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INTRODUCTION 

It was E. Kummer (1810-1893) who introduced the notion 

of rings and ideals while studying the structure and 

properties of cyclotomic fields. The contributions of 

R. Dedekind (1831-1916) and Emmy Noether (1882-1935) to the 

development of the theory of rings and ideals are well- 

known. It may be remarked that we find examples .of 

commutative rings with unity outside the realm of algebraic 

numbers such as convolution rings of arithmetic functions. 

The motivation for this dissertation is from the idea of 

the so-called normed d i v i s i o n  d o m a i n s  introduced by Solomon 

W. Golomb in [17] where an algebraic structure endowed with 

a norm is considered. 

Definition : A nonempty set S with a p a r t i a l  o r d e r  2 which 

is r e f l e x i v e  and t r a n s i t i v e  together with a norm N which 

maps S into the set Z+ of positive integers is called a 

normed d i v i s i o n  domain  written NDD if 

(i) whenever a 2 B for a, P E S, N(U)IN(P) and 

(ii) if ~ ( u )  = 1 for u E S, then u 2 u for all a in S. 

Among other things S.W. Golomb [17], considers the set 

S of a11 nonzero Gaussian interge-rs as an NDD with the 

customary notion of divisibility as the p a r t i a l  o r d e r  and 

2 with the usual norm : N (a + bi) = a + bZ, a + bi E S. 



Noting that the norm N on S is multiplicative in the sense 

that N (aB) = N(a) N(B) , we make the following : 

Definition : Let R be an integral domain with unity. A 
- 

multiplicative norm N on R is a function N : R - Z, the 

set of nonnegative integers satisfying the following 

properties : 

(i) N(a) = 0 if and only if a = 0 

(ii) N(@) = ~ ( a )  N(B) for all a,P in R. 

An integral domain endowed with a multiplicative norm 

is called a mu1 tiplicatively normed domain, abbreviated MND. 

(In [16], J.B. Fraleigh also mentions about the 

multiplicative norm). 

The theme of the dissertation is about certain 

properties of mu tl ipica t ive1j7 normed domains and their 

analogues with reference to situations arising in 

convolution rings of arithmetic functions. A brief survey of 

the contents of the dissertation is given below. 

In Chapter 1 ,  we develop the notion of a 

mu1 tiplicatively normed domain. obbreviated MND. We confine 

ourselves to those MNDYs R in which N(u) = 1 for u E R if 

and only if u is a unit in R. in Theorem 1 we obtain a 

sufficient condition for a E R to be irreducible in R. We 

observe that if R is an MND, then factorization into 

irreducibles is possible in R in the sense that every 



nonzero nonunit in R is a finite product of irreducibles in 

R. From examples in [31] and [37] we see that factorization 

into irreducibles need not be unique so that an MND need not 

be a unique factorization domain (UFD). In theorem 5 ,  we 

establish that an MND is a UFD if and only if i t  is a GCD 

domain. It is shown in Theorem 6 that the ring R[x] of 

polynomials in one indeterminate x over an MND R is also 

an MND. Further we note that if R is an MND so is the ring 

R[[x]] of formal power series over R. 

We begin Chapter 2, by examining the nature of the 

principal ideal J generated by the irreducible element l+dz 
in the ring R = iZ[.)??]. I t  is known [2] that J is maximal 

in the set of proper principal ideals of R. However. J is 

not a prime ideal of R as 1 + 4-5 is not a prime element 

in R. We observe that J coincides with the ideal Q of R 

where 

Q = {a + b 4-5 : a - b = 0 (mod 6)) 

Next we consider the ring z [ ~ G ] ,  where p is a prime 

2 (mod 3) and we see that 

Q = {a + b 4 - p  : a-b 0 (mod 6 ) )  

is an ideal of ~ [ d q ] .  In theorem 8, i t  is shown that Q 

has a very nice property that whenever (xlj E Q with 

cx,p E Z [ ~ T ]  and cr 6 Q ,  then either B or 213 or 313 Q. This 

leads us to the following : 



Definition : Let R be a commutative ring with unity. A 

proper ideal Q  of R is called a quasi-prime ideal if 

whenever a6 E Q with a , B  E R ,  there exists a positive 

integer k such that either ku E Q  or k6 E Q .  

We call a commutative ring R  with unity having a 

nonempty subset T of zero divisors of finite additive order 

a quasi-integral domain if whenever a,P E R  with aB = 0 

either E T or E T. Then we arrive at the following 

characterization of a quasi-prime ideal in Theorem 9 : Let 

R be a commutative ring with unity. Suppose that Q  is a 

proper ideal of R which is not a prime ideal. Then Q  is a 

quasi-prime ideal if and only if R/Q is a quasi-integral 

domain. 

We remark that there is a notion of a quasi-ideal in a 

semigroup or a ring introduced by 0 .  Steinfeld [ 3 6 ] .  However 

our definition of a quasi-prime ideal is not related to 

Steinfeld's definition. 

In Chapter 3 ,  we go to the ring of arithmetic 

functions. By an arithmetic function we mean a map 

- - 
f : Zf - C or f : Z - C where Zt (z) denotes the set 
of positive integers (the set of nonnegative integers) and C 

denotes the field of complex numbers. We denote the set of 

all arithmetic functions with domain Zf by d. If f,g E d we 



define their natural sum and their Dirichlet convolution or 

product, respectively by 

With respect to these operations, d becomes a commutative 

ring with unity. Introducing the norm N(f) of 0 # f € d as 

the least positive integer n such that f(n) f 0 and setting 

N(0) = 0, Cashwell and Everett [ 5 ]  have shown that ~4 is 

indeed a UFD. With respect to this norm d is an MND. Further 

we see that d has a unique maximal ideal (Theorem 10). In 

Theorem 1 1 ,  we realise d as a subdirect sum of the rings 

*/I , where I is the principal ideal generated by the prime 
P F' 

x E d defined by 
P 

1 ,  r = p  
x (r) = 

P O, otherwise 

Let f be a nonzero element of d. Let I f  be the ideal 

which is maximal in the family of ideals of d which 

excludes f. is isomorphic to the subdirect sum of the 

subdirectly irreducible rings d/If. In the last section of 

the Chapter, we exhibit a strictly descending chain of 

ideals in 1, thereby showing that d is not Artinian 

(Theorem 13). We note that this can be also deduced from 



the fact that the only integral domains that satisfy 

descending chain condition are fields ([2], p.226). 

In Chapter 4 , we look at the MND d of arithmetic 

functions from the point of view of its structure as a 

vector space over C. It is interesting to note that certain 

arithmetical identities follow as a consequence of some 

linear operators on d. Theorem 14 shows that the map 

T : - d defined by 

where (a,r) denotes the g.c.d. of a and r, is a bijective 

norm-preserving 1 inear operator. Next , we consider the 

linear operator TI : d - d defined by 

and prove that (Theorem 15) T I  satisfies the identity 

where w(r) denotes the number of distinct prime factors of 

r. From the above we deduce 



an identity due to Daniel I.A. Cohen [6]. Analogous to the 

linear operator TI, we have another linear operator 

Tz : d - d defined by 

where [ d ,  r/d] denotes the 1.c.m of d and r/d. I t  is 

established in Theorem 16 that T, satisfies the identity 

It is deduced that 

We further observe that TI preserves norm if and only f is 

a uni t  in Y1 (Theorem 17) whereas TZ is norm -preserving 

(Theorem 18). We also have a linear operator L on d obtained 

via 1.c.m. convolution : 

where a is the first coordinate of the ordered pair (a,b) 

such that [a,bl = r. I t  is proved in Theorem 19 that L is 

norm-preserving and if F = f.e, where e(r) = 1 ,  r 2 1 ,  then 

L is given by 



where p is the Mobius function. 

I t  is established in Theorem 20, that the operator L 

defined above has the property that if f = cp, then L(f) = f 

wnere c E @ and p is the Mobius Function. Conversely if 

L(f) = f for f E sd , then f = cp where c = f(1). 

In Chapter 5, we consider some commutative rings with 

unity in the context of arithmetic functions and having 

divisors of zero. First we extend the definition of a 

multiplicative norm to any commutative ring with unity. 

Definition : Let R be a commutative ring with unity. A 

multiplicative norm N on R is a function N from R into the 
- 

set IF? of non negative real numbers such that 

(i) N(0) = 0 

( i i )  N ( U P )  = N(ir) N(fj) for all tr, 0 E R .  

R is called a multiplicatively normed ring, abbreviated MNR 

if there is defined a multiplicative norm on it. As a first 

example (not from the set of arithmetic functions), we 

consider the ring of real valued continuous functions 

defined on the closed interval [0,1]. The second example 
- 

is the Lucas ring 3 of arithmetic functions defined on Z ,  

the set of nonnegative integers, introduced by L. Carlitz 



1 4 1  which is described as follows : 

Let p be specified prime. Writing 

one notes that 

From the above, we deduce that the binomial coefficient 

is prime to p if and only if 

For f, g 5 23 the Lucas product h = f * g of f and g is given 

by 

/ 
where C is restricted to those k for which p $ 

With respect to the natural sum and Lucas product 

3 is a commutative ring with unity. Defining 

N(f) =Ifio)J, f t 9,  it follows that 3 is an MNR. In this 

connection we also prove that 3 is indeed a local ring 

(Theorem 21). Further i t  is observed that the ring of 



arithmetic functions with respect to unitary convolution 

also serves as an example of an MNR. 

The concluding chapter of the dissertation is about a 

finite dimensional algebra drawn from a class of functions, 

which are periodic (mod r) (r2l) and which satisfy 

where f is complex valued . The precise definition is given 

below : 

Let F be a field of characteristic zero containing 

th 
the r roots of unity where r is an arbitrary but fixed 

positive integer. Following Eckford Cohen [7], f : Z ------+ F 

is called an (r, F) arithmetic function if 

f(n) = f(m) whenever n m (mod r) 

We denote the set of (r, F) arithmetic functions by dr(F). 

f E Sa (F) is called an even function of n (mod r) or 

briefly an even function (mod r) if 

Where (n,r) stands for the g.c.d of n and r. Taking F = a: 

the field of complex numbers, Eckford Cohen has made a 

detailed study of properties of even functions (mod r) in 

[7], [8], [9] [lo] [ l l ]  and [14]. In the case F= We denote 

the set of even functions (mod r) by 3 (C) . Some structural 



properties of 33 (C) are also studied by P. Haukkanen and 

R. Sivaramankrishnan (see [19]). 

The Ramanujan's sum C(n,r) is given by 

C(n.r) = C eup (2ninh/r) 
h ( m o d  r )  

where the summation is over a residue system(mod r). C(n,r) 

is an even function (mod r). I t  is known '[8] that f t Zr(C) 

has the unique finite Fourier representation 

where the Fourier coefficients u(d) are given by 

I t  is known [261, that EO ( C )  is a vector space of dimension 

d(r), the number of divisors of r, with an orthonormal 

bas i s 

where @ is the Euler @ - function, with respect to the inner 

product : 

a (mod r )  

g(a) being the complex conjugate of g(a). 



In Theorem 24, i t  is shown that 3 (C) is an MNR with the 

norm N defined by 

~ ( f )  = r min (lu(d)ll, f €gr(C) 
d 

where the minimum is  take;^ over the divisors d of r and 

u(d) , dlr are Fourier coefficients of f. 

In [ 9 ] ,  a subset of completely even functions (mod r) 

of 3 (C) is considered. f E 3 (C) is called a completely 

even function (mod r) if there exists an arithmetic function 

F such that 

f (n) = Z F(d) 
d l  (n,r) 

We observe that the function B(n,r) [ 3 4 ]  defined by 

B(n,r) = Z exp (2ni hn/r) 
h  (mod r )  

( h ,  r )  = a s q u a r e  

is such that 

where X(r) = (-1) 
Q(1 ) 

, Q(r) being the total number of prime 

factors of r (each counted according to its multiplicity). 

So X(r) B(n,r) is completely even (mod r). In Theorem 25, we 

establish the orthogonal property of B(n,r) : 
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CHAPTER 2 

IDEALS IN A MULTIPLICATIVELY NORMED DOMAIN 

We examine the nature of a principal d e a l  in an MND . 

In particular, we consider the principal ideal J generated 

by the irreducible element 1 + 4-5 in Z[.)?]. That is, 

It is known ( [ 2 ] ,  p. 98) that J is maximal in the set of 

proper principal ideals of 2[4-]. However, that is not 

needed here. 

Let Q denotes the ideal in 2[43] defined by 

Q = {(a+bd? : a-b = 0 (mod 6)) 

2.0.1 Lemma . J = Q 

Proof : Let x + y 4-5 E J .  Then there exist a. b E 2 such 

that 

x = a-5b and y = a+b 

Therefore, y-x = 6b and x + 5b  = 6a 





Remark : Since I + 4-5 is not prime in ~[dq] <l+.)Z> is 

not a prime ideal of ~ [ d q ] .  

2.1 THE MND ~[d-p] 

We now go to a general setting by replacing 5 by an odd 

prime p, arbitrary but fixed such that p e 2 (mod 3). For 

each such p, Z[.)T] = {a+bdG : a, b E Z) is an integral 

domain in which factorization of a nonzero nonunit into 

irreducibles is not always unique . For example i t  is known 

that ~ [ d q l ]  is a UFD, whereas ~[.)-23] is not a U F D  

(1371,~.93) 

We define 

~ , = { a + b d ?  : .a-b z 0 (mod 2) 

- 
M = { a +  b d - p  
3 

: a-b 0 (mod 3) 

Theorem 7 . M, and M 3  are maximal ideals of ~ [ d q ] .  

Proof : Let us write R = z[~G I .  I t  is easy to see that Mz 

is a subgroup of (R, + ) .  

Let a = a + b 4-p E R and 13 = c+d 4-p E M 
2 

Then c-d = 0 (mod 2). 

Also (x l j  = (ac-bdp) + (bc + ad) 4-p 
For ag to belong to M2, we must have 

(ac-bd p) - (bc-ad) r 0 (mod 2). 



As p i s  o d d ,  p E -1 (mod 2 )  and  t h e r e f o r e  

( a c - b d p )  - ( b c - a d )  = ( a - b )  ( c - d )  (mod 2 )  = 0 (mod 2 )  

s i n c e  c-d o  (mod 2 ) .  

Thus M 2  i s  a n  i d e a l  o f  R .  

F u r t h e r  i f  u = a + b  4 %  i s  a n y  e l e m e n t  o f  R t h a t  d o e s  

no t  b e l o n g  t o  M2, t h a t  i s  a -b  1 (mod 2 ) ,  w e  c a n  w r i t e  

1 = u + ( 1 - a + b  4-p) 

which e x p r e s s e s  1  a s  a sum o f  u a n d  a n  e l e m e n t  o f  M 2 .  SO any 

i d e a l  o f  R c o n t a i n i n g  M Z  and  a c o n t a i n s  I ,  and  t h e r e f o r e  i t  

i s  t h e  w h o l e  o f  R .  Thus  M Z  i s  a  maximal  i d e a l  o f  R .  

N e x t ,  we c o n s i d e r  M 3 . C l e a r l y  M3 i s  a n  a d d i t i v e  subg roup  

of  R .  I f  u = a + b d T  t R and  B = c  + d  4-p E M3, t h e n  

c-d = 0 (mod 3 ) .  F o r  up t o  b e l o n g  t o  M3, we mus t  have  

( a c  - bd p )  - ( b c + a d )  = 0 (mod 3 ) .  

S i n c e  p = 2  (mod 3 )  and  c-d = 0 (mod 2 ) ,  w e  h a v e  

( a c - b d p )  - ( b c t a d )  = ( a c  - 2 b d )  - ( b c + a d )  (mod 3 )  

( a c - b d )  - ( b c + a d )  (mod 3 )  

= ( a - b )  ( c - d )  (mod 3 )  

= 0 (mod 3 )  

Thus aB r M3 and h e n c e  M3 i s  a n  i d e a l  o f  R .  



Finally if a E R but a @ M3 , then we can write 

I a + (1-a-bdq, if a-b =- 1 (mod 3) 

' =  I 2a + (1-2a-2bd-p , if a-b 5 2 (mod 3) 

which expresses 1 in terms of a and an element of M So i t  
3 ' 

follows that M3 is also a maximal ideal of R. C] 

Remark : We observe that 

M 2 n  M 3  = {a+b 4-p : a-b 5 0 (mod 6)) 

Let us denote this ideal by Q. 

Theorem 8 . The ideal Q of R is such that whenever UP E Q 

and @ Q (for a, fi E R) we have fi E Q or 2fi E Q or 30 E Q. 

Proof : For a,fi E R given by ol = a+b dq, = c+d 4-p with 
afi E Q, one has 

(ac-bdp) - (bc + ad) = 0 (mod 6) 

A s  p 2 (mod 3), we have p = 5 (mod 6) and so the above 

congruence imp1 ies that 

(2.1.1) (a-b) (c-d) 5 0 (mod 6. 



Now assume u $ Q. Then a-b f 0 (mod 6). Three cases arise : 

Case(i) a-b is not divisible by the primes 2 and 3. 

Then (2.1.1.) implies that c-d = 0 (mod 6) so that 8 E Q. 

Case(ii). a-b is divisible by 2 but not by 3. 

Then (2.1.1.) implies that c-d r 0 (mod 3) which implies 

that 2(c-d) = 0 (mod 6) showing that 28 E Q. 

Case(iii). a-b is divisible by 3 but not by 2. 

Then c-d = 0 (mod 2) so that 3(c-d) = 0 (mod 6) implying 

that 3P E Q. 

2.2 QUASI-PRIME IDEALS 

Theorem 8 leads to the notion of a quasi-prime ideal 

defined as follows : 

2.2.1 Definition . Let R be a commutative ring with unity. A 

proper ideal Q of R is called a quasi-prime ideal if there 

exists a positive integer k such that whenever UP E Q with 

a,P E R ,  either ku E Q or kP E Q. 

We note that the positive integer k depends on the 

product aP r Q. I t  is obvious that every prime ideal of R 

is a quasi-prime ideal. Theorem 8 shows that is R = ~[dq 1 ,  

p, a prime, p z 2 (mod 3 ) ,  then Q = {a+bdT e 0 (mod 6)) 

is a quasi-prime ideal. 



Consider R = ~ [ 4 %  1 ,  p = 2 (mod 3) as an MND, with the 
2 

norm ~ ( a + b d G )  = a +pbZ. Then every ideal of R is a 

quasi-prime ideal. For, let Q be any ideal of R. Let aB E Q 
- 

where a,B E R. If cx=a+bd?, write a = a-b4-p E R and by the 

2 
definition of an ideal or (ab) E Q implying (a + pb2) P E Q 

or N(a) p E Q. and so Q is a quasi-prime ideal. 

More generally if R is any MND with a norm N satisfying 

a(~(a) for every 0 f a E R, then every ideal of R is 

quasi-prime. 

In particular < 1  + 4-5 > is a quasi-prime ideal of 

2[4?]. Since 1+4- is not a prime element, we have already 

mentioned that <1+4?> is not a prime ideal. 

We proceed to characterize quasi-prime ideals . The 

motivation is from the structure of the quotient ring 

- <I+ - 5 >  ' Since <l+dq> is proper ideal of 2[4-5] and i t  is 

not a prime ideal, the quotient ring is not an integral 

domain , 

Let R be a commutative ring with unity and having 

divisors of zero. The zero divisors of R can be put into 

two disjoint subsets T and F such that 

(i )  T contains those zero divisors which are torsion 

elements in (R, + ) .  That is each zero divisor 

belonging to T is of finite order . 



( i i )  F contains those zero divisors which are torsion- 

free elements in (R, + ) .  

I f  R is of finite characteristic n (>0) and has zero 

divisors, then all the zero divisors of R are torsion 

elements. In particular, the zero divisors of Z 
n 

(n composite) are of finite additive order. 

Let R be any commutative ring with unity of 

characteristic zero and having zero divisors. Then the set 

S =  R x Z where n is composite , is a commutative ring with 
n 

unity with respect to addition and multiplication defined by 

( r ,  a) + (s, b) = (r + s ,  a + b) 
n 

(r, a) (s, b = (rs, a xn b) 

where + and x denote the addition and multiplication 
n n 

modulo n. S has zero divisors that are either torsion 

elements or torsion-free elements. 

2.2.2 Definition . Let R be a commutative ring with unity 

and possessing a non empty subset T of zero divisors which 

are torsion elements in (R, + ) .  R is called a quasi-integral 

domain if whenever u.P E R with aB = 0, either a E T or 

P E T. 

For example, Z (n composite) is a quasi-integral 
n 

domain. 



Theorem 9. Let R be a commutative ring with unity. Suppose 

that Q is a proper ideal of R which is not a prime ideal. 

Then Q is a quasi-prime ideal if and only if R/Q is a 

quasi:integral domain. 

Proof : Suppose that Q is a quasi-prime ideal of R. Assume 

that (a+Q) (b+Q) = Q; a,b E R. Then one has ab E Q, which by 

the definition of a quasi-prime ideal implies that there is 

a positive integer k such that ka E Q or kb E Q. This in 

turns implies that either a + Q or b + Q is a torsion 

element in the additive group of R/Q. Hence R/Q is a 

quasi-integral domain. 

Conversely assume that R/Q is a quasi-integral domain. 

Suppose that ab E Q, with a,b E R. 

Then Q = ab + Q = (a + Q) (b + Q). So there exists a 

positive integer k such that k (a + Q) = Q or k(b + Q) = Q ,  

that is such that ka E Q or kb E Q.Hence Q is a quasi-prime 

ideal. o 

Remark : There is a notion of a quasi-ideal of a semigroup 

or a ring introduced by 0 . Steinfeld and studied 

extensively by himself and others. A systematic survey of 

the most important results of quasi-ideals in semigroups 

and rings is contained in the monograph authored by 



0 .  Steinfeld (see [36]). The notion of a quasi-prime ideal 

is not related to that of a quasi-ideal and is new as far as 

we know. There is also a notion of a quasi-field introduced 

by P. Kesava Menon (see [ 2 5 ]  in 1963. 
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CHAPTER 3 

" 7 - -  " - I C'3' 7" L ~ 1 . z  - A  i ~ , ~  ALGEBRA OF ARITHMETIC FUNCTIONS 

By an arithmetic function we mean a complex-valued 

function defined for all positive integers. We denote the 

set of positive integers by z', the field of complex numbers 

by C and he set of all arithmetic functions by d. For f, 

g E d ,  we define their sum (sometimes called natural sum) 

and Dirichlet convolution or product by 

(3.0.2) (f.g) (r) = C f(d) g(r/d), r 2 1 
d I I- 

where the summat ion is over the divisors d of r. I t  can be 

easily verified that (d, + )  is a commutative ring with 

unity 
eo 

defined by 

i 1 for r = 1 
(3.0.3) eo(r) = 

0 for r # 1 

I t  is known ([35], p.30) that d is infact a UFD . An 

algebraic study of the ring d has also been made by 

H.N. Shapiro in [32]. 

( 3 . 0 . 4 )  SEYMA . (d,t,.) is an MND. 

Proof : Foilowing E.D. Cashwell and C.J. Everett [5], we 

define the norm N(f) of 0 # f E d to be the least positive 



integer n such that f (n) # 0 ; if f is the zero function 

define N(f) = N(0) = 0. 

.Let f,g E d ,  both non zero. Suppose N(f)=m and N(g) =n. 

We may assume that m S n . 

Then (f.g) (r) = 0 for all r E Z+ with rcmn. 

Also (f .g) (mn) = f (m) g(n) + f (n) g(m) 

so that (f.g) (mn) f 0. 

Thus N(f.g) = mn = N(f) N(g). 

Since N(0) = 0, we have N(fg) = N(f) N(g) for all f,g 4. 

Thus d is an MND. 

Remark : I t  is known that an arithmetic function f possesses 

a Dirichlet inverse if and only if f(1) f 0 ([35], p. 6) 

Thus f E ~4 is a unit if and only if N(f) = 1. 

Now consider the MND dl. For f E d and ( x  E define 

(u f) (r) = u f(r) for all r E z+. 

Then i t  follows that with repect to the sum defined by 

(3.0.1) and the scalar multiplication defined above .$ 

is an infinite dimensional vector space over C.  Thus d is 

indeed an algebra over C with identity e, defined b ~ ( 3 . 0 . 3 ) ~  



We call it  the Dirichlet algebra d over . The purpose of 

this chapter is to study the ring structure of d. 

3 . 1  THE MND d 

We recall the definition of a local ring : 

3 . 1 . 1  Definition ( 1 2 7 1 ,  p. 33) . A commutative ring with 

unity is called a local ring if it has exactly one maximal 

ideal. 

3 . 1 . 2  Lemma : Let R be a commutative ring with unity If @ is 

a homomorphism of the ring R onto a field, then ker @ is a 

maximal ideal of R. 

Proof is omitted. 

Theorem 1 0 .  d is a local ring. 

Proof : Define @ : d - C by 

@(f) = f(l), f E d .  

For f, g E  sS 

So @ : 4- c is a homomorphism. Further @ is onto since 

given c E C, we have the preimage of c defined by 



c, r = 1 

f(r) = 

0, otherwise 

Then .by Lemma 3.1.2, ker @J is a maximal ideal of d .  Since 

f E d  is a unit if and only if f(1) f 0, we see that ker @J 

consists of all the nonunits in d .  Now any proper ideal of d  

consists of nonunits and hence contained in ker $. So ker @ 

is the only maximal ideal of d .  Thus d is a local ring. 

Next, we consider decomposition of d .  We need the 

following : 

3.1.3 Definition ([2], p. 201) . Let {R,} be a family of 

rings indexed by some set I .  The complete direct sum of the 

rings R l  denoted by C @ R consists of all functions a 

defined on the index set I subject to the condition that for 

each element i E I the functional value a(i) lies in R,. 

That is 

Z a R = {ala:I 3 U R and a(i) t R ~ }  
i 

The rings Rl are called the component rings of the sum Rl. 

With respect to addition and multiplication defined by 

componentwise, C Q R becomes a ring. The zero element of 

C Q  R is the function 0 : I - U R. defined by O(i) = 0 
i 

for all i E I .  If I = z', then C @ R may be viewed as the 
i 



set of all infinite sequences ( a ,  a,, . . . . ,  an, . . . )  such 

that a. E R. for each i E I. 

. A  special subring of the complete direct sum C @ R i is 

the subdirect sum : 

3 . 1 . 4  Definition ( [ 2 ] ,  p. 2 0 6 )  . A subring S of the complete 

direct sum C @ R, is said to be subdirect sum of the rings, 

written S = xS @ R i  if the induced projection R .  1~:s-+ R 

is an onto mapping for each i. The subdirect sum is 

nontrivial if none of the mappings nilS is one to one (hence 

S is not isomorphic to any Ri). 

3 . 1 . 5  Lemma ( [ 2 ] ,  p. 2 0 6 )  . A ring R is isomorphic to a 

subdirect sum of rings R. if and only if there exists an 

isomorphism f : R - C @ R ,  such that for each i ,  the 

composite n - f  is a homomorphism of R onto R i .  

3 . 1 . 6  Lemma ( [ 2 ] ,  p . 2 0 7 ) .  A ring R is isomorphic to a 

subdirect sum of rings R ,  if and only if R contains a 

collection of ideals {I ) such that R/Ii R and n I = 1 0 ) .  

For the proof of the above two Lemmas, see D.M. Burton 

( [ 2 ] ,  p p .  2 0 6 - 2 0 7 ) .  

In the context of the ring d, we have an infinite 

number of primes (cf, [ 2 0 ] ,  p. 1 0 3 )  x in d given by 
P 



1 ,  r = p  
x (r) = 

P O, otherwise 

for-each prime p E z* .  For fixed prime p, N(xp) = p. Let I p  

denote the principal ideal, generated by x . 
P 

Denote the quotient ringd/Ip by Q p -  

Theorem 1 1  : The ring SA is a subdirect sum of the rings Q 
P ' 

where p runs through the primes in z + .  

Proof. The proof follows from Lemma 3.1.5. by observing that 

{ I  is a collection of ideals and n I = ( 0 ) .  'a 
P P 

Remark: The subdirect sum 'Zse Q is nontrivial since I  f < O >  
P P P 

for all p. 

3.1.7. Definition ( [ 2 ] ,  p. 211) A ring R is said to be 

subdirectly irreducibe if in any representation of R as a 

subdiect sum of rings R I ,  at least one of the associated 

homomorphisms of R onto R ,  is actually an isomorphism. 

Otherwise R is said to be reducible. 

We observe that d has a set a nonzero ideals I with 
P 

zero intersection. A theorem of Birkhoff ( 1 2 1 ,  p 212) states 

that every commutative ring R with unity is isomorphic to 



subdirect sum of subdirect 1y irreducible rings. In 

particular d also possesses this property. 

Theorem 12* : Let f be a nonzero element of d .  Let I, be the 

ideal which is maximal in the family of ideals of d which 

excludes f. Then d is isomorphic to the subdirect sum of 

the subdirectly irreducible rings 4/I,. 

Proof : The proof follows in the same lines as the proof of 

Birkhoff's theorem ([2], p.212). - 
L 

3.2 CHAINS OF IDEALS IN d .  

We need the following definitions : 

3.2.1 Definition ( [ 2 ] ,  p. 223) . Let R be a commutative ring 

with unity. R is said to satisfy the descending chaii 

condition for ideals if, given any descending chain 01 

ideals of R ,  

there exists an integer n such that I = I n + l  = I  = 
I>+?. ' 

If R satisfies descending chain condition for ideals 

then R is said to be Artinian . 



- I  1 1 1  \-:.-<:I d . . - 2 ~ 2 i ~  . I  i-i i 2 F 

&&*at Fee Irt 2: 3 .  

+ .  . - 3  2 '= ' .  - . . . , musr i e r e l n a r e -  

: z t  i . a y j 4 ~ t q p  i d . u i l p ~ & ~ * ~  
. i 9 = S ~ A C  t at 4 - 2 

I .  L e t  I .  L'E Ik. I f  I t  B* 
n - l  

L i > ~ i  t i ~ .  L b - 1 ; k c i l  + h a t  a ' '  = ba . uaing. t)re 

I& is a g r i m  ib..I a# 1. o 

'I 'r I 'r 3 * * *  

d i a  not Artinian, 



Remark : We know that the only integral domains that 

satisfy descending chain condition are fields ( [2], p. 226) 

This can be seen as follows : 

Let R be an integral domain. Let O f  a R. Since R 

satisfies descending chain condition, the chain 

d 
<a> 2 <a > 2.. . . . , must terminate. 

So there exist n E 72' such that <an> = <ant1> 

nt 1 
Then there exist b E R such  that an = ba , using the 

cancellation law, we get 1 = ba. This shows that every 

noczero element of R has an inverse in R 2nd hence R is a 

field. 

Since d is an integral domain and it  is not a field i t  

follows from the above observation that d is not Artinian. 
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CHAPTER 5 

CERTAIN MULTIPLICATIVELY NORMED RINGS 

From now on we turn to commutative rings with unity and 

having divisors of zero. We extend the definition of the 

mu1 t iplicative norm to any commutative ring with unity. 

Definition : Let R be a commutative ring with unity. A 

multiplicative norm N on R is a function N from R into the 
- 

set R of non negative real numbers such that . 

R is called a multiplicatively normed ring, abbreviated 

MNR if there is defined a multiplicative norm on it. 

I f  u E R is a divisor of zero, then there exists 

0 f P E R such that (xP = 0 so that 

O=N(O) = ~(tx@) = N(U) ~ ( 0 )  

implying either N(cx) = 0 or N ( j 3 )  = 0. 



5.1 THE RING 8 ([O,l]) 

Consider the set 8 ([0,1]) of all real valued 

continuous functions defined on the closed interval [0,1]. 

~f f, g E E ( [ O , l ] )  , define the sum and product by 

iftg) (x) = f(x) + g(x), (fg) (x) = f(x) g(x) for all 

x E [O,l]. 

Then t: ([0,1]) is a commutative ring with unity, the 

unity being the constant function 1 defined by 1 (x) = 1 for 

all x E [0,1]. It can be seen that E([O,1]) has divisors of 

zero and that if 0 # f, 0 # g E e[0,1] with fg = 0 ther 

either f(0) = 0 or g(0) = 0. For f E E([0,1]) define norm 

of f by N(f) = lf(0)I. Then N is a multiplicative norm on 

fz ([O?ll>. 

5.2 THE LUCAS RING OF ARITHMETIC FUNCTIONS 

A more interesting example of an MNR is the Lucas ring 

of arithmetic functions introduced by L. Carlitz, [3], 

described below : 

Let F be an arbitrary but fixed field and 3 denote the 

set of all arithmetic functions defined on the set of 

nonnegative integers into F .  As usual, we define the sum f+g 

of f,g E 3 by 

(ftg) (r) = f(r) + g(r), r=0,1,2.. . . . 



The Lucas product f * g of f,g E 3 is defined as follows. 

Let p be a fixed prime in z'. Writing , 

then 

In particular the binomial coefficient is prime 

to p if and only if 

Now define f * g by 

= / 
(5.2.1) (f * g) ( r )  = z f ( k )  g(r-k) 

k r O  

/ where E is restricted to those k with p 4 ( I 1 . 
I 

I t  can be seen that (53, +,  * )  is a commutative ring with 

unity. The zero element and the unity are respectively the 

functions defined by 



For f r 3, define norm of f by N(f) = If(0) 1 .  Then 3 is ail 

MNR . 

Let us closely examine the elements of 3. A function 

f r %'is called singular if f(0) = 0; otherwise f is called 

nonsingular. I t  can be deduced that f t 3 is invertible if 

and only if N(f) # 0. We now prove 

Theorem 21. (3, +,  * )  is a local ring. 

Proof . Let S b e  the set of all singular elements in 23. 

For f, g E  S, f - g r S a s  

(f-g) (0) = f(0) - g(0) = 0-0 = 0 

Next, let h r 3, f E S. 

Then (h * f) ( 0 )  = h(0) f(0) = 0 as f E S. 

Thus h * f E S. So S is an ideal of 3. But S is the set 

of all non units in 3. So it  follows that S is the unique 

maximal ideal of 3 .  Hence 3 is a local ring. u 

Remark : If we consider the field F to be of positive 

characteristic, then f is a zero divisor if and only if i t  

is singular [ 3 ] .  So in this case f E 3 is a zero divisor if 

and only if N(f) = 0. 



5.3 THE UNITARY CONVOLUTION RING 

Let r be a fixed positive integer. A divisor d of r is 

called a unitary divisor of r if (d, r/d) = 1 ,  where (x, y) 

denotes the g.c.d of x and y. 

Let A be the set of all arithmetic functions defined on 

z+ .  For f, g E d, define the ~nitary~convolution of f and g 

denoted by f @ g as 

where dllr means that d runs through the unitary divisors of 

r. With respect the usual addition and the product defined 

by (5.3.1), (d, + ,  @ )  is a commutative ring with unity eoand 

having zero divisors. ([35], p. 9 ) ,  where eo is the function 

defined by 

1 r = l  

(5.3.2) eo (I-) = 
0 otherwise 

For f r 4, define norm of f by 

Them i t  follows that ( + ,  ) is an MNR. Also we observe 

that f E d has an inverse (with respect to unitary 

convolution) if and only if N(f) f 0. 
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CHAPTER 6 

THE CAUCHY ALGEBRA OF EVEN FUNCTIONS (MOD r) 

In chapter 3 we considered the Dirichlet algebra of 

arithmetic functions which is infinite dimensional over C .  

We now turn over to the case of a finite dimensional 

algebra via Cauchy convolution discussed below : The 

terminology is due to Eckford Cohen ( [ 7 ] ) .  

6.0.1 Definition ([35], p. 326) . Let r be an arbitrary but 
fixed positve integer and F a field of characteristic zero 

th 
containing r roots of unity. A function f : Z - F is 
called an (r, F) arithmetic function if 

f(n) = f(m) whenever n r m (mod r). 

6.0.2 Definition ([35], p. 326) . An arithmetic function f 

is said to be periodic with period r if 

f(n) = f(n+Xr), X E Z .  

We call f a periodic function (mod r) . 

An ( r ,  F) arithmetic function is clearly a periodic 

function (mod r). We denote the set of all (r, F) arithmetic 

functions by d (F). 

The Cauchy product of f and g E (F) is defined by 



(f 0 g) (n) = C f(a) g(b) 
n a+b (mod r )  

where a and b range over the elements of a complete residue 

system (mod r) such that n E a+b (mod r). The set d (F) 

forms a commutative ring relative to ordinary addition and 

Cauchy multiplication . The function uo defined by 

1 if n 0 (mod r) 

uo (n) = 
0 otherwise 

serves as the identity under Cauchy multiplication. 

6.0.3 Definition ([35], p. 335) . f E d (F) is said to be 

an even function of n (mod r) or briefly an even function 

(mod r) if 

f(n) = f((n, r)) 

where (n,r) denotes the g.c.d. of n and r. 

We consider the case F = C the field of complex 

numbers. Then the set 3 (C) of even functions (mod r) is a 

subset of the set d (C) of (r, C) arithmetic functions 

The properties of 9 (C) have been studied extensively by E 

Cohen in a series of papers ([7], [8] [9] [lo], [ l l ]  and 

[14]), P. Haukkanen and R. Sivaramakrishnan in ([19]). The 

purpose of this chapter is to point,out certain properties 

of 5B (C) relevant to the main theme of this work , as a 

multiplicatively normed ring. 



6.1 THE MNX 9 (c )  

We recall that the Ramanujan's sum is defined by 

(6.1.1.) C(n, r) = C exp (2nihn/r) 
h ( m o d  r )  

( h , r )  = 1 

Where h runs through a reduced residue system (mod r ) .  

We also need the orthogonal property of C(n,r) in the 

following two forms : 

I r C (n, d), if d l  = dZ = d 

r, if dl = d, 

(6.1.3) C C (r/t, dl) C (r/d,,t) = 
t l r  

0 ,  d l  f d, 

where d l ,  d2 are divisors of r. 

Further , the following result 

(6.1.4) @ ( d l )  C (r/dl, d , )  = O(d-1 C (r/d,, d , )  

where O is the Euler @-function: d l ,  d are divisors of r is 
2 

also needed. 

We first prove two important theorems, due to E. Cohen 



Theorem 2 2 %  ([35], p. 335) . If f E 3 a ) ,  then f has the 
r 

representation 

where the coefficients a(d) are uniquely determined by 

or equivalently by 

Where C(n, r)denotes the Ramanujan sum defined by (6.1.1) . 

Proof : ([35], p.336) : If f has the representation given by 

(6.1.5), then 

Since C (n, r) is an even function (mod r), we have 

C(n,d) = C(s,d), where s = (n, r) .   here fore 



By the orthogonal property of C(n,r) in the form (6.1.3) we 

have 

r if r/s = 6 
C C (s,d) C (r/d, 6) = 

1 0 otherwise 

Where 

r i f r = s 6  
77 (SY 6) = 

0 otherwise 

Thus 

This proves (6.1.5) 

Since C(n,r) ar(C) the functions f given by 

(6.1.5) belong t o 9  ( C )  . Now the set { r-'C(n, d) : dlr} 

forms a linearly independent set. For suppose 

g(n) = C ah C (n,h) = 0 ,  ah E C and C (n,6) f 0 for 31r. 
31r 

Let d be a fixed divisor of r. Then taking h(n) = C(n,d) and 

using the orthogonal property of C(n,r) in the form (6.1.2.) 

we obtain 



(h 0 g) (n) = C h(a) g(b) 
n a + b  ( m o d  r )  

= C C(a,d) C a5 C(b, 6) 
n z a + b  ( m o d  r )  6 l r  

= C a5 C(a, d) C(b, 6) 
a [ r  n a + b  ( m o d  r )  

r ad C(n,d) i f 5 = d  

0 otherwise 

Hence g(n) = 0 implies a = 0 for each dlr. Thus the 

representation (6.1.5) of f is unique. 

To obtain the expression for a(d) given in (6.1.6) we 

now that a residue system (mod r) could be replaced by a 

residue system z = (r/6) x, 61r, (x, 6) =1 ,  by the class 

division of integers (mod r) 

Therefore 

Since f(n) and C(n,r) are is 3 (C) , we get 



= a(d) 

Now (6.1.8) implies that 

Remark : The coefficients a(d) occuring in the expansion 

(6.1.5) of f(n) are called the Fourier coefficients of f. 

Theorem 23X [[35], p. 338) . Let f, g E 59 (a )  with Fourier 

coefficients u(d) and P(d) respectively. The Cauchy product 

f 0 g of f and g is given by 

Proof ([35] p. 338) : We have 

and 



By definition 

(f 0 g) (n) = C f(a) g(b) 
n E a + b  (mod r )  

= z a(d,) B(d2) z C(a,dl) C(b, d,) 
d l  l r.d2 l n a + b  (mod r) 

= r ~ ( d )  B(d) C(n,d), by the orthogonal 
d l r  

property (6.1.2) of C(n,r). 

With respect to pointwise addition and Cauchy 

multiplication %T. (C)  is a commutative ring with unity uo 

defined by 

1 ,  if n o (mod r) 

Uo (n) = 
0 ,  otherwise 

Further if define multiplication by scalar by 

(cf) (r) = cf(r) , c t C,  f t 9 ( C )  

i t  follows that 3 (C) is also a vector space over C .  Thus 

3 ( C )  is indeed an algebra are , we call i t  the Cauchy 

algebra of even function (mod r) In fact 3 (C) is a finite 

dimensional complex vector space of dimension d(r). 

(cf, [26], p .  194). Also %=(C) is a Hilbert space with 

respect to the inner product 



a (mod r )  

- 
where g(a) denotes the complex conjugate of g(a) 

and 

{r 9 (d))-"'c(n,d) : dlr) 1 

is an orthonormal basis for 3 (C) ([19]), Theorem 5). 

'Theorem 24 : 3 ( )  is an MNR. 

- 
Proof : Define N : 3 ( - R by 

N(f) = r min { lu(d) 1 ) 
d 

where the minimum is taken over the divisors of d of r and 

~ ( d ) ,  d ( r  are the Fourier coefficients of f. If g E 3 (C) 

with Fourier coefficients B(d), dlr. 

then 

By (6.1.9), the Fourier coefficients of f 0 g are r a(d) p(d), 

so that we have 

~ ( f  6 g )  = r min {rlu(d) lP(d) 1 )  
d 

= r min {Iu(d)l> r min { I P ( ~ , ] )  
d d 

Remark 1 Since uo has the representation 



We have 

- 1 
uo(n) = r C (n,d) 

d l r  

- 1 
N(uo) = r min (r ) = 1 

d 

 ema ark* 2 Since 

N(C) = r min ((eo (r/d) I ]  = 0 
d 

as eo(r) = 1 when r = 1  and is zero for r 2 2. 

6.2 SOME LINEAR OPERATORS ON 3 (C) 

We consider some mappings. on the algebra EOr (C) . Among 

the norm-preserving algebra homomorphisms on Zr (C) we have 

the identity homomorphism. I : Z ( )  - 3 C )  given by 

I(f) = f and the conjugation map 

- - - - 
I : 53(C) - Zr(C) given by I(f) = f where f is 

defined by 

- 
tx(d) being the complex conjugate of the Fourier coefficient 

a ( d )  of f. 

We now proceed to discuss a linear operator on the 

vector space EBr(C) obtained by via the following analogue 

of C(n,r), (see, [12]). As in [34] we write 



B(n,r) = exp (2ninh/r) 
h  (mod  r )  

( h , r ) =  a s q u a r e  

where the summation is over a residue system h (mod r) such 

that (h, r) is a square. 

We recall that an arithmetic function f is said to be 

mutliplicative if f(mn) = f(m) f(n) whenever (m,n) = l .  f is 

said to be completely multiplicative if f(mn) = f(m) f(n) 

for all m, n E if+. 

Following the terminology of E. Cohen [ 8 ] ,  f E 9 ( a )  

is said to be completely even (mod r) if there exist some 

arithmetic function F such that 

Let Q(r) denotes the t o t a l  number of prime factors of 

r, each f ac to r  being counted according t o  i t s  rnu1t ip l ic i t jv  

The function defined by A(r) = r = 1,2.3.. . . is 

cal led the Liouville's function and i t  is cor~plerely 

multiplicative. Then 3(n,r) has the representation 

where g = (n,r) and b(r) = B(0,r) . 

Since A is completely multiplicative, one has 



This shows that X(r) B(n,r) is a completely even function 

(mod -r). In 6 . 3 .  we will see that the set of a1 1 

completely even functions (mod r )  forn~s a subspace of 2% (C) 

having dimension 2 u(r', the number of square-free divisors 

of r. 
-- 

I t  is known [ 3 4 ]  that 

so that B(n,r) has a representation of the form 

where 

( 6 . 2 . 5 )  

Therefore 

( 1 ,  
if r :s a perfect square 

E (r) = I 0 ,  otherwise 

Where u(d), are the Fourier coefficients of f. So we 



Let  u s  now d e f i n e  T  : Br ( C )  - 3 (C) by 

- 1 
T ( f )  = r B 0 f  

Then T  is  a l i n e a r  o p e r a t o r  on  a r ( C )  , b u t  T  i s  n o t  norm- 

p r e s e r v - i n g  as  N ( B )  = 0 . 

6 . 3  THE SUBSPACE OF COMPLETELY EVEN FUNCTIONS (MOD r )  

Analogous  t o  t h e  o r t h o g o n a l  p r o p e r t y  o f  t h e  ~ a m a n u j a n ' s  

sum C ( n , r ) ,  w e  have  f o r  B ( n , r )  

Theorem 2 5 .  I f  t l  and  t 2  a re  s q u a r e - f r e e  d i v i s o r s  o f  r 

P r o o f  : Using  ( 6 . 2 . 4 )  w e  h a v e  

C B ( a ,  t  ~ ( b .  r = ( C  C ( a , d l )  ( C  C ( b ,  d 2 )  
L L 

d D = r / t  d D = r / t  
n a + b  (mod 1 - 1  n a + h  ( m o d  r )  1 1 1 2 2 2 

= z z C C ( a , d l )  C ( b , d , )  
d D = r / t  

1 1  1 n a + b  ( m o d  r )  

Us ing  t h e  o r t h o g o n a l  p r o p e r t y  o f  C ( n , r )  t h e  i n n e r  s u m  c a n  

b e  s i m p l i f i e d  f u r t h e r .  I f  d l = d 2  = d ,  i t  r e d u c e s  t o  r C ( n , d )  

and i s  z e r o  i f  d l t  d, When d l =  d,= d we have  d ~ :  = r / t , ,  

2 2 2 
dD2 = r / t ,  and  s o  t lD1  = t2D2.  But t ,  and t 2  a r e  s q u a r e - f r e e  



If tl# t2 either tlor t2 has a prime factor not occuring in 

the other. If t l  has a prime factor pl not occuring in 

2 
t,, this prime factor will have to occur in D2 and in that 

2 
case D2 will cease to be a square. Similarly if t, has a 

prime factor pZ not occurring in t l  the i t  will spoil the 

2 
square nature of Dl. So dl=d2 will imply that tl=t2=t (say). 

Z 2 2 
But then Dl = D Z  = D (say) 

Therefore the sum simplifies to 

I r C C(n,d) if t l =  t2= t 
2 

d D  = r / t  

0 ,  otherwise 

(6.2.41 now yields the required result. 

Next we note that B(a,r) = B(-a,r). For i t  (h,r) = s6 

with 1 5 h - r, ( h ,  r) also equal to xZ. Taking n=O, in 

(6.3.1) we obtain : 

6.3.2 Corollary . If t l  and t2 are square-free divisors of 

r, then 

r b(r/t) if t l = t 7 = t  
c. 

C B(a, r/tl? B(a, r/t2) = 
a ( m o d  r )  0 otherwise 

We now state 



Theorem 26. The set V (C) of completely even functions 

(mod r) forms a subspace of 3r(C) having dimension 2 o( r) 

the number of square-free divisors of r. Vr(C) has an 

orthonormal basis 

{l(r/t) (r b(r,t)) 
- 1 / 2  

B(n,r/t) : t a square-free divisor of r} 

Proof : The proof follows along the same lines as that of 

the proof of Theorem 5 of [19]or the proof of Theorem 2.1 

of Chapter 7 of [ 2 6 ] .  

We mention that Cohen [ I 3 1  considered the unitary 

analogue cX(n,r) of C(n,rj and obtained another subspace 

Wr(C) of 53 (C) of dimension 2 the number of square-free 

divisors of r. 



APPENDIX 

k-FOLD NIL RADICAL OF AN IDEAL 

Let R be a commutative ring with unity and I be an 

ideal of R. We recall that the nil radical of I denoted by 

47 is given by 

n 47 = {r E R : r E I for some n E iZ+ where n depends on r} 

- - 

Let k be an arbitrary but fixed positive integer. We 

define the k-fold nil radical of I to be the set 

d r  = { r R : krn I for some n E iZ+ depending on r) 

We observe that dT, is an ideal of the ring R. For, if 

a and b are elements of dq, then there exist suitably 

chosen integers m, n iZ+ such that 

m + n 
Since every term in the binomial expansion of- (a-b) 

m 
contains either a or bn as a factor, i t  follows that 

k(a-b)ltn t I and therefore a-b E 47 . 

Further if a E and r E R we have r k amg I and 

m m k ( ~ a ) ~  = kr a = r (rkam) IS I so that ra dq 

Also, if a E dT, there exists an integer s E Z+ such 

that as E I. Then, 



as + as + . . . . . .  k times = kas E I 

or a E 47 . Thus 4 is an ideal of R containing I. 

Now we obtain the k- fold nil radical of an ideal <m> 

in the ring Z of integers. 

Theorem . Let Z denote the ring of integers. Suppose I = <m> 

be the ideal generated by m E Z f .  For fixed positive 

integer k, the k-fold nil radical of I is the ideal 

generated by the product of the distinct prime factors of 

m/g where g = (k,m). 

Proof : We write 

where , p l ,  qr  (i = 1 2  . s ; r = 1 2  . t) are 

distinct primes and 

where, rl, r2, . . . . ,rl are distinct primes not contained in m. 

If E = min { c x  , y i ) ,  i 1 
i 

Suppose pI,p2, . . .  p, are such that a, > y i  (i = 1,2 ...,,) 

Then, 



W r i t i n g  I = <m>, le t  a E 47 
T h e n ,  t h e r e  e x i s t s  A 2 1 s u c h  t h a t  k  ax E I .  

A A 
o r - k  a  i s  a m u l t i p l e  o f  m .  o r  ( k / g )  a i s  a m u l t i p l e  o f  m/g 

A 
But ( k / g ,  m/g) = 1 T h e r e f o r e ,  a i s  a  m u l t i p l e  o f  m/g. 

A s  A 2 1 ,  a i s  a  m u l t i p l e  o f  t h e  p r o d u c t  o f  t h e  p r i m e  

f a c t o r s  i n  m/g. 

o r  a E J Where 

( A . 2 )  J = < p1p2-  .P, q 2  q 2 . .  . q , 7  

T h i s  shows t h a t  

Next s u p p o s e  x  E J . 

T h e n  x i s  a m u l t i p l e  o f  p ,p  ,... p,qlq , . . . .  q, 

S e t t i n g  u  = max {u - 7  
1 1' 

uz- Y 2 ,  . . . . ,uv-u,> 

B  = max {S1 , P 2 .  . . . . , B t  3 

a n d  w r i t i n g  A = max { u ,  83 o n e  g e t s  

xA i s  a  m u l t i p l e  o f  m/g. 

T h e r e f o r e ,  k  x A  i s  a m u l t i p l e  o f  k  ( m / g )  = ( k / g )  m 

But  k /g  i s  a n  i n t e g e r .  So k xA i s  a m u l t i p l e  o f  rn 

A - 
o f  k  x t I .  T h i s  i m p l i e s  t h a t  ~ € 4 1 ,  o f  

From ( A . 2 )  a n d  ( A . 3 )  we g e t  J = 47 a n d  J i s  t h e  i d e a l  

g e n e r a t e d  by t h e  p r o d u c t  o f  t h e  p r i m e  f a c t o r s  o f  m/g. 

C o r o l l a r y  : The  n i l  r a d i c a l  o f  <m> i n  7L i s  t h e  i d e a l  

g e n e r a t e d  by t h e  p r o d u c t  o f  t h e  p r i m e  f a c t o r s  o f  m ,  as 

( k ,  m )  = 1 f o r  k = 1 .  ( s ee  [ 2 ] ) .  
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POST-SCRIPT 

The material presented in this dissertation is a 

humble attempt to study the structural properties of rings 

via the norm-functions. We saw in the background the proof 

of the 

Theorem : The Dirichlet Algebra d of arithmetic funcitions 

possesses the UFD property for its non-zero non-unit 

elements which was proved by ED Cashwell and C.J. Everett 

[2] in 1959. This was achieved by them by defining the norm 

of an arithmetic function f as the least positive integer 

a for which f(a) f 0 .  An alternate direct proof of the UFD 

property was attempted. However, it turned out that it 

needed to be a GCD domain as ACCP holds in the ring. 

David Rearick [4] kindly sent us his finding that 

is an interpolation algebra in the sense that if given any 

two functions f and of such that g f 0 there exists a pair 

of functions q ,  r E d such that f = g.q + r where r takes 

the value zero on all multiples of N(g) when N denotes the 

norm. He also pointed out that d as an interpolation algebra 

becomes a local ring. 

In Chapter 3, it is shown that an integral domain R 

which is multiplicatively normed and if u E R is such that u 

is a unit if and only if N(u) = 1 ,  becomes a UFD provided 

R is a GCD domain. It will be nice if the Dirichlet algebra 



of arithmetic functions is shown to be a GCD domain, though 

it is an interpolation algebra. In a sense, ~4 is 

'semi-Eulidean'. 

Extending the definition of an MND to any commutative 

ring with unity and having divisors of zero, we have 

examined the structure of the Lucas ring 3 of arithmetic 

functions in Chapter 5. A conjecture of Carlitz [ I ]  states 

that every zero divisor in 3 is nilpotent. I t  is believed 

that the problem is still open. 

The Cauchy algebra 3r(C) of even functions (mod r) 

gives an interesting example of a finite - dimensional 

algebra which is multiplicatively normed. Two particular 

subspaces V (C) and W (C) of 3 ( C  of have the same 

dimension 2 . By a theorem of N.J. Lord [3] there exists 

a common complement to both the subspaces V (C) and W (C) . 

I t  is worthwhile attempting to find out the common 

complement. This is not considered in Chapter 6. 

In short, this post script is meant to point out that 

there is scope for further research in these directions. 
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