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Chapter 0
Introduction

Graph theory is one of the most important and interesting areas in mathe-

matics. It has experienced a rapid growth in last five decades. The main reason

for the growth of graph theory is its wide range of applications in the areas such

as chemistry, physics, genetics, psychology and computer science. Many practical

problems can be visualized using graph theory.

Domination is one of the fastest growing areas in graph theory. The study of

domination was started by C. Berge and O. Ore. The word dominating set was

used first time by O. Ore in his book Theory of Graphs [21].

This thesis discusses both finite and infinite graphs. In this work we made

an attempt to define dominating functions on infinite graphs and we call this as

measurable dominating functions.

To extend the concept of dominating functions to infinite graphs we intro-

duced a sigma algebra called neighborhood sigma algebra on the vertex sets of
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0.1. Outline of the Thesis

graphs. Using this sigma algebra measurable dominating functions of graphs

(both finite and infinite) are defined. Minimal measurable dominating functions

are defined and characterized. Apart from these a new type of graph polynomial

called common neighborhood polynomial is introduced and discussed some of its

properties. Neighborhood unique graphs are defined and common neighborhood

polynomial of some classes of graphs are also found out.

0.1 Outline of the Thesis

Apart from this introductory chapter we presented our work in seven chapters.

Chapters from two to six discuss only finite graphs and the seventh chapter

includes discussion of infinite graphs.

In the first chapter, we provide some basic ideas and preliminary definitions

which are essential for the development of the thesis. This chapter discusses some

basic concepts of graph theory, measure theory and domination in graphs.

In the second chapter, neighborhood sigma algebra AG of a graph G is

introduced and studied its properties. We define the neighborhood sigma algebra

of a graph G as the sigma algebra generated by the collection {N [v] : v ∈

V (G)}. Here a subset of the vertex set of a graph is measurable means it is

measurable with respect to the neighborhood sigma algebra. We obtain that

in the neighborhood sigma algebra of a graph G, the smallest measurable set

containing a vertex v is the collection {u ∈ V (G) : N [u] = N [v]} and we denote

this set by EG
v or Ev. It is proved that for a graph G with the neighborhood

2



0.1. Outline of the Thesis

sigma algebra P(V (G)), if P3 is not a component of G and for n > 2, K1,n is

not an induced subgraph of G, then the neighborhood sigma algebra of L(G)

is P(V (L(G))). It is also proved that for any graph G the neighborhood sigma

algebra of its middle graph M(G) is the power set of the vertex of M(G). If G is a

graph such that every component ofG is different from P2, then the neighborhood

sigma algebra of its total graph T (G) is the power set of the vertex of T (G). We

also determined the neighborhood sigma algebra of 2-quasi-total graph Q2(G) of

a given graph G. If G is a graph without end vertices, then the neighborhood

sigma algebra of Q2(G) is P(V (Q2(G))).

In the third chapter, we determine the neighborhood sigma algebra of join

two graphs and that of different graph products. We prove that if G and H

are two vertex disjoint graphs with J as their join, then for each v ∈ V (G)

with dG(v) = n(G) − 1, EJ
v = EG

v

⋃
{u ∈ V (H) : dH(u) = n(H) − 1} and if

dG(v) 6= n(G) − 1, we obtain EJ
v = EG

v . In the case of lexicographic product,

tensor product, Cartesian product, normal product and co-normal product of

two graphs G1 and G2, we prove that the product sigma algebra AG1 × AG2 is

contained in the neighborhood sigma algebra of the product graph. In normal

product these two sigma algebras coincide and whereas in homomorphic product

there does not exist any such relationship.

In the fourth chapter, we introduce a new type of graph polynomial called

common neighborhood polynomial. The common neighborhood polynomial of a

3
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graph G, denoted by P (G, x), is the polynomial defined by

P (G, x) =

n(G)∑
i=1

aix
i,

where ai is the number of Ev’s of cardinality i in AG. We use the abbreviation

CNP for the common neighborhood polynomial. Neighborhood unique graphs

are also defined. A graph G is called a neighborhood unique graph if P (G, x) =

P (H, x) for any graph H implies that G is isomorphic to H. A characterization

of such graphs are also given as follows. A graph G is neighborhood unique if

and only if G is a complete graph or disjoint union of two complete graphs. The

common neighborhood polynomials of line graph, middle graph, total graph,

1-quasi-total graph and 2-quasi-total graph of a given graph are also obtained in

this chapter.

Fifth chapter deals with the CNP of join, corona and different graph prod-

ucts such as lexicographic product, tensor product, Cartesian product, normal

product and co-normal product of two graphs..

Sixth chapter is a continuation of the work carried out in second and third

chapters. The main new concept of this thesis, measurable dominating function

of a finite graph is introduced in this chapter.

Let G be a graph. A function f : V (G)→ [0, 1] is called a measurable dominating

function of G if the following conditions hold:

(i) f is measurable

4



0.1. Outline of the Thesis

(ii)

∫
N [v]

f dµ ≥ 1 for all v ∈ V (G).

A necessary and sufficient condition for a measurable dominating function to

be minimal is also obtained. Measurable k-dominating functions and measur-

able signed dominating functions are also defined. Characterizations of minimal

measurable k-dominating function and minimal measurable signed dominating

function are also derived. In the third chapter we proved that in the case of lex-

icographic product, tensor product, Cartesian product, normal product and co-

normal product of two graphs G1 and G2, the product sigma algebra AG1 ×AG2

is contained in the neighborhood sigma algebra of the product graph. Fortu-

nately we could succeed to extend the product measure on AG1 × AG2 to the

neighborhood sigma algebra of the vertex sets of the graph products.

If f1 and f2 are measurable dominating functions of two graphs G1 and G2

respectively, we check whether the function f defined on the vertex sets of graph

products by f((u, v)) = f1(u)f2(v) is a measurable dominating function of prod-

uct graphs or not. We check the minimality of f also. The last section of this

chapter deals with the measurability of x-section fx and y-section f y of a mea-

surable function f defined on the vertex sets of different graph products. We

prove that fx is measurable but f y is not always measurable in the case of lexi-

cographic product, but whereas in tensor product, Cartesian product, co-normal

product and homomorphic product fx and f y are in general, not measurable and

in the case of normal product both fx and f y are measurable.

Seventh chapter deals with the measurable dominating functions of in-

5



0.1. Outline of the Thesis

finite graphs. In the case of an infinite graph G, if we define its neighbor-

hood sigma algebra as the direct generalization of that of finite graphs, the

smallest measurable set containing a vertex cannot be defined as the inter-

section of all measurable sets containing that vertex, because such a collec-

tion need not be countable. This realization blocks our work for a while, but

by interpreting it in a slight different way we could overcome this situation.

The neighborhood sigma algebra of an infinite graph is defined as the sigma

algebra generated by B = {N [v] : v ∈ V (G)}
⋃
{Ev : v ∈ V (G)}, where

Ev = {u ∈ V (G) : N [u] = N [v]}. We stick on the notation Ev for the set

{u ∈ V (G) : N [u] = N [v]} because we prove that this set is the smallest mea-

surable set containing v in parity with the finite graphs. Measurable dominating

function of an infinite graph is defined and a characterization of minimal mea-

surable dominating function is obtained. We concluded the thesis by introducing

the concept of measurable signed dominating function of an infinite graph and

characterized minimal measurable signed dominating functions.

The conclusion is given at the end and a bibliography is also given.
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Chapter 1
Preliminaries

1.1 Introduction

Graph theory is a branch of mathematics which deals with the study of

graphs. Many areas of mathematics such as group theory, operation research,

topology and probability, have connections with graph theory. Also many real

life problems can analize successfully using graphs.

The purpose of this chapter is to provide basic definitions and terminologies

that we shall use in this work. It includes the basics of graph theory and measure

theory and also discusses the concept of domination in graphs. For the notations

and terminologies not given here, refer [3] and [6]

7



1.2. Basics of Graph Theory

1.2 Basics of Graph Theory

Let us begin with the definition of a graph.

A (undirected) graph [6] G is an ordered pair (V (G), E(G)) consisting of a

set V (G) of vertices and a set E(G), disjoint from V (G), of edges, together with

an incidence function ψG that associates with each edge of G an unordered pair

of (not necessarily distinct) vertices of G. If e is an edge and u and v are vertices

such that ψG(e) = {u, v}, then e is said to join u and v, and the vertices u and v

are called the ends of e. In this case we also denote the edge by uv. Each vertex

is indicated by a point, and each edge by a line joining the points representing

its ends [6].

The number of vertices of the graph G is called the order [3] of G, denoted

by n(G) and the number of edges is called the size [3] of G, denoted by m(G). A

graph is called finite [28] if both its vertex set and edge set are finite. Otherwise

it is called an infinite graph. That is if the vertex set or the edge set of a graph

is infinite it is called an infinite graph [6].

A set of two or more edges of a graph G is called a set of multiple edges [3]

if they have the same ends . An edge with identical ends is called a loop [3] . A

graph is simple [3] if it has no loops and no multiple edges.

Every graph mentioned in this thesis is simple and undirected.

If u and v are distinct vertices and if e = uv is an edge of the graph G, then u

and v are said to adjacent vertices, the edge e is said to incident with u and v [7]

and the vertices u and v are called the end vertices of the edge e [3]. If two distinct

8



1.2. Basics of Graph Theory

edges e and f are incident with a common vertex, they are called adjacent edges.

Two adjacent vertices are referred to as neighbors of each other. In a graph G,

the set of neighbors of a vertex v is called the open neighborhood [7] of v and it

is denoted by NG(v). The set NG(v)
⋃
{v} is called the closed neighborhood [7]

of v and it is denoted by NG[v] (or simply N [v] if there is no confusion).

The degree [6] of a vertex v in a graph G, denoted by dG(v) (or d(v)), is

the number of edges of G incident with v, each loop counting as two edges. In

particular, if G is a simple graph, d(v) is the number of neighbors of v in G. A

vertex of degree zero is called an isolated vertex [22] . A vertex of degree one is

called a pendant vertex or an end vertex [3] . A vertex adjacent to a pendant

vertex is called a support vertex [22]. A pendant edge [3] is the edge incident with

a pendant vertex. The minimum (respectively, maximum) of the degrees of the

vertices of a graph G is denoted by δ(G) (respectively, ∆(G)) [3].

The complement [6] of a simple graph G is the simple graph Ḡ whose vertex

set is V (G) and whose edges are the pairs of nonadjacent vertices of G. A

complete graph [8] is a simple graph in which each pair of distinct vertices is

joined by an edge. A complete graph on n vertices is denoted by Kn. A graph

is said to be bipartite [3] if its vertex set can be partitioned into two nonempty

subsets X and Y such that each edge of G has one end in X and the other in Y .

The pair (X, Y ) is called a bipartition [3] of the bipartite graph. The bipartite

graph with bipartition (X, Y ) is denoted by G(X, Y ). A simple bipartite graph

G(X, Y ) is complete [3] if each vertex of X is adjacent to all the vertices of Y . A

complete bipartite graph G(X, Y ) with |X| = r and |Y | = s, is denoted by Kr,s.

9



1.2. Basics of Graph Theory

Two graphs G and H are said to be disjoint [8] if they have no vertex in

common. Two graphs G and H are isomorphic [6], written G ∼= H, if there are

bijections θ : V (G) −→ V (H) and φ : E(G) −→ E(H) such that ψG(e) = uv if

and only if ψH(φ(e)) = θ(u)θ(v); such a pair of mappings is called an isomorphism

between G and H. Here the bijection θ satisfies the condition that u and v are

end vertices of an edge e of G if and only if θ(u) and θ(v) are end vertices of the

edge φ(e) in H [3].

A walk [3] in a graph G is an alternating sequence W : v0e1v1e2v2 . . . envn of

vertices and edges beginning and ending with vertices in which vi−1 and vi are

the ends of ei; v0 is the origin and vn is the terminus of W . The walk W is said

to join v0 and vn. A walk is called a trial [3] if all the edges appearing in the

walk are distinct. It is called a path [3] if all the vertices are distinct. Thus a

path in G is automatically a trial in G. When writing a path, we usually omit

the edges. A cycle [3] is a closed trial in which the vertices are all distinct. The

number of edges in a walk is called its length [3]. A cycle of length n is denoted

by Cn and Pn denotes a path on n vertices [3].

A graph H is called a subgraph [6] of a graph G if V (H) ⊆ V (G), E(H) ⊆

E(G), and ψH is the restriction of ψG to E(H). If H is a subgraph of G, then

G is said to be a supergraph [3] of H. A subgraph H of a graph G is said to be

an induced subgraph [3] of G if each edge of G having its ends in V (H) is also

an edge of H. The induced subgraph of G with vertex set S ⊆ V (G) is called

the subgraph of G induced by S and is denoted by G[S] [3] . A subgraph H of a

graph G is a spanning subgraph [3] of G, if V (H) = V (G).
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1.3. Operations on Graphs

Let G be a graph and S a proper subset of the vertex set V (G). The subgraph

G[V (G) \ S] is said to obtained from G by the deletion [3] of S. This subgraph

is denoted by G \ S. If S = {v}, G \ S is simply denoted by G \ v [3].

A graph G is called connected [9] if any two of its vertices are linked by a path

in G. A graph that is not connected is called disconnected [8]. Components [3]

of a graph G are the maximal connected subgraphs of G. A connected graph

without cycles is called a tree [3]. A subset V ′ of the vertex set V (G) of a

connected graph G is a vertex cut [3] of G, if G \ V ′ is disconnected. A vertex v

of G is a cut vertex [3] of G, if {v} is a vertex cut of G. A vertex cut V ′ of G is

minimal if no proper subset of V ′ is a vertex cut of G [1].

1.3 Operations on Graphs

We can construct new graphs from given graphs. This section deals with

some methods of construction of new graphs from the given graphs.

The union [28] of graphs G1 and G2, written G1

⋃
G2, has vertex set

V (G1)
⋃
V (G2) and edge set E(G1)

⋃
E(G2). To specify the vertex disjoint union

[3] with V (G1)
⋂
V (G2) = ∅, we write G1 + G2. The join [10] G1 ∨ G2 of two

vertex disjoint graphs G1 and G2 is the graph with vertex set V (G1)
⋃
V (G2)

and edge set E(G1)
⋃
E(G2)

⋃
{uv : u ∈ V (G1), v ∈ V (G2)}. The corona [27]

G1 ◦G2 of two graphs G1 and G2 is obtained by taking one copy of G1 and n(G1)

copies of G2; and by joining each vertex of the ith copy of G2 to the ith vertex of

G1, where 1 ≤ i ≤ n(G1).

11



1.4. Domination in Graph Theory

The line graph [3] L(G) of a graph G is the graph with vertex set E(G) in

which two vertices are adjacent if they are adjacent edges in G.

The middle graph [26] M(G) of a graph G is the graph with vertex set

V (G)
⋃
E(G) where two vertices are adjacent if they are either adjacent edges

in G or one is a vertex and the other is an edge incident with it.

The total graph [15] T (G) of a graph G is the graph with V (G)
⋃
E(G) and

two vertices x, y are adjacent in T (G) if one of the following conditions holds:

(i) x, y ∈ V (G) and x is adjacent to y in G

(ii) x, y ∈ E(G) and x is adjacent to y in G

(iii) x is in V (G) and y is in E(G) and x, y are incident in G.

1.4 Domination in Graph Theory

The study of domination is the fastest growing area in graph theory. This

section discusses the concept of dominating set and dominating function in a

graph.

Let G = (V (G), E(G) be the given graph.

A set S ⊆ V (G) of vertices is called a dominating set [13] of G if every vertex

v ∈ V (G) is either an element of S or is adjacent to an element of S.

A function f : V (G) → {0, 1} is called a dominating function [14] of G if∑
u∈N [v]

f(u) ≥ 1 for all v ∈ V (G).

12



1.5. Measure Theory

A function f : V (G) −→ [0, 1] is called a fractional dominating function [14]

of G if
∑

u∈N [v]

f(u) ≥ 1 for all v ∈ V (G).

A function f : V (G) −→ {−1, 1} is called a signed dominating function [14]

of G if
∑

u∈N [v]

f(u) ≥ 1 for all v ∈ V (G).

A function f : V (G) −→ {0, 1, 2, · · · , k} is called a k-dominating function [14]

of G if
∑

u∈N [v]

f(u) ≥ k for all v ∈ V (G).

1.5 Measure Theory

This section focuses on some basic concepts of measure theory. For further details

refer [23] and [11].

A distinguished collection R of subsets of a set X is called an algebra [11] if

the following axioms are satisfied.

(i) If E ∈ R and F ∈ R, then E
⋃
F ∈ R

(ii) If E ∈ R, then Ec ∈ R, where Ec := X \ E is the complement of E in X.

An algebra R, of subsets of a set X is called a sigma algebra [23] if
∞⋃
i=1

Ei ∈ R,

whenever E1, E2, . . .∈ R.

Proposition 1.5.1. [23] If F is any family of subsets of a set X, there exists

a smallest sigma algebra containing F , called the sigma-algebra generated by F .

A set X together with a sigma algebraR of subsets of X is called a measurable

space [23], and the members of R are called the measurable sets [23] in X.
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1.5. Measure Theory

Let X be a measurable space and Y be a topological space [20]. A mapping

f from X into Y is said to be measurable [23] if f−1(S) is a measurable set in

X for every open set S in Y . If f and g are measurable functions then αf + βg

is measurable for any real numbers α and β [23]. Let (X,R) be a measurable

space. A measure [23] is a function µ, defined on the sigma algebra R, whose

range is in [0,∞] and which is countably additive. This means that if {Ei} is

a disjoint countable collection of members of R then µ(
∞⋃
i=1

Ei) =
∞∑
i=1

µ(Ei). In

this thesis we consider only those measures which assume only finite values. A

measure space [23] is a measurable space which has a measure defined on the

sigma algebra of its measurable sets. Let P be a property concerning the points

of a measure space (X,R, µ) and let E ∈ R. The statement “P holds almost

everywhere on E ”(abbreviated to “P holds a.e on E ”) means that there exists

N ∈ R such that µ(N) = 0, N ⊂ E, and P holds at every point of E \N .

A function s on a measure space X whose range consists of only finitely many

points is called a simple function [23]. If α1, α2, ..., αn are the distinct values of a

simple function s, and if we set Ai = {x : s(x) = αi} then s =
n∑
i=1

αiχAi
, where

χAi
is the characteristic function of Ai. It can be proved that s is measurable

if and only if each of the sets Ai is measurable [23]. Suppose R is a sigma

algebra on the set X and µ is a measure on R. If s =
n∑
i=1

αiχAi
is a measurable

simple function from X into [0,∞), where α1, α2, ..., αn are the distinct values

assumed by s and if E ∈ R, then

∫
E

s dµ is defined by
n∑
i=1

αiµ(Ai
⋂

E) [23].

If f : X −→ [0,∞] is measurable and E ∈ R, then

∫
E

f dµ =sup

∫
E

s dµ, the

supremum is taken over all simple measurable functions s such that 0 ≤ s ≤ f . If

14



1.5. Measure Theory

0 ≤ f ≤ g then,

∫
E

f dµ ≤
∫
E

g dµ. If A ⊂ B and f ≥ 0, then

∫
A

f dµ ≤
∫
B

f dµ.

If X and Y are two sets, their Cartesian product [23] X × Y is the set of all

ordered pairs (x, y), with x ∈ X and y ∈ Y . With each function f on X × Y

and with each x ∈ X we associate a function fx defined on Y by fx(y) = f(x, y).

Similarly, if y ∈ Y , f y is the function defined on X by f y(x) = f(x, y) [23]. Call

fx and f y, the x-section and y-section respectively, of f [23].

Suppose (X,S) and (Y, T ) are two measurable spaces. A measurable rectangle

[23] is any set of the form A × B, where A ∈ S and B ∈ T . The product sigma

algebra S×T is defined to be the smallest sigma algebra in X×Y which contains

every measurable rectangles [23]. If E is any subset of X × Y , then for x ∈ X,

we call the set Ex = {y : (x, y) ∈ E} as a section of E determined by x and for

y ∈ Y we call the set Ey = {x : (x, y) ∈ E} as a section of E determined by

y [11]. Every section of a measurable set is a measurable set [11].

If (X,S, µ) and (Y, T, ν) are sigma finite measure spaces, then the set function

λ, defined for every set E in S × T by λ(E) =

∫
ν(Ex) dµ(x) =

∫
µ(Ey) dν(y),

is a sigma finite measure with the property that, for every measurable rectangle

A×B, λ(A×B) = µ(A).ν(B) [11]. The latter condition determines λ uniquely.

The measure λ is called the product of the measures µ and ν and denote it by

µ× ν [11].
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Chapter 2
Neighborhood Sigma Algebra

In this chapter we study neighborhood sigma algebra of graphs. While study-

ing dominating function of finite graphs we realized that the direct generalization

of it into infinite graphs is not possible if we stick on the definition of dominating

function of finite graphs [14]. So we tried to interpret this concept of dominating

function with the help of theory of measures.

As we know the platform for working in measures is the algebra/sigma algebra

of sets, we need such a structure on vertex sets of the graphs. But the problem

now arising is that how to construct such a structure. As the power set of any

set forms a sigma algebra, one way of escaping this trouble some situation is to

use the power set as the sigma algebra. But this case is a least interesting one.

In order to strengthen the theory we construct a sigma algebra which is most

suitable to our study and a little bit fascinating which we call as neighborhood

sigma algebra.
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2.1. Neighborhood Sigma Algebra

2.1 Neighborhood Sigma Algebra

We define the neighborhood sigma algebra of a graph as follows.

Definition 2.1.1. Let G = (V (G), E(G)) be a graph. The sigma algebra

generated by G = {N [v] : v ∈ V (G)} on V (G) is called the neighborhood sigma

algebra of G and it is denoted by AG (or simply A if there is no confusion) and

G is called the generating set of A.

Such a sigma algebra exists by Proposition 1.5.1. We build up our theory

with this sigma algebra.

As the graphs considered here are finite their vertex sets are finite. So A is

just an algebra. But this is not the case when the graph is infinite. As the thesis

also discusses infinite graphs, we would like to use the terminology sigma algebra

in both the cases, finite and infinite graphs.

Throughout this thesis, by a graph G, we mean the graph with its neigh-

borhood sigma algebra A on the vertex set V (G). Here a subset of V (G) is

measurable means it is measurable with respect to the neighborhood sigma al-

gebra.

Definition 2.1.2. Let G be a graph. For v ∈ V (G), we define EG
v (or

simply Ev if there is no confusion) to be the intersection of all measurable sets

containing v. Hence it is the smallest measurable set containing v.

Example 2.1.3. For the graph G1, in Figure 2.1: the neighborhood sigma

17



2.1. Neighborhood Sigma Algebra

algebraA is given by {∅, {u, v, w, x}, {u, v, x}, {v, w, x}, {u}, {w}, {v, x}, {u,w}}.

Eu = {u}, Ev = {v, x}, Ew = {w} and Ex = {v, x}.

 v

u

w

x

Figure 2.1: Graph G1

Proposition 2.1.4. Let G be a graph and u, v ∈ V (G). Then u ∈ Ev if and

only if v ∈ Eu.

Proof. Let u ∈ Ev. If v /∈ Eu, Ev \ Eu is a measurable set containing v and

properly contained in Ev, which contradicts the fact that Ev is the smallest

measurable set containing v. Hence v ∈ Eu. Also by interchanging the roles of

u and v we get u ∈ Ev whenever v ∈ Eu .

Lemma 2.1.5. Let G be a graph and u, v be two vertices of G such that u ∈ Ev.

Then Eu = Ev.

Proof. Since u ∈ Ev, by Proposition 2.1.4, v ∈ Eu. The sets Eu and Ev, being

the smallest measurable sets containing u and v respectively, u ∈ Ev and v ∈ Eu

imply that Eu ⊂ Ev and Ev ⊂ Eu. Hence Eu = Ev.
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2.1. Neighborhood Sigma Algebra

Lemma 2.1.6. Let G be a graph and u, v ∈ V (G) be such that Eu
⋂
Ev 6= ∅.

Then Eu = Ev.

Proof. Suppose that Eu
⋂
Ev 6= ∅. Let w ∈ Eu

⋂
Ev. Then by Lemma 2.1.5,

Ew = Eu = Ev.

Theorem 2.1.7 is an immediate consequence of Lemma 2.1.6.

Theorem 2.1.7. Let G be a graph. Then {Eu : u ∈ V (G)} forms a partition of

V (G).

Remark 2.1.8. Each measurable set can be written as disjoint union of

E ′vs.

Definition 2.1.9. A vertex v ∈ V (G) of the graph G is called a common

neighborhood free vertex if Ev = {v}.

Proposition 2.1.10. Let G be a connected graph with n(G) 6= 2 and let v ∈

V (G) be such that it is either an end vertex or a support vertex. Then v is a

common neighborhood free vertex.

Proof. If n(G) = 1, then the result is trivially true. So assume that n(G) > 2.

Let v be an end vertex of G with support vertex u. Since G is a connected

graph of order greater than two, there exists a vertex w ∈ N [u] \ {v}. Therefore,

N [v]
⋂
N [w] = {u} is measurable. Hence Eu = {u}. Since {u} is measurable,

N [v] \ {u} is measurable. That is {v} is measurable. Hence Ev = {v}.
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2.1. Neighborhood Sigma Algebra

Remark 2.1.11. The converse of Proposition 2.1.10 is not true. That is

Ev = {v} does not imply, v is an end vertex or a support vertex.

Consider the path P5 in Figure 2.2.

u v w x y

Figure 2.2: The path P5

For the vertex w, Ew = {w}. But w is neither an end vertex nor a support

vertex.

Next we observe the neighborhood sigma algebra of a complete graph. For a

vertex v of a graph G, Ev = V (G) if and only if u ∈ Ev for all u ∈ V (G). That

is if and only if Eu = Ev = V (G) for all u ∈ V (G), by Lemma 2.1.5. That is if

and only if N [u] = N [v] for all u ∈ V (G). Hence we have:

Proposition 2.1.12. A graph G is complete if and only if Ev = V (G), for some

v ∈ V (G).

Note that for the graph G1, in Figure 2.1, Ev = Ex. Note also that these two

vertices v and x have the same closed neighborhoods, that is N [v] = N [x]. This

result in fact has a general feature.

That is, for any two vertices v1 and v2 of a graph G, Ev1 = Ev2 if and only

if N [v1] = N [v2]. The proof of this result depends mainly on the neighbor-

hood sigma algebra of the graph. Before proving this result, we characterize the
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2.1. Neighborhood Sigma Algebra

neighborhood sigma algebras of graphs.

Proposition 2.1.13. Let G be a graph with neighborhood sigma algebra A. Then

every member of A can be expressed as the union of sets, each of which can

be expressed as the intersection of members of F , where F = {N [v] : v ∈

V (G)}
⋃
{N [v]c : v ∈ V (G)}.

Proof. Let H consists of all subsets of V (G) which can be expressed as unions

of members of G , where G is the family of all intersections of members of F .

Then H contains {N [v] : v ∈ V (G)} and it is contained in A. Also H itself is

a sigma algebra. As A is generated by {N [v] : v ∈ V (G)}, H = A . Hence the

proposition.

The following theorem helps to determine Ev’s in a graph.

Theorem 2.1.14. Let G be a graph. Then for v1, v2 ∈ V (G), Ev1 = Ev2 if and

only if N [v1] = N [v2].

Proof. Assume that Ev1 = Ev2 for some v1, v2 ∈ V (G). Suppose N [v1] 6= N [v2].

Without loss of generality, assume that there exists u ∈ V (G) such that u ∈ N [v1]

but u /∈ N [v2]. Therefore, N [u]
⋂
N [v1] is a measurable set containing v1 but

not v2. This implies that v2 /∈ Ev1 . This will contradict the fact that Ev1 = Ev2 .

Conversely, assume that N [v1] = N [v2]. This implies for any v ∈ V (G)

either v1, v2 ∈ N [v] or v1, v2 ∈ N [v]c. Therefore, by Proposition 2.1.13, if B is
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2.1. Neighborhood Sigma Algebra

any measurable set, then either v1, v2 ∈ B or v1, v2 ∈ Bc. This implies that

Ev1 = Ev2 .

If u and v are two vertices of a graph G then u ∈ Ev if and only if Eu = Ev,

by Lemma 2.1.5. That is if and only if N [u] = N [v]. Thus we have:

Corollary 2.1.15. Let G be a graph and v ∈ V (G). Then Ev = {u ∈ V (G) :

N [u] = N [v]}.

Remark 2.1.16. Let G be a graph and v ∈ V (G). In general Ev 6=
⋂
{N [u] :

u ∈ N [v]}.

Consider the path P3 in Figure 2.3.

 v u w

Figure 2.3: The path P3

For the vertex v of P3, Ev = {v}. But
⋂
{N [u] : u ∈ N [v]} = {v, u}.

Proposition 2.1.17. Let G be a graph. If there exists only one vertex v ∈ V (G)

such that u ∈ N [v] for all u ∈ V (G), then Ev = {v} and hence {v} is measurable.

Proof. In this case {v} =
⋂

u∈V (G)

N [u]. Hence Ev = {v}.
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Note 2.1.18. There are graphs in which Ev 6= {v}, for any vertex v. One

such graph is given below.

 v
5

1
 v

4
 v

 v
2

3
 v

 v
6

Figure 2.4: Graph G

In the graph G, Ev1 = Ev2 = {v1, v2}, Ev3 = Ev5 = {v3, v5}, Ev4 = Ev6 =

{v4, v6}.

The following theorem says that in any graph a set of vertices of a particular

degree is measurable.

Theorem 2.1.19. Let G be a graph with vertex set V (G). For each k ∈ N with

1 ≤ k ≤ ∆(G), the collection Sk := {v ∈ V (G) : d(v) = k} is a measurable set.

Proof. Let k ∈ N be such that 1 ≤ k ≤ ∆(G). If Sk = ∅, then it is measurable.

So suppose that Sk 6= ∅. Let v ∈ Sk. Since Ev = {u ∈ V (G) : N [u] = N [v]},

d(v) = d(u) for all u ∈ Ev. This implies that Ev ⊆ Sk for all v ∈ Sk. Hence

Sk =
⋃
v∈Sk

Ev. Therefore Sk is measurable.

Since the complement of a measurable set is measurable, we have:
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Corollary 2.1.20. Let G be a graph with vertex set V (G). For each k ∈ N with

1 ≤ k ≤ ∆(G), the collection {v ∈ V (G) : d(v) 6= k} is measurable.

Theorem 2.1.21. Let G be a connected graph and C be a minimal vertex cut of

G. Then C is measurable.

Proof. Let G1, G2, . . . ,Gk be the components of G \ C with vertex sets V1, V2,

. . . ,Vk respectively, where k ≥ 2. Let v ∈ C. Since C is a minimal vertex

cut, v is adjacent to vertices of at least two components, say G1 and G2. Sup-

pose that N(v)
⋂
V1 = {u1, u2, ..., uk1} and N(v)

⋂
V2 = {v1, v2, ..., vk2}. Then

v ∈
k1⋂
i=1

N(ui)⊆ C
⋃
V1 and v ∈

k2⋂
i=1

N(vi) ⊆ C
⋃
V2. Therefore v ∈ (

k1⋂
i=1

N(ui))
⋂

(

k2⋂
i=1

N(vi)) ⊆ C
⋃

(V1
⋂
V2)) = C. Therefore (

k1⋂
i=1

N(ui))
⋂

(

k2⋂
i=1

N(vi)) is a mea-

surable set containing v and contained in C. Thus C is a union of a collection

of measurable sets. Hence C is measurable.

Corollary 2.1.22. If v is a cut vertex of a connected graph G, then {v} is

measurable.

Corollary 2.1.23. In a tree, if {v} is a vertex of degree greater than one, then

{v} is measurable.

Proof. If G is a tree and v ∈ V (G) is such that d(v) ≥ 2, then v is a cut vertex

of G. Therefore {v} is measurable.

Note 2.1.24. In Proposition 2.1.10, it is proved that if v is an end vertex of

a connected graph G of order not equal to two, then {v} is measurable. Hence
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2.1. Neighborhood Sigma Algebra

if G is a tree of order not equal to two, then {v} is measurable for all v ∈ V (G).

Hereafter a function defined on the vertex set of a graph is measurable means

which is measurable with respect to the neighborhood sigma algebra of that

graph.

Theorem 2.1.25. Let G be a graph and f : V (G) −→ [0, 1] be a function. Then

f is measurable if and only if f is constant on Ev for all v ∈ V (G).

Proof. Let v ∈ V (G) and f(v) = c. Suppose f(u) = d for some u ∈ Ev. Let, if

possible, c < d. Then f−1(−∞, d) is measurable and v ∈ f−1(−∞, d). Therefore

v belongs to the measurable set f−1(−∞, d)
⋂
Ev, which is a proper subset of

Ev. This contradicts the fact that Ev is the smallest measurable set containing

v. A similar kind of contradiction arises when d < c.

Conversely assume that f is constant on Ev for all v ∈ V (G). Let U be

an open subset of [0,1]. Suppose that f(V (G))
⋂
U = {k1, k2, ..., km}. Then

f−1(U) = f−1({k1})
⋃
f−1({k2})

⋃
...
⋃
f−1({km}). Let 1 ≤ i ≤ m. As f is

constant on each Ev, f
−1({ki}) =

⋃
f(vj)=ki

Evj . Hence f−1(ki) is measurable for

all 1 ≤ i ≤ m. Therefore f−1(U) is measurable. Hence f is measurable.

As a consequence of Corollary 2.1.15 and Theorem 2.1.25, we have:

Corollary 2.1.26. Let G be a graph with u1, u2 ∈ V (G). If f : V (G) −→ [0, 1]

is measurable and N [u1] = N [u2] then f(u1) = f(u2).

25



2.1. Neighborhood Sigma Algebra

Theorem 2.1.27. Let G be a graph and v ∈ V (G) be such that d(v) = n(G)−1.

Then Ev = {u ∈ V (G) : d(u) = n(G)− 1}.

Proof. Let u ∈ Ev. Then N [u] = N [v]. Hence d(u) = n(G) − 1. Therefore

Ev ⊆ {u ∈ V (G) : d(u) = n(G)−1}. Let u ∈ V (G) be such that d(u) = n(G)−1.

Then N [u] = V (G) = N [v]. Hence u ∈ Ev. Thus, Ev = {u ∈ V (G) : d(u) =

n(G)− 1}.

Corollary 2.1.28. Let G be a graph with ∆(G) = n(G) − 1 and f : V (G) −→

[0, 1] be measurable. Then f is constant on the set,

{v ∈ V (G) : d(v) = n(G)− 1}.

Note 2.1.29. The conclusion of Theorem 2.1.27 need not be true for the

vertices of degree < n(G)− 1.

For example consider the cycle C4 and the path P3.

1
v

v

v

v
2

3

4

Figure 2.5: The cycle C4

For the cycle C4 given in Figure 2.5, d(v1)=d(v2)=d(v3)=d(v4) = 2.

But Ev1 = {v1}, Ev2 = {v2}, Ev3 = {v3}, Ev4 = {v4}.
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For the path P3 given in Figure 2.3, d(v1) = d(w) = 1.

But Ev = {v}, Ew = {w}.

2.2 Vertex Deleted Graph

In this section we examine how the deletion of a vertex from a graph affect

Ev’s.

Let G be a graph and v ∈ V (G). Consider the graph Gv := G \ v. It is clear

that NGv [u] = NG[u] \ {v} for all u ∈ V (Gv). For u ∈ V (Gv), we expect that

EGv
u = EG

u \ {v} but it is not true.

Example 2.2.1. Consider the graphs given in Figure 2.6.

 v
2

3
 v

4
 v

 v

 v
1

 v
2

 v
1

3
 v

4
 v

G Gv

Figure 2.6: Graph G and its vertex deleted graph Gv

EG
v2

= {v2, v3, v4} and EGv
v2

= {v1, v2, v3, v4}.

So, EG
v2
\ {v} ⊆ EGv

v2
.
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The following theorem says that this is true in general.

Theorem 2.2.2. Let G be a graph and v ∈ V (G). Then for u ∈ V (Gv), EG
u \

{v} ⊆ EGv
u .

Proof. Let u ∈ V (Gv) and x ∈ EG
u \ {v}. Since x ∈ EG

u , we have NG[x] = NG[u].

Therefore NG[x] \ {v} = NG[u] \ {v}. That is NGv [x] = NGv [u]. Therefore

EGv
x = EGv

u . Hence x ∈ EGv
u . Therefore EG

u \ {v} ⊆ EGv
u for all u ∈ V (Gv).

Theorem 2.2.3. Let G be a graph and v ∈ V (G). Then EG
u \ {v} = EGv

u for all

u ∈ V (Gv) with v ∈ EG
u .

Proof. Let u ∈ V (Gv) be such that v ∈ EG
u . By theorem 2.2.2, EG

u \ {v} ⊆ EGv
u .

To obtain the reverse inclusion, let x ∈ EGv
u . Then NGv [x] = NGv [u].

That means,

NG[x] \ {v} = NG[u] \ {v} (2.1)

This implies, x ∈ NG[u]. Since NG[u] = NG[v], x ∈ NG[v]. Hence v ∈ NG[x].

Since v ∈ EG
u , v ∈ NG[u]. Therefore, equation (2.1), implies that NG[x] = NG[u].

Therefore, EGv
u ⊆ EG

u \ {v}. Hence the theorem.

2.3 Line Graph

This section deals with the neighborhood sigma algebra of the line graph of

a graph.
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Theorem 2.3.1. Let G be a graph with neighborhood sigma algebra P(V (G)).

If P3 is not a component of G and for n > 2, K1,n is not an induced subgraph of

G, then the neighborhood sigma algebra of L(G) is P(V (L(G))).

Proof. For x ∈ V (L(G)), let NL[x] denote {x}
⋃
{u ∈ V (L(G)) : u is

adjacent to x in L(G)}. Let e and f be two distinct vertices of L(G). Then

e and f are two distinct edges of G. Suppose NL[e] = NL[f ]. This implies e

and f are two adjacent vertices of L(G) and hence e and f are two adjacent

edges of G. With out loss of generality assume that e = uv and f = vw, where

u, v, w ∈ V (G). Suppose u and w are adjacent in G. Since NG[u] 6= NG[w],

there exists x ∈ V (G) such that x belongs to NG[u] or NG[w] but not both.

If x ∈ NG[u], ux ∈ NL[e] and ux /∈ NL[f ]. If x ∈ NG[w], wx ∈ NL[f ] and

wx /∈ NL[e]. This will imply NL[e] 6= NL[f ]. Therefore u and w are not adjacent

in G. It is given that P3 is not a component of G. Therefore, in G, u, v or w is

adjacent to a vertex in V (G) \ {u, v, w}. Since K1,n is not an induced subgraph

of G, we can say that, in G, u or w is adjacent to a vertex x ∈ V (G) \ {u, v, w}.

If ux ∈ E(G), then ux ∈ NL[e] but ux /∈ NL[f ], which is a contradiction. A

similar contradiction arises when wx ∈ E(G). Hence the theorem.

Corollary 2.3.2. (1). The neighborhood sigma algebra of L(Cn) is P(V (L(Cn))),

for all n > 3.

(2). The neighborhood sigma algebra of L(Pn) is P(V (L(Pn))), for all n > 3.
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2.4 Middle Graph

In this section we determine the neighborhood sigma algebra of the middle

graph of a graph.

Theorem 2.4.1. Let G be a graph and M(G) be its middle graph. Then the

neighborhood sigma algebra of M(G) is P(V (M(G))). In particular every func-

tion on V (M(G)) is measurable.

Proof. For x ∈ V (M(G)), let NM [x] denote {x}
⋃
{u ∈ V (M(G)) : u is

adjacent to x in M(G)}. Let u and v be two distinct vertices of M(G). We

consider three cases.

Case 1. u ∈ V (G) and v ∈ E(G).

Let v = xy with x, y ∈ V (G). ThenNM [u] = {u}
⋃
{f ∈ E(G) : f is incident with

u in G} and NM [v] = {v, x, y}
⋃
{f ∈ E(G) : f is adjacent to v in G}. Therefore

NM [u] 6= NM [v].

Case 2. u, v ∈ V (G) .

Then NM [u] 6= NM [v], because no two vertices of G are adjacent in M(G).

Case 3. u, v ∈ E(G).

Let u = u1v1 and v = u2v2 with u1, v1, u2, v2 ∈ V (G). Then NM [u] contains

both u1 and v1. But, as u 6= v, not both u1 and v1 are in NM [v]. Therefore

NM [u] 6= NM [v].

Hence NM [x] and NM [y] are distinct for any two distinct vertices x, y of M(G).

Therefore the neighborhood sigma algebra of M(G) is P(V (M(G))).
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Note 2.4.2. Let G be a graph with two vertices u and v such that N [u] =

N [v]. Then G is not middle graph of any graph.

2.5 Total Graph

This section is devoted to determine the neighborhood sigma algebra of the

total graph of a graph.

Theorem 2.5.1. Let G be a graph such that every component of G is different

from P2 and T (G) be its total graph. Then the neighborhood sigma algebra of

T (G) is P(V (T (G))).

Proof. If G =
−
Kn, n = 1, 2, ... then the result is obvious. Suppose that G 6=

−
Kn

for every n. Then n(G) ≥ 3. For x ∈ V (T (G)), let NT [x] denote {x}
⋃
{u ∈

V (T (G)) : u is adjacent to x in T (G)}. Let u and v be two distinct vertices of

T (G). We consider the following cases.

Case 1. u, v ∈ E(G).

Let u = u1v1 and v = u2v2 with u1, v1, u2, v2 ∈ V (G). Then u1, v1 ∈ NT [u]. But

not both of them belongs to NT [v]. Therefore NT [u] 6= NT [v].

Case 2. u ∈ V (G) and v ∈ E(G).

If possible assume that NT [u] = NT [v]. Then v is incident with u in G. Let

v = uw, w ∈ V (G). If w′ 6= w is adjacent to u in G then w′ ∈ NT [u]. But

w′ /∈ NT [v]. Hence in G, u is adjacent to w only. That means u is an end vertex.

Suppose v is adjacent to an edge v′ in G. Then u is not incident on v′ since u is an
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end vertex. Hence v′ ∈ NT [v] but v′ /∈ NT [u]. So there does not exist v′ ∈ E(G),

adjacent to v in G. This will imply P2 is a component of G, a contradiction.

Case 3. u, v ∈ V (G).

If possible assume that NT [u] = NT [v]. This implies u and v are adjacent in G.

Suppose there exists w( 6= v) in V (G) which is adjacent to u in G. Then e = uw

will be an edge in G such that e ∈ NT [u] but e /∈ NT [v]. Therefore in G, u is

adjacent to v only. Hence u is an end vertex of G. Similarly we can prove that

v is an end vertex of G. Hence P2 is a component of G, a contradiction.

Thus if P2 is not a component ofG, thenNT [x] 6= NT [y] for x 6= y ∈ V (T (G)).

Corollaries 2.5.2 and 2.5.3 are immediate consequences of Theorem 2.5.1.

Corollary 2.5.2. Since T (P2) is K3 we have: Let G be a graph such that no

component of G is K3. If there exists two vertices u and v in G such that

N [u] = N [v] . Then G is not total graph of any graph.

Corollary 2.5.3. Let G be the total graph of a graph such that no component of

G is K3. Then all functions defined from V (G) are measurable.

2.6 1-quasi-total Graph and 2-quasi-total Graph

This section deals with the neighborhood sigma algebras of 1-quasi-total

graph and 2-quasi-total graph of a graph.

Definition 2.6.1. [25] Let G be a graph. The 1-quasi-total graph, Q1(G),
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2.6. 1-quasi-total Graph and 2-quasi-total Graph

of G is the graph with vertex set V (G)
⋃
E(G) and in which two vertices u and

v are adjacent if they satisfy one of the following conditions:

(1). u, v are in V (G) and u, v are adjacent in G.

(2). u, v are in E(G) and u, v are adjacent in G.
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Figure 2.7: Complete graph K3 and its 1-quasi-total graph Q1(K3)

Theorem 2.6.2. Let G be a graph with neighborhood sigma algebra P(V (G)).

If P3 is not a component of G and K1,n, where n > 2, is not an induced subgraph

of G, then the neighborhood sigma algebra of Q1(G) is P(V (Q1(G))).

Proof. 1-quasi-total graph Q1(G) of the graph G is the disjoint union of G and

its line graph L(G). By Theorem 2.3.1, neighborhood sigma algebra of L(G) is

P(V (L(G))). Therefore neighborhood sigma algebra of Q1(G) is P(V (Q1(G))).

Corollary 2.6.3. (1). The neighborhood sigma algebra of Q1(Cn) is P(V (Q1(Cn))),

for all n > 3.
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2.6. 1-quasi-total Graph and 2-quasi-total Graph

(2). The neighborhood sigma algebra of Q1(Pn) is P(V (Q1(Pn))), for all n > 3.

Definition 2.6.4. [5] Let G be a graph. The 2-quasi-total graph, Q2(G),

of G is the graph with vertex set V (G)
⋃
E(G) and in which two vertices u and

v are adjacent if they satisfy one of the following conditions:

(1) u and v are in V (G) and u and v are adjacent in G.

(2) u is in V (G), v is in E(G) and v is incident u in G.
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Figure 2.8: Complete graph K3 and its 2-quasi-total graph Q2(K3)

Theorem 2.6.5. Let G be a graph without end vertices, then the neighborhood

sigma algebra of Q2(G) is P(V (Q2(G))).

Proof. For u ∈ V (Q2(G)), let NQ2 [u] = {u}
⋃
{v ∈ V (Q2(G)) : v is adjacent to

u in Q2(G)}. Let v, e ∈ V (Q2(G)) be such that v ∈ V (G) and e ∈ E(G).

Suppose NQ2 [v] = NQ2 [e]. Then e and v are adjacent vertices in Q2(G). Then

from the definition of Q2(G), it is clear that v is incident on e in G. Let e = uv,

u ∈ V (G). Since G does not have end vertices, in G, v is adjacent to a vertex
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2.6. 1-quasi-total Graph and 2-quasi-total Graph

x ∈ V (G) \ {u}. Then x ∈ NQ2 [v], but x /∈ NQ2 [e], which is a contradiction to

the fact that NQ2 [v] = NQ2 [e]. Hence NQ2 [v] /∈ NQ2 [e].

Suppose v1 and v2 be two distinct vertices of Q2(G) such that v1, v2 ∈ V (G).

Assume that NQ2 [v1] = NQ2 [v2]. This implies v1 and v2 are adjacent in G. Since

G does not have end vertices there exists a vertex, w ∈ V (G) \ {v2} such that

w is adjacent to v1 in G. Then e = v1w is an edge in G and hence it is a

member of NQ2 [v1]. But then v2 is not incident on e. So e /∈ NQ2 [v2]. Therefore

NQ2 [v1] 6= NQ2 [v2].

Suppose e1 and e2 be two distinct vertices of Q2(G) such that e1, e2 ∈ E(G).

From the definition of Q2(G) it is clear that e1 and e2 are not adjacent in Q2(G).

Therefore NQ2 [e1] 6= NQ2 [e2]. This completes the proof.

Corollary 2.6.6. (1). The neighborhood sigma algebra of Q2(Cn) is P(V (Q2(Cn))),

for all n ≥ 3.

(2). The neighborhood sigma algebra of Q2(Kn) is P(V (Q2(Kn))), for all n 6= 2.
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Chapter 3
Neighborhood Sigma Algebras of Join

and Products of Two Graphs

In this chapter we discuss the neighborhood sigma algebra of join of two

graphs and that of different products of two graphs.

3.1 Join of Two Graphs

This section deals with the neighborhood sigma algebra of join of two graphs

Notation 3.1.1. For any graph G, DG denotes the set {v ∈ V (G) : dG(v) =

n(G)− 1}.

Theorem 3.1.2. Let G1 and G2 be two vertex disjoint graphs and J be their

join. Then for i = 1, 2 and v ∈ V (Gi), EJ
v = EGi

v if v /∈ DGi
.
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3.1. Join of Two Graphs

Proof. Let v ∈ V (G1) be such that dG1(v) 6= n(G1)− 1.

First of all note that no vertex of G2 belong to EJ
v . If possible let the vertex

w of G2 belong to EJ
v . Then V (G1) ⊂ NJ [w] = NJ [v], a contradiction. Thus

EJ
v ⊂ V (G1).

Let u be a vertex G1. Then,

u ∈ EG1
v ⇔ EG1

u = EG1
v

⇔ NG1 [u] = NG1 [v], by Theorem 2.1.14.

⇔ NG1 [u] ∪ V (G2) = NG1 [v] ∪ V (G2)

⇔ NJ [u] = NJ [v]

⇔ u ∈ EJ
v .

Thus EJ
v = EG1

v .

A similar argument shows that if v ∈ V (G2) and dG2(v) 6= n(G2) − 1, then

EJ
v = EG2

v . Hence the theorem.

Note 3.1.3. If DGi
= ∅ for i = 1, 2 and v ∈ Gi, then EJ

v = EGi
v .

Theorem 3.1.4. Let G and H be two vertex disjoint graphs and J be their join.

Let v ∈ V (G) be such that v ∈ DG. Then EJ
v = EG

v

⋃
DH .

Proof. Let v ∈ V (G) be such that dG(v) = n(G)− 1 and u ∈ EG
v . Then NG[u] =

NG[v]. Since NJ [u] = NG[u]
⋃
V (H) and NJ [v] = NG[v]

⋃
V (H), NJ [u] = NJ [v].

Hence u ∈ EJ
v . Therefore EG

v ⊆ EJ
v . Suppose u ∈ V (H) and dH(u) = n(H)− 1.
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3.1. Join of Two Graphs

Then

NJ [u] = NH [u]
⋃
V (G)

= V (H)
⋃
V (G).

Also

NJ [v] = NG[v]
⋃
V (H)

= V (G)
⋃
V (H)

Thus NJ [u] = NJ [v]. Hence u ∈ EJ
v . Therefore DH ⊆ EJ

v .

To prove the reverse inclusion, let u ∈ EJ
v . Then NJ [u] = NJ [v] and u ∈ V (G)

or V (H). Let u ∈ V (G). Since NG[u] and NG[v] are disjoint from V (H) and since

NG[u]∪V (H) = NJ [u] = NJ [v] = NG[v]∪V (H), NG[u] = NG[v]. Hence u ∈ EG
v .

Suppose u ∈ V (H). Hence NH [u]
⋃
V (G) = NJ [u] = NJ [v] = NG[v]

⋃
V (H) =

V (G)
⋃
V (H). Hence NH [u] = V (H). That is dH(u) = n(H) − 1. Therefore

EJ
v = EG

v

⋃
DH .

Theorem 3.1.5. Let G1 and G2 be two vertex disjoint graphs. Also let f1 be

a measurable function defined from V (G1) into [0, 1] and f2 be a measurable

function defined from V (G2) into [0, 1].

(i) If DG1 = ∅ or DG2 = ∅ , then the function g : V (G1∨G2) −→ [0, 1] defined

by,

g(v) =


f1(v) if v ∈ V (G1)

f2(v) if v ∈ V (G2)

is a measurable function.
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3.1. Join of Two Graphs

(ii) If DG1 6= ∅ and DG2 6= ∅, then the function h : V (G1∨G2) −→ [0, 1] defined

by,

h(v) =


f1(v) if v ∈ V (G1) \DG1

f2(v) if v ∈ V (G2) \DG2

rs if v ∈ DG1

⋃
DG2

where r is the value of f1 on DG1 and s is the value of f2 on DG2, is a

measurable function.

Proof. (i) Suppose DG1 = ∅ or DG2 = ∅.

To prove g is measurable it is enough to prove that g is constant on EJ
v

for all v ∈ V (G1 ∨ G2) by theorem 2.1.25. Assume that DG1 = ∅. Let

v ∈ V (G1). Then EJ
v = EG1

v , by Theorem 3.1.2. Also g ≡ f1 on V (G1).

Since f1 is measurable, f1 is constant on EG1
v . This implies g is constant

on EJ
v . Let v ∈ V (G2). If v /∈ DG2 , E

J
v = EG2

v , again by Theorem 3.1.2.

Also g ≡ f2 on V (G2). Since f2 is measurable, f2 is constant on EG2
v . This

implies g is constant on EJ
v . If v ∈ DG2 ,

EJ
v = EG2

v

⋃
DG1

= EG2
v , since DG1 = ∅.

Also g ≡ f2 on G2. Since f2 is measurable, f2 is constant on EG2
v . This

implies g is constant on EG2
v . Therefore g is constant on EJ

v for all v ∈

V (G1 ∨G2).
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3.2. Graph Products

Similarly, if DG2 = ∅ we can also prove that g is constant on EJ
v for all

v ∈ V (G1 ∨G2).

(ii) Suppose DG1 6= ∅ and DG2 6= ∅. Let v ∈ V (G1 ∨ G2). Without loss of

generality suppose that v ∈ V (G1). If v /∈ DG1 , E
J
v = EG1

v , by Theorem

3.1.2. Let u ∈ EG1
v . Then NG1 [u] = NG1 [v]. Therefore dG1(u) = dG1(v).

Hence u /∈ DG1 . This implies EG1
v ⊆ V (G1) \ DG1 . Therefore h ≡ f1 on

EG1
v . Since f1 is measurable, f1 is a constant on EG1

v . Hence h is a constant

on EG1
v . If v ∈ DG1 , then EJ

v = EG1
v

⋃
DG2 , by Theorem 3.1.4. Since

v ∈ DG1 , E
G1
v = DG1 by Theorem 2.1.27. Therefore EJ

v = DG1

⋃
DG2 .

Since h(u) = rs for all u ∈ EJ
v , h is a constant on EJ

v . Hence h is a

constant on EJ
v for all v ∈ V (G1). Similarly we can prove that h is a

constant on EJ
v for all v ∈ V (G2) also. Hence h is measurable.

3.2 Graph Products

A graph product of two graphs G and H is a new graph whose vertex set

is V (G) × V (H) and for any two vertices (g, h) and (g
′
, h

′
) in the product,

the adjacency is determined entirely by the adjacency of g and g
′

in G and

that of h and h
′

in H. The commonly used graph products are lexicographic

product, tensor product, Cartesian product, normal product, co-normal product

and homomorphic product. In this section the neighborhood sigma algebras of
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3.2. Graph Products

these graph products are determined.

3.2.1 Lexicographic Product

The lexicographic product [17] G1[G2] of two graphs G1 and G2 is the graph

with vertex set V (G1)×V (G2) and two vertices (u1, v1) and (u2, v2) are adjacent

in G1[G2] if either u1u2 ∈ E(G1) or u1 = u2 and v1v2 ∈ E(G2).

From the definition of the lexicographic product G1[G2] of the graphs G1

and G2, it is clear that N [(u, v)] = (N(u) × V (G2))
⋃

({u} × N [v]), for (u, v) ∈

V (G1[G2]).

Theorem 3.2.1. Let G1 and G2 be two graphs and (u, v), (x, y) ∈ V (G1[G2]).

Then N [(u, v)] = N [(x, y)] if and only if one of the following conditions holds:

(i)u = x and N [v] = N [y]

(ii)N [u] = N [x] and N [v] = N [y] = V (G2)

Proof. Suppose that N [(u, v)] = N [(x, y)]. Then (u, v) and (x, y) are adjacent in

G1[G2]. Therefore u = x or u and x are adjacent. Suppose u = x. Then let, if

possible, w ∈ N [v]\N [y] (or w ∈ N [y]\N [v] ). Then (u,w) ∈ N [(u, v)]\N [(x, y)]

(or (u,w) ∈ N [(x, y)] \N [(u, v)]), a contradiction. Therefore N [v] = N [y].

Suppose u 6= x. Then u and x are adjacent. Let, if possible, z ∈ N [u] \

N [x] (or z ∈ N [x] \ N [u] ). Then (z, v) ∈ N [(u, v)] \ N [(x, y)] (or (z, y) ∈

N [(x, y)] \ N [(u, v)]), a contradiction. Therefore N [u] = N [x]. Let, if possible,

w ∈ V (G2)\N [v]. Then (u,w) ∈ N [(x, y)]\N [(u, v)], a contradiction. Therefore
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3.2. Graph Products

N [v] = V (G2). Similarly we can prove that N [y] = V (G2).

Conversely assume that either (i) or (ii) holds.

If (i) holds then,

N [(u, v)] = (N(u)× V (G2))
⋃

({u} ×N [v])

= (N(x)× V (G2))
⋃

({x} ×N [y])

= N [(x, y)]

If (ii) holds then,

N [(u, v)] = (N(u)× V (G2))
⋃

({u} ×N [v])

= (N(u)× V (G2))
⋃

({u} × V (G2))

= N [u]× V (G2)

= N [x]× V (G2)

= (N(x)× V (G2))
⋃

({x} × V (G2))

= (N(x)× V (G2))
⋃

({x} ×N [y])

= N [(x, y)]

Hence the theorem.

Lemma 3.2.2. Let G1 and G2 be two graphs with (u, v) ∈ V (G1[G2]). Then

E(u,v) ⊆ Eu × Ev.

Proof. Let (u′, v′) ∈ E(u,v). Then N [(u′, v′)] = N [(u, v)]. Therefore by Theorem

3.2.1, either u′ = u and N [v′] = N [v] or N [u′] = N [u] and N [v′] = N [v] = V (G2).
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3.2. Graph Products

In both the cases it is clear that u′ ∈ Eu and v′ ∈ Ev. Hence the lemma.

Remark 3.2.3. There are graphs in which the inclusion in the Lemma 3.2.2 is

strict.

To see this consider the graphs in Figure 3.1.
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Figure 3.1: Lexicographic product of the graphs G1 and G2

Since u2 ∈ Eu1 and v1 ∈ Ev1, (u2, v1) ∈ Eu1 × Ev1. But (u2, v1) /∈ E(u1,v1),

because (u1, v3) ∈ N [(u2, v1)] \N [(u1, v1)].

Definition 3.2.4. [23] Suppose (X,S) and (Y, T ) are two measurable

spaces. A measurable rectangle is any set of the form A× B, where A ∈ S and

B ∈ T .

Definition 3.2.5. [23] Suppose that (X,S) and (Y, T ) are two measurable

spaces. The product sigma algebra S × T is defined to be the smallest sigma

algebra in X × Y which contains every measurable rectangles.

Proposition 3.2.6. Let G1 and G2 be two graphs. Then AG1 ×AG2 ⊆ AG1[G2].
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Proof. For i = 1, 2, any element of AGi
can be written as the disjoint union

of elements of the collection {Eu : u ∈ V (Gi)}. Therefore the generating sets

of AG1 × AG2 can be written as the disjoint union of elements of the collection

{Eu × Ev : u ∈ V (G1) and v ∈ V (G2)}. Also AG1 × AG2 contains {Eu × Ev :

u ∈ V (G1) and v ∈ V (G2)}. Therefore to prove the proposition it is enough to

prove that Eu × Ev ∈ AG1[G2] for all (u, v) ∈ V (G1)× V (G2).

Let (u, v) ∈ V (G1) × V (G2). Also let (x, y) ∈ Eu × Ev. Then x ∈ Eu and

y ∈ Ev. This implies Ex = Eu and Ey = Ev. Therefore, by Lemma 3.2.2, E(x,y) ⊆

Ex×Ey = Eu×Ev. Hence for (u, v) ∈ V (G1)×V (G2), Eu×Ev can be written as

countable disjoint union of the collection {E(x,y) : (x, y) ∈ Eu × Ev}. Therefore

Eu × Ev ∈ AG1[G2] for all (u, v) ∈ V (G1)× V (G2). Hence the proposition.

Remark 3.2.7. The reverse inclusion in Proposition 3.2.6 is not true in general.

To see this consider the graphs in Figure 3.1.

{(u1, v1)} ∈ AG1[G2]. As every measurable set in G1 containing u1 also contains

u2, every element in AG1 ×AG2 containing (u1, v1) also contains (u2, v1). Thus

{(u1, v1)} /∈ AG1 ×AG2.

Proposition 3.2.8. Let G1 and G2 be two graphs. Also let f1 : V (G1) −→ [0, 1]

and f2 : V (G2) −→ [0, 1] be two measurable functions. Then the function f :

V (G1[G2]) −→ [0, 1] defined by f((u, v)) = f1(u)f2(v) is measurable.

Proof. Let (u, v) ∈ V (G1[G2]) and (u′, v′) ∈ E(u,v). Then (u′, v′) ∈ Eu × Ev by

Lemma 3.2.2. This implies u′ ∈ Eu and v′ ∈ Ev. Hence f1(u
′) = f1(u) and
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3.2. Graph Products

f2(v
′) = f2(v). Therefore f((u′, v′)) = f((u, v)). Hence by Proposition 2.1.25,

f is measurable.

3.2.2 Tensor Product

The tensor product [19] G1 ⊗ G2 of two graphs G1 and G2 is the graph with

vertex set V (G1) × V (G2) and two vertices (u1, v1) and (u2, v2) are adjacent in

G1 ⊗G2 if u1u2 ∈ E(G1) and v1v2 ∈ E(G2).

It is clear that, N [(u, v)] = {(u, v)}
⋃

(N(u)×N(v)), for (u, v) ∈ V (G1⊗G2).

Hence, if u is an isolated vertex of G1 or v is an isolated vertex G2, then (u, v)

is an isolated vertex of G1 ⊗G2.

Theorem 3.2.9. Let G1 and G2 be two graphs. Suppose u and v are distinct non

isolated vertices of G1 and x and y are distinct non isolated vertices of G2. Then

N [(u, v)] = N [(x, y)] if and only if N [u] = N [x] = {u, x} and N [v] = N [y] =

{v, y}.

Proof. Let N [(u, v)] = N [(x, y)]. Then u is adjacent to x and v is adjacent to

y. Let, if possible w(6= u) ∈ N [u] \ N [x]. Then for any z ∈ N(v), (w, z) ∈

N [(u, v)] \ N [(x, y)], which contradicts the assumption N [(u, v)] = N [(x, y)].

Therefore N [u] = N [x].

If possible, let p(6= x) ∈ N(u). Then (p, y) ∈ N [(u, v)]. But (p, y) /∈ N [(x, y)].

Hence N [u] = N [x] = {u, x}. Similarly we can prove that N [v] = N [y] = {v, y}.

Conversely assume that N [u] = N [x] = {u, x} and N [v] = N [y] = {v, y}.
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3.2. Graph Products

Then,

N [(u, v)] = {(u, v)}
⋃

(N(u)×N(v))

= {(u, v)}
⋃
{(x, y)}

= {(u, v), (x, y)}

and

N [(x, y)] = {(x, y)}
⋃

(N(x)×N(y))

= {(x, y)}
⋃
{(u, v)}

= {(x, y), (u, v)}

This completes the proof.

Corollary 3.2.10. Let G1 and G2 be two graphs. If G1 or G2 does not have P2 as

a component then the neighborhood sigma algebra of G1⊗G2 is P(V (G1⊗G2)).

Note 3.2.11. LetG1 andG2 be two graphs. For two distinct vertices u and x

of G1 and for two distinct vertices v and y of G2, the conditionsN [u] = N [x] inG1

and N [v] = N [y] in G2 are not sufficient to guarantee that N [(u, v)] = N [(x, y)]

in G1 ⊗G2.

For example consider K2 ⊗K3.
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Figure 3.2: Tensor product of K2 and K3

Here N [u1] = N [u2] in K2 and N [v1] = N [v2] in K3. But N [(u1, v1)] 6=

N [(u2, v2)] in K2 ⊗K3.

Lemma 3.2.12. Let G1 and G2 be two graphs with (u, v) ∈ V (G1 ⊗G2). Then

E(u,v) ⊆ Eu × Ev.

Proof. If u is an isolated vertex of G1 or v is an isolated vertex of G2 then (u, v)

is an isolated vertex of G1 ⊗G2. In this case E(u,v) = {(u, v)}. Suppose u and v

are two non isolated vertices of G1 and G2 respectively. If (u′, v′) ∈ E(u,v), then

N [(u′, v′)] = N [(u, v)]. Therefore by Theorem 3.2.9, N [u] = N [u′] = {u, u′} and

N [v] = N [v′] = {v, v′}. So, u′ ∈ Eu and v′ ∈ Ev. Hence the lemma.

Remark 3.2.13. The reverse inclusion in Lemma 3.2.12 is not true in general.

For example consider the graphs in Figure 3.3.
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Figure 3.3: Tensor product of the graphs G1 and G2

Since u2 ∈ Eu1 and v1 ∈ Ev1, (u2, v1) ∈ Eu1 × Ev1. But (u1, v2) ∈ N [(u2, v1)]

and (u1, v2) /∈ N [(u1, v1)]. Therefore (u2, v1) /∈ E(u1,v1).

Proposition 3.2.14. Let G1 and G2 be two graphs. Then AG1×AG2 ⊆ AG1⊗G2.

Proof. Similar to the proof of Proposition 3.2.6

Remark 3.2.15. The reverse inclusion in Proposition 3.2.14 is not true in gen-

eral.

Consider the graphs in Figure 3.3. By the same arguments in Remark 3.2.7,

we get AG1⊗G2 * AG1 ×AG2.

Proposition 3.2.16. Let G1 and G2 be two graphs. Also let f1 : V (G1) −→

[0, 1] and f2 : V (G2) −→ [0, 1] be two measurable functions. Then the function

f : V (G1 ⊗G2) −→ [0, 1] defined by f((u, v)) = f1(u)f2(v) is measurable.
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Proof. For (u, v) ∈ V (G1 ⊗G2), E(u,v) ⊆ Eu × Ev. Hence the proof is similar to

the proof of Proposition 3.2.8.

3.2.3 Cartesian Product

The Cartesian product [16] G1 × G2 of two graphs G1 and G2 is the graph

with vertex set V (G1)×V (G2) and two vertices (u1, v1) and (u2, v2) are adjacent

in G1×G2 whenever u1 = u2 and v1 adjacent to v2 in G2 or u1 adjacent to u2 in

G1 and v1 = v2.

For (u, v) ∈ V (G1 ×G2), N [(u, v)] = ({u} ×N [v])
⋃

(N [u]× {v}).

Theorem 3.2.17. Let G1 and G2 be two graphs. Suppose (u, v) and (x, y) are

two distinct vertices of G1×G2. Then N [(u, v)] = N [(x, y)] if and only if one of

the following conditions holds:

(i) u = x, u is an isolated vertex of G1 and N [v] = N [y]

(ii) v = y, v is an isolated vertex of G2 and N [u] = N [x].

Proof. If N [(u, v)] = N [(x, y)], then (u, v) is adjacent to (x, y). Therefore either

u = x or v = y.

Suppose that u = x. Then v 6= y since (u, v) 6= (x, y). If there exists a vertex

w ∈ N(u), then (w, v) ∈ N [(u, v)]. But (w, v) /∈ N [(x, y)]. Hence u is an isolated

vertex of G. If N [v] 6= N [y], then without loss of generality we can assume that

there exists a vertex z ∈ N [v] \ N [y]. Then (u, z) ∈ N [(u, v)] \ N [(x, y)]. Thus

N [v] = N [y].
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If v = y, then u 6= x since (u, v) 6= (x, y). Then proceeding as above we can

prove that v is an isolated vertex of G2 and N [u] = N [x].

Conversely if condition (i) holds, then

N [(u, v)] = ({u} ×N [v])
⋃

(N [u]× {v})

= ({u} ×N [v])
⋃

({u} × {v})

= {u} ×N [v]

= {x} ×N [y]

= ({x} ×N [y])
⋃

({x} × {y})

= ({x} ×N [y])
⋃

(N [x]× {y})

= N [(x, y)]

Similarly we can show that condition(ii) also implies N [(u, v)] = N [(x, y)]. Hence

the theorem.

Corollary 3.2.18. If two graphs G1 and G2 have no isolated vertices then the

neighborhood sigma algebra of G1 ×G2 is P(V (G1 ×G2)).

Corollary 3.2.19. If G1 is a graph with neighborhood sigma algebra P(V (G1))

and G2 is a graph with neighborhood sigma algebra P(V (G2)), then neighborhood

sigma algebra of G1 ×G2 is P(V (G1 ×G2)).

Lemma 3.2.20. Let G1 and G2 be two graphs with (u, v) ∈ V (G1 ×G2). Then

E(u,v) ⊆ Eu × Ev.

Proof. Let (u′, v′) ∈ E(u,v), then N [(u′, v′)] = N [(u, v)]. Therefore by Theorem
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3.2.17, N [u] = N [u′] and N [v] = N [v′]. So, u′ ∈ Eu and v′ ∈ Ev. Hence the

lemma.

Remark 3.2.21. The reverse inclusion in Lemma 3.2.20 is not true in general.

Consider the graphs given in Figure 3.4.
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Figure 3.4: Cartesian product of the graphs G1 and G2

E(u1,v1) = {(u1, v1)} and Eu1 × Ev1 = {(u1, v1), (u2, v1)}.

The following two propositions can be proved as in the proofs of Propositions

3.2.6 and 3.2.8.

Proposition 3.2.22. Let G1 and G2 be two graphs. Then AG1×AG2 ⊆ AG1×G2.

Proposition 3.2.23. Let G1 and G2 be two graphs. Also let f1 : V (G1) −→

[0, 1] and f2 : V (G2) −→ [0, 1] be two measurable functions. Then the function

f : V (G1 ×G2) −→ [0, 1] defined by f((u, v)) = f1(u)f2(v) is measurable.
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Remark 3.2.24. The reverse inclusion in Proposition 3.2.22 is not true in gen-

eral. For example consider the graphs in Figure 3.4. By the same arguments in

Remark 3.2.7, we get AG1×G2 * AG1 ×AG2.

3.2.4 Normal Product

The normal product [24] G1 �G2 of two graphs G1 and G2 is the graph with

vertex set V (G1) × V (G2) and two vertices (u1, v1) and (u2, v2) are adjacent in

G1 �G2 if one of the following conditions holds:

(i) u1 = u2 and v1v2 ∈ E(G2)

(ii) u1u2 ∈ E(G1) and v1 = v2

(iii) u1u2 ∈ E(G1) and v1v2 ∈ E(G2).

For (u, v) ∈ V (G1�G2), N [(u, v)] = N [u]×N [v]. Hence we have the following

theorem.

Theorem 3.2.25. For the graphs G1 and G2, let (u, v) and (x, y) be two distinct

vertices of V (G1 � G2). Then N [(u, v)] = N [(x, y)] if and only if N [u] = N [x]

and N [v] = N [y].

Proof.

N [(u, v)] = N [(x, y)] ⇔ N [u]×N [v] = N [x]×N [y]

⇔ N [u] = N [x] and N [v] = N [y]
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Lemma 3.2.26. Let G1 and G2 be two graphs with (u, v) ∈ V (G1 �G2). Then

E(u,v) = Eu × Ev.

Proof.

(u′, v′) ∈ Eu × Ev ⇔ u′ ∈ Eu and v′ ∈ Ev

⇔ Eu′ = Eu and Ev′ = Ev

⇔ N [u′] = N [u] and N [v′] = N [v]

⇔ N [(u′, v′)] = N [(u, v)], by Theorem 3.2.25.

⇔ E(u′,v′) = E(u,v)

⇔ (u′, v′) ∈ E(u,v)

Hence the lemma.

Proposition 3.2.27. Let G1 and G2 be two graphs. Then AG1×AG2 = AG1�G2.

Proof. Any element of AG1 can be written as the disjoint union of elements of the

collection {Ev : v ∈ V (G1)} and any element ofAG2 can be written as the disjoint

union of elements of the collection {Ev : v ∈ V (G2)}. Therefore the generating

sets of AG1×AG2 can be written as the disjoint union of elements of the collection

{Eu×Ev : u ∈ V (G1) and v ∈ V (G2)}. But we have E(u,v) = Eu×Ev by Lemma

3.2.26. Therefore all generating sets of AG1 × AG2 belong to AG1�G2 . Hence

AG1 ×AG2 ⊆ AG1�G2 .
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Any element of AG1�G2 can be written as the disjoint union of elements of

the collection {E(u,v) : (u, v) ∈ V (G1 � G2)}. Since E(u,v) = Eu × Ev for all

(u, v) ∈ V (G1 �G2), it is clear that AG1�G2 ⊆ AG1 ×AG2 .

Proposition 3.2.28. Let G1 and G2 be two graphs. Also let f1 : V (G1) −→

[0, 1] and f2 : V (G2) −→ [0, 1] be two measurable functions. Then the function

f : V (G1 �G2) −→ [0, 1] defined by f((u, v)) = f1(u)f2(v) is measurable.

Proof. To prove f is measurable it is enough to prove that f is constant on E(u,v)

for each (u, v) ∈ V (G1 � G2). Since f1 and f2 are measurable functions, f1 is a

constant on Eu for each u ∈ V (G1) and f2 is a constant on Ev for each v ∈ V (G2).

Therefore f is a constant on Eu×Ev = E(u,v), for each (u, v) ∈ V (G1 �G2).

3.2.5 Co-normal Product

The co-normal product [2] G1 ∗G2 of two graphs G1 and G2 is the graph with

vertex set V (G1) × V (G2) and two vertices (u1, v1) and (u2, v2) are adjacent in

G1 ∗G2 if either u1u2 ∈ E(G1) or v1v2 ∈ E(G2).

This section deals with the neighborhood sigma algebra of co-normal product

of two graphs. It is clear that for (u, v) ∈ V (G1∗G2), N [(u, v)] = {(u, v)}
⋃

(N(u)×

V (G2))
⋃

(V (G1)×N(v)).

Theorem 3.2.29. Let (u1, v1) and (u2, v2) be two distinct vertices of G1 ∗ G2.

Then N [(u1, v1)] = N [(u2, v2)] if and only if one of the following conditions holds:
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(i) u1 = u2, N [u1] = V (G1) and N [v1] = N [v2]

(ii) N [u1] = N [u2], v1 = v2 and N [v1] = V (G2)

(iii) N [u1] = N [u2] = V (G1) and N [v1] = N [v2] = V (G2).

Proof. Suppose that N [(u1, v1)] = N [(u2, v2)].

Let u1 = u2 = u. Since N [(u1, v1)] = N [(u2, v2)], v1 adjacent to v2. Sup-

pose N [u] 6= V (G1). Then there exists u
′ ∈ V (G1) \ N [u] such that (u

′
, v2) ∈

N [(u, v1)] \ N [(u, v2)], a contradiction. Therefore N [u] = V (G1). Suppose

N [v1] 6= N [v2]. Without loss of generality, assume that there exists v
′ ∈ V (G2)

such that v
′ ∈ N [v1] \ N [v2]. Then (u, v

′
) ∈ N [(u, v1)] \ N [(u, v2)], a contradic-

tion. Hence N [v1] = N [v2].

Similarly, if v1 = v2, we can prove that N [v1] = V (G2) and N [u1] = N [u2].

Suppose u1 6= u2 and v1 6= v2. Since N [(u1, v1)] = N [(u2, v2)], u1 is adjacent

to u2 or v1 is adjacent to v2. Suppose u1 is adjacent to u2. Assume that N [v1] 6=

N [v2]. Without loss of generality, assume that there exists a v
′ ∈ N [v1] \N [v2].

Then (u2, v
′
) ∈ N [(u1, v1)] \ N [(u2, v2)], a contradiction. Therefore N [v1] =

N [v2]. Suppose N [v1] 6= V (G2). Suppose v
′′ ∈ V (G2) \ N [v1]. Then (u2, v

′′
) ∈

N [(u1, v1)] \ N [(u2, v2)], a contradiction. Hence N [v1] = N [v2] = V (G2). This

implies v1 adjacent to v2 also. Proceeding in the similar manner we get N [u1] =

N [u2] = V (G1).

Conversely assume that condition (i) holds. Suppose u1 = u2 = u. Since

(u1, v1) and (u2, v2) are two distinct vertices of G1 ∗G2, v1 6= v2 and v1 adjacent
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to v2. Therefore, for i = 1, 2

N [(u, vi)] = {(u, vi)}
⋃

(N(u)× V (G2))
⋃

(V (G1)×N(vi))

= {(u, vi)}
⋃

((V (G1) \ {u})× V (G2))
⋃

(V (G1)×N(vi))

= ({u} ×N [vi])
⋃

((V (G1) \ {u})× V (G2))

By condition (i), N [v1] = N [v2]. Thus N [(u, v1)] = N [(u, v2)]. Similarly we can

show that condition(ii) also implies N [(u1, v1)] = N [(u2, v2)]. Suppose condition

(iii) holds. Then for i = 1, 2

N [(ui, vi)] = {(ui, vi)}
⋃

(N(ui)× V (G2))
⋃

(V (G1)×N(vi))

= {(ui, vi)}
⋃

((V (G1) \ {ui})× V (G2))
⋃

(V (G1)× (V (G2) \ {vi}))

= (V (G1)× V (G2))

Hence the theorem.

The following corollaries are immediate consequences of the Theorem 3.2.29.

Corollary 3.2.30. Let G1 and G2 be two graphs and (u, v) ∈ V (G1 ∗G2).

Then,

E(u,v) =



DG1 ×DG2 if u ∈ DG1 and v ∈ DG2

{u} × Ev if u ∈ DG1 and v /∈ DG2

Eu × {v} if u /∈ DG1 and v ∈ DG2

{(u, v)} if u /∈ DG1 and v /∈ DG2

Corollary 3.2.31. Let G1 and G2 be two graphs with DG1 = DG2 = ∅. Then

the neighborhood sigma algebra of G1 ∗G2 is P(V (G1 ∗G2)).
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Corollary 3.2.32. Let G1 be a graph with neighborhood sigma algebra P(V (G1))

and G2 be a graph with neighborhood sigma algebra P(V (G2)), then the neigh-

borhood sigma algebra of G1 ∗G2 is P(V (G1 ∗G2)).

Proposition 3.2.33. Let G1 and G2 be two graphs with (u, v) ∈ V (G1 ∗ G2).

Then E(u,v) ⊆ Eu × Ev.

Proof. Let (u′, v′) ∈ E(u,v). Therefore N [(u′, v′)] = N [(u, v)]. Hence by Theorem

3.2.29, N [u′] = N [u] and N [v′] = N [v]. Therefore u′ ∈ Eu and v′ ∈ Ev. Hence

the proposition.

Remark 3.2.34. The reverse inclusion in Proposition 3.2.33 is not true in gen-

eral. Consider the graphs in Figure 3.5.
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Figure 3.5: Co-normal product of the graphs G1 and G2

Since u2 ∈ Eu1 and v1 ∈ Ev1, (u2, v1) ∈ Eu1×Ev1. But (u1, v3) ∈ N [(u2, v1)]\

N [(u1, v1)]. Therefore (u2, v1) /∈ E(u1,v1).
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The following proposition can be proved using the techniques of the proof of

Proposition 3.2.6.

Proposition 3.2.35. Let G1 and G2 be two graphs. Then AG1×AG2 ⊆ AG1∗G2.

Remark 3.2.36. The reverse inclusion in Proposition 3.2.35 is not true in gen-

eral.

To see this consider the graphs in Figure 3.5. By the same arguments in Remark

3.2.7, we get AG1∗G2 * AG1 ×AG2.

Proposition 3.2.37. Let G1 and G2 be two graphs. Also let f1 : V (G1) −→ [0, 1]

and f2 : V (G2) −→ [0, 1] are two measurable functions. Then the function

f : V (G1 ∗G2) −→ [0, 1] defined by f((u, v)) = f1(u)f2(v) is measurable.

Proof. For (u, v) ∈ V (G1 ∗G2), E(u,v) ⊆ Eu × Ev. Therefore the proof is similar

to the proof of Proposition 3.2.8.

3.2.6 Homomorphic Product

The homomorphic product [18] G1nG2 of two graphs G1 and G2 is the graph

with vertex set V (G1)×V (G2) and two vertices (u1, v1) and (u2, v2) are adjacent

in G1 nG2 if either u1 = u2 or u1 is adjacent to u2 and v1 is not adjacent to v2.

It is clear that for (u, v) ∈ V (G1nG2), N [(u, v)] = ({u}× V (G2))
⋃

(N(u)×

N(v)c), where N(v)c denotes the complement of N(v) in V (G2).

Theorem 3.2.38. Let G1 and G2 be two graphs. If (u1, v1) and (u2, v2) are two

distinct vertices of G1 n G2, then N [(u1, v1)] = N [(u2, v2)] if and only if one of
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the following conditions holds:

(i) u1 = u2 and u1 is an isolated vertex of G1

(ii) u1 = u2, u1 is a non isolated vertex of G1 and N(v1) = N(v2)

(iii) u1 is adjacent to u2, N [u1] = N [u2] and v1 and v2 are isolated vertices

of G2.

Proof. Suppose that N [(u1, v1)] = N [(u2, v2)]. Then either u1 = u2 or u1 is

adjacent to u2.

Suppose u1 = u2 = u and u is a non isolated veretx of G1. Then there exits

u′ ∈ N(u). Assume that N(v1) 6= N(v2). Without loss of generality assume

that there exists a vertex v′ ∈ N(v1) \ N(v2). Then (u′, v′) /∈ N [(u, v1)] and

(u′, v′) ∈ N [(u, v2)], a contradiction. Therefore in this case N(v1) = N(v2).

Suppose u1 is adjacent to u2. If N [u1] 6= N [u2], without loss of general-

ity assume that there exists a vertex u′ which belongs to N [u1] \ N [u2]. Then

(u′, v1) ∈ N [(u1, v1)] \ N [(u2, v2)], a contradiction. Therefore N [u1] = N [u2]. If

v1 is not an isolated vertex of G2, then N(v1) 6= ∅. Let v′ ∈ N(v1). This implies

(u2, v
′) ∈ N [(u2, v2)] \N [(u1, v1)], a contradiction. Hence v1 is an isolated vertex

of G2. Similarly, we can prove that v2 is also an isolated vertex of G2.

Conversely assume that condition (i) holds. Suppose u1 = u2 = u. Since u is

an isolated vertex of G1, N(u) = ∅. Hence N [(u, v1)] = {u}×V (G2) = N [(u, v2)].

Suppose condition (ii) holds. Then by the definition of G1nG2, N [(u1, v1)] =

N [(u2, v2)].
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Suppose condition (iii) holds. Since v1 and v2 are isolated vertices of G2,

N(v1)
c = N(v2)

c = V (G2). Then,

N [(u1, v1)] = ({u1} × V (G2))
⋃

(N(u1)× V (G2))

= N [u1]× V (G2))

By condition (iii) N [u1] = N [u2]. This implies N [(u1, v1)] = N [(u2, v2)]. Hence

the theorem.

Corollary 3.2.39. If G1 and G2 are two graphs without isolated vertices and

N(v1) 6= N(v2), for all v1 6= v2 ∈ V (G2). Then the neighborhood sigma algebra

of G1 nG2 is P(V (G1 nG2)).

Notation 3.2.40. Let G be a graph and u ∈ V (G). Then E ′u denotes

the collection {u′ ∈ V (G) : N(u) = N(u′)} and IG denotes the collection of all

isolated vertices of G.

Corollary 3.2.41. Let G1 and G2 be two graphs and (u, v) ∈ V (G1 nG2).

Then,

(i) E(u,v) = {u} × V (G2), if u is an isolated vertex of G1.

(ii) E(u,v) = {u} × E ′v, if u is not an isolated vertex of G1 and v is not an

isolated vertex of G2.

(iii) E(u,v) = Eu × IG2, if u is not an isolated vertex of G1 and v is an isolated

vertex of G2.
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3.2. Graph Products

Note 3.2.42. Consider the graphs G1, G2 and G1 nG2 in Figure 3.6.

G1
G

2 G1 G
2

u1

u2

v
1

v
2

v
3

( u1
,v

1
) ( u1

,v
2

) ( u1
,v

3
)

( u2
,v

1
) ( u2

,v
2

) ( u2
,v

3
)

Figure 3.6: Homomorphic product of the graphs G1 and G2

It is clear thatE(u1,v1) = {(u1, v1), (u1, v3)} and Eu1×Ev1 = {(u1, v1), (u2, v1)}.

Therefore, E(u1,v1) * Eu1 × Ev1 and Eu1 × Ev1 * E(u1,v1).

In fact AG1 ×AG2 * AG1nG2 and AG1nG2 * AG1 ×AG2 .

Eu1 × Ev1 ∈ AG1 ×AG2 . If Eu1 × Ev1 ∈ AG1nG2 , then Eu1 × Ev1 ∩ E(u1,v1) =

{(u1, v1)} will be a member of AG1nG2 . This will contradicts the fact that

E(u1,v1) = {(u1, v1), (u1, v3)}. Therefore AG1 ×AG2 * AG1nG2 .

{(u1, v2)} ∈ AG1nG2 . As every measurable set in G1 containing u1 also con-

tains u2, every element in AG1 × AG2 containing (u1, v2) also contains (u2, v2).

Thus {(u1, v2)} /∈ AG1 ×AG2 . Therefore AG1nG2 * AG1 ×AG2 .
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Chapter 4
Common Neighborhood Polynomial of a

Graph

In this chapter we introduce a new type of graph polynomial called com-

mon neighborhood polynomial and discuss some of its properties. Neighborhood

unique graphs are also defined and a characterization of these types of graphs

is given. We also find the common neighborhood polynomial of middle graph,

total graph, 1-quasi-total graph and 2-quasi-total graph of a given graph.

4.1 Common Neighborhood Polynomial

Definition 4.1.1. The common neighborhood polynomial of a graph G,

denoted by P (G, x), is the polynomial defined by

P (G, x) =

n(G)∑
i=1

aix
i,
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4.1. Common Neighborhood Polynomial

where ai is the number of Ev’s of cardinality i in AG.

We use the abbreviation CNP for the common neighborhood polynomial.

Example 4.1.2. For the path Pn,

P (Pn, x) =


xn, n = 1, 2

nx, n > 2

For the complete graph Kn,

P (Kn, x) = xn, for all n ≥ 1.

For the cycle Cn of order n ≥ 3,

P (Cn, x) =


x3, n = 3

nx, n > 3

The CNP of the graph G in Figure 4.1 is x2 + 2x and that of the graph H

given in Figure 4.2 is 2x2 + 4x.
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Figure 4.2: Graph H

Proposition 4.1.3 is a direct implication of the definition of CNP.

Proposition 4.1.3. If a graph G has k components G1, G2, . . . , Gk, then

P (G, x) = P (G1, x) + P (G2, x) + . . .+ P (Gk, x).

Proposition 4.1.4. Let G be a graph with P (G, x) =

n(G)∑
i=1

aix
i.

Then n(G) =

n(G)∑
i=1

iai and m(G) ≥
n(G)∑
i=1

ai
i(i− 1)

2
.

Proof. For 1 ≤ i ≤ n(G), ai is the number of Ev’s of cardinality i in AG. By
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4.1. Common Neighborhood Polynomial

Theorem 2.1.7, the family of all Ev’s forms a partition of V (G). Hence we have

n(G) =

n(G)∑
i=1

iai.

The subgraph induced by Ev is a complete subgraph and the number of

edges in a complete subgraph with n vertices is n(n−1)
2

. Therefore, m(G) ≥
n(G)∑
i=1

ai
i(i− 1)

2
.

Proposition 4.1.5. If P (G, x) =

n(G)∑
i=1

aix
i for some graph G, then for 1 ≤ i ≤

n(G), G has ai vertex disjoint subgraphs, each is isomorphic to Ki .

Proof. For 1 ≤ i ≤ n(G), ai is the number of Ev’s of cardinality i in AG. The

proposition now follows from the fact that Ev’s are either identical or disjoint

and the subgraph induced by each Ev is a complete subgraph.

Note that for any graph G, P (G, x) is a non zero polynomial over the set

of non negative integers N
⋃
{0} without constant term, where N is the set of

all natural numbers. Thus if a polynomial over N
⋃
{0} has a constant term it

cannot be the CNP of any graph. On the other hand corresponding to every non

zero polynomial P over N
⋃
{0} without constant term, there exists a graph G

whose CNP is P .

For example if P (x) =
n∑
i=1

aix
i, with each ai is a non negative integer for 1 ≤ i ≤

n, then the graph G with exactly a1 copies of K1, a2 copies of K2,..., an copies

of Kn has the given polynomial as its CNP.

We summarize these facts as follows.

Proposition 4.1.6. Suppose P (x) is a non zero polynomial in x over N
⋃
{0}
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4.1. Common Neighborhood Polynomial

with P (0) = 0. Then there exists a graph G such that P (G, x) = P (x).

The following proposition is an immediate consequence of the definition of

CNP.

Proposition 4.1.7. Two isomorphic graphs have the same CNP.

The converse of proposition 4.1.7 is not true. For example the path Pn and

the cycle Cn, for n > 3 have the same CNP but they are not isomorphic.

Some other non-isomorphic graphs having the same CNP are given in

Figures 4.3 and 4.4.
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Figure 4.3: Non-isomorphic graphs with same CNP

The CNP of the graphs G1 and G2 in Figure 4.3 is x2 + 2x. But G1 and G2

are non-isomorphic.
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4.1. Common Neighborhood Polynomial

u1

u

G
3

u
3

u
4

u
8

u
7

u
6

u
5

 v
2

1
 v

3
 v

4
 v

 v
8

 v
7

 v
6

 v
5

G
4

2

Figure 4.4: Non-isomorphic graphs with same CNP

P (G3, x) = P (G4, x) = 2x2 + 4x. But G3 and G4 are non-isomorphic.

If the converse of Proposition 4.1.7 holds for a graph G in the sense that if

H is any graph such that P (H, x) = P (G, x) then G is isomorphic to H, such a

graph G is called a neighborhood unique graph.

Definition 4.1.8. A graph G is called a neighborhood unique graph if

P (G, x) = P (H, x) for any graph H implies that G is isomorphic to H.

The graphs in Figure 4.3 and 4.4 are not neighborhood unique.

In the case of complete graph Kn on n vertices P (Kn, x) = xn and every graph

having xn as CNP is isomorphic to Kn. Hence Kn is a neighborhood unique

graph for any n ≥ 1.

Lemma 4.1.9. Let G be the disjoint union of Kn and Km, where m,n ≥ 1.

Then G is neighborhood unique.

Proof. It is clear that P (G, x) = xn + xm. Suppose H is a graph with P (H, x) =
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4.1. Common Neighborhood Polynomial

xn + xm. Then H has two vertex disjoint subgraphs H1 and H2 isomorphic to

Kn and Km respectively such that Ev = V (Hi), for v ∈ V (Hi), i = 1, 2. Since

all vertices of an Ev have same neighbors, if one vertex of H1 is adjacent to a

vertex of H2 then all other vertices of H1 are adjacent to that vertex of H2. Also

we know that for each u ∈ V (H2), Eu = V (H2). Hence all the vertices of H2

are adjacent to all the vertices of H1. This will imply that for each u ∈ V (H),

Eu = V (H), a contradiction. Hence no vertex of H1 is adjacent to a vertex of

H2. Therefore H ∼= G. Hence G is neighborhood unique.

Lemma 4.1.10. Let n be a fixed positive integer. If a graph G is the disjoint

union of more than two copies of the complete graphs Kn, then G is not neigh-

borhood unique.

Proof. Let k be an integer greater than 2. Let G be the disjoint union of k copies

of Kn. Then P (G1, x) = kxn.

Construct a graph H in the following way. Draw k disjoint copies of Kn.

Join all vertices of the first copy to all vertices of the second copy. Then join all

vertices of the second copy to all vertices of the third copy. Continue this until

all vertices of the (k − 1)th copy are joined to all vertices of the kth copy of Kn.

Then common neighborhood polynomial of H is also kxn. But G � H. Hence

G is not neighborhood unique.

Remark 4.1.11. For any positive integer k > 2 and n ∈ N, there are

non-isomorphic graphs with kxn as their common neighborhood polynomial.
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4.1. Common Neighborhood Polynomial

Lemma 4.1.12. Let P (x) =
n∑
j=1

aijx
ij be a non zero polynomial over N

⋃
{0}

with P (0) = 0. If P (x) has more than two terms or P (x) is of the form airx
ir +

aisx
is, with air , ais > 0 and air or ais > 1, then there exist non isomorphic graphs

with P (x) as common neighborhood polynomial.

Proof. Without loss of generality assume that aij 6= 0 for all 1 ≤ j ≤ n. Let G1

be the graph with exactly ai1 disjoint copies of Ki1 , ai2 disjoint copies of Ki2 ,...,

ain disjoint copies of Kin . Then P (G1, x) =
n∑
j=1

aijx
ij .

Let G2 be the graph obtained from G1 as follows. For j = 1, 2, ..., n, join

all vertices of the mth copy of Kij to all vertices of the (m + 1)th copy of Kij ,

m = 1, 2, ..., aij−1. Then join all vertices of the athij copy of Kij to all the vertices

of first copy Kij+1
, for 1 ≤ j ≤ n− 1. Then G1 and G2 are non isomorphic and

P (G1, x) = P (G2, x).

Lemmas 4.1.9, 4.1.10 and 4.1.12, characterize the neighborhood unique graphs.

Theorem 4.1.13. A graph G is neighborhood unique if and only if G is a com-

plete graph or disjoint union of two complete graphs.

The above theorem can be restated as:

“Let G be a graph with P (G, x) =
n∑
i=1

aix
i. Then G is neighborhood unique

if and only if P (G, x) is of the form arx
r + asx

s with 1 ≤ ar + as ≤ 2 ”.
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4.2. CNP of Line Graph of a Graph

4.2 CNP of Line Graph of a Graph

This section deals with the CNP of the line graph of a graph.

Theorem 4.2.1. Let G be a graph with m(G) = m and the neighborhood sigma

algebra of G be P(V (G)). If P3 is not a component of G and for n > 2, K1,n is

not an induced subgraph of G, then P (L(G), x) = mx.

Proof. By the definition of L(G), V (L(G)) = E(G). Hence n(G) = m. It is

proved in Theorem 2.3.1, that if the hypothesis holds, the neighborhood sigma

algebra of L(G) is P(V (L(G))). Therefore all Ev’s in AL(G) are of cardinality

one. Hence the theorem.

Corollary 4.2.2. (1). P (L(Cn), x) = nx, for n > 3.

(2). P (L(Pn), x) = (n− 1)x, for n > 3.

4.3 CNP of Middle Graph of a Graph

In this section we determine the CNP of the middle graph of a graph.

Theorem 4.3.1. Let G be a graph with n(G) = n and m(G) = m. Then

P (M(G), x) = (m+ n)x.

Proof. By the definition ofM(G), V (M(G)) = V (G)
⋃
E(G). Hence n(M(G)) =

n(G) + m(G). By Theorem 2.4.1, N [u] 6= N [v], for any two vertices u and v
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4.4. CNP of Total Graph of a Graph

of M(G). Therefore for all u ∈ V (M(G)), Eu = {u}. Hence P (M(G), x) =

(m+ n)x.

Corollary 4.3.2. (1) P (M(Pn), x) = (2n− 1)x, for all n ≥ 1.

(2) P (M(Kn), x) = n(n+1)
2

x, for all n ≥ 1.

(3) P (M(Cn), x) = 2nx, for all n ≥ 3.

4.4 CNP of Total Graph of a Graph

Here we determine the CNP of the total graph of a graph.

Lemma 4.4.1. Let G be a graph with n(G) = n and m(G) = m. If every

component of G is different from P2, then P (T (G)) = (m+ n)x.

Proof. By Theorem 2.5.1, if G is a graph such that every component of G is dif-

ferent from P2, then for any two vertices u, v ∈ V (T (G)), N [u] 6= N [v]. Therefore

for all u ∈ V (T (G)), Eu = {u}. Hence the theorem.

Corollary 4.4.2. (1) P (T (Pn), x) = (2n− 1)x, for all n 6= 2.

(2) P (T (Kn), x) = n(n+1)
2

x, for all n 6= 2.

(3) P (T (Cn), x) = 2nx, for all n ≥ 3.

Note 4.4.3. Since T (P2) = K3, P (T (P2), x) = x3

Thus we have the following theorem.
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4.5. CNP of 1-quasi-total Graph and 2-quasi-total Graph

Theorem 4.4.4. Let G be any graph with order n and size m. If p components

of G are P2, where p ≥ 0, then P (T (G), x) = (m+ n− 3p)x+ px3.

4.5 CNP of 1-quasi-total Graph and 2-quasi-

total Graph

From the definition of 1-quasi-total graph Q1(G) of a graph G, it is clear

that Q1(G) is the disjoint union of G and its line graph L(G). Therefore CNP

of Q1(G) is the sum of CNP of G and CNP of L(G). Hence by Theorem 4.2.1,

we have Theorem 4.5.1.

Theorem 4.5.1. Let G be a graph with n(G) = n1 and m(G) = n2 and neigh-

borhood sigma algebra of G be P(V (G)). If P3 is not a component of G and for

n > 2, K1,n is not an induced subgraph of G, then P (Q1(G), x) = (n1 + n2)x.

Corollary 4.5.2. (1). P (Q1(Cn), x) = 2nx, for n > 3.

(2). P (Q1(Pn), x) = (2n− 1)x, for n > 3.

We explore Theorem 2.6.5, to get the common neighborhood polynomial of

2-quasi-total graphs of graphs having no end vertices.

Theorem 4.5.3. Let G be a graph without end vertices. If n(G) = n and

m(G) = m, then P (Q2(G), x) = (m+ n)x.

Proof. Since V (Q2(G)) = V (G)
⋃
E(G), n(Q2(G)) = m + n. If G does not
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4.5. CNP of 1-quasi-total Graph and 2-quasi-total Graph

have end vertices, the neighborhood sigma algebra of Q2(G) is P(V (Q2(G))), by

Theorem 2.6.5. Therefore all Ev’s in AQ2(G) are of cardinality one. Hence the

theorem.

Corollary 4.5.4. (1). P (Q2(Cn), x) = 2nx, for n ≥ 3.

(2). P (Q2(Kn), x) = (n+ nC2)x, for n > 3.

Theorem 4.5.5. Let G be a graph with n(G) = n and m(G) = m. Suppose that

G has s components. If exactly r of them are isomorphic to P2, 1 ≤ r ≤ s, and

the total number of end vertices in the remaining components (if any) is k, then

P (Q2(G), x) = rx3 + kx2 + (m+ n− 3r − 2k)x.

Proof. Let G1 be a component of G which is isomorphic to P2. Let V (G1) =

{u, v} and e be the edge joining u and v in G1. Then NQ2 [u] = NQ2 [v] = NQ2 [e] 6=

NQ2 [w], for any w ∈ V (Q2(G)) \ {u, v, e}. Hence EQ2
u = EQ2

v = EQ2
e = {u, v, e},

which is true for any component of G isomorphic to P2. There are exactly r

components in G which are isomorphic to P2. They induce exactly r, Ev’s of

cardinality 3.

Let w be an end vertex of a component G2 of G which is not isomorphic to

P2 and e′ be the pendant edge of G incident to w. Let e′ = ww′, w′ ∈ V (G).

Then NQ2 [w] = NQ2 [e] = {w, e, w′}. Since G2 � P2, w
′ is adjacent to a vertex

x(6= w) in G. Therefore NQ2 [w
′] 6= NQ2 [w]. Hence EQ2

w = EQ2
e = {w, e}.

Let z ∈ V (G)
⋃
E(G) which is not an end vertex or a pendant edge of G. By

imitating the proof of Theorem 2.6.5, we can prove that EQ2
z = {z}.
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4.5. CNP of 1-quasi-total Graph and 2-quasi-total Graph

Hence the theorem.

Corollary 4.5.6. P (Q2(P2), x) = x3 and P (Q2(Pn), x) = 2x2 + (2n − 5)x, for

n ≥ 3.

Example 4.5.7. Consider the graph G give below.
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Figure 4.5: Graph G

For the graph G given in Figure 4.5.7,

P (Q2(G), x) = x3 + 2x2 + 6x.
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Chapter 5
CNP of Join, Corona and Product of

Two Graphs

In this chapter we find the CNP of join, corona and different products of two

graphs such as lexicographic product, tensor product, Cartesian product, normal

product and co-normal product.

5.1 CNP of Join of Two Graphs

Here we discuss the CNP of join of two graphs. For this we are making use of

the results proved in section 3.1.

Theorem 5.1.1. Let G1 and G2 be two graphs. If

1. DGi
= ∅ for i = 1 or 2, then P (G1 ∨G2, x) = P (G1, x) + P (G2, x).
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5.1. CNP of Join of Two Graphs

2. for i = 1, 2, DGi
6= ∅ and | DGi

|= ki, then P (G1 ∨ G2, x) = P (G1, x) +

P (G2, x)− xk1 − xk2 + xk1+k2.

Proof. Theorems 3.1.2 and 3.1.4 imply that, for i = 1, 2, if v ∈ V (Gi) \ DGi
,

EG1∨G2
v = EGi

v and if v ∈ DGi
, EG1∨G2

v = DG1

⋃
DG2 .

1. By Theorem 2.1.27, for i = 1, 2 if v ∈ DGi
, EGi

v = DGi
. Thus if DG1 or

DG2 = ∅, then for i = 1, 2 and v ∈ V (Gi), E
G1∨G2
v = EGi

v . Hence in this

case the number of Ev’s of a particular cardinality in AG1∨G2 is equal to

the sum of number of Ev’s of that cardinality in AG1 and AG2 . Therefore

P (G1 ∨G2, x) = P (G1, x) + P (G2, x).

2. For i = 1, 2, if v ∈ DGi
, then EG1∨G2

v = DG1

⋃
DG2 . Therefore in AG1∨G2 ,

for v ∈ DG1

⋃
DG2 , | EG1∨G2

v |=| DG1

⋃
DG2 |= k1 + k2. For all other

v ∈ V (G1)
⋃
V (G2), Ev’s does not change. Also by Theorem 2.1.27, for

i = 1, 2, if v ∈ DGi
, EGi

v = DGi
. Thus we get P (G1 ∨G2, x) = P (G1, x) +

P (G2, x)−xk1 −xk2 +xk1+k2 if DGi
6= ∅ for i = 1, 2,where | DG1 |= k1 and

| DG2 |= k2.

Corollary 5.1.2.

(1). P (Km ∨Kn, x) = xm+n, m,n ≥ 1.

(2). P (P2 ∨ P3, x) = x2 + 3x− x2 − x+ x3

= x3 + 2x.

76



5.2. CNP of Corona of Two Graphs

(3). P (Pm ∨ Pn, x) = mx+ nx

= (m+ n)x, m, n > 3.

(4). P (K1,n ∨Kn, x) = (n+ 1)x+ xn − x− xn + xn+1

= xn+1 + nx, n > 1.

5.2 CNP of Corona of Two Graphs

This section is devoted to determine the CNP of corona of two graphs. Con-

sider the graphs K1 and Kn. K1 ◦Kn = Kn+1. Hence P (K1 ◦Kn, x) = xn+1.

Let G be a graph such that DG 6= ∅. For all v ∈ V (G), NK1◦G[v] =

{u}
⋃
NG[v]. Therefore, for v1, v2 ∈ V (G), EK1◦G

v1
= EK1◦G

v2
if and only if

NG[v1] = NG[v2]. As NK1◦G[u] = {u}
⋃
V (G), for a vertex v ∈ V (G), NK1◦G[v] =

NK1◦G[u] if and only if v ∈ DG. Thus EK1◦G
v = DG

⋃
{u} = EK1◦G

u if v ∈ D(G)

and EK1◦G
v = EG

v otherwise.

If DG = ∅, EK1◦G
v = EG

v for all v ∈ V (G) and EK1◦G
u = {u}.

The preceding discussion may be summarized as follows.

Theorem 5.2.1. For a graph G,

P (K1 ◦G, x) =


xk+1 + P (G, x)− xk if DG 6= ∅, k =| DG |

P (G, x) + x if DG = ∅

Proposition 5.2.2. Suppose G1 is a graph which does not have K1 as a compo-

nent and G2 is any graph then P (G1 ◦G2, x) = n(G1)P (G2, x) + n(G1)x.

77



5.2. CNP of Corona of Two Graphs

Proof. Let u and v be two distinct vertices ofG1. Then it is clear thatNG1◦G2 [u] 6=

NG1◦G2 [v]. Let u ∈ V (G1) be the ith vertex of G1 and v be a vertex of the ith

copy of G2. Since G1 does not have K1 as a component, in G1 ◦G2, u is adjacent

to at least one vertex w of G1 and w is not adjacent to any vertex of the ith copy

of G2. Therefore NG1◦G2 [u] 6= NG1◦G2 [v] for any vertex v of the ith copy of G2.

Hence for u ∈ V (G1) and for all v(6= u) ∈ V (G1 ◦ G2), NG1◦G2 [u] 6= NG1◦G2 [v].

Therefore EG1◦G2
u = {u} for all u ∈ V (G1). That is there are n(G1), Ev’s of car-

dinality one in AG1◦G2 . Let w be a vertex of the ith copy of G2, 1 ≤ i ≤ n(G1).

Then w is not adjacent to vertices of any other copy of G2. Also, if v ∈ V (G1),

NG1◦G2 [w] 6= NG1◦G2 [v]. But for any vertices w1, w2 of the ith copy of G2,

NG2 [w1] = NG2 [w2] if and only if NG1◦G2 [w1] = NG1◦G2 [w2], 1 ≤ i ≤ n(G1).

Hence P (G1 ◦G2, x) = n(G1)P (G2, x) + n(G1)x.

Corollary 5.2.3.

1. P (Km ◦Kn, x) = mxn +mx, for m,n ≥ 1.

2. P (Pm ◦ Pn, x) = mnx+mx

= m(n+ 1)x, for m, n ≥ 3.

3. P (Cm ◦Kn, x) = mxn +mx for m ≥ 3, n ≥ 1.
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5.3 CNP of Graph Products

This section deals with the common neighborhood polynomial of different

graph products. If P (x) is a polynomial in x, we use the notation deg(P (x)) to

denote the degree of the polynomial P (x).

5.3.1 Lexicographic Product

Theorem 5.3.1 leads to the CNP of lexicographic product of two graphs.

Theorem 5.3.1. Let G1 be a graph of order n1 and G2 be a graph of order n2

with | DG2 |= k, k 6= 0. If P (G1, x) =

n1∑
i=1

aix
i and P (G2, x) =

n2∑
j=1

bjx
j, then

P (G1[G2], x) = n1

n2∑
i=1
i 6=k

bix
i + n1(bk − 1)xk +

n1∑
i=1

aix
ik.

Proof. From Theorem 3.2.1, it is clear that E(u,v) = ({u}×Ev)
⋃

(Eu×(Ev
⋂
DG2))

for all (u, v) ∈ V (G1[G2]). Also, if v ∈ DG2 then Ev = DG2 and if v ∈ V (G2)\DG2

then Ev
⋂
DG2 = ∅. Therefore for all (u, v) ∈ V (G1[G2]), if v /∈ DG2 , E(u,v) =

{u} × Ev and hence | E(u,v) |=| Ev |. For 1 ≤ j ≤ n2, j 6= k there are bj, Ev’s of

cardinality j in AG2 and hence n1bj, E(u,v)’s of cardinality j in AG1[G2].

For all (u, v) ∈ V (G1[G2]), if v ∈ DG2 , E(u,v) = Eu × Ev, and hence

| E(u,v) |=| Eu | . | Ev |. There are bk, Ev’s of cardinality k in AG2 and DG2

is an Ev of cardinality k in AG2 . Therefore in AG1[G2], there are n1(bk − 1),

E(u,v)’s of cardinality k and ai, E(u,v)’s of cardinality ik, 1 ≤ i ≤ n1. Hence the

theorem.
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Corollary 5.3.2. Suppose G1 is a graph of order n1 and G2 is a graph with

DG2 = ∅, If P (G2, x) =

n2∑
i=1

bix
i, then P (G1[G2], x) = n1

n2∑
i=1

bix
i.

Proof. Since DG2 = ∅, for all (u, v) ∈ V (G1[G2]), E(u,v) = {u} × Ev and hence

| E(u,v) |=| Ev |. For 1 ≤ i ≤ n2, there are bi, Ev’s of cardinality i in AG2 , hence

there are n1bi, E(u,v)’s of cardinality i in AG1[G2]. Therefore P (G1[G2], x) =

n1

n2∑
i=1

bix
i.

Corollary 5.3.3.

(1). P (Km[Kn], x) = xmn, for m, n ≥ 1.

(2). P (Pm[Kn], x) = mxn, for m ≥ 1, m 6= 2, n ≥ 1.

(3). P (Cm[Kn], x) = mxn, for m ≥ 4, n ≥ 1.

5.3.2 Tensor Product

In this section, we determine the CNP of tensor product of two graphs.

Proposition 5.3.4. Let G1 and G2 be two graphs with n(G1) = n1 and n(G2) =

n2. If G1 or G2 does not have P2 as a component, then P (G1⊗G2, x) = n1n2x.

Proof. By Corollary 3.2.10, if the hypothesis of the proposition holds then the

neighborhood sigma algebra of G1⊗G2 is P(V (G1⊗G2)). Therefore all E(u,v)’s

in AG1⊗G2 are of cardinality one. Hence the proposition.

Corollary 5.3.5. 1. P (Km ⊗Kn, x) = mnx for m 6= 2, n 6= 2.
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2. P (Pm ⊗ Pn, x) = mnx for m 6= 2, n 6= 2.

3. P (Cm ⊗Kn, x) = mnx for m ≥ 3, n 6= 2.

Proposition 5.3.6. For any graphs G1 and G2, deg(P (G1 ⊗ G2, x)) is either

one or two.

Proof. Let u1, u2 ∈ V (G1) and v1, v2 ∈ V (G2). First of all suppose that u1, u2

are distinct and non isolated in G1 and v1, v2 are distinct and non isolated in

G2. Then by Theorem 3.2.9, N [(u1, v1)] = N [(u2, v2)] in G1 ⊗ G2 if and only if

N [u1] = N [u2] = {u1, u2} in G1 and N [v1] = N [v2] = {v1, v2} in G2. Hence in

this case N [(u1, v1)] = N [(u2, v2)] = {(u1, v1), (u2, v2)}.

If u1 = u2 or v1 = v2 then (u1, v1) and (u2, v2) are not adjacent in G1 ⊗ G2.

Hence N [(u1, v1)] 6= N [(u2, v2)]. Also if u is an isolated vertex of G1 or v is an

isolated vertex of G2, then (u, v) is an isolated vertex of G1 ⊗G2. Therefore all

Ev’s are of cardinality one or two. Hence the proposition.

Proposition 5.3.7. Let G1 and G2 be two graphs. If P2 is a component of both

G1 and G2, then deg((P (G1 ⊗G2, x)) = 2.

Proof. Since P2 is a component of both G1 and G2, there exist vertices u1, u2 ∈

V (G1) and v1, v2 ∈ V (G2) such that N [u1] = N [u2] = {u1, u2} in G1 and N [v1] =

N [v2] = {v1, v2} in G2. Hence N [(u1, v1)] = N [(u2, v2)] in G1⊗G2. Thus there is

an Ev of cardinality more than one inAG1⊗G2 . Therefore deg(P (G1⊗G2, x)) ≥ 2.

Hence by Proposition 5.3.6, deg(P (G1 ⊗G2, x)) = 2.
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Theorem 5.3.8. Let G be a graph of order n1 and H be a graph of order n2. If

exactly r components of G are P2 and exactly s components of H are P2, then

P (G⊗H, x) = 2rsx2 + (n1n2 − 4rs)x.

Proof. As tensor product is commutative and distributive over disjoint union of

graphs, if G1, G2, ..., Gk1 are components of G and H1, H2, ..., Hk2 are components

of H, then

G⊗H =
⋃

1≤i≤k1
1≤j≤k2

Gi ⊗Hj.

Also {Gi ⊗Hj : 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2} is a family of disjoint subgraphs of

G⊗H. Therefore,

P (G⊗H, x) = P (
⋃

1≤i≤k1
1≤j≤k2

Gi ⊗Hj, x)

=
∑

1≤i≤k1
1≤j≤k2

P (Gi ⊗Hj, x).

Without loss of generality assume that the first r components G1, G2, ..., Gr of

G and the first s components H1, H2, ..., Hs of H are P2. It is clear that

P (P2 ⊗ P2, x) = 2x2. Hence

P (
⋃

1≤i≤r
1≤j≤s

Gi ⊗Hj, x) =
∑
1≤i≤r
1≤j≤s

P (Gi ⊗Hj, x)

= 2rsx2.

None of the components Gi, r + 1 ≤ i ≤ k1 of G and Hj, s + 1 ≤ j ≤ k2 of H
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are P2, if such i and j exist. Hence

P (G⊗H, x) =
∑

1≤i≤k1
1≤j≤k2

P (Gi ⊗Hj, x)

= 2rsx2 + (mn− 4rs)x.

Example 5.3.9. Consider the graphs G and H in Figure 5.1 and 5.2.

u1

u
6

u
2

u
3

u
4

u
7

u
5

Figure 5.1: Graph G

 v
2

1
 v

3
 v

4
 v

 v
5

Figure 5.2: Graph H

P (G⊗H, x) = 4x2 + 27x.
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5.3.3 Cartesian Product

Here we determine the CNP of Cartesian product of two graphs.

Proposition 5.3.10. Let G1 be a graph of order n1 and G2 be a graph of order

n2. If G1 and G2 have no isolated vertices then P (G1 ×G2, x) = n1n2x.

Proof. By Corollary 3.2.18, if G1 and G2 have no isolated vertices then the

neighborhood sigma algebra of G1×G2 is P(V (G1×G2)). Therefore all Ev’s in

AG1×G2 are of cardinality one. Hence P (G1 ×G2, x) = n1n2x.

Corollary 5.3.11.

(1). P (Km ×Kn, x) = mnx, for m, n ≥ 2.

(2). P (Km × Pn, x) = mnx, for m, n ≥ 2.

(3). P (Cm ×Kn, x) = mnx, for m ≥ 3, n ≥ 2.

Proposition 5.3.12. Let G1 be a graph of order n1 and G2 be a graph of order

n2. If the neighborhood sigma algebra of G1 is P(V (G1)) and that of G2 is

P(V (G2)), then P (G1 ×G2, x) = n1n2x.

Proof. By Corollary 3.2.19, if the hypothesis of the Proposition holds then the

neighborhood sigma algebra of G1×G2 is P(V (G1×G2)). Therefore all Ev’s in

AG1×G2 are of cardinality one. Hence the proposition.
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Corollary 5.3.13.

(1). P (Pm × Pn, x) = mnx, for m, n ≥ 3.

(2). P (Cm × Cn, x) = mnx, for m, n ≥ 4.

Note 5.3.14. From the adjacency relation in G1 × G2 and from Theorem

3.2.17, we could conclude that for a vertex (u, v) ∈ V (G1 ×G2), if

(i) u is an isolated vertex of G1 and v ∈ V (G2), then E(u,v) = {u} × Ev.

(ii) u ∈ V (G1) and v is an isolated vertex of G2, then E(u,v) = Eu × {v}.

(iii) u and v are not isolated vertices, then E(u,v) = {(u, v)}.

Theorem 5.3.15. Let G1 be a graph of order n1 with k1 isolated vertices and

G2 be a graph of order n2 with k2 isolated vertices. If P (G1, x) =

n1∑
i=1

aix
i and

P (G2, x) =

n2∑
j=1

bjx
j with n1 < n2, then P (G1 × G2, x) = ((m − k1)(n − k2) +

(a1 − k1)k2 + b1k1)x+

n1∑
i=2

(aik2 + bik1)x
i +

n2∑
i=n1+1

bik1x
i.

Proof. Let (u, v) ∈ V (G1 × G2). By Note 5.3.14, | E(u,v) |= 1 if and only if u is

an isolated vertex of G1 and v ∈ V (G2) is such that | Ev |= 1 or u ∈ V (G1) is

such that | Eu |= 1 and v is an isolated vertex of G2 or both u and v are non

isolated vertices of G1 and G2 respectively.

Hence number of Ev’s of cardinality one in AG1×G2 is given by (m− k1)(n−

k2) + (a1 − k1)k2 + b1k1.
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If u is an isolated vertex of G1 and v ∈ V (G2) is such that | Ev |= j for

1 ≤ j ≤ n2, then | E(u,v) |= j. Also if u ∈ V (G1) is such that | Eu |= i for

1 ≤ i ≤ n1 and v is an isolated vertex of G2, then | E(u,v) |=| Eu |= i for

1 ≤ i ≤ n1. Thus in AG1×G2 , there are k1bj, Ev’s of cardinality j for 1 ≤ j ≤ n2

and k2ai, Ev’s of cardinality i for 1 ≤ i ≤ n1. Hence the theorem.

Corollary 5.3.16. Let G1 be a graph of order n with k1 isolated vertices and

G2 be a graph of order n with k2 isolated vertices. If P (G1, x) =
n∑
i=1

aix
i and

P (G2, x) =
n∑
j=1

bjx
j, then P (G1 × G2, x) = ((n − k1)(n − k2) + (a1 − k1)k2 +

b1k1)x+
n∑
i=2

(aik2 + bik1)x
i.

5.3.4 Normal Product

This section deals with the CNP of normal product of two graphs.

Let G1 and G2 be two graphs and (u1, v1), (u2, v2) ∈ V (G1 � G2). Then

N [(u1, v1)] = N [(u2, v2)] if and only if N [u1] = N [u2] and N [v1] = N [v2]. Also

for (u, v) ∈ V (G1 �G2), E(u,v) = Eu × Ev, by Lemma 3.2.26.

Theorem 5.3.17. Let G1 be a graph of order n1 and G2 be a graph of order

n2. If P (G1, x) =

n1∑
i=1

aix
i and P (G2, x) =

n2∑
j=1

bjx
j, then P (G1 � G2, x) =∑

1≤i≤n1
1≤j≤n2

aibjx
ij.

Proof. For (u, v) ∈ V (G1 �G2), E(u,v) = Eu × Ev. Hence | E(u,v) |=

| Eu × Ev |=| Eu | × | Ev |. Therefore, if there are ai, Ev’s of cardinality i in
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AG1 and bj, Ev’s of cardinality j in AG2 , then in AG1�G2 there are aibj, E(u,v)’s

of cardinality ij. Hence the theorem.

Corollary 5.3.18.

(1). P (Km �Kn, x) = xmn, for m, n ≥ 1.

(2). P (Km � Pn, x) = nxm, for m ≥ 1, n ≥ 3.

(3). P (Pm � Pn, x) = mnx, for m, n ≥ 3.

(4). P (Cm �Kn, x) = mxn, for m > 3, n ≥ 1.

Corollary 5.3.19. Let G be a graph. Then P (G�K1, x) = P (G, x).

Corollary 5.3.20. Let G1 and G2 be two graphs. Then deg(P (G1 � G2), x) =

deg(P (G1, x)).deg(P (G2, x)).

5.3.5 Co-normal Product

Here we determine the CNP of co-normal product of two graphs.

Proposition 5.3.21. Let G1 and G2 be two graphs of order n1 and n2 respec-

tively. If DG1 = DG2 = ∅ or if G1 is a graph with neighborhood sigma algebra

P(V (G1)) and G2 is a graph with neighborhood sigma algebra P(V (G2)) then

P (G1 ∗G2, x) = n1n2x.

Proof. By Corollary 3.2.31, if G1 and G2 are two graphs with DG1 = DG2 = ∅,

then the neighborhood sigma algebra of G1 ∗G2 is P(V (G1 ∗G2)). By Corollary
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3.2.32, if G1 is a graph with neighborhood sigma algebra P(V (G1)) and G2 is a

graph with neighborhood sigma algebra P(V (G2)), then the neighborhood sigma

algebra of G1 ∗G2 is P(V (G1 ∗G2)). Therefore, in both the cases all E(u,v)’s are

of cardinality one. Hence the proposition.

Theorem 5.3.22. Let G1 be a graph of order n1 and G2 be a graph of order

n2 with | DG1 |= k1 and | DG2 |= k2 (k1, k2 6= 0). If P (G1, x) =

n1∑
i=1

aix
i

and P (G2, x) =

n2∑
j=1

bjx
j, then P (G1 ∗ G2, x) = (n1 − k1)(n2 − k2)x + xk1k2 +

k1

n2∑
j=1
j 6=k2

bjx
j + k2

n1∑
i=1
i 6=k1

aix
i + k1(bk2 − 1)xk2 + k2(ak1 − 1)xk1.

Proof. Let (u, v) ∈ V (G1 ∗ G2). If u /∈ DG1 and v /∈ DG2 , E(u,v) = {(u, v)}, by

Corollary 3.2.30. There are such (n1 − k1)(n2 − k2) vertices (u, v) in G1 ∗ G2.

If u ∈ DG1 and v /∈ DG2 , E(u,v) = {u} × Ev and hence | E(u,v) |=| Ev |. For

1 ≤ j ≤ n2, j 6= k2, there are k1bj E(u,v)’s of cardinality j in AG1∗G2 . As DG2 is

an Ev of cardinality k2 in AG2 , there are bk2 − 1, Ev’s of cardinality k2 in AG2

other than DG2 . Corresponding to these Ev’s there are k1(bk2 − 1), E(u,v)’s of

cardinality k2 in AG1∗G2 . If u /∈ DG1 and v ∈ DG2 , E(u,v) = Eu × {v} and hence

| E(u,v) |=| Eu |. For 1 ≤ i ≤ n1, i 6= k1, there are k2ai E(u,v)’s of cardinality

i in AG1∗G2 . As DG1 is an Ev of cardinality k1 in AG1 , there are ak1 − 1, Ev’s

of cardinality k1 in AG1 other than DG1 . Corresponding to these Ev’s there

are k2(ak1 − 1), E(u,v)’s of cardinality k1 in AG1∗G2 . If u ∈ DG1 and v ∈ DG2 ,

E(u,v) = DG1 ×DG2 . This implies the existence of an E(u,v) of cardinality k1k2 in

AG1∗G2 . Hence the theorem.
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Example 5.3.23. Consider the graphs G1 and G2.
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3
u

4
u

5
u

Figure 5.3: Graphs G1 and G2

For the graph G1,

P (G1, x) = 2x2 + x, n(G1) = 5, | DG1 |= k1 = 2 and ak1 = 2.

For the graph G2,

P (G2, x) = x2 + 2x, n(G2) = 4, | DG2 |= k2 = 2 and bk2 = 1.

By Theorem 5.3.22,

P (G1 ∗G2, x) = x4 + 2x2 + 12x.
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Corollary 5.3.24.

(1). P (Km ∗Kn, x) = xmn, for m, n ≥ 1.

(2). P (P3 ∗Kn, x) = xn + 2nx, for n ≥ 1.

Theorem 5.3.25. Let G1 be a graph of order n1 with P (G1, x) =

n1∑
i=1

aix
i and

G2 be a graph of order n2 with P (G2, x) =

n2∑
j=1

bjx
j. If | DG1 |= k1(6= 0) and

DG2 = ∅, then P (G1 ∗G2, x) = (n1 − k1)n2x+ k1

n2∑
j=1

bjx
j. Also if DG1 = ∅ and

| DG2 |= k2(6= 0), then P (G1 ∗G2, x) = n1(n2 − k2)x+ k2

n1∑
i=1

aix
i.

Proof. Let (u, v) ∈ V (G1 ∗ G2). Suppose | DG1 |= k1(6= 0) and DG2 = ∅.

Hence, if u /∈ DG1 , E(u,v) = {(u, v)}. There are such (n1 − k1)n2 vertices in

G1 ∗ G2. If u ∈ DG1 , then E(u,v) = {u} × Ev and hence | E(u,v) |=| Ev |.

Corresponding to these there are k1bj, E(u,v)’s of cardinality j in AG1∗G2 , for

1 ≤ j ≤ n2. Therefore P (G1 ∗ G2, x) = (n1 − k1)n2x + k1

n2∑
j=1

bjx
j. Suppose

DG1 = ∅ and | DG2 |= k2(6= 0). By interchanging the roles of G1 and G2,

P (G2 ∗ G1, x) = n1(n2 − k2)x + k2

n1∑
i=1

aix
i. Since G1 ∗ G2

∼= G2 ∗ G1 and since

isomorphic graphs have same CNP P (G1∗G2, x) = n1(n2−k2)x+k2

n1∑
i=1

aix
i.

Corollary 5.3.26.

(1). P (Km ∗ Cn), x) = mnx, for m ≥ 1, n > 3.

(2). P (P3 ∗ Cn, x) = 3nx, for n > 3.
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Chapter 6
Measurable Dominating Functions of

Finite Graphs

6.1 Measurable Dominating Functions

The mathematical study of dominating sets in graphs began around 1960.

The concept of domination was first studied by O. Ore and C. Berge. C. Berge

in his book “Theory of Graphs and its Applications” [4], has introduced the

concept of dominating sets and he called it as the “externally stable sets ”.

Let G = (V (G), E(G)) be a graph. A function f : V (G) → {0, 1} is called

a dominating function of G if
∑
u∈N [v]

f(u) ≥ 1 for all v ∈ V (G) [14]. As we

know every nonempty set X can be made into a measure space by taking the

power set P(X) of X as the sigma algebra and the counting measure as the

measure, the vertex set V (G) of G can also be made into a measure space in
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a similar manner. Also as V(G) is finite, every function f : V (G) → {0, 1} is

simple [23]. With these notions we can redefine the dominating function as the

function f : V (G) → {0, 1} such that

∫
N [v]

f dµ ≥ 1, for all v ∈ V (G), where

∫
N [v]

f dµ =
∑
u∈N [v]

f(u). It is further extended for functions from V (G) to [0, 1].

Now at this stage we can think about the extension of this notion to an

arbitrary measure space, (V (G),R, µ). There arise two questions. The first

question is that ‘is for every v ∈ V (G), N [v] ∈ R or not ’and the second is

that ‘though R contains all N [v], is

∫
N [v]

f dµ meaningful’. From the theory of

measures, the integral of a real valued function is defined only if the function is

measurable. Taking all these into consideration, we consider only those sigma

algebra R which contains all N [v], v ∈ V (G) and only those functions defined

on V (G) which are measurable. To make this theory more effective we take the

neighborhood sigma algebra, that is the sigma algebra generated by the collection

{N [v] : v ∈ V (G)} and functions f : V (G) → [0, 1] which are measurable with

respect to this sigma algebra.

In this chapter by a graph G, we mean a graph with the neighborhood sigma

algebra A on the vertex set V (G) and a measure µ on A.

We define a measurable dominating function of a graph G as follows.

Definition 6.1.1. Let G be a graph with vertex set V (G). A function

f : V (G)→ [0, 1] is called a measurable dominating function of G if the following

conditions hold:
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(i) f is measurable

(ii)

∫
N [v]

f dµ ≥ 1 for all v ∈ V (G).

Remark 6.1.2. Let f be a measurable dominating function of a graph

G. Then for all v ∈ V (G), f(N [v]) > 0 and µ(N [v]) > 0, where f(N [v]) =∑
u∈N [v]

f(u).

Example 6.1.3. Consider the graph G in Figure 6.1.

 v

u

w

x

Figure 6.1: Graph G

For the graph G, Eu = {u}, Ev = Ex = {v, x} and Ew = {w}.

Let µ be the measure defined on V (G) by, µ({u}) = 1/2, µ({v, x}) = 2 and

µ({w}) = 1/3.

Consider the function f : V (G) −→ [0, 1], defined by, f(u) = 1 and f(v) =

f(w) = f(x) = 1/2.
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Then f is measurable, since f is constant on each Ev’s.

∫
N [u]

f dµ = f(u)µ(Eu) + f(v)µ(Ev)

= 3
2

> 1

∫
N [v]

f dµ = f(u)µ(Eu) + f(v)µ(Ev) + f(w)µ(Ew)

= 5
3

> 1

∫
N [w]

f dµ = f(w)µ(Ew) + f(v)µ(Ev)

= 7
6

> 1

Therefore, f is a measurable dominating function of G.

Theorem 6.1.4. Let f and g be two measurable dominating functions of a graph

G. Then all convex linear combinations of f and g are measurable dominating

functions of G.

Proof. Let α ∈ R be such that 0 ≤ α ≤ 1 and let h = αf + (1 − α)g. Since f

and g are measurable functions, h is also measurable. Then for v ∈ V (G),
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∫
N [v]

h dµ =

∫
N [v]

[αf + (1− α)g] dµ

=

∫
N [v]

αf dµ+

∫
N [v]

(1− α)g dµ

= α

∫
N [v]

f dµ+ (1− α)

∫
N [v]

g dµ

≥ α + (1− α)

= 1

Therefore, h is a measurable dominating function of G. Hence the theorem.

Definition 6.1.5. Let G be a graph with vertex set V (G). A measurable

dominating function f of G is said to be minimal if there does not exist a mea-

surable dominating function g of G such that g ≤ f a.e and g < f on some set

of positive measure.

Next we derive a necessary and sufficient condition for a measurable domi-

nating function to be minimal.

Theorem 6.1.6. Let G be a graph with vertex set V (G). A measurable domi-

nating function f of G is minimal if and only if for every vertex v ∈ V (G) with

µ(Ev) > 0 and f > 0 on Ev there exists a vertex u ∈ N [v] with

∫
N [u]

f dµ = 1.

Proof. Let f be a minimal measurable dominating function of G. Suppose there

exists a vertex v ∈ V (G) with µ(Ev) > 0 and f > 0 on Ev such that

∫
N [u]

f dµ > 1

for all u ∈ N [v].
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Let m = min {
∫

N [u]\Ev

f dµ : u ∈ N [v]}.

We consider the cases m ≥ 1 and m < 1 separately.

Case 1. m ≥ 1

Let g = f − fχEv , where χEv denotes the characteristic function of Ev. That is

for w ∈ V (G),

g(w) =


0 if w ∈ Ev

f(w) if w /∈ Ev

Since the product and difference of measurable functions are measurable, the

function g is measurable. Also g(w) ≤ f(w) for every w ∈ V (G) and g < f on

Ev.

For u ∈ V (G) with u ∈ N [v],

∫
N [u]

g dµ =

∫
Ev

g dµ+

∫
N [u]\Ev

g dµ

=

∫
N [u]\Ev

g dµ

=

∫
N [u]\Ev

f dµ

≥ m

≥ 1.

Also, for u ∈ V (G) with u /∈ N [v],

∫
N [u]

g dµ =

∫
N [u]

f dµ

≥ 1.
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Therefore, g is also a measurable dominating function, a contradiction.

Case 2. m < 1

For u ∈ N [v],

∫
N [u]

f dµ > 1 by the assumption.

Suppose f = c on Ev. Then,

∫
N [u]

f dµ =

∫
Ev

f dµ+

∫
N [u]\Ev

f dµ

= cµ(Ev) +

∫
N [u]\Ev

f dµ

Since m < 1, for at least one vertex u ∈ N [v],

∫
N [u]\Ev

f dµ < 1.

For such a u,

cµ(Ev) > 1−
∫

N [u]\Ev

f dµ

> 0

This implies,

c >

1−
∫

N [u]\Ev

f dµ

µ(Ev)
= Ru, say

Let U = {u ∈ N [v] :
∫

N [u]\Ev

f dµ < 1}. Since V (G) is finite, U is also finite.

Now choose d so that c > d > Ru for all u ∈ U .

Let h = f − (f − d)χEv .
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That is for w ∈ V (G),

h(w) =


d if w ∈ Ev

f(w) if w /∈ Ev

The function h is measurable, since it is the difference of the measurable

functions f and (f − d)χEv . Also h(w) ≤ f(w) for every w ∈ V (G) and h < f

on Ev.

Let u ∈ U , ∫
N [u]

h dµ =

∫
N [u]\Ev

h dµ+

∫
Ev

h dµ

=

∫
N [u]\Ev

f dµ+ dµ(Ev)

>

∫
N [u]\Ev

fdµ+Ruµ(Ev)

=

∫
N [u]\Ev

f dµ +

1−
∫

N [u]\Ev

f dµ


= 1

Let u /∈ U .

If u /∈ N [v],

∫
N [u]

h dµ =

∫
N [u]

f dµ

≥ 1

If u ∈ N [v],

∫
N [u]\Ev

f dµ ≥ 1
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Therefore, ∫
N [u]

h dµ =

∫
N [u]\Ev

h dµ+

∫
Ev

h dµ

=

∫
N [u]\Ev

f dµ+ dµ(Ev)

> 1.

Therefore, h is a measurable dominating function with h(w) ≤ f(w) for every

w ∈ V (G) and h < f on Ev, a contradiction.

Conversely, let f be a measurable dominating function of G such that for

every vertex v with µ(Ev) > 0 and f > 0 on Ev, there exists a vertex u ∈ N [v]

such that

∫
N [u]

f dµ = 1. Suppose f is not minimal. Then there exists a measurable

dominating function l such that l ≤ f a.e and l < f on a set of positive measure.

So there exists a v ∈ V (G) with µ(Ev) > 0 and l < f on Ev. This implies

f(v) > 0. Now by assumption, there exists a u ∈ V (G) with u ∈ N [v] and∫
N [u]

f dµ = 1.

Therefore,

1 ≤
∫
N [u]

l dµ

=

∫
N [u]\Ev

l dµ+

∫
Ev

l dµ

<

∫
N [u]\Ev

f dµ+

∫
Ev

f dµ

= 1, a contradiction.

Therefore, f is a minimal measurable dominating function. Hence the theorem.
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6.2 Measurable k-Dominating Functions

The co-domain of the measurable dominating function is usually taken as

[0,1]. In fact we can take any interval [0, k] with k as a positive integer instead

of [0,1]. In this section we prove that all the results proved in the case of [0,1] in

section 6.1 are also true in the case of [0, k]. We call such dominating function

as measurable k-dominating function.

Definition 6.2.1. Let G be a graph with vertex set V (G). If k is a positive

integer, a function f : V (G) −→ [0, k] is called a measurable k-dominating

function of G if the following conditions hold:

(i) f is measurable

(ii)

∫
N [v]

f dµ ≥ k for all v ∈ V (G).

Measurable 1-dominating functions are the measurable dominating functions.

Definition 6.2.2. Let G be a graph with vertex set V (G). A measurable

k-dominating function f of G is said to be minimal if there does not exist a

measurable k- dominating function g of G such that g ≤ f a.e and g < f on

some set of positive measure.

Theorem 6.2.3. Let G be a graph with vertex set V (G). A measurable k-

dominating function f of G is minimal if and only if for every vertex v ∈ V (G)

with µ(Ev) > 0 and f > 0 on Ev there exists a vertex u ∈ N [v] with

∫
N [u]

f dµ = k.
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Proof. Let f be a minimal measurable k-dominating function of G. Suppose

there exists a vertex v with µ(Ev) > 0 and f > 0 on Ev such that

∫
N [u]

f dµ > k

for all u ∈ N [v].

Let m = min {
∫

N [u]\Ev

f dµ : u ∈ N [v]}.

We consider the cases m ≥ k and m < k separately.

Case 1. m ≥ k

Define g : V (G) −→ [0, k] by

g(w) =


0 if w ∈ Ev

f(w) if w /∈ Ev

As the product and difference of measurable functions are measurable, the func-

tion f − fχEv = g is measurable. Also g(w) ≤ f(w) for every w ∈ V (G) and

g < f on Ev.

For u ∈ V (G) with u ∈ N [v],

∫
N [u]

g dµ =

∫
Ev

g dµ+

∫
N [u]\Ev

g dµ

=

∫
N [u]\Ev

g dµ

=

∫
N [u]\Ev

f dµ

≥ m

≥ k.
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On the other hand for u ∈ V (G) with u /∈ N [v],

∫
N [u]

g dµ =

∫
N [u]

f dµ

≥ k

Therefore g is also a measurable k- dominating function of G, a contradiction.

Case 2. m < k

For u ∈ N [v] ,

∫
N [u]

f dµ > k by the assumption.

Suppose f = c on Ev. Then,

∫
N [u]

f dµ =

∫
Ev

f dµ+

∫
N [u]\Ev

f dµ

= cµ(Ev) +

∫
N [u]\Ev

f dµ

> k.

Since m < k, for at least one u ∈ N [v],

∫
N [u]\Ev

f dµ < k.

For such a u,

cµ(Ev) > k −
∫

N [u]\Ev

f dµ

> 0.

This implies c >

k −
∫

N [u]\Ev

f dµ

µ(Ev)
= Ru(say)

Let U = {u ∈ N [v] :
∫

N [u]\Ev

f dµ < k}. Since V (G) is finite U is also finite. Now

choose d so that c > d > Ru for all u ∈ U .
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Define h : V (G) −→ [0, k] as,

h(w) =


d if w ∈ Ev

f(w) if w /∈ Ev

The function h is measurable since it is the difference of the measurable functions

f and (f − d)χEv . Also h(w) ≤ f(w) for every w ∈ V (G) and h < f on Ev.

Let u ∈ U , ∫
N [u]

h dµ =

∫
N [u]\Ev

h dµ+

∫
Ev

h dµ

=

∫
N [u]\Ev

f dµ+ dµ(Ev)

>

∫
N [u]\Ev

f dµ+Ruµ(Ev)

=

∫
N [u]\Ev

f dµ+ (k −
∫

N [u]\Ev

f dµ)

= k.

Let u /∈ U .

In this case we proceed as follows.

If u /∈ N [v], ∫
N [u]

h dµ =

∫
N [u]

f dµ

≥ k

If u ∈ N [v] then

∫
N [u]\Ev

f dµ ≥ k.
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Therefore, ∫
N [u]

h dµ =

∫
N [u]\Ev

h dµ+

∫
Ev

h dµ

=

∫
N [u]\Ev

f dµ+ dµ(Ev)

> k.

Therefore h is a measurable k-dominating function with h(w) ≤ f(w) for every w ∈

V (G) and h < f on Ev, a contradiction.

Conversely let f be a measurable k-dominating function of G such that for

every vertex v with µ(Ev) > 0 and f > 0 on Ev there exists a vertex u ∈ N [v] such

that

∫
N [u]

f dµ = k. Suppose f is not minimal. Then there exists a measurable k-

dominating function l such that l ≤ f a.e and l < f on a set of positive measure.

So there exists a v ∈ V (G) with µ(Ev) > 0 and l < f on Ev. This implies

f(v) > 0. Now by our assumption there exists a u ∈ V (G) with u ∈ N [v] and∫
N [u]

f dµ = k.

This implies

k ≤
∫
N [u]

l dµ

=

∫
N [u]\Ev

l dµ+

∫
Ev

l dµ

<

∫
N [u]\Ev

f dµ+

∫
Ev

f dµ

= k, a contradiction.

Therefore f is a minimal measurable k-dominating function of G.

Hence the theorem.
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6.3 Measurable Signed Dominating Functions

This section guarantees that the theory of measurable dominating functions

will also work if the function takes negative values.

Definition 6.3.1. Let G be a graph with vertex set V (G). A function

f : V (G) → [−1, 1] is called a measurable signed dominating function of G, if

the following conditions hold:

(i) f is measurable

(ii)

∫
N [v]

f dµ ≥ 1 for all v ∈ V (G).

Example 6.3.2. Consider the graph G1 in Figure 6.2.

 u
1

4
 u

2
 u

3
 u

Figure 6.2: Graph G1

In G1, Eu1 = {u1}, Eu2 = Eu4 = {u2, u4}, Eu3 = {u3}.

Let µ be the measure defined on V (G1) by, µ({u1}) = 1
2
, µ({u2, u4}) = 2,

µ({u3}) = 1
2
.

Consider the function f : V (G1) −→ [−1, 1] defined by,

f(u1) = −1
4
, f(u2) = f(u4) = 3

4
, f(u3) = −1

2
. Then f is measurable by Theorem
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2.1.25. ∫
N [u1]

f dµ = −1
4
µ(Eu1) + 3

4
µ(Eu2)

= 11
8

> 1

∫
N [u2]

f dµ = −1
4
µ(Eu1) + 3

4
µ(Eu2) +−1

2
µ(Eu3)

= 9
8

> 1

∫
N [u3]

f dµ = −1
2
µ(Eu3) + 3

4
µ(Eu2)

= 5
4

> 1

Hence f is a measurable signed dominating function of G1 relative to µ.

But f is not a signed dominating function [23] of G1 . Because f(N [u2]) =∑
ui∈N [u2]

f(ui) = −1

4
+

3

4
− 1

2
+

3

4
=

3

4
< 1.

Example 6.3.3. Consider the graph G2 in Figure 6.3.
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 u
1

4
 u

2
 u

3
 u

Figure 6.3: Graph G2

Consider the function f : V (G2) −→ [−1, 1] defined by, f(u1) = 1, f(u2) = 3
4
,

f(u3) = −1
4
, f(u4) = 1

2
.

For the function f , f(N [u1]) = 7
4
, f(N [u2]) = 2, f(N [u3]) = 1 and f(N [u4]) = 1.

Hence f is a signed dominating function of G2.

Since N [u3] = N [u4] and f(u3) 6= f(u4), f is not measurable by Corollary 2.1.26.

This is an example of a non measurable signed dominating function.

If f is signed dominating and measurable then f is measurable signed domi-

nating relative to the counting measure restricted to A.

Proposition 6.3.4. Let G be a graph and µ be the counting measure restricted

to A. Then a function f : V (G) −→ [−1, 1] is signed dominating and measurable

if and only if it is a measurable signed dominating function of G relative to µ.

Definition 6.3.5. Let G be a graph with vertex set V (G). A measurable

signed dominating function f of G is said to be minimal if there does not exist

a measurable signed dominating function g of G such that g ≤ f a.e and g < f

on some set of positive measure.
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Theorem 6.3.6. Let G be a graph with vertex set V (G). A measurable signed

dominating function f of G is minimal if and only if for every vertex v ∈ V (G)

with µ(Ev) > 0 and f > −1 on Ev, there exists a vertex u ∈ N [v] such that∫
N [u]

f dµ = 1.

Proof. Let f be a minimal measurable signed dominating function of G. Suppose

there exists a vertex v with µ(Ev) > 0 and f > −1 on Ev such that

∫
N [u]

f dµ > 1

for all u ∈ N [v].

Then, for all u ∈ N [v] ,

∫
N [u]

f dµ = 1 + du, where du > 0.

Since, for u ∈ N [v]

∫
N [u]

f dµ =

∫
Ev

f dµ+

∫
N [u]\Ev

f dµ

we have,

cµ(Ev) +

∫
N [u]\Ev

f dµ = 1 + du

where c is the value of f on Ev.

Note that the min{du;u ∈ N [v]} > 0. Therefore k =
1

µ(Ev)
min{du;u ∈ N [v]} >

0. Then c − k < c. Choose a real number d ∈ [−1, 1] such that c − k ≤ d < c

and define, g : V (G)→ [−1, 1] as

g(w) =


d if w ∈ Ev

f(w) if w /∈ Ev

108



6.3. Measurable Signed Dominating Functions

Then g = f − (f − d)χEv is measurable. Also g(w) ≤ f(w) for all w ∈ V (G) and

g < f on Ev. We assert that g is measurable signed dominating.

Let u ∈ N [v].

∫
N [u]

g dµ =

∫
Ev

g dµ+

∫
N [u]\Ev

g dµ

= dµ(Ev) +

∫
N [u]\Ev

f dµ

= dµ(Ev) + 1 + du − cµ(Ev)

≥ 1 + (d+ k − c)µ(Ev)

= 1 + [d− (c− k)]µ(Ev)

≥ 1.

Let u ∈ V (G) \N [v]. Then,

∫
N [u]

g dµ =

∫
N [u]

f dµ ≥ 1.

Therefore g is a measurable signed dominating function of G, a contradiction.

Conversely, let f be a measurable signed dominating function of G such that

for every vertex v with µ(Ev) > 0 and f > −1 on Ev there exists a vertex

u ∈ N [v] such that

∫
N [u]

f dµ = 1. Suppose f is not minimal. Then there exists a

measurable signed dominating function g of G such that g ≤ f a.e and g < f on

a set of positive measure. So there exists v ∈ V (G) with µ(Ev) > 0 and g < f on
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Ev. This implies f(v) > −1. So f > −1 on Ev, by Theorem 2.1.25. Therefore

there exists a u ∈ N [v] such that

∫
N [u]

f dµ = 1.

This implies,

1 ≤
∫
N [u]

g dµ

=

∫
Ev

g dµ+

∫
N [u]\Ev

g dµ

<

∫
Ev

fdµ+

∫
N [u]\Ev

f dµ

=

∫
N [u]

f dµ

= 1, a contradiction.

Therefore f is a minimal measurable signed dominating function of G. Hence

the theorem.

6.4 Measure on Graph Products

In this section we define a measure on vertex sets of lexicographic product,

tensor product, Cartesian product, normal product and co-normal product. Also

we check whether the function f defined from the vertex sets of these products

to [0, 1], by f((u, v)) = f1(u)f2(v), where f1 and f2 are measurable dominating

functions of component graphs, is a measurable dominating function with respect

to this measure or not.

Let G14G2 be an arbitrary graph product such that AG1 × AG2 ⊆ AG14G2
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and EG14G2

(u,v) ⊆ EG1
u × EG2

v , for (u, v) ∈ V (G14G2).

Let (u, v) ∈ V (G14G2). If (x, y) ∈ EG1
u × EG2

v , x ∈ EG1
u and y ∈ EG2

v . This

implies EG14G2

(x,y) ⊆ EG1
x ×EG2

y = EG1
u ×EG2

v . Hence EG1
u ×EG2

v can be written as

countable disjoint union of the collection {EG14G2

(x,y) : (x, y) ∈ EG1
u × EG2

v }.

In this case, if µ1 is a measure on AG1 and µ2 is a measure on AG2 , we can

extend the product measure µ1 × µ2 on AG1 ×AG2 to AG14G2 in a natural way.

More explicitly, if

F(u,v) := {E(x,y) : (x, y) ∈ Eu × Ev}, for (u, v) ∈ V (G14G2),

then for any (x, y) ∈ V (G14G2), define µ as

µ(Ex × Ey) = µ1(Ex)µ2(Ey)

µ(E(x,y)) =
1

|F(x,y)|
µ(Ex × Ey)

(6.1)

and extend µ to be a measure on AG14G2 .

Then for A ∈ AG1 and B ∈ AG2 ,

µ(A×B) =
∑
u∈A
v∈B

µ(Eu × Ev)

=
∑
u∈A

µ1(Eu)
∑
v∈B

µ2(Ev)

= µ1(A)µ2(B)

where the sums are taken over distinct Eu×Ev’s, distinct Eu’s and distinct Ev’s.

Therefore the measure µ defined on AG14G2 agrees with the product measure

µ1×µ2 on the collection {A×B : A ∈ AG1 , B ∈ AG2} of generators of AG1×AG2
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Hereafter, whenever G14G2 is a graph product such that AG1 × AG2 ⊆

AG14G2 and EG14G2

(u,v) ⊆ EG1
u × EG2

v , for (u, v) ∈ V (G14G2), we use the measure

defined in Equation 6.1 as the measure of the product. For example lexicographic

product, tensor product, Cartesian product, normal product and co-normal prod-

uct have these properties.

There are graph products which do not have these properties, for example

homomorphic product. In this case the natural extension of product measure of

AG1 ×AG2 to AG1nG2 is not possible.

Let G1 and G2 be two graphs and f1 and f2 be measurable dominating func-

tions of G1 and G2 respectively. In the following subsections, we define a function

f on V (G14G2), by f((u, v)) = f1(u)f2(v) and check whether f is a measurable

dominating function of G14G2 or not. We also examine whether the minimality

of f1 and f2 implies that of f .

6.4.1 Lexicographic Product

Theorem 6.4.1. Let G1 and G2 be two graphs and f1 and f2 be measurable

dominating functions of G1 and G2 respectively. Then the function f defined

on V (G1[G2]), by f((u, v)) = f1(u)f2(v) is a measurable dominating function of

G1[G2].

Proof. By Proposition 3.2.8, f is a measurable function defined from V (G1[G2])

to [0, 1]. Let (u, v) ∈ V (G1[G2]). Then N [(u, v)] = (N(u) × V (G2))
⋃

({u} ×
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N [v]). Hence N [u]×N [v] ⊆ N [(u, v)]. Let N [u] =
⋃m
i=1Eui and N [v] =

⋃n
j=1Evi ,

where ui ∈ N [u] and each Eui ’s are distinct for 1 ≤ i ≤ m and vi ∈ N [v] and

each Evi ’s are distinct for 1 ≤ j ≤ n. It is clear that f is constant on Eui ×Evj ,

1 ≤ i ≤ m and 1 ≤ j ≤ n.

Therefore.

∫
N [(u,v)]

f dµ ≥
∫

N [u]×N [v]

f dµ

=
∑

1≤i≤m
1≤j≤n

f(ui, vj)µ(Eui × Evj)

=
∑

1≤i≤m
1≤j≤n

f1(ui)f2(vj)µ1(Eui)µ2(Evj)

=
∑

1≤i≤m

f1(ui)µ1(Eui)
∑

1≤j≤n

f2(vj)µ2(Evj)

≥ 1

Therefore f is a measurable dominating function of G1[G2].

The functions f1 and f2 in Example 6.4.2 are minimal measurable dominating

functions, but their product f = f1f2 is not minimal.

Example 6.4.2. Consider the graphs G1, G2 and G1[G2] given in Figure

3.1.

Let f1 : V (G1) −→ [0, 1] be defined by f1(u1) = f1(u2) = 1
2
. Let f2 :

V (G2) −→ [0, 1] be defined by f2(v1) = f2(v2) = f2(v3) = 1
2
.

Let the measures µ1 on AG1 and µ2 on AG2 be defined as follows. µ1(Eu1) = 2
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and µ2(Ev1) = µ2(Ev2) = µ2(Ev3) = 1.

∫
N [u1]

f1 dµ1 =

∫
N [u2]

f1 dµ1 = f1 (u1)µ1(Eu1)

= 1.

∫
N [v1]

f2 dµ2 = f2(v1)µ2(Ev1) + f2(v2)µ2(Ev2)

= 1.

∫
N [v2]

f2 dµ2 = f2(v1)µ2(Ev1) + f2(v2)µ2(Ev2) + f2(v3)µ2(Ev3)

= 3
2∫

N [v3]

f2 dµ2 = f2(v2)µ2(Ev2) + f2(v3)µ2(Ev3)

= 1.

By Theorem 6.1.6, f1 and f2 are minimal measurable dominating functions of

G1 and G2 respectively.

E(u1,v1) = {(u1, v1)}, E(u2,v1) = {(u2, v1)} and F(u1,v1) = F(u2,v1) =

{E(u1,v1), E(u2,v1)}.

Therefore,

µ(E(u1,v1)) = 1
2
µ(Eu1 × Ev1)

= 1
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µ(E(u2,v1)) = 1
2
µ(Eu2 × Ev1)

= 1

E(u1,v2) = E(u2,v2) = {(u1, v2), (u2, v2)}.

Therefore,

µ(E(u1,v2)) = µ(E(u2,v2))

= µ(Eu1 × Ev2)

= 2

Similarly we get,

µ(E(u1,v3)) = 1
2
µ(Eu1 × Ev3)

= 1

µ(E(u2,v3)) = 1
2
µ(Eu2 × Ev3)

= 1

Let f := f1f2.

Then, f((ui, vj)) = 1
4
, i = 1, 2 and j = 1, 2, 3.

∫
N [(u1,v1)]

f dµ = f((u1, v1))µ(Eu1,v1) + f((u2, v1))µ(E(u2,v1))

+f((u1, v2))µ(Eu1,v2) + f((u2, v3))µ(Eu2,v3)

= 5
4
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Similarly we get, ∫
N [(u2,v1)]

f dµ = 5
4∫

N [(u1,v3)]

f dµ = 5
4∫

N [(u2,v3)]

f dµ = 5
4

∫
N [(u1,v2)]

f dµ = f((u1, v2))µ(Eu1,v2) + f((u1, v1))µ(E(u1,v1))

+f((u2, v1))µ(Eu2,v1) + f((u1, v3))µ(Eu1,v3)

+f((u2, v3))µ(Eu2,v3)

= 3
2

Since N [(u1, v2)] = N [(u2, v2)],

∫
N [(u2,v2)]

f dµ =
3

2
.

Therefore f is measurable dominating function of G1[G2]. But f is not a minimal

measurable dominating function, by Theorem 6.1.6.

6.4.2 Tensor Product

Let f1 be a measurable dominating function of the graph G1 and f2 be a

measurable dominating function of the graph G2, then the function f defined by

f((x, y)) = f1(x)f2(y), (x, y) ∈ G1 ⊗ G2, need not be a measurable dominating

function of G1 ⊗G2.

Example 6.4.3. Consider the graphs G1, G2 and G1 ⊗G2 given in Figure

3.3.
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6.4. Measure on Graph Products

Let f1 : V (G1) −→ [0, 1] be defined by f1(u1) = f1(u2) = 1
2

and

f2 : V (G2) −→ [0, 1] be defined by f2(v1) = f2(v2) = f2(v3) = 1
2
.

Let the measures µ1 on AG1 and µ2 on AG2 be defined by µ1(Eu1) = 2 and

µ2(Ev1) = µ2(Ev2) = µ2(Ev3) = 1.

In Example 6.4.2, it is proved that f1 is a measurable dominating function of G1

and f2 is a measurable dominating function of G2.

E(u1,v1) = {(u1, v1)}, E(u2,v1) = {(u2, v1)}, µ(Eu1 × Ev1) = 2 and |F(u1,v1)| = 2.

Therefore,

µ(E(u1,v1)) = 1
2
µ(Eu1 × Ev1)

= 1

E(u1,v2) = {(u1, v2)}, E(u2,v2) = {(u2, v2)}, µ(Eu2 × Ev2) = 2, and |F(u2,v2)| = 2.

Therefore,

µ(E(u2,v2)) = 1
2
µ(Eu1 × Ev1)

= 1

f((ui, vj)) = 1
4
, i = 1, 2 and j = 1, 2, 3.

∫
N [(u1,v1)]

f dµ = f((u1, v1))µ(Eu1,v1) + f((u2, v2))µ(E(u2,v2))

= 1
2
< 1

Hence f is not a measurable dominating function of G1 ⊗G2.
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6.4.3 Cartesian Product

In the case of Cartesian product, measurability of functions does not behave

smoothly in the following sense. Let f1 be a measurable dominating function of

G1 and f2 be a measurable dominating function of G2. Then f = f1f2 need not

be a measurable dominating function of G1 ×G2.

Example 6.4.4. Consider the graphs G1, G2 and G1 ×G2 given in Figure

3.4.

Let µ1, µ2, f1 and f2 be as in Example 6.4.2. Then f1 is a measurable

dominating function of G1 and f2 is a measurable dominating function of G2.

E(u1,v1) = {(u1, v1)}, E(u2,v1) = {(u2, v1)}, µ(Eu1 × Ev1) = 2 and |F(u1,v1)| = 2.

Therefore,

µ(E(u1,v1)) = 1
2
µ(Eu1 × Ev1)

= 1

Similarly, we get µ(E(u2,v1)) = µ(E(u1,v2)) = 1.

Let f := f1f2.

Then, f((ui, vj)) = 1
4
, i = 1, 2 and j = 1, 2, 3.

∫
N [(u1,v1)]

f dµ = f((u1, v1))µ(E(u1,v1)) + f((u2, v1))µ(E(u2,v1))+

f((u1, v2))µ(E(u1,v2))

= 3
4
< 1

Hence f is not a measurable dominating function of G1 ×G2.
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6.4.4 Normal Product

Let G1 and G2 be two graphs. Let µ1 be the measure on AG1 and µ2 be

the measure on AG2 . We have AG1�G2 = AG1 × AG2 and E(x,y) = Ex × Ey, for

(x, y) ∈ V (G1 �G2). Therefore the measure defined in Equation 6.1 on AG1�G2

coincides with the product measure of AG1 ×AG2 .

Theorem 6.4.5. Let G1 and G2 be two graphs and f1 and f2 be measurable

dominating functions of G1 and G2 respectively. Then the function f defined on

V (G1 � G2) by f((u, v)) = f1(u)f2(v) is a measurable dominating function of

G1 �G2.

Proof. By Proposition 3.2.28, f is a measurable function defined from V (G1�G2)

to [0, 1]. Let (u, v) ∈ V (G1 �G2). Let N [u] =
m⋃
i=1

Eui and N [v] =
n⋃
j=1

Evj , where

ui ∈ N [u] and Eui ’s are distinct for 1 ≤ i ≤ m and vi ∈ N [v] and Evi ’s are

distinct for 1 ≤ j ≤ n. It is clear that f is constant on Eui ×Evj , 1 ≤ i ≤ m and

1 ≤ j ≤ n.

Therefore,

∫
N [(u,v)]

f dµ =

∫
N [u]×N [v]

f dµ

=
∑

1≤i≤m
1≤j≤n

f(ui, vj)µ(Eui × Evj)

=
∑

1≤i≤m
1≤j≤n

f1(ui)f2(vj)µ1(Eui)µ2(Evj)
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6.4. Measure on Graph Products

=
∑

1≤i≤m

f1(ui)µ1(Eui)
∑

1≤j≤n

f2(vj)µ2(Evj)

≥ 1

Hence f is a measurable dominating function of G1 �G2.

Let G1 and G2 be two graphs and f1 and f2 be minimal measurable dom-

inating functions of G1 and G2 respectively. Next we check whether f1f2 is a

minimal measurable dominating function of G1 �G2.

Theorem 6.4.6. Let G1 and G2 be two graphs and f1 and f2 are minimal mea-

surable dominating functions of G1 and G2 respectively. Then f := f1f2 is a

minimal measurable dominating function of G1 �G2.

Proof. By Theorem 6.4.5, f is a measurable dominating function of G1�G2. Let

(u, v) ∈ V (G1 � G2) be such that f(u, v) > 0. Then f1(u) > 0 and f2(v) > 0.

Since f1 and f2 are minimal measurable dominating functions of G1 and G2

respectively, by Theorem 6.1.6, there exit u′ ∈ N [u] and v′ ∈ N [v] such that∫
N [u′]

f1 dµ1 = 1 and

∫
N [v′]

f2 dµ2 = 1. Then (u′, v′) ∈ N [u]×N [v] = N [(u, v)]. By

imitating the procedure used in Theorem 6.4.5, we get

∫
N [(u′,v′)]

f dµ =

∫
N [u′]×N [v′]

f dµ

=

∫
N [u′]

f1 dµ1

∫
N [v′]

f2 dµ2

= 1
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Hence by Theorem 6.1.6, f is a minimal measurable dominating function of

G1 �G2.

6.4.5 Co-normal Product

Theorem 6.4.7. Let G1 and G2 be two graphs and f1 and f2 be measurable

dominating functions of G1 and G2 respectively. Then the function f defined

on V (G1 ∗G2) by f((u, v)) = f1(u)f2(v) is a measurable dominating function of

G1 ∗G2.

Proof. Let (u, v) ∈ V (G1[G2]). Then N [(u, v)] = {(u, v)}
⋃

(N(u)× V (G2))
⋃

(V (G1) × N(v)). Hence N [u] × N [v] ⊆ N [(u, v)]. Thus the theorem can be

proved in a way similar to that of Theorem 6.4.1.

Consider the graphs G1, G2 and G1 ∗G2 given in the Figure 3.5. Let µ1, µ2,

f1 and f2 be as in Example 6.4.2. Then f1 is a minimal measurable dominating

function of G1 and f2 is a minimal measurable dominating function of G2. Also

for these graphs G1 and G2, G1∗G2
∼= G1[G2]. In Example 6.4.2, it is proved that

f1f2 is not a minimal measurable dominating function of G1[G2]. Therefore f1f2

is not a minimal measurable dominating function of G1 ∗ G2. Thus in the case

of co-normal product the minimality of f1 and f2 does not imply the minimality

of f1f2.
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Products

6.5 x-section and y-section of Measurable Func-

tions Defined on Graph Products

In this section we are considering the measurability of x-sections and y-

sections of measurable functions defined on the vertex set of different types of

graph products.

6.5.1 Lexicographic Product

Theorem 6.5.1. Let G1 and G2 be two graphs. If a function f defined on

V (G1[G2]) is measurable, then for each x ∈ V (G1), fx is measurable.

Proof. Let x ∈ V (G1) and y1, y2 ∈ V (G2) be such that N [y1] = N [y2]. To

prove fx is measurable, we have to prove that fx(y1) = fx(y2), by Theorem

2.1.25. That is f((x, y1)) = f((x, y2)). For this it is enough to prove that

N [(x, y1)] = N [(x, y2)], by Theorem 2.1.25.

N [(x, y1)] = (N(x)× V (G2))
⋃

({x} ×N [y1])

= (N(x)× V (G2))
⋃

({x} ×N [y2])

= N [(x, y2)]

Hence fx is measurable.

Remark 6.5.2. In the case of lexicographic product G1[G2] of two graphs

G1 and G2, though the x-sections fx of a measurable function f defined on
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Products

V (G1) × V (G2) are measurable for all x ∈ V (G1), the y-section f y need not be

measurable for y ∈ V (G2).

For example consider the graphs G1 and G2 given below.
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Figure 6.4: The lexicographic product G1[G2] of two graphs G1 and G2.

Define f : V (G1[G2])→ [0, 1] as,

f((u1, v1)) = 1
2
, f((u2, v1)) = 1, f((u1, v2)) = f((u2, v2)) = 1

2
, f((u1, v3)) = 1

4
,

f((u2, v3)) = 1. Then f is measurable.

Consider,
f v1 : V (G1)→ [0, 1]

In G1,

N [u1] = N [u2]

But,

f v1(u1) = f((u1, v1)) = 1
2

and f v1(u2) = f((u2, v1)) = 1.

Hence by Corollary 2.1.26, f v1 is not measurable.
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6.5.2 Cartesian Product

In the case of Cartesian product the measurability condition is weaker than

that of the lexicographic product in the sense that if G1 and G2 are two graphs

and f is a measurable function defined on V (G1×G2), then the functions fx and

f y need not be measurable for x ∈ V (G1) and for y ∈ V (G2).

For example consider the graphs G1 and G2 given below.
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Figure 6.5: The Cartesian product G1 ×G2 of two graphs G1 and G2.

Consider the function f : V (G1 ×G2)→ [0, 1] defined by,

f((u1, v1)) = f((u2, v2)) = f((u2, v3)) = 1, f((u1, v2)) = f((u1, v3)) = f((u2, v4)) =

1
2
, f((u1, v4)) = 1

4
, f((u2, v1)) = 1

8
.

The function f is measurable.

In G2, N [v3] = N [v4] but fu1(v3) 6= fu1(v4). Hence by Corollary 2.1.26, fu1 is

not measurable. In G1, N [u1] = N [u2] but f v1(u1) 6= f v1(u2). Again by Corollary

2.1.26, f v1 is not measurable.
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Thus in the case of Cartesian product, measurability of a function f defined

on the vertex set of V (G1 × G2) does not imply measurability of its x-sections

and y-sections.

6.5.3 Tensor Product

Likewise in Cartesian product the situation of measurability is not fair in the

case of tensor product. Let G1 and G2 be two graphs. The measurability of a

function f defined on V (G1⊗G2) will not imply that of fx and f y for x ∈ V (G1)

and y ∈ V (G2).

For example consider the graphs given below.
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Figure 6.6: The tensor product G1 ⊗G2 of two graphs G1 and G2.

Consider the function f : V (G1 ⊗G2)→ [0, 1] defined by,

f((u1, v1)) = f((u1, v2)) = f((u1, v4)) = f((u2, v3)) = 1
2
, f((u1, v3)) =

f((u2, v4)) = 1, f((u2, v1)) = 1
4
, f((u2, v2)) = 1

8
.
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The function f is measurable by Theorem 2.1.25. But fu1 and f v1 are not

measurable.

In G2, N [v3] = N [v4], but fu1(v3) 6= fu1(v4). Therefore fu1 is not measurable.

In G1, N [u1] = N [u2], but f v1(u1) 6= f v1(u2). Therefore f v1 is not measurable.

6.5.4 Co-normal Product

The measurability of a function defined on the vertex set of the co-normal

product of two graphs does not imply the measurability of its x-sections and

y-sections. For example consider the graphs given below.
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Figure 6.7: The co-normal product G1 ∗G2 of two graphs G1 and G2.

Let f : V (G1 ∗G2)→ [0, 1] be defined by,

f((u1, v1)) = f((u1, v3)) = f((u2, v2)) = f((u2, v3)) = f((u3, v1)) = f((u3, v2)) =

f((u3, v3)) = 1, f((u1, v2)) = f((u2, v1)) = 2.
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The neighborhood sigma algebra of G1∗G2 is P(V (G1∗G2)). Hence all functions

from V (G1 ∗G2) are measurable. In particular f is measurable.

In G2, N [v1] = N [v2], but fu1(v1) 6= fu1(v2). Therefore fu1 is not measurable.

Because of a similar reason f v1 is not measurable.

6.5.5 Homomorphic Product

The measurability of a function defined on the vertex set of the homomorphic

product of two graphs does not imply the measurability of its x-sections and y-

sections. For example consider the graphs given below.
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Figure 6.8: The homomorphic product G1 nG2 of two graphs G1 and G2.

Consider the function f : V (G1 nG2)→ [0, 1] defined by,

f((u1, v1)) = f((u1, v2)) = f((u1, v3)) = f((u2, v2)) = f((u2, v3)) =

f((u2, v4)) = 1, f((u1, v4)) = f((u2, v1)) = 2.
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The neighborhood sigma algebra of G1nG2 is P(V (G1nG2)). Hence all functions

from V (G1 nG2) are measurable. In particular f is measurable.

In G2, N [v3] = N [v4], but fu1(v3) 6= fu1(v4). Therefore fu1 is not measurable.

A similar reason implies that f v1 is not measurable.

6.5.6 Normal Product

Apart from all other products, in the case of the normal product, the mea-

surability of functions defined on V (G1 � G2) and that of their x-sections and

y-sections behave very nicely.

Theorem 6.5.3. Let G1 and G2 be two graphs. If a function f defined on

V (G1 � G2) is measurable, then fx and f y are measurable for each x ∈ V (G1)

and y ∈ V (G2).

Proof. Let x ∈ V (G1) and y1, y2 ∈ V (G2) be such that N [y1] = N [y2]. To prove

fx is measurable, we have to prove that fx(y1) = fx(y2). That is f((x, y1)) =

f((x, y2)). For this it is enough to prove that N [(x, y1)] = N [(x, y2)].

N [(x, y1)] = N [x]×N [y1]

= N [x]×N [y2]

= N [(x, y2)]

Hence fx is measurable.

Similarly, we can prove that f y is measurable for each y ∈ V (G2).
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Theorem 6.5.3 is a natural phenomenon because AG1�G2 = AG1 ×AG2 (The-

orem 3.2.27). The crux of it is in fact a consequence of the following theorem of

the general measure theory.

Theorem 6.5.4. [23] Suppose (X,S) and (Y, T ) are measurable spaces. Let f

be a (S × T ) - measurable function on X × Y . Then

(i) For each x ∈ X, fx is a T - measurable function.

(ii) For each y ∈ Y , f y is a S - measurable function.

In this section we examined the measurability of x-sections, fx and y-sections,

f y of a measurable function f defined on the vertex set of different types graph

products. It is proved that in the case of lexicographic product fx is measurable

but f y need not be measurable, in the case of tensor product, Cartesian product,

co-normal product and homomorphic product fx and f y need not be measurable

and in the case of normal product both fx and f y are measurable.
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Chapter 7
Measurable Dominating Functions of

Infinite Graphs

7.1 Neighborhood Sigma Algebra of

Infinite Graphs

In the case of a finite graph G = (V (G), E(G)), we have proved that the

smallest measurable set in the neighborhood sigma algebra A of G, containing a

vertex v is the set {u ∈ V (G) : N [u] = N [v]}. As in this case the neighborhood

sigma algebra contains only a finite number of elements, intersection of any col-

lection of elements of A is again in A. Hence smallest measurable set containing

a vertex is meaningful. But this is not quite obvious in the case of infinite graphs

and the existence of such a set is even doubtful.
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Consider the following example.

Let G be a graph with vertex set V (G) = [0, 1]
⋃

(2, 3). Let f be a bijection from

(0, 1) to (2, 3). The adjacency of G is as follows.

N [0] = N [1] = [0, 1], N [x] = [0, 1]
⋃
f(x) for each x ∈ (0, 1) and N [y] =

{y, f−1(y)} for each y ∈ (2, 3). Then {u ∈ V (G) : N [u] = N [0]} = {0, 1}.

But we cannot assure that {0, 1} is measurable.

In order to overcome this difficulty we define the neighborhood sigma algebra

of any graph by a different way but will not contradict the definition of neighbor-

hood sigma algebra of finite graphs. Motivated by the notations of finite graphs

we denote the set {u ∈ V (G) : N [u] = N [v]} by Ev in all the cases whether G

is finite or not and define the neighborhood sigma algebra as the sigma algebra

generated by the collection B = {N [v] : v ∈ V (G)}
⋃
{Ev : v ∈ V (G)}. Later

we prove that Ev is the smallest measurable set containing v in parity with the

finite graphs.

Example 7.1.1. Let G be a graph with V (G) = Z. The adjacency relation

in G is as follows. Fix r ∈ N. Two vertices a, b of G are adjacent if and only if

a 6= b and a ≡ b(mod r).

For n ∈ Z, let < n >= {kr + n : k ∈ Z}. Then for m = kr + n with k ∈ Z and

n = 0, 1, 2, . . . , r − 1, Em =< n >. In this case order of G is countably infinite

but there are only a finite number of Ev’s. Note that each Ev is infinite.

Example 7.1.2. Let G be a graph with V (G) = R. Two vertices a, b ∈ R

are adjacent in G if and only if and b = −a. Then for v ∈ V (G), Ev = {v,−v}.
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Here order of G is uncountable and there are uncountable number of Ev’s.

Example 7.1.3. Let G be a graph with vertex set V (G) = R2 with the

following as the closed neighborhoods.

N [(0, 0)] = R2. Let x be an irrational number and q be a rational number. Then

N [(x, q)] = {(x, r) : r rational}
⋃
{(0, 0)}. For all (u, v) not in any of N [(x, q)],

N [(u, v)] = W , where W = (
⋃

x∈R\Q

N [x, 0])c
⋃
{(0, 0)}. Then E(0,0) = {(0, 0)},

E(x,q) = {(x, r) : r rational} and for w ∈ W \ {(0, 0)}, Ew = W \ {(0, 0)}

For a graph G, let N = {N [v] : v ∈ V (G)} and M = {Ev : v ∈ V (G)}.

Definition 7.1.4. Let G be any graph (whether finite or infinite). The

sigma algebra generated by the collection N
⋃

M is called the neighborhood

sigma algebra of G and it is denoted byAG or simply byA if there is no confusion.

Hereafter by a graph G, we mean an infinite graph with the neighborhood

sigma algebra A on the vertex set V (G) and a measure µ on A.

Theorem 7.1.5. Let G be a graph. Then for v ∈ V (G) and A ∈ A, either

Ev ⊂ A or Ev ⊂ Ac.

Proof. Consider the collection, A = {A ⊂ V (G) : for any Ev ∈M , either

Ev ⊂ A or Ev ⊂ Ac}. It is clear that N ⊂ A . We can also show that A is a

sigma algebra. Clearly if A ∈ A , then Ac ∈ A . Now let {An} be a sequence in

A . For Ev ∈M , if Ev ⊂ Am for some m, then Ev ⊂
⋃
An. Otherwise Ev ⊂ Acn

for all n and Ev ⊂
⋂
Acn = (

⋃
An)c. This implies that

⋃
An ∈ A . Hence A is a
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sigma algebra containing N
⋃

M and hence A ⊂ A . Proving the assertion.

Corollary 7.1.6. If A ∈ A and if A ⊂ Ev for some v ∈ V (G), then either A is

empty or A = Ev.

Proof. Suppose A ∈ A and A ⊂ Ev for some v ∈ V (G). By Theorem 7.1.5, either

Ev ⊂ A or Ev ⊂ Ac. In the first case A = Ev. In the second case A = ∅.

Corollary 7.1.6 shows that no proper non empty subset of Ev is measurable.

Thus the smallest measurable set containing each vertex v of G exists and it is

Ev. As a consequence of this result, if some real function defined on the vertex

set of a graph is measurable with respect to A then it cannot assume different

values on Ev, for each v ∈ V (G). In other words any measurable real function

takes constant values on each Ev, v ∈ V (G).

Proposition 7.1.7. Let G be a graph and let f be a measurable real valued

function defined on V (G). Then for each v ∈ V (G), f is constant on Ev.

Proof. Let v ∈ V (G) and f(v) = c. Suppose f(u) = d for some u ∈ Ev. Let,

if possible, d 6= c, suppose that c < d. Then f−1(−∞, d) is measurable and

v ∈ f−1(−∞, d). Therefore v ∈ f−1(−∞, d)
⋂
Ev and f−1(−∞, d)

⋂
Ev is a

measurable set properly contained in Ev, which contradicts the fact that Ev is

the smallest measurable set containing v. A similar kind of contradiction arises

when d < c.

Remark 7.1.8. The converse of this proposition is not true in the case of infinite
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graphs. That is even though a function defined on the vertex set of an infinite

graph is constant on all Ev’s, it need not be a measurable function.

Example 7.1.9. Let G be a graph with vertex set V (G) = {x ∈ R : 0 ≤

x ≤ 1}. Suppose that no two vertices in G are adjacent.

Then N [v] = Ev = {v} for all v ∈ V (G).

Hence the neighborhood sigma algebra A of G is the sigma algebra generated by

the collection {{x} : x ∈ [0, 1]}.

The identity function f on V (G) is constant on each Ev, but it is not measurable.

This follows from the fact that, A = {A ⊆ [0, 1] : A or Ac is countable}.

This example also suggests that, in the case of infinite graphs the measurabil-

ity of all singleton subsets of V (G) does not imply the measurability of functions

on V (G).

7.2 Measurable Dominating Functions

In this section we define measurable dominating function of an infinite graph

and characterize minimal measurable dominating function.

Definition 7.2.1. Let G be a graph with vertex set V (G). A function

f : V (G)→ [0, 1] is called a measurable dominating function of G if the following

conditions are satisfied:

(i) f is measurable
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(ii)

∫
N [v]

f dµ ≥ 1 for all v ∈ V (G).

Definition 7.2.2. Let G be a graph with vertex set V (G). A measurable

dominating function f of G is said to be minimal if there does not exist a mea-

surable dominating function g of G such that g ≤ f a.e and g < f on some set

of positive measure.

Now we derive a necessary and sufficient condition for a measurable domi-

nating function to be minimal.

Theorem 7.2.3. Let G be a graph with vertex set V (G). A measurable domi-

nating function f of G is minimal if and only if inf{
∫
N [u]

f dµ : u ∈ N [v]} = 1,

for every vertex v ∈ V (G) with µ(Ev) > 0 and f > 0 on Ev.

Proof. Let f be a minimal measurable dominating function of G and v ∈ V (G)

be such that µ(Ev) > 0 and f(v) > 0.

Suppose inf{
∫
N [u]

f dµ : u ∈ N [v]} 6= 1. Since f is a measurable dominating

function of G,

∫
N [u]

f dµ ≥ 1 for all u ∈ N [v]. This implies

∫
N [u]

f dµ > 1 for all

u ∈ N [v].

Let S = {
∫

N [u]\Ev

f dµ : u ∈ N [v]}.

Suppose infS ≥ 1.

Define a function g : V (G) −→ [0, 1] as

g(w) =


f(w) if w /∈ Ev

0 if w ∈ Ev
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Then g = f − fχEv , where χEv denotes the characteristic function of Ev. Hence

g is measurable.

Let u ∈ N [v], then

∫
N [u]

g dµ =

∫
Ev

g dµ+

∫
N [u]\Ev

g dµ

=

∫
N [u]\Ev

g dµ

=

∫
N [u]\Ev

f dµ

≥ infS

≥ 1.

Also, for u /∈ N [v] , ∫
N [u]

g dµ =

∫
N [u]

f dµ

≥ 1

Therefore g is a measurable dominating function such that g(w) ≤ f(w) for every

w ∈ V (G) and g < f on Ev, which is a contradiction.

Suppose infS < 1.

Let f(v) = c. Then f ≡ c on Ev.
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For u ∈ N [v], ∫
N [u]

f dµ =

∫
N [u]\Ev

f dµ+

∫
Ev

fdµ

=

∫
N [u]\Ev

f dµ+ cµ(Ev)

> 1 (7.1)

This implies

c >

1−
∫

N [u]\Ev

f dµ

µ(Ev)
, for all u ∈ N [v].

Also for u ∈ N [v],

∫
N [u]\Ev

f dµ ≥ infS.

This implies 1− infS ≥ 1−
∫

N [u]\Ev

f dµ, for all u ∈ N [v].

Hence for all u ∈ N [v],

1− infS
µ(Ev)

≥
1−

∫
N [u]\Ev

f dµ

µ(Ev)
.

Also by (7.1), for all u ∈ N [v],

∫
N [u]\Ev

f dµ > 1− cµ(Ev). This implies,

infS ≥ 1− cµ(Ev).

But inf{
∫
N [u]

f dµ : u ∈ N [v]} 6= 1. This implies that infS 6= 1− cµ(Ev).

Hence infS > 1− cµ(Ev).

That is,

c >
1− infS
µ(Ev)
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Since infS < 1, there exists at least one u ∈ N [v], such that

∫
N [u]\Ev

f dµ < 1.

Let U = {u ∈ N [v] :

∫
N [u]\Ev

f dµ < 1}.

If u ∈ U ,

1−
∫

N [u]\Ev

f dµ

µ(Ev)
> 0.

Therefore there exits d ∈ [0, 1], such that
1−

∫
N [u]\Ev

f dµ

µ(Ev)
< d < c, for all u ∈ U .

Define a function h : V (G) −→ [0, 1] as,

h(w) =


f(w) if w /∈ Ev

d if w ∈ Ev

Then h = f − (f − d)χEv , hence measurable.

Let u ∈ U .

∫
N [u]

h dµ =

∫
N [u]\Ev

h dµ+

∫
Ev

h dµ

=

∫
N [u]\Ev

f dµ+ dµ(Ev)

>

∫
N [u]\Ev

f dµ+

1−
∫

N [u]\Ev

f dµ

µ(Ev)

µ(Ev)

= 1.

Let u /∈ U .
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If u /∈ N [v], ∫
N [u]

h dµ =

∫
N [u]

f dµ

≥ 1

If u ∈ N [v],

∫
N [u]\Ev

f dµ ≥ 1

Therefore, ∫
N [u]

h dµ =

∫
N [u]\Ev

h dµ+

∫
Ev

h dµ

=

∫
N [u]\mv

f dµ+ dµ(Ev)

> 1

Therefore h is a measurable dominating function such that h(w) ≤ f(w) for

every w ∈ V (G) and h < f on Ev, which is a contradiction.

Conversely, let f be a measurable dominating function of G such that

inf{
∫
N [u]

f dµ : u ∈ N [v]} = 1, for every vertex v with µ(Ev) > 0 and f > 0 on

Ev.

Suppose f is not minimal. Then there exists a measurable dominating function

l of G such that l ≤ f a.e and l < f on a set of positive measure. So, there exists

v ∈ V (G) such that µ(Ev) > 0 and l < f on Ev. This implies f(v) > 0. Also

l(v)µ(Ev) < f(v)µ(Ev), since µ(Ev) > 0. Hence 1− f(v)µ(Ev) < 1− l(v)µ(Ev).

Since inf{
∫
N [u]

f dµ : u ∈ N [v]} = 1, infS = 1− µ(Ev)f(v). Hence for each r >

1− µ(Ev)f(v), there exists u ∈ N [v] such that r >

∫
N [u]\Ev

f dµ ≥ 1− µ(Ev)f(v).

Therefore by taking r = 1−l(v)f(v), we get a u ∈ N [v] such that 1−µ(Ev)f(v) ≤
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∫
N [u]\Ev

f dµ < 1− l(v)µ(Ev). But

∫
N [u]\Ev

l dµ ≤
∫

N [u]\Ev

f dµ < 1− l(v)µ(Ev). This

implies

∫
N [u]

l dµ < 1, which contradicts the fact that l is a measurable dominating

function of G. Hence the theorem.

Example 7.2.4. Consider the graph G with V (G) = {u1, u2, ..., v1, v2, ...}

and N [ui] = {vi, u1, u2, ...}, i ∈ N and N [vi] = {ui, v1, v2, ...}, i ∈ N.

Then Ew = {w} for all w ∈ V (G). Let {xi} and {yi} be two sequences in R+

such that
∑
i∈N

xi =
∑
i∈N

yi = 1.

Let µ({ui}) = xi and µ({vi}) = yi for all i ∈ N.

Since
∑
i∈N

xi and
∑
i∈N

yi are convergent, lim xn = lim yn = 0.

Define f : V (G) −→ [0, 1] as f(w) = 1 for all w ∈ V (G).

Being a constant function f measurable.

For j ∈ N, ∫
N [uj ]

f dµ =
∑
i∈N

xi + yj

= 1 + yj

and ∫
N [vj ]

f dµ =
∑
i∈N

yi + xj

= 1 + xj

Thus for each w ∈ V (G), inf{
∫

N [w′]

f dµ : w′ ∈ N [w]} = 1.

Hence by Theorem 7.2.3, f is a minimal measurable dominating function of G.

Remark 7.2.5. In Example 7.2.4,

∫
N [w]

f dµ 6= 1 for any w ∈ V (G). So as
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in the case of finite graphs for a minimal measurable dominating function, for

v ∈ V (G) with f(v) > 0 and µ(Ev) > 0, there need not exists a vertex u ∈ N [v]

such that

∫
N [u]

f dµ = 1.

We conclude our work with the following section, which is a generalization of

measurable signed dominating functions to infinite graphs.

7.3 Measurable Signed Dominating Functions

Definition 7.3.1. Let G be a graph with vertex set V (G). A function

f : V (G)→ [−1, 1] is called a measurable signed dominating function of G if the

following conditions are satisfied:

(i) f is measurable

(ii)

∫
N [v]

f dµ ≥ 1 for all v ∈ V (G).

Definition 7.3.2. Let G be a graph with vertex set V (G). A measurable

signed dominating function f of G is said to be minimal if there does not exist a

measurable signed dominating function g of G such that g ≤ f a.e on V (G) and

g < f on some set of positive measure.

Theorem 7.3.3 characterizes minimal measurable signed dominating func-

tions.
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Theorem 7.3.3. Let G be a graph and µ be a measure on V (G). A measurable

signed dominating function f of G is minimal if and only if inf{
∫
N [u]

f dµ : u ∈

N [v]} = 1, for every vertex v ∈ V (G) with µ(Ev) > 0 and f > −1 on Ev.

Proof. Let f be a minimal measurable signed dominating function of G relative

to µ and v ∈ V (G) be such that µ(Ev) > 0 and f(v) > −1.

Suppose inf{
∫
N [u]

f dµ : u ∈ N [v]} 6= 1. Then inf{
∫
N [u]

f dµ : u ∈ N [v]} > 1. This

implies

∫
N [u]

f dµ > 1, for all u ∈ N [v].

Then for all u ∈ N [v], ∫
N [u]

f dµ = 1 + du, du > 0. (7.2)

Also,

∫
N [u]

f dµ =

∫
Ev

f dµ+

∫
N [u]\Ev

f dµ

= cµ(Ev) +

∫
N [u]\Ev

f dµ (7.3)

where c is the value of f on Ev.

By (7.2) and (7.3), for all u ∈ N [v],

∫
N [u]\Ev

f dµ = 1 + du − cµ(Ev). (7.4)

Since inf{
∫
N [u]

f dµ : u ∈ N [v]} > 1, inf{du : u ∈ N [v]} > 0.
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Therefore k =
1

µ(Ev)
inf{du;u ∈ N [v]} > 0. Then c − k < c. Choose a real

number d ∈ [−1, 1] such that c− k ≤ d < c and define, g : V (G)→ [−1, 1] as

g(w) =


d if w ∈ Ev

f(w) if w /∈ Ev

Then g = f− (f−d)χEv is measurable, g(w) ≤ f(w) for all w ∈ V (G) and g < f

on Ev.

Also g is measurable signed dominating.

For let u ∈ N [v].

∫
N [u]

g dµ =

∫
Ev

g dµ+

∫
N [u]\Ev

g dµ

= dµ(Ev) +

∫
N [u]\Ev

f dµ

= dµ(Ev) + 1 + du − cµ(Ev), from (7.4)

≥ 1 + (d+ k − c)µ(Ev)

= 1 + [d− (c− k)]µ(Ev)

≥ 1.

Now let u ∈ V (G) \N [v]. Then,

∫
N [u]

g dµ =

∫
N [u]

f dµ ≥ 1.

Therefore g is a measurable signed dominating function of G, a contradiction.
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Conversely, let f be a measurable signed dominating function of G such that

for every vertex v with µ(Ev) > 0 and f > −1 on Ev, inf{
∫
N [u]

f dµ : u ∈ N [v]} =

1. Suppose f is not minimal. Then there exists a measurable signed dominating

function l of G such that l ≤ f a.e and l < f on some set of positive measure. So

there exists v ∈ V (G) with µ(Ev) > 0 and l < f on Ev. This implies f(v) > −1.

So f > −1 on Ev. Therefore inf{
∫
N [u]

f dµ : u ∈ N [v]} = 1.

Let S = {
∫

N [u]\Ev

f dµ : u ∈ N [v]}.

Then infS = 1 − µ(Ev)f(v). Also 1 − µ(Ev)f(v) < 1 − µ(Ev)l(v). Therefore,

there exists u ∈ N [v] such that 1− µ(Ev)l(v) >

∫
N [u]\Ev

f dµ.

But

∫
N [u]\Ev

l dµ ≤
∫

N [u]\Ev

f dµ. This implies

∫
N [u]

l dµ < 1, a contradiction. Hence

the theorem.
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Conclusion

In this thesis we extended the concept of dominating functions to infinite

graphs. We introduced a new type of sigma algebra called neighborhood sigma

algebra on the vertex sets of graphs and discussed its properties. We deter-

mined neighborhood sigma algebras of some graphs that are derived from given

graphs. We defined common neighborhood polynomial of a graph and neighbor-

hood unique graphs. We also found out common neighborhood polynomials of

join, corona and different types of graph products of two graphs. We checked

the measurability of x-section and y-section of a measurable function defined on

the vertex sets of different graph products.

In the case of lexicographic product, tensor product, Cartesian product, nor-

mal product and co-normal product of two graphs G1 and G2, we proved that the

product sigma algebra AG1×AG2 is contained in the neighborhood sigma algebra

of the product graph. We made an attempt to define a measure on the neighbor-

hood sigma algebras of graph products as an extension of the product measure

on AG1 × AG2 . We defined measurable dominating functions and measurable
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signed dominating functions of both finite and infinite graphs. Characterizations

of minimal measurable dominating functions and minimal measurable signed

dominating functions are also obtained.
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