
convolution rings of arithmetic functions. A brief survey of

the contents of the dissertation 1is given below.

In Chapter 1, we develop the notion of a
multiplicatively normed domain, obbreviated MND. We confine
ourselves to those MND’s R in which N(u) = 1 for u € R if
and only if u 1is a unit in R. in Theorem 1 we obtain é
sufficient condition for a € R to- be irreducible in R. We
observe that 1f R (is an MND, then factorization into

irreducibles is possible in R in the sense that every



nonzero nonunit in R is a finite product of irreducibles in
R. From examples in [31] and [37] we see that factorization
into irreducibles need not be unigue so that an MND need not
be a unique factorization domain (UFD). In theorem 5, we
establish that an MND is a UFD if and only if it is a GCD
domain. It is shown in Theorem 6 that the ring R[x] of
polynomials in one indeterminate x over an MND R is also
an MND. Further we note that if R is an MND so is the riﬁg

R[[x]] of formal power series over R.

We begin Chapter 2, by examining the nature of the
principal ideal J generated by the irreducible element 1+4:§
in the ring R = Z[4-5]. It is known [2] that J is maximal
in the set of proper principal ideals of R. However J is
not a prime ideal of R as 1 + 4:3 is not a prime element
in R. We observe that J coincides with the ideal Q of R
where

Q=fa+b4{=-5 :a-b=0 (mod 6)}

Next we consider the ring 1[4:51, where p 1is a prime

= 2 (mod 3) and we see that
Q=f{a+b4{-p : ab=0 (mod 6)}

is an ideal of 1[4:5]. In theorem 8, it 1is showﬁ that Q
has a very nice property that whenever «ff € Q with
x,B €Z[{-p] and o« ¢ Q, then either B or 28 or 38 € Q. This

leads us to the following



Definition : Let R be a commutative ring with unity. A
proper ideal Q of R 1is <called a gquasi-prime ideal if
whenever «f € Q with «o,B € R, there exists a positive

integer k such that either ka € Q or kB € Q.

We call a commutative ring R with unity having a
nonempty subset T of zero divisors of finite additive order
a quasi-integral domain if whenever «,B € R with of = 0
either « € T or 8 € T. Then we arrive at the following
characterization of a quasi-prime ideal in Theorem 9 : Let
R be a commutative ring with unity. Suppose that Q 1is a
proper ideal of R which is not a prime ideal. Then Q 1is a
quasi-prime ideal if and only if R/Q is a quasi-integral

domain.

We remark that there is a notion of a quasi-ideal in a
semigroup or a ring introduced by 0. Steinfeld [36]. However
our definition of a quasi-prime ideal is not related to

Steinfeld’s definition.

In Chapter 3, we go to the ring of arithmetic

functions. By an arithmetic function we mean a map

f : 2" —— C or f : Z — € where Z'(Z) denotes the set
of positive integers (the set of nonnegative integers) and C
denotes the field of complex numbers. We denote the set of

all arithmetic functions with domain zt by . If f,g € &£ we



define their natural sum and their Dirichlet convolution or

product, respectively by
(f + g) (r) = f(r) + g(r) rz1

(f.g) (r) = X f(d) g(r/d) rz 1.
d|r
With respect to these operations, « becomes a commutative
ring with unity. Introducing the norm N(f) of 0 # f € & as
the least positive integer n such that f(n) # 0 and setting
N(0) = 0, Cashwell and Everett [5] have shown that # 1is
indeed a UFD. With respect to this norm £ is an MND. Further
we see that € has a unique maximal ideal (Theorem 10). In

Theorem 11, we realise # as a subdirect sum of the rings

$/Ip, where Ip is the principal ideal generated by the prime

Xp € & defined by

0, otherwise

Let f be a nonzero element of #. Let I be the ideal
which 1s maximal in the family of 1ideals of « which
excludes f. & s isomorphic to the subdirect sum of the
subdirectly irreducible rings d/If. In the last section of
the Chapter, we exhibit a strictly descending chain of
ideals in 4, thereby showing that # 1is not Artinian

(Theorem 13). We note that this can be also deduced from



the fact that the only integral domains that satisfy

descending <chain condition are fields ([2], p.226).

In Chapter 4 , we look at the MND 4 of arithmetic
functions from the point of view of 1its structure as a
vector space over €. It is interesting to note that certain
arithmetical identities follow as a consequence of some
linear operators on #. Theorem 14 shows that the map

T :4d — « defined by
(T(f)) (r) = T f((a,r)), fed, r21.
d|r
where (a,r) denotes the g.c.d. of a and r, is a bijective

norm-preserving linear operator. Next, we consider the

linear operator T, : # —— « defined by

(T, (f)) (r) =¥ £((d, r/d))

dlr

and prove that (Theorem 15) T1 satisfies the identity

(T () =% 10 2°(r /)
k r

where @(r) denotes the number of distinct prime factors of

r. From the above we deduce

2
Td , r/d) =3 k 2°(7/k0)
d|r k|



an identity due to Daniel I1.A. Cohen [6]. Analogous to the

linear operator T1’ we have another linear operator

T2 : 4 —— o defined by

(T,(£)) (1) =2I f£([d, r/d]), fed b r21.
d|r

where [d, r/d] denotes the l.c.m of d and r/d. It is
established in Theorem 16 that T2 satisfies the identity

2
(T(f)) (r) = X f(r/k) 2“(r/k )
k2|r

It is deduced that

2
L [d, r/d] = olr/k)

)
d|r 2
k

(r/k) 2

|

We further observe that T1 preserves norm 1if and only f 1is
a unit in « (Theorem 17) whereas T2 is norm —preservingv
(Theorem 18). We also have a linear operator L on #« obtained

via l.c.m. convolution

(L(f)) (r) = X f(a) , fe «
15a<r
{a,bl = r

where a is the first coordinate of the ordered pair (a,b)
such that [a,b] = r. It is proved in Theorem 19 that L is
norm-preserving and if F = f.e, where e(r) =1, r 2 1, then

L is given by



(L(f)) (r)= 2 F(t) d(t) u(r/t)

tir

where 4 is the MObius function.

"It is established in Theorem 20; that the operator L
defined above has the property that if f = cy, then L(f) = f
where ¢ € € and ¢ is the MOGbius Function. Conversely if

L(f) = f for f € 4 , then f = cu where ¢ = f(1).

In Chapter 5, we consider some commutative rings with
unity in the context of arithmetic functions and having
divisors of zero. First we extend the definition of a

multiplicative norm to any commutative ring with unity.

Definition : Let R be a commutative ring with unity. A
multiplicative norm N on R is a function N from R into the

set R of non negative real numbers such that

(i) N(O) =0

(ii) N (aB) = N(a) N(f) for all a, B € R.

R is called a multiplicatively normed ring, abbreviated MNR
if there is defined a multiplicative norm on it. As a first
example (not from the set of arithmetic functions), we
consider the ring of real valued continuous functions
defined on the closed interval [0,1]. The second example
is the Lucas ring 2 of arithmetic functions defined on i,

the set of nonnegative integers, introduced by L. Carlitz



[4] which is described as follows

Let p be specified prime. Writing

a]
i
o]
[¢]
+
o]
-
e}
+
]
N
e}
AN}
+

~
Nn

ko+ kip + k2p2+.... (0 = kj < p)

one notes that

T r, r,
= Kk K | e (mod p)
o] 1
From the above, we deduce that the binomial coefficient
r is prime to p if and only if
k

0=k =71 (j = 0,1,2...... ) .

~ —

For f, g € B the Lucas product h = f * g of f and g is given

/

r
h(r) =2,

2 f(k) g(r-k)

where &’ is restricted to those k for which p X’{ E ].

With respect to the natural sum and Lucas product
3 1s a commutative ring with unity. Defining
N(f) =|f(0)|, f € B, it follows that B 1is an MNR. In this
connection we also prove that & is 1indeed a 1local ring

(Theorem 21). Further it 1is observed that the ring of



arithmetic functions with respect to unitary convolution

also serves as an example of an MNR.

The concluding chapter of the dissertation is about a
finite dimensional algebra drawn from a class of functions,
which are periodic (mod r) (rz1) and which satisfy

f(n) = f((n,r))

where f is complex valued . The precise definition is given

below

Let F be a field of characteristic zZero containing
the rLh roots of unity where r is an arbitrary but fixed
positive integer. Following Eckford Cohen (7], f : Z —— F

is called an (r, F) arithmetic function if
f(n) = f(m) whenever n = m (mod r) .

We denote the set of (r, F) arithmetic functions by ﬁr(F)-
f € ﬂr (F) is called an even function of n (mod r) or

briefly an even function (mod r) if
f(n) = f((n,r))

Where (n,r) stands for the g.c.d of n and r. Taking F = C
the field of complex numbers, Eckford Cohen has made a.
detailed study of properties of even functions (mod r) in
[7], (81, [91 [10] [11] and [14]. In the case F= C We denote

the set of even functions (mod r) by %r(G). Some structural

10



proverties of %r(G) are also studied by P. Haukkanen and

R. Sivaramankrishnan (see [19]).
The Ramanujan’s sum C(n,r) is given by

C(n.t) = X exp (2minh/T)
h (mod r)

(h, r) =1

where the summation is over a residue system (mod r). C(n,r)
is an even function (mod r). It is known [8] that f € %F(C)

has the unique finite Fourier representation

f(n) = T a(d) C (n,d)
d|r

where the Fourier coefficients «(d) are given by

a(d) = (1/r) L f(r/8) C (r/d, 9)
d‘r
It is known [26], that %r(G) is a vector space of dimension

d(r), the number of divisors of r, with an orthonormal

basis

{(r¢ (d))"' c(n,d) : d|r }

where ¢ is the Euler ¢ - function, with respect to the inner

product
<f,g> = L f(a) gla)

a {(mod r)

gla) being the complex conjugate of g(a).

11



In Theorem 24, it 1s shown that %r(C) is an MNR with the

norm N defined by

N(f) = r min {|a(d)|}, f € 2 (C)
d

where the minimum 1s taken over the divisors d of r and

a(d) , d|r are Fourier coefficients of f.

In [9], a subset of completely even functions (mod r)
of %F(C) is considered. f € %F(C) is called a completely

even function (mod r) if there exists an arithmetic function

F such that

f(n) = X F(d)
dl(n,r)

We observe that the function B(n,r) [34] defined by

B{(n,T) = X exp(2nihn/r)
h (mod r)

(h,r) = a square

1s such that

A(r) B(n,r) = X d % (d)

d|n,r

Qmw’ Q(r) being the total number of prime

where A(r) = (-1)
factors of r (each counted according to its multiplicity).
So X(r) B(n,r) 1s completely even (mod r). In Theorem 25, we

establish the orthogonal property of B{(n,r)

12



If tx’ t, are square-free divisors of r,
<

( r B(n, r/t), if tlz tZ: t
z B(a, r/tl) B (b, r/tz) o=

n Z=a+b (mod r) .
0, if tli t2

Using this we assert that the set Vr(C) of completely even
functions {mod 1) forms a subspace of " %F(G) vhaving
w(r)

dimension 2 , the number of square-free divisors of r.

VF(C) has an orthonormal basis
{AM(r/t) (rb(r/t))_“2 B(n,r/t): t a square-free divisor of r}

where b(r) = B (0,r). We mention that %r(G) has also another
subspace WF(C) of unitary functions (mod 1) and having

the same dimension zw(r), (see [13]).

A note on a generalization of the nil radical of an
ideal namely the k-fold nil radical of an ideal(k 2 1) is
added 1n the Appendix as the result relating to the ring
rational integers was obtained while working in the area of

commutative rings with unity.

Most of the preliminary results needed in the
dissertation are mentioned and duly acknowledged as and
where required. Some well-known theorems used in the

dissertation are numbered with #*. All unexplained notions

13



related to number theory may be found in [1], [29], and

those related to algebra in [2], [16] and [21].

While concluding, we wish to remark that the
Aissertation makes a humble attempt to throw more light on
the properties of certain algebraic structures arising 1in
the context of algebraic numbers and rings of arithmetic

functions under various convolution operations.

14
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CHAPTER 1

MULTIPLICATIVELY NORMED DOMAINS

We Dbegin with a ‘restricted’ partially ordered set
(S, <) where the relation =< 1is reflexive as well as
transitive. That is « € a for all « in §; if « < 8 and B = ¢

then @« £ vy for all o, B, ¥ in S.

Following Solomon W. Golomb [17], we give

1.0.1 Definition ([17]). Let (S, <x) be a restricted
partially ordered set and N be a function which maps S into
the set Z' of positive integers such that if « £ B for « and
B in S, then N(«)|N(B), and if N(u) = 1 for u in S, then
u £ a for all a in S. Then D = (S, £, N) 1is called a normed

division domain, abbreviated NDD.

1.0.2 Definition ([17]) . If N(u) = 1 for an element u in

an NDD, then u is called a unit in that NDD.

1.0.3 Example ([17)) . Let S = Z[1]I\{0}, the non zero
Gaussian integers. S with the wusual notion of divisibility
and with the usual norm N given by N(a+bi) = a2+b2 for a+bi

in S, 1S an NDD.

Let T be the subset of S consisting of rational
integers, with the standard divisibility and with the same

norm : N(a) = N(a+0i) = a®. Then (T, s, N) is also an NDD.

15



1.0.4 Example ([17]). Let S be the set of all finite
groups, and for G € S, define N(G) = order of G; define H< G
for H,G € S if and only if H is isomorphic to a subgroup of

G. Then D = (S, 5, N) is an NDD.

1.0.5 Example. Let O be the ring of integers of a number
field K of degree n. Let S be the set of all non =zero
ideals of @ and define I < J if and only if J £ 1 for I,
J € S. With the standard definition of norm of an ideal of O
([37], p. 125) as N(I) = order of the quotient ring 9/1,

(S, €, N) is an NDD.

1.0.6 Example. Let S = F[x]\{0}, the set of all non zero
polynomials in a single indeterminate x over a field F.
Define f(x) = g(x) 1if and only if deg f(x) =< deg g(x) and

degf(x)

also define N ((f(x)) = 2 for f(x), g(x) € S. Then

(S, £, N) in an NDD.

We observe that the norms in the examples (1.0.3),
(1.0.5) and (1.0.6) are multiplicative, that 1is
N (aff) = N(a) N(ff) for all «, B in S. The purpose of this
Chapter is to study certain integral domains that have a
norm which is multiplicative. These are called
mutliplicatively normed domains, abbreviated MND and such
domains are examined for unique factorization property of
elements . The corresponding rings of polynomials and field

of quotients are also considered.

16



1.1 MULTIPLICATIVELY NORMED DOMAINS

Throughout what follows by an integral domain we mean

a commutative ring with unity 1 and having no zero divisors.

We begin with the following

1.1.1 Definition. Let R be an integral domain. A

multiplicative norm N on R is a function mapping R into the

non-negative integers Z such that

(i) N(o¢) = 0 if and only if a« = 0

N(a) N(B) for all «,B € R.

(ii) N(aB)

An integral domain R with a multiplicative norm on it

is called multiplicatively normed domain , abbreviated MND.

In ([16], p. 311) J.B. Fraleigh also mentions about the

multiplicative norm.

1.1.2 Example. Let R be an integral domain. Define

N : R ——1Z by

1, if 0 # « € R

0. if « = 0

Then R 1s an MND.

Let R = Z[4d ] = {a + b { d : a, b € Z},

1.1.3 Example
integer not

where d # 1 is a square~-free integer, that is an

17



divisible by the square of any positive integer > 1. Define
N on R by N(a + b{d) = |a’-db®|. Then N is a multiplicative

- — 2
norm on R. In particular R = Z[{—S] with N(a+b4—5) = a2+ 5b

is an MND.

1.1.4 Example. The ring @O of integers of any number field K

of degree n is an MND with norm N defined by

N(x) = | X xz...xnl, x € 0 where x,, X,..... X are the

roots of the field polynomial of x over K, ([37], p. 54).

1.1.5 Example . Let F be a field and F[x] be the ring of
polynomials over F in a single indeterminate x. Then F[x]

is an integral domain. Define N : F[x] — Z by

deqg f(x)

N (f(x)) = 2 f(x) € Flx]

>

Then N is a multiplicative norm on F[x]

Let R be an MND, with norm N. Then N(1) = 1. Also if
u € R is a unit then N{(u) = 1. But in general the converse
is not true. For example in (1.1.2) we see that N(a)=1 for
every 0 # a € R. In (1.1.4) and (1.1.5) we note that

N{p) = J if @xd oaldy € u 1s a unit in the integral domain

under consideration.

18



1.2 DIVISIBILITY

In this section we consider only those multiplicatively
normed domains, R with multiplicative norm N such that
N(u) = 1 for u € R if and only if u is a unit in R . In this
case we prove that R is a unique factorization domain if

and only if R is a GCD domain.

1.2.1 Definition ([2], p. 90) . lLet a, b € R , a # 0 . We
say that a divides b or a is a divisor of b written al|b if
there exists some ¢ € R such that b = ac. In case a does

not divide b we shall write a ¥ b.

For a € R, we write

<a> = {ra : r € R}

for the principal ideal of R generated by a. We note that

alb if and only if <b> < <a>.

Two elements O # a, 0 # b € R are called associates of
each other if alb and bla. Further a and b are associates
if and only if a = ub for some unit u in R. Also <a> = <b>

if and only if a and b are associates.

1.2.2 Definition ([2], p. 97) . A nonzero nonunit a € R is
said to be irreducible if a = bc, then either b or c is a
unit.

19



A nonzero nonunit a € R is said to be prime if a|bc

(b, c € R) , then either a|b or alc.

A prime 1s always Iirreducible but not conversely

([21, p 97).

Theorem 1. Let R be an MND with norm N. A sufficient
condition for an element a € R to be an irreducible of R is

that N(a) is a rational prime.

Proof : Let a € R be such that N{(a) = p, where p is a
rational prime. If a = bc then p = N(a) = N(b) N(c). Then
either N{b) = 1 or N(c) =1, that is either b or c¢c is a unit

in R. Therefore a must be an irreducible element of R. =

Theorem 2 . Let R be an MND. An element a € R 1is an
irreducible element of R if and only if there is no element

b € R which is irreducible and which is such that bla and

N(b) < N(a).
Proof : If there is an irreducible element b € R such that
bla and N(b) < N(a), then there exist some ¢ ¢ R with a = bc

where N(b) > 1 and N(c) > 1. Hence a cannot be irreducible.

in R.
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To prove the converse, suppose that N(a) > 1 and a is
not an irreducible element of R. We must show that there
exists a proper divisor b of a such that b is an irreducible
element in R. We proceed by induction on N(a). If N(a) = 2,
the smallest possible norm for an irreducible, then a must
be irreducible by Theorem 1. Assume that the result 1is
true for all elements of R whose norms are less than or
equal to n where n 2 2. Let « € R be such that N (a) = n+1.
Then either « is irreducible or it has a divisor § such that
2 £ N(B) < n+l1. By induction hypothesis either  1is an
irreducible in which case there is nothing to prove or f§ has
an irreducible divisor ¥y with 2 =< N(y) < N(B) £ n. In this
situation , since ¥|B and B|x and as the relation divides is
transitive we get 7|u and y is an irreducible divisor of «

with 1 < N(7) < N(«). S
Let us recall a few definitions

1.2.3 Definition ([2], p. 92) . Let a,, a,,..., a be

& n
nonzero elements in an integral domain R. An element d &€ R
is called a greatest common divisor, abbreviated g.c.d of
A R N if

(i) dla, for i

"
—
[}
3

1
—
[\

(11) c!al for i .,n 1implies that cld.
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The g.c.d of a,, a a € R is unique whenever 1t

s .
exists, upto arbitrary unit factors. In a principal ideal

domain any finite set of nonzero elements a,, a,,...,a has

ag.c.d ([2], p. 93)

1.2.4 Definition ([23], p. 84) . A GCD domain is an integral

domain in which each pair of nonzero elements has a g.c.d.

1.2.5 Definition [23], p. 90). A commutative ring R with
unity is said to satisfy the ascending chain condition on
principal ideals (Accp) if for any ascending chain of

principal ideals

<a > &£ <a. > &....5<a > <..
o 1

there exists an integer m (depending on the chain such that

<a > = <a > for all n 2 m.
n m

1.2.6 Definition ([2], p. 100) . An integral domain R 1is

called a unique factorization domain, abbreviated UFD if
the following conditions are satisfied

1) every element of R that is neither zero nor a unit

can be factored into a finite product of

irreducible elements in R.

i1) if P,P,....P, and q, 9,....9_  are twofactorizations
of an element a € R into irreducibles, then r = s
and the qJ can be renumbered so that p and q, are

1

associates.
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We also need the following

Theorem 3. ([23], p. 91) . Let R be an integral domain

The following conditions are equivalent

(i) Every nonzero nonunit of R is a product of primes.
(ii) R is a UFD.

(iii) R is a GCD domain in which ACCP is satisfied.
The proof is omitted (c¢f [23], pp 91-92)

The theorem asserts that UFD’s are precisely GCD

domains in which ACCP 1is satisfied.

Now we shall prove that, in an MND factorization into

irreducibles 1is possible.

1.2.7 Lemma . Let R be an MND. Then every nonzero non unit

of R has a factorization into a finite product of

irreducibles in R.

Proof. Let R be an MND with norm N. Then N(ab) = N(a) N(b)
for al a,b € R. Also by our convention N(u) =1 for u € R if
and only if u is a unit in R. Let a € R be any nonzero,
nonunit. We prove the theorem by induction on N(a). If a is
not already irreducible, then we can write a = bc with
N(b) < N(a) and N(c) < N(a). By induction hypothesis both b
and ¢ can be factored into products of irreducibles and

hence a i1s also a product of irreducibles. .

23



heorem 4 . Any MND R satisfies ACCP.

Proof : By Lemma 1.2.7, any nonzero nonunit in R can be
xpressed as a finite product of irreducibles . Also if

2, b€ R and b # 0 then <a> < <b> if and only if bla. So it

follows that R satisfies ACCP. o
"eorem § . An MND is a UFD if and only 1T it ie a GCD
'{_» nain

BOOT :' SuppoSe "th8t""R “is ‘dn MND which is a UFD. By

‘Theorem 3*, R must be a GCD domain.

Conversely suppose that R is an MND which is a GCD
*ﬁbmain. By Theorem 4, R satisfies-ACCP also. So R is a GCD
domain in which ACCP 1is satisfied. By Theorem 3*, R
~is UFD. o

The following example illustrates the significance of
Theorem 5. We note that 6 € Z[{-5] has two nontrivial

factorizations into irreducibles
6 = 2.3 = (1 + 4=5) (1-4=5)

Indeed, since 2 is not an associate of 1+{=3 or 1-4-3
it follows that the above two factorizations of 6 are

distinct and hence Z[{-5] is not a UFD, (see [31] or

[371).
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o ¢

Next, consider the elements 6 and 3(1+4:§) in 2[4:3].
The common factors are 1,3, and 1+{-5. But none of these
factors is divisible by the others. So the g.c.d of 6 and
3(1+4{=5) fails to exist. The failure of the UFD
préperty in Z[{-5] is due to the fact that Z[{-5 is not a

GCD domain though it satisfies ACCP.

1.2.8. Definition. Let R be a commutative ring with unity.
An ideal P # R is called a prime ideal if whenever ab € P

with a, b € R, either a € P or b € P,

It is known that p is a prime element in an integral
domain R if and only if the principal ideal <p> # R is
prime. We note that 1+{-5 in Z[{-5] is irreducible but not
prime. So the principal ideal <1+{-5 > in Z[{-5] 1is not a
prime ideal. So the natural question is : what type of ideal
is the principal ideal generated by 1 + 4:3 ? This will

be investigated in Chapter 2.

1.3 RING OF POLYNOMIALS OVER AN MND

If R is an MND, we look at the ring R[x] of polynomials

over R in a single 1indeterminate x.

Theorem 6. If R is an MND then so is R[x]

Proof : It is known that if R is an integral domain then so

is R{x]. Let f(x) = a, + ax + ....+ a_ x",n = deg f(x) 2 0,

25



a, € R (i = 0, 1,2,...,n). Let the norm on R be N. Then
define N(f(x) = N(a ). If g(x) =b_+ b x + + b x"
m = deg g(x) z 0, b € R (i = 0,1,...,m). then
N(g(x))= N(b ). Since f(x) g(x) is a polynomial of degree

n+tm with the largest coefficient a_ b~ we have

b

N(f g) = N(a_ b ) = Nf(a ) N(b ) = N(f) N(g) So R[x] is

an MND.

Remark : It also easily follows that if R is an MND, then so

is the ring R[[x]] of formal power series with coefficients

in R.

1.4 THE FIELD OF QUOTIENTS OF AN MND

We first give the notion of a field with valuation. Let
G be an ordered abelian group with an element O adjoined
V = GU{0}, disjoint 1in which we define 00=0 and g>0,

0g=0=g0 for all g € G. Following Jacobson [22], one has

1.4.1. Definition ([22],p. 556) . If F is a field and V is
an ordered abelian group with 0 adjoined then we define a

V-valuation of F to be a function ¢ : F—V such that

(i) ¢(a)

0 if and only if a = 0
(ii) ¢(ab)

¢(a) ¢(b)

(1i1) ¢(a+b) < max (¢(a), (b))
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We need to extend the above definition to integral
domains. If R is an integral domain and V an ordered abelian
group with 0 adjoined, then a V-valuation of R is a function
¢ : R —— V satisfying conditions (i) — (iii) of
Definition 1.4.1. We recall ([22], p. 557) that if R is an
integral domain and ¢ a V-valuation on R, then ¢ has a
unique extension to a V-valuation on the field of quotients

F of R.

In the case of an MND, the norm does not satify
condition (iii) of definition 1.4.1, is general . Therefore
an MND is not capable of consideration as a domain with

valuation using the norm.
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CHAPTER 2

IDEALS IN A MULTIPLICATIVELY NORMED DOMAIN

We examine the nature of a principal ideal in an MND
In particular, we consider the principal ideal J generated

by the irreducible element 1 + {-5 in Z[{-5]. That is,

—
I

<1 + 4 -5 >

{(a+b{=5 )(1 +{4=-5 ) : a, b € Z}

It is known ([2], p. 98) that J is maximal in the set of
proper principal ideals of 2[4:3]. However, that 1s not

needed here.
Let Q denotes the ideal in Z[{-5] defined by
Q = {(a+b{-5 : a-b = 0 (mod 6)}

2.0.1 Lemma . J = Q

Proof : Let x + y 4:3 € J. Then there exist a,. b € Z such
that
X +y 4:3 = (a + b 4:3) (1 + 4:3)
or
X +y 4j§ = (a-5b) + (a+b) 4:3
or

Xx = a-5b and y = a+b

Therefore, y-x = 6b and x + 5b

6a
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This shows that if x+y {4-5 € J, then x-y = 0 (mod 6)

-

and hence x + y 4-5 € Q. Thus J € Q

To prove the reverse inclusion we proceed as follows
Suppose r + s{-5 € Q. Thenr - s = 0 (mod 6). We claim that

there exist integers a, b such that

r + s{=5 = (a + b{=5) (1+{-5) where r-s = 0 (mod 6) S
That is, given r, s with r-s = 0 (mod 6) solutions a, b in

integers exist for the simultaneous equations in x, y

Rl . B b SN R ERLS R L

X+ y =8
Let r-s = 6k , where k is an integer. Them 6 y = s-r = -6k
¥ = -k = —% (8-£)¢
Then x = S5y + r = —%_ (s-r) + r = 556+ L o .08 ;(r-s)

=8 % —% (r-s)

¥ So there exist solution for the above simultaneous
I ;

equations
l L a1 e b Wi
[ a=s + 3 {r=8) ., b = 3 (s-r)
- This proves that Q € J and soﬂ}hggpgpgf_fg}lgw§¢,g,4_4_470 —
rﬁgﬁgﬁ__g_gfgﬁ;ﬂﬁ<_,4/,,,
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Remark : Since 1 + 4-5 is not prime in Z[{-5] <14{-5> is

not a prime ideal of Z[{-5].

2.1 THE MND Z[{=p]

We now go to a general setting by replacing 5 by an odd
prime p, arbitrary but fixed such that p = 2 (mod 3). For
each such p, Z[{-p] = {a+b{=p : a, b € Z} is an integral
domain in which factorization of a nonzero nonunit into
irreducibles is not always unique . For example it is known
that Z[4{-11] is a UFD, whereas Z[{-23] 1is not a UFD

([371,p.93)

We define

M2 ={a+ob 4—p :a-b = 0 (mod 2)
MB ={a+ bd-p : a-b = 0 (mod 3)
Theorem 7 . M, and M, are maximal ideals of Z[{-p].

Proof : Let us write R = Z[{-p ]. It is easy to see that M,
is a subgroup of (R, +).

Let x = a + b{-p € R and B = c+d {—p € M,

Then ¢c-d = 0 (mod 2).

Also of = (ac-bdp) + (bc + ad) {-p

For af to belong to Mz, we must have

(ac-bd p) - (bc-ad) = 0 (mod 2).
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As p is odd, p = -1 (mod 2) and therefore

(ac-bdp) - (bc-ad) = (a-b) (c-d) (mod 2) 0 (mod 2)
since ¢c-d = o (mod 2).
Thus M, is an ideal of R.
Further if @« = a + b {-p is any element of R that does

not belong to M2, that is a-b =1 (mod 2), we can write

1 = a + (1-a+b {-p)

which expresses 1 as a sum of o« and an element of M2.

So any

ideal of R containing MZ and « contains 1, and therefore it

is the whole of R. Thus M2 is a maximal ideal of R.

Next, we consider M3.C1ear1y M3 is an additive subgroup

then

of R. If o« = a+b4:5 € R and 8 = c¢c + d 4:5 € M3,
¢c-d =0 (mod 3). For «B to belong to M3, we must have
(ac - bd p) - (bc+ad) = 0 (mod 3).

Since p = 2 (mod 3) and ¢c-d = 0 (mod 2), we have

(ac-bdp) - (bc+ad) (ac -2bd) - (bc+ad) (mod 3)

{ac-bd) - (bc+ad) (mod 3)

(a=-b) (c-d) (mod 3)

0 (mod 3)

Thus aff € M, and hence M, is an ideal of R.
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Finally if « € R but o ¢ M, then we can write

{

« + (1-a-b{—p, if a-b = 1 (mod 3)

20 + (1-2a-2b4{-p , if a-b = 2 (mod 3)

which expresses 1 in terms of « and an element of M3. So it

follows that M, is also a maximal ideal of R. ;
Remark : We observe that
Mzn M3 = {a+b 4:5 : a-b =0 (mod 6)}

Let us denote this ideal by Q.

Theorem 8 . The ideal Q of R is such that whenever af € Q

and « € Q (for «, § € R) we have B € Q or 28 € Q or 3B € Q.

Proof : For «,B € R given by « = a+b {—p, B = c+d {—p with

aff € Q, one has

(ac-bdp) - (bc + ad) = 0 (mod 6)

As p 2 (mod 3), we have p

5 (mod 6) and so the above

congruence 1implies that

(2.1.1) (a-b) (c-d) = 0 (mod 6.
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Now assume « € Q. Then a-b # 0 (mod 6). Three cases arise

Case(i) a-b is not divisible by the primes 2 and 3.

Then (2.1.1.) implies that c-d 0 (mod 6) so that g € Q.

Case(ii). a-b is divisible by 2 but not by 3.

Then (2.1.1.) implies that c-d = 0 (mod 3) which implies
that 2(c-d) = 0 (mod 6) showing that 2B € Q.

Case(iii). a-b is divisible by 3 but not by 2.

Then c-d

m

0 (mod 2) so that 3(c-d) = 0 (mod 6) implying

that 30 € Q. O

2.2 QUASI-PRIME IDEALS

Theorem 8 leads to the notion of a quasi-prime ideal

defined as follows

2.2.1 Definition . Let R be a commutative ring with unity. A
proper ideal Q of R is called a quasi-prime ideal if there

exists a positive integer k such that whenever aoff € Q with

a,f € R, either ka € Q or kf € Q.

We note that the positive integer k depends on the
product «f € Q. It is obvious that every prime ideal of R
1s a quasi-prime ideal. Theorem 8 shows that is R = 1[4:5 1,
p, a prime, p = 2 (mod 3), then Q = {a+b4:5 = 0 (mod 6)}

1S a quasi-prime ideal.
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Consider R = Z[{-p ], p = 2 (mod 3) as an MND, with the
norm N(a+b{-p) = a’+pb®. Then every ideal of R is a
quasi-prime ideal. For, let Q be any ideal of R. Let aff € Q
where o, € R. 1f a=a+b{-p, write o = a-b{-p € R and by the
definition of an ideal a« («f) € Q implying (a2 + pbz) B €Q

or N(a) B € Q. and so Q is a quasi-prime ideal.

More generally if R is any MND with a norm N satisfying

«|N(«) for every 0 # a € R, then every ideal of R is

quasi—-prime.

In particular <1 + 4:3- > 1is a quasi-prime ideal of
1[4:3]. Since 1+4:§ is not a prime element, we have already

mentioned that <1+{-5> is not a prime ideal.

We proceed to characterize quasi-prime 1ideals . The
motivation 1is from the structure of the quotient ring

Z[{=5 ) — . . — o
<£+ f;) . Since <1+{-5> is proper ideal of Z[{-5] and it is

not a prime ideal, the quotient ring is not an integral

domain

Let R be a commutative ring with unity and having
divisors of zero. The zero divisors of R can be put into
two disjoint subsets T and F such that

(i) T contains those zero divisors which are torsion

elements in (R, +). That 1is each zero divisor

belonging to T is of finite order
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(ii) F contains those zero divisors which are torsion-

free elements in (R, +).

If R is of finite characteristic n (>0) and has zero
divisors, then all the zero divisors of R are torsion
elements. In particular, the Zero divisors of Zn

(n composite) are of finite additive order.

Let R be any commutative ring with unity of
characteristic zero and having zero divisors. Then the set
S= R x Zn where n is composite , 1s a commutative ring with

unity with respect to addition and multiplication defined by

(r, a) + (s, b) = (r + s, a + b)

(r, a) (s, b = (rs, ax_b)

where + and X denote the addition and multiplication
modulo n, S has =zero divisors that are either torsion

elements or torsion-free elements.

2.2.2 Definition . Let R be a commutative ring with unity
and possessing a non empty subset T of zero divisors which

are torsion elements in (R, +). R is called a quasi-integral

domain if whenever « 8 € R with af = 0, either a € T or
BerT.

For example, Zn(n composite) is a quasi-integral
domain.
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Theorem 9. Let R be a commutative ring with unity. Suppose
that Q is a proper ideal of R which is not a prime ideal. .
Then Q 1is a gquasi-prime ideal if and only if R/Q is a

quasi-integral domain.

Proof : Suppose that Q is a quasi-prime ideal of R. Assume
that (a+Q) (b+Q) = Q; a,b € R. Then one has ab € Q, which by
the definition of a quasi-prime ideal implies that there 1is
a positive integer k such that ka € Q or kb € Q. This in
turns implies that either a + Q or b + Q is a torsion
element in the additive group of R/Q. Hence R/Q 1is a

quasi-integral domain.

Conversely assume that R/Q is a quasi-integral domain.

Suppose that ab € Q, with a,b € R.

Then Q = ab + Q = (a + Q) (b + Q). So there exists a
positive integer k such that k (a + Q) = Q or k(b + Q) = Q,

that is such that ka € Q or kb € Q.Hence Q is a quasi-prime

ideal. 0
Remark : There is a notion of a quasi-ideal of a semigroup
or a ring introduced by O . Steinfeld and studied

extensively by himself and others. A systematic survey of
the most important results of quasi-ideals in semigroups

and rings 1is contained 1in the monograph authored by
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0. Steinfeld (see [36]). The notion of a quasi-prime ideal
is not related to that of a quasi-ideal and is new as far as
we know. There 1s also a notion of a quasi-field introduced

by P. Kesava Menon (see [25] in 1963.
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CHAPTER 3

TAE CDIXICHLET ALGEBRA OF ARITHMETIC FUNCTIONS

By an arithmetic function we mean a complex-valued
function defined for all positive integers. We denote the
set of positive integers by Z+, the field of complex numbers
by € and he set of all arithmetic functions by #. For f,
g € 4, we define their sum (sometimes called natural sum)

and Dirichlet convolution or product by
(3.0.1) (f + g) (r) = f(r) + g(r) , r21

(3.0.2) (f.g) (r) = Zl f(d) g(r/d), r 21
dl|r

where the summation is over the divisors d of r. It can be
easily verified that (#, +,.) is a commutative ring with
unity e defined by

1 for r = 1

(3.0.3) e (r) =
0 for r # 1

It is known ([35}, p.30) that &£ is infact a UFD . An
algebraic study of the ring «€ has also been made by

H.N. Shapiro in [32].

{3.0.4) LEMMA . (#£.+,.) 1is an MND.

Proof : Following E.D. Cashwell and C.J. Everett [35], we

define the norm N(f) of 0 # f € £ to be the least positive



integer n such that f(n) # 0 ; if f is the zero function

define N(f) = N(0O) = 0.

Let f,g € £, both non zero. Suppose N(f)=m and N(g) =n.

We may assume that m £ n

Then (f.g) (r) = 0 for all r € Z" with r<mn.

Also (f.g) (mn) = f(m) g(n) + f(n) g(m)

so that (f.g) (mn) # O.
Thus N(f.g) = mn = N(f) N(g).

Since N(O) = 0, we have N(fg) = N(f) N(g) for all f,g € 4.

Thus £ is an MND. 0

Remark : It is known that an arithmetic function f possesses
a Dirichlet inverse if and only if f(1) # 0 ([35], p. 6)

Thus f € £ is a unit 1if and only if N(f) = 1.
Now consider the MND «£. For f € £ and « € € define

(¢ f) (r) = a f(r) for all r € VAR

Then it follows that with repect to the sum defined by
(3.0.1) and the scalar multiplication defined above «
is an infinite dimensional vector space over €. Thus 4 1is

indeed an algebra over € with identity e, defined by(3.0.3).
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We call it the Dirichlet algebra # over €. The purpose of

this chapter is to study the ring structure of ##.

3.1 THE MND «

We recall the definition of a local ring :

3.1.1 Definition ([27], p. 33) . A commutative ring with
unity is called a local ring if it has exactly one maximal

ideal.

3.1.2 Lemma : Let R be a commutative ring with unity If ¢ is
a homomorphism of the ring R onto a field, then ker ¢ is a

maximal ideal of R.

Proof is omitted.

Theorem 10. 4 is a local ring.

Proof : Define ¢ : 4 — € by

o(f) = f(1), f € «.

For f, g € 4

e(f+g) = (f+g) (1) = f(1) + g(1)
¢(fg) = (f.g) (1) = f(1) g(1)
So ¢ : #—— € is a homomorphism. Further ¢ is onto since

given ¢ € €, we have the preimage of ¢ defined by
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0, otherwise

Then by Lemma 3.1.2, ker ¢ is a maximal ideal of €. Since
f €4 is a unit if and only if f(1) # 0, we see that ker ¢
consists of all the nonunits in «#£. Now any proper ideal of «
consists of nonunits and hence contained in ker ¢. So ker ¢

is the only maximal ideal of #. Thus « is a local ring.

Next, we consider decomposition of «£. We need the

following

3.1.3 Definition ([2], p, 201) . tet {Ri} be a family of
rings indexed by some set 1. The complete direct sum of the
rings Rl denoted by ~ @ Ri consists of all functions a
defined on the index set 1 subject to the condition that for

each element 1 € I the functional wvalue a(i) lies 1in Rl

That 1is
X e Ri = {a|a:I — U Rl and a(i) € Ri}

The rings Rl are called the component rings of the sum « & Rﬁ

With respect to addition and multiplication defined by
componentwise, % & R becomes a ring. The zero element of
L e R, is the function 0 : I —— U R, defined by 0(i) = 0

for all i € 1. If 1 = Z*, then % @& R may be viewed as the
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set of all infinite sequences (a,, a_.,....,a ,...)such

that a, € Ri for each 1 € I.

A special subring of the complete direct sum X & R1 is

the subdirect sum

3.1.4 Definition ([2], p. 206) . A subring S of the complete
direct sum X @ R is said to be subdirect suh of the rings,
written S = £° @ R, if the induced projection Hi|S:S———% R
is an onto mapping for each 1i. The subdirect sum 1is

nontrivial if none of the mappings ﬂi|S is one to one (hence

S is not isomorphic to any Ri).

3.1.5 Lemma ([2], p. 206) . A ring R is isomorphic to a
subdirect sum of rings Ri if and only 1if there exists an
isomorphism f : R — ¥ @ Ri such that for each i, the

composite n1~f is a homomorphism of R onto Ri.

3.1.6 Lemma ([2], p.207). A ring R 1is 1isomorphic to a
subdirect sum of rings R‘l if and only if R contains a

collection of ideals {Il} such that R/I ~ R and n I = {o}.

For the proof of the above two Lemmas, see D.M. Burton

([2], pp. 206-207).

In the context of the ring #, we have an infinite

number of primes (cf, [20], p. 103) X, in 4 given by
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x (r) =
P 0, otherwise

for-each prime p € Z'. For fixed prime p, N(xp) = p. Let Ip

denote the principal ideal, generated by xp
Denote the quotient ringsa/lp by Q .

Theorem 11 : The ring & is a subdirect sum of the rings Qp,

where p runs through the primes in z*.

Proof. The proof follows from Lemma 3.1.5. by observing that

{Ip} is a collection of ideals and g'Ip = {0}. a

Remark: The subdirect sum gs@ Qp is nontrivial since Ipi <0>

for all p.

3.1.7. Definition ([2}, p. 211) A ring R 1is said to be
subdirectly irreducibe if in any representation of R as a
subdiect sum of rings Ri, at least one of the associated
homomorphisms of R onto Ri is actually an isomorphism.

Otherwise R is said to be reducible.

We observe that 4 has a set a nonzero ideals Ip with
zero intersection. A theorem of Birkhoff ([2], p 212) states

that every commutative ring R with unity 1s isomorphic to
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subdirect sum of subdirectly irreducible rings. In

particular € also possesses this property.

Theorem 12° : Let f be a nonzero element of #£. Let Ir be the
ideal which is maximal in the family of ideals of # which
excludes f. Then # 1is isomorphic to the subdirect sum of

the subdirectly irreducible rings i/If.

Proof : The proof follows in the same lines as the proof of

Birkhoff’s theorem ([2], p.212).

—

3.2 CHAINS OF IDEALS IN .

We need the following definitions

3.2.1 Definition ([2], p. 223) . Let R be a commutative ring
with unity. R is said to satisfy the descending chaii

condition for 1ideals 1f, given any descending chain ol

ideals of R,

there exists an integer n such that In: [n =1 =

If R satisfies descending chain condition for ideals

then R is said to be Artinian
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{;2.2 Definition ([2], p. 81) . Let R be a commutative ring
‘:th wnity. An ideal T of R is called primary if the
Jénditions ab € T and a ¢ I together imply that b" € I for
;wme positive integer n.

3.2.3 Lemma : Let I = f if o W LF) &k 5dk {0} .
Then I 1is a primary ideal for k = 1.
:Proof : It is easy to see that Ik is an ideal of # for each

e 1. Let f, g1, . If f#0,

}then N(fg) 2 k. or N(f) N(g) = k. Suppose that N(Ff) = &, @a
.positive integer such that t € k and that f ¢ Ik then N(g)=z
Bk/t so that we have N(g) 2 [k/t] + 1 since N(g) is an

~ integer, where [x] is the greatest integer not exceeding x.

IBF- [RAt)-+ L s < k, then there exists a positive integer m

{ such that s" 2 k. Then N(g") = N(g)"z §"2 k so that g" € I -

" Thus ke is a primary ideal of . o

. Theorem 13 . # is not Artinian.

Proof : From Lemma 3.2.3 we have a strictly descending chain

of ideals of «

TR R A

So # is not Artinian,
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Remark : We know that the only integral domains that
satisfy descending chain condition are fields ([2], p. 226)

This can be seen as follows

Let R be an integral domain. Let 0# a € R. Since R

satisfies descending chain condition, the chain

2 .
<a> 2 <a > 2..... , must terminate.
. o 1
So there exist n € Z° such that <a"> = <a" ».
. 1 .
Then there exist b € R such that a" = ba" , using the
cancellation law, we get 1 = ba. This shows that every

nonzero element of R has an inverse in R and hence R is a

field.

Since 4 is an integral domain and it is not a field it

follows from the above observation that «£ 1s not Artinian.
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CHAPTER 4
CERTAIN NORM-PRESERVING LINEAR OPERATORS

AND ARITHMETICAL IDENTITIES

in this chapter, we look at the multiplicatively normed
domain # of arithmetic functions from the point of view of
its structure as a vector space over €, the field of complex
numbers . It is interesting to note that certain
arithmetical identities follow as a consequence of some
linear operators. In this connection, we point out that
certain transformations of arithmetic functions have been
considered in various situations different from the present
context by L. Carlitz and M.V. Subbarao [4], P.Haukkanen
and R. Sivaramakrishnan [18], P. Kesava Menon [24], David

Rearick [30].

4.1 A NORM-PRESERVNG LINEAR QOPERATOR

We recall the following

4.1.1 Definition . Let V be a vector space over the field F.

A map L: V — V 1is called a linear operator on V if

(1) L (u + v) = L(u) + L(v) for all u, v € Vv

(i1) L (cu) = c L(u) for all ue€ vV, ¢c €F

If R is a multiplicatively normed algebra over €, we

say that the map L : R —— R is norm-preserving 1if
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N(L(v)) = N(v) for all v € R

where N{(v) is the norm of v € R.
For f € 4, we define
(4.1.2) (T(f))(r) =2 f((a, 1)), rz 1

where (a,r) denotes the g.c.d of a and r,

By Cesaro’s identity [15] whenever f € #

(4.1.3. r f((a, r)) =2 f(d) ¢(r/d)

a=z1 alr

Where ¢ denotes the Euler ¢ - function.

(4.1.2) and (4.1.3) imply that
T(f) = f.¢

Theorem 14. T : ¢ —— « defined by (4.1.2) is a bijective

norm-preserving linear operator on #. -
Proof : When T is defined by (4.1.2), we have
T(f) = f.¢

Where ¢ is the Euler ¢ - function. Since £ is an integral
domains it follows that T is one-to-one. Also given f € 4

there exist f = ¢ € 4 such that
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so that T is onto.

For f, g € «
T(f+g) = (f+g).¢ = f.¢ + g.¢ = T(f)
and if c € €
T(cf) = (cf).® = c(f.¢) = c T(f)

Thus T is a linear operator on .

Finally, for f € «,

N(T(f)) = N(f.®) = N(f) N(¢) = N(f)1 = N(f)

so that T is norm-preserving also.

Remark : T : A —— A is define byd ) = f.9”

But

o' (r) =T d u(d)
d‘r

where 4 is the M&bius function defined by

1, r =1

(4.1.4) p(r) 0, if there is a prime p such that

(—1)5, if r = PP,

v
I

Writing F(r) = T f(d) , we get
dalr
(4.1.5) (T"'(f)) (1) = ﬁa.p (r/d) p (d)
d|r
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For, T (f) = f.¢"" = f.(1 '.e) where I(r) = r, r 2 1 and

e{r)=1, r 2 1, and so

T f) = (f.e). 1" =F . 17"

F.(1p)

Hence we obtain (4.1.5).

4.2 TWO LINEAR CPERATORS

We define two linear operators T, and T, on 4 as

follows

For f € «,

(4.2.1) (T, (£)) (1) =d? f((d, r/d))
and

(4.2.2) (T_(f))(r) = T f(ld. r/dl)

d|r

where (d, r/d) and [d, r/d] denote the g.c.d and 1.c.m of
d and r/d, respectively. It can be easily verfied that T1

and T2 are linear operators on «.

Theorem 15 . T1 1 4 —— 4 defined by (4.2.1) satisfies the
identity
(4.2.3) (T,(£))(r) =3 frx) 22(7/K)

klr

where w(r) denotes the number of distinct prime factors of r.
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Proof : If t denotes the number of distinct prime factors

of r, the number of ways of expressing r as the product of

two coprime factors is 2t 1 Suppose d|r and (d, r/d) = k
Then d = kdl, r/d = kd2 where (d1’ dz) = 1.
Further r = k- d,d, and so kzlr. Thus if (d, r/d) = k we

have k2|r.

Conversely if k“]r and r = ks, s can be factored into

. . w(s)-1
two coprime factors S,» S, in 2 (s) ways. For each of

these ways

r = ks s = (ks,) (ks,)= d (r/d) with d = ks, and r/d= ks,

1°2 2
o . . 2 . w(s)-1
Therefore for each k satisfying k“|r, there exist 2

pairs of divisors of d, r/d such that (d, r/d) = k. Thus

; .. ] ® ) - W
the total number of such divisors is 2.2 (s)-1 = 2 (s)

, 2 )
where s = r/k7. Now consider the set {d1 =1, d_,.., d = 1}
of divisors of r written in ascending order of magnitude.

This set is partitioned into mutually.disjoint classes.’ '

such that the class Ck contains those divisor d of r for

wnich (d, r/d) = k, if k°|r. The number of elements in the

2
class, C is zw(r/k ).

) We note that C_ is empty if kKAr. we

also note that if d(r) denotes the number of divisors of r,

then

N i
2624

\ : /5y
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Further f((d,r/d)) will occur as f(k) for each d belonging

w(r/k%)

to the class Ck and there are 2 elements in C .

Thus the effect of T, on f is as given in (4.2.3) . o
From Theorem 15, we deduce

(4.2.4) Corollary (Daniel I.A. Cohen) (see [6]).

2
% (d, rsd) =%k 22(t/KD)
2
k

| r

Proof : Take f(r) = r in (4.2.1) and (4.2.3). a

Theorem 16 T,: #d —— o defined by (4.2.2) satisfies the

identity

2
(4.2.6) (T,(£)(r) =2 £ (r/k) @ (r/k7)

Proof : The proof follows as that of Theorem 15 since we have

1

[d, r/d ] = r (d, r/d) | a
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4.2.7 Corollary

: 2
% [d, r/d] = £ (rsk)  22tT/kD)
d|r kzlr

Proof : Take f(r) = 1 in (4.2.2) and (4.2.6) . a

Next, we look at the operators T1 and T2 more closely.
Let T = szt, where t is the greatest square-free divisor
of r. By Theorem 15,

2,42, . .
w((s“/k)t)

(T ) =3 £k 2

kls

as the square divisors of r are those which divide s.

Moreover w((sz/kz)t) = w(sz/k2)+ w(t/) where t/ is the
greatest square-free divisor of r such that (t/, r/t/) =1
Therefore since (sz/kz) = w(s/k), we get
o(t’) o (s/k)
(4.2.8) (T, (£)) (r) = 2 E‘ f(k) 2°'S
ks

2

One notes from (4.2.8) that if N(f) = m, then N(Tl(f)) = m

I 2 / 2

For if m' < m , m = u v where v is the greatest square-

.. 2 2 . .
free divisor of m'! and u“ < m“ or u < m . This yields

2
(T,(£)) (') = 2°VE gy 22RD 2 g

klu
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Now
2 o(m”/k”)
(T, (£)) (m®) = = f(k) 2" = f(m) # 0O
k|lm
Theorem 17 . The operator T1 defined by (4.1.1) has the

property that N(Tl(f)) = N(f) if and only if f is a unit

in #.

Proof : If N(f) = m, then we have N(Ti(f)) m2. Thus

N(Téf)) = N(f) if and only if N(f) = 1, that is if and only

if £ is a unit in «. , ad

Analogous to (4.2.8) we get using theorem 16,

/
(4.2.9) (T, (£)) (r) = 2°(t) ﬁ £(r/k) 2°08/K)
ks

I

2 /. ..
Where r = s t and t is the greatest square—-free divisor

of ¥ such that (t’, r/t’) = 1,

Theorem 18 . The operator T, : #——— o« defined in (4.2.2)

1s norm-preserving.

Proof : If N(f) = m, then by (4.2.9) for 15 a < m, we have

/
(T,(f)) (a) = 2°(0) s ) L0(s/k)
k|s
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2 /. ..
Where a = s b and b is the greatest square-free divisor of

a such that (b’,a/b’) = 1. As f(a/k) = 0 for 1< k S s ,

(Tz(f)) (a) = 0 for 1 = a < m

‘"It follows that m is the least positive integer such

that

and therefore N(Tz(f)) = m = N(f) . a

4.3 A LINEAR OPERATOR VIA L.C.M. CONVOLUTION

4.3.1 Definition : For f, g € 4, the l.c.m. convolution of f

and g denoted by [f.,g] is defined by

[f, g] (r) = X f(a) g(b)
{a,bl = r

Where the summation is over all ordered pairs of positive

integers a, b such that [a, b]

N

r.

A connection between l.c.m. convolution and Dirichlet

convolution is given by

(4.3.2) [f, g]. e = (f.e) (g.e)

where e (r) =1, r 2 1. (4.3.2) is due to Von Sterneck [15]

and fg denote the natural product of f and g
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(f g) (r) = f(r) g(r), r2 1.

We introduce an operator L : €& —— « given by
(L{f)) (r) = % f(a)
1£ a £ r
[a,b]l = T

where a is the first coordinate of the ordered pair (a, b)

with [a, b] = r.

We note that

(4.3.3) L(f) = [f,e]

Theorem 19 . If f €d is such that F = f.e, then

(4.3.4) (L(f)) (r) = |Z F(t) d(t) p (r/t),
tlr

where M is the MObius function and L : & —— £ is a norm-

preserving linear operator.

Proof : In terms of l.c.m convolution
L(f) = [f, e]
By Von Sterneck’s formula (4.3.2), we have

L(f).e = (f.e) (e.e)

But (e.e) (r) = d(r), the number of divisors of r.
Since F = f.e, we get
(4.3.5) L{(f). e = Fd

Since the Dirichlet inverse of e is u, (4.3.5) implies

L(f) = Fd.u
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and therefore (4.3.4) follows

Now it can be easily verified that L : # —— « is a linear

operator. Also,

N(L(f)) = N(Fd) N(u) = N(Fd)1 = N(Fd)
= N(F) as d(r) #0, r 2 1
= N{(f.e) = N{f) N(e) = N(f) as N(e) =1
Thus L is norm-preserving. =)
Remark 1 : It is interesting to observe that in the case of

the MGbius function u,
(4.3.6) L(1}) =u

For, L(p).e = {(u.e) (e.e) = eod = e

o

So L(K) is the Dirichlet inverse of i and hence L{(y) = u

Remark 2. In the case of Euler ¢-function, we obtain
(4.3.7) (L(¢)) (r) = X t d(t) ¢ (r/t)

t.lr

The details of simplifications are omitted.
Theorem 20. If L 1is the linear operator on # defined by
(4.3.4) and if f = cp, where ¢ € € and ¢ is the MObius

function, then L(f) = f. Conversely if L(f) = f, f € 4,

them f = cu where ¢ = f(1).
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Proof : The first part of the statement follows from the

linearity of L and from Remark 1.

Next suppose that L(f) = f, f € «
Then Fd.y = f or Fd = f.e = F

so that F(d-e) = 0

Since d(r) # e(r) for r > 1, this implies that F(r) = O
rz 2. So we may define F(1) = ¢ for some ¢ € €. Then

f(1) = F(1) = ¢ . Thus

c r =1
F(r) =
0 r > 1
So f.e = c.e
[¢]
Since K is the Dirichlet inverse of e, this implies
f = ¢ u. 0
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CHAPTER 5

CERTAIN MULTIPLICATIVELY NORMED RINGS

From now on we turn to commutative rings with unity and
having divisors of zero. We extend the definition of the

multiplicative norm to any commutative ring with unity.

Definition : Let R be a commutative ring with unity. A
multiplicative norm N on R is a function N from R into the

set R of non negative real numbers such that

(i) N (0) =0

(ii) N («f) = N(a) N(B) for all «, B € R.

R is called a multiplicatively normed ring, abbreviated

MNR if there is defined a multiplicative norm on it.

If ®e€ R 1s a divisor of zero, then there exists

0 # f € R such that «f = 0 so that
0=N(0) = N(af) = N(«) N(B)

implying either N(x) = 0 or N(B) = 0.
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5.1 THE RING 8 ([0,1])

Consider the set € ([0,1]) of all real wvalued
continuous functions defined on the closed interval [0,1].

If f, g € 6([0,1]) , define the sum and product by

(f+g) (x) = f(x) + g(x), (fg) (x) = f(x) g(x) for all
x € [0,1].

Then % ([0,1]) is a commutative ring with unity, the
unity being the constant function 1 defined by 1(x) = 1 for
all x € [0,1]. It can be seen that %([0,1]) has divisors of
zero and that if 0 # f, 0 # g € 8[0,1] with fg = 0 therm
either f{(0) = 0 or g(0) = 0. For f € 8([0,1]) define norm
of f by N(f) = |f(0)|. Then N is a multiplicative norm on

& ([0,1]).

5.2 THE LUCAS RING OF ARITHMETIC FUNCTIONS

A more interesting example of an MNR is the Lucas ring
of arithmetic functions introduced by L. Carlitz, [3],

described below

Let F be an arbitrary but fixed field and 3 denote the
set of all arithmetic functions¢ defined on the set of

nonnegative integers into F. As usual, we define the sum f+g

of f,g € & by

(f+g) (r) = f(r) + g(r), r=0,1,2.....
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The Lucas product f *x g of f,g € B is defined as follows.

Let p be a fixed prime in Z'. Writing

>

then

(mod p)

N
~ H
~
]
Y
~ oA
Q@ 0o
S
N
~ "
.
M’

In particular the binomial coefficient ( E ] is prime
to p 1t and only if

Now define f * g by

T
(5.2.1) (f * g) (r) =32 f(k) glr-k)

k=0

. . T
where ©’ is restricted to those k with p 4 { K l

It can be seen that (B, +, *) is a commutative ring with

unity. The zero element and the unity are respectively the

functions defined by

Z{1r)

i
o
[a]

1]
o

-
0

1}

u(r)
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For f € 3, define norm of f by N(f) = |f(0)|. Then 3 is an

MNR. :

Let us closely examine the elements of 8. A function
f € 83is called singular if f(0) = 0; otherwise f is called
nonsingular. It can be deduced that f € 3 is invertible if

and only if N(f) # 0. We now prove

Theorem 21. (B, +, *¥) is a local ring.

Proof . Let Sbe the set of all singular elements in 3.
For f, g € 8§, f - g € S as

(f-g) (0) = f(0) - g(0) = 0-0 = O
Next, let h € B, f € §.

Then (h * f) (0) = h(0) f(0) = 0 as f € S.

Thus h * f € S. So S is an ideal of 8. But S is the set
of all non units in 3. So it follows that § is the unique

maximal ideal of 3. Hence B is a local ring. -

Remark : If we consider the field F to be of positive
characteristic, then f is a zero divisor if and only if 1t
is singular [3]. So in this case f € 3 is a zero divisor if

and only if N(f) = 0.
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5.3 THE UNITARY CONVOLUTION RING

Let r be a fixed positive integer. A divisor d of r 1is
called a unitary divisor of r if (d, r/d) = 1, where (x, y)

denotes the g.c.d of x and vy.

Let A be the set of all arithmetic functions defined on
Z". For f, g € 4, define the unitary.convolution of f and g

denoted by f & g as

(5.3.1) f g (r) =2 f(d) g (r/d)

dllr
where dllr means that d runs through the unitary divisors of
r. With respect the usual addition and the product defined
by (5.3.1), (#, 4+, ®) is a commutative ring with unity eoand

having zero divisors. ([35], p. 9), where e is the function

defined by
1 r =1
(5.3.2) e, (r) =
0 otherwise
For f € 4, define norm of f by
N(f) = |[f(1)]|

Them i1t follows that (4, +, &) is an MNR. Also we observe
that f € # has an inverse (with respect to unitary

convolution) if and only if N(f) # 0.
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CHAPTER 6

THE CAUCHY ALGEBRA OF EVEN FUNCTIONS (MOD r)

In chapter 3 we considered the Dirichlet algebra of
arithmetic functions which 1is infinite dimensional over C.
We now turn over to the case of a finite dimensional
algebra via Cauchy convolution discussed below : The

terminology is due to Eckford Cohen ([7]).

6.0.1 Definition ([35], p. 326) . Let r be an arbitrary but
fixed positve integer and F a field of characteristic zero
containing et roots of unity. A function f : Z —— F 1is

called an (r, F) arithmetic function if

f(n) = f(m) whenever n =m (mod r).

6.0.2 Definition ([35], p. 326) . An arithmetic function f

is said to be periodic with period r if
f(n) = f(n+xr), 2 € Z.

We call f a periodic function (mod 1)

An (r, F) arithmetic function 1s clearly a periodic

function (mod r). We denote the set of all (r, F) arithmetic

functions by dr (F).

The Cauchy product of f and g € dr (F) is defined by
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(f o g) (n) = f(a) g(b)

a+b (mod r)

m ™~

where a and b range over the elements of a complete residue
system (mod r) such that n = a+b (mod r). The set ﬂr(F)

forms a commutative ring relative to ordinary addition and

Cauchy multiplication . The function u, defined by
1 if n = 0 (mod r)
u  (n) =
0 otherwise

serves as the identity under Cauchy multiplication.

6.0.3 Definition ([35], p. 335) . f € ﬂr(F) is said to be
an even function of n (mod r) or briefly an even function

(mod r) if

f(n) = f((n, r))

where (n,r) denotes the g.c.d. of n and r.

We consider the case F = €, the field of complex
numbers. Then the set %F(C) of even functions (mod r) is a
subset of the set dr (€) of (r, €) arithmetic functions.
The properties of %F(G) have been studied extensively by E.
Cohen in a series of papers ([7], [8] [9] [10], [11] and
[14)), P. Haukkanen and R. Sivaramakrishnan in ([19]). The
purpose of this chapter is to point out certain properties
of %r (€) relevant to the main theme of this work

, 4as a

multiplicatively normed ring.
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6.1 THE MNR B (C)

We recall that the Ramanujan’s sum is defined by

(6.1.1.) C(n, r) = X exp (2nihn/r)
h (mod r)

(h,r) =1

Where h runs through a reduced residue system (mod r).

We also need the orthogonal property of C(n,r) in the

following two forms

r ¢ (n, d), if d1 = d

{(6.1.2) % C(a,dl) C(b, dz) =
n £ a+b (mod r) O, otherwise
T, if d1 = d2
(6.1.3) T C (r/t, dl) C (r/dz,t) =
t|r
0, d1 # d2

where d1’ d2 are divisors of r.

Further , the following result

(6.1.4) & (d) C (r/d,, d

1

) = ¢(d,) C (r/d,, d))

2

where ¢ is the Euler ¢-function: d1’ d_ are divisors of r is

2

also needed.

We first prove two important theorems, due to E. Cohen
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Theorem 227 ({35}, p. 335) . If f € %F(E),-then f has the

representation
(6.1.5) f(n) =X a(d) ¢ (n, d)
where the coefficients «(d) are uniquely determined by

(6.1.6) a(d) = (1/r) &z f (r/d) C(r/d, &)
' 5|

or equivalently by

(6.1.7) a(d) = (re(d))” f(j) c(j, d)

n M7

Where C(n, r)denotes the Ramanujan sum defined by (6.1.1)

Proof : ({35}, p.336) : If f has the representation given by

(6.1.5), then

? a(d) C(n,d) = (1/r) £ f (r/5) f C (n,d) C (r/d, o)
d|r Slr d|r

Since C (n, r) is an even function (mod r), we have

C(n,d) = C(s,d), where s = (n, r) . Therefore

L afd)c(n,d) = (t/r) £ f (r/5) £ C (s,d) C (r/d, o)

d|r 6|r dlr
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By the orthogonal property of C(n,r) in the form (6.1.3) we

have
r if r/s = 6
Z C (s,d) C (r/d, o) =
d|r 0 otherwise
So
L a(d) c{n,d) = (1/r) ¥ f(r/8) n (s, 9d)
d|r (5 r
Where
r if r = s &
n (s, 8) =
0 otherwise
Thus

L a(d) C(n,d)
d,r

f(s) = f(n) as s = (n,r).
This proves (6.1.5)

Since C(n,r) € %F(G) , the functions f given by
(6.1.5) belong to B (C) . Now the set { ' c(n, d) : dlr}

forms a linearly independent set. For suppose
g(n) =2 agcC (n,%) = 0, ag € € and C (n,5) # 0 for &|r.
S|r ‘
Let d be a fixed divisor of r. Then taking h(n) = C(n,d) and

using the orthogonal property of C(n,f) in the form (6.1.2.)

we obtain

68



(h @ g) (n) =% h(a) g(b)

a+b (mod r)

|
™

C(a,d) X ag C(b, 5)
a+b (mod r) 5|r

"

= T a(S ) z C(a, d) C(b, 5)

r n = a+b (mod r)
roa, C(n,d) if 6 = d
0 otherwise
Hence g(n) = 0 implies a, = 0 for each d|r. Thus the

representation (6.1.5) of f is unique.

To obtain the expression for a(d) given in (6.1.6) we
noté that a residue system (mod r) could be replaced by a
residue system z = (r/8) x, &|r, (x, &) =1, by the class
division of integers (mod r)

Therefore

1

(6.1.8) (re¢ (d)) X f(j) Cc(j,d)

j=1

= (r o(d)) ' T f(rx /5) C(rx/5, d)

r

Since f(n) and C(n,r) are 1is %F(C) , we get

(ré(d))” ' = ) f(rx/8) C(rx/5, d)
5‘r x(mad &)
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1

(r ¢ (d)) L f(r/8) c(r/8, d) ¢ (9)

r

1

(r¢(d))™" X £(r/8) C(r/d, &) ¢(d) , by (6.1.4)

r

-1

r ﬁ f(r/8) Cc(r/d, 9)
S|r

= a(d)

Now (6.1.8) implies that

-1

a(d) = (ré(d))

Remark : The coefficients «(d) occuring in the expansion

(6.1.5) of f(n) are called the Fourier coefficients of f.

Theorem 23 [[35], p. 338) . Let f, g € %r (€) with Fourier
coefficients a(d) and B(d) respectively. The Cauchy product

f ©g of f and g is given by

(6.1.9 ) (fog) (n)=r EI a(d) B(d) C(n,d)
d|r

Proof ([35] p. 338) : We have

s(n) = F5d,) C (n.dy)
d r
2
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By definition

(f o g) (n) =L f(a) g(b)
= a+b (mod r}

=
I

=L «d)) B(d, T C(a,d,) c(b, d,)

d r,d r n = a+b {(mod r)
1 2

= T |Z a(d) B(d) C(n,d), by the orthogonal
d|r

property (6.1.2) of C(n,r).

With respect to pointwise addition and Cauchy

multiplication %r(C) is a commutative ring with unity u_

defined by

1, if n =0 (mod r)
u  (n) =
0, otherwise

Further if define multiplication by scalar by

(cf) (r) = cf(r) , c e, fe 3B ()
it follows that %F(Q) is also a vector space over . Thus
%FUE) is indeed an algebra are €, we call it the Cauchy
algebra of even function (mod r) In fact %r(G) is a finite
dimensional complex vector space of dimension d(r)

(cf, [26], p. 194). Also %r(C) is a Hilbert space with

respect to the inner product
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<f,g> = % f(a) g(a)

a (mod r)

where g(a) denotes the complex conjugate of g(a)
and

{r ¢ (d)) Y?%c(n,d) : d|t) }

is an orthonormal basis for %r (€) ([19]1), Theorem 5).

Theorem 24 %r(C) is an MNR.

Proof : Define N : %r (Cy — R by

N(f) = r min {]a(d)]|}
d

where the minimum is taken over the divisors of d of r and
a(d), d|r are the Fourier coefficients of f. If g € %r (€)

with Fourier coefficients p(d), d|r.

then N(g) = r mén {| (B(d) |}

By (6.1.9), the Fourier coefficients of f © g are r a(d) B(d),

so that we have

N(f © g) = r min {r]a(d)]|B(d)]}
d

r min {|lu«(d)|} r min {|B(d)]}
d d :

N(f) N(g)

Remark ! Since u, has the representation
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We have
N(u) = r min {r '} = 1
a
d
Remark 2 Since
C(n,r) = X eo(r/d) C(n,d)

d|r

N(C) = r min {|eo (r/d)|} = 0
d

as eo(r) = 1 when r =1 and is zero for r 2 2.

6.2 SOME LINEAR OPERATORS ON %r (€)

We consider some mappings. on the algebra %F(C) . Among
the norm-preserving algebra homomorphisms on %F(E) we have

the identity homomorphism, I : 83 (C) — %F(C) given by

r

I(f) = f and the conjugation map
T : 3(C) — 2 (C) given by TI(f) = f where f is
defined by

f(n) = IZ a(d) C(n.d)
d|r

a(d) being the complex conjugate of the Fourier coefficient

a(d) of f.

We now proceed to discuss a linear operator on the
vector space %r(C) obtained by via the following analogue

of C(n,r), (see, [12]). As in [34] we write
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(6.2.1) B(n,r) = X exp (2minh/r)
h (mod r)
(h,r)= a square

where the summation is over a residue system h (mod r) such

that (h, r) is a square.

We recall that én arithmetic function f is said to be
mutliplicative if f(mn) = f(m) f(n) whenever (m,n) =1. f is
said to be completely multiplicative if f(mn) = f(m) f(n)

for all m, n € Z".

Following the terminology of E. Cohen [8], f € ﬁr(C)
is said to be completely even (mod r) if there exist some

arithmetic function F such that

f(n) = X F(d)
dl(n,r)

Let Q(r) denotes the total number of prime factors of

T, each factor being counted according to its multiplicity
The function defined by X(r) = (-I)Q(r), r = 1,2.3.... 1is
called the Liouville’s function and it 1is completely

multiplicative. Then Z(n,r) has the representation

(6.2.2) B(n,r) = |L Ar/d) d = » (r/g) btg)
d|l(n,r)

where g = (n,r) and b(r) = B(O,r)

Since X is completely multiplicative, one has

74



(6.2.3) A(r) B(n,r)=x(r) b(g)=rx(g) Z x(g/d) d = X d A(d)
d|g dlg
This shows that A(r) B(n,r) is a completely even function
(mod r). In & 6.3. we will see that the set of all
completely even functions (mod r) forms a subspace of %r(C)
w(r)

having dimension 2 , the number of square-free divisocrs

of r.

It is known [34] that

(6.2.4) B(n,r) = L C(n,d)
2

db = r

sc that B(n,r) has a representation of the form

B(n,r) = Z € (r/d) C(n,d)

dir

where

1, if r ‘s a perfect square
(6.2.5) € (r) =

0, otherwise
Therefore

(f ©oB) (r} = r £ a(d) €(r/d) C(n,d)

d|r
Where a(d), are the Fourier coefficients of f. So we
get

rlBof) (r) = z| a(d) C(n,d)
dlr

2
dD =r

75



Let us now define T : 3 () —— %r(C) by
T(f) =r 'BoOf
Then T is a linear operator on %r(C) , but T is not norm-

preserving as N(B) = 0

6.3 THE SUBSPACE OF COMPLETELY EVEN FUNCTIONS (MOD r)

Analogous to the orthogonal property of the Ramanujan’s

sum C(n,r), we have for B(n,r)

Theorem 25. If tl and t2 are square-free divisors of r

r B(n. r/t) 1if t =t =t

(6.3.1) Y B(a, r/tl) B(b, r/tz) =
n = a+b{mod r} D if t1¢ t2

Proof : Using (6.2.4) we have

Z B(a, r/t), B(b., r/t ) =2 (2 C(a,d,) (X C(b, d,)
d D =r/u d D = rst
n £ a+b (mod r) n = a+b {(mad r) 1 1 1 2 2 2
= 1 % cla.d,) C(b,d,)

d D = r/t .

11 1 n = a+b (mod r)
2

d D = r/t

2 2 2

Using the orthogonal property of C{(n,r) the inner sum can
be simplified further. If d1=d2 = d, it reduces to r C{(n,d)
and is zero 1if dxi d2 When d1= d2= d we have dDz = r/tl,

2 2 2
dD2 = r/t2 and so t1D1 = tzDz‘ But t, and t2 are square—free
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1f t1¢ t2 either tior t2 has a prime factor not occuring in

the other. If t1 has a prime factor P, not occuring in

. . . . 2 ;
tz, this prime factor will have to occur 1in D2 and i1in that

case Dz will cease to be a square. Similarly 1if t2 has a
prime factor P, not occurring in t1 the it will spoil the
square nature of Df. So dl=d2 will imply that t1=t2=t (savy).

But then D? = Di = D2 (say)

Therefore the sum simplifies to

r L C(n,d) if t,=t,=t

2
dD =r/t

0, otherwise

(6.2.4) now yields the required result. a
Next we note that B(a,r) = B(-a,r). For it (h,r) = x°~
with 1 £ h <= r, (r-h, r) also equal to x. Taking n=0, 1in

(6.3.1) we obtain

6.3.2 Corollary . If t1 and t2 are square-free divisors of

r, then

r b(r/t) if t =t =t

L B(a, r/t.) Bla, r/t_) =
1 2 )
a (mod r) 0 otherwise

We now state
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Theorem 26. The set VF(G) of completely even functions
(mod r) forms a subspace of %F(C) having dimension ZQ(r)
the number of square-free divisors of r. VF(C) has an

orthonormal basis

{A(r/t) (T b(r/t))_”2 B{(n,r/t): t a square-free divisor of r}

Proof : The proof follows along the same lines as that of
the proof of Theorem 5 of [19]or the proof of Theorem 2.1

of Chapter 7 of [26].

We mention that Cohen [13] considered the unitary
analogue Cx(n,r) of C{n,r) and obtained another subspace
WF(C) of %F(C) of dimension 2u(r)’ the number of sgquare-free

divisors of r.
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APPENDIX
k-FOLD NIL RADICAL OF AN IDEAL
Let R be a commutative ring with unity and I be an
ideal of R. We recall that the nil radical of 1 denoted by

A1 is given by
JT ={re€R : 1" €1 for some n € Z' where n depends on r}

Let k be an arbitrary but fixed positive integer. We

define the k-fold nil radical of I to be the set
JIk = {reR: kr" €1 for some n € Z' depending on r}

We observe that JTR is an ideal of the ring R. For, if
a and b are elements of 4?:, then there exist suitably

chosen integers m, n € Z' such that

n

ka" € 1, kb" € 1

Since every term in the binomial expansion of- (a-b) men

contains either a" or b as a factor, it follows that

k(a-b)"'" € I and therefore a-b € JT:
Further if a € 4?: and r € R we have r k a"€ I and

m m m-1

k(ra)" = kr'a® = r (rka™) € I so that ra € JT:

Also, 1f a € JT_, there exists an integer s € Z' such

that a® € 1. Then,
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or a € {I, . Thus 4{I_ 1is an ideal of R containing I.

Now we obtain the k- fold nil radical of an ideal <m>

in the ring Z of integers.

Theorem . Let Z denote the ring of integers. Suppose I = <m>
be the 1ideal generated by m € Z'. For fixed positive
integer k, the k-fold nil radical of I 1is the idéal
generated by the product of the distinct prime factors of

m/g where g = (k,m).

Proof : We write

where , p., q (i = 1,2,....,8 ; r = 1,2,....,t) are

k _ Y1 Y2 7s (51 62 61
= Py P, P, r, I, T
where, r, r,,....,r are distinct primes not contained in m.
If € = min {« ,7.},
i 1
€ €, €
S

(k,m) = g =p p, ... P,
Suppose P,.P,,... p, are such that a > 7, (i = 1,2...,v)

Then,
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a -7 o_ -7 oa -y
1 1 2 2
(A.1) m/g = p, P, ce - P a, g

Writing I = <m>, let a € JT;

Then, there exists » =2 1 such that k aX € 1I.

or'k a' is a multiple of m. or (k/g) a* is a multiple of m/g
But (k/g, m/g) = 1 Therefore, al is a multiple of m/g.

As X 2 1, a is a multiple of the product of the prime

factors in m/g.

or a € J Where
(A.2) J =<pp, ..P

This showsthat

Next suppose x € J

Then x is a multiple of P,P,--- P,9,4,.--.9,
Setting o = max {a1_71’ az—yz,....,au—yu}
B = max {B ,B,..... B3
and writing A = max {«, B} one gets

xA is a multiple of m/g.
Therefore, k xA is a multiple of k (m/g) = (k/g) m
But k/g is an integer. So k xA is a multiple of m

A . . . _—
or k x € 1. This implies that x € 4Ik or

11,

From (A.2) and (A.3) we get J = JT: and J 1is the 1ideal

(A.3) J

1N

generated by the product of the prime factors of m/g.
Corollary : The nil radical of <m> in Z is the ideal
generated by the product of the prime factors of m, as

(k, m) =1 for kK = 1. (see [2]).
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POST-SCRIPT

The material presented in this dissertation 1is a
humble attempt to study the structural properties of rings
via thé norm—-functions. We saw in the background the proof
of the
Theorem : The Dirichlet Algebra # of arithmetic funcitions
possesses the UFD property for its non-zero non-unit
elements which was proved by ED Cashwell and C.J. Everett
[2] in 1959. This was achieved by them by defining the norm
of an arithmetic function f as the least positive 1integer
a for which f(a) # 0. An alternate direct proof of the UFD
property was attempted. However, it turned out that it
needed to be a GCD domain as ACCP holds in the ring.
David Rearick [4] kindly sent us his finding that
4 is an interpolation algebra in the sense that if given any
two functions f and of such that g # 0 there exists a pair
of functions g, r € & such that f = g.q + r where r takes
the value zero on all multiples of N{g) when N denotes the

norm. He also pointed out that € as an interpolation algebra

becomes a local ring.

In Chapter 3, 1t is shown that an 1integral domain R
which 1s multiplicatively normed and if u € R is such that u
is a unit if and only if N(u) = 1, becomes a UFD provided

R i1is a GCD domain. It will be nice if the Dirichlet algebra



of arithmetic functions is shown to be a GCD domain, though

it is an interpolation algebra. In a sense, 4 is

‘semi-Eulidean’.

E;tending the definition of an MND to any commutative
ring with wunity and having divisors of =zero, we have
examined the structure of the Lucas ring 3 of arithmetic
functions in Chapter 5. A conjecture of Carlitz [1] states
that every zero divisor in 3 is nilpotent. It is believed

that the problem is still open.

The Cauchy algebra %F(C) of even functions (mod 1)
gives an interesting example of a finite - dimensional
algebra which is multiplicatively normed. Two particular
subspaces Vr(C) and Wr(C) of %F(C) of have the same

dimension zw(r)_

By a theorem of N.J. Lord [3] there exists
a common complement to both the subspaces VF(C) and WF(C).
1t is worthwhile attempting to find out the common

complement. This is not considered 1in Chapter 6.

In short, this post script is meant to point out that

there is scope for further research in these directions.
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