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Introduction

Graph theory is one of the most relevant and fastest growing branches of mathe-

matics. Owing to its exponential growth in the past few decades and its extensive

applications in diverse fields, Graph theory has become the foundation stone of

applied mathematics. This all alluring field of study has already established

intricate connection with other branches of mathematics including Number the-

ory, Algebra, Linear Algebra, Topology and Geometry. Moreover, cutting across

disciplines and crossing the border of academia, Graph theory has granted a

plethora of indispensable tools in the design and analysis of communication net-

works, mobile computing and social networks to mention a few. In fact, the

varied applications of Graph theory in Engineering, Social science, Biological

science etc. have immensely contributed to the progress and popularity of math-

ematics in general and Graph theory in particular.

One of the prime concerns of Graph theory today is the study of graph poly-

nomials. Graph polynomial is defined as : “Let G be the class of graphs and let

R be a ring and X be a (not necessarily finite) set of indeterminates. A graph

polynomial is a function P : G → R[X] such that for isomorphic graphs H and
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Introduction

K, we have P(H) = P(K)” [39]. To put in simple terms, graph polynomials are

polynomials assigned to graphs. The past few decades can be marked “seminal”

while tracing the evolution of graph polynomials as an important field of research

in Graph theory because many graph polynomials were studied and plenty of the-

oretical and practical approaches were developed during the period. The edge

difference polynomial, a multi variate polynomial, introduced by J. J. Sylvester in

1878 is the first polynomial in Graph theory. Since then, several graph polynomi-

als such as chromatic polynomial, Tutte polynomial, characteristic polynomial,

matching polynomial, independence polynomial, interlace polynomial etc. have

been introduced and studied extensively.

Studies pertaining to domination and related concepts constitutes another

fascinating and productive area of research in Graph theory. For a graph G,

dominating set of a given cardinality may not be unique. S. Alikhani’s research

in this field explored the concept of domination polynomial in graphs. Subse-

quently, S. Sanalkumar and A. Vijayan introduced the concept of total domina-

tion polynomial in graphs.

An overview of the thesis

The thesis successfully employs vertex cover polynomials to determine the total

domination polynomials of some graphs. It is known that the problem of finding

total dominating sets in simple graphs can be translated to the concept of vertex

covers in hypergraphs. This prompted us to study total domination polynomials

using vertex cover polynomials in hypergraphs. We establish that the interplay

2
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between total domination polynomial of a graph and vertex cover polynomial of

its open neighborhood hypergraph produces several results on total domination

polynomials.

The thesis comprises an introductory chapter and eight other chapters. The

first section of every chapter is a brief introduction to the chapter. Along with

providing a blue print of the thesis, the introductory chapter mentions what

prompted the study and states the main results.

Chapter one contains the basic definitions and theorems that come in handy

in the subsequent chapters.

Let G = (V (G), E(G)) be a graph. The open neighborhood of a vertex u

of G is defined as NG(u) = {v ∈ V (G) : uv ∈ E(G)}. A subset S of V (G) is

called a total dominating set of G if NG(S) =
⋃
u∈S

N(u) = V (G) and the total

domination number [27] of G, denoted by γt(G) is the minimum cardinality

of a total dominating set of G. The open neighborhood hypergraph [27] of G,

denoted by ONH(G) or HG is the hypergraph with vertex set V (G) and edge

set {NG(u) : u ∈ V (G)}, consisting of the open neighborhoods of vertices in

G. The total domination polynomial [31] or TD-Polynomial of G is defined as

Dt(G, x) =

|V (G)|∑
i=γt(G)

dt(G, i), where dt(G, i) is the number of total dominating sets

of G of cardinality i.

A subset S of V (G) is called a vertex cover [18] of G if and only if S contains

at least one end vertex of each edge in G and the vertex cover number of G,

denoted by τ(G)is the minimum cardinality of a vertex cover of G. The vertex

cover polynomial [18] of G is defined as C(G, x) =

|V (G)|∑
i=τ(G)

c(G, i)xi, where c(G, i)

3
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is the number of vertex covers of cardinality i of G.

In Chapter two, we prove that the total domination polynomial of a graph

G is the vertex cover polynomial of its open neighborhood hypergraph. In the

second section of the chapter the TD-Polynomial of paths and cycles are ex-

pressed in terms of vertex cover polynomials of some graphs. In section 3, we

classify the vertex cover polynomials of a graph G in terms of a given subset of

the vertex set of G. Making use of these vertex cover polynomials, we obtain the

total domination polynomials of certain classes of graphs in terms of the vertex

cover polynomials of paths and cycles. The TD-Polynomial of the tree Tn1,n2,n3 ,

one point union of cycles C
(k)
n , the n-gon book graph C

2(k)
n , the theta graph

θ(n)k are determined. Finally TD-Polynomial of K
(k)
n,n+1, the one point union of

k copies of the complete bipartite graph Kn,n+1 is derived.

The inclusion of a particular vertex in every total dominating set of a graph

is important in the study of total domination polynomials. Let v be a vertex of

G. The polynomial Dv
t (G, x) is defined as Dv

t (G, x) =
∑|V (G)|

i=1 dvt (G, i)x
i, where

dvt (G, i) is the number of total dominating sets of G containing the vertex v

of cardinality i [4]. As in the previous chapter, Chapter three adopts the

terminology of open neighborhood hypergraph to determine the total domination

polynomial. In the second section, the polynomial Dv
t (G, x) of paths, cycles,

complete graphs and complete bipartite graphs are determined. Moreover, the

TD-Polynomial of one point union of complete graphs is determined.

Section 3 deals with the total domination polynomials of ring sum of some

graphs with the star graph K1,m. By suitably selecting the common vertices, the

ring sum of of the path Pn and and the star graph K1,m, produces a number of

4
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different graphs. The TD-Polynomials of each of these graphs are obtained.

In Chapter four, we study the TD-Polynomials of total and middle graph

of a graph. This chapter comprises three sections. In the second section, we

determine the total domination polynomials of the complete m-partite graph

Kn1,n2,...,nm , the corona G ◦K1 and G ◦Km, G(m1,m2, . . . ,mn), the caterpillar

graph T (m1,m2, . . . ,mn), centipede, the bi-star graph etc. It is proved that TD-

Polynomial of a connected (n− 1)-regular bipartite graph is square of the total

domination polynomial of the complete graph Kn. The TD-Polynomial of some

Cayley graphs are also determined. Finally, the total domination polynomial of

join of two graphs is determined.

In section 3, we discuss the TD-Polynomials of total graph and middle graph

of graphs like star graph K1,n, the caterpillar graph, G(m1,m2, . . . ,mn), the

corona G ◦Km etc.

Chapter five is an attempt to analyze the total domination polynomials

of Cartesian products of some graphs. The chapter succeeds in establishing

an interesting relation between domination polynomials and total domination

polynomials. There are six sections in the chapter. In the second section, we

prove that the TD-Polynomial of Cartesian product of a bipartite graph G with

K2 is square of domination polynomial ofG. It is proved that for any non bipartite

graph G with n vertices, there exists a bipartite graph H with 2n vertices such

that Dt(K2�G) = D(H, x).

In the third section of the chapter, TD-Polynomials of some cubic Cayley

graphs are determined. We express total domination polynomials of cubic Cayley

graphs in terms of domination polynomials of cycles.

5
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The next section investigates the relation between domination polynomials

of some regular graphs and the total domination polynomials of their Carte-

sian product with K2. We have shown that TD-Polynomial of K2�Kn is the

domination polynomial of an (n− 1)-regular bipartite graph with 2n vertices.

In the fifth section, we determine the TD-Polynomial of Cartesian product

of friendship graph with K2. It is proved that TD-Polynomial K2�Fn is the

domination polynomial of the theta graph θ3, 3, . . . , 3︸ ︷︷ ︸
(2n times)

.

The sixth section of chapter five is on the total domination polynomials of

Cartesian product of certain classes of graphs with the cycle C4. It is proved

that for any bipartite graph G, the TD-Polynomial of C4�G is square of dom-

ination polynomial of K2�G. In addition to this, the section provides the TD-

Polynomials of Cartesian products of some more classes of graphs.

In Chapter six, we discuss total domination polynomials of splitting graph

of order k of a graph G. In the second section, it is proved that TD-Polynomial

of splitting graph of order k of a graph G can be expressed in terms of the TD-

Polynomial of G. Moreover, we have obtained TD-Polynomial of splitting graph

of order k of paths, cycles, complete graphs, complete bipartite graphs etc.

In the third section, we introduce a terminology of iterated splitting graph of

order k of a graph G. The iterated splitting graph Si(G) of a graph G is defined

as Si(G) = S1(Si−1(G)), where i = 2, 3, . . . , k and S1(G) denotes the splitting

graph spl(G) of G. In the section, the TD-Polynomial of Sk(G) is obtained

in terms of TD-Polynomial of G. Further, TD-Polynomial of iterated splitting

graphs of order k of paths, cycles, complete graphs, complete bipartite graphs

etc. are determined.

6
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In Chapter seven, we introduce the concepts of global bipartite domina-

tion number γgb(G) and global bipartite total domination number γgbt(G) of a

connected bipartite graph.

Let G be a connected spanning sub graph of Km,n. The bipartite complement

or relative complement of G in Km,n, denoted by Ĝ is the graph Km,n − E(G).

That is, Ĝ can be obtained from the complete bipartite graph Km,n by “rubbing

out” all the edges of G. A global bipartite dominating set (GBDS) of G is a set S

of vertices of G such that S dominates G and Ĝ. The global bipartite domination

number γgb(G) of G is the minimum cardinality of a global bipartite dominating

set of G. Some general properties satisfied by this concept are studied. We also

determine the global bipartite domination number of certain classes of graphs.

Connected graphs with global bipartite domination number m+ n or m+ n− 1

are characterized. We prove that for any two positive integers a and b with a < b,

there exists a graph G with γ(G) = a and γgb(G) = b.

In the third section, the concept of global bipartite total domination is stud-

ied. For a connected spanning subgraph G of Km,n, a total dominating set S of

G is called a global bipartite total dominating set (GBDTS) of G if S dominates

Ĝ. The global bipartite total domination number γgbt(G) of G is the minimum

cardinality of a global bipartite total dominating set of G. We characterize global

bipartite total dominating sets among total dominating sets of a graph G. It is

proved that for any two positive integers a and b with a < b, there exists a graph

G with γt(G) = a and γgbt(G) = b. Moreover, the graphs having global bipartite

total domination number m+ n or m+ n− 1 are characterized.

In Chapter eight, we introduce the concept of global bipartite domina-
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tion polynomials of graphs. Let Dgb(G, i) be the family of global bipartite

dominating sets of G with cardinality i and let dgb(G, i) = |Dgb(G, i)|. Then

the global bipartite domination polynomial Dgb(G, x) is defined as Dgb(G, x) =
|V (G)|∑
i=γgb(G)

dgb(G, i)x
i.

In the second section, some properties of Dgb(G, x) are discussed. Further,

we obtain global bipartite domination polynomial of Km,n, Km,n − e, Bm,n etc.

The third section deals with global bipartite domination polynomial of paths.

A characterization of GBD set of Pn is also provided. The prime focus of the

section is on the relation between domination polynomial and global bipartite

domination polynomial of paths. Section four deals with the properties of global

bipartite domination polynomial of cycles. In the section, we obtain global bi-

partite domination polynomial of even cycles.

The concluding part of the thesis enlists some suggestions for further study

and incorporates the list of publications and bibliography.

8



Chapter 1
Preliminaries

The chapter aims at listing the terminology and notation that we use in the thesis.

Most of the terms used in this study belong to the standard graph theoretic

terminology. Some of the terms will be introduced later. The prime source of

the definition, terminology and notation is [11] Bondy, J. A. and Murty, U.S.R,

Graph theory with applications, (1976).

This chapter comprises six sections. The first section focuses on the defini-

tions and terminologies of Graph theory, which are integral in the discussion of

the topics in the forthcoming chapters. The second section deals with various

graph operations that come in handy in the subsequent chapters. Basic proper-

ties of hypergraphs are discussed in the third section. Some of the fundamental

ideas and basic results in domination and total domination are incorporated in

section five. In section six, basic definitions and properties of domination and

total domination polynomials are mentioned. Moreover, some properties of ver-

tex covering set are discussed. The chapter is summed up by the definition of

vertex cover polynomial.

9



1.1. Basic definitions and terminologies

1.1 Basic definitions and terminologies

A (undirected) graph [40] G = (V (G), E(G)) consists of a nonempty set V (G)

and E(G), a binary symmetric relation on V (G). The sets V (G) and E(G) are

called vertex set and edge set [11] of G respectively. If the graph G is clear from

the context, we simply write G = (V,E) instead of G = (V (G), E(G)) and if

e = {u, v}, where e ∈ E and u, v ∈ V, we simply write e = uv. An element of V

is called a vertex, and an element of E is called an edge [40]. We draw graphs

in such a way that each vertex is indicated by a point, and each edge by a line

joining the points representing ends of the edge [11]. For the graph G = (V,E),

the number of vertices of G is called the order [11] of G, denoted by n and the

number of edges is called the size [11] of G, denoted by m.

Let e = uv be an edge of G. Then, we say that the two vertices u and v

are adjacent [40] to each other and the edge e is incident with (incident to or

incident at) u and v. The vertices u and v are said to be the end vertices of the

edge e. The vertex v is called a neighbor of u. We write u ∼ v for ‘u adjacent

to v’. Two edges are said to be adjacent if they have a common vertex [11]. An

edge with identical ends is called a loop [11]. Two or more edges with the same

pair of ends are said to be parallel edges or multiple edges and graph having

multiple edges is a multigraph [11].

A finite graph [11] is one in which both vertex set and edge set are finite. A

graph having exactly one vertex and no edges is called a trivial graph [11] and all

other graphs are called nontrivial graphs. A graph having no loops or multiple

edges is called a simple graph [11]. Unless otherwise stated the graphs considered

in this thesis are simple.

10



1.1. Basic definitions and terminologies

For a vertex v in a graph G, the degree [22] of v, denoted by deg v, is the

number of edges incident with v. A vertex of degree one is called an end vertex [40]

or a pendant vertex and a vertex adjacent to a pendant vertex is called a support

vertex [40]. A pendant edge [22] is the edge incident with a pendant vertex. A

vertex of degree zero is called an isolated vertex [22]. In a graph G, δ(G) and

∆(G) denotes the minimum and maximum degrees of vertices in G. A k-regular

graph [11] is one with δ(G) = ∆(G) = k. A 3-regular graph is also known as

cubic graph [11].

Let H = (V (H), E(H) and K = (V (K), E(K) be two graphs. We say

that H and K are isomorphic [8], denoted by H ∼= K, if there exist bijections

f : V (H)→ V (K) and g : E(H)→ E(K) such that g(uv) = f(u)f(v) for all u, v

in V (H). In other words, e = uv is an edge of H if and only if g(e) = f(u)f(v)

is an edge of K.

A complete graph [8] is a simple graph in which every pair of distinct vertices

are adjacent. A complete graph [11] having n vertices is denoted by Kn. A graph

is bipartite [11] if its vertex set can be partitioned into two subsets, X and Y so

that every edge has one end in X and other end in Y ; such a partition (X, Y )

is called a bipartition of the bipartite graph. A complete bipartite graph [11]

is a bipartite graph such that each vertex of X is adjacent to all vertices of Y

and vice versa. Km,n denotes a complete bipartite graph with | X |= m and

| Y |= n. The complement [8] of a simple graph G, denoted by G, is graph with

V (G) = V (G) and two vertices u and v are adjacent in G if and only if they are

not adjacent in G.

A walk [11] in a graph G is an alternating sequence W : v0e1v1e2v2 . . . envn of

11



1.1. Basic definitions and terminologies

vertices and edges beginning and ending with vertices in which vi−1 and vi are

the ends of ei; v0 is the origin and vn is the terminus of W. We call W a v0 -

vn walk. The length [11] of a walk is the number of edges in it. If all the edges

in a walk are distinct, it is called a trail [11]. A path [11] is a walk in which all

vertices are distinct. Usually, we leave out the edges while writing a path. A

cycle [11] is a closed trail in which all the vertices are distinct. A cycle of length

n is denoted by Cn and a path with n vertices is denoted by Pn. Note that Pn

has length (n− 1) [11].

Let u and v are two vertices in a graph G. If there is a u - v path in G, we

say that u and v are connected. A graph G is said to be connected [22] if every

pair of verices of G are connected. A disconnected graph [22] is one which is not

connected. The distance [22] between u and v, denoted by d(u, v), is the length

of the shortest u-v path in G.

A graph H is called a subgraph [11] of a graph G if V (H) ⊆ V (G) and

E(H) ⊆ E(G). If H is a subgraph of G, then G is said to be a supergraph [11] of

H. An induced subgraph [13] H of a graph G is a subgraph of G such that two

vertices of H are adjacent if and only if they are adjacent in G. In this case, if

V (H) = S, we write H = G[S] or H = 〈S〉. A subgraph H of G is a spanning

subgraph [19] of G, if V (H) = V (G).

A graph is acyclic [22] if it has no cycles. A tree [22] is a connected acyclic

graph. A spanning tree [11] of G is a spanning subgraph of G that is a tree.

If F is any set of edges in G, then G−F is the graph (V (G), E(G)−F ) [51].

If F = {e}, then G − F is written as G − e [51]. For any subset S of V (G),

the graph G − S is obtained from G by deleting all the vertices in S [51]. If

12



1.2. Operations on graphs

S = {v}, G − S is written as G − v [51]. A maximal connected subgraph of a

graph G is called a component of G [11].

1.2 Operations on graphs

The union [50] of two graphs G1 and G2 denoted by G1 ∪ G2 is the graph with

vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2). The join [21] of two graphs

G1 and G2 denoted by G1 ∨G2 is the graph with vertex set V (G1) ∪ V (G2) and

edge set E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1) and v ∈ V (G2)}. The corona [21] of

two graphs G1 and G2 denoted by G1 ◦ G2 is the graph formed from one copy

of G1 and | V (G1) | copies of G2, such that the ith vertex of the copy of G1 is

adjacent to every vertex in the ith copy of G2. The Cartesian product [29] G1�G2

of two graphs G1 and G2 is the graph with vertex set V (G1) × V (G2) in which

two vertices (u1, v1) and (u2, v2) are adjacent if either u1u2 ∈ E(G1) and v1 = v2

or v1v2 ∈ E(G2) and u1 = u2.

1.3 Hypergraphs

A hypergraph [9] H is a pair (V, E), where V is finite non-empty set called the

set of vertices and E is a collection of nonempty subsets of V called hyperedges

or edges. That is, E is a subset of P(V ) \ {φ}, where P(V ) is the power set

of V. In drawing hypergraphs, each vertex is drawn as a point in the plane. An

edge E1 with | E1 |> 2, is drawn as a curve encircling all the vertices of E1 [9].

An edge E1 with | E1 |= 2, is drawn as a curve connecting its two vertices and

13



1.4. Open neighbourhood hypergraph

an edge E1 with | E1 |= 1, is drawn as a loop as in a graph [9].

Two vertices in a hypergraph are adjacent [9] if there is a hyperedge which

contains both vertices. Two vertices x and y of a hypergraph are connected [27]

if there is a sequence of vertices x = v0, v1, . . . , vk = y such that vi−1 is adjacent

to vi for i = 1, 2, . . . , k. A connected hypergraph [27] is a hypergraph in which

every pair of vertices are connected. A maximal connected sub hypergraph of a

hypergraph is called a component. Two hyperedges in a hypergraph are incident

[9] if their intersection is nonempty. If | Ei |= 2 for all i, and if the hypergraph

H is simple, then H is a simple graph without isolated vertices. A k-uniform

hypergraph [9] or a k-hypergraph is a hypergraph in which every edge consists

of k vertices. Since every simple graph is a 2-uniform hypergraph, graphs are

special hypergraphs [49].

1.4 Open neighbourhood hypergraph

For a graph G be with vertex set V and edge set E, the open neighborhood [27] of

a vertex u of G is NG(u) = {v ∈ V : uv ∈ E} and its closed neighborhood is the

set NG[u] = NG(u) ∪ {u}. The open neighborhood of a set [27] S ⊆ V is the set

NG(S) = ∪u∈SNG(u) and its closed neighborhood is the set NG[S] = NG(S)∪S.

If there is no ambiguity, we simply write N(u), N [u], N(S) and N [S] instead of

NG(u), NG[u], NG(S) and NG[S], respectively.

The open neighborhood hypergraph [27] of a graph G, denoted by ONH(G)

or HG, is the hypergraph with vertex set V (G) and edge set {NG(u) : u ∈ V (G)}

consisting of the open neighborhoods of vertices of V in G.

14



1.5. Domination in graphs

1.5 Domination in graphs

This section discusses some of the fundamental ideas and basic results in domi-

nation in graphs.

One of the fastest growing areas in Graph theory is the study of dominating

sets and related properties. The study of domination in graphs began in 1960,

when the problem of queen domination in an n×n chess board was studied [23].

For a graph G, a set S ⊆ V (G) is called a dominating set [23] of G if every

vertex u ∈ V (G) is either an element of S or is adjacent to an element of S.

Alternatively, we say that S ⊆ V (G) is a dominating set of G if every element

in V \ S is adjacent to some element in S. Equivalently, N [S] = V. If S is a

dominating set of a graph, then every superset of S is also a dominating set.

On the other hand, not every subset of S is necessarily a dominating set. A

dominating set S of G is a minimal dominating set [23] if no proper subset of S

is a dominating set. The domination number [23] of a graph G, denoted by γ(G),

is the minimum cardinality of a dominating set of G and a γ-set is a dominating

set with cardinality γ(G).

After the introduction of the concept of domination, several types of domi-

nating sets were introduced and studied in detail. An excellent treatment of this

topic is available in [23] and [24].

The concept of total domination [16] was introduced by Cockayne, Dawes,

and Hedetniemi . For a graph G = (V,E), with no isolated vertices, a set S ⊆ V

is called a total dominating set [27] or TD-set if every vertex of G is adjacent to

a vertex in S. A total dominating set S is said to be minimal [27], if no proper
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1.6. Graph polynomials

subset of S is a total dominating set. The total domination number [27] of a graph

G, denoted by γt(G), is defined as the minimum cardinality of a total dominating

set of G. If S is a total dominating set of G with |S| = γt(G), then S is called a

γt-set of G [27]. Obviously, a TD-set is a dominating set and a dominating set

S is a TD-set if the induced subgraph 〈S〉, has no isolated vertices.

In the next section, we discuss some graph polynomials which are essential

for the study.

1.6 Graph polynomials

The concept of domination polynomial of a graph was introduced by S. Alikhani

in 2009. For a graph G, let D(G, i) be the family of dominating sets with car-

dinality i and let d(G, i) = |D(G, i)| [5]. If γ(G) is the domination number of

G, then the domination polynomial [5] D(G, x) of G is defined as D(G, x) =
|V (G)|∑
i=γ(G)

d(G, i)xi.

Theorem 1.6.1. (see [1]) For every natural number n,

(i) D(Kn, x) = (1 + x)n − 1.

(ii) D(K1,n, x) = xn + x(1 + x)n.

Theorem 1.6.2. (see [1]) If a graph G consists of m components G1, G2, . . . , Gm,

then D(G, x) = D(G1, x)D(G2, x) . . . D(Gm, x).

In analogue to the domination polynomial, S. Sanalkumar introduced the con-

cept of total domination polynomial of a graph. For a graph G, let Dt(G, i) be
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1.6. Graph polynomials

the family of total dominating sets with cardinality i and let dt(G, i) = |Dt(G, i)|

[3]. If γt(G) is the total domination number of G, then the total domina-

tion polynomial [31] orTD-Polynomial of G, denoted by Dt(G, x) is defined as

Dt(G, x) =

|V (G)|∑
i=γt(G)

dt(G, i)x
i.

A vertex cover [46] or transversal of a graph G is a set S of vertices of G

such that each edge in G has at least one end in S. A vertex covering set with

k vertices is called a k-vertex cover. A minimum vertex cover is a vertex cover

having the smallest possible number of vertices for a given graph [41]. The

number of vertices of a minimum vertex cover of a graph G is known as the

vertex cover number and is denoted as τ(G) [50].

Let C(G, i) be the family of vertex covering sets of a graph G with cardinality

i and let c(G, i) = |C(G, i)| [18]. The polynomial C(G, x) =

|V (G)|∑
i=τ(G)

c(G, i)xi is

defined as vertex cover polynomial of G [18].
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Chapter 2
TD-Polynomials- A New Approach

2.1 Introduction

This chapter deals with the relation between total domination polynomials and

vertex cover polynomials. For a graph G = (V,E), the open neighborhood hyper-

graph of G, denoted by ONH(G), is the hypergraph with vertex set V and edge

set {NG(x)|x ∈ V }. A vertex cover in ONH(G) is a set of vertices intersecting

every edge of ONH(G), which is equivalent to a total dominating set in G. Using

the interplay between total dominating sets and vertex cover in hypergraphs, we

determine the total domination polynomial of some classes of graphs. Here we

need the following.

Definition 2.1.1. (see [44]) A graph G in which a vertex is distinguished from

other vertices is called a rooted graph and the vertex is called the root of G. Let

G be a rooted graph. The graph G(n) obtained by identifying the roots of n copies

1A part of this chapter has been published in Global Journal of Pure and Applied Mathe-
matics. Volume 13, Number 10, 2017, Pages 7315-7319.
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2.1. Introduction

of G is called a one point union of the n copies of G.

Definition 2.1.2. A one point union C
(k)
n of k copies of Cn is the graph obtained

by taking v as a common vertex such that any two cycles Ci
n and Cj

n (i 6= j) are

edge disjoint and do not have any vertex in common except v.

Definition 2.1.3. (see [38]) An n-gon book of k pages denoted by C
2(k)
n is the

graph obtained when k copies of the cycle Cn share a common edge.

Definition 2.1.4. (see [38]) Given k natural numbers n1, n2, . . . , nk, the gener-

alized theta graph θ(n1, n2, . . . , nk) is obtained by connecting two vertices u and v

by k parallel paths of length n1 − 1, n2 − 1, . . . , nk − 1.

Definition 2.1.5. Let Pn1+1, Pn2+1, . . . , Pnk+1 be k paths. For i = 1, 2, . . . , k, let

ai be a pendant vertex of the path Pni
. Then the tree Tn1,n2,...,nk

is obtained by

identifying the vertices ai for every i.

Theorem 2.1.6. (see [26]) The ONH of a connected bipartite graph consists

of two components, while the ONH of a connected graph that is not bipartite is

connected.

Theorem 2.1.7. (see [27]) If G is a graph with no isolated vertices and HG is

the ONH of G, then γt(G) = τ(HG).

Theorem 2.1.8. (see [18]) Let G be a graph and L = {u ∈ V (G)| uu ∈ E(G)}.

Then C(G, x) = x|L|C(G− L, x).

Theorem 2.1.9. (see [18]) Let G be a graph with | V (G) |≥ 2. Let u ∈ V (G)

and d = |NG(u)|. If G has no loops at NG[u], then C(G, x) = xC(G − u, x) +

xdC(G− u−NG(u), x).
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2.1. Introduction

Lemma 2.1.10. (see [18]) For n ≥ 5, we have

C(Cn, x) = xC(Pn−1, x) + x2C(Pn−3, x).

Theorem 2.1.11. (see [18]) Let G = G1 ∪G2 . . .∪Gn be the union of n graphs

G1, G2, . . . , Gn. Then C(G, x) = C(G1, x)C(G2, x) . . . C(Gn, x).

Theorem 2.1.12. (see [18]) For the path graph Pn, where n ≥ 2, we have

C(Pn, x) =
n∑
i=0

(
i+ 1

n− i

)
xi.

Theorem 2.1.13. (see [18]) For the cycle graph Cn, where n ≥ 3, we have

C(Cn, x) =
n∑
i=1

n

i

(
i

n− i

)
xi.

Theorem 2.1.14. The total domination polynomial of a connected bipartite

graph G is the product of the vertex cover polynomials of the two components

of its open neighborhood hypergraph, HG, while the total domination polynomial

of a connected graph that is not bipartite is the vertex cover polynomial of HG.

Proof. A set S of vertices of G is a total dominating set if and only if it is a vertex

covering set of the open neighborhood hypergraph HG of G. Therefore, if G is not

bipartite, the result follows. If G is bipartite, its open neighborhood hypergraph,

HG has two components and its vertex cover polynomial is the product of the

vertex cover polynomials of its components. Thus the proof follows from the

definitions of total domination set of G and vertex cover polynomial of HG.
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2.2. TD-Polynomials of paths and cycles

2.2 TD-Polynomials of paths and cycles

We observe that using the interplay between total dominating sets in graphs and

transversals in hypergraphs, several results on total domination polynomials in

graphs can be obtained that appear very difficult to obtain using purely graph

theoretic techniques. In this section, we study the relation between total domi-

nation polynomials and vertex cover polynomials of paths and cycles.

We need the following to prove the main results of this section.

Lemma 2.2.1. Let P
′
n be the graph shown in figure 2.1. Then,

C(P ′n, x) = xC(Pn−1, x) = x
n−1∑
i=0

(
i+ 1

n− (i+ 1)

)
xi.

Proof. The proof follows immediately from Theorem 2.1.8 and Theorem 2.1.12.

1 2 3 n− 1 n

Figure 2.1: The Graph P
′
n

Lemma 2.2.2. Let P
′′
n be the graph shown in Figure 2.2. Then,

C(P ′′n , x) = x2C(Pn−2, x) = x2
n−2∑
i=0

(
i+ 1

n− (i+ 2)

)
xi.

Proof. The proof follows from Theorem 2.1.8 and Theorem 2.1.12.

21



2.2. TD-Polynomials of paths and cycles

1 2 3 n− 1 n

Figure 2.2: The Graph P
′′
n

Theorem 2.2.3. For the path graph Pn, where n > 2, we have

C(Pn, x) = x [C(Pn−1, x) + C(Pn−2, x)]

Proof. Let (1, 2, . . . , n) be the path Pn and S be a vertex covering set of Pn. If

n ∈ S, then S is a vertex covering set of the graph P
′
n shown in figure 2.1. If

n /∈ S, then the vertex n− 1 ∈ S. Therefore, S is a vertex covering set of P
′
n−1.

Conversely, any vertex covering set of P
′
n or P

′
n−1 is a vertex covering set of Pn.

This completes the proof.

Theorem 2.2.4. For n ≥ 1, Dt(P2n, x) =
[
C(P ′n, x)

]2
.

Proof. Let (1, 2, . . . , 2n) be the path P2n. Since P2n is bipartite, the open neigh-

borhood hypergraph of P2n, ONH(P2n) has two components say G1 and G2.

2 4 6 2n− 2 2n

Figure 2.3: The Graph G2

The edge sets of G1 and G2 are E(G1) = {xy : x = 2i − 1 and y = 2i +

1 where 1 ≤ i ≤ n − 1} ∪ {{2n − 1}} and E(G2) = {xy : x = 2i and y =
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2.2. TD-Polynomials of paths and cycles

2i + 2 where 1 ≤ i ≤ n} ∪ {{22}}. Clearly G1 is isomorphic to G2. Using the

terminology in [9], the graph G2 can be drawn as shown in figure 2.3. Since G2

is isomorphic to P
′
n and G1 is isomorphic to G2, the proof follows from Theorem

2.1.8 and 2.1.11.

Theorem 2.2.5. For n ≥ 1, the total domination polynomial of path P2n is,

Dt(P2n, x) = x2

[
n−1∑
i=0

(
i+ 1

n− (i+ 1)

)
xi

]2
.

Proof. The proof follows from Lemma 2.2.1 and Theorem 2.2.4.

Theorem 2.2.6. For n ≥ 1, Dt(P2n+1, x) = C(Pn+1, x)C(P ′′n , x).

Proof. Let (1, 2, 3, . . . , 2n-1, 2n, 2n+1) be the path P2n+1. Then the open neigh-

borhood hypergraph of P2n+1 has two components G1 and G2 with edge sets

E(G1) = {xy : x = 2i − 1 and y = 2i + 1, where 1 ≤ i ≤ n} and E(G2) =

{xy : x = 2i and y = 2i + 2, where 1 ≤ i ≤ n − 1} ∪ {22, 2n2n}. The graph G2

can be drawn as shown in figure 2.4.

2 4 6 2n− 2 2n

Figure 2.4: The Graph G2

Let Pn+1 be the path (1, 3, 5, . . . , 2n-1, 2n+1) Since E(G1) = E(Pn+1), a set

S is a vertex cover of G1 if and only if S is a vertex cover of Pn+1. Since G2 is

isomorphic to P
′′
n , by Theorem 2.1.14 and Lemma 2.2.2, we have Dt(P2n+1, x) =

C(G1, x)C(G2, x) = C(Pn+1, x)C(P ′′n , x). This completes the proof.
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2.2. TD-Polynomials of paths and cycles

Theorem 2.2.7. The total domination polynomial of the path P2n+1 is,

Dt(P2n+1, x) = x2

[
n+1∑
i=0

(
i+ 1

n+ 1− i

)
xi

][
n−2∑
i=0

(
i+ 1

n− (2 + i)

)
xi

]

Proof. The proof follows immediately from 2.1.12, 2.1.14, 2.2.2 and 2.2.6.

Theorem 2.2.8. For n ≥ 3, we have, Dt(C2n, x) = [C(Cn, x)]2 .

Proof. Let (1, 2, . . . , 2n, 1) be the cycle C2n. Since C2n is bipartite, its open

neighborhood hypergraph has two components. It can be observed that the

components are cycles, say C
′

and C
′′
, where C

′
= (2, 4, 6, . . . , 2n, 2) and C ′′ =

(1, 3, 5, . . . , 2n-1, 1). Since the cycles C
′

and C
′′

are isomorphic to the cycle Cn,

the proof follows from Theorem 2.1.11.

Theorem 2.2.9. Dt(C2n, x) =

[
n∑
i=1

n

i

(
i

n− i

)
xi

]2
.

Proof. The proof follows from Theorems 2.1.13 and 2.2.8.

Theorem 2.2.10. If n is an odd positive integer, then

Dt(Cn, x) =
n∑
i=1

n

i

(
i

n− i

)
xi.

Proof. Since the open neighborhood hypergraph of a cycle of odd length is iso-

morphic to itself, the proof follows from Theorem 2.1.13.

Theorem 2.2.11. Dt(C2n, x) = [xC(Pn−1, x) + x2C(Pn−3, x)]
2
.

Proof. From Theorem 2.2.8 we have, Dt(C2n, x) = [C(Cn, x)]2 . Then the proof

follows from Lemma 2.1.10.
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2.3. TD-Polynomials of some graph classes

Theorem 2.2.12. If n is an odd positive integer, then

Dt(Cn, x) =
[
xC(Pn−1, x) + x2C(Pn−3, x)

]
.

Proof. Here, Dt(Cn, x) = C(Cn, x). Then by Lemma 2.1.10, the proof follows.

2.3 TD-Polynomials of some graph classes

In this section, we find the total domination polynomial of some classes of graphs

using vertex cover polynomials of paths and cycles. Let G be a graph and A be a

subset of the set of vertices of G. We define the following classes of vertex cover

polynomials to obtain the main results of this chapter.

Definition 2.3.1. Let CA(G, i) = {S ⊆ V (G) : S ∈ C(G, i) and S ∩ A 6= φ} .

Then, the polynomial CA(G, x) is defined as CA(G, x) =

|V (G)|∑
i=1

cA(G, i)xi, where

cA(G, i) = |CA(G, i)|.

Definition 2.3.2. Let CA∗(G, i) = {S ⊆ V (G) : S ∈ C(G, i) and S ∩ A = A} .

Then, the polynomial CA∗(G, x) is defined as CA∗(G, x) =

|V (G)|∑
i=1

cA
∗
(G, i)xi, where

cA
∗
(G, i) = |CA∗(G, i)|.

Definition 2.3.3. Let CA(G, i) = {S ⊆ V (G) : S ∈ C(G, i) and S ∩ A = φ} .

Then, the polynomial CA(G, x) is defined as CA(G, x) =

|V (G)|∑
i=1

cA(G, i)xi, where

cA(G, i) = |CA(G, i)|.

Note 2.3.4. If A = {a}, then we write Ca(G, x) and Ca(G, x) instead of CA(G, x)

and CA(G, x) respectively.
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2.3. TD-Polynomials of some graph classes

Lemma 2.3.5. Let u be a vertex of degree d in G. Let G has no loops at A∪NG[u]

and A ∩NG[u] = φ. Then CA(G, x) = xCA(G− u, x) + xdCA(G−NG[u], x).

Proof. Let S ∈ CA(G, i). Then either u ∈ S or u /∈ S. Now, u ∈ S if and only if

S \{u} ∈ CA(G−u, i−1). If u /∈ S, then by definition, NG(u) ⊆ S and S \NG(u)

is an (i− d)-vertex cover of G−NG[u]. Conversely, if S ∈ CA(G−NG[u], i− d),

then u /∈ S and S ∪ NG[u] ∈ CA(G, i). Therefore, cA(G, i) = cA(G − u, i − 1) +

cA(G−NG[x], i− d). So,

CA(G, x) =

|V (G)|∑
i=1

cA(G, i)xi

=

|V (G)|∑
i=1

[cA(G− u, i− 1) + cA(G−NG[x], i− d)]xi

=

|V (G)|∑
i=1

cA(G− u, i− 1)xi +

|V (G)|∑
i=1

cA(G−NG[x], i− d)xi

= xCA(G− u, x) + xdCA(G−NG[u], x).

Thus the proof follows.

Lemma 2.3.6. If the path Pn = (1, 2, . . . , n), then

(i) C{1}(Pn, x) = x C(Pn−1, x),

(ii) C{1}(Pn, x) = x C(Pn−2, x),

(iii) C{1,n}∗(Pn, x) = x2 C(Pn−2, x),

(iv) C{1,n}(Pn, x) = x2 C(Pn−4, x).

Proof. (i) Let S be a subset of vertices of Pn. It is observed that S is a vertex

covering set of Pn containing the vertex 1 if and only if S is a vertex covering

26



2.3. TD-Polynomials of some graph classes

set of the graph H shown in figure 2.5. Therefore, the proof follows from

Theorem 2.1.8.

1 2 (n− 1) n

Figure 2.5: The graph H.

(ii) If S is a vertex covering set of Pn and S ∩ {1} = φ, then 2 ∈ S. So, S is

a vertex covering set of the graph K shown in figure 2.6. Therefore, from

Theorem 2.1.8 the result follows.

2 3 (n− 1) n

Figure 2.6: The graph K.

(iii) If S is a vertex covering set of Pn containing the vertices 1 and n, then S

is a vertex covering set of the graph P
′′
n shown in figure 2.2. Therefore, the

proof follows from theorem 2.1.8.

(iv) Let S be a vertex covering set of Pn such that S ∩ {1, n} = φ, then S is a

vertex covering set of the graph K1 shown in figure 2.7.

Therefore, from Theorem 2.1.8, the proof follows.
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2 3 (n− 2) (n− 1)

Figure 2.7: The graph K1

Next, we find the total domination polynomial of the tree Tn1,n2,n3 .

Theorem 2.3.7. If n1, n2, n3 are even and T1, T2 are the components of the open

neighborhood hypergraph of the tree Tn1,n2,n3 , then

Dt(Tn1,n2,n3 , x) = C(T1, x)C(T2, x), where

C(T1, x) = x
3∏
i=1

C(Pni
2
, x) + x3

3∏
i=1

C(Pni
2
−1, x) and

C(T2, x) = x3
3∏
i=1

C(Pni
2
−1, x)− x6

3∏
i=1

C(Pni
2
−3, x).

va1a2an1−1an1 b1 b2 bn2−1 bn2

c1

c2

cn3−1

cn3

Figure 2.8: Tn1,n2,n3 .

Proof. Let X = {xi : i is odd} and Y = {yj : j is even}∪{v} be the partite sets of
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Tn1,n2,n3 . Let T1 and T2 be the components of the open neighborhood hypergraph

of Tn1,n2,n3 , such that E(T1) = {N(x) : x ∈ X} and E(T2) = {N(y) : y ∈ Y }.

Then T1 can be represented as shown in figure 2.9.

va2a4an1−2an1 b2 b4 bn2−2 bn2

c2

c4

cn3−2

cn3

Figure 2.9: The graph T1.

From Theorem 2.1.9, we have,

C(T1, x) = xC(T1 − v, x) + x3C(T1 − v − {a2, b2, c2}, x)

= xC(Pn1
2
, x)C(Pn2

2
, x)C(Pn3

2
, x)

+ x3C(Pn1
2
−1, x)C(Pn2

2
−1, x)C(Pn3

2
−1, x)

= x

3∏
i=1

C(Pni
2
, x) + x3

3∏
i=1

C(Pni
2
−1, x).

Next, we find the vertex cover polynomial of T2. It can be observed that E(T2) =

{a1, b1, c1}∪E(Ta)∪E(Tb)∪E(Tc), where the graphs Ta, Tb and Tc are shown in

figure 2.10. Let A = {a1, b1, c1}. Then a set S is vertex covering set of T2 if and

only if S ∩ A 6= φ and S is a vertex covering set of Ta ∪ Tb ∪ Tc. In other words
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C(T2, x) = CA(Ta ∪Tb ∪Tc, x). Therefore, from Theorem 2.1.11 and Lemma 2.3.6

we have,

C(T2, x) = CA(Ta ∪ Tb ∪ Tc, x)

= C(Ta ∪ Tb ∪ Tc, x)− CA(Ta ∪ Tb ∪ Tc, x)

= C(Ta, x)C(Tb, x)C(Tc, x)− Ca1(Ta, x)Cb1(Tb, x)Cc1(Tc, x)

= x3C(Pn1
2
−1, x)C(Pn2

2
−1, x)C(Pn3

2
−1, x)

− x6C(Pn1
2
−3, x)C(Pn2

2
−3, x)C(Pn3

2
−3, x)

= x3
3∏
i=1

C(Pni
2
−1, x)− x6

3∏
i=1

C(Pni
2
−3, x).

This completes the proof.

an1−1 an1−3 an1−5 a3 a1

Ta :

bn1−1 bn1−3 bn1−5 b3 b1

Tb :

cn1−1 cn1−3 cn1−5 c3 c1

Tc :

Figure 2.10: The Graphs Ta, Tb and Tc.

Corollary 2.3.8. If n1 = n2 = n3 = 2n, then

Dt(Tn1,n2,n3 , x) = x4 [C(Pn, x)C(Pn−1, x)]3+x7 [C(Pn, x)C(Pn−3, x)]3+x6 [C(Pn, x)]6
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− x9 [C(Pn−1, x)C(Pn−3, x)]3 .

Proof. The proof follows from Theorem 2.3.7.

Theorem 2.3.9. If n1, n2, n3 are odd and T1, T2 are the components of the open

neighborhood hypergraph of the tree Tn1,n2,n3 , then

Dt(Tn1,n2,n3 , x) = C(T1, x)C(T2, x), where

C(T1, x) = x4

[
3∏
i=1

C(Pni−3

2
, x) + x2

3∏
i=1

C(Pni−5

2
, x)

]
and

C(T2, x) =
3∏
i=1

C(Pni+1

2
, x)− x3

3∏
i=1

C(Pni−3

2
, x).

Proof. LetX = {xi : i is odd} and Y = {yj : j is even}∪{v} be the bipartition of

Tn1,n2,n3 . Let T1 and T2 be the components of the open neighborhood hypergraph

of Tn1,n2,n3 , such that E(T1) = {N(x) : x ∈ X} and E(T2) = {N(y) : y ∈ Y }.

Then proceeding as in Theorem 2.3.7, we can represent T1 as shown in figure

2.11. Let T ∗1 = T1 − {an1−1, bn2−1, cn3−1}, T ∗∗1 = T1 − {v, an1−1, bn2−1, cn3−1},

and T ∗∗∗1 = T1 − {v, a2, b2, c2, an1−1, bn2−1, cn3−1}. Then, from Theorem 2.1.8 and

2.1.9, we get,

C(T1, x) = x3C (T ∗1 , x)

= x3
[
xC (T ∗∗1 , x) + x3C (T ∗∗∗1 , x)

]
= x4

[
3∏
i=1

C(Pni−1

2
−1, x) + x2

3∏
i=1

C(Pni−1

2
−2, x)

]

= x4

[
3∏
i=1

C(Pni−3

2
, x) + x2

3∏
i=1

C(Pni−5

2
, x)

]
.

Let Pn1+1
2

= (a1, a3, a5, . . . , an1−2, an1), Pn2+1
2

= (b1, b3, b5, . . . , bn2−2, bn2) and
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2.3. TD-Polynomials of some graph classes

Pn3+1
2

= (c1, c3, c5, . . . , cn3−2, cn3) be three paths. Then the edge set of the graph

T2 is E(T2) = {a1, b1, c1} ∪ E(Pn1+1
2

) ∪ E(Pn2+1
2

) ∪ E(Pn3+1
2

).

an1−1 an1−3 a2a4

v

b2 b4 bn2−3 bn2−1

cn3−1

cn3−3

c4

c2

Figure 2.11: The Graph T1.

Let A = {a1, b1, c1}. Then a set S is vertex covering set of T2 if and only if

S ∩A 6= φ and S is a vertex covering set of Pn1+1
2
∪Pn2+1

2
∪Pn3+1

2
. Therefore, we

need to calculate the polynomial CA(Pn1+1
2
∪Pn2+1

2
∪Pn3+1

2
, x). That is C(T2, x) =

CA(Pn1+1
2
∪ Pn2+1

2
∪ Pn3+1

2
, x). Therefore, from Theorem 2.1.11 and Lemma 2.3.6

we have,

C(T2, x) = CA(Pn1+1
2
∪ Pn2+1

2
∪ Pn3+1

2
, x)

= C(Pn1+1
2
∪ Pn2+1

2
∪ Pn3+1

2
, x)− CA(Pn1+1

2
∪ Pn2+1

2
∪ Pn3+1

2
, x)

= C(Pn1+1
2
, x)C(Pn2+1

2
, x)C(Pn3+1

2
, x)

− Ca1(Pn1+1
2
, x)Cb1(Pn2+1

2
, x)Cc1(Pn3+1

2
, x)

=
3∏
i=1

C(Pni+1

2
, x)− x3

3∏
i=1

C(Pni−3

2
, x).
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2.3. TD-Polynomials of some graph classes

Thus the result follows.

Lemma 2.3.10. If d ≥ 3 is a positive integer, the vertex cover polynomial of the

tree Tn, n, . . . , n︸ ︷︷ ︸
d times

, denoted by T[n]d is C(T[n]d , x) = x [C(Pn, x)]d + xd [C(Pn−1, x)]d .

Proof. Let v be the vertex of degree d in T[n]d . Using Theorem 2.1.9 and 2.1.11

we have,

C(T[n]d , x) = x
[
C
(
T[n]d − v, x

)]
+ xd

[
C
(
T[n]d −NT

[n]d
[v], x

)]
= x [C(Pn, x)]d + xd [C(Pn−1, x)]d .

Thus the proof is complete.

Lemma 2.3.11. If A is the set of all pendant vertices of the tree T[n]d , then

CA
(
T[n]d , x

)
= x [xC(Pn−2, x)]d + xd [xC(Pn−3, x)]d .

CA
(
T[n]d , x

)
= x [C(Pn, x)]d + xd [C(Pn−1, x)]d

− x [xC(Pn−2, x)]d − xd [xC(Pn−3, x)]d .

Proof. From Lemma 2.3.5, 2.3.6 and 2.3.10 we have,

CA(T[n]d , x) = x [CA(Pn, x)]d + xd [CA(Pn−1, x)]d

= x [xC(Pn−2, x)]d + xd [xC(Pn−3, x)]d .

Since CA(T[n]d , x) = C(T[n]d , x)− CA(T[n]d , x), from Lemma 2.3.10 we have,

CA
(
T[n]d , x

)
= x [C(Pn, x)]d + xd [C(Pn−1, x)]d

− x [xC(Pn−2, x)]d − xd [xC(Pn−3, x)]d .
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2.3. TD-Polynomials of some graph classes

This completes the proof.

Next, we find the TD-Polynomial of one point union of cycles C
(k)
n .

Theorem 2.3.12. If n = 2m + 1 for some positive integer m, then the TD-

Polynomial of C
(k)
n is

Dt(C
(k)
n , x) = x [C(Pm, x)]2k + x2k [C(Pm−1, x)]2k

− x [xC(Pm−2, x)]2k − x2k [xC(Pm−3, x)]2k .

Proof. For j = 1, 2, . . . , k let v be the vertex common to the cycles Cj
n. Let(

v, ai1, a
i
2, a

i
3, . . . , a

i
n−1, v

)
be the cycle Ci

n. If G represents the open neighborhood

hypergraph of C
(k)
n , then E(G) = N

C
(k)
n

(v) ∪ E
(
T[m]2k

)
, where the tree T[m]2k is

shown in figure 2.12.

v

a12 a1n−2

a14 a1n−4

ak2 akn−2

ak4 akn−4

akn−1 a1n−1 a11 ak1

Figure 2.12: The Tree T[m]2k

If A is the set of all pendent vertices of T[m]2k , then a set S of vertices of C
(k)
n

is a total dominating set if and only if S∩A 6= φ and S is a vertex covering set of
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2.3. TD-Polynomials of some graph classes

T[m]2k . Therefore, it suffices to find the polynomial CA
(
T[m]2k , x

)
. From Lemma

2.3.11, we have,

CA
(
T[m]2k , x

)
= x [C(Pm, x)]2k + x2k [C(Pm−1, x)]2k

− x [xC(Pm−2, x)]2k − x2k [xC(Pm−3, x)]2k .

Thus the proof is complete.

Theorem 2.3.13. If n = 2m, for some positive integer m and G1, G2 are the

components of the open neighborhood hypergraph of C(k)n , then

C(G1, x) = [C(Pm, x)]k −
[
x2C(Pm−4, x)

]k
and

C(G2, x) = x [C(Pm−1, x)]k + x2k [C(Pm−3, x)]k .

Proof. For j = 1, 2, . . . , k let v be the vertex common to the cycles Cj
n. Let(

v, ai1, a
i
2, a

i
3, . . . , a

i
n−1, v

)
be the cycle Ci

n. Since n is even, the graph C(k)n is bi-

partite. Let X =
k⋃
i=1

{aij : j is even } ∪ {v} and Y =
k⋃
i=1

{aij : j is odd } be the

bipartition. Let G1 and G2 are the components of ONH(C
(k)
n ) corresponding

to X and Y respectively. Then E(G1) = NC(k)n
(v) ∪ E(H), where H is given in

figure 2.13.

Therefore, a set S of vertices of G1 is a vertex cover if and only if S is a vertex

cover of H and S∩N
C

(k)
n

(v) 6= φ. Since N
C

(k)
n

(v), denoted here by N(v), is the set

of all pendent vertices of H, it suffices to find the polynomial CN(v)(H, x). Since

CN(v)(H, x) is the polynomial in x such that the coefficient of xi is the number

of vertex covering sets of H which does not intersect with N(v), from Theorem
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2.3. TD-Polynomials of some graph classes

2.1.8 and 2.1.9, we have

C(G1, x) = CN(v)(H, x)

= C(H, x)− CN(v)(H, x)

= [C(Pm, x)]k −
[
x2C(Pm−4, x)

]k
.

a1n−1 a1n−3 a1n−5 a13 a11

a2n−1 a2n−3 a2n−5 a23 a21

akn−1 akn−3 akn−5 ak3 ak1

Figure 2.13: The graph H

Next, we find the vertex cover polynomial of the graph G2. It can be repre-

sented as shown in figure 2.14. From Theorem 2.1.9, we have

C(G2, x) = xC(G2 − v, x) + x2kC(G2 − v −NG2(v), x)

= x [C(Pm−1, x)]k + x2k [C(Pm−3, x)]k .

This completes the proof.
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v

a12

a14

a1n−4

a1n−2

a22

a24

a2n−4a2n−2

a34

a32

a3n−4

a3n−2

a42

a44

a4n−4

a4n−2

a52

a54

a5n−4

a5n−2

Figure 2.14: The graph G2

Theorem 2.3.14. If n = 2m for some positive integer m, then

Dt(C
(k)
n , x) =

(
[C(Pm, x)]k −

[
x2C(Pm−4, x)

]k)(
x [C(Pm−1, x)]k + x2k [C(Pm−3, x)]k

)
.

Proof. The proof follows immediately from Theorem 2.1.14 and 2.3.13.

Next, we compute the total domination polynomial of C
2(k)
n , the n-gon book

of k pages.

Theorem 2.3.15. If n = 2m for some positive integer m, then the total domi-

nation polynomial of C
2(k)
n is, Dt(C

2(k)
n , x) =

[
C(T[m−1]k , x)− [x2C(Pm−4, x)]

k
]2
.

Proof. Let u, v be the vertices common to the family of cycles in C
2(k)
n . Let

Ci
n = (u, ai1, a

i
2, . . . , a

i
n−2, v, u). Let A = N

C
2(k)
n

(u) = {v, a11, a21, a31, . . . , ak1}. Since
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n is even, C
2(k)
n is bipartite. Clearly, the components of the open neighborhood

hypergraph of C
2(k)
n are isomorphic. Let X =

k⋃
i=1

{u, ai2, ai4, ai6, . . . , ain−2} be one of

the partite sets. Let HX be the component of the open neighborhood hypergraph

corresponding to X. Then E(HX) = A ∪ E(H), where the graph H can be

represented as shown in figure 2.15. Therefore, a set S is a vertex covering set

of HX if and only if S ∩ A 6= φ and S is a vertex covering set of H. So we need

to find the polynomial CA(H, x). Note that

CA(H, x) = C(H, x)− CA(H, x)

= C(T[m−1]k , x)−
[
x2C(Pm−4, x)

]k
.

This completes the proof.

v

a2n−3 a3n−3

a2n−5 a3n−5

a1n−3 akn−3

a1n−5 akn−5

a11 a21 a31 ak1

Figure 2.15: The graph H

Theorem 2.3.16. If n = 2m+1 for some positive integer m, then the TD- Poly-

nomial of C
2(k)
n is x2 [C(Pm, x)C(Pm−1, x)]k + 2x2k+1 [C(Pm−1, x)C(Pm−2, x)]k +

x4k [C(Pm−2, x)C(Pm−3, x)]k.
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Proof. Let Ci
n be the cycle (u, ai1, a

i
2, a

i
3, . . . , a

i
n−2, v, u). Since the open neighbor-

hood hypergraph of an odd cycle is isomorphic to itself, we can represent H
C

2(k)
n
,

the open neighborhood hypergraph of C
2(k)
n as shown in figure 2.16. Let A = N [v]

and B = N [u]. Then from Theorem 2.1.9 and 2.1.11 , we have

Dt(C
2(k)
n , x) = C

(
H
C

2(k)
n
, x
)

= xC
(
H
C

2(k)
n
− v, x

)
+ x2kC

(
H
C

2(k)
n
− A, x

)
= x

[
xC
(
H
C

2(k)
n
− v − u, x

)
+ x2kC

(
H
C

2(k)
n
− v −B, x

)]
+ x2k

[
xC
(
H
C

2(k)
n
− u− A, x

)]
+ x2k

[
x2kC

(
H
C

2(k)
n
− A−B, x

)]
= x2 [C(Pm, x)]k [C(Pm−1, x)]k + x2k+1 [C(Pm−1, x)]k [C(Pm−2, x)]k

+ x2k+1 [C(Pm−1, x)]k [C(Pm−2, x)]k

+ x4k [C(Pm−2, x)]k [C(Pm−3, x)]k

This completes the proof.

v
ak1

ak2

ak3

akn−2 ak2

ak4

ak6

akn−3

u

a21

a23

a25

a2n−2

a2n−3

a26

a24

a22

a1n−3

a16

a14

a12

a11

a13

a15

a1n−2

Figure 2.16: The Graph H
C

2(k)
n
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Next, we find the TD-Polynomial of the theta graph θ(n, n, . . . , n︸ ︷︷ ︸
k times

) denoted

by θ(n)k .

Theorem 2.3.17. Let n = 2m + 2 for some positive integer m, then the total

domination polynomial of θ(n)k is[
x [C(Pm, x)]k + xk [C(Pm−1, x)]k − x [xC(Pm−2, x)]k − xk [xC(Pm−3, x)]k

]2
.

Proof. Let (u, ai1, a
i
2, a

i
3, . . . , a

i
n−2, v) be the path P i

n in θ(n)k . Clearly, the graph

θ(n)k is bipartite and the components of the open neighborhood hypergraph of

θ(n)k are isomorphic to each other. Let X =
k⋃
i=1

{ai2, ai4, ai6, . . . , ain−2} ∪ {u} be one

of the partite sets and HX be the open neighborhood hypergraph corresponding

to X. Let A = Nθ
(n)k

(u) = {a11, a21, a31, . . . , ak1}. Then E(HX) = A ∪ E(K), where

the graph K is shown in figure 2.17.

v

a23 a33

a2n−3 a3n−3

a13 ak3

a1n−3 akn−3

a11 a21 a31 ak1

Figure 2.17: The graph K

So it suffices to find the polynomial CA(K, x). Since K is isomorphic to T[m]k ,

from Lemma 2.3.11 we have,

C(HX , x) = CA(K, x)
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= CA
(
T[m]k , x

)
= x [C(Pm, x)]k + xk [C(Pm−1, x)]k

− x [xC(Pm−2, x)]k − xk [xC(Pm−3, x)]k .

Therefore, from Theorem 2.1.14, we have Dt(θ(n)k , x) = [C(HX , x)]2 .

Theorem 2.3.18. Let n = 2m+ 3 for some positive integer m. If (X, Y ) is the

bipartition of θ(n)k , then Dt

(
θ(n)k

)
= C (HX , x) C (HY , x) , where

C (HX , x) = x2 [C(Pm, x)]k + 2xk+1 [C(Pm−1, x)]k + x2k [C(Pm−2, x)]k and

C (HY , x) = [C(Pm+1, x)]k − x2k [C(Pm−3, x)]k .

Proof. Let the ith path P i
n of θ(n)k be (u, ai1, a

i
2, a

i
3, . . . , a

i
n−2, v). Consider the

bipartition X =
k⋃
i=1

{ai1, ai3, . . . , ain−2} and Y =
k⋃
i=1

{ai2, ai4, . . . , ain−3} ∪ {u, v} of

θ(n)k . Let HX and HY be the components of the open neighborhood hypergraph

of θ(n)k corresponding to X and Y. Then HX can be represented as shown in

figure 2.18.

v
a12

a14

a16

a1n−3 akn−3

ak2

u

a22

a24

a26

a2n−3

ak−22

ak−24

ak−26

ak−2n−3

ak−32

ak−34

ak−36

a12

a32

a34

a36

a3n−3

ak4

ak6

Figure 2.18: The Graph HX
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Then by Theorem 2.1.9, we have

C (HX , x) = xC (HX − u, x) + xkC (HX − u−N(u), x)

= x
[
xC (HX − u− v, x) + xkC (HX − u− v −N(v), x)

]
+ xk [xC (HX − u− v −N(u), x)]

+ xk
[
xkC (HX − u− v −N(u)−N(v), x)

]
= x

(
x [C (Pm, x)]k + xk [C (Pm−1, x)]k

)
+ xk

(
x [C (Pm−1, x)]k + xk [C (Pm−2, x)]k

)
= x2 [C (Pm, x)]k + xk+1 [C (Pm−1, x)]k

+ xk+1 [C (Pm−1, x)]k + x2k [C (Pm−2, x)]k

= x2 [C (Pm, x)]k + 2xk+1 [C (Pm−1, x)]k + x2k [C (Pm−2, x)]k .

Next, we determine the vertex cover polynomial of HY .

a1n−2 a1n−4 a1n−6 a13 a11

a2n−2 a2n−4 a2n−6 a23 a21

akn−2 akn−4 akn−6 ak3 ak1

Figure 2.19: The Graph H

In the graph θ(n)k , we have N(u) = {ai1 : i = 1, 2, . . . , k} and N(v) =

{ain−2 : i = 1, 2, . . . , k}. Then E(HY ) = N(u) ∪ N(v) ∪ E(H), where H is the
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graph shown in figure 2.19. Therefore,

C (HY , x) = C (H, x)− CN(u)∪N(v) (H, x)

= [C (Pm+1, x)]k − x2 [C (Pm−3, x)]k .

Thus the proof follows.

Next, we compute the total domination polynomial of K
(k)
n,n+1, the one point

union of k copies of Kn,n+1.

Theorem 2.3.19. The TD-Polynomial of K
(k)
n,n+1 is,

Dt

(
K

(k)
n,n+1, x

)
= x [D(Kn, x)]k + [D(Kn, x)]2k .

Proof. Let v be the vertex common to the k copies of Kn,n+1 in K
(k)
n,n+1. Let

(Ai, Bi ∪ {v}) be the bipartition of the ith copy of Kn,n+1, where Ai = {ai1, ai2, ai3,

. . . , ain} andBi = {bi1, bi2, bi3, . . . , bin}. Then, for 1 ≤ i ≤ k and 1 ≤ t ≤ n, N(ait) =

Bi ∪ {v}, N(bit) = Ai and N(v) =
k⋃
j=1

Aj.

Let S be set of vertices in K
(k)
n,n+1. Then we have two possibilities. Either v ∈ S

or v /∈ S.

Case 1: Let v ∈ S. Since N(v) =
k⋃
j=1

Aj, S is a total dominating set of K
(k)
n,n+1

if and only if S ∩ Ai 6= φ for every i. Note that r vertices can be selected

from Ai in
(
n
r

)
ways. Therefore, in this case TD-Polynomial of the ith copy

of Kn,n+1 in K
(k)
n,n+1 is, x

[(
n
1

)
x+

(
n
2

)
x2 + . . .+

(
n
n

)
xn
]

= x [(1 + x)n − 1] .
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2.3. TD-Polynomials of some graph classes

Since there are k copies of Kn,n+1, the TD-Polynomial is

x [(1 + x)n − 1]
k

= x [Dt (Kn, x) + nx]k

= x [D (Kn, x)]k .

Case 2: Let v /∈ S. In this case S is a total dominating set of K
(k)
n,n+1 if and only

if it is a TD-set of K
(k)
n,n+1 − v. Since K

(k)
n,n+1 − v is the union of k copies of

Kn,n, the TD-Polynomial is [[(1 + x)n − 1] [(1 + x)n − 1]]
k

= [D (Kn, x)]2k .

Since the above cases are disjoint, Dt

(
K

(k)
n,n+1, x

)
= x [D(Kn, x)]k+[D(Kn, x)]2k .

This completes the proof.
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Chapter 3
Total Domination Polynomials of Ring

Sum of some Graphs

3.1 Introduction

In this chapter, we study the total domination polynomials of ring sum of a

graph G with the star graph K1,m. The operation ring sum with a path and a

star graph produces a number of graphs and the TD-Polynomial of each one is

determined. The hypergraph terminology plays an important role in establishing

relation between total domination polynomials of ring sum of graphs and vertex

cover polynomials of paths. Moreover, the polynomial Dv
t (G, x), in which a

particular vertex v of G is present in every TD-set of G, is determined. We need

the following.

Theorem 3.1.1. (see [18]) Let G = G1 ∪G2 be the union of two graphs G1 and

G2. Then C(G, x) = C(G1, x)C(G2, x).
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3.2. On the polynomial Dv
t (G, x)

Theorem 3.1.2. (see [18]) For the path graph Pn, where n ≥ 2, we have

C(Pn, x) =
n∑
i=0

(
i+ 1

n− i

)
xi.

Theorem 3.1.3. (see [18]) For the cycle graph Cn, where n ≥ 3, we have

C(Cn, x) =
n∑
i=1

n

i

(
i

n− i

)
xi.

3.2 On the polynomial Dv
t (G, x)

The inclusion of a particular vertex in every total dominating set of a graph is

important in the study of total domination polynomials. In this section, the

polynomial Dv
t (G, x) is determined for some graphs.

Definition 3.2.1. (see [4]) Let G be a graph and v be a vertex of G. Let Dvt (G, i)

be the family of all total dominating sets of G of cardinality i containing the vertex

v. If dvt (G, i) = |Dvt (G, i)|, the polynomial Dv
t (G, x) is defined as Dv

t (G, x) =
|V (G)|∑
i=1

dvt (G, i)x
i.

Definition 3.2.2. Let G be a graph and v be a vertex of G. Let dtv(G, i) =

|Dtv(G, i)|, where Dtv(G, i) = {S ⊆ V (G) : v /∈ S, N(S) = V (G), | S |= i}.

Then the polynomial Dtv(G, x) is defined as Dtv(G, x) =

|V (G)|∑
i=1

dtv(G, i)xi.

Definition 3.2.3. Let G be a graph and v be a vertex of G. Let Cv(G, i) be

the family of all vertex covering sets of G of cardinality i containing the ver-

tex v. If cv(G, i) = |Cv(G, i)|, the polynomial Cv(G, x) is defined as Cv(G, x) =
|V (G)|∑
i=1

cv(G, i)xi.
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3.2. On the polynomial Dv
t (G, x)

Theorem 3.2.4. Let G be a graph and v ∈ V (G). Then Dv
t (G, x) = Cv(HG, x).

Proof. Let S be a subset of V (G). It is clear that a total dominating set of a

graph G is a vertex covering set of the open neighborhood hypergraph, HG of

G and vice versa. Therefore, a set S is a total dominating set containing v if

and only if S is a vertex covering set of HG containing v. This completes the

proof.

Theorem 3.2.5. Let G be a graph and v ∈ V (G). Then Cv(G, x) = xC(G−v, x).

Proof. Let S ⊆ V (G) be a vertex covering set of G of cardinality i containing

the vertex v. Then S \ {v} is a vertex covering set of G− v of cardinality i− 1.

So for i = 1, 2, . . . , |V (G)|, c(G, i) = c(G− v, i− 1). This proves the result.

Theorem 3.2.6. If u is a vertex of the cycle graph C2n+1, then

Du
t (C2n+1, x) =

2n∑
i=0

(
i+ 1

2n− i

)
xi+1.

Proof. Let HC2n+1 be the open neighborhood hypergraph of the cycle C2n+1.

Clearly, HC2n+1 is isomorphic to C2n+1. Then from Theorems 3.2.4 and 3.2.5

we have, Du
t (C2n+1, x) = Cu(HC2n+1 , x) = Cu(C2n+1, x) = xC(C2n+1 − u, x) =

xC(P2n, x). Then the result follows from Theorem 3.1.2.

Theorem 3.2.7. If u is a vertex of the cycle graph C2n, then

Du
t (C2n, x) = xC(Cn, x)C(Pn−1, x).

Proof. Let (X, Y ) be the bipartition of C2n. Assume that u ∈ X. Note that the

components HX , HY of ONH(C2n) are cycles of length n. Then, from Theorems
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3.2. On the polynomial Dv
t (G, x)

3.1.1, 3.2.4 and 3.2.5 we have, Du
t (C2n, x) = Cu(HC2n , x) = Cu(HX , x)C(HY , x) =

xC(HX − u, x)C(HY , x) = xC(Pn−1, x)C(Cn, x). This completes the proof.

For Theorems 3.2.8 and 3.2.10 we take the path graph as Pn = (1, 2, . . . , n).

Theorem 3.2.8. For the path P2n = (1, 2, . . . , 2n), we have

(i) D1
t (P2n, x) = x3C(Pn−1, x)C(Pn−2, x),

(ii) For 1 ≤ r ≤ n− 2, D2r+1
t (P2n, x) = x3C(Pn−1, x)C(Pr, x)C(Pn−r−2, x).

Proof. Let X = {1, 3, . . . , 2n − 1} and Y = {2, 4, . . . , 2n} be the bipartition of

P2n. Let HX and HY (shown in figure 3.1) be the components of ONH(P2n)

corresponding to X and Y respectively.

1 3 2r − 1 2r + 1 2r + 3 2n− 3 2n− 1

HY :

HX :
2 4 6 2n− 2 2n

Figure 3.1: HX and HY

(i) Using Theorems 3.1.1, 3.2.4 and 3.2.5 we have, D1
t (P2n, x) = C1(HP2n , x)

= C(HX , x)C1(HY , x) = C(HX , x) x C(HY −1, x) = x3C(Pn−1, x)C(Pn−2, x).

(ii) From Theorems 3.1.1 and 3.2.5 we have, C(HX , x) = xC(Pn−1, x) and

C2r+1(HY , x) = xC(HY − (2r + 1), x) = x2C(Pr, x)C(Pn−r−2, x). Applying

Theorem 3.2.4, D2r+1
t (P2n, x) = C2r+1(HP2n , x) = C(HX , x)C2r+1(HY , x).
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3.2. On the polynomial Dv
t (G, x)

1 3 2r − 1 2r + 1 2r + 3 2n− 1 2n+ 1

HY :

HX :

2 2n− 2 2n2r − 2 2r 2r + 24

Figure 3.2: HX and HY

Thus the result follows.

Note 3.2.9. Since f : V (P2n)→ V (P2n) defined by f(k) = 2n−(k−1) is an iso-

morphism, we have D2n
t (P2n, x) = D1

t (P2n, x) and D2r
t (P2n, x) = D2r+1

t (P2n, x).

Theorem 3.2.10. For the path P2n+1 = (1, 2, . . . , 2n+ 1), we have

(i) D1
t (P2n+1, x) = x3C(Pn, x)C(Pn−2, x),

(ii) For 1 ≤ r ≤ n− 1, D2r
t (P2n+1, x) = x3C(Pr−2, x)C(Pn−r−1, x)C(Pn+1, x),

(iii) For 1 ≤ r ≤ n− 2, D2r+1
t (P2n+1, x) = x3C(Pn−2, x)C(Pr, x)C(Pn−r, x).

Proof. Let X = {1, 3, . . . , 2n + 1} and Y = {2, 4, . . . , 2n} be the bipartition of

P2n+1. Let HX and HY (shown in figure 3.2) be the components of ONH(P2n+1)

corresponding to X and Y respectively. Then from Theorems 3.1.1, 3.2.4 and

3.2.5 we have,

(i) C(HX , x) = x2C(Pn−2, x) and C1(HY , x) = xC(HY − 1, x) = xC(Pn, x). Since

D1
t (P2n+1, x) = C1(HP2n+1 , x) = C(HX , x)C1(HY , x), the proof follows.

(ii) D2r
t (P2n+1, x) = C2r(HP2n+1 , x) = C2r(HX , x)C(HY , x). Since C2r(HX , x)

= xC(HX−(2r), x) = x3C(Pr−2, x)C(Pn−r−1, x) and C(HY , x) = C(Pn+1, x),
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3.2. On the polynomial Dv
t (G, x)

the proof follows.

(iii) Proceeding as above, we get D2r+1
t (P2n+1, x) = C(HX , x)C2r+1(HY , x) =

x2C(Pn−2, x)xC(HY − (2r + 1), x) = x3C(Pn−2, x)C(Pr, x)C(Pn−r, x).

The following results can be easily derived from the definition of Dv
t (G, x).

Theorem 3.2.11. For any vertex v of Kn, D
v
t (Kn, x) = x [(1 + x)n−1 − 1] .

Theorem 3.2.12. For v ∈ V (Kn,n), Dv
t (Kn,n, x) = x(1 + x)n−1 [(1 + x)n − 1] .

Theorem 3.2.13. If K
(k)
n+1 denotes the one point union of k copies of the com-

plete graph Kn+1, then Dt(K
(k)
n+1, x) = x

[
(1 + x)nk − 1

]
+ [(1 + x)n − 1− nx]k .

Proof. Let u be the vertex common to the k copies of Kn+1. Let S be a total

dominating set of K
(k)
n+1. Then we have two possibilities. Either u ∈ S or u /∈ S.

Case i: If u ∈ S, then for any vertex v 6= u of K
(k)
n+1, the set {u, v} is a total

dominating set. Since there are nk vertices in K
(k)
n+1 − u, the number of

total dominating sets of K
(k)
n+1 containing the vertex u of cardinality i is(

nk
i−1

)
. Therefore,

Du
t (K

(k)
n+1, x) = x

[(
nk

1

)
x+

(
nk

2

)
x2 + . . .+

(
nk

nk

)
xnk
]

= x
[
(1 + x)nk − 1

]
.

Case ii: Let u /∈ S. Let V1, V2, . . . , Vk be the sets of vertices of the components

of K
(k)
n+1 − u. Then | S ∩ Vi |≥ 2. In other words, a set containing at least
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3.3. Ring Sum of graphs

two vertices from each and every component of K
(k)
n+1 − u forms a total

dominating set. Since we can select i vertices from the set Vj in
(
n
i

)
ways,

Dtu(K
(k)
n+1, x) =

[(
n

2

)
x2 +

(
n

3

)
x3 + . . .+

(
n

n

)
xn
]k

= [(1 + x)n − 1− nx]k .

Then the proof follows from Dt(K
(k)
n+1, x) = Du

t (K
(k)
n+1, x) +Dtu(K

(k)
n+1, x).

3.3 Ring Sum of graphs

Definition 3.3.1. (see [42]) Ring sum of two graphs H and K, denoted by H⊕K,

is the graph with vertex set V (H)∪V (K) and edge set (E(H)∪E(K))−E(H∩K).

u2 u4 u6 u2n−2 u2n u1

u3u5u7u2n−3u2n−1u2n+1

Figure 3.3: The graph H

Lemma 3.3.2. For the graph H shown in figure 3.3, we have

(i) C(H, x) = x [C(Pn, x)]2 ,

(ii) C{u2,u2n+1}(H, x) = x3C(Pn−2, x)2,

(iii) C{u2,u2n+1}(H, x) = x [C(Pn, x)]2 − x3C(Pn−2, x)2.
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3.3. Ring Sum of graphs

Proof. (i) Since H has a loop at u1, from Theorems 2.1.8 and 2.1.11 we have,

C(H, x) = xC(H − u1, x) = x [C(Pn, x)]2 .

(ii) Let S be a vertex covering set of H. If S∩{u2, u2n+1} = φ, then {u4, u2n−1} ⊆

S. So it suffices to find the vertex cover polynomial of the graph H −

{u2, u2n+1} having loops at u4 and u2n−1. Therefore, from Theorems 2.1.8

and 2.1.11 we have, C{u2,u2n+1}(H, x) = x2C(H−{u2, u4, u2n+1, u2n−1}, x) =

x3 [C(Pn−2, x)]2 .

(iii) Since, C{u2,u2n+1}(H, x) = C(H, x)−C{u2,u2n+1}(H, x), the proof follows from

(i) and (ii).

v1 v2 vm−1 vm

u1
u2

u3 u4

u2n+1

Figure 3.4: C2n+1 ⊕K1,m

Theorem 3.3.3. The TD-polynomial of the graph C2n+1⊕K1,m shown in figure

3.4 is,

Dt(C2n+1 ⊕K1,m, x) = x(1 + x)m [C(Pn, x)]2 − x3C(Pn−2, x)2.

Proof. Let HC2n+1⊕K1,m be the open neighborhood hypergraph of C2n+1 ⊕K1,m.
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3.3. Ring Sum of graphs

Then, Dt(C2n+1 ⊕K1,m, x) = C(HC2n+1⊕K1,m , x). Clearly the graph C2n+1 ⊕K1,m

is not bipartite. Therefore, HC2n+1⊕K1,m is connected and E(HC2n+1⊕K1,m) =

{u2, u2n+1, v1, v2, . . . , vm} ∪ E(H) where H is the graph shown in figure 3.3.

So it suffices to find the vertex covering sets of H having non-empty inter-

section with {u2, u2n+1, v1, v2, . . . , vm}. Let S be a vertex covering set of H. If

S ∩ {u2, u2n+1} = φ, then S must contain at least one of the pendant vertices of

C2n+1 ⊕K1,m. Otherwise it is not necessary. Therefore, Dt(C2n+1 ⊕K1,m, x) =

C(HC2n+1⊕K1,m , x) = C{u2,u2n+1}(H, x) [(1 + x)m − 1]+C{u2,u2n+1}(H, x) [(1 + x)m] .

Then the proof follows from Lemma 3.3.2.

v1 v2 vm−1 vm

u1
u2

u3 u4

u2n

Figure 3.5: C2n ⊕K1,m

Theorem 3.3.4. The TD-polynomial of the graph C2n ⊕ K1,m shown in figure

3.5 is,

Dt(C2n ⊕K1,m, x) =
[
(1 + x)mC(Pn, x)− x2C(Pn−4, x)

]
[xC(Pn−1, x)] .

Proof. Let V
′
= {v1, v2, . . . , vm}. Note that (X, Y ) is a bipartition of C2n⊕K1,m,

where X = {u1, u3, . . . , u2n−1} and Y = {u2, u4, . . . , u2n}∪V
′
. Let HX and HY be

the components of the ONH(C2n⊕K1,m). Then E(HX) = E(P )∪{{u2, u2n}∪V
′}
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3.3. Ring Sum of graphs

and E(HY ) = E(C)∪{{u1}}, where P is the path (u2, u4, u6, . . . , u2n−2, u2n) and

C is the cycle (u1, u3, u5, . . . , u2n−1, u1). Let S be a vertex covering set of HX .

If S ∩ {u2, u2n} = φ, then S must contain at least one of the vertices of V
′
.

Otherwise it is not necessary. Therefore,

C(HX , x) = C{u2,u2n}(P, x) [(1 + x)m − 1] + C{u2,u2n}(P, x) [(1 + x)m] .

= C{u2,u2n}(P, x) [(1 + x)m − 1] +
[
C(P, x)− C{u2,u2n}(P, x)

]
(1 + x)m.

= C(P, x)(1 + x)m − C{u2,u2n}(P, x)

= (1 + x)mC(Pn, x)− x2C(Pn−4, x).

C(HY , x) = xC(HY − u1, x)

= xC(Pn−1, x).

Since the TD-polynomial of a connected bipartite graph is the product of the ver-

tex cover polynomials of the components of its open neighborhood hypergraph,

the proof follows.

Let V
′

= {v1, v2, . . . , vm} be the set of all pendant vertices of the star graph

K1,m. For Theorems 3.3.5 and 3.3.6 we take the path graph Pn as (1, 2, . . . , n)

and the vertex set of K1,m as {1} ∪ V ′ .

Theorem 3.3.5. The total domination polynomial of P2n+1 ⊕K1,m is

Dt(P2n+1 ⊕K1,m, x) =
[
x(1 + x)mC(Pn, x)− x2C(Pn−3, x)

]
[xC(Pn, x)] .

Proof. Let X = {1, 3, 5, . . . , 2n − 1, 2n + 1} and Y = {2, 4, 6, . . . , 2n} ∪ V ′ be

the bipartition of P2n+1 ⊕ K1,m. Let HX and HY be the components of the
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3.3. Ring Sum of graphs

ONH(P2n+1 ⊕K1,m). Then E(HX) = E(P
′
) ∪ {{2, v1, v2, . . . , vm}}, where P

′
is

the graph shown in figure 3.6.

2 4 6 2n− 4 2n− 2 2n

Figure 3.6: The Graph P
′

Let S be a vertex covering set of HX . Then 2n ∈ S. If 2 /∈ S, then S∩V ′ 6= φ.

Otherwise it is not necessary. Therefore,

C(HX , x) = C{2}(P ′ , x)(1 + x)m + C{2}(P
′
, x) [(1 + x)m − 1]

= x2C(Pn−2, x)(1 + x)m + x2C(Pn−3, x) [(1 + x)m − 1]

= x2(1 + x)m [C(Pn−2, x) + C(Pn−3, x)]− x2C(Pn−3, x)

= x(1 + x)mC(Pn−1, x)− x2C(Pn−3, x).

The graph HY can be represented as shown in figure 3.7.

1 3 5 2n− 3 2n− 1 2n+ 1

Figure 3.7: The Graph HY

Therefore, C(HY , x) = xC(Pn, x). Since the product of C(HX , x) and C(HY , x),

gives the TD-Polynomial of P2n+1 ⊕K1,m, the proof follows.
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3.3. Ring Sum of graphs

Next, we find the TD-Polynomial of P2n ⊕K1,m.

Theorem 3.3.6. The total domination polynomial of P2n ⊕K1,m is,

Dt(P2n ⊕K1,m, x) = [(1 + x)mC(Pn, x)− xC(Pn−2, x)]
[
x2C(Pn−2, x)

]
.

Proof. Let X = {1, 3, 5, . . . , 2n− 1} and Y = {2, 4, 6, . . . , 2n} ∪ V ′ be the bipar-

tition of P2n ⊕ K1,m. Let HX and HY be the components of the ONH(P2n ⊕

K1,m). Then E(HX) = E(P
′
n) ∪ {{2, v1, v2, . . . , vm}}, where P

′
n is the path

(2, 4, 6 . . . , 2n − 2, 2n). Let S be a vertex covering set of HX . If 2 /∈ S, then

S ∩ V ′ 6= φ. Otherwise it is not necessary. Therefore,

C(HX , x) = C{2}(P ′n, x)(1 + x)m + C{2}(P
′

n, x) [(1 + x)m − 1]

= xC(Pn−1, x)(1 + x)m + xC(Pn−2, x) [(1 + x)m − 1]

= x(1 + x)m [C(Pn−1, x) + C(Pn−2, x)]− xC(Pn−2, x)

= (1 + x)mC(Pn, x)− xC(Pn−2, x).

Note that the graph HY can be represented as in figure 3.8.

1 3 5 2n− 3 2n− 1

Figure 3.8: The Graph HY

Then, C(HY , x) = x2C(Pn−2, x). Since Dt(P2n⊕K1,m, x) = C(HX , x)C(HY , x),

the proof follows.
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3.3. Ring Sum of graphs

Theorem 3.3.7. Let P2n = (1, 2, 3, . . . , 2n) and V
′
= {v1, v2, . . . , vm}. Let 2r+1

∈ {3, 5, 7, . . . , 2n − 3} be the root vertex of the star graph K1,m having the ver-

tex set {2r + 1} ∪ V ′ . Then the TD-Polynomial of the ring sum P2n ⊕K1,m is,

x3C(Pr, x)C(Pn−r−2, x) [(1 + x)mC(Pr−1, x)C(Pn−r, x)− x2C(Pr−3, x)C(Pn−r−2, x)] .

Proof. Let X = {1, 3, 5, . . . , 2n− 1} and Y = {2, 4, 6, . . . , 2n} ∪ V ′ be the bipar-

tition of P2n ⊕K1,m and HX and HY be the components of ONH(P2n ⊕K1,m).

H1 :

H2 :

H3 :

2 4 6 2r − 2 2r

2r + 2 2r + 4 2r + 6 2n− 2 2n

1 3 2r − 1 2r + 1 2r + 3 2n− 3 2n− 1

Figure 3.9: The graphs H1, H2 and H3

Then E(HX) = E(H1) ∪E(H2) ∪ {{2r, 2r + 2, v1, v2, . . . , vm}} and E(HY ) =

E(H3), where the graphsH1, H2 andH3 are shown in figure 3.9. Then C(HY , x) =

C(H3, x) = x2C(Pr, x)C(Pn−r−2, x). For a vertex covering set S of HX , if {2r, 2r+

2} ∩ S = φ, then S ∩ V ′ 6= φ. Therefore,

C(HX , x) = C{2r,2r+2}(H1 ∪H2, x)(1 + x)m + C{2r,2r+2}(H1 ∪H2, x) [(1 + x)m-1]

= (1 + x)m
[
C{2r,2r+2}(H1 ∪H2, x) + C{2r,2r+2}(H1 ∪H2, x)

]
− C{2r,2r+2}(H1 ∪H2, x)
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3.3. Ring Sum of graphs

= (1 + x)mC(H1 ∪H2, x)− C{2r,2r+2}(H1 ∪H2, x)

= (1 + x)mC(H1, x)C(H2, x)− C{2r}(H1, x)C{2r+2}(H2, x)

= x(1 + x)mC(Pr−1, x)C(Pn−r, x)− x2C(Pr−3, x)xC(Pn−r−2, x)

= x(1 + x)mC(Pr−1, x)C(Pn−r, x)− x3C(Pr−3, x)C(Pn−r−2, x).

Since the product of C(HX , x) and C(HY , x) gives the TD-Polynomial of P2n ⊕

K1,m, the proof follows.

Remark 3.3.8. Since the graph P2n ⊕ K1,m in Theorem 3.3.7 is isomorphic

to the graph G obtained by identifying the root vertex of K1,m with a vertex in

{4, 6, 8, . . . , 2n− 2} of the path P2n, the TD-Polynomial of P2n ⊕K1,m and that

of G are same.

1 2 2r − 1 2r 2r + 1 2n 2n+ 1

v1 v2 vm

Figure 3.10: P2n+1 ⊕K1,m

Theorem 3.3.9. The TD-Polynomial of the graph P2n+1 ⊕ K1,m shown in fig-

ure 3.10 is C(HX , x)C(HY , x), where C(HX , x) = x3C(Pr−2, x)C(Pn−r−2, x) and

C(HY , x) = (1 + x)mC(Pr, x)C(Pn−r+1, x)− x2C(Pr−2, x)C(Pn−r−1, x).

Proof. Let X = {1, 3, 5, . . . , 2n+1}∪V ′ and Y = {2, 4, 6, . . . , 2n} be the biparti-

tion of P2n+1⊕K1,m andHX , HY be the components of ONH(P2n+1⊕K1,m). Then

E(HX) = E(H1) and E(HY ) = E(H2)∪E(H3)∪{{2r−1, 2r+1, v1, v2, . . . , vm}},

where the graphs H1, H2 and H3 are shown in figure 3.11.
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3.3. Ring Sum of graphs

2 4 2r − 2 2r 2r + 2 2n− 2 2n

H1 :

H2 :

H3 :

1 3 5 2r − 3 2r − 1

2r + 1 2r + 3 2r + 5 2n− 1 2n+ 1

Figure 3.11: The graphs H1, H2 and H3

Therefore, C(HX , x) = C(H1, x) = x3C(Pr−2, x)C(Pn−r−2, x). Let S be a vertex

covering set of HY . If S ∩ {2r − 1, 2r + 1} = φ, then S ∩ V ′ 6= φ. So,

C(HY , x) = C{2r−1,2r+1}(H2 ∪H3, x)(1 + x)m

+ C{2r−1,2r+1}(H2 ∪H3, x) [(1 + x)m − 1]

= C(H2 ∪H3, x)(1 + x)m − C{2r−1,2r+1}(H2 ∪H3, x)

= C(H2, x)C(H3, x)(1 + x)m − C{2r−1}(H2, x)C{2r+1}(H3, x)

= C(Pr, x)C(Pn−r+1, x)(1 + x)m − C(Pr−2, x)C(Pn−r−1, x)

Since Dt(P2n+1 ⊕K1,m, x) = C(HX , x)C(HY , x), the proof follows.

Theorem 3.3.10. The TD-Polynomial of the graph P2n+1⊕K1,m shown in figure

3.12 is C(HX , x)C(HY , x), where C(HX , x) = xC(Pr, x)C(Pn−r, x) and C(HY , x) =

x2(1 + x)mC(Pr−1, x)C(Pn−r−1, x)− x4C(Pr−3, x)C(Pn−r−3, x).
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3.3. Ring Sum of graphs

1 2 2r 2r + 1 2r + 2 2n 2n+ 1

v1 v2 vm

Figure 3.12: P2n+1 ⊕K1,m

Proof. Let X = {1, 3, 5, . . . , 2n+1} and Y = {2, 4, 6, . . . , 2n}∪V ′ be the biparti-

tion of P2n+1⊕K1,m andHX , HY be the components of ONH(P2n+1⊕K1,m). Then

E(HX) = E(H1) ∪ E(H2) ∪ {{2r, 2r + 2, v1, v2, . . . , vm}} and E(HY ) = E(H3),

where the graphs H1, H2 and H3 are shown in figure 3.13.

H1 :

H2 :

H3 :

2 4 6 2r − 2 2r

2r + 2 2r + 4 2r + 6 2n− 2 2n

1 3 2r − 1 2r + 1 2r + 3 2n− 1 2n+ 1

Figure 3.13: The graphs H1, H2 and H3

So, C(HY , x) = C(H3, x) = xC(Pr, x)C(Pn−r, x). Let S be a vertex covering

set of HX . If S ∩ {2r, 2r + 2} = φ, then S ∩ V ′ 6= φ. Therefore,

C(HX , x) = C{2r,2r+2}(H1 ∪H2, x)(1 + x)m

+ C{2r,2r+2}(H2 ∪H3, x) [(1 + x)m − 1]
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3.3. Ring Sum of graphs

= C(H1 ∪H2, x)(1 + x)m − C{2r,2r+2}(H1 ∪H2, x)

= C(H1, x)C(H2, x)(1 + x)m − C{2r}(H1, x)C{2r+2}(H2, x)

= x2C(Pr−1, x)C(Pn−r−1, x)(1 + x)m − x4C(Pr−3, x)C(Pn−r−3, x).

Since Dt(P2n+1 ⊕K1,m, x) = C(HX , x)C(HY , x), the proof follows.
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Chapter 4
TD-Polynomials of some graphs

4.1 Introduction

It is known that the concept of total domination in graphs can be converted to

the concept of vertex cover in hypergaphs. In this chapter, we find the total

domination polynomials of some graphs using the hypergraph terminology. The

third section of this chapter deals with the total domination polynomials of total

and middle graphs of some classes of graphs.

We need the following to proceed.

Definition 4.1.1. (see [11]) A graph G is said to be an m-partite graph, if its

vertex set can be partitioned into m subsets so that no edge has both ends in any

one subset. A complete m-partite graph, denoted by Kn1,n2,...,nm , is a graph in

which each vertex is joined to every vertex that is not in the same sub set. If

ni = n for every i, then it is denoted by Km[n].

1This chapter has been published in Far East Journal of Mathematical Sciences Volume 13,
Number 10, (2017), 2277− 2289.
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4.1. Introduction

Definition 4.1.2. (see [7]) The caterpillar graph T (m1,m2, . . . ,mn) is obtained

from a path Pn with n ≥ 2, by attaching the central vertex of the star graph

K1,mi
(1 ≤ i ≤ n) to the i-th vertex of the path Pn.

Definition 4.1.3. (see [14]) Let Γ be a finite group with identity e. Let S ⊆ Γ

such that e /∈ S and S = S−1, that is, S is inverse closed. Then the Cayley

graph [20] G = Cay(Γ, S), is defined as a graph with vertex set V (G) = Γ and

edge set E(G) = {ab : ab−1 ∈ S}. Let Γ be a group and S ⊂ Γ such that H = S

is a subgroup of Γ. Then Cay(Γ, S) is called subgroup complementary Cayley

graph [14] denoted by SC(Γ, H).

Definition 4.1.4. The centipede P ∗n with 2n vertices is obtained by appending a

single pendant edge to each vertex of a path Pn.

Theorem 4.1.5. (see [5]) If a graph G consists of m components G1, G2, . . . , Gm,

then D(G, x) = D(G1, x) . . . D(Gm, x).

Theorem 4.1.6. (see [1]) For a complete graph Kn, D(Kn, x) = (1 + x)n − 1.

Theorem 4.1.7. (see [47]) For a complete graph Kn,

Dt(Kn, x) = (1 + x)n − 1− nx.

Theorem 4.1.8. (see [14]) Let Γ be a finite group and H be a subgroup of Γ with

o(H) = n. Then SC(G,H) = Km[n], where m = [Γ: H].
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4.2. Main results

4.2 Main results

In this section, the total domination polynomials of some graphs are determined

easily using hypergraphs. Using the hypergraph terminology, we can easily prove

Theorem 4.2.1 due to [45] and Corollary 4.2.3, Theorem 4.2.9 due to [12].

Theorem 4.2.1. For a complete m- partite graph, Kn1,n2,...,nm ,

Dt(Kn1,n2,...,nm , x) = Dt(KN , x)−
m∑
i=1

Dt(Kni
, x).

= D(KN , x)−
m∑
i=1

D(Kni
, x), where N =

m∑
i=1

ni.

Proof. For i = 1, 2, . . . ,m, let Ai be the partite sets of Kn1,n2,...,nm and let A =
m⋃
i=1

Ai. Then for each vertex v, N(v) = A \Ai for some i. Therefore, a set S is a

total dominating set if and only if S∩ (A\Ai) 6= φ for every i. If S∩ (A\Ai) = φ

for some i, then S ⊆ Ai. If |S| = k, then for each i, there are
(
ni

k

)
subsets S such

that S ⊆ Ai. Therefore, for each k, the number of non total dominating sets of

the complete m−partite graph is
m∑
i=1

(
ni
k

)
. So dt(Kn1,n2,...,nm , k) = dt(KN , k)−

m∑
i=1

dt(Kni
, k). Therefore,

Dt(Kn1,n2,...,nm , x) =
N∑
k=2

dt(KN , k)xk −
N∑
k=2

(
m∑
i=1

dt(Kni
, k)

)
xk

=
N∑
k=2

(
N

k

)
xk −

m∑
i=1

(
N∑
k=2

(
ni
k

))
xk

= Dt(KN , x)−
m∑
i=1

Dt(Kni
, x)

= Dt(KN , x) +Nx−
m∑
i=1

(Dt(Kni
, x) + nix)
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4.2. Main results

= D(KN , x)−
m∑
i=1

D(Kni
, x).

This completes the proof.

Corollary 4.2.2. For the complete m-partite graph Km[n],

Dt(Km[n], x) = D(Kmn, x)−mD(Kn, x)

= (1 + x)mn −m(1 + x)n +m− 1.

Proof. The proof follows immediately from Theorem 4.2.1.

Corollary 4.2.3. For the complete bipartite graph Km,n,

Dt(Km,n, x) = Dt(Km+n, x)−Dt(Km, x)−Dt(Kn, x)

=
[
(1 + x)m+n − 1− (m+ n)x

]
−

[(1 + x)m − 1−mx]− [(1 + x)n − 1− nx]

= (1 + x)m+n − (1 + x)m − (1 + x)n + 1.

Proof. The proof follows from Theorem 4.2.1.

Corollary 4.2.4. For the star graph K1,n, Dt (K1,n, x) = x [(1 + x)n − 1] .

Proof. The proof follows by substituting m = 1 in Corollary 4.2.3.

Theorem 4.2.5. For an (n-1)-regular bipartite graph G on 2n vertices,

Dt(G, x) = [Dt(Kn, x)]2 = [(1 + x)n − 1− nx]
2
.

Proof. Let V = {a1, a2, . . . , an} ∪ {b1, b2, . . . , bn} and E = {aibj : i 6= j} be the
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4.2. Main results

vertex set and edge set of G. Let H1 and H2 be two complete graphs with vertex

set V = {a1, a2, . . . , an} and {b1, b2, . . . , bn} respectively. Then for 1 ≤ i ≤ n,

we have NG(ai) = NH2(bi) and NG(bi) = NH1(ai). Since G is bipartite, the open

neighborhood hypergraph of G has two components. It can be observed that one

component of ONH(G) is isomorphic to ONH(H1) and the other is isomorphic

to ONH(H2). Therefore, a set S ⊆ V (G) is a total dominating set of G, if

and only if S is a total dominating set of H1 and H2. Therefore, by Theorems

2.1.14 and 4.1.7 we have, Dt(G, x) = Dt(H1, x)Dt(H2, x) = [Dt(Kn, x)]2 . This

completes the proof.

Corollary 4.2.6. If S = {(1, 1), (1, 2), . . . , (1, n-1)}, then

Dt (Cay(Z2�Zn, S), x) = [Dt(Kn, x)]2 .

Proof. Since Cay(Z2�Zn, S) is an (n-1)-regular bipartite graph, the proof follows

from Theorem 4.2.5.

Theorem 4.2.7. Let Γ be a group of order n and S ⊆ Γ such that H = S is

a subgroup of Γ. Then the total domination polynomial of the subgroup comple-

mentary cayley graph SC(Γ, H) = Cay(Γ, S) is

Dt(Cay(Γ, S), x) = Dt(Kn, x)−mDt(K|H|, x), where m = [Γ: H].

Proof. The proof follows from Theorem 4.1.8 and Corollary 4.2.2.

Theorem 4.2.8. Let H be a subgroup of Zn and G be a bipartite graph with

vertex set V = {a0, a1, a2, . . . , an−1} ∪ {b0, b1, b2, . . . , bn−1} such that ai is not
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4.2. Main results

adjacent to bj if and only if i, j ∈ xH for some x ∈ Zn. Then,

Dt(G, x) = [Dt(SC(Zn, H), x)]2 .

Proof. We construct two graphs H1 and H2 with vertex sets V (H1) = {a0, a1, . . . ,

an−1} and V (H2) = {b0, b1, . . . , bn−1} such that ai is not adjacent to aj and bi

is not adjacent to bj if and only if i, j ∈ xH for some x ∈ Zn. Then the graphs

H1 and H2 are isomorphic to SC(Zn, H). Therefore, Dt(H1, x) = Dt(H2, x) =

Dt(SC(Zn, H). Since G is bipartite, the open neighborhood hypergraph of G

has two components and they are isomorphic to the open neighborhood hyper-

graphs of H1 and H2 respectively. Therefore, Dt(G, x) = Dt(H1, x)Dt(H2, x) =

[Dt(SC(Zn, H), x)]2 . This completes the proof.

Theorem 4.2.9. Let G be connected graph with n vertices, then

Dt(G ◦K1, x) = xn(1 + x)n.

Proof. Let V (G) = {1, 2, 3, . . . , n} and a1, a2, a3, . . . , an be the new vertices of

G ◦ K1 such that N(ai) = {i} for i = 1, 2, 3, . . . , n. So, a set S of vertices of

G ◦ K1 is a total dominating set of G ◦ K1 if and only if {1, 2, 3, . . . , n} ⊆ S.

Therefore, Dt(G ◦K1, x) = xn +
(
n
1

)
xn+1 +

(
n
2

)
xn+2 + . . .+

(
n
n

)
xn+n = xn(1 +x)n.

This completes the proof.

Theorem 4.2.10. Let G(m1,m2, . . . ,mn) is the graph obtained from a connected

graph G with n ≥ 2, by attaching the root vertex of the star graph K1,mi
, (1 ≤

i ≤ n) to the i-th vertex of the graph G. If N =
n∑
i=1

mi, then the total domination

polynomial of G(m1,m2, . . . ,mn) is Dt(G(m1,m2, . . . ,mn), x) = xn(1 + x)N .
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4.2. Main results

Proof. If v is a pendant vertex in G(m1,m2, . . . ,mn) and u is the vertex adjacent

to it, then N(v) = {u}. So if S is a TD-set of G(m1,m2, . . . ,mn), then V (G) ⊆ S.

Since G is connected, V (G) is TD-set of G(m1,m2, . . . ,mn). So a TD-set with n+

i elements can be selected in
(
N
i

)
ways. Therefore, Dt(G(m1,m2, . . . ,mn), x) =

xn(1 + x)N . This completes the proof.

Corollary 4.2.11. Let N =
n∑
i=1

mi, then the TD-polynomial of the caterpillar

graph T (m1,m2, . . . ,mn) is, Dt(T (m1,m2, . . . ,mn), x) = xn(1 + x)N .

Proof. The caterpillar graph T (m1,m2, . . . ,mn) is obtained from a path Pn with

n ≥ 2, by attaching the central vertex of the star graph K1,mi
(1 ≤ i ≤ n) to the

i-th vertex of the path Pn. So the proof follows immediately if we take G as Pn

in Theorem 4.2.10.

Corollary 4.2.12. For a graph G with n vertices, the total domination polyno-

mial of G ◦Km is xn (1 + x)mn .

Proof. Note that the graph G ◦ Km is obtained from G and | V (G) | copies of

the star graph K1,m by identifying the root vertex of the ith copy of K1,m with

the ith vertex of G. Therefore, the proof follows from Theorem 4.2.10.

Corollary 4.2.13. The total domination polynomial of the centipede P ∗n is

Dt(P
∗
n , x) = xn(1 + x)n.

Proof. Observe that the centipede P ∗n is Pn ◦ K1. Therefore, the proof follows

from Corollary 4.2.12.

Corollary 4.2.14. If Bm,n is the bi-star graph, then Dt(Bm,n, x) = x2(1+x)m+n.
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4.3. TD-Polynomials of total and middle graphs of some graphs

Proof. Let’s label the vertices of Bm,n as shown in figure 4.1.

u v

u1

u2

um−1

um

v1

v2

vn−1

vn

Figure 4.1: The Graph Bm,n

It can be observed that Bm,n is obtained by identifying the vertex u of the

graph K2 with the root vertex of the star K1,m and the vertex v of K2 with the

root vertex of K1,n. Therefore, the proof follows from Theorem 4.2.10.

Theorem 4.2.15. Let G and H be graphs of order m and n, respectively, then

Dt(G ∨H, x) = [(1 + x)m − 1] [(1 + x)n − 1] +Dt(G, x) +Dt(H, x).

Proof. If S ⊆ V (G)∪V (H), such that S∩V (G) 6= φ and S∩V (H) 6= φ, then S is

a TD-set ofG∨H.Moreover if S is a TD-set ofG orH, then S is a TD-set ofG∨H.

Therefore, Dt(G∨H, x) = [(1 + x)m − 1] [(1 + x)n − 1]+Dt(G, x)+Dt(H, x).

4.3 TD-Polynomials of total and middle graphs

of some graphs

In this section, we obtain the total domination polynomials of total graph and

middle graph of some graph classes.
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4.3. TD-Polynomials of total and middle graphs of some graphs

Here we need the following.

Definition 4.3.1. (see [28]) If G is a graph, the total graph T (G) of G is the

graph with vertex set V (G)∪E(G) in which two vertices are adjacent if they are

either adjacent or incident in G. For a graph G, the middle graph M(G) of G

is the graph with vertex set V (G) ∪ E(G) in which two vertices are adjacent if

either they are adjacent edges of G or one is a vertex of G and the other is an

edge incident with it.

Theorem 4.3.2. Dt (T (K1,n), x) = x [(1 + x)2n − 1] + xn [(1 + x)n] .

Proof. Let{u} ∪ {1, 2, 3, . . . , n} be the bipartition of the star graph K1,n and

E = {e1, e2, e3, . . . , en} be the edge set. Then the open neighborhoods of the

vertices of T (K1,n) are, for 1 ≤ i ≤ n, N(i) = {u, ei}, N(ei) = {i, u} ∪ E \

{ei} and N(u) = {1, 2, 3, . . . , n, e1, e2, e3, . . . , en}

Let S be a total dominating set of T (K1,n). We consider the following cases.

Case 1: Let u ∈ S.

For any x ∈ V (T (K1,n)), the set {u, x} is a TD-set of T (K1,n). Therefore,

the number of TD-sets of cardinality i+ 1 containing the vertex u is
(
2n
i

)
.

Case 2: Let u /∈ S.

Since N(i) = {u, ei}, for all i, S is a TD-set if and only if E ⊆ S. From the

remaining n vertices {1, 2, 3, . . . , n}, i vertices can be selected in
(
n
i

)
ways.

Therefore,

Dt (T (K1,n), x) = x

[(
2n

1

)
x+

(
2n

2

)
x2 + . . .+

(
2n

2n

)
x2n
]
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4.3. TD-Polynomials of total and middle graphs of some graphs

+ xn
[
1 +

(
n

1

)
x+

(
n

2

)
x2 + . . .+

(
n

n

)
xn
]

= x
[
(1 + x)2n − 1

]
+ xn [(1 + x)n] .

This completes the proof.

Theorem 4.3.3. Dt (M(K1,n), x) = xn(1 + x)n+1.

Proof. Let{u}∪{1, 2, 3, . . . , n} be the bipartition of the star graph K1,n and E =

{e1, e2, e3, . . . , en} be the edge set. Then the open neighborhoods of the vertices of

M(K1,n) are, N(u) = {e1, e2, . . . , en}, N(ei) = {i, u}∪E \ {ei} and N(i) = {ei}.

So, a set S of vertices of M(K1,n) is a TD-set if and only if E ⊆ S. From the

remaining n + 1 vertices, i vertices can be selected in
(
n+1
i

)
ways. Therefore,

Dt (M(K1,n), x) = xn(1 + x)n+1. Thus the proof is complete.

Theorem 4.3.4. If G is connected graph of order n and size l, then the total

domination polynomial of the middle graph of G(m1,m2, . . . ,mn) is

Dt(M(G(m1,m2, . . . ,mn)), x) = xN(1 + x)N+n+l, where N =
n∑
i=1

mi.

Proof. If v is a pendant vertex in G(m1,m2, . . . ,mn) and e, the edge incident

with it, then NM(G(m1,m2,...,mn))(v) = {e}. Let E be the set of all pendant edges of

G(m1,m2, . . . ,mn). Therefore, if S is a TD-set of M(G(m1,m2, . . . ,mn)), then

E ⊆ S. Clearly E is a TD-set of M(G(m1,m2, . . . ,mn)). So, from the remaining

N+n+ l vertices in M(G(m1,m2, . . . ,mn)), i vertices can be selected in
(
N+n+l

i

)
ways. Therefore, Dt(M(G(m1,m2, . . . ,mn)), x) = xN(1 + x)N+n+l. Thus the

proof is complete.

Corollary 4.3.5. The TD-polynomial of middle graph of the bi-star graph Bm,n

is Dt (M(Bm,n), x) = xm+n(1 + x)m+n+3.
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4.3. TD-Polynomials of total and middle graphs of some graphs

Proof. The bi-star graph Bm,n is obtained from K2 by attaching the central

vertices of the star graphs K1,m and K1,n to the first and second vertices of K2

respectively. Therefore, the proof follows immediately from Theorem 4.3.4.

Corollary 4.3.6. Let G be a connected graph of order m and size l and if n ≥ 2,

then the total domination polynomial of the middle graph of G ◦Kn is

Dt

(
M(G ◦Kn), x

)
= xmn(1 + x)m+l+n.

Proof. The graph G ◦Kn is obtained from G by attaching the central vertices of

n copies of the star graph K1,n to the vertices of G. So replacing mi by n for all

i in Theorem 4.3.4, we obtain the result.

We take N =
n∑
i=1

mi for Corollary 4.3.7, 4.3.8 and 4.3.9.

Corollary 4.3.7. The TD-polynomial of middle graph of the caterpillar graph

is, Dt(M(T (m1,m2, . . . ,mn)), x) = xN(1 + x)N+2n−1.

Proof. In Theorem 4.3.4, if we take G as Pn, we obtain the result.

Corollary 4.3.8. For the caterpillar graph T (m1,m2, . . . ,mn),

Dt(M(T (m1,m2, . . . ,mn)), x) = xN−n(1 + x)2n−1Dt(T (m1,m2, . . . ,mn), x).

Proof. The proof follows from 4.2.11 and 4.3.7.

Corollary 4.3.9. If G is the cycle Cn, then

Dt(M(G(m1,m2, . . . ,mn)), x) = xN−n(1 + x)2nDt(G(m1,m2, . . . ,mn), x).
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4.3. TD-Polynomials of total and middle graphs of some graphs

Proof. From Theorems 4.2.10 and 4.3.4 we have, Dt(Cn(m1,m2, . . . ,mn), x) =

xn(1 + x)N and Dt(M(Cn(m1,m2, . . . ,mn)), x) = xN(1 + x)N+2n. Hence the

result follows.
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Chapter 5
Total Domination Polynomials of

Cartesian Products of some graphs

5.1 Introduction

In this chapter, we determine the total domination polynomials of Cartesian

products of certain classes of graphs with K2. We establish an interesting rela-

tion between domination polynomials and total domination polynomials of some

graph classes. Moreover, we determine the total domination polynomials of the

Cartesian product of some graphs with the cycle C4. Further, the total domina-

tion number of some graphs are also determined. We need the following theorems

for our further discussions.

Theorem 5.1.1. (see [1]) If a graph G consists of m components G1, G2, . . . , Gm,

then D(G, x) = D(G1, x) . . . D(Gm, x).

1A part of this chapter has been published in Journal of Pure and Applied Mathematics:
Advances and Applications, Volume 16, Number 2, 2016, Pages 97-108.
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Theorem 5.1.2. (see [1]) For every n ≥ 4,

D(Pn, x) = x [D(Pn−1, x) +D(Pn−2, x) +D(Pn−3, x)] ,

with initial values D(P1, x) = x, D(P2, x) = x2 + 2x, D(P3, x) = x3 + 3x2 + x.

Theorem 5.1.3. (see [1]) For every n ≥ 4,

D(Cn, x) = x [D(Cn−1, x) +D(Cn−2, x) +D(Cn−3, x)] ,

with initial values D(C1, x) = x, D(C2, x) = x2 + 2x, D(C3, x) = x3 + 3x2 + 3x.

Theorem 5.1.4. (see [1]) D(Km,n, x) = ((1 + x)m− 1)((1 + x)n− 1) + xm + xn.

Theorem 5.1.5. (see [1]) If there exists 1 ≤ j ≤ k, such that sj ≥ 3, then

D(θs1,s2,...,sj ,...,sk , x) = x[D(θs1,s2,...,sj−1,...,sk , x) +D(θs1,s2,...,sj−2,...,sk , x)

+ D(θs1,s2,...,sj−3,...,sk , x)].

Theorem 5.1.6. (see [30]) If Ln is the graph Pn�K2, then domination poly-

nomial of Ln satisfies the recurrence D(Ln, x) = x(x + 2)D(Ln−1, x) + x(x +

1)D(Ln−2, x) + x2(x+ 1)D(Ln−3, x)− x3D(Ln−5, x) with initial values,

n Pn�K2

1 x2 + 2x

2 x4 + 4x3 + 6x2

3 x6 + 6x5 + 15x4 + 16x3 + 3x2

4 x8 + 8x7 + 28x6 + 52x5 + 48x5 + 47x4 + 2x3

5 x10 + 10x9 + 45x8 + 116x7 + 178x6 + 148x5 + 47x4 + 2x3

6 x12 + 12x11 + 66x10 + 216x9 + 453x8 + 604x7 + 470x6 + 168x5 + 17x4
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5.2. On Cartesian products

5.2 On Cartesian products

In this section, we establish a relation between domination polynomials and total

domination polynomials of some graphs. We prove that for any graph G, there

exists a graph H such that the set of all open neighborhoods of vertices of K2�G

is exactly the same as the set of all closed neighborhoods of vertices of H.

Theorem 5.2.1. For a bipartite graph G, Dt(K2�G, x) = [D(G, x)]2 .

Proof. Let X = {x1, x2, x3, . . . , xm}, Y = {y1, y2, y3, . . . , yn} be the bipartition of

G. If V (K2) = {a, b}, then the bipartition ofK2�G is {(a, x1), (a, x2), . . . , (a, xm),

(b, y1), (b, y2), . . . , (b, yn)}, {(b, x1), (b, x2), . . . , (b, xm), (a, y1), (a, y2), . . . , (a, yn)}.

Then, for i = 1, 2, . . . ,m and for j = 1, 2, . . . , n, we have,

N((a, xi)) = {(a, y)/y ∼ xi in G} ∪ {(b, xi)}

N((b, xi)) = {(b, y)/y ∼ xi in G} ∪ {(a, xi)}

N((a, yj)) = {(a, x)/x ∼ yj in G} ∪ {(b, yj)}

N((b, yj)) = {(b, x)/x ∼ yj in G} ∪ {(a, yj)}.

Let H1 be a bipartite graph with partite sets {(b, x1), (b, x2), . . . , (b, xm)},

and {(a, y1), (a, y2), . . . , (a, yn)}, such that (b, xi) ∼ (a, yj) if and only if (a, xi) ∼

(a, yj) in K2�G. Similarly, we construct another bipartite graph H2 with partite

sets {(a, x1), (a, x2), . . . , (a, xm)}, {(b, y1), (b, y2), . . . , (b, yn)}, such that (a, xi) ∼

(b, yj) if and only if (b, xi) ∼ (b, yj) in K2�G. It can be observed that both H1

and H2 are isomorphic to G and a set N is an open neighborhood of a vertex

in K2�G if and only if N is a closed neighborhood of a vertex in H1 or H2.
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5.2. On Cartesian products

Therefore, a set S ⊆ V (G) is a total dominating set of K2�G if and only if it is

a dominating set of H1 ∪H2. So, from Theorem 5.1.1 we have,

Dt(K2�G, x) = D(G1 ∪G2, x)

= D(G1, x).D(G2, x)

= [D(G, x)]2 .

This completes the proof.

Corollary 5.2.2. For a bipartite graph H, γt(K2�H) = 2 γ(H).

Proof. By definition, γ(H) is the smallest power of x in the domination polyno-

mial and γt(H) is the smallest power of x in the total domination polynomial of

H. From Theorem 5.2.1, we have Dt(K2�H, x) = [D(H, x)]2 . So, the least power

of x in Dt(K2�H, x) is twice that of D(H, x), which proves our result.

Corollary 5.2.3. From Theorem 5.2.1, we obtain the following results.

1. Dt(K2�Pn, x) = [D(Pn, x)]2 .

2. γt(K2�Pn) = 2.γ(Pn) = 2.dn
3
e

3. Dt(K2�C2n, x) = [D(C2n, x)]2 .

4. γt(K2�C2n) = 2.γ(C2n) = 2.d2n
3
e

5. Dt(K2�Km,n, x) = [D(Km,n, x)]2 .

6. γt(K2�Km,n) = 4.

7. Dt(K2�Bm,n, x) = [D(Bm,n, x)]2 , where Bm,n is the bi-star graph.
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5.2. On Cartesian products

8. If T is a tree, then Dt(K2�T, x) = [D(T, x)]2.

Proof. The proof is straight forward.

Theorem 5.2.4. If G is a non bipartite graph with n vertices, then there exists

a bipartite graph H with 2n vertices such that Dt(K2�G, x) = D(H, x).

Proof. Let V (G) = {1, 2, 3, . . . , n} and V (K2) = {a, b}. Let H be a bipartite

graph with vertex set {(a, 1), (a, 2), . . . , (a, n)} ∪ {(b, 1), (b, 2), . . . , (b, n)} such

that (a, i) is adjacent to (b, j) if and only if i is adjacent to j in G. Then for 1 ≤

i, j ≤ n, NK2�G ((a, i)) = NH [(b, i)] and NK2�G ((b, j)) = NH [(a, j)] . Therefore,

a TD-set of K2�G dominates H and if S dominates H, then it is a TD-set of

K2�G. This completes the proof.

Lemma 5.2.5. A set S is a dominating set of a cycle Cn if and only if it has

non empty intersection with the set of vertices of each and every path of length

two in Cn.

Proof. Let S be a dominating set and P = uvw be a path of length two in Cn.

If S ∩ {u, v, w} = φ, then the vertex v is not adjacent to any vertex in S and so

S cannot be a dominating set of Cn. The converse is obvious.

Theorem 5.2.6. If n is odd, then, Dt(K2�Cn, x) = D(C2n, x).

Proof. Let the vertices of K2�Cn be labeled as shown in figure 5.1. Let HG be the

open neighborhood hypergraph of K2�Cn. Let C2n be the cycle with vertex set

{(r, 1), (r, 2), . . . , (r, n), (t, 1), (t, 2), . . . , (t, n)} such that (r, i) is adjacent to (t, j)

if and only if i is adjacent to j in Cn. It can be observed that if v ∈ V (K2�Cn),
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5.3. TD-Polynomials of Cayley graphs

then the vertices of N(v) form a path of length two in C2n. Also the set of vertices

of any path of length two in C2n is an edge in HG. Therefore, the proof follows

from Theorem 2.1.14 and Lemma 5.2.5.

(r, 1) (r, 2) (r, 3) (r, 4) (r, n− 1) (r, n)

(t, 1) (t, 2) (t, 3) (t, 4) (t, n− 1) (t, n)

Figure 5.1: The graph K2�Cn

5.3 TD-Polynomials of Cayley graphs

In this section, we find the total domination polynomials of some cubic cayley

graphs.

Theorem 5.3.1. Let G = Cay(Zn, S), where S = {a, b, b−1} is a generating set

of Zn such that a−1 = a and a /∈< b > . Then,

Dt(G, x) =


[
D(Cn

2
, x)
]2
, if n/2 is even

D(Cn, x), otherwise.

Proof. Here G ∼= K2�Cn
2
. So the proof follows from Corollary 5.2.3 and Theorem

5.2.6.
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5.3. TD-Polynomials of Cayley graphs

Theorem 5.3.2. Let G = Cay(Zn, S), where S = {a, b, b−1} such that a−1 = a

and b is a generator of Zn. Then,

Dt(G, x) =

 D(Cn, x), if n is a multiple of 4[
D(Cn

2
, x)
]2
, otherwise

Proof. Since b is a generator of Zn, the graph G = Cay(Zn, S) can be labeled as

shown in figure 5.2.

b b2 b
n
2
−1 b

n
2

b
n
2
+1 b

n
2
+2 bn−1 bn

Figure 5.2: The graph G = Cay(Zn, S)

Case 1: When n is a multiple of 4.

Let Cn be the cycle (bn, b
n
2
+1, b2, b

n
2
+3, b4, . . . , bn−2, b

n
2
−1, bn). It can be ob-

served that if v ∈ V (G), then the vertices of N(v) form a path of length

two in Cn and any path of length two in Cn is an open neighborhood of a

vertex in G. Therefore, by Lemma 5.2.5, Dt(G, x) = D(Cn, x).

Case 2: When n is not a multiple of 4.

In this case the graph G = Cay(Zn, S) is bipartite with bipartition X =

{bk : k is odd} and Y = {bs : s is even}. Let the components of the open

neighborhood hypergraph of G are HX = (Y, {N(x) : x ∈ X}) and HY =

(X, {N(x) : x ∈ Y }) . Since HX is isomorphic to HY , by Theorem 2.1.14,
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5.4. TD-Polynomials of regular graphs

Dt(G, x) = [C(HX , x)]2 .Also E(HX) =
{
N(b), N(b

n
2
+2), N(b3), . . . , N(b

n
2 )
}

=
{
{bn, bn

2
+1, b2}, {bn

2
+1, b2, b

n
2
+3}, {b2, bn

2
+3, b4}, . . . , {bn

2
-1, bn, b

n
2
+1}
}
. Let

Cn
2

be the cycle,
(
bn, b

n
2
+1, b2, b

n
2
+3, b4, . . . , b

n
2
−1, bn

)
, with vertex set Y. It

is obvious that if v ∈ Y, then the vertices of NG(v) form a path of length

two in Cn
2
. Also any path of length two in Cn

2
is an open neighborhood of

a vertex in Y. Therefore, by Lemma 5.2.5, C(HX , x) = D(Cn
2
, x).

This completes the proof.

5.4 TD-Polynomials of regular graphs

In this section, we investigate how the domination polynomials of some regular

graphs and total domination polynomials of their Cartesian product with K2 are

related.

Lemma 5.4.1. If G is an (m− 1)-regular bipartite graph, then

D(G, x) = mx2
[
1 +

(
2m− 2

1

)
x+ . . .+

(
2m− 2

m− 3

)
xm−1

]
+

[
m

(
2m− 2

m− 2

)
+ 2

]
xm

+

(
2m

m+ 1

)
xm+1 +

(
2m

m+ 2

)
xm+2 + . . .+

(
2m

2m

)
x2m.

Proof. Let X = {a1, a2, . . . , am} and Y = {b1, b2, . . . , bm} be the bipartition of

G. Assume that ai is not adjacent to bi for all i. Let S be a set of vertices of

G. If {ar, br} ⊆ S for some r, then S is a dominating set of G. Since there are

m pairs, one pair can be selected in m ways. So when k < m, the coefficient

of xk in D(G, x) is m
(
2m−2
k−2

)
. When k = m, since X and Y are also dominating
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5.4. TD-Polynomials of regular graphs

sets of G, the coefficient of xm is m
(
2m−2
m−2

)
+ 2. When k > m, any subset of the

vertices of G contains a pair ai, bi. So the coefficient of xk in D(G, x) is
(
2m
k

)
.

This completes the proof.

Theorem 5.4.2. Dt(K2�Kn, x) = D(G, x), where G is an (n − 1)-regular bi-

partite graph on 2n vertices.

Proof. Let the vertex sets of K2 and Kn be {a, b} and {1, 2, 3, . . . , n} respec-

tively. If A = {(a, 1), (a, 2), . . . , (a, n)} and B = {(b, 1), (b, 2), . . . , (b, n)}, then

V (K2�Kn) = A ∪ B. Also N((a, i)) = {(b, i)} ∪ A \ {(a, i)} and N((b, i)) =

{(a, i)} ∪ B \ {(b, i)}. We construct an (n-1)-regular bipartite graph G in which

the open neighborhoods N((a, i)) and N((b, i)) are represented as star graphs

with root vertices (b, i) and (a, i) respectively.

(a, 1) (a, 2) (a, 3) (a, n)

(b, 1) (b, 2) (b, 3) (b, n)

Figure 5.3: The graph G

Let S be a dominating set of G. Then for all i, either (a, i) ∈ S or (a, i)

is adjacent to some vertex in S. If (a, i) ∈ S for all i, then S ∩ N((b, i)) 6= φ

for all i. If (a, r) /∈ S for some r, then there exists (b, s) ∈ S for some s 6= r.

Therefore, S ∩ NK2�Kn((b, i)) 6= φ for all i. Similarly we can prove that S ∩
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5.5. TD-Polynomials of friendship graphs

NK2�Kn((a, i)) 6= φ for all i. Therefore, S is a vertex covering set of the open

neighborhood hypergraph HK2�Kn . Conversely, let S is a vertex covering set of

HK2�Kn . We prove that S is a dominating set of G. Consider a vertex (a, i). If

(a, i) ∈ S, then there is nothing to prove. If (a, i) /∈ S, then (b, j) ∈ S for some

j 6= i. So (a, i) is adjacent to (b, j) in G. Similarly we can prove the case of

(b, j) also. Therefore, S is a dominating set of G. Thus the result follows from

Theorem 2.1.14.

5.5 TD-Polynomials of friendship graphs

In this section, we determine the total domination polynomials of Cartesian

product of friendship graphs with K2.

Here we need the following.

Definition 5.5.1. (see [1]) The friendship graph Fn with 2n+ 1 vertices and 3n

edges, is the graph formed by the join of K1 with n copies of K2.

Theorem 5.5.2. Dt(K2�Fn, x) = D(θ3, 3, . . . , 3︸ ︷︷ ︸
(2n times)

, x).

Proof. Let V (Fn) = {u, 1, 2, 3, . . . , n} such that N(u) = {1, 2, 3, . . . , n}. For an

even vertex x, N(x) = {u, x − 1} and for an odd vertex x, N(x) = {u, x+1}.

Let V (K2) = {a, b}. Then in K2�Fn,

N((a, u)) = {(b, u), (a, 1), (a, 2), . . . , (a, n)}

N((b, u)) = {(a, u), (b, 1), (b, 2), . . . , (b, n)}

For even x, N((a, x)) = {(a, u), (b, x), (a, x− 1)}
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5.6. Total domination polynomials of C4�G

N((b, x)) = {(b, u), (a, x), (b, x− 1)}

For odd x, N((a, x)) = {(a, u), (b, x), (a, x+ 1)}

N((b, x)) = {(b, u), (a, x), (b, x+ 1)}

Since the Friendship graph Fn is not bipartite, by Theorem 5.2.4 there exists a

bipartite graph H such that Dt(K2�Fn, x) = D(H, x). In H, we have,

N((a, u)) = {(b, 1), (b, 2), . . . , (b, n)}

N((b, u)) = {(a, 1), (a, 2), . . . , (a, n)}

If x is even, then N((a, x)) = {(b, u), (b, x− 1)} and

If x is odd, then N((a, x)) = {(b, u), (b, x+ 1)}

Note that H is the theta graph θ3, 3, . . . , 3︸ ︷︷ ︸
(2n times)

. It can be observed that for each

vertex s of K2�Fn there exists a vertex t in H such that NK2�Fn(s) = NH [t].

Therefore, Dt(K2�Fn, x) = D(H, x). This completes the proof.

The construction of H in the case of F2 is shown in figure 5.4.

5.6 Total domination polynomials of C4�G

In this section, we determine the total domination polynomials of Cartesian

product of certain classes of graphs with the cycle C4.

Theorem 5.6.1. For a bipartite graph G,

Dt(C4�G, x) = [D(K2�G, x)]2 .
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5.6. Total domination polynomials of C4�G

Proof. Since the graph K2�K2�G is isomorphic to C4�G, the result follows

from Theorem 2.1.14 and 5.2.1.

1

2 3

4

(a, 1)

(a, 2) (a, 3)

(a, 4)

(b, 1) (b, 4)

(b, 2) (b, 3)
u

(a, u)

(b, u)

(a, u)

(b, u)

(a, 1)(a, 2) (a, 3)(a, 4)

(b, 1) (b, 2) (b, 3) (b, 4)

Figure 5.4: The graphs F2, K2�F2 and H

Corollary 5.6.2. From Theorem 5.6.1 we obtain the following results.

(i) Dt(C4�Pn, x) = [D(Ln, x)]2 ,

(ii) γt(C4�Pn) = 2

⌈
n+ 1

2

⌉
,

(iii) Dt(C4�C2n, x) = [D(K2�C2n, x)]2 ,

(iv) γt(C4�C2n) =

 2n, if n is even

2n+ 2, otherwise.

(v) Dt(C4�K1,n, x) = [D(K2�K1,n, x)]2 ,

(vi) γt(C4�K1,n) = 4.
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Chapter 6
TD-Polynomials of Splitting Graphs

6.1 Introduction

In this chapter, we are concerned with total domination polynomials of splitting

graphs of order k of a graph G. Moreover, we introduce the terminology of

iterated splitting graph Si(G) of a graph G and determine its total domination

polynomial.

We need the following results.

Theorem 6.1.1. (see [18]) For the path graph Pn, where n > 1, we have

C(Pn, x) =
n∑
i=0

(
i+ 1

n− i

)
xi.

Theorem 6.1.2. (see [18]) For the cycle graph Cn, where n ≥ 3, we have

C(Cn, x) =
n∑
i=1

n

i

(
i

n− i

)
xi.

Definition 6.1.3. (see [43]) The splitting graph of a graph G is defined as, for

1A part of this chapter has been published in Advances and Applications in Discrete Math-
ematics, Volume 18, Number 3, 2017, Pages 331-343.
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6.2. On splitting graphs

each vertex v of G, take a new vertex v
′

and join v
′

to all vertices of G adjacent

to v. The graph spl(G) thus obtained is called the splitting graph of G.

Definition 6.1.4. The splitting graph of order k of a graph G, denoted by splk(G)

is defined as for each vertex v of G, take k new vertices v1, v2, . . . , vk and join

each of these vertices to all vertices of G adjacent to v.

Lemma 6.1.5. If G is bipartite, then splk(G) is bipartite.

Proof. Let (X, Y ) be the bipartition of G and X
′
, Y

′
be collection of new vertices

of splk(G) corresponding to the vertices of X and Y respectively. Then X ∪X ′

and Y ∪ Y ′ are the partite sets of splk(G). This proves the result.

6.2 On splitting graphs

It is noted that for a graph G, the TD- polynomials of splitting graph of a graph

G is closely related to the total domination polynomial of G. In this section, the

total domination polynomial of splitting graph of G is determined.

Theorem 6.2.1. For a connected graph G with n vertices,

Dt

(
splk(G), x

)
= Dt(G, x)(1 + x)nk.

Proof. For a vertex v in G, let v1, v2, . . . , vk be the new vertices in splk(G). Then

for i = 1, 2, . . . , k, Nsplk(G)(v
i) = NG(v). Also Nsplk(G)(v) ⊇ NG(v). Therefore, if

S is a total dominating set of G, then S is a total dominating set of splk(G). From

the construction of splk(G), it can be observed that if K is a total dominating set

of splk(G), then K ∩V (G) is a total dominating set of G. Since G has n vertices,
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6.2. On splitting graphs

splk(G) has n(k+1) vertices. So the nk new vertices need not be present in a total

dominating set of splk(G). Note that from nk vertices r vertices can be selected in(
nk
r

)
ways. Therefore, Dt

(
splk(G), x

)
= Dt(G, x)

[
1 +

(
nk
1

)
+
(
nk
2

)
+ . . .+

(
nk
nk

)]
.

This proves the result.

Corollary 6.2.2. For the path P2n, where n ≥ 1, we have

Dt

(
splk(P2n), x

)
=

[
n∑
i=1

(
i+ 1

n− (i+ 1)

)
xi

]2
(1 + x)2nk.

Proof. From Theorem 2.2.5 we have,

[
n∑
i=1

(
i+ 1

n− (i+ 1)

)
xi

]2
. Since splk(P2n)

has 2nk new vertices, the proof follows from Theorem 6.2.1.

Corollary 6.2.3. For the path P2n+1, where n ≥ 1, we have

Dt

(
splk(P2n+1), x

)
= x2

[
n+1∑
i=0

(
i+ 1

n+ 1− i

)
xi

][
n−2∑
i=0

(
i+ 1

n− (2 + i)

)
xi

]
(1+x)(2n+1)k.

Proof. From Theorem 2.2.7 we have,

Dt(P2n+1, x) = x2

[
n+1∑
i=0

(
i+ 1

n+ 1− i

)
xi

][
n−2∑
i=0

(
i+ 1

n− (2 + i)

)
xi

]
. Thus the proof

follows from Theorem 6.2.1.

Corollary 6.2.4. For the cycle graph C2n, where n ≥ 2, we have

Dt

(
splk(C2n), x

)
=

[
n∑
i=1

n

i

(
i

n− i

)
xi

]2
(1 + x)2nk.

Proof. From Theorem 2.2.8 we have, Dt(C2n, x) =

[
n∑
i=1

n

i

(
i

n− i

)
xi

]2
. There-

fore, the proof follows from Theorem 6.2.1.
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Corollary 6.2.5. If n is odd, then

Dt

(
splk(Cn

)
, x) =

[
n∑
i=1

n

i

(
i

n− i

)
xi

]
(1 + x)nk.

Proof. If n is odd, from Theorem 2.2.10, we have, Dt(Cn, x) =
n∑
i=1

n

i

(
i

n− i

)
xi.

Then the proof follows from Theorem 6.2.1.

Corollary 6.2.6. Using Theorem 6.2.1 we can infer the following results.

(i) Dt(spl
k(Km,n), x) =

[
(1 + x)m+n − (1 + x)m − (1 + x)n + 1

]
[1 + x](m+n)k ,

(ii) Dt(spl
k(K1,n), x) = x [(1 + x)n − 1] [1 + x](1+n)k ,

(iii) Dt(spl
k(Kn), x) = [(1 + x)n − 1− x] [1 + x]nk .

Proof. The proof is straight forward.

6.3 On iterated splitting graph

In this section, we introduce the terminology of iterated splitting graph of a

graph G and derive its total domination polynomial.

Definition 6.3.1. The iterated splitting graph Si(G) of a graph G is defined

as Si(G) = S1 (Si−1(G)) , where i = 2, 3, . . . , k and S1(G) denotes the splitting

graph spl(G) of G.

Lemma 6.3.2. If G is bipartite, then Sk(G) is bipartite.

Proof. The proof is similar to that of Lemma 6.1.5.

89



6.3. On iterated splitting graph

Theorem 6.3.3. For a connected graph G with n vertices, the total domination

polynomial of the iterated splitting graph of G is

Dt

(
Sk(G)

)
= Dt(G, x)(1 + x)n2

k−1

.

Proof. Let G be a connected graph with vertex set {v1, v2, . . . , vn}. Let vk1 , v
k
2 , . . . ,

vkn be the new vertices in the iterated splitting graph Sk(G) such that NSk(G)

(
vki
)

= NG(vi). From the construction of Sk(G), for 1 ≤ j ≤ k − 1, we have,

NSk(G)

(
vji
)
⊇ NSk(G)

(
vki
)

= NG(vi). Therefore, a vertex covering set of G is

a vertex covering set of Sk(G). Also if S is a vertex covering set of Sk(G), then

S∩V (G) is a vertex covering set of G. Since the iterated splitting graph Sk(G) has

n2k vertices, the total domination polynomial of Sk(G) is Dt(G, x)(1 + x)n2
k−1
.

This completes the proof.

Corollary 6.3.4. For the path P2n, where n ≥ 1, we have

Dt

(
Sk(P2n), x

)
=

[
n∑
i=1

(
i+ 1

n− (i+ 1)

)
xi

]2
(1 + x)n2

k

.

Proof. From Theorem 2.2.5 we have,

[
n∑
i=1

(
i+ 1

n− (i+ 1)

)
xi

]2
. Since the iterated

splitting graph Sk(P2n) has n2k+1 vertices, from Theorem 6.3.3 we have,

Dt

(
Sk(P2n), x

)
= Dt (P2n, x) (1 + x)2n2

k−1

=

[
n∑
i=1

(
i+ 1

n− (i+ 1)

)
xi

]2
(1 + x)n2

k

.

This proves the result.
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6.3. On iterated splitting graph

Corollary 6.3.5. For the path P2n+1, where n ≥ 1, we have

Dt

(
Sk(P2n+1), x

)
= x2

[
n+1∑
i=0

(
i+ 1

n+ 1i

)
xi

][
n−2∑
i=0

(
i+ 1

n− (2 + i)

)
xi

]
(1+x)(2n+1)2k−1

.

Proof. From Theorem 2.2.7 we have,

Dt(P2n+1, x) = x2

[
n+1∑
i=0

(
i+ 1

n+1-i

)
xi

][
n−2∑
i=0

(
i+1

n− (2+i)

)
xi

]
. Thus the proof fol-

lows from Theorem 6.3.3.

Corollary 6.3.6. For the cycle graph C2n, where n ≥ 2, we have

Dt

(
Sk(C2n), x

)
=

[
n∑
i=1

n

i

(
i

n− i

)
xi

]2
(1 + x)n2

k

.

Proof. From Theorem 2.2.8 we have, Dt(C2n, x) =

[
n∑
i=1

n

i

(
i

n− i

)
xi

]2
. There-

fore, the proof follows from Theorem 6.3.3.

Corollary 6.3.7. If n is odd, then

Dt

(
Sk(Cn

)
, x) =

[
n∑
i=1

n

i

(
i

n− i

)
xi

]
(1 + x)n2

k−1

.

Proof. If n is odd, from Theorem 2.2.10, we have, Dt(Cn, x) =
n∑
i=1

n

i

(
i

n− i

)
xi.

Then the proof follows from Theorem 6.3.3.

Corollary 6.3.8. Using Theorem 6.3.3 we can infer the following results.

(i) Dt(S
k(Km,n), x) =

[
(1 + x)m+n − (1 + x)m − (1 + x)n + 1

]
[1 + x](m+n)2k−1

,

(ii) Dt(S
k(K1,n), x) = x [(1 + x)n − 1] [1 + x](1+n)2

k−1

,

(iii) Dt(S
k(Kn), x) = [(1 + x)n − 1− x] [1 + x]n2

k−1

.
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6.3. On iterated splitting graph

Proof. (i) We have, Dt(Km,n, x) = [(1 + x)m − 1] [(1 + x)n − 1] . Since, Sk(Km,n)

has (m+ n)2k vertices, the proof follows from Theorem 6.3.3.

(ii) The proof follows immediately by substituting m = 1 in (i).

(iii) The TD-Polynomial of Kn is [(1 + x)n − 1− x] . Since | V (Kn) |= n,

Sk(Kn) has n2k vertices. Thus the proof follows from Theorem 6.3.3.
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Chapter 7
Global Bipartite domination in Graphs

7.1 Introduction

In this chapter the concepts of the global bipartite domination number, γgb(G)

and global bipartite total domination number, γgbt(G) of a connected bipartite

graph G are introduced. We study some of the general properties of γgb and

γgbt. Moreover, we determine the global bipartite domination number and global

bipartite total domination number of certain classes of graphs. Connected span-

ning subgraphs of Km,n with global bipartite domination number and global

bipartite total domination number m+ n or m+ n− 1 are characterized.

1A part of this chapter has been published in Malaya Journal of Mathematik. Volume 4,
Number 3, 2016, Pages 438-442.
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7.2. Global bipartite domination

7.2 Global bipartite domination

Definition 7.2.1. Let G be a connected bipartite graph with bipartition (X, Y ),

with |X| = m and |Y | = n. The relative complement of G in Km,n, denoted by Ĝ

is the graph obtained by deleting all edges of G from Km,n (i.e.,Km,n−E(G)). A

global bipartite dominating set (GBDS) of G is a set S of vertices of G such that

it dominates G and its relative complement Ĝ. The global bipartite domination

number, γgb(G) is the minimum cardinality of a global bipartite dominating set

of G.

Example 7.2.2. For the graph given in figure 7.1, S = {1, 2, 3} is the minimum

global bipartite dominating set of G. So γgb(G) = 3.

1 2 3

4 5 6

1 2 3

4 5 6

Figure 7.1: The graphs G and Ĝ

It can be observed that global bipartite domination is defined for connected

bipartite graphs only.

Theorem 7.2.3. For any connected spanning subgraph G of Km,n, γ(G) ≤

γgb(G) ≤ m+ n.

Proof. A global bipartite dominating set of G is a dominating set of G and so
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7.2. Global bipartite domination

γ(G) ≤ γgb(G). The set of all vertices of G is clearly a GBDS of G so, γgb(G) ≤

m+ n. Therefore, γ(G) ≤ γgb(G) ≤ m+ n.

Remark 7.2.4. The bounds in Theorem 7.2.3 are sharp. For the complete bipar-

tite graph Km,n, γgb(Km,n) = m+n. For the path graph P4, γ(P4) = γgb(P4) = 2.

So Km,n has the largest possible GBD number. Also the bounds in Theorem 7.2.3

are strict. For the graph K2,3 − e, γ(K2,3 − e) = 2 and γgb(K2,3 − e) = 4.

Theorem 7.2.5. For a spanning subgraph G of Km,n, if G and Ĝ does not

contain any isolated vertices, then γgb(G) ≤ min{m,n}.

Proof. Let (X, Y ) be the bipartition of G with |X| = m ≤ |Y | = n. Since

G and Ĝ does not contain isolated vertices, X is a G.B.D.S. of G. Therefore,

γgb(G) ≤ m.

Theorem 7.2.6. For any two positive integers m and n, γgb(Km,n) = m+ n.

Proof. Let G be a complete bipartite graph with partitions X and Y . Then

uv ∈ E(G) for every u ∈ X and v ∈ Y . Let Ĝ denotes the relative complement of

G in Km,n. Then Ĝ contains m+n isolated vertices. Hence every global bipartite

dominating set of G must contain all vertices of Ĝ and so γgb(G) > m+ n. Now

V (G) is a global bipartite dominating set of G. Hence γgb(G) = m+ n.

Theorem 7.2.7. For a spanning subgraph G of Km,n, a vertex v is in every

global bipartite dominating set of G if and only if v is an isolated vertex in Ĝ.

Proof. If |V (G)| ≤ 3, the proof is trivial. So let |V (G)| > 3. If v is an isolated

vertex in Ĝ, then v is in every global bipartite dominating set of G. Conversely

if v is not an isolated vertex in Ĝ, then there exist at least two vertices u and w
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7.2. Global bipartite domination

such that u is adjacent to v in G and w is adjacent to v in Ĝ. So V (G) \ {v} is

a global bipartite dominating set of G. This completes the proof.

Theorem 7.2.8. Let G be a connected bipartite graph with partite sets X and

Y. Let S = V1∪V2 be a GBDS of G, where V1 ⊆ X and V2 ⊆ Y . Then if V1 = φ,

then V2 = Y and if V2 = φ, then V1 = X.

Proof. Let S = V1 ∪ V2 be a global bipartite dominating set of G such that

V1 ⊆ X and V2 ⊆ Y . If V1 = φ, then S ⊆ Y . Since G is bipartite, the vertices

in Y are not adjacent. Therefore, S is a GBDS of G only if S ⊇ Y. Therefore,

S = V2 = Y. Similarly, we can prove that if V2 = φ then V1 = X.

Theorem 7.2.9. Let (X, Y ) be the bipartition of a connected graph G. Then X

is a GBDS of G if and only if |N(y)| < |X|, ∀y ∈ Y.

Proof. Let X be a GBDS of G. If possible assume that there exists a vertex y ∈ Y

such that |N(y)| = |X|. Then y is an isolated vertex in Ĝ, contradicting the fact

that X is a GBDS of G. Conversely, since G is connected, X is dominating set

of G. So it is sufficient to show that X dominates Ĝ also. Let y ∈ Y, then N(y)

is a proper subset of X. So y is adjacent to at least one vertex of X in Ĝ. This

completes the proof.

Theorem 7.2.10. Let G be a connected sub graph of Km,n. Then γgb(G) =

m+ n− 1 if and only if G ∼= Km,n − e.

Proof. Let G ∼= Km,n − e. where e = uv ∈ E(Km,n). So uv /∈ E(G) and hence

uv ∈ E(Ĝ). Since Ĝ contains m+ n− 2 isolated vertices, every global bipartite

dominating set of G contains either u or v and all vertices of V (G) \ {u, v}.
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7.2. Global bipartite domination

Thus, γgb(G) ≥ m + n − 1. Since V (G) − {u} is a GBDS of G, it follows that

γgb(G) ≤ m + n − 1 Therefore, we obtain γgb(G) = m + n − 1. Conversely

assume that γgb(G) = m + n − 1. To prove G ∼= Km,n − e. We observe that

γgb(Km,n) = m+n and γgb(Km,n−e) = m+n−1. Let G be a proper subgraph of

Km,n− e containing m+n vertices. Then Ĝ contains at most m+n− 3 isolated

vertices. In that case Ĝ contains a path uvw. Then V (G)−{u,w} is a GBDS of

G. So γgb(G) ≤ m+ n− 2. This completes the proof.

Theorem 7.2.11. Let G be a graph with bipartition (X, Y ). If G has a γ-set

S = V1 ∪ V2, where V1 ⊆ X and V2 ⊆ Y then S is a γgb-set of G if and only if⋂
x∈V1

N(x) ⊆ V2 and
⋂
y∈V2

N(y) ⊆ V1.

Proof. Let
⋂
x∈V1

N(x) ⊆ V2 and
⋂
y∈V2

N(y) ⊆ V1. Since S is a γ- set of G, it suf-

fices to show that S dominates the relative compliment of G. Let u ∈ X. If

u ∈
⋂
y∈V2

N(y), then u ∈ V1. If u /∈
⋂
y∈V2

N(y) then u is adjacent to at least one

vertex of V2 in Ĝ. Similarly, we can prove that if v ∈ Y then v ∈ V2 or v is

adjacent to at least one vertex of V1 in Ĝ. Conversely, let S dominates Ĝ. Let x

be an arbitrary vertex in X. If x ∈
⋂
y∈V2

N(y), then in Ĝ, x is not adjacent to any

vertex of V2. Since S dominates Ĝ, we can deduce that x ∈ V1. If x /∈
⋂
y∈V2

N(y),

then x is adjacent to at least one element of V2 in Ĝ. Hence the proof.

Corollary 7.2.12. Let G be a connected bipartite graph with n vertices, n ≥ 4.

Then γgb(G ◦K1) = n, where G ◦K1 denotes the corona of the graphs G and K1.

Proof. If G ∼= K1,n, the proof is trivial. Otherwise, let (X, Y ) be the bipartition

of G ◦ K1. Let S = V1 ∪ V2, where V1 ⊆ X and V2 ⊆ Y, be the set of all
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7.2. Global bipartite domination

pendant vertices of G ◦K1. Clearly S is γ-set of G ◦K1. Also
⋂
x∈V1

N(x) = φ and⋂
y∈V2

N(y) = φ. Therefore, the proof follows immediately from Theorem 7.2.11.

Corollary 7.2.13. For n ≥ 10, γgb(Pn) = γ(Pn) = dn
3
e.

Proof. Let (1, 2, 3, . . . , n) be the path Pn. Then X = {x : x is even, x ≤ n}, Y =

{y : y is odd, y ≤ n} is the bipartition of Pn. Let S1 = {i : i ≡ 1(mod 3), i ≤ n}

and S2 = {i : i + 1 ≡ 0(mod 3), i ≤ n}. Then either S1 or S2 is a γ-set of Pn.

Also for i = 1, 2,
⋂

x∈Si∩X

N(x) = φ and
⋂

y∈Si∩Y

N(y) = φ. Thus the proof follows

from Theorem 7.2.11.

The global bipartite domination number, γgb(Pn) for 1 < n < 10 is given in

Table 7.1.

Table 7.1: γgb(Pn) for n < 10

Pn P2 P3 P4 P5 P6 P7 P8 P9

γgb(Pn) 2 3 3 3 3 3 4 4

Corollary 7.2.14. For an even integer n ≥ 10, γgb(Cn) = γ(Cn) = dn
3
e.

Proof. The proof is exactly similar to Corollary 7.2.13.

Theorem 7.2.15. For any two positive integers a and b with a < b, there exists

a graph G such that γ(G) = a and γgb(G) = b.

Proof. Consider the graph Kb−a,a, with partite sets W = {w1, w2, . . . , wb−a}

and U = {u1, u2, . . . , ua}. Let G be the graph obtained from Kb−a,a by adding
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7.2. Global bipartite domination

new vertices v1, v2, . . . , va and join vi with ui for i = 1, 2, . . . , a. Let S be a

dominating set of G. Since for each i, vi is adjacent to ui only, |S| ≥ a. Now

U is a dominating set of G. So |S| ≤ a. Hence γ(G) = a. In Ĝ, the vertices

w1, w2, . . . , wb−a are isolated. So W is a subset of every γgb-set of G. Therefore,

the set {u1, u2, . . . , ua, w1, w2, . . . , wb−a} is a γgb-set of G. Hence γgb(G) = b. This

completes the proof.

A graph G with γ(G) = 2 and γgb(G) = 6 is given in figure 7.2

Figure 7.2: Graph G with γ = 2 and γgb = 6

Lemma 7.2.16. If G is an r-regular connected bipartite graph with bipartition

(X, Y ) then |X| = |Y |.

Proof. In an r-regular connected bipartite graph G with bipartition (X, Y ), each

edge contributes exactly one to the degree sums r|X| and r|Y |. Therefore, r|X| =

r|Y | = |E| and so |X| = |Y |. This completes the proof.

Theorem 7.2.17. If G is an (n − 1)-regular bipartite graph with 2n vertices,

then γgb(G) = n.

Proof. Let (X, Y ) be the bipartition of G. Since G has 2n vertices, from Lemma

7.2.16, we have |X| = |Y | = n. Since G is (n− 1) regular, Ĝ has n components
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7.2. Global bipartite domination

and all of them are paths with two vertices. So γ(Ĝ) = n. Then by Theorem

7.2.11, we can find a γ-set of Ĝ such that it dominates G also. Therefore,

γgb(G) = n.

Theorem 7.2.18. Let G be a healthy spider with 2n+ 1 vertices, then γgb(G) =

n+ 1.

Proof. Let S be a γ-set of G, then |S| = n and u /∈ S (see figure 7.3). So S

dominates all vertices except u in Ĝ. So S ∪{u} is a γgb-set of G. This completes

the proof.

u

Figure 7.3: Healthy Spider

u

1 2 3 k − 1 k

Figure 7.4: Wounded Spider
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Theorem 7.2.19. If G is a wounded spider with n+k+1 vertices, then γgb(G) =

k + 1.

Proof. Observe that γ(G) = k+1. Also, the set S = {1, 2, 3, . . . , k, u} is a γgb-set

of G (see figure 7.4).

Thus the proof follows.

Theorem 7.2.20. γgb(Bn) = 4, where Bn is the book graph on 2n+ 2 vertices.

Proof. Let the vertices of Bn be labeled as shown in figure 7.4. Then X =

{v, u1, u2, . . . , un}, Y = {u, v1, v2, . . . , vn} is the bipartition of Bn. Clearly the set

{u, v} is the γ-set of Bn. Also {u, v, u1, v1} is a γ-set of B̂n. Therefore, γgb(Bn) =

4.

u v

u1

u2

u3

un

v1

v2

v3

vn

Figure 7.5: Book Graph

Theorem 7.2.21. For n ≥ 3, γgb(S(Kn)) = n, where S(Kn) is the subdivision

of the complete graph Kn.
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7.3. Global bipartite total domination

Proof. Let X be the set of all old vertices and Y be the set of all new vertices

of S(Kn). Then (X, Y ) is a bipartition of S(Kn). In S(Kn), the degree of each

vertex in X is n−1 and the degree of each vertex in Y is 2. We construct a γ-set

of S(Kn) as follows. Let S ⊆ X such that |S| = n− 2. Then S dominates all but

one vertex u in Y. Also N(u) = {x, y} and X −S = {x, y}. So S ∪ {u} is a γ-set

of S(Kn). Note that any γ-set of S(Kn) contains exactly n− 2 vertices from X

and one vertex from Y. Since S ∪{u} does not dominate x and y in Ĝ, this set is

not a γgb-set. So a γgb-set of S(Kn) contains at least n vertices. Clearly the set

X is a global bipartite dominating set of S(Kn). Therefore, γgb(S(Kn)) = n.

Remark 7.2.22. γgb(S(K2)) = 3.

Proof. Since S(K2) = P3, the proof follows.

7.3 Global bipartite total domination

In this section, we introduce the concept of global bipartite total domination

in graphs. We study some of its general properties and determine the global

bipartite total domination number of certain classes of graphs.

Definition 7.3.1. Let G be a connected bipartite graph with bipartition (X, Y ),

with |X| = m and |Y | = n. Let Ĝ denotes the relative complement of G in

Km,n. Let S be a total dominating set of G. If S dominates Ĝ, then S is called

a global bipartite total dominating set (GBTDS) of G. The global bipartite total

domination number, γgbt(G) is the minimum cardinality of a global bipartite total

dominating set of G.
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Example 7.3.2. For the graph G given in figure 7.6, S1 = {1, 3, 4, 5}, S2 =

{1, 3, 4, 6} and S3 = {2, 3, 4, 6} are the minimum global bipartite total dominating

sets of G, so that γgbt(G) = 4.

1 2 3

4 5 6

1 2 3

4 5 6

Figure 7.6: A graph G and Ĝ

Theorem 7.3.3. For a connected spanning subgraph G of Km,n,

γt(G) ≤ γgbt(G) ≤ m+ n.

Proof. Since every γgbt-set is a total dominating set we have, γgbt(G) ≥ γt(G).

Also V (G) is a GBTDS of G. Thus we have the result.

Remark 7.3.4. The bounds of Theorem 7.3.3 are sharp. For the graph K2,

γt(K2) = γgbt(K2) = 2 and for Km,n, γgbt(Km,n) = m + n. Also the bounds of

Theorem 7.3.3 are strict. For the graph G given in figure 7.6, γgbt(G) = 4.

Theorem 7.3.5. Let G be a connected bipartite graph with partite sets X, Y. Let

S = V1 ∪ V2, where V1 ⊆ X and V2 ⊆ Y, be a total dominating set of G. Then S

is a GBTDS of G if and only if
⋂
x∈V1

N(x) ⊆ V2 and
⋂
y∈V2

N(y) ⊆ V1.

Proof. Since every total dominating set is a dominating set, the proof follows

from Theorem 7.2.11.
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Theorem 7.3.6. For any two positive integers a, b with a < b, there exists a

graph G with γt(G) = a and γgbt(G) = b.

Proof. Consider the complete bipartite graph Ka−1, b−a+1, with partite sets U =

{u1, u2, . . . , ua−1} and W = {w1, w2, . . . , wb−a+1}. Let G be the graph obtained

from Ka−1, b−a+1 by adding new vertices v1, v2, . . . , va−1 and joining vi with ui for

i = 1, 2, . . . , a− 1. Then {w1, u1, u2, . . . , ua−1} is a γt set of G. Since the vertices

w1, w2, . . . , wb−a+1 are isolated in Ĝ, the set W is a subset of every GBTDS of

G. Therefore, {w1, w2, . . . , wb−a+1, u1, u2, . . . , ua−1} is a γgbt-set of G.

For the graph G given in figure 7.7, γt(G) = 4 and γgbt(G) = 7.

w1 w2 w3 w4

u1 u2 u3

v1 v2 v3

Figure 7.7: Graph G with γt = 4 and γgbt = 7

Theorem 7.3.7. Let G be a connected spanning subgraph of Km,n. Then γgbt(G) =

m+ n− 1 if and only if G is isomorphic to Km,n − e.

Proof. Let G be isomorphic to Km,n − e. Then Ĝ consists of m+ n− 2 isolated

vertices and an edge e = uv. So if S is a GBTDS of G, then S contains all isolated

vertices of Ĝ and one of u or v. Therefore, γgbt(G) ≥ m+n−1. Since V (G)−{v}
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7.3. Global bipartite total domination

is a GBTDS of G, we have γgbt(G) ≤ m+n− 1. Therefore, γgbt(G) = m+n− 1.

Conversely, let γgbt(G) = m + n − 1. We proved that γgbt(Km,n) = m + n and

γgbt(Km,n − e) = m + n− 1. If G is a proper subgraph of Km,n − e, then Ĝ has

at most m + n− 3 isolated vertices. In that case Ĝ has a path uvw. Therefore,

γgbt(G) ≤ m+ n− 2. This completes the proof.
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Chapter 8
Global Bipartite Domination Polynomial

8.1 Introduction

In this chapter, we introduce the concept of the global bipartite domination poly-

nomial of a connected bipartite graph and study some of its general properties.

We establish some relationships between domination polynomial and global bi-

partite domination polynomial of certain classes of graphs.

8.2 Main results

Definition 8.2.1. Let Dgb(G, i) be the family of global bipartite dominating sets

of a simple connected bipartite graph G with cardinality i and let dgb(G, i) =

|Dgb(G, i)|. Then the global bipartite domination polynomial Dgb(G, x) of G is

1This chapter has been published in Palestine Journal of Mathematics, Volume 7, Number
1, 2018, Pages 227-233.
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8.2. Main results

defined as Dgb(G, x) =
n∑

i=γgb(G)

dgb(G, i)x
i.

Theorem 8.2.2. For a connected bipartite graph G, if Ĝ is also connected, then

Dgb(G, x) = Dgb(Ĝ, x).

Proof. Let S be a global bipartite dominating set of G. Since Ĝ is connected, S

is a global bipartite dominating set of Ĝ also. Similarly, every GBDS of Ĝ is a

GBDS of G. This completes the proof.

Theorem 8.2.3. For any two positive integers m and n,

(i) Dgb(Km,n, x) = xm+n,

(ii) If Km,n − e is connected, then Dgb(Km,n − e, x) = xm+n−1(x+ 2).

Proof. (i) Obviously γgb(Km,n) = m+ n. Therefore, Dgb(Km,n, x) = xm+n.

(ii) If e = uv, then V (Km,n) \ {u} and V (Km,n) \ {v} are the only γgb-sets of

Km,n−e. Therefore, γgb(Km,n−e) = m+n−1 and dgb(Km,n−e,m+n−1) =

2.

Since dgb(Km,n − e,m+ n) = 1, the proof follows.

Next, we compute the global bipartite domination polynomial of bi-star graph

Bm,n, obtained from the graph K2 with vertices u and v by attaching m pendant

edges to u and n pendant edges to v.

Theorem 8.2.4. The global bipartite domination polynomial of bi-star graph is

Dgb(Bm,n, x) = x2 [xm + xn + [(1 + x)m − 1] [(1 + x)n − 1]] .
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Proof. Clearly, γgb(Bm,n) = 4. Let U and V be the set of all pendant vertices

at u and v respectively. Since the vertices u and v are isolated in B̂m,n, every

GBDS of Bm,n contains u and v. Let S be a subset of vertices of Bm,n such that

{u, v} ⊆ S. If S∩U 6= φ and S∩V 6= φ, then S is a GBDS of Bm,n. Also the sets

U ∪ {u, v} and V ∪ {u, v} are G.B.D.S of Bm,n. This completes the proof.

The next theorem follows immediately from the definition of global bipartite

domination polynomial.

Theorem 8.2.5. For any connected spanning subgraph G of Km,n,

(i) dgb(G,m+ n) = 1,

(ii) dgb(G, i) = 0 if and only if i < γgb(G) or i > m+ n,

(iii) Dgb(G, x) has no constant term,

(iv) Dgb(G, x) is a strictly increasing function in [0,∞),

(v) If H is an induced subgraph of G, then deg(Dgb(G, x)) ≥ deg(Dgb(H, x)),

(vi) Zero is a root of Dgb(G, x) with multiplicity γgb(G).

Theorem 8.2.6. If G is an (n − 1)-regular connected bipartite graph with 2n

vertices, then

Dgb(G, x) = [x (x+ 2)]n − 2nxn.

Proof. SinceG is (n−1) regular, each component of Ĝ is P2. Therefore, a G.B.D.S

of G contains at least one vertex from each component of Ĝ. So γgb(G) = n and

for 1 ≤ i ≤ n, dgb(G, n + i) =
(
n
i

)
2n−i. It follows from Theorem 7.2.11 that
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dgb(G, n) = 2n − 2n. Then,

Dgb(G, x) =

(
n

0

)
2nxn +

(
n

1

)
2n−1xn+1 + . . .+

(
n

n

)
2n−nxn+n − 2nxn

= xn (x+ 2)n − 2nxn.

This completes the proof.

8.3 Global bipartite domination polynomials of

paths

In this section, we shall study the relation between domination polynomials and

global bipartite domination polynomials of paths.

We need the following:

Lemma 8.3.1. For a path Pn with bipartition (X, Y ), let S = V1 ∪ V2 where

V1 ⊆ X and V2 ⊆ Y be a dominating set. If |Vi| > 2, for i = 1, 2, then S is a

G.B.D.S. of Pn.

Proof. In Pn if |Vi| > 2, then
⋂
v∈Vi

N(v) = φ. Then by Theorem 7.2.11, S is a

G.B.D.S of Pn.

Let G be a connected bipartite graph with partite sets X and Y. Let S =

V1 ∪ V2 be a GBDS of G such that V1 ⊆ X and V2 ⊆ Y. Then by Theorem 7.2.8

we have, if S ∩X = φ, then S = Y and if S ∩Y = φ, then S = X. So for n ≥ 12,

to find d(Pn, i)−dgb(Pn, i) it suffices to consider the dominating sets S = V1∪V2

of Pn with 1 ≤ |V1| ≤ 2 or 1 ≤ |V2| ≤ 2. To prove theorems 8.3.2 to 8.3.5, the
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partite sets of P2n is taken as X = {1, 3, 5, . . . , 2n− 1} and Y = {2, 4, 6, . . . , 2n}

and S = V1 ∪ V2, where V1 ⊆ X and V2 ⊆ Y is taken as a dominating set. Using

the following theorems we can find the number of dominating sets which are not

global bipartite dominating sets.

Theorem 8.3.2. For |V1| = 1, we have

(i) d(P2n, n)− dgb(P2n, n) = 2n− 2,

(ii) d(P2n, n− 1)− dgb(P2n, n− 1) = n− 2.

Proof. Since a vertex in X is adjacent to at most two vertices in Y, n − 2 ≤

|V2| ≤ n. If |V2| = n, then S = V1 ∪ V2 is a G.B.D.S and the proof is complete.

So |V2| = n− 2 or n− 1. We consider the following cases:

Case 1: V1 = {1}.

Here V2 = {4, 6, 8, . . . , 2n}. Since N(1) = {2} * V2, S is not a G.B.D.S.

Case 2: V1 = {3}.

Here also |V2| = n − 1 and V2 = {2, 6, 8, . . . , 2n}. Since N(3) = {2, 4} *

V2, S is not a G.B.D.S.

Case 3: V1 = {i}, i 6= 1, 3.

Then for each i, V1∪(Y \{i−1, i+1}), V1∪(Y \{i−1}) and V1∪(Y \{i+1})

are dominating sets of P2n. Since N(i) = {i− 1, i+ 1} * V2, these are not

G.B.D.S of P2n.

In cases 1 and 2 we have two dominating sets of order n. In case 3 we have

2(n − 2) dominating sets of order n and n − 2 dominating sets of order n − 1.
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Therefore, the result follows.

Theorem 8.3.3. For |V2| = 1, we have

(i) d(P2n, n)− dgb(P2n, n) = 2n− 2,

(ii) d(P2n, n− 1)− dgb(P2n, n− 1) = n− 2.

Proof. The proof is exactly similar to that of Theorem 8.3.2.

Theorem 8.3.4. For |V1| = 2, we have

(i) d(P2n, n− 1)− dgb(P2n, n− 1) = n− 3,

(ii) d(P2n, n)− dgb(P2n, n) = 2n− 4,

(iii) d(P2n, n+ 1)− dgb(P2n, n+ 1) = n− 1.

Proof. Since |V1| = 2, we have n− 3 ≤ |V2| ≤ n. If |V2| = n, then S = V1 ∪ V2 is

a G.B.D.S. So it suffices to consider the cases |V2| = n− 3, n− 2 and n− 1.

Case 1: V1 = {1, 3}.

Subcase 1: |V2| = n− 2.

Then V2 = {6, 8, . . . , 2n}. Since N(1) ∪ N(3) = {2} * V2, S is not a

G.B.D.S of P2n.

Subcase 2: |V2| = n− 1.

Then V2 = {4, 6, 8, . . . , 2n}. Since N(1) ∪ N(3) = {2} * V2, the

dominating set S is not a G.B.D.S.

Case 2: V1 = {3, 5}.

As in case 1 we get two dominating sets which are not G.B.D.S of P2n.
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Case 3: V1 = {i, i+ 2}, i 6= 1, 3.

Subcase 1: |V2| = n− 3.

Then V2 = Y \ {i− 1, i+ 1, i+ 3}.

Subcase 2: |V2| = n− 2.

In this case we have the possibilities, V2 = Y \ {i − 1, i + 1} and

V2 = Y \ {i+ 1, i+ 3}.

Subcase 3: |V2| = n− 1.

Then V2 = Y − {i+ 1}.

In sub case 1, 2 and 3, S = V1 ∪ V2 is a dominating set but since N(i) ∩

N(i+ 1) = {i+ 1} * V2, S is not a G.B.D.S of P2n.

In cases 1 and 2 we have two dominating sets of order n and n+ 1. In case 3 we

have n − 3 dominating sets of order n − 1, 2(n − 3) dominating sets of order n

and n− 3 dominating sets of order n+ 1. Hence the result follows.

Theorem 8.3.5. For |V2| = 2, we have

(i) d(P2n, n− 1)− dgb(P2n, n− 1) = n− 3,

(ii) d(P2n, n)− dgb(P2n, n) = 2n− 4,

(iii) d(P2n, n+ 1)− dgb(P2n, n+ 1) = n− 1.

Proof. The proof is exactly similar to that of Theorem 8.3.4.

Theorem 8.3.6. For n ≥ 6,

D(P2n, x)−Dgb(P2n, x) = (4n− 10)xn−1 + (8n− 12)xn + (2n− 2)xn+1.
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8.3. Global bipartite domination polynomials of paths

Proof. It follows from Theorems 8.3.2, 8.3.3, 8.3.4 and 8.3.5.

Next, we find the relationship between domination polynomials and global

bipartite domination polynomials of P2n+1. To prove theorems 8.3.7 to 8.3.10,

we take X = {1, 3, 5, . . . , 2n + 1} and Y = {2, 4, 6, . . . , 2n} as the bipartition of

P2n+1 and S = V1 ∪ V2, where V1 ⊆ X and V2 ⊆ Y as a dominating set of P2n+1.

Theorem 8.3.7. For |V1| = 1, we have

(i) d(P2n+1, n− 1)− dgb(P2n+1, n− 1) = n− 3,

(ii) d(P2n+1, n)− dgb(P2n+1, n) = 2n− 2.

Proof. Case 1: V1 = {1}. Let V2 = Y \ {2}. Since N(1) = {2}, S = V1 ∪ V2 is

not a G.B.D.S.

The case V1 = {2n+ 1} is similar.

Case 2: V1 = {3}. Let V2 = Y \ {4}. Since N(3) = {2, 4}, S = V1 ∪ V2 is not a

G.B.D.S.

The case V1 = {2n− 1} is similar.

Case 3: V1 = {i}, i /∈ {1, 3, 2n−1, 2n+1}. In this case we have the possibilities,

V2 = Y \ {i − 1, i + 1} or V2 = Y \ {i − 1} and V2 = Y \ {i + 1}. Since

N(i) = {i− 1, i+ 1}, S = V1 ∪ V2 is not a G.B.D.S.

In cases 1 and 2 we have four dominating sets of order n and in case 3 there

are n − 3 dominating sets of order n − 1 and 2(n − 3) dominating sets of order

n. This completes the proof.
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Theorem 8.3.8. For |V2| = 1, we have

(i) d(P2n+1, n)− dgb(P2n+1, n) = n,

(ii) d(P2n+1, n+ 1)− dgb(P2n+1, n+ 1) = 2n.

Proof. Let V2 = {i}, i ∈ Y ⇒ N(i) = {i− 1, i+ 1}. Then V1 can be X \ {i− 1}

or X \ {i + 1} or X \ {i − 1, i + 1}. Since i can be selected in n ways , we

have 2n dominating sets of order n + 1 and n dominating sets of order n. Since

N(i) = {i − 1, i + 1}, S = V1 ∪ V2 is not a G.B.D.S. of P2n+1. Hence the result

follows.

Theorem 8.3.9. For |V1| = 2, we have

(i) d(P2n+1, n− 1)− dgb(P2n+1, n− 1) = n− 4,

(ii) d(P2n+1, n)− dgb(P2n+1, n) = 2n− 4,

(iii) d(P2n+1, n+ 1)− dgb(P2n+1, n+ 1) = n.

Proof. Case 1: V1 = {1, 3}. Then V2 can be Y \{2} or Y \{2, 3}. Since N(1)∩

N(3) = {2}, S = V1 ∪ V2, is not a G.B.D.S.

The case V1 = {2n− 1, 2n+ 1} is similar.

Case 2: V1 = {3, 5}. Then V2 can be Y \{4} or Y \{4, 5}. Since N(3)∩N(5) =

{4}, S = V1 ∪ V2, is not a G.B.D.S.

The case V1 = {2n− 3, 2n− 1} is similar.

Case 3: V1 = {i, i+ 2}, i /∈ {1, 3, 2n− 3, 2n− 1}. Then V2 can be Y \ {i− 1, i+

1, i+ 3} or Y \ {i− 1, i+ 1} or Y \ {i+ 1, i+ 3}. Since N(i) ∩N(i+ 2) =
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{i+ 1}, S = V1 ∪ V2, is not a G.B.D.S.

In cases 1 and 2 we have four dominating sets of order n and n+ 1. In case 3

there are n−4 dominating sets of order n−1 and n+ 1 and 2(n−4) dominating

sets of order n. Thus the result follows.

Theorem 8.3.10. For |V2| = 2, we have

(i) d(P2n+1, n)− dgb(P2n+1, n) = n− 1,

(ii) d(P2n+1, n+ 1)− dgb(P2n+1, n+ 1) = 2n− 2,

(iii) d(P2n+1, n+ 2)− dgb(P2n+1, n+ 2) = n− 1.

Proof. Let V2 = {i, i + 2}, i ∈ Y ⇒ N(i) ∩N(i + 2) = {i + 1}. Then V1 can be

X \ {i− 1, i+ 1, i+ 3} or X \ {i− 1, i+ 1} or X \ {i+ 1, i+ 3}. Since V2 can be

selected in n − 1 ways , we have n − 1 dominating sets of order n and 2(n − 1)

dominating sets of ordern + 1 and n − 1 dominating sets of order n + 2. Since

N(i) ∩N(i + 2) = {i + 1}, S = V1 ∪ V2 is not a G.B.D.S. of P2n+1. This proves

the result.

Theorem 8.3.11. For n ≥ 6,

D(P2n+1, x)−Dgb(P2n+1, x) = (2n−7)xn−1+(6n−7)xn+(5n−2)xn+1+(n−1)xn+2.

Proof. It follows from Theorems 8.3.7, 8.3.8, 8.3.9 and 8.3.10.
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8.4 Global bipartite domination polynomials of

cycles

In this section, we find the relation between the domination polynomials and the

global bipartite domination polynomials of cycles. To prove theorems 8.4.1 to

8.4.5, let X = {1, 3, 5, . . . , 2n − 1} and Y = {2, 4, 6, . . . , 2n} be the bipartition

of C2n and S = V1 ∪ V2 where V1 ⊆ X and V2 ⊆ Y be a dominating set of C2n.

Theorem 8.4.1. For |V1| = 1, we have

(i) d(C2n, n− 1)− dgb(C2n+1, n− 1) = n,

(ii) d(C2n, n)− dgb(C2n, n) = 2n.

Proof. Let V1 = {i}, i ∈ X. Then N(i) = {i−1, i+1} (if i = 1, then we take i−

1 = 2n.) Then V2 can be Y \ {i − 1, i + 1} or Y \ {i − 1} or Y \ {i + 1}. Since

i can be selected in n ways, we have n dominating sets of order n − 1 and 2n

dominating sets of order n. Since N(i) = {i − 1, i + 1}, S = V1 ∪ V2 is not a

G.B.D.S. of C2n. Hence the result follows.

Theorem 8.4.2. For |V2| = 1, we have

(i) d(C2n, n− 1)− dgb(C2n+1, n− 1) = n,

(ii) d(C2n, n)− dgb(C2n, n) = 2n.

Proof. The proof is exactly similar to Theorem 8.4.1.
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Theorem 8.4.3. For |V1| = 2, we have

(i) d(C2n, n− 1)− dgb(C2n, n− 1) = n− 1,

(ii) d(C2n, n)− dgb(C2n, n) = 2(n− 1),

(iii) d(C2n, n+ 1)− dgb(C2n, n+ 1) = n− 1.

Proof. Let V1 = {i, i + 2}, i ∈ X. Then N(i) ∩ N(i + 2) = {i + 1}( if i =

2n−1, then we take i+2 = 1 and i+3 = 2.) Then V2 can be Y \{i−1, i+1, i+3}

or Y −{i−1, i+ 1} or Y \{i+ 1, i+ 3} or Y \{i+ 1}. Since V1 can be selected in

n− 1 ways , we have (n− 1) dominating sets of order n− 1 ,2(n− 1) dominating

sets of ordern and n− 1 dominating sets of order n+ 1. Since N(i)∩N(i+ 2) =

{i+ 1}, S = V1 ∪ V2 is not a G.B.D.S. of C2n. Hence the result follows.

Theorem 8.4.4. For |V2| = 2, we have

(i) d(C2n, n− 1)− dgb(C2n, n− 1) = n− 1,

(ii) d(C2n, n)− dgb(C2n, n) = 2(n− 1),

(iii) d(C2n, n+ 1)− dgb(C2n, n+ 1) = n− 1.

Proof. The proof is exactly similar to Theorem 8.4.3.

Theorem 8.4.5. For n ≥ 6,

D(C2n, x)−Dgb(C2n, x) = (4n− 2)xn−1 + (8n− 4)xn + (2n− 2)xn+1.

Proof. It follows from Theorems 8.4.1, 8.4.2, 8.4.3 and 8.4.4.
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Further scope for research

1. Characterize non isomorphic graphs having same total domination polyno-

mial.

2. Determine the total domination polynomial of an arbitrary Cayley graph.

3. Determine the total domination polynomial of Cartesian product of arbi-

trary graphs.

4. Determine the polynomials Dtv(G, x) and Dv
t (G, x) of arbitrary graphs.

5. Determine the total domination polynomial of ring sum of arbitrary graphs.

6. Characterize graphs G for which γ(G) = γgb(G).

7. Characterize graphs G for which γt(G) = γgbt(G).
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sian product graphs. Discrete mathematics , 244, 223–230.

[30] Kotek, T., Preen, J., and Tittmann, P. (2013) Domination polynomials of

graph products. Reprint .

[31] Kumar, S. S. (2012) Studies on total dominating sets and total domination

polynomials with special reference to Path and Cycle- Related graphs . PhD

dissertation, Manonmaniam Sundaranar University.

[32] Latheeshkumar, A. R. and Anil Kumar, V. (2016) A note on global bipartite

domination in graphs. Malaya journal of mathematik , 4, 438–442.

[33] Latheeshkumar, A. R. and Anil Kumar, V. (2016) Total domination poly-

nomials of some graphs. Journal of pure and applied mathematics:advances

and applications , 16, 97–108.

[34] Latheeshkumar, A. R. and Anil Kumar, V. (2017) On total domination

polynomials. Far east journal of mathematical sciences (FJMS), 102, 2277–

2289.

[35] Latheeshkumar, A. R. and Anil Kumar, V. (2017) Td-polynomials of paths

and cycles - a new approach. Global journal of pure and applied mathematics ,

13, 7315–7319.

122



Bibliography

[36] Latheeshkumar, A. R. and Anil Kumar, V. (2017) Total domination polyno-

mials of some splitting graphs. Advances and applications in discrete math-

ematics , 18, 331–343.

[37] Latheeshkumar, A. R. and Anil Kumar, V. (2018) On global bipartite dom-

ination polynomials. Palestine journal of mathematics , 7, 227–233.

[38] Lee, S., Saba, F., Salehi, E., and Sun, H. (2002) On the V4-magic graphs.

Congressus numerantium, pp. 59–68.

[39] Makowsky, J. A. (2008) From a zoo to a zoology: towards a general theory

of graph polynomials. Theory of computing systems , 43, 542–562.

[40] Parthasarathy, K. (1994) Basic graph theory . Tata McGraw-Hill.

[41] Pemmaraju, S. and Skiena, S. (2003) Computational discrete mathematics:

Combinatorics and graph theory with mathematica. Cambridge university

press.

[42] Ray, S. S. (2012) Graph Theory with Algorithms and its Applications: In

Applied Science and Technology . Springer Science & Business Media.

[43] Sampathkumar, E. and Walikar, H. (1980) On splitting graph of a graph,

J. Karnatak univ. sci , 25, 13–16.

[44] Shee, S. C. and Ho, Y. S. (1993) The cordiality of one-point union of n

copies of a graph. Discrete mathematics , 117, 225–243.

[45] Shyama, M. and Kumar, V. A. (2014) Total domination polynomials of

complete partite graphs. Advances and applications in discrete mathematics ,

13, 23–28.

123



Bibliography

[46] Skiena, S. (1990) Dijkstras algorithm. Implementing discrete mathematics:

combinatorics and graph theory with mathematica, Reading, MA: Addison-

Wesley , pp. 225–227.

[47] Vijayan, A. and Kumar, S. S. (2012) On total domination sets and polyno-

mials of cycles. International journal of mathematical archive, 3, 1379–1385.

[48] Voloshin, V. I. (2009) Introduction to graph and hypergraph theory . Nova

Science Publ.

[49] Wahlström, M. (2004) Exact algorithms for finding minimum transversals

in rank-3 hypergraphs. Journal of algorithms , 51, 107–121.

[50] West, D. B. (2001) Introduction to graph theory , vol. 2. Prentice hall Upper

Saddle River.

[51] Wilson, R. J. (1970) An introduction to graph theory . Pearson Education

India.

124



Bibliography

APPENDIX

List of Publications

1. Latheeshkumar A.R., Anil Kumar. V, A Note on Global Bipartite Domi-

nation in Graphs, Malaya Journal of Mathematik, Vol. 4, No. 3, (2016),

438− 442.

2. Latheeshkumar A.R., Anil Kumar. V, Total Domination Polynomials of

Some Graphs, Journal of Pure and Applied Mathematics: Advances and

Applications, Vol. 16, No. 2, (2016), 97− 108.

3. Latheeshkumar A.R., Anil Kumar. V, Total Domination Polynomials of

Some splitting Graphs, Advances and applications in Discrete Mathematics.

Pushpa Publishing House, Vol. 18, No. 3, (2017), 331− 343.

4. Latheeshkumar A.R., Anil Kumar. V, TD-Polynomials of Paths and Cy-

cles - A New Approach, Global Journal of Pure and Applied Mathematics

Vol.13, No. 10, (2017), 7315− 7319.

5. Latheeshkumar A.R., Anil Kumar. V, On Global Bipartite Domination

Polynomials, Palestine Journal of Mathematics, Vol. 7, No. 1, 2018, 227−

233.

6. Latheeshkumar A.R., Anil Kumar. V, On Total Domination Polynomials,

Far East Journal of Mathematics Vol.102, No. 10, (2017), 2277− 2289.

125



Index

adjacent

edges, 10

vertices of graph, 10

vertices of hypergraph, 14

bipartite graph, 11

Cartesian product, 13

Cayley graph, 63

closed neighborhood, 14

complement, 11

complete

bipartite graph, 11

graph, 11

component

of a graph, 13

of a hypergraph, 14

connected graph, 12

corona, 13

cubic graph, 11

cycle, 12

degree, 11

maximum ∆(G), 11

minimum δ(G), 11

disconnected graph, 12

distance, 12

dominating set, 15

domination number, 15

domination polynomial, 16

end vertex, 11

finite graph, 10

global bipartite dominating set, 94

global bipartite domination number, 94

global bipartite domination polynomial,

106

global bipartite total dominating set,

102

global bipartite total domination, 102

126



Index

global bipartite total domination num-

ber, 102

graph, 10

hyperedges, 13

hypergraph, 13

incident

hyperedges, 14

induced subgraph, 12

isolated vertex, 11

isomorphism, 11

iterated splitting graph, 89

join of two graphs, 13

length of a walk, 12

loop, 10

middle graph, 70

minimal dominating set, 15

minimum vertex cover, 17

multiple edges, 10

neighbor of a vertex, 10

one point union, 19

open neighborhood, 3

open neighborhood hypergraph, 3

order of a graph, 10

parallel edges, 10

path, 12

pendant edge, 11

pendant vertex, 11

regular graph, 11

relative complement, 94

simple graph, 10

size of a graph, 10

spanning subgraph, 12

splitting graph, 86

of order k, 87

subgraph, 12

subgroup complementary Cayley graph,

63

support vertex, 11

total dominating set, 3

total domination number, 3

total domination polynomial, 3

total graph, 70

trail, 12

trivial graph, 10

union of two graphs, 13

127



Index

vertex cover, 17

vertex cover polynomial, 17

vertex covering set, 17

walk, 11

128


	List of Symbols
	Introduction
	Preliminaries
	Basic definitions and terminologies
	Operations on graphs
	Hypergraphs
	Open neighbourhood hypergraph
	Domination in graphs
	Graph polynomials

	TD-Polynomials- A New Approach
	Introduction
	TD-Polynomials of paths and cycles
	TD-Polynomials of some graph classes

	Total Domination Polynomials of Ring Sum of some Graphs
	Introduction
	On the polynomial  Dtv(G,x) 
	Ring Sum of graphs

	TD-Polynomials of some graphs
	Introduction
	Main results
	TD-Polynomials of total and middle graphs of some graphs

	Total Domination Polynomials of Cartesian Products of some graphs
	Introduction
	On Cartesian products
	TD-Polynomials of Cayley graphs
	TD-Polynomials of regular graphs
	TD-Polynomials of friendship graphs
	Total domination polynomials of  C4G 

	TD-Polynomials of Splitting Graphs 
	Introduction
	On splitting graphs
	On iterated splitting graph

	Global Bipartite domination in Graphs
	Introduction
	Global bipartite domination
	Global bipartite total domination

	Global Bipartite Domination Polynomial
	Introduction
	Main results
	Global bipartite domination polynomials of paths
	Global bipartite domination polynomials of cycles

	Further scope for research
	Bibliography
	List of Publications
	Index

