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A brain tumour is an unmanageable growth of brain cells causing the formation

of masses of tissues inside the rigid skull. Visually analysing the tumour affected

brain MRI will not provide much information regarding the disease. Analysis using

image processing techniques will aid the diagnosis process. Segmentation of tumour

and its related sub-regions from the MRI is a challenging task. Literature survey

reveals that classification based techniques are more suitable than contour based

techniques for this segmentation, as the size and shape of tumour are unpredictable.

Hierarchical Agglomerative Clustering (HAC) based classifier is developed in this

work to automatically segment the tumour and its related sub-regions from MRI.

This classifier uses a set of features which include a newly developed Multi Spectral

Pattern based Texture Features (MSPTF) and conventional features. MSPTF is

derived from a fusion of four different MRI modalities. The conventional features

considered are GLCM, GLRLM, GLDM, LTP, LBP, Laws texture energy, FPS and
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SMRT. From this exhaustive feature set, optimized features are identified. The de-

veloped HAC based classifier incorporates optimization along with segmentation. A

refinement technique, which improves the result of segmentation from HAC classifier

is also developed. This is based on the knowledge of the pattern of occurrences of

the tumour and its subregions. The data for the study is taken from BraTS 2015,

BraTS 2016 data sets, Govt. Medical College, Thrissur and Lakeshore Hospital,

Cochin. The efficiency of the developed method was compared with the state of the

art methods and showed promising results.
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Chapter 1

Introduction

1.1 Human Brain

The most complex organ in the human body is the brain. It is made up of more

than 100 billion nerves and trillions of interconnections called synapses for commu-

nication.

The brain is divided into several lobes

1. The frontal lobes are responsible for problem solving, judgement and motor

function.

2. The parietal lobes manage sensation, handwriting, and body position.

3. The temporal lobes are involved with memory and hearing.

4. The occipital lobes contain the brain’s visual processing system.

The brain is surrounded by a layer of tissue called meninges. The skull (cra-

nium) helps to protect the brain from injury [1]. Fig. 1.1 shows the different lobes

of human brain [1]. Brain tumour is one of the most common brain disorder. It is

found to be more common in children than adults [2].

1
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Fig. 1.1. Different Lobes of Human Brain

1.2 Brain Tumour

A Brain Tumour is an unmanageable growth of brain cells causing the formation

of masses of tissue inside the rigid skull. A brain tumour can be malignant (can-

cerous) or benign (non-cancerous). Unlike any other body part, a benign tumour

in brain may cause trouble if it is located in an important functional part of the

brain. Cancerous tumour cells ignore signals that instruct cells to stop dividing and

influence the normal cells, molecules, and blood vessels that surround and feed a tu-

mour which is otherwise known as the micro-environment [3]. Another classification

of brain tumour is primary brain tumour (originates in the brain or nearby tissues)

and secondary brain tumour (originates elsewhere and spread to brain).

1.2.1 Brain Tumour Diagnosis

The diagnosis of brain tumour starts from analysing the symptoms of the patient.

Most common symptoms include recurrent headache, seizure, vision problem, etc.

But they may vary from person to person. At this stage the person with suspected

brain tumour undergoes medical diagnosis.

Nowadays imaging techniques are an unavoidable part of medical diagnosis.

Imaging modalities that are most common in brain imaging are Computed Tomog-

raphy (CT) and Magnetic Resonance Imaging (MRI). Both these techniques are

explained in detail in the following sections.
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1.3 Computed Tomography

Compared to MRI, CT takes less time and it is suitable for imaging hard tissues.

1.3.1 Working Principle

Unlike conventional X-ray imaging which uses a fixed X-ray tube as a source and

a film at the other end for constructing the image, Computed Tomography uses X-

ray tubes that rotates around the patient, shooting narrow beams of X-ray through

the body. CT scanners use special digital X-ray detectors that are placed directly

opposite to the source. A 2-D image slice of the patient is generated using complex

mathematical equation after the X-ray source completes one full rotation. The

thickness of the tissue in 2-D slice depends on the CT machine and usually it varies

from 1 to 10 millimeters. After a full rotation of the X-ray tube and 2-D image

construction, the motorized bed is moved incrementally into the gantry and the

process is repeated. After the complete scan, 2-D images can be stacked together to

form a 3-D image [4]. Fig. 1.2 is a CT scanner [5].

Fig. 1.2. CT Scanner

The generation of 2-D image slices and reconstruction of the 3-D image from

2-D slices is based on the Fourier Slice Theorem, which states that the Fourier Trans-

form of the projection of an N-D function onto an M-D linear submanifold is equal

to M-D slice of N-D Fourier Transform of that function. The tomographic recon-

struction process becomes a series of one dimensional Fourier Transform followed by

a two dimensional Inverse Fourier Transform [6].
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1.3.2 Drawbacks of CT

During CT scan, patient is exposed to harmful ionizing radiation. CT scans can

have 100 to 1000 times higher dose of radiation than conventional X-ray. Radiation

in CT damages the cells including DNA. Studies reveal that exposure to radiation

as a major cause of cancer especially in children.

CT is good in imaging hard tissues. A CT scan is particularly useful when

imaging complex fractures, severely eroded joints or bone tumours. Soft tissues have

low ability in stopping X-rays. Thus a CT scanner generates a low quality image

while imaging soft tissues especially the brain tissues. In such cases intravenous

contrast agents are used which contain elements that are helpful in stopping X-rays.

In some patients, contrast agent may cause allergic reactions and in rare cases it

causes temporary kidney failure [7].

1.4 Magnetic Resonance Imaging

MRI is a strong tool in examining the human body. Strong magnetic fields and

radio waves are used in MRI scanners. Usually the magnetic power used in MRI

scanners vary from 1.5 Tesla to 7 Tesla. Unlike other common imaging techniques,

during MRI scan the subject is not exposed to harmful radiations. This makes MRI

a better choice in medical imaging.

1.4.1 Basic Principle of MRI

The most abundant atom in the human body is hydrogen because a normal human

body contains around 60% of water and 20% of fat and both water and fat consist

of hydrogen atoms. An atom consists of a nucleus and electrons orbiting around the

nucleus. The basic principle of MRI relies on the spinning motion of nuclei present

in biological tissues [8]. In an atom, half of the nucleons (protons + neutrons) spin

in one direction and another half in opposite direction. Thus the nuclei of atoms

with even atomic number has no net spin due to the cancellation of the forces of

rotation. Atoms with odd atomic numbers are known as MR-Active because the
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forces of rotation of nucleons does not cancel out and they have a net spin. MRI

scanner makes use of the highly abundant MR-Active hydrogen nuclei in the human

body. Randomly oriented magnetic moments of hydrogen nuclei gets aligned when

a strong external magnetic field (B0) is applied.

Larmor frequency of a nucleus is the natural frequency of its magnetic moment.

A nucleus gains energy from an external source only when the oscillation of that

source is equal to the larmor frequency of the nucleus. The transmit coil in MRI

scanner transmits RF excitation pulse and hydrogen nuclei gets the energy since

its larmor frequency is in RF band. RF excitation pulse produces an oscillating

magnetic field B1 which is very weak compared to B0 [8]. When RF excitation

pulse is stopped the nuclei in high energy return to their previous stage by releasing

energy. The receiving coil in the MRI machine captures that energy to generate

images. An MRI-scanner is shown in Fig. 1.3 [9] .

Fig. 1.3. MRI Scanner

1.4.2 MRI Planes

In the anatomical position, X-axis would go from front to back, Y-axis from left to

right and Z-axis from top to bottom. Fig. 1.4 shows different axes of the anatomical

position [10] .
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According to the anatomical position, an MRI scanning can be carried out

in axial/transverse plane or coronal plane or sagittal plane. The three planes are

shown in Fig. 1.5 [10].

Fig. 1.4. Cartesian Coordinates of Anatomical Position

Fig. 1.5. MRI Planes
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1.4.3 Different MRI Modalities

The contrast of the MRI image depends on many parameters which can be broadly

classified as intrinsic and extrinsic. Intrinsic parameters such as T1 recovery time

and T2 decay time cannot be changed since they are inherent to body’s tissue.

Extrinsic parameters can be varied to obtain different MRI modalities.

RF pulse timing parameters comes under extrinsic category. There are two

RF pulse timing parameters, Repetition Time (TR) and Echo Time (TE).

TR is the time gap between the application of two consecutive RF excitation

pulses. It is usually measured in milliseconds.

TE is the time from the application of RF excitation pulse to the peak of the

signal induced in the coil. Like TR, TE is also measured in milliseconds.

Different MRI modalities can be obtained by varying RF pulse timing parame-

ters. In T2 weighted MRI modality, the water contents are made brighter than fatty

parts by keeping TE long enough. But in T1 weighted sequence, the reverse happens

by using shorter TE and TR [8]. T1 weighted imaging can also be performed with

the help of paramagnetic contrast enhancement agents. Most widely used agent

is Gadolinium (Gad). Gad enhanced T1 weighted images are especially useful in

looking at vascular structures and breakdown in the blood-brain barrier. Another

commonly used MRI modality is Fluid Attenuated Inversion Recovery (FLAIR).

In FLAIR, brighter abnormalities and Cerebro Spinal Fluid (CSF) suppression are

achieved by selecting a much longer TE and TR [11].

Most commonly used TR and TE values for T1 weighted, T2 weighted and

FLAIR MRI are shown in Table 1.1. The contrast variations of different components

of brain in various MRI modalities are summed up in Table 1.2.

MRI images, using the above mentioned four modalities of a tumour affected

brain are shown in Fig. 1.6
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Table 1.1: Most Common MRI Modalities and Their Approximate TR and TE
Times

TR (ms) TE (ms)

T1 Weighted (Short TR and
TE)

500 14

T2 Weighted (Long TR and TE) 4000 90

FLAIR (Very long TR and TE) 9000 114

Table 1.2: Contrast of Various Brain Tissues in Different MRI Modalities

Tissue T1
Weighted

T2
Weighted

FLAIR

CSF Dark Bright Dark

Fat Bright Light Light

Inflammation
/Infection

Dark Bright Bright

Fig. 1.6. T1, T1 Contrast, T2 and FLAIR MRI of a Tumour Affected Brain

1.5 Tumour Affected Brain MRI

Although initial diagnosis of a brain tumour starts from the analysis of symptoms,

detection of the suspected tumour is done with the aid of imaging techniques. High

contrast in soft tissues and non-invasive characteristics make MRI a better choice

for brain tumour diagnosis than CT scan [12].

The presence of abnormality and its vague location can be viewed using MRI

image. But the exact spread area or contours and different components are not

much visible to the naked eye. Despite the histological differences, most of the brain
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tumours are associated with a PeriTumoural Brain Edema (PTBE), which is a pri-

mary reason for the patient’s mortality [13]. Water flow disturbances in the brain,

especially from blood vessels into the parenchyma, causes edema [14]. These blood

vessels show blood-tumour barrier that is different from the blood-brain barrier in

the healthy brain [15]. A tumour affected brain may have developed a necrosis

which consists of the dead cells. Two common forms of cell deaths are encountered

in biology: apoptosis (i.e., programmed cell death) and necrosis (i.e., accidental cell

death). In a tumour affected brain, the presence of necrosis is an important diagnos-

tic feature, and clinical studies indicate that as the degree of necrosis advances, the

patient’s prognosis worsens [16]. Tumour affected brain has regions of cells that are

in a quiescent state and areas where cells proliferate rapidly. The decision of a cell

to become quiescent or proliferating depend on both nutrient and oxygen availabil-

ity and on an element produced by necrotic cells that somehow inhibits the further

growth of the tumor [17]. Isolating all these sub-regions in a tumour affected MRI

have apparent clinical relevance [18]. Locating and segmenting complete tumour

and its various sub-regions has an enormous impact on the treatment planning as

well as monitoring the effectiveness of treatment. Various sub-regions of the tumour

affected brain MRI are shown in Fig. 1.7.

.

Fig. 1.7. The Sub-Regions Present in a Tumour Affected Brain MRI

Different sub-regions present in a tumour affected brain MRI image are listed

below.

• Normal

• Edema
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• Necrotic Core (NC)

• Enhancing Tumour (ET)

• Non Enhancing Tumour (NET)

Edema, NC, ET and NET together form the complete tumour. NC, ET and NET

together is known as Tumour Core. ET is otherwise called active tumour.

The proper segmentation of these parts contributes a lot in brain tumour

treatment plan and after treatment monitoring. An automated segmentation aids

the physician in the decision making process.

1.6 Segmentation

Segmentation of an image is the process of isolating a Region Of Interest (ROI) from

other parts of the image. Segmentation can be done manually with much accuracy if

the contours of the part to be segmented is sharp and visible to the naked eye. But

in the case of images with vague or invisible contours, manual segmentation is not

an easy task. In such cases contour based or model based segmentation techniques

may work well if we have an idea about the size or shape or both of the area to be

segmented. But if both are unknown there is a high probability of contour based

technique to become a failure in segmentation. Classification techniques can be

applied to segment the required region/regions in such cases [19].

1.7 Motivation

Irrespective of the grade, a tumour in brain may cause death if its not treated

properly. Even a benign tumour may become hazardous if it lies in the vital part of

brain. Unlike malignant tumours, benign tumours do not spread into nearby tissues.

But contradictory to benign tumours elsewhere in the body, a benign tumour in the

brain can be life-threatening since it grows inside the rigid skull.
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Literature shows that among many cancers, brain cancer (malignant brain tu-

mour) has a low survival rate [20]. The rate of survival depends on many factors

including how fast and accurate the diagnosis and treatment planning processes are.

All the treatment may go in vain if the location of the tumour is not identified prop-

erly. Locating and segmenting the tumour and associated sub-regions are important

for a successful diagnosis and after treatment monitoring [21]. Segmentation of tu-

mour in an affected brain MRI is considered as a challenging job because of the

unpredictability of tumour shape and size.

The worldwide cancer statistics reveals that brain and nervous system cancers

constitute 1.8% (17th position in the list of most common cancers) of total cancer

incidence [20]. However, due to several reasons, the survival rate of Central Nervous

System (CNS) cancer is meagre compared to other common cancers. Fig. 1.8 shows

the five-year net survival rate of different types of cancers [22].

Fig. 1.8. Survival Rate of Different Types of Cancers

A faster and accurate diagnosis and a proper treatment plan ensures the im-

provement in survival rate. International Brain Tumour Segmentation (BraTS) chal-

lenge is organised every year since 2012. In 2018, Section for Biomedical Image

Analysis (SBIA) of Perelman school of medicine under the university of Pennsylva-

nia with Center for Biomedical Image Computing and Analytic (CBICA) conducted
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the challenge. Automating the segmentation of the tumour and its related sub-

regions make the treatment planning fast and after treatment monitoring process

effortless.

1.8 Objectives of the Thesis

The main objectives of the current study are

1. Extraction of a new set of features from multiple modality of tumour affected

brain MRI that provide a better classification of sub-regions of tumour.

2. Development of a new algorithm for the segmentation of tumour and related

sub-regions in an affected brain MRI through classification.

3. Comparison of the developed technique with state of the art techniques.

1.9 Organization of Thesis

The Thesis is organized in seven chapters as given below.

• Chapter 1 introduces brain and brain tumour. Different brain imaging

techniques are discussed. An introduction to image segmentation is presented.

The chapter ends with the motivation behind the thesis, objectives of the work

and organization of various chapters.

• Chapter 2 presents an exhaustive literature survey carried out on different

image segmentation methods and various available brain tumour segmenta-

tion techniques, revealing the research potential in the field of brain tumour

segmentation.

• Chapter 3 describes all the tools used to carry out the study. Various feature

extraction tools, feature selection tools and classification tools are discussed in

detail in this chapter.
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• Chapter 4 focuses on the development of a new feature extraction technique

called Multi-Spectral Pattern based Feature Extraction (MSPTF). The fea-

tures are extracted from a fusion of multiple MRI modalities. The distance

vector of a pixel is initially estimated considering different modalities. These

distance vectors are then encoded and converted into features. Comparison

of the developed features with conventional features is also included in this

chapter.

• Chapter 5 discusses the segmentation of brain tumour from MRI through a

classification based method. A new algorithm for combined feature selection

and multi-class classification based on Hierarchical Agglomerative Clustering

(HAC) is described in detail. The results obtained using the developed algo-

rithm is compared with the results obtained using state of the art methods.

• Chapter 6 discusses a refinement technique applied to the developed HAC

based segmentation method. It is based on the pattern of appearance of tu-

mour and its sub-regions in an affected brain MRI. The basis of the refine-

ment is wrong sequence identification. The probability of misclassification is

estimated and corrections are incorporated if necessary. The advantage of re-

finement is also discussed in this chapter. Qualitative results obtained during

the segmentation process are presented in this chapter. Comparison of the

developed technique with state of the art methods are also carried out.

• Chapter 7 depicts the summary and conclusion of the work. The major re-

search contributions and scope for further work in this area are also presented.

A complete framework of the thesis is shown in Fig. 1.9.
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Fig. 1.9. Framework of the Thesis



Chapter 2

Literature Review

2.1 Brain Tumour Segmentation

Isolating different components or substructures present in a tumour affected MRI

image is a tedious process, and currently, physicians depend on their experience as

well as visual system to achieve the solution. The findings may vary from person to

person, and there exist chances of disagreement too. Also, the data provided by MRI

is huge so that it is not practical to process it manually. The recent advances in image

processing techniques can be used to make the segmentation task semi-automatic or

fully-automatic, which simplifies the job of the physicians and makes segmentation

results faster and more accurate. Many image processing techniques were proposed

to make segmentation automatic. Some methods use a single modality whereas a

few use multiple modalities of MRI. The existing methods for tumour segmentation

can be broadly categorised as edge/contour-based segmentation and classification

based segmentation. Other common methods include atlas-based method, region

growing segmentation technique, etc. Some segmentation techniques are hybrid

which employ a group of different techniques to get the segmentation results [19].

15
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2.1.1 Edge/Contour Based Segmentation

In this particular category of segmentation technique, various edge detection and

contour finding algorithms are applied to differentiate various substructures of a

tumour affected MRI.

The method proposed by Mbuyamba et al. [23] is a 2 stage segmentation pro-

cess. In the first stage, the region of interest containing abnormality is localised

using the proposed Hierarchical Centroid Shape Descriptor (HCSD). In the second

stage, delineation of tumour area was done using a newly proposed Localised Active

Contour Model with Background Intensity Compensation (LACM-BIC). The exper-

iments were conducted in BraTS 2012 dataset, and only the tumour substructure

was segmented with a dice score of 0.91. Edema and other components were not

extracted in this method.

Based on the observation that certain contour-based methods are apt for seg-

menting a particular subset of MRI images, an automatic selection of a contour

technique among five different contour techniques were implemented for tumour

segmentation in Mbuyamba et al. [24]. The active contour methods involved were

implicit active contours driven by Local Binary Fitting Energy (LBF) [25], active

contours driven by Local Gaussian Distribution Fitting (LGDF) energy [26], con-

tours based on Local Mean Separation Energy (LMS) [27], localized Chan-Vese

(C-V) [27] and Localized Active Contour Model with Background Intensity Com-

pensation (LACM-BIC) [24]. The results show that the automatic selection of active

contour method achieved a Dice-Score of 0.93 for tumour region which is better than

individual active contour techniques involved in the selection procedure.

Unlike the traditional active contour or snake, which uses a deterministic it-

erative method for optimisation, Mbuyamba et al. [28] used Cuckoo Search (CS)

for optimisation. The proposed Multi-population Cuckoo Search Strategy (MCSS)

uses a Pizza-slice Shaped Search Windows (PSSW). The experiment started with

a noise removal with median filter and edge detection using canny filter as pre-

processing steps. The proposed method was compared with multi-population Par-

ticle Swarm Optimization Search (MPSOS) with PSSW, MPSOS with Rectangular

Shaped Search Windows (RSSW), MCSS with RSSW and traditional active contour

method. Analysis of results shows that the proposed method achieved a Dice-Score
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of 0.95 in segmenting tumour from MRI image which is better than other techniques

used for comparison.

Rajinikanth et al. [29] proposed a new method integrating Teaching Learning

Based Optimization (TLBO), entropy function based multi-level thresholding and

active contour-based segmentation. Kapur’s entropy function, Shannon’s function

and Tsallis entropy are the three entropy functions involved in this study. Finally,

the segmentation is done using active contour method.

The experimental result shows that combination of Shannon’s entropy based

thresholding and level set segmentation offers better result for the considered dataset.

Hamamci et al. [30] in his proposed Tumour Cut algorithm used Cellular Au-

tomata (CA) for segmenting tumour region from enhanced T1 weighted brain MRI

image. The method is semi-automatic which starts with user drawing longest diam-

eter of a visible tumour. After determining tumour and normal seed points, CA is

run twice. One for the tumour and other for the background to calculate tumour

strength and background strength respectively. The two strengths are then com-

bined to get tumour probability map. The surface having probability at least 0.5 is

the tumour surface. The authors used three different datasets. Synthetic datasets

of simulated tumours from the University of Utah, Harvard Brain Tumor Reposi-

tory and brain tumor datasets obtained from clinical Radiation Oncology site. The

analysis of results show that the method got a dice overlap percentage of 82.6 with

a standard deviation of 17.3 in the synthetic dataset. In Harvard Brain Tumour

Repository the technique performed better with a dice overlap percentage of 89.3

with a standard deviation of 6.9. In clinical radiation oncology dataset, the dice

overlap percentage was 80.1 with 6.9 standard deviation. The analysis also shows

that the result depends on the selection of the initial seed line.

Shanthakumar and Ganeshkumar [31] proposed a Fluid Vector Flow (FVF)

active contour model for tumour segmentation. After pre-processing with anisotropic

filtering, GLCM features and texture features using laws energy were extracted.

ANFIS classifier is used to test the malignancy. If it is found to be malignant, the

method tries to segment the tumour area using region growing method. The seed

point selection is made automatic and depends on the appearance of the tumour.

The proposed method achieved a similarity index of 0.8 approximately.
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The segmentation process proposed by Kanas et al. [32] used two significant

steps. In the first step, outliers were detected using clustering technique. K- means

clustering with euclidean distance metric is used to cluster healthy tissues into Gray

Matter (GM), White Matter (WM) and Cerebro Spinal Fluid (CSF). With the help

of a threshold value, abnormalities were detected as samples that are distant to all

three cluster centres. The false positives after the first stage were reduced in the

second stage which uses a graph-based algorithm called random walker proposed

by Grady [33]. Authors improved the work by expanding the analysis from 2D to

3D [34]. The proposed method goes through all the steps in the previous work.

The 2D random walker is expanded to 3D random walker. The analysis of results

shows that the method could segment the tumour with a Dice-Score of 0.81 whereas

non-enhancing tumour region and edema region was segmented with a Dice-Score

of 0.75. Enhancing tumour region got an average Dice-Score of 0.72.

A threshold-based scheme that uses level sets (TLS) for 3D tumour segmenta-

tion was used by Taheri et al. [35] in their work. To form speed function, a global

threshold was used. The initial threshold was calculated using the level set initializa-

tion which then iteratively updated throughout the process of segmentation. Upon

reaching the tumour boundary, the variation of the threshold declines because of the

contrast between tumour and non-tumour intensities. This method highly depends

on the intensity variation between tumorous and non-tumorous regions.

Nie et al. [36] proposed a new segmentation method called Spatial accuracy-

weighted Hidden markov random field and Expectation maximisation (SHE) to seg-

ment tumorous region from multi-sequence MRI. SHE is executed in skull-stripped

images.

Contour-based and region based segmentation techniques were combined in

Khotanlou et al. [37]. The algorithm uses T1 weighted MRI sequence. Removal

of non-brain data which may include fat, muscle, skull etc. is the first step in the

segmentation process. A combination of histogram analysis, morphological opera-

tions and symmetry analysis was performed in the first step. The initial tumour

segmentation was performed using a Fuzzy Possibilistic C-Means (FPCM) method

or symmetry analysis and some morphological operations. Fuzzy classification as-

sumes that the intensity in tumour region varies from that of the normal region. On

the other hand, symmetry analysis assumes that a normal brain MRI has a plane of
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symmetry. The refinement in the segmentation is done with the help of a parametric

deformable model which is constrained by spatial relations. An average similarity

index of 0.92 is obtained by this method.

2.1.2 Classification Based Segmentation

This category is characterised by the usage of one or more supervised or unsupervised

classifiers which in turn labels different substructures of the brain MRI image.

Pereira et al. [38] proposed an automatic brain tumour segmentation method

based on Convolutional Neural Network (CNN). They used relatively small kernel

size of 3 x 3, leading to a deeper architecture. A pre-processing by intensity normal-

ization is done in this method. Data augmentation with rotation and regularization

is conducted to reduce the problem of overfitting. The work uses BraTS 2013 and

2015 database which consists of four MRI modalities, T1 weighted, T1 with Gad

enhancement, T2 weighted and FLAIR. The evaluation measures used are Positive

Predictive Value (PPV), Dice-Score and Sensitivity. In BraTS 2013 data set, they

achieved a Dice-Score of 0.84 for the complete tumour (Edema+ET+NET+NC),

0.72 for Core (ET+NET+NC) and 0.62 for ET. In BraTS 2015 data set, this method

achieved a Dice-Score of 0.78, 0.65 and 0.75 in Complete, Core and enhanced re-

gions respectively. Comparing BraTS 2013 and 2015 data sets, only the enhancing

region showed an improved result. Although this method ranked in the first posi-

tion in 2013 BraTS challenge and second in 2015 challenge, there still exist gaps for

improvement.

The multi fractal features proposed by Islam et al. [39] uses Support Vector

Machine (SVM) and a modified AdaBoost algorithm. T1, T2 and FLAIR MRI

modalities of 14 patients were considered for the study. The pre-processing stage

includes realignment and unwrapping of slices within a volume and co-registering

of other modalities with T1 modality. For pre-processing, SPM8 toolbox was used.

Along with the proposed multi fractal texture features, piece-wise-triangular-prism-

surface-area (PTPSA) fractal features were also used. The results show that with

intensity features and proposed multi fractal features, they could achieve the highest

Dice-Score of 0.83. But the False Positive Fraction was less when intensity features

and proposed features used along with PTPSA features.
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The method proposed by Reza and Iftekharuddin [40] starts with intensity nor-

malization. Extracted features include intensities of all modalities, textural features

using fractal PTPSA, texton features and mutifractional Brownian motion (mBm)

features. The classifier used was Random Forest. Although this method achieved a

Dice-Score of 0.908 for Tumour Core and 0.8 for Edema during training, the testing

results were very poor for both Tumour Core (0.43) and Edema (0.42).

The method proposed by Cabria and Gondra [41] uses the fusion of 3 segmenta-

tion algorithms. The proposed Potential Field Segmentation (PFS), combination of

region growing segmentation with electrostatic force clustering for seed initialization

and Potential Field Clustering (PFC) are the three segmentation techniques used in

this work. Also fusion of these methods were done using set intersection method and

set union method. The proposed method is experimented with publicly available

BraTS database. Analysis of results are done using the segmentation quality mea-

sure, Q, which is defined as the percentage of pixels in agreement with the ground

truth segmentation. An average Q value of 0.612 is obtained using PFS alone. Also,

the results obtained using union and intersection of the three segmentation methods

were much less than PFS results.

T1 weighted MRI images were pre-processed with five variations of Princi-

ple Component Analysis (PCA) in Kaya et al. [42]. Box filtering is done as the

pre-processing step. The PCA processed images were then clustered using K-means

algorithm and Fuzzy C-Means clustering algorithm (FCM). Five most common PCA

algorithms: namely the conventional PCA, Probabilistic Principal Component Anal-

ysis (PPCA), Expectation Maximization based Principal Component Analysis (EM-

PCA), Generalizde Hebbian Algorithm (GHA), and Adaptive Principal Component

Extraction (APEX) were applied to reduce dimensionality in advance of two clus-

tering algorithms. The result analysis was done based on reconstruction error. The

analysis phase shows that PPCA and EMPCA returned better results, and in most

cases, FCM outperformed K-Means algorithm.

Comparison of the effectiveness of statistical features and wavelet features in

brain tumour segmentation is carried out in Nabizadeh and Kubat [43]. Detect-

ing the slice having tumour followed by statistical and wavelet feature extraction is

done in the first phase. 475 statistical features and 81000 wavelet features were then

reduced with the help of Principal Component Analysis (PCA). Various classifiers
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were employed to compare the effectiveness of statistical and wavelet features ex-

tracted. Two different MRI modalities – T1 weighted and FLAIR – were separately

processed in this study. The results show that for every classifier, statistical features

outperformed wavelet features in classifying tumour and normal regions.

Li et al. [44] presents a probabilistic model of multi-modal MR brain tumour

segmentation. This model combines sparse representation and the Markov Random

Field (MRF) to solve the spatial and structural variability problem. With the help

of sparse representation and MRF maximum, a priori is calculated which is then

transformed into a minimum energy optimization. The graph cuts are used to ap-

proximately solve the minimum energy optimization via finding the minimum cuts

in a graph model. The experiment used BraTS 2013 data set. The result analysis

shows that complete tumour got a dice score of above 0.8 for both low grade and high

grade. But the Dice-Score of tumour core and enhancing tumour is approximately

0.56, which is considered as a poor result.

Vishnuvarthanan et al. [45] proposed a clustering based segmentation scheme,

which uses two major algorithms ie Self Organizing Map (SOM) and Fuzzy K-Means

Clustering (FKM) proposed by Chang et al. [46]. Removal of skull region is done

using Brain Extraction Tool (BET) as specified in Smith [47] in the pre-processing

stage. For an initial clustering and dimensionality reduction, SOM is employed. The

final clustering is done using FKM. The method got a dice overlap index of 0.47.

To make use of 3-D information in MRI scan, Abbasi and Tajeripour [48]

proposed two new features such as Local Binary Pattern in Three Orthogonal

Plane (LBP-TOP) and Histogram Orientation Gradients in Three Orthogonal Plane

(HOG-TOP). Dataset used was BraTS 2013. In the first stage of pre-processing, bias

field correction is done using N4ITK [49]. In the second stage of pre-processing, in-

tensity scale of each sequence was normalized by a histogram matching algorithm

implemented in ITK [50]. To extract Region of Interest (ROI), Otsu thresholding

[51] is applied to FLAIR image. Gray level intensity, HOG-TOP and LBP-TOP fea-

tures are extracted in 3-D MRI and the classification is done using random forest.

Bagging is used as the ensemble method. The proposed method gave a Dice-Score

of 0.83 for Complete Tumour, 0.75 for Tumour Core and 0.76 for enhancing tumour.
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Havaei et al. [52] uses a Deep Neural Network (DNN) in BraTS 2013 dataset.

Unlike the traditional Convolutional Neural Network (CNN), DNN exploits both

local features as well as global contextual features simultaneously using two pathway

architecture. DNN processes patches of size 4 x 33 x 33 to find the label of mid pixel

in the patch. To speed up the process, DNN uses a convolutional implementation of

a fully connected layer as final layer. Due to the misproportion of data (Normal pixel

will be much higher than affected ones), training procedure is done in two phases.

The proposed architecture was a cascaded architecture, which concatenates both

global pathway and local pathway. Three concatenation methods were used. The

first model, InputCascadeCNN, took 3 minutes on average, whereas the two other

models, MFCascadeCNN model and LocalCascadeCNN model, took 1.5 minutes and

1.7 minutes respectively. Analysis of results shows that InputCascadeCNN worked

better for Complete Tumour, Tumour Core and enhancing tumour with a Dice-Score

of 0.88, 0.79 and 0.73 respectively.

Local Independent Projection-based Classification (LIPC) based segmentation

proposed by Huang et al. [53] segments the whole MRI image using pixel by pixel

classification strategy. LIPC algorithm has three major steps of dictionary con-

struction, locally linear representation, and classification score computation. In the

preprocessing step, image inhomogeneity correction and intensity normalization has

been performed. The method does not extract second order statistical features,

rather they considered a square patch surrounding a voxel which is rearranged as

a feature vector. After passing through the LIPC algorithm, a final step of post-

processing using connected component algorithm and mathematical morphology is

used to refine the classified edema regions. BraTS 2012 and BraTS 2013 data sets

are used for the study and the method achieved average Dice-Score of 0.84, 0.685,

and 0.585 in segmenting Complete Tumour, Tumour Core, and enhancing tumour

respectively on real patient data.

Ain et al. [54] proposed a combined brain tumour detection and segmentation

framework. Datasets of different patients from Holy Family hospital and Abrar

MRI and CT Scan Center, Rawalpindi was used for the study. The process starts

with noise removal using Fast Discrete Curvelet Transform (FDCT) [55]. First-

order histogram based features and second order texture features using Gray Level

Co-occurrence Matrix (GLCM) are extracted from the noise removed image. Using
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SVM as base classifier, an ensemble classifier is used to classify the image into normal

or affected. If the image is found to be tumour affected, the segmentation of the

tumour region is done using FCM clustering after skull stripping.

In Wang et al. [56], instead of using the traditional distance metrics, local

and non-local informations were used to measure the distance in FCM clustering,

which in effect will decide the membership value in each cluster. Although a single

qualitative result is presented for tumour segmentation which does not provide an

improvement from the standard FCM visually, the proposed method overweighed

other variations of FCM in segmenting White Matter (WM), Gray Matter (GM) and

Cerebro Spinal Fluid (CSF) with similarity indices of 0.92, 0.90 and 0.90 respectively.

Harati et al. [57] in their proposed method used an improved Fuzzy Connect-

edness (FC) algorithm to segment the brain tumour from Spoiled Gradient Recalled

Acquisition (SPRG) and post gad T1 MRI image. Noise removal is done using

anisotropic diffusion filter as head mask. In addition to intensity feature and homo-

geneity, a tumour detection matrix is defined for automatic seed selection. General

fuzzy connectedness algorithm loses its path in the weak boundaries. The improved

version of FC algorithm tries to improve the robustness over the boundaries by enter-

ing appropriate gradient information to the affinity function. The method achieved

a similarity index of 0.92 in segmenting the tumour.

Cai et al. [58] used T1 weighted images, FLAIR, contrast enhanced T1 weighted

MRI, Diffusion Weighted Images (DWI) and two scalar maps computed from the Dif-

fusion Tensor Imaging (DTI). In preprocessing stage, skull stripping, co-registration

with T1 images and gaussian smoothing are done. The intensity features of all the

sequences are combined to form a feature vector. An intra-patient classifier and

inter-patient classifier is built based on SVM.

The tumour segmentation method proposed by Clark et al. [59] uses T1 weighted,

T2 weighted and proton density modalities of MRI. The system starts with cluster-

ing the slice using FCM. The clustered slice is then passed to the knowledge-based

system. The knowledge about the intensities of different tissues in various sequence

and expected shapes and placements of certain tissues within the MRI are included

in knowledge base. From the initial clustering an intra cranial mask is created. Using

adaptive histogram threshold, an initial segmentation of tumour is performed. Final



Chapter 2. Literature Review 24

refinement on the segmentation is done using a density screening in feature space.

Results show that although it could achieve a good percent match, it contained a

large value of false positives.

Sheela and Suganthi [60] uses greedy snake model in their work. Pre-processing

involves the identification of approximate ROI through morphological operations. In

the second stage, mask formation is done using threshold. Using the initial contours

given by mask, greedy snake model estimates new boundaries. The remaining in-

accurate boundaries are estimated using FCM. Only T1 weighted modalities were

used to conduct the experiments and sub-regions of the complete tumour are not

segmented. The dice score for complete tumour is less than 0.78.

2.1.3 Segmentation Based on Other Methods

In literature some other methods are also employed to segment a tumour affected

brain MRI. These methods include atlas based methods, graph cut method etc.

Prastawa et al. [61] isolated tumour and edema using an atlas based method.

They used T1 weighted MRI and T2 weighted MRI sequences. The segmenta-

tion framework consists of three stages. In the initial stage, the abnormalities

(tumour+edema) and its vague location in the given image are identified using a

registered brain atlas of a healthy brain. In the second stage, edema region is fil-

tered out from the entire abnormality using intensity features using thresholding. In

the third stage, reclassification is done to improve the results with the assumption

that each edema region is connected to a nearby tumour region. In this method,

data set used was limited to three and validation is done using VALMET segmen-

tation validation tool. A Jaccard Score of approximately .77 for tumour and .68 for

edema is obtained.

The method proposed by Gooya et al. [62] uses a healthy brain atlas modified

by a glioma growth model. The modified atlas is then registered into patients space

for obtaining posterior probability of tissue labels. It also makes use of expectation

maximization algorithm. T1, T1 contrast-enhanced image, T2 and FLAIR modali-

ties were used for each case. In preprocessing step, inhomogeneity correction, skull

stripping and cerebellum removal were done. The four sequences are co-registered
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with an affine registration algorithm. The co-registered images are then registered

with atlas space. Dice Score obtained for tumour and edema are 0.84 and 0.76

respectively.

The efficiency of four different sets of features in segmenting posterior fossa

tumour was estimated by Ahmed et al. [63]. The feature extraction was done on

intensity normalized and bias corrected MRI images. T1, T2 and FLAIR modali-

ties were used. Intensity features, Texture features using Fractal Dimension (FD),

level set based shape features and mBm texture features were used for the study.

For feature selection Principle Feature Analysis (PFA), Kullback–Leibler Divergence

(KLD) and newly proposed Boost Feature Subset Selection (BFSS) methods were

employed. Graph cut and expectation maximization algorithms are the segmenta-

tion techniques used by this work.

The hybrid method proposed by Ramakrishnan and Sankaragomathi [64] in-

volves a classifier as well as a region growing method. Classifier classifies the image

into either tumour affected or non-tumourous. Region growing technique is applied

in tumour images to segment the affected region. Computed Tomography (CT) im-

ages are employed for experimental purpose. Histogram equalization is done as the

pre-processing step. GLCM features, maximum intensity feature and Local Gabor

XOR Pattern (LGXP)features were extracted which is given as input to the clas-

sifier. SVM classifier is then employed for classification with a linear kernel and

sequential minimum optimization. In segmentation stage, Modified Region Grow-

ing (MRG) with threshold optimization is employed. The whole image is divided

into grids. Seed point and threshold are selected. In threshold selection procedure,

Gray Wolf Optimization (GWO), Evolutionary Program (EP) and Harmony Search

(HS) were conducted. Out of these three, GWO gave better results. An average

sensitivity of 0.88 for tumour is achieved through this work.

To deal with unclear tumour boundaries, GLCM based Cellular Automata

(GLCM-CA) is presented in Sompong and Wongthanavasu [65], which is a semi-

automatic technique. The method has two stages. In the initial stage transformation

of an original MRI to the featured image is done. The features of the tumour area

which are similar to the background area are enhanced by this transformation. An

Improved Tumour-Cut (ITC) algorithm Hamamci et al. [30] is used for segmentation.

In ITC a novel patch weighted distance is proposed to deal with the problem of
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robustness in seed growing. Publicly available BraTS 2013 data set was used for

experiments. In testing phase, the method obtained a Dice-Score of 0.79 for Tumour

Core and 0.84 for whole tumour.

Two popular clustering methods, K-Means and FCM are combined and a new

method called K-means Integrated with Fuzzy C-means (KIFCM) is proposed in [66]

to achieve the time efficiency of K- Means and accuracy efficiency of FCM. Authors

used three different data sets for the experiment. The first set consists of .jpeg

images where as the second and third includes multi modality MR images. Skull

removal and denoising using the median filter is done as pre-processing operations.

KIFCM clustering is done next. Thresholding, filtering and level set contouring is

done sequentially in the final stage to get the segmentation results. The experiments

were conducted in BraTS 2012 data set. T1 contrast enhanced modality is used for

high-grade tumour. T2 weighted modality is used for low-grade and FLAIR modality

for edema segmentations in both low grade and high grade. A non-parametric model

distribution of intensity of normal region is estimated. Using this model, normal

region is separated from the affected one. Edema is separated using another model

created using FLAIR modality. An average Dice- Score of 0.875 and 0.83 is obtained

as tumour and edema segmentation results respectively.

An enhanced Particle Swarm Optimization (PSO) is used by Vijay et al. [67]

to segment tumour parts from MRI. Histogram-based gravitational optimization

algorithm (HGOA) for brain lesion segmentation proposed by Nabizadeh et al. [68]

uses DWI modality for stroke lesion segmentation and T1 weighted sequence for

tumour lesion segmentation. HGOA is based on brain histogram analysis and an

enhanced gravitational optimization algorithm. The method make use of intensity

features only. HGOA has 2 main steps. The first step called histogram based brain

segmentation algorithm, starts with intensity histogram calculation and smoothing

the histogram using local weighted averaging technique. This algorithm segments the

entire image into ’n’ number of segments where ’n’ is the number of local maxima of

smoothed histogram. In the second step, N-dimensional Gravitational Optimization

Algorithm (NGOA) is applied to the result of step1 to make the number of segments

as desired. In the post-processing step Consistency Verification (CV) algorithm is

executed in order to reduce false positives. The method could achieve an accuracy

of 0.88 in segmenting tumour lesion.
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Corso et al. [69] combines model-based classification technique and an ex-

tension of weighted aggregation technique for tumour segmentation. The original

graph-based Segmentation by Weighted Aggregation (SWA) algorithm is extended

to integrate model aware affinities. Results show that the method achieved a Jaccard

Score of 0.69 in segmenting tumour and 0.62 in segmenting edema.

Rough FCM (RFCM) and shape based properties are used in Bal et al. [70].

Skull stripping is done as pre-processing step. The new centroid selection method for

FCM reduces the execution time of RFCM. Fuzzy membership handles overlapping

and uncertainty in data are handled by upper and lower bounds of rough set. The

experiments were conducted on a limited number of data. The work concentrated

on segmenting the Complete Tumour.

The method proposed by Ma et al. [71] is a hybrid technique in which initial

segmentation is done through random forest classifier and the final refinement is done

using multi-scale patch driven active contours. The work used multiple modalities

and obtained a Dice-Score of 0.89, 0.80 and 0.76 for Complete Tumour, Tumour

Core and enhancing tumour respectively.

Symmetry analysis and fast bounding box algorithm is employed to detect the

tumour location in the method proposed by Kermi et al. [72]. The slice in which the

largest bounding box was detected is selected as slice of interest. Region growing

and geodesic level set methods are used for the final segmentation. The sub-regions

were not segmented separately.

Tang et al. [73] used a multi-atlas method. Normal brain atlases are used to

register label information. In the first step a normal brain image is recovered from

tumorous MRI using a new low rank method. Registration of normal brain atlas to

the recovered image is carried out in the next step. Both these steps were continued

until convergence.

A summary of the reviewed literature is presented in Table 2.1.
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Table 2.1: Literature Review Summary

AUTHOR METHOD MODALITIES RESULT

Mbuyamba et al. [23] HCSD + LACM-BIC T1C, T2 Complete Tumour Dice-

Score=0.91

Mbuyamba et al. [24] Automatic Selection of

Active Contour

NA Complete Tumour Dice-

Score=0.93

Mbuyamba et al. [28] MCSS + PSSW + RSSW T1 Complete Tumour Dice-

Score=0.95

Rajinikanth et al. [29] TLBO + Active Contour FLAIR, T1C, T2 Complete Tumour Dice-

Score=0.94

Hamamci et al. [30] Tumour Cut using CA T1C Complete Tumour Dice-

Score=0.84

Shanthakumar and

Ganeshkumar [31]

FVF Active Contour NA Complete Tumour Similarity

Index=0.81

Kanas et al. [34] K-Means + 3-D Random

Walker

T1, T2, T1C,

FLAIR

DS ( Complete Tumour =0.81,

Edema=0.75,ET=0.72)

Taheri et al. [35] TLS T1, T1C Jaccards Measure of Complete

Tumour =0.87

Nie et al. [36] SHE T1, T1C, FLAIR,

T2

Jaccards Measure of Complete

Tumour =0.87

Khotanlou et al. [37] FPCM + Parametric De-

formable Model

T1 Similarity Index of Complete

Tumour =0.92

Pereira et al. [38] CNN T1, T1C,

T2,FLAIR

DS ( Complete Tumour

=0.84,Tumour Core = 0.72,

ET=0.62)

Cabria and Gondra

[41]

PFS T1,T2 Q value of Complete Tu-

mour=0.612
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Table 2.1: Literature Review Summary

AUTHOR METHOD MODALITIES RESULT

Kaya et al. [42] 5 types of PCA + K-

Means

T1 Reconstruction Error

Rate=1.14

Nabizadeh and Kubat

[43]

wavelet features + PCA

+ SVM

T1,FLAIR Accuracy of Complete

Tumour=0.9

Li et al. [44] Sparse Representation +

MRF

T1, T2, T1C,

FLAIR

DS ( Complete Tumour=0.84,

Tumour Core=0.54, ET=0.57)

Vishnuvarthanan

et al. [45]

SOM+FKM T1, T2, T1C,

FLAIR

Dice Overlap Index of Complete

Tumour=47%

Abbasi and

Tajeripour [48]

LBP-TOP + HOG-TOP

+ Bagged ensemble of

Trees

T1, T2, T1C,

FLAIR

DS ( Complete Tumour=0.83,

Tumour Core=0.75, ET=0.76)

Havaei et al. [52] DNN T1, T2, T1C,

FLAIR

DS ( Complete Tumour=0.88,

Tumour Core=0.79, ET=0.73)

Huang et al. [53] LIPC T1, T2, T1C,

FLAIR

DS ( Complete Tumour=0.84,

Tumour Core=0.685,

ET=0.585)

Ain et al. [54] SVM ensemble +FCM NA NA

Harati et al. [57] Improved Fuzzy Connect-

edness

T1C Similarity Index of Complete

Tumour=0.92

Cai et al. [58] Quadratic Discriminant

Analysis+SVM

T1C,T1, Diffusion

weighted, FLAIR,

DTI

Accuracy ( Edema=0.98,

ET=0.96, NET=0.96)

Clark et al. [59] FCM+ Knowledge based

System

T1,T2, Proton

Density

Average Percentage match > 90
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Table 2.1: Literature Review Summary

AUTHOR METHOD MODALITIES RESULT

Sheela and Suganthi

[60]

FCM+ Greedy Snake T1 DS of Complete Tumour=0.78

Prastawa et al. [61] Atlas Based Method T1,T2 Jaccard Score ( Complete Tu-

mour=0.77, edema=0.68)

Gooya et al. [62] Glioma growth model +

healthy brain atlas

T1,T2, FLAIR,

T1C

Jaccard Score ( Complete Tu-

mour=0.84, edema=0.76)

Ahmed et al. [63] BFSS+Graph Cut+ Ex-

pectation Maximization

T1,T2, FLAIR Jaccard Score of Complete Tu-

mour=0.6

Ramakrishnan and

Sankaragomathi [64]

SVM + MRG +GWO CT images Sensitivity of Complete Tu-

mour=0.88

Sompong and

Wongthanavasu [65]

GLCM – CA + ITC T1,T2, FLAIR,

T1C

DS (Complete Tumour=0.84,

Tumour Core=0.79)

Abdel-Maksoud et al.

[66]

KFCM + Contouring T1,T2, FLAIR DS (Complete Tumour=0.875,

Edema=0.83)

Nabizadeh et al. [68] HGOA + NGOA + CV T1 Accuracy of Complete

Tumour=0.88

Corso et al. [69] Model based SWA T1, T1C, T2,

FLAIR

Jaccard Score (Complete Tu-

mour=0.69, Edema=0.62

Ma et al. [71] Random Forest + Active

Contour

T1, T1C, T2,

FLAIR

DS (Complete Tumour=0.89,

Tumour Core=0.80, ET=0.76)

Kermi et al. [72] Symmetry Analysis

+ Region Growing +

Geodesic Levelset

T2, FLAIR Sensitivity of Complete Tu-

mour=(0.81 for T2 and 0.89 for

FLAIR)
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The literature review disclose the fact that classification/clustering based seg-

mentation perform better for the segmentation of MRI images. From the exhaustive

literature review performed, the following observations were drawn.

• Majority of classification/clustering based segmentation studies have consid-

ered only single modality MRI images from among the available modalities

such as T1,T2,T1C,FLAIR.

• The studies which considered multiple modalities considered the intensity fea-

tures corresponding to the modalities separately. No effort is made to combine

the features from various modalities. Combination of features may suggest

better results.

• None of the segmentation algorithms reviewed addressed the performance of

normal region. Normal region identification is equally important to draw a

demarcation between normal region and tumorous region.

• Most of the studies used segmentation algorithms to segment the tumour as

a whole. Further classification of the tumour such as edema, necrotic core,

enhancing tumour and non-enhancing tumour is not considered.

• The studies which classified the tumour into multiple regions used the same set

of features to identify various classes. Developing separate features for various

classes may improve the segmentation results.

2.2 Conclusion

Along with the unpredictable size, shape and location within the brain, whimsi-

cal boundaries among different sub-regions of a tumour in MRI make edge/contour

based techniques to fail in segmenting the tumour sub-regions. Atlas or model based

techniques also gave poor results. Literature review also shows that better results

were achieved, when segmentation is treated as a classification problem rather than

contour finding problem. Some works used clustering or unsupervised classifiers.

Supervised classifier is superior to both these methods. Most of the works in litera-

ture does not consider tumour sub-regions while segmenting. They try to segment
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the complete tumour only. The analysis of the sub-regions have wide applications

such as prediction of survival rate, finding out nature of tumour, after treatment

monitoring, etc.

Each modality of MRI is capable of identifying a certain type of tissue. Many

of the existing techniques use single modality. Working in multiple modalities may

yield better segmentation.

To get a better segmentation of various sub-regions of tumour, classification

based segmentation using fusion of multiple MRI modalities is experimented in this

work.
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Tools Used

3.1 Introduction

The framework of image segmentation through classification consists of three major

steps. In the first stage various features are extracted from MRI and a feature set

is formed. In the second stage unwanted features, that may reduce the efficiency of

the segmentation system are identified and removed from the feature set. In the last

Fig. 3.1. Stages of Segmentation

stage classification is carried out using the selected features to get a labelled image.

The pixels that have the same label, together constitute a segment. Fig. 3.1 shows

the different stages involved in the segmentation process.

33
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The various tools used in this study are explained in subsequent sections.

3.2 Feature Extraction

Feature is a synonym of attribute. Feature extraction can be considered as a pre-

processing stage [74]. Extracting features from raw data has two advantages over

using the raw data as itself.

• Reduces the number of data so that complexity of further processing becomes

easy.

• Identifies features that can characterize the given data.

Reduction of the number of data makes processing easier at the cause of los-

ing some information. The root of success of any classification technique is the

availability of features with high discrimination capability among different classes

under consideration. The result of classification stage highly depends on the class

discriminating potential of the extracted features.

Prodigious number of techniques exist for extracting features from an image.

Statistical feature extraction and transform based feature extraction are the two

major categories of feature extraction techniques. In the case of medical image

processing, accuracy of the output is more important than time complexity of the

system. Along with pixel intensities, second order statistical features and transform

based features are used. These specified features are extracted from all the four

modalities of MRI ie FLAIR, T1 weighted, T1 weighted with contrast enhancement

(T1C) and T2 weighted. As the segmentation problem is re-framed as a classification

problem and the segmentation result is equated to the pixel by pixel classification

result, all the features are extracted for each pixel.
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3.2.1 One Dimensional Feature Extraction

For the current study, the only one dimensional feature extracted is the intensity

feature. For a specific pixel, its intensities in FLAIR , T1 weighted , T1C and in T2

weighted modalities are taken to form a feature vector of size 4. Fig. 1.6 shows the

4 MRI modalities used in this study. The intensity of the pixel (xi, yi) from all the

modalities form a feature vector of size 4 for that pixel

To examine the reliability of intensity features in tumour segmentation, the

intensity ranges of edema, normal and tumour core (NC+ET+NET) are analysed

with the help of available ground truth. The analysis was done in all four MRI

modalities.

Fig. 3.2 shows the intensity distribution of normal, edema and tumour core

in T1C modality. Fig. 3.3, Fig. 3.4 and Fig. 3.5 shows the intensity distributions

of normal, edema and tumour core in T1 Weighted MRI, T2 Weighted MRI and

FLAIR MRI respectively.

Fig. 3.2. Intensity distributions of Various Sub-regions in T1 Contrast MRI
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Fig. 3.3. Intensity distributions of Various Sub-regions in T1 weighted MRI

Fig. 3.4. Intensity distributions of Various Sub-regions in T2 weighted MRI
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Fig. 3.5. Intensity distributions of Various Sub-regions in FLAIR MRI

The analysis reveals the fact that the intensities of edema, normal and tumour

core are overlapped in such a way that segmentation of tumour and other substruc-

tures from any of the MRI modality is not achievable by the direct use of intensity

feature alone. This gives rise to the requirement of additional more powerful fea-

tures that can describe each sub-regions accurately. Hence second order statistical

features and transform based features are considered.

3.2.2 Second Order Statistical Features

Second order statistical feature considered in this study are

1. Gray Level Co-occurrence Matrix (GLCM)

2. Gray Level Run Length Matrix (GLRLM)

3. Gray-Level Difference Matrix (GLDM)

4. Laws Texture Energy

5. Local Binary Pattern (LBP)
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6. Local Ternary Pattern (LTP)

For each pixel in the image, 5 × 5 neighbourhoods are chosen as shown in

Table 3.1 to form a sub-image from which all features except LBP and LTP are

derived. For LBP and LTP, 8 neighbourhoods surrounding the pixel of interest are

chosen.

Table 3.1: Sub-image Corresponding to pixel Zi,j

Z(i-2,j-2) .. .. .. Z(i-2,j+2)

.. Z(i-1,j-1) .. Z(i-1,j+1) ..

.. .. Z(i,j) .. ..

.. Z(i+1,j-1) .. Z(i+1,j+1) ..

Z(i+2,j-2) .. .. .. Z(i+2,j+2)

3.2.2.1 Gray Level Co-occurrence Matrix

GLCM as proposed by Haralick et al. [75] is a matrix that defines the distribution

of co-occurring grey-level values within an image or a sub-image. The matrix is

formed by tabulating how many times different combinations of gray levels occurred

together in the image or sub-image under consideration. A parameter that can be

varied for the computation of GLCM is the offset, which represents the angle between

the pixel of interest and its neighbour. Offset is a 2 valued vector. Depending on

the offset, GLCM in different orientations can be computed. The various offsets

and corresponding orientation angles are shown in Table 3.2 and in Fig. 3.6. The

size of GLCM depends on the number of gray levels chosen. The gray values in the

image are scaled so that it is converted to a value between 0 and G-1, where G is the

number of gray levels. Another parameter is the distance d between two elements

in the scaled image. In the current study distance is chosen as 1 and glcm matrices

are formed for all four offsets. Number of gray level is set to 8.

Features mentioned in Albregtsen et al. [76] and Haralick et al. [75] are ex-

tracted. The texture features and their corresponding equations are shown in Table

3.3. The equations use the following notations:
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Table 3.2: GLCM Orientation and Corresponding Offset

Angle Offset

0 [0 1]

45 [-1 1]

90 [-1 0]

135 [-1 -1]

Fig. 3.6. GLCM Orientation and Corresponding Offset

G Number of gray levels.

P GLCM matrix.

µ The mean value of P

µx The row wise mean of GLCM

µy The column wise mean of GLCM

σx The row wise standard deviation of GLCM

σy The column wise standard deviation of GLCM

HX The entropy of Px

HY The entropy of Py

Px+y(k) =
∑G−1

i=0

∑G−1
j=0 P (i, j)

where i+j=k and k=0,1,...2G

Px−y(k) =
∑G−1

i=0

∑G−1
j=0 P (i, j)

where i-j=k and k=0,1,...G-1

HXY 1 = −
∑G−1

i=0

∑G−1
j=0 P (i, j)log[Px(i)Py(j)]

HXY 2 = −
∑G−1

i=0

∑G−1
j=0 Px(i)Py(j)log[Px(i)Py(j)]
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Table 3.3: Features Extracted from GLCM

Feature Equation

Contrast
∑G−1

i=0

∑G−1
j=0 (i− j)2 ∗ P (i, j)

Homogeneity
∑G−1

i=0

∑G−1
j=0 P (i, j)2

Inverse Difference Moment (IDM)
∑G−1

i=0

∑G−1
j=0

P (i,j)
1+|i−j|2

Entropy −
∑G−1

i=0

∑G−1
j=0 P (i, j) ∗ log[P (i, j)]

Correlation
∑G−1

i=0

∑G−1
j=0

(i−µx)(j−µy)P (i,j)

σxσy

Sum of Squares
∑G−1

i=0

∑G−1
j=0 (1− µ)2P (i, j)

Sum Average
∑2G−2

i=0 iPx+y(i)

Sum Entropy −
∑2G−2

i=0 Px+y(i)log[Px+y(i)]

Difference Entropy −
∑G−1

i=0 Px−y(i)log[Px−y(i)]

Inertia
∑G−1

i=0

∑G−1
j=0 (i− j)2P (i, j)

Cluster Shade
∑G−1

i=0

∑G−1
j=0 (i+ j − µx − µy)3P (i, j)

Cluster Prominence
∑G−1

i=0

∑G−1
j=0 (i+ j − µx − µy)4P (i, j)

Maximal Correlation Coefficient
∑

[P (i,k)P (j,k)
px(i)Py(k)

]
1
2

Information Measure of Correlation I HXY−HXY 1
max(HX,HY )

Information Measure of Correlation II 1− exp[−2.0(HXY 2−HXY )]
1
2
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3.2.2.2 Gray Level Run Length Matrix

GLRLM introduced by Galloway [77] is a texture analysis method based on run-

lengths of image gray levels. In a coarse texture, relatively long gray-level runs would

occur more often whereas a fine texture contains primarily short runs [78].Gray Level

Run Length Matrix represented by GR is a matrix with dimension m x n, where m

is the number of different gray-levels in the input matrix and n represents the run

length. Features that are extracted from GLRLM for the current study are shown in

Table 3.4. For all the equations in Table 3.4, nr represents the number of runs and np

is the number of pixels. A total of 44 features in all four directions (00, 450, 900 and

1350) are extracted for the study. All the features are extracted based on an instinct

that these will capture informations about run length distribution of gray-levels [78].

3.2.2.3 Texture Feature Extraction using Gray-Level Difference Matrix

For a given distance d = (dx, dy) and matrix M, Gray Level Difference Matrix Md is

formed using the Equation 3.1 [79]

Md(x, y) = |M(x, y)−M(x+ dx, y + dy)| (3.1)

The probability density Pd of Md(x, y) is an n dimensional vector where n is the

number of gray-levels. The ith component of Pd is the probability that Md(x, y) has

the value i.

GLDM matrix formation for a pixel of interest is done on a sub-image formed

by considering it’s 5 × 5 neighbourhood.

Features that are extracted from the probability density of GLDM are the

following.

Homogeneity =
n∑
i=1

Pd(i)

(i2 + 1)
(3.2)

Contrast =
n∑
i=1

Pd(i).(i
2) (3.3)
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Table 3.4: Features Extracted from GLRLM

Feature Equation

Short Run Emphasis SRE = 1
nr

∑m
i=1

∑n
j=1

GR(i,j)
j2

Long Run Emphasis LRE = 1
nr

∑m
i=1

∑n
j=1GR(i, j).j2

Gray Level Non-uniformity GLN = 1
nr

∑m
i=1[

∑n
j=1GR(i, j)]2

Run Length Non-uniformity RLN = 1
nr

∑n
j=1[

∑m
i=1GR(i, j)]2

Run Percentage RP = nr

np

Low Gray-Level Run Emphasis LGRE = 1
nr

∑m
i=1

∑n
j=1

GR(i,j)
i2

High Gray-Level Run Emphasis HGRE = 1
nr

∑m
i=1

∑n
j=1GR(i, j).i2

Short Run Low Gray-Level Emphasis SRLGE = 1
nr

∑m
i=1

∑n
j=1

GR(i,j)
i2.j2

Short Run High Gray-Level Emphasis SRHGE = 1
nr

∑m
i=1

∑n
j=1

GR(i,j).i2

j2

Long Run Low Gray-Level Emphasis LRLGE = 1
nr

∑m
i=1

∑n
j=1

GR(i,j).j2

i2

Long Run High Gray-Level Emphasis LRHGE = 1
nr

∑m
i=1

∑n
j=1 GR(i, j).i2.j2

AngularSecondMoment =
n∑
i=1

[Pd(i)]
2 (3.4)

Entropy = −
n∑
i=1

Pd(i).log[Pd(i)] (3.5)

Mean =
1

m

n∑
i=1

Pd(i).i (3.6)
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3.2.2.4 Texture Feature Extraction using Laws Texture Energy Method

Law’s texture energy measures are derived from three simple vectors of length 3. The

first vector L=(1,2,1) is for the one-dimensional operations of center-weighted local

averaging. The second vector E=(-1,0,1) represents the symmetric first differencing

for edge detection, and the third vector S=(-1,2,-1) represents the second differencing

for spot detection. The three vectors,L,E and S are convolved with the transpose

of itself and with the transpose of others to form nine different 3 × 3 matrices. Of

these nine matrices, six matrices (LL, EE, SS, LE, ES, LS) are chosen as kernels.

To get the texture features, the above 3 × 3 kernels are convolved with the chosen

sub-image and energy of each resultant matrix is used to describe the texture [80].

Energy of any m × n matrix LP is computed using the Equation 3.7.

Energy(LP ) =
m∑
i=1

n∑
j=1

LP (i, j)2 (3.7)

3.2.2.5 Local Binary Pattern

LBP is a texture analysis method that makes use of the differences of intensities

surrounding a point [81]. As the name indicates, the LBP contains only two symbols

ie. 0 and 1. LBP is generated by comparing 8 neighbourhood pixels of the pixel

of interest. Zero is assigned to the neighbourhood if its intensity value is less than

the central pixel. Otherwise a value of 1 is assigned to it. Fig. 3.7 portrays the

LBP for the central pixel Z0. The difference between a neighbourhood pixel, Zi and

the central pixel Z0 is computed and binary pattern of length eight is generated

according to Equation 3.8.

LBP (Z0) =
8∑
i=1

S(Zi − Z0).2(8−i), whereS(x) =

1, if x ≥ 0

0, if x < 0
(3.8)
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Fig. 3.7. LBP Code for the Central Pixel

3.2.2.6 Local Ternary Pattern

One of the popular variation of LBP is LTP. Like LBP, LTP also considers 8 neigh-

bourhood intensity values of a pixel of interest. But it uses a threshold so that minor

variations (values below a selected threshold) are suppressed and only prominent

variations account for the pattern values. Fig. 3.8 shows the LTP code generation.

The variations below the selected threshold are not taken into account and coded

as zero. The positive difference between Zi (ithneighbouring pixel) and Z0 (central

pixel), which is beyond the threshold is coded as +1 and negative difference as −1.

The coded pattern is decomposed into two binary patterns considering either +1 or

−1 at a time and making others zero as shown in Fig. 3.8. The code generation is

done according to Equation 3.9 and Equation 3.10 [82].

LTP (1, Z0) =
8∑
i=1

S1(Zi − Z0).2(8−i), whereS1(x) =

1, if x ≥ t

0, if 0 < x < t
(3.9)

LTP (2, Z0) =
8∑
i=1

S2(Zi − Z0).2(8−i), whereS2(x) =

1, if −x ≥ t

0, if −x < t
(3.10)
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Fig. 3.8. LTP for the Central Pixel

3.2.3 Transform Based Features

Image transformations aim to exploit features from an image that are not easily

detected in spatial domain. Two transform based features are used in the current

study. Features extracted using FPS as well as SMRT are considered in this study.

3.2.3.1 Feature Extraction using FPS

Power spectrum gives the amount of signal at a particular frequency. To calculate

the FPS of an image I, calculate sample power spectrum using the Equation 3.11.

High values of the power spectrum near origin indicate coarseness while the spread

out values represent that the texture is fine.

ψ(u, v) = F (u, v).F ∗(u, v) = |F (u, v)2| (3.11)

where F stands for Fourier transform and * for complex conjugate. For the current

study, the features extracted from FPS are radial sum and angular sum [83]. The

equations for radial sum and angular sum are shown in Equation 3.12 and Equation

3.13 respectively.

φr1,r2 =
∑

r21≤u2+v2<r22

|F (u, v)|2 (3.12)

φθ1,θ2 =
∑

θ1≤tan−1(v/u)≤θ2

|F (u, v)|2 (3.13)
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3.2.3.2 Sequency Mapped Real Transform Based Features (SMRT)

SMRT as proposed in Jaya et al. [84] uses MRT coefficients Y
(p)
k1,k2 extracted for an

image block Xn1,n2, 0 < n1, n2 < N − 1, using Equation 3.14

Y
(p)
k1,k2 =

∑
∀(n1,n2)|z=p

Xn1,n2 −
∑

∀(n1,n2)|z=p+M

Xn1,n2 (3.14)

for 0 < k1, k2 < N−1 and 0 < p < M−1 whereM = N/2 and z = ((n1k1)+(n2k2))N

k1, k2 are the frequency indices and p is the phase index.

Selected MRT coefficients are reordered to form Sequency based MRT. Table

3.5 shows the placement of SMRT coefficients.

Table 3.5: Index Pattern of SMRT coefficients for N=8

0,0,0 0,1,0 0,1,1 0,1,2 0,1,3 0,2,0 0,2,2 0,4,0

1,0,0 1,1,0 3,1,0 5,1,0 7,1,0 1,2,0 3,2,0 1,4,0
1,0,1 1,1,1 3,1,1 5,1,1 7,1,1 1,2,1 3,2,1 1,4,1
1,0,2 1,1,2 3,1,2 5,1,2 7,1,2 1,2,2 3,2,2 1,4,2
1,0,3 1,1,3 3,1,3 5,1,3 7,1,3 1,2,3 3,2,3 1,4,3

2,0,0 2,1,0 2,1,1 2,1,2 2,1,3 2,2,0 6,2,0 2,4,0
2,0,2 6,1,0 6,1,1 6,1,2 6,1,3 2,2,2 6,2,2 2,4,2

4,0,0 4,1,0 4,1,1 4,1,2 4,1,3 4,2,0 4,2,2 4,4,0

For the current study, the image is divided into 8 × 8 sub-images. MRT

coefficients are calculated using Equation 3.14. SMRT features are extracted by

calculating the absolute sum of phase terms using Equation 3.15. [84] [85].

fk1,k2 =

∑Nb

i=1

∑
p |Y

p
k1,k2|

NXN
(3.15)

where Nb is the number of blocks and N ×N is the size of the image.
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3.3 Feature Selection Tools

Feature selection is the process of selecting features that can strongly represent the

image. Though both feature selection and dimensionality reduction tries to reduce

the total number of features in the feature set, feature selection selects relevant fea-

tures and excludes that are not relevant, whereas dimensionality reduction reduces

feature set by creating new combinations of attributes. Feature selection carried

out eliminates the features which are of no use in improving the performance of the

segmentation system. From the total set of features explained in section 3.2, an

optimized set of features are identified. Thus feature selection process minimizes

the complexity of the system.

Feature selection can be carried out using various techniques. Major categories

are explained in Table 3.6

Table 3.6: Categories of Feature Selection Techniques

No. Method Description Example

1 Filter Apply a statistical measure to assign a
scoring to each feature. The features are
ranked by the score and either selected to
be kept or removed from the dataset.

Chi squared test

2 Wrapper Consider the selection of a set of fea-
tures as a search problem, where different
combinations are prepared, evaluated and
compared to other combinations. A pre-
dictive model is used to evaluate a combi-
nation of features and assign a score based
on model accuracy.

Random
Hill-Climbing
algorithm,
Genetic Algo-
rithm

3 Embedded Learn which features best contribute to
the accuracy of the model while the model
is being created

Regularization
Methods

Unlike the filter methods, wrapper methods consider the relationships between

variables and tend to be more efficient. The working of wrapper method is presented

in Fig. 3.9. In each iteration a learning algorithm is executed to find out the clas-

sification efficiency by using the particular combination of features. In this study



Chapter 3. Tools Used 48

we used two wrapper methods, Genetic Algorithm (GA) and Particle Swarm Op-

timization (PSO), for feature selection. Back Propagation Network (BPN) is used

as learning algorithm in both methods. The methods are explained in Section 3.3.1

and in Section 3.3.2.

Fig. 3.9. Wrapper Technique for Feature Selection

3.3.1 Genetic Algorithm

GA is an adaptive heuristic search algorithms for optimization that mimic the pro-

cess of natural evolution. GA implement the optimization strategies by simulating

evolution of species through natural selection. Robustness is the main advantage of

GA. They do not break down easily even in the presence of reasonable noise or when

inputs are changed slightly. GA maintains a balance between efficiency and efficacy.

GA is a randomized algorithm which contains several iterations of sequential exe-

cution of three operations, selection, cross over and mutation. Instead of a single

solution, GA always works on a population of solutions. GA starts with a randomly

selected population (set of solutions). The fitness of each solution in the population

is then evaluated using a fitness function. Based on the fitness value a selection of

good solutions are done. Selection is followed by a crossover operation with proba-

bility Pc on a pair of selected solutions at randomly chosen sites to produce better

offsprings or solutions. The crossover is followed by mutation operation which is

done with a probability Pm. Mutation helps in recovering lost genetic materials and

randomly distributes genetic information. The three operations are done repeatedly

until the stopping condition is reached [86]. In each iteration, BPN evaluates the

accuracy of the system. Maximum number of iterations are chosen as the stopping
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condition for GA in this work. Roulette-Wheel technique is used to carry out se-

lection operation and single point cross over is done to create new offspring. The

values of various parameters and methods used in GA implementation is summed

up in Table 3.7.

Table 3.7: Values of the Parameters and Methods Used by GA for the Current
Study.

Cross
Over

Proba-
bility
(Pc)

Mutation
Proba-
bility
(Pm)

Selection
Pres-
sure
(β)

Mutation
Rate

Population
Size

Maximum
Itera-
tion

Cross
Over

Method

Selection
Tech-
nique

0.7 0.3 8 0.1 10 10 Single
Point

Crossover

Roulette
Wheel

3.3.2 Particle Swarm Optimisation

PSO is an optimisation method which tries to improve a candidate solution with

regard to a given measure of quality iteratively. The population of candidate solu-

tions, which are termed as particles, are moved around in search space according

to simple mathematical formulae over the particle’s position and velocity. Each

particle’s movement is influenced by two factors. They are

1. Particle’s local best known position

2. The best known position in the entire search space

The best known position is updated as better positions are found. This moves the

swarm towards the best solution [86].
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In this work, we used the basic version of PSO algorithm. It uses global

topology as the swarm communication structure. Global topology allows all particles

to communicate with all the other particles. Thus the whole swarm share the same

best position from a single particle.

Since PSO is a population based stochastic optimization technique, it shares

many similarities with evolutionary computation techniques. PSO is initialized with

a population of random solutions and searches for optima by updating generations.

The potential solutions or particles fly through the problem space by following the

current optimum particles. In each step, each particle is accelerated towards its

pbest (particle’s coordinates in the problem space which are associated with the

best solution so far) and lbest (the best value, obtained so far by any particle in the

neighbours ) locations. The parameters used by the PSO algorithm are enlisted in

Table 3.8

Table 3.8: Parameter Values Used by PSO for the Current Study.

Maximum
Velocity

Minimum
Velocity

Inertia
weight

Personal
Learning

Coefficient

Global
Learning

Coefficient

Population
Size

Maximum
Iteration

0.1 -1 0.66 1.36 1.36 20 20

3.4 Classification Tools

A classifier is a tool used to categorize the given data into a fixed number of classes.

Classifiers can be categorised based on the number of classes into which the entire

data are to be distributed and based on the learning technique. Based on the

number of classes, a classifier can be a binary classifier (number of classes equals 2)

or a multi-class classifier (number of classes greater than 2). Based on the learning

method, a classifier is either a supervised classifier or unsupervised classifier. For

the current work we need a multi-class classifier.
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3.4.1 Unsupervised Classifier

Training phase will be absent in unsupervised classification process due to the lack

of availability of training data. The entire data gets clustered according to their

feature values. The underlying principle of clustering tries to reduce the inter cluster

similarity and increase the intra cluster similarity. The cluster of the newly arrived

data is decided in such a way that it obeys the above mentioned principle. Fig. 3.10

shows the schematic diagram of an unsupervised learning.

Fig. 3.10. Unsupervised Learning Technique

3.4.2 Supervised Classifier

Supervised classification makes use of supervised learning technique and it is ap-

plicable only when training data (data with input / output pair ) are available.

In supervised learning, we have input variables (X) and output variables (Y ) and

we use an algorithm to learn the mapping function from the input to the output

Y = f(X). Fig. 3.11 shows the supervised learning method. The goal is to ap-

proximate the mapping function so well that when a new input data (xnew)arrives,

mapping function should be able to predict the output variable (Y ) for that data.

Supervised classification is carried out in two phases. The parameters are fixed

or models are created with the help of input/output pair during training phase.

When a new data arrives, it is classified with the help of the learned model or

parameters in the testing phase [87].



Chapter 3. Tools Used 52

Fig. 3.11. Supervised Learning Technique

Since the training data are available and supervised classifier performs much

better than unsupervised classifier, only supervised classifiers are engaged in this

work to segment the tumour affected brain MRI. The supervised methods for clas-

sification incorporated in this work are listed below.

1. K-Nearest Neighbour (KNN)

2. Support Vector Machine (SVM)

3. Artificial Neural Network (ANN)

4. Bagged Ensemble of Trees

3.4.2.1 K-Nearest Neighbour Classifier

K number of neighbours are chosen for a given input based on selected distance

measure. The class of a given object is decided based on the class of its K- nearest

neighbours. During the training phase, a KNN-Model is created using the input/out-

put pairs of data [88]. The parameters and their values for creating KNN model for

the current study are listed below.

1. Number of Neighbours = 10
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2. Distance Metric = Euclidean

3. Distance Weight = Squared Inverse

4. Priority = Uniform

In the second phase of classification the model created in the previous stage is

used to classify the newly arrived data with unknown class.

3.4.2.2 Support Vector Machine

In its original form, SVM is a binary supervised classifier. The classification is done

according to a chosen hyperplane. The choice of hyperplane is done in such a way

that the distance to the nearest point on each side of the hyperplane is maximized

[89].

There exist a number of ways to extend SVM as a multi-class classifier. The

methods available and the underlying technique are shown in Table 3.9.

Like any other supervised classifiers, SVM also go through learning phase and

testing phase. During training, an SVM model is created. The parameters and

corresponding values used in SVM model creation are listed below. The SVM model

is used in the next phase for classifying a given data with unknown class.

1. Kernel Function = Gaussian

2. Kernel Scale = 0.5

3. Box Constraint Level = 1

4. Multi Class Method = One Vs. One
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Table 3.9: Techniques for extending binary SVM to Multi-class SVM

Method Description
Number of
Learners (for N
class)

One vs.One (OVO)
Binary classifiers are learned con-
sidering only 2 classes at a time
while others are ignored.

N×(N−1)
2

One vs.All (OVA)
Binary classifiers are learned by
grouping single class in the first
group and rest in next group.

N

BinaryComplete
(BC)

All binary combinations of classes
are considered.

2(N−1) − 1

TernaryComplete
(TC)

All ternary combinations(-
1,0,+1) of classes are considered.

3(N−1)−2(N+1)+1
2

Ordinal
Kth classifier is learned by setting
first K classes as positive and rest
as negative.

N − 1

Sparse Random Random.
Approximately
15log2N

3.4.2.3 Artificial Neural Network

ANNs are computing systems inspired by the biological neural networks. An ANN

is based on a collection of connected nodes called artificial neurons. Each connec-

tion (analogous to a synapse in biological neural network) between artificial neurons

can transmit a signal. The artificial neuron that receives the signal, processes it

and triggers the subsequent neurons if the signal strength exceeds a threshold. The

interconnections among neurons have a weight that adjusts as learning proceeds.

Typically, artificial neurons are organized in layers. Different layers may perform

different kinds of transformations on their inputs. Signals travel from the first (in-

put), to the last (output) layer, possibly after traversing the layers multiple times

[87].
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In this work we used the BPN, which is a three layered neural network con-

sisting of input layer, hidden layer and output layer as shown in Fig. 3.12. During

the learning phase, errors are calculated at the output layer (difference between the

actual output and expected output) after processing a batch of data. The calcu-

lated errors are propagated backward to the hidden layer and then to the input

layer. During the backward propagation of errors, the interconnection weights are

updated using gradient descent technique. In this work a single hidden layer with

10 neurons is used.

Fig. 3.12. Layers of Artificial Neural Network

After the training session, the weights are fixed and a learned or trained neural

network is obtained. During the second phase, data with unknown class is given as

input to the trained network and the output of the network gives the class of the

given data.

3.4.2.4 Bagged Ensemble of Trees

A classification tree predicts the class of the given data. As shown in Fig. 3.13, a

classification tree is a binary tree (each node has a maximum of two children) which

contains a root node, intermediate nodes and leaf nodes. Each leaf node represents
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a single class in the given classification problem. Root node and each intermediate

node represents a decision criteria. The classification process starts from the root of

the tree. In all nodes except the leaf nodes, a check is carried out and based on the

results, the tree is traversed from root to leaf thus reaching a conclusion regarding

the class of the given data.

Fig. 3.13. A Classification Tree

Instead of a single tree, an ensemble of classification trees would yield better

results. There exists several ways for creating an ensemble of trees. In this study

bootstrap aggregation or bagging is used as ensemble technique. The parameters

and values assigned are listed below.

1. Ensemble Method = Bagging

2. Number of Learners = 200

3. Learning Rate = 0.1

4. Subspace Dimension = 1



Chapter 3. Tools Used 57

3.5 Data

Brain Tumour Segmentation (BraTS) challenge, which is organized every year, fo-

cuses on the segmentation of intrinsically heterogeneous brain tumours. BraTS chal-

lenge utilizes multi-institutional pre-operative MRI scans. The data base of BraTs

challenge contains both real and simulated data.

Real data from BraTS 2015 and BraTS 2016 databases are used for this work

[90]. The database contains images of fully anonymous cases from ETH Zurich, Uni-

versity of Bern, University of Debrecen, and University of Utah. All four modalities

(T1,T2,T1C and FLAIR) were available along with corresponding ground truth. All

were skull stripped and linearly co-registered with T1 image. Around 350 cases were

available of which 120 were chosen randomly. For each case 176 slices were avail-

able of which 5 slices were selected, based on their visual quality, to carry out the

segmentation. The images were taken in axial plane. MRI images corresponding to

21 cases were also collected from Hindlab MRI Scan Centre, Government Medical

College, Thrissur and Lakeshore Hospital, Cochin. All the considered images are

gray scale images. 75 % of the data was used for training and 25 % for testing.

All the experiments were conducted on a 64 bit Intel Core i3 machine with

1.8GHz speed and 4GB internal RAM. Matlab (2015) software was used for pro-

gramming.

3.6 Conclusion

Feature extraction tools, feature selection tools and classification tools used for the

study along with their parameters are discussed. The data used for this study, the

system and software through which programs were implemented are also explained.

All the features explained in this chapter pertain to an image of particular modality.

To improve the performance of the segmentation algorithm, features are derived

considering multiple modalities together. Such a feature extraction method ie Multi-

Spectral Pattern based Texture Features (MSPTF) is proposed in the next chapter.



Chapter 4

Multi-Spectral Pattern Based

Texture Feature

4.1 Introduction

The classification based segmentation starts with feature extraction. All the feature

extraction tools described in the previous chapter is capable of extracting features

from a single image. But in the case of MRI images, multiple modalities are available

and certain types of tissues are exposed in each modality. Features extracted from

a single modality can delineate particular types of tissues only. For example in

T1 weighted modality, both CSF and inflammation is shown as bright and fat as

dark. But in FLAIR image, CSF is dark and inflammation and fat is bright or light.

A new feature extraction technique, Multi Spectral Pattern based Texture feature

(MSPTF), that can make use of informations from multiple modality is proposed

in this chapter. The comparison of the proposed features and conventional features

in segmenting tumour and related sub-regions is carried out with the help of KNN

classifier, SVM classifier and Bagged Tree classifier.
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4.2 Multi Spectral Pattern Based Texture Fea-

ture Extraction

MSPTF is a newly proposed technique which uses multiple MRI modalities simul-

taneously to extract features that best describe each regions in a tumour affected

MRI. Each MRI modality highlights certain pathology of brain. Their combined use

will yield features that have high discriminating power among different components

of a tumour affected MRI. The proposed algorithm has three distinct phases which

are listed below.

1. Distance Vector (DV) calculation

2. Encoding Distance Vector

3. Transformation of coded vectors into binary format and feature extraction

The phases of MSPTF are described in Section 4.2.1, Section 4.2.2 and Section

4.2.3.

4.2.1 Distance Vector Calculation

In this initial phase, patient’s MRI images in n different modalities are supplied to

the algorithm as input. This phase transforms the images in different modalities

into distance vectors. For each pixel, a DV is calculated. The elements in the DV

are either positive integers or negative integers or zero depending on the intensity

of the pixel in various modalities.

DV is generated for each pixel in the image by comparing its intensities in

different MRI modalities. The size of DV depends on the number of MRI modalities

(n) considered. Compute differences of the corresponding pixel intensities consider-

ing two MRI modalities at a time. The distance vector DV is calculated, as shown

in Fig. 4.1. The size of DV is a function of n and it is given by the equation

Size(DV ) = n(n−1)
2

. DV is encoded in the second phase of the MSPTF extraction

algorithm.
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Fig. 4.1. Pairwise Distance Among all Modalities to Form DV of Size n(n−1)/2

4.2.2 Encoding Distance Vector

Input to this phase is a DV corresponding to a pixel and output is the Encoded

Distance Vector (EDV). The size of EDV is same as the size of DV.

The values in DV are encoded into 7 different values (0,+1,-1,+2,-2,+3,-3).

Three threshold values τ1 (lower threshold), τ2 (middle threshold) and τ3 (upper

threshold) are used for encoding purpose. Encoding is done according to the Equa-

tion 4.1.

EDV (i) =



0, if abs[DV (i)] < τ1

+1, if τ1 ≤ DV (i) < τ2

−1, if τ1 ≤ −(DV (i)) < τ2

+2, if τ2 ≤ DV (i) < τ3

−2, if τ2 ≤ −(DV (i)) < τ3

+3, if DV (i) ≥ τ3

−3, if −(DV (i)) ≥ τ3

(4.1)

4.2.3 Feature Extraction from Encoded Distance Vector

The final stage of MSPTF is the extraction of features from EDV. A seven-valued

EDV is given as input to this phase and six binary vectors (containing only 0’s and

1’s) are generated as output. All binary vectors have the same size as EDV.
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For conversion, a single value out of the seven values in the EDV is considered

at a time. All other values are made zero at this point. Thus six binary vectors are

generated for EDV(i) corresponding to +1, -1, +2, -2, +3 and -3 respectively.

The six binary vectors are then converted to decimal values to serve as features

for the pixel under consideration.

The output of MSPTF algorithm is stored in the matrix < . The entire algo-

rithm is presented in Algorithm 1. A numerical illustration of Algorithm 1 can be

seen in Appendix A.

Algorithm 1: Multi Spectral Pattern based Feature Extraction

Input: Images in n different MRI modalities, τ1, τ2, τ3

Output: Multi spectral pattern based feature set <
1: d1, d2 = size(image)
2: Initialize < to a 3D matrix of zeros of size d1 × d2 × [n × (n-1)/2]
3: Set the All modality 3D matrix M of size d1 × d2 × n with different

modalities of images given as input
4: for i=1 to d1 do
5: for j=1 to d2 do
6: Initialize count to 0. Initialize DV and EDV as zero vectors of size n ×

(n-1) /2 .
7: Calculate DV of the pixel Pi,j through step 9 to step 14
8: for l=1 to (n-1) do
9: for m=l+1 to n do

10: DV (count) = M(i, j, l)−M(i, j,m)
11: count = count+ 1
12: end for
13: end for
14: Encode DV of the pixel Pi,j using Equation 4.1 and store it in EDV.
15: Convert the 7 symbol EDV into 6 binary patterns b1, b2, b3, b4, b5 and b6

considering one symbol at a time and making others zero
16: Convert all binary pattern into corresponding decimal dc1, dc2, dc3, dc4, dc5

and dc6

17: <i,j = {dc1, dc2, dc3, dc4, dc5, dc6} .
18: end for
19: end for
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4.3 Performance Measures

To evaluate the proposed feature and compare it with other conventional features,

classification is performed.

The result of a classifier is measured using four parameters, True Positives

(TP), True Negatives (TN), False Positives (FP) and False negatives (FN). Table

4.1 can be used to elucidate the parameters.

Table 4.1: Parameters for Measuring Classification Result

Actual Condition A Not A

Classifier says ”A” TP FP

Classifier says ”Not A” FN TN

Precision, Sensitivity and Dice-Score are used for analysing the classification

results. These metrics make use of more than one above mentioned parameters.

Equation 4.2 through Equation 4.4 shows the definition of these metrics.

Precision =
TP

TP + FP
(4.2)

Sensitivity =
TP

TP + FN
(4.3)

Dice− Score =
2

1
Precision

+ 1
Sensitivity

(4.4)

Sensitivity is a function of TP and FN. A high sensitivity indicates that a class

has high TP and low FN. But this metric does not deal with FP. Unlike classification

in other images, both FN and FP are equally harmful in the case of medical images.

Thus a classifier which yields a significant sensitivity value for a particular class may

have a high FP , which is not desirable. On the other hand precision is a function

of TP and FP. It does not consider FN. Thus a third metric ie Dice-Score, which is

derived from sensitivity and precision is also used for the analysis of results.
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4.4 Analysis of Results

SVM, KNN and Bagged Tree classifiers are used to evaluate the performance of the

newly developed feature. Models for KNN classifier, SVM classifier and Bagged Tree

classifier are created using training data and parameter values mentioned in Section

3.4.2.1, Section 3.4.2.2 and Section 3.4.2.4 respectively. All the conventional methods

are executed in the four different modalities (FLAIR, T1, T1C, T2) independently.

For the developed method, all modalities are used together. The threshold values

used in MSPTF algorithm are computed by analysing the intensity values of tumour

sub-regions in various modalities. To calculate the thresholds, the range of intensity

differences are divided into three as shown in Equation 4.5.

A =
∆− δ

3
(4.5)

In Equation 4.5 ∆ represents the maximum of absolute value of intensity difference

and δ is the minimum of absolute value of intensity difference, of corresponding

pixels among all considered modalities.

Thresholds are calculated using Equation 4.6.

τk = δ + A ∗ (k − 1) (4.6)

Where k varies from 1 to 3.

For this study, the threshold values used are τ1 = 50, τ2 = 125 and τ3 = 200.

From the BraTs database of 350 cases, 120 cases are randomly chosen. For each

case, five slices were selected based on their visual quality. For all these images the

ground truths were available. From these images, m × n matrices were considered

which contains pixels corresponding to tumour and its sub-regions. A total of 592

features were derived from these matrices. These features are given as input to SVM,

KNN and Bagged Tree classifiers independently. A five fold cross validation is carried

out and confusion matrices are obtained. The performance measures mentioned in

Section 4.3 are retrieved from the confusion matrices. The framework of the system

is shown in Fig. 4.2.
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Fig. 4.2. System Framework

4.4.1 Analysis of Results of KNN Classifier

Table 4.2 shows the sensitivity measures of various classes when KNN classifier and

different feature sets are used.

Table 4.2: Sensitivity of KNN classifier with Different Features

CLASS FPS GLCM GLDM GLRLM LAWS LBP LTP SMRT MSPTF

N 0.68 0.61 0.61 0.38 0.57 0.58 0.62 0.69 0.78

NC 0.58 0.41 0.55 0.40 0.44 0.52 0.55 0.36 0.67

E 0.69 0.55 0.65 0.44 0.67 0.52 0.52 0.51 0.73

NET 0.39 0.37 0.29 0.36 0.37 0.39 0.46 0.32 0.48

ET 0.62 0.39 0.62 0.52 0.58 0.52 0.54 0.28 0.67

Results show that MSPTF features yielded a sensitivity of 0.78 for normal re-

gion, which is higher than the sensitivity given by other features. From the equation

of sensitivity, we can infer that 22 % of the total normal tissues were wrongly classi-

fied into other classes. In the case of edema, 73 % got correctly classified using the

developed feature extraction method. Although only less than half percent of the
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non-enhancing tumour cells are placed in correct class by MSPTF, it still worked

better than other existing features. Around 67 % of enhancing tumour got correctly

placed by MSPTF feature set.

All sub-regions got a better sensitivity when MSPTF features were employed.

But the sensitivity of normal tissue is a matter of concern since 22 % of the total

normal tissues were misclassified as affected. The graphical view of the sensitivity

measure is shown in Fig. 4.3

Fig. 4.3. Sensitivity of KNN classifier with Different Features

Precision measure of a class depends on TP and FP. A greater value of pre-

cision for a class implies more number of objects of that class got exactly classified

and/or the number of other class objects that were inappropriately classified into

this particular class is less. Precision of the five classes, when feature sets extracted

using the considered conventional methods and the developed method is presented

in Table 4.3.

From the results, it is clear that for all classes, the MSPTF gave a precision

value much better than other existing methods. Except NET, the precision for all

other classes were above 0.67 when the developed features were used. In the case

of normal tissues, the precision using KNN classifier is 0.76. This implies that a
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Table 4.3: Precision of KNN classifier With Different Features

CLASS FPS GLCM GLDM GLRLM LAWS LBP LTP SMRT MSPTF

N 0.70 0.64 0.65 0.49 0.52 0.59 0.62 0.59 0.76

NC 0.63 0.46 0.54 0.51 0.56 0.57 0.58 0.49 0.69

E 0.57 0.45 0.61 0.47 0.57 0.52 0.54 0.39 0.67

NET 0.45 0.39 0.37 0.38 0.40 0.40 0.44 0.35 0.53

ET 0.65 0.45 0.55 0.34 0.61 0.47 0.51 0.36 0.70

number of objects that actually belong to the affected classes were misclassified into

normal class by the KNN classifier. The graphical representation of the precision

measures are shown in Fig. 4.4 .

Fig. 4.4. Precision of KNN classifier with Different Features

Dice-Score for different classes, when a KNN classifier is employed, are shown

in Table 4.4. The results are presented in Fig. 4.5 in chart form.

Results reveal that the Dice-Scores using MSPTF feature set are much greater

than Dice-Scores using other features when KNN classifier is applied. For normal

region, KNN classifier gave a Dice-Score of 0.77 using MSPTF features. For all the
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Table 4.4: Dice-Score of KNN classifier in Segmenting Tumourous MRI

CLASS FPS GLCM GLDM GLRLM LAWS LBP LTP SMRT MSPTF

N 0.69 0.63 0.63 0.43 0.54 0.59 0.62 0.63 0.77

NC 0.60 0.43 0.55 0.45 0.49 0.54 0.57 0.41 0.68

E 0.63 0.49 0.63 0.45 0.62 0.52 0.53 0.44 0.70

NET 0.42 0.38 0.32 0.37 0.38 0.40 0.45 0.33 0.50

ET 0.64 0.42 0.58 0.41 0.59 0.50 0.53 0.31 0.68

Fig. 4.5. Dice-Score of KNN classifier with Different Features

classes except NET, MSPTF yielded a Dice-Score greater than or equal to 0.68. For

NET the Dice-Score given by KNN classifier is 0.50.

4.4.2 Result Analysis of SVM classifier

Feature sets obtained using 9 different feature extraction methods including the

developed one are given to the SVM classifier and the results are analysed based on

3 measures.
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The analysis of sensitivity of SVM classifier using different feature sets is shown

in Table 4.5 and in Fig. 4.6.

Table 4.5: Sensitivity of SVM classifier with Different Features

CLASS FPS GLCM GLDM GLRLM LAWS LBP LTP SMRT MSPTF

N 0.76 0.95 0.74 0.82 0.72 0.55 0.57 0.71 0.80

NC 0.21 0.00 0.45 0.00 0.08 0.45 0.47 0.44 0.61

E 0.80 0.22 0.59 0.40 0.47 0.58 0.60 0.56 0.80

NET 0.12 0.01 0.27 0.00 0.11 0.37 0.37 0.23 0.59

ET 0.43 0.00 0.59 0.00 0.69 0.44 0.46 0.28 0.67

Fig. 4.6. Sensitivity of SVM classifier with Different Features

From the analysis it is clear that FPS, GLCM, GLRLM and LAWS feature

sets did not perform consistently. Sensitivity given by GLCM, FPS, GLRLM and

LAWS texture feature sets for NC and NET classes fall below 25 % . GLCM and

GLRLM sensitivity for all classes except normal and edema classes are almost zero.

This implies that most of the pixels got classified into normal class and some of the

remaining into edema class when GLCM or GLRLM feature sets were used. The

proposed feature set gave a sensitivity of 0.80 for both normal and edema regions.

For necrotic core and non-enhancing tumour classes, MSPTF feature set yielded a
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sensitivity of 0.61 and 0.59 respectively. But compared to other feature sets, MSPTF

gave better results for all the classes except ET. Laws Texture energy delivered a

sensitivity of 0.69 for ET which is higher than the sensitivity given by MSPTF. But

the sensitivity of all other classes using Laws Texture energy are much less.

Table 4.6 and Fig. 4.7 show the precision measures of the 5 different classes

when SVM classifier is applied to various feature sets.

Table 4.6: Precision of SVM classifier with Different Features

CLASS FPS GLCM GLDM GLRLM LAWS LBP LTP SMRT MSPTF

N 0.59 0.32 0.53 0.30 0.42 0.52 0.53 0.64 0.67

NC 0.85 1.00 0.61 0 0.76 0.52 0.53 0.40 0.87

E 0.39 0.33 0.65 0.27 0.71 0.50 0.53 0.42 0.68

NET 0.65 0.76 0.46 0.00 0.65 0.43 0.44 0.32 0.68

ET 0.62 0.00 0.52 0.00 0.37 0.45 0.46 0.41 0.74

Fig. 4.7. Precision of SVM classifier with Different Features

Results show that for normal class, the proposed feature set gave a precision of

0.67, which is much higher than the precision produced by other feature sets. In the

case of NC and NET, even though GLCM features returned a precision of 1 and 0.76
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respectively, for other classes the precisions were very less compared to other feature

sets. For edema class, LAWS features produced the best precision. But for other

classes, results were much less compared to the best precision values in each class.

Although the developed feature set could produce the best precision for normal and

enhancing tumour class only , it performed consistently for all other classes.

KNN classifier gave a better precision for normal class than SVM classifier

when MSPTF was used. This clearly indicates that normal class was not easily

separable using the decision plane selected for SVM. Also KNN generated a highly

convoluted decision boundary driven by the training data for normal class.

Table 4.7 and Fig. 4.8 shows the SVM classifier’s Dice-Scores when the existing

and developed feature sets are used.

Table 4.7: Dice-Score of SVM classifier with Different Features

CLASS FPS GLCM GLDM GLRLM LAWS LBP LTP SMRT MSPTF

N 0.66 0.48 0.62 0.44 0.53 0.53 0.55 0.67 0.73

NC 0.34 0.00 0.52 0.00 0.14 0.48 0.50 0.41 0.71

E 0.53 0.27 0.62 0.32 0.57 0.54 0.57 0.48 0.73

NET 0.20 0.01 0.34 0.00 0.19 0.40 0.40 0.27 0.64

ET 0.51 0.00 0.55 0.00 0.48 0.44 0.46 0.34 0.70

For all classes except non-enhancing tumour class, MSPTF features returned

a Dice-Score that lies between 0.70 and 0.73. For non-enhancing tumour class the

Dice-Score of MSPTF feature set is 0.64. But the second highest value of DS given

by SVM classifier is by using 0.40, which was given by both LBP feature and LTP

features

For all classes MSPTF gave maximum DS. DS value using other features were

much less than that using MSPTF for all ROI.
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Fig. 4.8. Dice-Score of SVM classifier with Different Features

4.4.3 Result Analysis of Bagged Tree classifier

Comparison of the sensitivity values is shown in Table 4.8 and Fig. 4.9. For all the

classes except NC and ET, MSPTF features gave the maximum sensitivity using

Bagged Tree classifier.

Table 4.8: Sensitivity of Bagged Tree classifier with Different Features

CLASS FPS GLCM GLDM GLRLM LAWS LBP LTP SMRT MSPTF

N 0.83 0.76 0.68 0.55 0.70 0.70 0.72 0.83 0.85

NC 0.63 0.42 0.48 0.42 0.40 0.49 0.33 0.54 0.60

E 0.75 0.59 0.65 0.54 0.67 0.67 0.69 0.66 0.75

NET 0.48 0.38 0.35 0.30 0.28 0.42 0.32 0.45 0.58

ET 0.73 0.43 0.66 0.37 0.67 0.79 0.65 0.33 0.68

The Precision values are shown in Table 4.9 and Fig. 4.10.

Comparison of precision reveals that LBP features gave the maximum result

for NC (1.00) and NET (0.93) regions. These values are much higher than the second

highest values. But for the remaining classes, the results were poor. The high values
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Fig. 4.9. Sensitivity of Bagged Tree classifier with Different Features

Table 4.9: Precision of Bagged Tree classifier with Different Features

CLASS FPS GLCM GLDM GLRLM LAWS LBP LTP SMRT MSPTF

N 0.76 0.67 0.62 0.48 0.60 0.59 0.58 0.70 0.77

NC 0.70 0.59 0.61 0.49 0.59 1.00 0.59 0.62 0.67

E 0.70 0.49 0.63 0.46 0.58 0.62 0.63 0.54 0.71

NET 0.60 0.47 0.46 0.39 0.50 0.93 0.47 0.47 0.62

ET 0.70 0.53 0.55 0.40 0.57 0.54 0.55 0.49 0.72

for NC and NET and comparatively low precision for other classes indicates that

many of the pixels that truly belonged to NC and NET got misclassified into other

classes by the classifier when LBP features were used. MSPTF got the second highest

precision for NET (0.62) and it performed consistently for all classes. It gave the

best precision values for N, E and ET.

The comparison of Dice-Score can be viewed in Table 4.10 as well as in Fig.

4.11.

Comparison of Dice-Score, which is considered to be a more reliable measure
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Fig. 4.10. Precision of Bagged Tree classifier with Different Features

Table 4.10: Dice-Score of Bagged Tree classifier with Different Features

CLASS FPS GLCM GLDM GLRLM LAWS LBP LTP SMRT MSPTF

N 0.80 0.72 0.65 0.51 0.65 0.64 0.64 0.76 0.80

NC 0.66 0.49 0.54 0.46 0.48 0.66 0.43 0.58 0.63

E 0.72 0.53 0.64 0.50 0.62 0.64 0.66 0.59 0.73

NET 0.53 0.42 0.40 0.34 0.36 0.57 0.38 0.46 0.60

ET 0.71 0.48 0.60 0.39 0.61 0.64 0.60 0.40 0.70

than the other two measures, reveals that the proposed MSPTF features outweighed

all other features in classifying Normal, Edema and NET regions. For other classes

too, the developed feature gave the second best Dice-Scores. The highest DS value

for necrotic core was given by both FPS features and LBP features when bagged

tree classifier was employed.
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Fig. 4.11. Dice-Score of Bagged Tree classifier with Different Features

4.5 Conclusion

A new feature extraction technique considering a fusion of multiple MRI modalities

is described in this chapter. Performance measures used to evaluate various results

in the thesis are mentioned. The effectiveness of the proposed MSPTF features in

classifying tumour sub-structures are evaluated with three classifiers. It is seen that

MSPTF outperformed other features in classifying the tumour and its sub-regions.

The objective of the work is to segment the tumour and its sub-regions. The next

chapter describes in detail the developed HAC based segmentation technique.



Chapter 5

Hierarchical Agglomerative

Clustering Based Combined

Feature Selection and

Classification

5.1 Introduction

A new classification based segmentation method is proposed in this chapter. A total

of 592 features has been derived as discussed in Chapter 4. After the extraction of

features, the next step usually performed is feature selection. During the feature

selection stage, features that support the classification are filtered out from other

features. The job of a good feature selection technique is two fold.

1. Remove the redundant features.

2. Remove the features that decelerate classification results.

In the newly proposed method, feature selection and classification are simul-

taneously performed to segment the tumour region.

77



Chapter 5. Hierarchical Agglomerative Clustering Based Combined Feature
Selection and Classification 78

Based on the number of classes, classification methods can be categorized as

binary classification and multi-class classification. If the number of classes are only 2,

binary classification techniques can be applied. But if the number of classes exceeds

two, we should go for a multi-class classification technique. The scenario is presented

in Fig. 5.1. Selection of features for multi-class classification is more complex than

selecting features for binary classification. For example consider the scenario of

selecting features for classifying n classes. There is a possibility that inclusion of the

features that are good enough in distinguishing two classes, say class 1 and class 2,

may worsen the system’s capability in differentiating another pair of classes. Thus

in multi-class classification, we may sometimes have to compromise on prominent

features that are excellent in classifying a pair of class due to their adverse effect

on another pair. The complication in multi-class classification can be reduced by

making it a multi-layer binary classification. Fig. 5.2 shows the reconstruction of

multi-class classification problem into a multi-layer binary classification problem.

The reconstruction has given an opportunity to select best suitable feature set for

each pair of class separately.

The proposed technique, which employs Hierarchical Agglomerative Cluster-

ing (HAC), decomposes multi-class classification problem into multi-layer binary

classification. It also combines feature selection and classification. Thus a fusion

of feature selection and classification is incorporated in the HAC based classifier.

The proposed technique is evaluated by comparing the results with state of the art

methods.

5.2 Hierarchical Agglomerative Clustering

HAC is a bottom up clustering technique in which initial number of clusters equals

the total number of objects to be classified and merging of clusters are done in each

step using a selected distance metric and linkage criteria. The algorithm proceeds

until all the objects are clustered under a single cluster. Step by step merging of

objects based on the distance metric, linkage criteria and the corresponding distance

can be plotted using a dendrogram [91]. Fig. 5.3 shows a hierarchical agglomerative

clustering of 30 objects. Initially each object is placed in to an individual cluster
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Fig. 5.1. Multi-class classifier and Binary Classifier

Fig. 5.2. Reconstruction of Multi-Class classification into Multi-Layer Binary
Classification

so that the number of clusters equals the number of objects. In each step, objects

with more similarity are combined to form a single cluster, thus reducing cluster

numbers. The process is continued until all the objects come under a single cluster.

Dendrogram gives a clear idea about the number of major clusters and inter-cluster

distances.
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Fig. 5.3. Hierarchical Agglomerative Clustering of 30 objects

5.3 HAC based Feature Selection and Classifica-

tion

A new method based on HAC, which is able to do feature selection and classifica-

tion together, is developed. The developed method is a supervised classifier. Like

any other supervised classifier, this method also has a learning phase. During this

phase, classification models are created with the help of data with known class. The

models are used in the next phase to reveal the class of a new data with unknown

class. Feature selection and classification model creation are done according to the

algorithm presented in Algorithm 2.

5.3.1 Learning Phase of the Developed Method

Learning of the proposed supervised classifier is carried out according to Algorithm

2.
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Algorithm 2: HAC based Feature Selection and Creation of Classification Models

Input: 1. F - A matrix of order m × n ( set of n features of m observation.)
Input: 2. L - Label vector of order m × 1.
Input: 3. k - number of distinct classes.
Input: 4. (k-1) number of separately trained SVMs.
Output: 1. S - A set of (k-1) pair of classes
Output: 2. F

′
- A set of (k-1) feature sets.

1: Organize the observations, corresponding features and labels according to the
class in which they belong to form k groups G(0) through G(k − 1)

2: for i=0 to k-1 do
3: for j=1 to n do
4: AVGF(i,j)=mean(values of jth feature in ith class/group)
5: end for
6: end for
7: Cluster the data in the matrix ’AVGF’ of order k × n using HAC technique .
S = HAC(AV GF )

8: Step 7 gives a matrix S of dimension (k-1) × 2. Each row in S represents a
pair of class. The distance between the member classes in each pair are also
given as output by HAC.

9: for g=1 to k-1 do
10: For the pair of classes [S(g,1) ,S(g,2)],select a set of best features F

′
(g) that

discriminate S(g,1) from S(g,2) through Step 11.
11: F

′
(g) = Fga(g) ∩ Fpso(g), where Fga(g), is the set of features selected by GA

and Fpso(g) is the set of features selected by PSO for the pair of classes
[S(g,1),S(g,2)].

12: Create an SVM model, SVM(g), for classifying S(g,1) and S(g,2) using the
selected features from step 11.

13: end for

Algorithm 2 modifies multi-class classification scheme into multi-layer binary

classification scheme. The algorithm has two distinct phases as given below.

1. HAC based Clustering

2. Feature Selection and Creation of SVM models
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5.3.1.1 HAC based Clustering

The inputs to this phase are n features of m observations, the number of classes ’k’

and true class label of each observation. The output will be a set S of pair of classes

along with the distance between the member classes in each pair.

After getting the inputs, Algorithm 2 rearranges the input feature matrix ac-

cording to the class of each data. The reorganization groups the features of data in

the same class together. The mean value of each feature in each class is calculated.

This results in a k × n matrix. HAC is performed to the resultant matrix. The

output of HAC is a table S of (k-1) number of class pairs which are sorted according

to the distance between member classes. S serves as a look up table during testing

phase.

The next phase make use of the outputs of HAC to generate classification

models.

5.3.1.2 Feature Selection and Creation of SVM Models

The class pairs provided by HAC will be ordered according to the distance between

the member classes in the pair. For a pair of class in the table S, feature selection

is carried out using both PSO and GA. A fusion of features selected by both the

methods are used for discriminating member classes of that particular pair. Using

the selected feature set, an SVM model is created. The outputs of this phase are

listed below.

1. A set of (k-1) pair of classes sorted according to distance

2. A set of (k-1) number of feature sets, F
′

3. (k-1) number of SVMs corresponding to each pair of classes

.
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5.3.2 Testing Phase of the Developed Method

Testing is carried out using the set of feature sets F
′

and the SVMs obtained during

training. A set of observations and their features are given as input to the trained

classifier. The classifier finds out the label of each observation. The procedure for

testing is mentioned below.

1. Take SVM(k-1) to classify the set of observation.

2. Do the binary classification using the feature set F
′
(k − 1).

3. Label the output of binary classification according to the look up table S.

4. Remove the labelled observations from the observation set.

5. Set k=k-1 and repeat the steps from 1 to 4 until k becomes 0

5.3.3 Application of the Developed Algorithm in the Study

During the learning phase, all features of the data extracted using conventional

methods discussed in Chapter 3 and developed method described in Chapter 4 are

presented to Algorithm 2. For every pixel, all the features are extracted since this

method involves a pixel by pixel classification. Along with the extracted features of

observations, their corresponding class labels as well as total number of classes k,

which in the current study is 5, are also provided as inputs.

The algorithm starts by grouping the entire set of observations according to

the class they belong (from class 0 through class 4). 5 different groups G0 through

G4 are formed. Mean values of each feature in each group is computed to form a
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5 × n matrix AV GF , where n is the number of features. The average value of a

feature j in a particular group Gi is determined by the Equation 5.1.

AV GFi,j =

∑l
z=1G

i
j,z

l
(5.1)

where l is the number of observations in the ith group and Gi
j,z is the value of

jth feature of zth observation in Group Gi.

The resultant matrix AV GF is clustered using HAC technique. The chosen

distance metric is euclidean. HAC outputs 4 pairs of class indices. The output

of HAC is a dendrogram showing how the classes got paired during clustering and

the distance between the member classes in a pair. The dendrogram obtained for

the current study is shown in the Fig. 5.3. The pair of classes generated by HAC

algorithm sorted according to the distance among them are shown in Table 5.1. Each

class inside the class pair can be a class in its original form or a class formed by

combining two or more classes. From Table 5.1, it is evident that distance between

[3 4] is less than distance between [2 3,4] and so on. Single linkage algorithm is used

for computing distance between clusters. In Fig. 5.4, the classes are numbered from

1 to 5 and they correspond to Normal, NC, E, NET and ET respectively. From

Fig. 5.4 it clear that normal class has maximum distance from other classes. So it

is comparatively easy to classify affected area from normal area. The classes with

least distance is edema and non-enhancing tumour. Table 5.1 shows that normal

class and the class formed by the combination of all other classes has the longest

distance which is equal to 0.0293, and hence can be classified easily. The next longest

distance is 0.0168 between class 5 and the class formed by combining classes 2,3 and

4

The algorithm selects 4 set of features corresponding to each pair of classes.

The feature set F
′
(g) for classifying the member classes of gth pair is chosen using

the Equation 5.2.

F
′
(g) = Fga[S(g, 1), S(g, 2)] ∩ Fpso[S(g, 1), S(g, 2)] (5.2)

where Fga[S(g, 1), S(g, 2)] and Fpso[S(g, 1), S(g, 2)] are the sets of features selected

by GA and PSO respectively for classifying the classes S(g,1) and S(g,2).
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Fig. 5.4. Dendrogram Generated by HAC

Table 5.1: Pair of Classes Given by HAC Algorithm and Their Distances.

Pair of
Classes

[ 3 4 ] [ 2 { 3,4} ] [ 5 {2,3,4} ] [ 1 {5,2,3,4} ]

Distance 0.0092 0.0117 0.0168 0.0293

Finally, using the four sets of feature sets, four SVM models are constructed.

Thus each class pair generated using HAC has its own feature set and SVM model

for classification. The following are the outcomes of learning phase.

1. Four pairs of classes and their distances

2. Four feature sets

3. Four binary SVM models

During the testing phase, all the outputs obtained during training are used to

label the observation with unknown class. Using the feature set F
′
(4) and SVM(4),
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the initial observation set is classified. Based on the result, observations are cate-

gorized either as normal or belonging to other classes. SVM(3) and F(3) are used

to perform the next binary classification. Enhancing tumour is separated by this

classifier. The next binary classification by SVM(2) and F(2), differentiates NC.

The final binary classification by SVM(1) is used for categorizing edema and non-

enhancing tumour. An illustration of the testing phase is given in Fig. 5.5. The

learning curves of GA and PSO are shown in Appendix B.

Fig. 5.5. Testing Procedure of the Developed Classifier

5.4 Results and Analysis

This section presents the results of the developed classifier. The comparison of

the results obtained through the developed method with the results of conventional

techniques are also presented. The selected conventional techniques use either GA or

PSO for feature selection. The parameters as mentioned in Section 3.3.1 is used for
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GA and in Section 3.3.2 is used for PSO. The classification is carried out using KNN,

SVM Bagged tree and ANN classifiers. The parameters for the model construction

of these classifiers are mentioned in Section 3.4.2.1, Section 3.4.2.2, Section 3.4.2.4

and Section 3.4.2.3 respectively. The metrics used for evaluation are Sensitivity,

Precision and Dice-Score. The tables from Table 5.2 to 5.4 shows the results.

Table 5.2: Comparison of Sensitivity of Different Feature Selection - Classifica-
tion Algorithm Combinations with the Developed Method.

CLASS GA+

SVM

PSO+

SVM

GA+

KNN

PSO+

KNN

GA+

BAGTREE

PSO+

BAGTREE

GA+

ANN

PSO+

ANN

NEW

CLASSI-

FIER

N 0.800 0.810 0.790 0.800 0.892 0.892 0.786 0.780 0.910

NC 0.689 0.701 0.685 0.690 0.669 0.677 0.676 0.685 0.816

E 0.805 0.813 0.744 0.754 0.810 0.816 0.740 0.750 0.856

NET 0.594 0.637 0.508 0.540 0.606 0.619 0.571 0.587 0.794

ET 0.798 0.798 0.798 0.811 0.793 0.793 0.789 0.822 0.822

By analysing Table.5.2, it is clear that all the other classes except NET have a

sensitivity value greater than 0.8 when the developed classifier is used . The devel-

oped method gave a sensitivity value of 0.794 for NET, while PSO+SVM method

gave 0.637 which is the maximum sensitivity for NET among conventional methods.

But the sensitivity of ET using the developed method is same as the sensitivity

value using PSO+ANN method. All other classes got an elevated sensitivity using

the developed method. Fig. 5.6 shows the sensitivity results in 2-D chart.

Comparison of precision values of the developed method with other methods

used in the study are shown in Table 5.3. Only Normal class and necrotic core has

a precision which is greater than 0.8 when conventional methods are applied. All

other classes fall below 0.8, among which NET has the worst result. Using PSO

+ SVM, the precision for NC class is found to be the maximum (0.903). But all

other classes including the normal class has very less precision when PSO + SVM is

used. The developed method gives a precision of 0.819 for NC which is less than the

precision given by PSO + SVM and GA + SVM. This indicates that the feature set

given by the intersection of GA selected features and PSO selected features resulted

in a hyperplane which was not good as the hyperplane produced by GA features
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Fig. 5.6. Sensitivity Comparison of the Developed Method with Other Popular
Methods

alone and PSO features alone for NC classification. But the remaining classes got

an increased precision value using the developed method which means that either

true positives increased or false positives decreased for all the classes except NC.

The graphical view of the precision measures are shown in Fig. 5.7.

‘

Table 5.3: Comparison of Precision of Different Feature Selection - Classification
Algorithm Combinations with the Developed Method.

CLASS GA+

SVM

PSO+

SVM

GA+

KNN

PSO+

KNN

GA+

BAGTREE

PSO+

BAGTREE

GA+

ANN

PSO+

ANN

NEW

CLASSI-

FIER

N 0.723 0.738 0.806 0.811 0.837 0.842 0.794 0.807 0.872

NC 0.902 0.903 0.719 0.732 0.749 0.752 0.721 0.717 0.819

E 0.718 0.731 0.707 0.728 0.767 0.780 0.727 0.747 0.870

NET 0.719 0.739 0.561 0.588 0.705 0.699 0.594 0.615 0.789

ET 0.765 0.774 0.748 0.754 0.760 0.764 0.741 0.749 0.851
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Fig. 5.7. Comparison of Precision of the developed method with other popular
methods

Dice-Score is a more reliable measure which considers true positives, false pos-

itives and false negatives together. The Dice-Score results are shown in Table 5.4

and graphically in Fig. 5.8.

Table 5.4: Comparison of Dice-Score of Different Feature Selection - Classifica-
tion Algorithm Combinations with the Developed Method.

CLASS GA+

SVM

PSO+

SVM

GA+

KNN

PSO+

KNN

GA+

BAGTREE

PSO+

BAGTREE

GA+

ANN

PSO+

ANN

NEW

CLASSI-

FIER

N 0.760 0.772 0.798 0.806 0.864 0.866 0.790 0.793 0.890

NC 0.781 0.789 0.701 0.711 0.707 0.713 0.697 0.700 0.818

E 0.759 0.770 0.725 0.741 0.788 0.798 0.733 0.749 0.863

NET 0.650 0.684 0.533 0.563 0.652 0.657 0.583 0.601 0.791

ET 0.781 0.786 0.772 0.782 0.776 0.779 0.764 0.784 0.836

The Dice-Score results show that all classes got the advantage by the developed

classifier. NET region got the maximum increase in the Dice-Score value using the

developed classifier. The developed method is able to lift the classification results
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Fig. 5.8. Dice-Score comparison of the developed method with other popular
methods

in various measures by dividing the multi-class classification into several binary

classification stages. All the classes got the advantage of selecting separate feature

set for every pair of classes.

5.5 Conclusion

A new supervised classifier that incorporates a fusion of feature selection and clas-

sification is developed in this chapter. Both learning phase and testing phase are

described in detail. The application of the developed technique to segment the

tumour and its related sub-regions from MRI is also presented. The results of com-

parison of developed method with various combinations of conventional methods are

shown in tabular form and graphically. The Sensitivity, Precision and Dice-Score

values highlights the performance of the developed method.

The Dice Score of normal region was 0.89 using the developed classifier. All

other regions’ Dice-Score lies in the range of 0.79 and 0.86. Though the developed
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feature set and classifier elevated the segmentation results, medical application de-

mands better result. A refinement technique is proposed in the next chapter as an

attempt to improve segmentation results further.



Chapter 6

Classification Refinement using

Wrong Sequence Search Algorithm

6.1 Introduction

This work proposes a classification based segmentation technique. Though the devel-

oped classification method described in Chapter 5 gave better classification results

than other conventional methods for all regions, medical images demand better val-

ues to improve diagnosis and thus treatment planning. A method for refining the

classification results and thus the segmentation process is proposed in this chapter.

The proposed method is not a classifier on its own. It is suitable for correcting the

misclassified pixels in an image whose sub-regions to be segmented follows a known

pattern.

The presence of edema surrounding the brain tumour is common. Also tumour

grow by dividing cells forming a closed shape. The presence of edema and growth

of tumour core is shown in Fig. 6.1. Thus by analysing the pattern of pixels in all

possible directions, the classification results can be improved. The proposed Wrong

Sequence Search (WSS) technique passes through two phases which are listed below.

1. Finding out the probability of misclassification of a pixel

93
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Fig. 6.1. Pattern of Presence of Edema and Tumour Core

2. Finding out the new class label for the pixel with a high misclassification

probability

This method analyses patterns in all possible directions which necessitates

keeping track of the location of the pixel as well as class label of neighbouring pixels

given by the classifier. The method is detailed in the following section. Comparison

of results before and after the application of the refinement technique is presented in

Section 6.3. The qualitative results are shown in Section 6.6. The newly developed

segmentation system is compared with state of the art methods in Section 6.6.

6.2 Wrong Sequence Search Algorithm

The classifier labels the pixels in various sub-regions of a tumour affected MRI. The

labels given by the classifier for different regions are listed below

• Normal - 0

• NC - 1
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• E - 2

• NET - 3

• ET - 4

The WSS algorithm in this work depends on the following domain specific knowledge.

1. A Tumour Core (NC+NET+ET) will be a closed region.

2. The presence of peri-tumoural edema is common in most of the cases.

The pattern of occurrences of normal, edema and tumour core are known. But

the pattern of NC,NET and ET in the tumour core is unknown. The labels given by

the classifier is modified as shown below before the application of WSS algorithm.

1. Normal - 0

2. Edema - 1

3. Tumour core - 2

WSS algorithm requires a tree data structure whose generation is explained in

Algorithm 3 in Section 6.2.1. Wrong Sequences are defined in Section 6.2.2. Calcu-

lation of probability of misclassification of a pixel and the new label identification if

required is described in Section 6.2.3
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6.2.1 Octonary Tree

A tree is a hierarchical open data structure which has nodes and links. One of the

node is termed as root, from which the tree originates. A node can have multiple

children . In an octonary tree, the root node has exactly 8 child nodes and each

child grows in a single direction. The eight different paths from the root node to

leaf nodes in the octonary tree represents the 8 different directions from the central

pixel. The central pixel corresponds to the root node, from where the pattern in

eight possible directions are analysed. The central pixel and 8 possible directions

(East, West, South, North, NorthEast, NorthWest, SouthEast and SouthWest) are

shown in Fig. 6.2.

Fig. 6.2. Each Direction Corresponds to a Branch in the Octonary Tree

Octonary Tree Generation

Let D be the set {+1,−1,+d2,−d2,+(d2 + 1),−(d2 + 1),+(d2 − 1),−(d2 − 1)}
, where each element in D represents a direction. D(1) = +1 represents south

direction D(2) = −1 represents north direction etc. Generating a tree of depth

ρ, for a pixel Xi,j in an image of dimension d1 × d2 is bounded by the following

conditions

1 ≤ mod[kD(u), d1] ≤ d1, for u = 1, 2 (6.1)

1 ≤ mod[kD(u), d2] ≤ d2, for u = 3, 4 (6.2)
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1 ≤ mod[kD(u), d1] ≤ d1 and

1 ≤ mod[kD(u), d2] ≤ d2, for u = 5, 6, 7, 8.
(6.3)

k represents any positive integer that lies between 1 and the tree depth ρ. In Fig.

6.2 d1=5 and d2=5. The branches corresponding to u=4,5,7 cannot grow longer

than 1, even though ρ is set 10, since it reached its boundary. Also the branch

corresponding to direction u=1,2,6 and 8 cannot expand beyond a length of 2. Thus

all the leaves of the tree corresponding to the boundary pixels will not be in the

same level. Tree generation is presented in Algorithm 3. The tree generation has

two phases as listed below.

1. A tree, T1,of depth 1 is generated with root node and 8 child nodes.

2. Eight unary trees (each node having only single child) of depth ρ− 1 are gen-

erated and attached to each leaf nodes of T1 making the depth of the tree ρ.

Algorithm 3: Tree Generation Algorithm

Input: The labelled image I returned by the classifier, The pixel position Xi,j

whose octonary tree is to be generated, The depth of the tree ρ
Output: A labelled octonary tree T1 of depth ρ corresponding to the input pixel

Xi,j

1: Vectorize I to get the vector V. Let Xi,j be placed in position p in V.
2: Root(T1)= Label[V(p)]

3: Attach Label(V [p+D(j)]) to the root of T1 from left to right for j=1:8 . T1
(j) = Label(V [p+D(j)])

4: for j=1 to 8 do
5: for k=2 to ρ do
6: Append Label(V [p+ kD(j)] to T1(j)
7: end for
8: end for

The generation of octonary tree using Algorithm 3 is depicted in Fig. 6.3.
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Fig. 6.3. Creating Octonary Tree for the node Xi,j

6.2.2 Defining Wrong Sequence

Defining possible sequences and wrong sequences are purely problem specific. In the

current study we try to segment different regions of a tumour affected brain MRI.

We are aware that the tumour grows by dividing cells. Thus irrespective of the size

and shape, tumour core will be a closed region. Also the presence of peri-tumoural

edema is expected in most cases. The edema separates normal cells from the affected

cells. The presence of edema is not necessary in all cases. Considering all these facts,

the wrong sequence and correct sequence can be inferred from all possible sequences.

The list of entire possible sequences and wrong sequences of length 3 for this problem

are given in Appendix C. A sample Octonary Tree and the wrong sequences in it

are also depicted in Appendix C.

6.2.3 Classification Refinement

Classification refinement for a pixel Xi,j is carried out in two steps. In the first

step, the probability of misclassification (Prm) is calculated. In the second step new

class label for Xi,j is found out if Prm exceeds a fixed threshold. The algorithm for

refinement is presented in Algorithm 4.
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Algorithm 4: Wrong Sequence Search Based Classification Refinement Algorithm

Input: Octonary Tree for Xi,j, A fixed threshold θ, The current class (CC) of Xi,j

according to the classifier, Precision of CC returned by the classifier,
Possible Sequence set PS, Wrong Sequence set WS

Output: Refined Classification Result for Xi,j

1: Count Wrong Sequences in the tree (Nws) using the Octonary Tree and the set
WS.

2: Compute the probability (Prm) of misclassification of Xi,j using the equation
6.4

3: if Prm > θ then
4: Find out the new class for Xi,j using Step 4 and Step 5
5: Compute the likelyhood of Xi,j belonging to class Ci using the Equation 6.5.
6: The class with maximum likelyhood value is chosen as the new class for Xi,j.
7: end if

The wrong sequence based refinement algorithm is detailed in the following

subsections.

6.2.3.1 Computing Probability of Misclassification

Once the octonary tree of depth ρ is generated and each node of it is initialized

with the label provided by the classifier, Algorithm 4 is executed for each pixel Xi,j

to find out the probability of misclassification Prm. Prm depends on the number

of wrong sequences (Nws) in the tree and precision of the Current Class (CC) in

which Xi,j belongs. The precision measure is chosen since it is a function of FP. The

Equation 6.4 is used to find Prm. In the equation, k represents a constant, whose

value equals 0.10875. The probability exceeding a certain threshold θ indicates that

the classification of Xi,j is wrong and the new class of Xi,j needs to be found out.

Trial and error method is used to find the value of θ.

Prm =
k ∗Nws

Precision(CC)
(6.4)

6.2.3.2 Finding out New Class Label

The Algorithm 4 also finds out new class for Xi,j. The decision is based on the class

labels of neighbouring nodes. The closer neighbours get more weight in decision
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making. The probability of Xi,j belonging in a class Ci is decided by the the total

number of neighbourhood nodes which are in Ci in each radial distance. Equation

6.5 gives a value representing the likelihood of Xi,j to belong to a class Ci and the

class with maximum likelihood is chosen as the new class of Xi,j.

Likelihood(Ci) =
3∑
j=1

1

j
NN(i, j) (6.5)

NN(i, j) is the number of nodes with class i in jth radial distance.

6.3 Results and Analysis

This section presents the differences in performance measures before and after the

application of refinement technique. Unlike in previous chapters, here we consider

only 3 classes. Normal, Edema and Tumour core (Necrotic core + Enhancing tumour

+ Non-enhancing tumour). For changing the 3-class (Normal, Edema, Tumour) re-

sult into 5-class (Normal, Edema, Necrotic core, Enhancing Tumour ,Non-enhancing

tumour) result, a KNN classifier is used. The KNN classifier works after the refine-

ment, and it is used to classify the pixels which moved from other classes to Tumour

core after the refinement process. For testing the effectiveness of the refinement

technique, 10 MRI images were randomly chosen and classified using the classifier

developed in Chapter 5, (PSO + SVM) classifier, (PSO+BAGTREE) classifier and

( GA+ KNN) classifier. The results obtained from each classifier is fed to the re-

finement algorithm. A comparison between the results obtained before and after

the application of the refinement technique is also carried out. Precision, Sensitivity

and Dice-Score of the three classes before and after the application of refinement

technique are shown from Table 6.1 to 6.3. The comparison is also given as 2-

dimensional chart in Fig. 6.4 to 6.6.

The comparison results in Table 6.1 show that after the application of refine-

ment technique, the developed classifier’s sensitivity values improved for all the three

classes. Increased value of sensitivity indicates that either true positives increased

or false negatives decreased. The sensitivity of normal class increased from 0.91 to
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Table 6.1: Sensitivity Comparison of Various Classifiers Before and After the
Application of Refinement Technique

CLASS GA+KNN PSO+SVM PSO+
BAGTREE

Developed
Classifier

Before After Before After Before After Before After

Normal 0.79 0.81 0.81 0.83 0.89 0.91 0.91 0.93

Edema 0.74 0.77 0.81 0.85 0.82 0.86 0.86 0.92

Tumour 0.84 0.84 0.85 0.85 0.87 0.88 0.91 0.94

Fig. 6.4. Sensitivity Comparison of Various Classifiers Before and After the
Application of Refinement Technique

0.93. The net improvement in sensitivity is 2 %. For the class Edema, the devel-

oped classifier’s sensitivity improved remarkably from 0.86 to 0.92. All the other

classifiers’ sensitivity for normal and edema classes improved in the same manner.

PSO+BAGTREE classifier gave an improved sensitivity for tumour region too.

The effect of refinement technique on the classification results using precision

values is shown in Table 6.2. For all classes the largest variation before and after
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Table 6.2: Comparison of Precision of Various Classifiers Before and After the
Application of Refinement Technique

CLASS GA+KNN PSO+SVM PSO+
BAGTREE

Developed
Classifier

Before After Before After Before After Before After

Normal 0.81 0.81 0.74 0.76 0.84 0.86 0.87 0.91

Edema 0.71 0.73 0.73 0.76 0.78 0.81 0.87 0.91

Tumour 0.85 0.87 0.93 0.95 0.91 0.94 0.92 0.95

refinement is given by the developed classifier. The same is shown as a 2-D chart in

Fig. 6.5.

Fig. 6.5. Precision Comparison of Various Classifiers Before and After the Ap-
plication of Refinement Technique

The Dice-Score variation after refinement is shown in Table 6.3. It is evident

that refinement technique produced positive results. The same can be viewed as

graph in Fig. 6.6.

However this refinement technique does not address the problem of misclassi-

fication inside the Tumour Core (among NC, ET and NET).
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Table 6.3: Comparison of Dice-Score of Various Classifiers Before and After the
Application of Refinement Technique

CLASS GA+KNN PSO+SVM PSO+
BAGTREE

Developed
Classifier

Before After Before After Before After Before After

Normal 0.80 0.81 0.77 0.80 0.87 0.89 0.89 0.92

Edema 0.73 0.75 0.77 0.80 0.80 0.83 0.86 0.92

Tumour 0.84 0.86 0.89 0.90 0.89 0.91 0.92 0.95

Fig. 6.6. Dice-Score Comparison of Various Classifiers Before and After the
Application of Refinement Technique

6.4 Conversion of Refinement Result into a 5-

Class Result

Although the refinement technique improved the classification results of the three

classes, Normal, Edema and Tumour core (Necrotic Core+ Enhancing Tumour+

Non-Enhancing Tumour), we are still not sure about the impact of refinement on

the classes NC, ET and NET if considered separately. To further classify Tumour
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Core into NC, ET and NET, a KNN classifier is applied to the refined results to

produce a result in 5-class mode. The final results after the KNN classification are

shown from Table 6.4 to 6.6. The bar charts of the results are shown from Fig. 6.7

to 6.9.

Table 6.4: Sensitivity Comparison of the Classification Results Before and After
Refinement

CLASS GA+KNN PSO+SVM PSO+
BAGTREE

Developed
Classifier

Before After Before After Before After Before After

N 0.79 0.81 0.81 0.83 0.89 0.91 0.91 0.93

NC 0.68 0.68 0.70 0.70 0.68 0.68 0.82 0.82

E 0.74 0.77 0.81 0.85 0.82 0.86 0.86 0.92

NET 0.51 0.53 0.64 0.67 0.62 0.68 0.79 0.84

ET 0.80 0.81 0.80 0.80 0.79 0.79 0.82 0.87

Table 6.5: Comparison of Precision of the Classification Done Using Different
Techniques Before and After the Refinement

CLASS GA+KNN PSO+SVM PSO+
BAGTREE

Developed
Classifier

Before After Before After Before After Before After

N 0.81 0.81 0.74 0.76 0.84 0.86 0.87 0.91

NC 0.72 0.73 0.90 0.90 0.75 0.76 0.82 0.84

E 0.71 0.73 0.73 0.76 0.78 0.81 0.87 0.91

NET 0.56 0.58 0.74 0.75 0.70 0.75 0.79 0.83

ET 0.75 0.76 0.77 0.79 0.76 0.79 0.85 0.89

Although the refinement technique does not consider the subdivision of the

tumour into sub-regions (NC,ET and NET), the Table 6.4 through 6.6 shows that

this technique has enhanced the overall results. Hence it can be concluded from Fig.

6.7 to 6.9 that the developed classifier’s Sensitivity, Precision and Dice-Score values

of all regions have increased after refinement. For other classifiers, the results either

increased or remained same.
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Table 6.6: Dice-Score Comparison of the Classification Results Before and After
the Apllication of Refinement Technique

CLASS GA+KNN PSO+SVM PSO+
BAGTREE

Developed
Classifier

Before After Before After Before After Before After

N 0.80 0.81 0.77 0.79 0.87 0.89 0.89 0.92

NC 0.70 0.71 0.79 0.79 0.71 0.71 0.82 0.83

E 0.73 0.75 0.77 0.80 0.80 0.83 0.86 0.92

NET 0.53 0.55 0.68 0.71 0.66 0.71 0.79 0.83

ET 0.77 0.78 0.79 0.80 0.78 0.79 0.84 0.88

Fig. 6.7. Sensitivity Comparison of Various Classifiers Before and After the
Application of Refinement Technique
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Fig. 6.8. Comparison of Precision of Various Classifiers Before and After the
Application of Refinement Technique

Fig. 6.9. Dice-Score Comparison of Various Classifiers Before and After the
Application of Refinement Technique
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6.5 Qualitative Results

The tumour sub-regions are labelled as shown in the sample image Fig. 6.10. The

qualitative segmentation results obtained for five different cases is presented from

Fig. 6.11 to 6.15. The features used for segmentation include the conventional

features described in Chapter 3 and the newly developed MSPTF. The images from

Fig. 6.11 (b) to 6.15 (b) and Fig. 6.11 (c) to 6.15 (c) represent the segmentation

results corresponding to KNN classifier and the newly developed HAC based classifier

respectively. The results after refinement are shown in Fig. 6.11 (d) to 6.15 (d).

The ground truths are presented in the images from Fig. 6.11 (e) to 6.15 (e).

Fig. 6.10. Labels of Tumour Sub-regions

Fig. 6.11. Qualitative Results of Case 1.(a) FLAIR Image. (b) Result of KNN
Classifier. (c) Result of Developed Classifier. (d) Result After the Refinement

Technique. (e) Ground Truth

Fig. 6.12. Qualitative Results of Case 2.(a) T1 weighted Image. (b) Result of
KNN Classifier. (c) Result of Developed Classifier. (d) Result After the Refine-

ment Technique. (e) Ground Truth
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Fig. 6.13. Qualitative Results of Case 3.(a) T1 Contrast Image. (b) Result of
KNN Classifier. (c) Result of Developed Classifier. (d) Result After the Refine-

ment Technique. (e) Ground Truth

Fig. 6.14. Qualitative Results of Case 4.(a) T2 weighted Image. (b) Result of
KNN Classifier. (c) Result of Developed Classifier. (d) Result After the Refine-

ment Technique. (e) Ground Truth

Fig. 6.15. Qualitative Results of Case 5.(a) FLAIR Image. (b) Result of KNN
Classifier. (c) Result of Developed Classifier. (d) Result After the Refinement

Technique. (e) Ground Truth
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6.6 Comparison with State of the Art Methods

The time complexity of the developed algorithm during the various phases is given in

Table 6.7. The testing phase was less complex than training phase. During training

phase, along with MSPTF all the features mentioned in Chapter 3 were extracted.

In testing phase only the selected features were extracted. The feature selection and

creation of SVM models were carried out in training phase where as in testing phase

the classification is done with the previously created SVM models.

Table 6.7: Time Complexity of the Developed Segmentation Algorithm

Machine Spec-
ification

Phases Training
Time
Complex-
ity

Testing
Time
Complex-
ity

Processor: Intel
Core i3 with
1.8GHz speed
Internal RAM: 4GB

Feature Extraction 1230 s 325 s

HAC based Feature
Selection and Classification

12900 s 432 s

Refinement 1245 s 455 s

Comparison of the developed segmentation system with state of the art meth-

ods are shown in Table 6.8. Some methods segmented the whole tumour, which

consists of edema, necrotic core, enhancing tumour and non-enhancing tumour. The

four regions within the complete tumour are not separated by this method. Some

literature segmented the tumour core which consists of non-enhancing tumour, en-

hancing tumour and necrotic core. Edema could be separated by these methods.

In some literature enhancing tumour segmentation was also done. The developed

method segments the entire image into 5 separate regions. In Table 6.8 the regions

for which results are not available are marked as NA.
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Table 6.8: Comparison of the Dice-Score values of the Developed Segmentation
System with State of the Art Methods

Method Complete

Tumour

Tumour

Core

Enhacinng

Tumour

Localized Acive Contour Model
[23]

0.91 NA NA

Automatic Selection of Active
Contour Models [24]

0.93 NA NA

Active Contours Driven by
Cockoo Search [28]

0.95 NA NA

Outlier Detection with Random
Walker [32]

NA 0.81 0.72

Convolutional Neural Network
[38]

0.84 0.72 0.62

Multi-fractal Texture Features
[40]

NA 0.9 NA

Sparse Representation [44] 0.8 0.56 0.56

Local Independent Projection
[53]

0.84 0.68 0.58

Cellular Automata and Tumour
Cut [65]

0.84 0.79 NA

Hybrid Clustering[66] NA 0.88 NA

Concatenated and Connected
Random Forest [71]

0.89 0.8 0.76

Ensemble of Multiple Models [92] 0.9 0.79 0.73

Cascaded Anisotropic CNN [93] 0.87 0.77 0.78

Conditional Adversarial Network
[94]

0.7 0.55 0.4

Newly Developed Segmenta-
tion Scheme

0.95 0.95 0.88

6.7 Conclusion

The development of a refinement technique to further improve the classification re-

sult is discussed in this chapter. From the results it is evident that this technique
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has improved the values of Precision, Sensitivity and Dice-Score of the newly devel-

oped classifier. In the case of other classifiers, the values have either improved or

remained same for various sub-regions. The comparison of the developed method

with state of art methods is also presented in this chapter.



Chapter 7

Conclusion and Future Work

The chapter presents the summary of the work carried out and the conclusions

drawn. Important contributions of the thesis and the scope for further research in

this area is also presented in this chapter.

7.1 Feature Extraction

Literature survey presented in Chapter 2 clearly indicates that conventional feature

extraction techniques gather information from a single image. The feature extraction

technique developed in Chapter 4 generates features considering multiple modali-

ties of MRI. The difference of intensities of a particular pixel occurring in various

modalities are converted into features. The intensity variations of a particular type

of tissue in different modality make the newly proposed feature a strong one in dis-

criminating the sub-regions of tumorous MRI. This is evident from the comparison

tables of the new features with the conventional features.

7.2 Segmentation Through Classification

The newly developed segmentation algorithm is explained in detail in Chapter 5.

This method is a combination of feature selection and classification. The final

113
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classification is evolved through several layers of binary classifications. Thus the

complexity of considering multiple classes in a single step is avoided. For each

binary classification, the feature set and classification model used varies. The de-

composition of multi-class classification problem into multiple binary classifications

is attained through HAC. The classifier used for binary classification is SVM. Thus

an algorithm which segments the Region Of Interest (ROI) is proposed using HAC

based combined feature selection and classification. Comparison with conventional

classifiers is carried out to reveal the efficiency of the proposed method.

7.3 Classification Refinement

Clinically it is seen that the brain tumour has the following pattern. A necrotic core

followed by enhancing or non-enhancing tumour and an outer layer of edema. This

knowledge is used to identify the misclassified pixels in the ROI which is segmented

through the developed algorithm. This identification is made by generating an

octonary tree for a particular pixel. The wrong sequences in the octonary tree are

identified to compute the probability of misclassification of that pixel. Refinement

is carried out and it is verified that the segmentation results are improved.

7.4 Research Contributions

1. Development of a new feature considering a fusion of multiple MRI modalities.

2. Development of a technique for combining feature selection and classification.

3. Development of a new supervised classifier for classifying multiple classes.

4. Development of a refinement technique for multi-class classification through

wrong sequence identification.
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5. Development of a new framework for the segmentation of brain tumour and

its related sub-regions through fusion based methods.

6. Comparison of the developed method with state of the art methods.

7.5 Scope for Future Work

A few possible suggestions for future work are presented.

1. The work can be further extended to predict the nature of segmented tumour.

Thus it may be possible to predict the survival rate of the patient using seg-

mentation result.

2. The developed HAC based classifier can be applied for other classification

problems involving multiple classes.

3. The developed refinement technique can be applied and verified for any other

image segmentation problem if the sub-regions to be segmented follow a known

pattern.

4. The developed HAC based classifier can be modified using some other classifier

instead of SVM.



Appendix A

Illustration of MSPTF Algorithm

A.1 Distance Vector Calculation

The distances (intensity differences) of a pixel among the four modalities of MRI is

calculated and a distance vector of size six is generated. Fig. A.1 shows the intensity

differences of a Pixel Xi,j in different MRI modalities. Pairwise distance between

modalities are computed to get a six valued DV as depicted in Fig. A.2.

Fig. A.1. Intensities of a Pixel Xi,j in Different MRI Modalities

Fig. A.2. DV of Pixel Xi,j Calculated from Fig. A.1
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A.2 Distance Vector Encoding

The DV in Fig. A.2 is encoded into a seven value vector using a lower threshold

τ1 = 20, a middle threshold τ2 = 50 and an upper threshold τ3 = 100 to get an

EDV. Encoding is done according to Equation A.1. EDV is shown in Fig. A.3.

EDV (i) =



0, if abs(DV (i)) < τ1

+1, if τ1 ≤ DV (i) < τ2

−1, if τ1 ≤ −(DV (i)) < τ2

+2, if τ2 ≤ DV (i) < τ3

−2, if τ2 ≤ −(DV (i)) < τ3

+3, if DV (i) ≥ τ3

−3, if −(DV (i)) ≥ τ3

(A.1)

Fig. A.3. EDV of DV in Fig. A.2

A.3 Features from Encoded Distance Vector

The seven valued EDV in Fig. A.3 is decomposed into six vectors considering one

value at a time and making others zero. The process is pictured in Fig. A.4.
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Fig. A.4. Binary Vectors Corresponding to EDV in Fig. A.3



Appendix B

Learning Curves of Evolutionary

Algorithms

B.1 Learning Curves of Genetic Algorithm

Based on the results obtained from HAC, Genetic Algorithm was executed to sepa-

rate the classes through features. The learning curves of GA for separating the class

pair (1,{5,2,3,4}) is shown in Fig. B.1. Fig. B.2 shows the GA learning curve for

separating the class pair (5,{2,3,4}).

B.2 Learning Curves of PSO

Like GA, PSO was also executed to separate the classes through features. The

learning curves of PSO for separating the class pair (1,{5,2,3,4}) is shown in Fig.

B.3. Fig. B.4 shows the PSO learning curve for separating the class pair (5,{2,3,4}).

121
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Fig. B.1. GA Learning for Separating Normal Class from Other Classes
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Fig. B.2. GA Learning Curve for separating ET Class from Other Affected
Regions
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Fig. B.3. PSO Learning for Separating Normal Class from Other Classes
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Fig. B.4. PSO Learning Curve for separating ET Class from Other Affected
Regions



Appendix C

Wrong Sequence Identification in

an Octonary Tree

C.1 List of All Possible Sequences

A list of all possible sequences of length 3 is shown in Table C.1. A knowledge about

the nature of the sequence is also given in the table. The nature of the sequence

depends on the pattern of occurrence of regions.

C.2 Sample Octonary Tree

A sample Octonary Tree with class labels are shown in Fig. C.1. The Wrong

Sequences are marked in this figure. Here N-T-N is shown as a WS since the presence

of tumour in between 2 normal pixels are not possible. For a similar reason N-T-E

sequence is also considered as wrong.
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Table C.1: List of All Possible Sequences of Length Three

No. SEQUENCE NATURE

1 N - N - N Correct

2 N - N - E Correct

3 N - N - T Correct

4 N - E - N Wrong

5 N - E - E Correct

6 N - E - T Correct

7 N - T - N Wrong

8 N - T - E Wrong

9 N - T - T Correct

10 E - N - N Correct

11 E - N - E Wrong

12 E - N - T Wrong

13 E - E - N Correct

14 E - E - E Correct

15 E - E - T Correct

16 E - T - N Wrong

17 E - T - E Wrong

18 E - T - T Correct

19 T - N - N Correct

20 T - N - E Wrong

21 T - N - T Wrong

22 T - E - N Correct

23 T - E - E Correct

24 T - E - T Wrong

25 T - T - N Correct

26 T - T - E Correct

27 T - T - T Correct
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Fig. C.1. A Labelled Octonary Tree
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