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Introduction

Geometry, the study of structural relations is as old as mathematics itself. During

the nineteenth century the development of analysis led to the need of understanding

the notions of continuity and convergence in a more broader context. The concept of

metric spaces was thus developed. But later it was found that some structural prop-

erties could not be explained using distances. A major breakthrough came in 1914

through Hausdorff’s “Mengenlehre”which paved way for the origin of topology. Haus-

dorff explained the structure of space using the idea of a neighbourhood.The concept

of open sets was favoured by many mathematicians during the 1920s. It was the strik-

ing similarity in the definition of topology to that of a lattice which made open sets

a favourable concept. The topology on a set is a collection of subsets that are closed

under arbitrary unions and finite intersection. This unmistakable similarity between

the definition of topology and complete lattices triggered the investigation into the

frame work of pointless topology .Frames are complete distributive lattices. In other

words,frame theory is the application of lattice theory to topology. Marshal Stone

in his famous paper [65] established a representation theorem for Boolean algebras:

“Every boolean algebra is isomorphic to the Boolean algebra of open closed sets of

totally disconnected compact hausadorff spaces”. This theorem made a huge impact

in many areas of modern mathematics. It initiated the study of various topological
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concepts from a lattice theoretic perspective. The study started with Wallmann[70]

in 1938 later followed with Mckinsey and Tarski[41], Dowker and Papert[17] among

others. This view of pointless topology provides the platform to construct topological

spaces from algebraic data.

Ehresmann and Benabon[21] were the first to look at complete lattices with meet

distributes over arbitrary joins as generalised topological spaces. They called these

lattices as local lattices, while Dowker and Papert[17] called them as frames. The

frame theory approach to topology considers the lattice of open sets as the basic no-

tion. Hence, they were referred to as “point free topology”. Many of the basic ideas

in topology say for example continuity, compactness etc can be defined using open

sets alone. With the advent of frames, many topological theorems were generalised

to frame theory. Topologists of the period started working with the idea of frames

and topology was consistently studied from the lattice theoretic viewpoint. Obvious

examples of frames are lattice ΩX of open sets of a topological space X, the complete

Boolean algebras and complete chains. A frame that is isomorphic to some ΩX is

called spatial. All finite distributive lattices, all complete chains are spatial. But, a

complete Boolean algebra is spatial if and only if it is atomic, showing that frames

considerably surpass the classical topology. By the late 1980’s many of the topological

notions like compactness, uniform space, nearness etc. were explored in the context

of point free topology. The topologists Dona Papert and C.H.Dowker extended the

notion of separation axioms[19] and quotient spaces[17] to a more wider framework of

complete lattices. Thus,frame theory became the hotspot for topologists and lattice

theorists.From thereon, in works of topology the points of space were seldom men-

tioned.

One problem that arose was that the frame homomorphisms analogue of con-
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tinuous maps could not be interpreted as generalised continous maps in the context

of frames.This led to the intervention of category theory into frame theory. Isbell

in[31] pointed out that frame homomorphisms behave properly in the dual category

of frames. J.R.Isbell in “Atomless parts of space ”[31] expresses the relationship be-

tween frames and spaces in a categorical perspective thus introducing a wide range of

categorical tools to work. This motivated him to introduce the separate terminology

for dual category of frames as “locales ”. Note that frame and locale are synonymous

as long as no reference is made to morphisms. In other words, the objects of category

Frm and category Loc are identical. Category theory has played an important role

in developing the rich literature in locale theory.

One of the main advantages of frame theory is that it does not require the Ax-

iom of Choice for proving many of theorems like Tychnoff theorem and Stone-Cech

compactificationc. The change in the perspective of topology to frame theory gives

us more balanced results. For example, in the classical setting coproducts of regular

frames does not preserve the Lindeloff property,while in the context of frame theory,

coproducts of regular frames preserve the Lindeloff property. Also, frames are more

algebraic while locales are topological.The concept of sublocales and subframes em-

phasises this fact.

When the points are abandoned there arises a natural question whether the ge-

ometric information about the spaces are lost. The spaces that are not T0 are not

adequately presentable. That is where the importance of sober spaces arises. Ales

Pultr in his book [56] states that “If a complete lattice is isomorphic to the ΩpXq

of a sober space X, then X can be reconstructed from the lattice by purely lattice

theoretic methods ”.In other words, Sober spaces are fully embedded in the category

of locales. Sober spaces highlights the fact that not every space comes from a locale.
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Any locale that is isomorphic to the lattice of open sets of a topological space is said

to have “enough points “ or it is spatial .The Boolean algebra of all open sets U of the

real line with U � intpClpUqq is an example for non spatial frame.In other words, non

spatial frames are not just copies of some already existing topological space. Thus

existence of non spatial frames establishes the fact that the category of locales are

much larger than that of topological spaces.

Another interesting role of frames is highlighted in the book “Topology via

logic” by Steven Vickers. Frames being complete Heyting algebra becomes an order

complete model for intuitionistic propositional calculus.The development of lattice

theoretic topology favoured the developments in generalised sheaf and topos theory.

It is to be noted that the theory of sheaf has a correspondence with predicate formula

in the case of propositional logic. Thus a theorem by Marshal stone influenced almost

all the branches of mathematics including the representation theory of rings and other

generalised algebraic systems.

The connection between Boolean algebra and Boolean rings instigated the devel-

opment of L-slices.In [59] Sabna K.S. introduced L-slices and their basic properties.

L-slices are modelled in line with the concept of modules. Modules can be viewed

as the action of a ring over an abelian group. Module theory deals with group ac-

tions on vector spaces or equivalently group ring actions which is a generalisation

of representation theory. They are also the central notion of commutative algebra.

The refoundation of algebraic geometry using locales which are semi rings in place of

rings began in[58] .In [58] they discusses the basic properties of L-slices.The factor of

L-slices with respect to a subslice is defined. Analogous to the isomorphism theorem

in rings, an isomorphism theorem for L-slice is derived. This shows the inevitable

relation between algebra and L-slices. The basic theories of algebra are well captured
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by L-slices. For example,they have shown that finitely generated L-slice of a locale L

with n generators is isomorphic to the quotient slice of L-slice p[, Lnq. The benefit

of L-slices is that we are equipped with both topological and algebraic tools to study

its structure. The relation between the category L-Slice of L-slices and TopWMod

of topological weak modules has been derived. The scope of L-slices is well extended

to the branch of Cryptography through Diffie Hellman key exchange protocol.

Now we introduce generalised locales. It is a synonym that we use for quan-

tales. The concept of quantales dates back to 1930s, when M.Ward and Dilworth

[16] started working with residuated lattices. The term was coined by C.J.Mulvey

[46] from the two words quantum logic and locale. The study on lattices over which

an additional binary operation of multiplication or residuation was initiated by the

works of Ward and Dilworth[16].They have shown that theory of ideals in rings can

be conveniently formulated using the residuated lattices. Locales are the lattice the-

oretic counter parts of topological spaces which describes commutative C� algebras.

C.J.Mulvey[46] investigated the possibility of a substitute for locales so that they

would describe C� algebras more efficiently. This led to the “quantisation” of the

term locale. C.A.Akemann[3] had developed a structure on the lattice of right ideals

R(A) of a C*algebra A from which the original structure could be reconstructed.

C.J. Mulvey suggested to view R(A) as a lattice with multiplication so that in the

commutative case R(A) exhibits the structure of a locale. Thus, quantales were even-

tually developed as a generalisation of locales. The ideals in commutative algebra

could be considered as the paving stone to the development of quantales. Some ex-

amples of quantales include frames, ideal lattices of rings and C* algebra. .Niefield

and Rosenthal [50] developed the theory of quotients and subobjects and applied

this to its spectrum construction. The importance of ideal theory in quantales is as
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important as the ideal theory in rings. The complete lattice of ideals of a quantale

helps in the construcution of various spectrum for the quantale. The relation between

locales and quantales has motivated many mathematicians to investigate and analyse

the counter parts of localic terms like coherent frames, algebraic frames etc. in the

background of quantales. The study of quantales in [39] shows that the theory is

developed parallel to that in locales.The definition of subobjects, quotient objects are

all exactly the generalisation of what we had in frame theory. Locales have found

application in propositional logic while their generalised counterpart quantales have

found a remarkable application in analysis of the semantics of linear logic .Through

out the development of locale theory mathematicians viewed them as generalised

spaces. The striking similarity in the domain of locales and quantales motivates us

to consider quantales as “generalised locales”.

The wide possibility of L-slices prompted the study of various properties it

exhibits. This motivated the title of this thesis “ A study on properties of L-slices,

morphism class of L-slices and generalised locales”.The study in this thesis explores

different aspects of L-slices , for a locale L and each chapter deals with different prop-

erties. The first chapter introduces a new concept called the Box S which leads to the

category Batch. The second and third chapters are dedicated to the study of L-slices

Hompσ, Jq and HompL, Jq , for a locale L. The fourth chapter exploits the algebraic

property of L-slices to obtain the Zariski topology on L-slices. The fifth chapter deals

with quantales which we observe to be generalised locales and give generalised version

of L-slices.The final chapter introduces a graph theoretic approach to L-slices. The

detailed structure of the thesis is as follows.
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Organization of the Thesis

The thesis is divided into seven chapters.The first chapter deals with basic

definitions and preliminaries needed for the development of the study.

The second chapter is tilted The Box S, stack of filters Sx and the Category Batch.

We define regular filter, associated filter based on the filter Fx. Analogous to the

notion of sequential continuity, we develop the concept of F-continuity. Some prop-

erties of F-continuous slice morphisms are studied. We introduce a particular type of

slice called R-A slice, where all regular filters are associated filters. We observe that

the F-continuous image of R-A slice is also a R-A slice. The core of the chapter is

the concept of Box S � tpF, xq : F is associated to x P pσ, Jqu. We observe the

following on a Box S.

• The projection map π arranges the Box S into stacks of filters Sx on the germ

x. Thus the Box S is remodelled into the ordered Box Spσ,Jq. Also, pλ,Spσ,Jqq

is an L-slice.

• Each member of the stack Sx can be extended to a larger one in the same stack.

And for x P pσ, Jq and G P Sx, pSxqqG � tF P F : F XG P Sxu is a filter on F

containing Sx.

• We define a map called section on S. The collection of sections Γppσ, J 1q,Sq on

S is partially ordered as s ¨ s1 if and only if spxq ¤S s1pxq for all x P pσ, J 1q.

We find that Γppσ, J 1q,Sq is a join semilattice with bottom element .

• A Batch is a triplet pS, π, pσ, Jqq where S is a Box over the L-slice pσ, Jq

and π is the projection of S to pσ, Jq. Also for X � pS, π, pσ, Jqq and Y �
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pS1, π1, pµ,Kqq any two Batches, the morphism between the Batches is defined

as a pair pψ, fq.

• We prove that the Batch is a category with class of objects as Batches and the

morphism class as the pair pψ, fq.

Chapter 3 studies Hompσ, Jq through the ideals of the form pa : xqHom. On

Hompσ, Jq,for each x P pσ, Jq the collection Bx � tpa : xqHom : a P Lu forms a basis

for a topology. For a P L the collection Ja � tpa : xqHom : x P pσ, Jqu forms an L-slice

pλ, Jaq, where λ : L � Ja Ñ Ja is defined as λpb, pa : xqHomq � pa : σpb, xqqHom. We

observe the following on Ja.

• On pσ, Jq if we define a relation as x �a y if and only if pa : xqHom � pa : yqHom,

then �a is a congruence. Consequently, pγ, J{ �aq is a quotient slice.

• The map φa : pγ, pσ, Jq{ �aq Ñ pλ, Jaq defined as φprxsq � pa : xqHom is a

surjective slice morphism.

• The map Fa : pσ, Jq Ñ pλ, Jaq defined as Fapxq � pa : xqHom is a slice morphism

and Fa � φa� �a.

The ideals pa : xqHom also allows a quotienting of the locale L. Fix any x P pσ, Jq

and consider the corresponding ideal pa : xqHom of Hompσ, Jq. The relation Rx

on p[, Lq defined as aRxb if and only if pa : xqHom � pb : xqHom is found to

be a congruence relation. Thus p[Rx , L{Rxq is a quotient slice. The next con-

struction leads us to a topology on the L-slice p[, Lq. For f P Hompσ, Jq and

x P pσ, Jq,BL � trf : xsL : f P Hompσ, Jqu forms a basis for topology on the L-slice

p[, Lq. Hence L � pp[, Lq,BLq forms a topological space with basis BL. Similarly,

the subslices of the form ra : f spσ,Jq allows Bpσ,Jq � tra : f spσ,Jq : f P Hompσ, Jqu
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to form a basis for a topology on pσ, Jq. In this particular study that we have con-

structed three topologies on the three different domains involved. And the topologies

generated through the ideals on p[, Lq and Hompσ, Jq makes the slice morphisms

ψ � σb continuous for every b P L. Similarly the subslices constructed on pσ, Jq

permits the continuity of the slice morphism σx for every x P pσ, Jq.

The fourth chapter is devoted to the study of the L-slice HompL, Jq. The devel-

opment of the ring CpXq involves the study of real valued functions on the topological

space X . The case under our consideration involves the study of all L-slice morphisms

from p[, Lq to pσ, Jq. The ring CpXq has two important concepts called Zero sets and

fixed ideals. We examine the structure and properties of Zero sets and fixed ideals of

HompL, Jq.The main results we obtained are as follows:

• The collection of all zero sets ZpL, Jq is an L-slice with the action defined as

λ : L� ZpL, Jq Ñ ZpL, Jq as λpa, Zpfqq � Zpδpa, fqq.

• For f P HompL, Jq and an element x P pσ, Jq the set x f : xyL � tr P L : fprq ¤

xu is an ideal of p[, Lq. The collection B0J
p[,Lq � txf : xyL : f P HompL, Jqu the

zero sets of slice morphisms from p[, Lq to pσ, Jq forms a basis for a topology

on p[, Lq. Also, if every f � 0hom is a unit then the topology generated by

B0J
p[,Lq is Sierpinski topology.

• We define the concepts of Z-filters, Z-ideals and strong Z-ideals. The interrela-

tion between the concept of Z-filters and Z-ideals are studied. We found that if

F is a Z-filter on L then the family ZÐrFs � tf P HompL, Jq : Zpfq P Fu is

an ideal in HompL, Jq. Also, if I is a strong Z-ideal then ZrIs is a Z-filter on

p[, Lq.

• Let M denote the collection of all fixed ideals Mp. Define Z : L �M Ñ M
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as Zpa,Mpq � M[pa,pq. Then pZ,Mq is an L-slice. Define a slice morphism

µ : p[, Lq Ñ M as µpaq � Ma. Let Z � Fil denote the collection of all Z-

filters in ZpL, Jq. The map Z̃ : M Ñ Z � Fil is the natural map that takes

each Mp P M to the corresponding Z-Filter ZrMps. Now, the composition

Z � µ : p[, Lq Ñ Z � Fil takes each element r P p[, Lq to the Z-Filter ZrMrs.

Thus to each a P p[, Lq we associated a Z-filter in ZpL, Jq through M.

Chapter 5 make use of the algebraic properties of L-slice. We examine the

possibility of Zariski topology on L-components. Given a locale L and a L-slice

pσ, Jq, for m P pσ, Jq and r P L, we have constructed pσ, Jq ideals rr Ñ ms �

tn P pσ, Jq : σpr, nq ¤ mu. Their properties and characteristics are studied. Simi-

larly for a given L-slice pσ, Jq and n,m P pσ, Jq we examine the properties of ideals

rr Ñ ms � tn P pσ, Jq : σpr, nq ¤ mu on L. We define L-prime element of pσ,Cq as

an element p � 1C , for which every r P L and n P pσ,Cq with σpr, nq ¤ p implies that

either r P r1C Ñ psL or n ¤ p. The set of all L -prime elements of pσ,Cq is called the

spectrum of pσ,Cq and is denoted by Specpσ,Cq. On Specpσ,Cq we define the sets

Cpnq � tp P Specpσ,Cq : n ¤ pu.

If the L-prime element of pσ,Cq is also a meet irreducible element of C then the we

denote the spectrum as Spec^pσ,Cq. The topology ψ generated by the family of closed

sets ν � tCpnq : n P pσ,Cqu defined on Spec^pσ,Cq is called the Zariski topology on

Spec^pσ,Cq. If we define C�pnq � tp P Specpσ,Cq : r1C Ñ ns � r1C Ñ psu then the

collection γ� � tC�pnq : n P pσ,Cqu forms a collection of closed sets for the Zariski

topology Ω� on Specpσ,Cq. We examine the properites exhibited by Ψ and Ω�. Some

of the results obtained are as follows:

• pSpec^pσ,Cq,Ψq is a T0 space.
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• If every element of Specpσ,Cq is maximal element then the singleton sets will

be closed in Ω� and hence pSpecpσ,Cq,Ω�q will be a T0 space.

• pSpecpσ,Cq,Ω�q is irreducible if and only if pσ,Cq is without zero divisors.

The sixth chapter emphasies the importance of generalised locales or quantales.

In the first section we develop a quotient quantale using a specific ideal. Second

section deals with the maps called deductions and their properties. It is well known

that a quotient quantale can be constructed through the maps called quantic nucleus.

Here we try to do the same through the ideals constructed from the newly defined

maps called deductions. The third section introduces the graphs that are associated

with quantales. This section motivated us to look into the possibilities of introducing

graph theory in the context of L-slices. The last section introduces the generalised L-

slice which we call Q-slices. We discuss some of the basic differences in the properties

exhibited by L-slices and Q-slices.

The seventh chapter is a graph theoretic approach to L-slices. We introduce two

graphs associated with L-slices. We begin with the definition of torsion elements of

an L-slice and then define the total graph of L-slice ΓpT pσ, Jqq. The total graph

ΓpT pσ, Jqq is complete if and only if the L-slice is not faithful. The subgraph with

vertices from T pσ, Jq is always complete. The chromatic number χpΓpT pσ, Jqqq of

ΓpT pσ, Jqq is such that either always ΓpT pσ, Jqq � 1 or χpΓpT pσ, Jqqq � n� 1, where

n �| T pσ, Jq |. Also if T pσ, Jq is proper ideal then the diameter and radius of

ΓnpT pσ, Jqq will be the same and equal to 1. Whenever | T pσ, Jq |� n ¥ 3, then the

girth of ΓnpT pσ, Jqq is three and the circumference of ΓnpT pσ, Jqq is n. The second

graph is the one that is associated with the weak Zariski topology on L-slice. For a

subset T of Specpσ,Cq we introduce a graph GT pω
�q. The graph exists if and only
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if f T � Cp
�
T q and T is not an irreducible subset of Specpσ,Cq. The weak Zariski

topology graph GT pω
�q is connected and diampGT pω

�qq ¤ 2. We define a subgraph

G1
T pω

�q of GT pω
�q and show that it is bipartite.

The study on properties of L-slices, morphism class of L-slices and generalised

locales opens up a wide possibility for research in different perspectives. The study

can be further taken up by researchers of different interests. We conclude the thesis

by emphasizing few open problems that arose during the study.
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Chapter 1

Preliminaries

This chapter includes some preliminary concepts on Order theory, Category theory,

Frames and Locales ,Quantales and Graph Theory required for the next chapters.

1.1. Order theoretical concepts

Definition 1.1.1. [35] Let L be a set. A partial order on L is a binary relation �

which is

i. reflexive : for all a P L, a � a,

ii. antisymmetric: if a � b and b � a, then a � b, and

iii. transitive: if a � b and b � c, then a � c.

A partially ordered set (also called poset) is a set equipped with a partial order.

Definition 1.1.2. [12] An element x P A � L is called minimal if a P A, a � x

implies a � x. If L has a unique minimal element, then it is called the least element

(bottom) of L denoted by 0L.
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Definition 1.1.3. [12] An element x P A � L is called maximal if a P A, x � a

implies a � x. If L has a unique maximal element, then it is called the greatest

element (top) of L denoted by 1L.

Definition 1.1.4. [12] An element x P L is called an upperbound of A � L, if for all

a P A, we have a � x. The least element of the set of all upperbounds of A in L, if

it exists, is called the least upperbound (supremum)of A. It is denoted by
�
A.

Definition 1.1.5. [12] An element x P L is called a lowerbound of A � L, if for all

a P A, we have x � a. The greatest element of the set of all lowerbounds of A in L,

if it exists, is called the greatest lowerbound (infimum) of A. It is denoted by
d
A

Definition 1.1.6. [56] A poset L is called a join-semilattice (resp.meet-semilattice)

if there is a supremum a\ b (resp.infimum a[ b) for any two a, b P L.

Definition 1.1.7. [35] A partially ordered set L in which for every pair of elements

a, b, there exists the supremum a \ b and the infimum a [ b is called a lattice. A

partially ordered set L for which every set A � L has the supremum
�
A and the

infimum
d
A exist in L is called a complete lattice.

Definition 1.1.8. [35] A lattice L is distributive if a [ pb \ cq � pa [ bq \ pa [ cq

which is equivalent to a\ pb[ cq � pa\ bq [ pa\ cq.

Definition 1.1.9. [12] A map f : L Ñ M , where L,M are partially ordered sets, is

called monotone(order preserving) if a �L b ñ fpaq �M fpbq for all a, b P L. If f is

bijective and its inverse f�1 is also monotone, then it is called an order isomorphism.

Definition 1.1.10. [35] Let L be a distributive lattice with greatest element 1L and

least element 0L. The complement ac of an element a P L is the one satisfying

a[ ac � 0L and a\ ac � 1L.
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Definition 1.1.11. [35] A Boolean algebra is a distributive lattice with 0L and 1L in

which every element has a complement.

Definition 1.1.12. [56] An element p � 1 in a lattice L is said to be meet-irreducible

if for any a, b P L, a[ b � p implies that either a � p or b � p.

Definition 1.1.13. [56] An element p � 0 in a lattice L is join-irreducible if for any

a, b P L, p � a\ b implies that either p � a or p � b.

Definition 1.1.14. [56] A lattice A is said to be a Heyting algebra if for each pair of

elements pa, bq in A, there exist an element a Ñ b such that c � pa Ñ bq if and only

if c[ a � b.

1.2. Categorical Concepts

Definition 1.2.1. [29] A category C consist of:

i. A class ObC of objects (notation: A,B,C....)

ii. A class MorC of morphisms (notation: f, g, h...). Each morphism f has a domain

or source A (notation: dompfq) and a codomain or target B (notation: codompfqq

which are objects of C ; this is indicated by writing f : AÑ B.

iii. A composition law that assign to each pair pf, gq of morphisms satisfying

dompgq � codompfq a morphism g � f : dompfq Ñ codompgq, satisfying

(a) h � pg � fq � ph � gq � f whenever the compositions are defined.

(b) For each object A of C there is an identiy idA : A Ñ A such that f � idA � f

and idA � g � g whenever the composition is defined.

Definition 1.2.2. [29] A category B is said to be a subcategory of the category C

provided that the following conditions are satisfied.
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i. ObpBq � ObpC q.

ii. MorpBq �MorpC q.

iii. The domain, codomain and composition functions of B are restriction of the

corresponding functions of C .

iv. Every B -identity is a C -identity.

Definition 1.2.3. [29] If C is a category we can take the same class of objects and

morphisms, and interchange the domains and codomains (which leads to inverted

composition). Thus f : A Ñ B is now f : B Ñ A and we have a composition

f � g � g �f . Thus obtained category is called the dual or opposite of C and denoted

by C op.

Definition 1.2.4. [29] Let C ,D be categories. A functor from C to D is a triple

(C ,F ,D) where F is a function from the class of morphisms of C to the class of

morphisms of D (i.e. F : MorC ÑMorD) satisfying the following conditions.

i. F preserves identities: i.e., if e is a C -identity, then F peq is a D- identity.

ii. F preserves composition: F pf � gq � F pfq � F pgq;i.e., whenever

dompfq � codompgq, then dompF pfqq � codompF pgqq and the above equality holds.

Definition 1.2.5. [29] A triple (C , F , D) is called a contravariant functor from C

to D if and only if pC op, F,Dq is a functor (or, equivalently, if and only if pC , F,Dopq

is a functor).

1.3. Frames and Locales

Definition 1.3.1. [56] A frame is a complete lattice L satisfying the infinite distribu-

tivity law a[
�
B �

�
ta[ b; b P Bu for all a P L and B � L.
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Definition 1.3.2. [56] A map f : LÑ M between frames L,M preserving all finite

meets (including the top 1) and all joins (including the bottom 0) is called a frame

homomorphism. A bijective frame homomorphism is called a frame isomorphism.

Remark. The category of frames is denoted by Frm. The opposite of category Frm

is the category Loc of locales. We can represent the morphism in Loc as the infima

-preserving f : LÑM such that the corresponding left adjoint f� : M Ñ L preserves

finite meet. If we do not refer to the morphisms in the category Loc of locales and

the category Frm of frames, then the objects frames and locales are same.

Remark. The category of topological spaces and continuous maps is denoted by Top

Definition 1.3.3. [56] The functor Ω : Top Ñ Frm maps objects and morphisms as

follows

i. A topological spaces pX,ΩpXqq is mapped into frame of open sets ΩpXq

ii. Ω sends morphism f : X Ñ Y in Top to the frame homomorphism

Ωpfq : ΩpY q Ñ ΩpXq defined by ΩpfqpV q � f�1pV q.

Theorem 1.3.4. [56] The functor Ω : TopÑ Frm is a contravariant functor

Definition 1.3.5. [35] A subset I of a locale L is said to be an ideal if

i. I is a sub-join-semilattice of L; that is 0L P I and a P I, b P I implies a\ b P I ;and

ii. I is a lower set; that is a P I and b � a imply b P I.

If a P L, the set Ó paq � tx P L;x � au is an ideal of L. Ó paq is the smallest

ideal containing a and is called the principal ideal generated by a. A proper ideal I

is prime if x[ y P I implies that either x P I or y P I [35].

Definition 1.3.6. [56] A subset F of locale L is said to be a filter if

i. F is a sub-meet-semilattice of L; that is 1L P F and a P F , b P F imply a[ b P F .

ii. F is an upper set; that is a P F and a � b imply b P F .
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Definition 1.3.7. [56] A filter F is proper if F � L, that is if 0L R F .

A proper filter F in a locale L is prime if a1 \ a2 P F implies that a1 P F or a2 P F .

Definition 1.3.8. [56] A proper filter F in a locale L is a completely prime filter

if for any indexing set J and ai P L, i P J ,
�
ai P F ñ Di P J such that ai P F .

Completely prime filters are denoted by c.p filters.

Example 1.3.9. [56] Upxq � tV P ΩpXq;x P V u is a completely prime filter in the

locale ΩpXq.

For an element a of a locale L, set Σa � tF � L;F � φ, F is c.p filters; a P F u.

We can easily check that Σ0 � φ, Σ� ai=
�

Σai , Σa[b � Σa X Σb and

Σ1 � tall c.p filtersu.

The spectrum of a locale is defined as follows.

Sp(L)=ptall c.p filtersu, tΣa : a P Luq. Then SppLq is a topological space with the

topology ΩpSppLqq � tΣa : a P Lu.

Definition 1.3.10. [56] A locale L is said to be spatial if it is isomorphic to ΩpXq

of some topological space X.

Definition 1.3.11. [56] Let L be a frame. An equivalence relation θ on L is said to

be a congruence on L if pa, bq P θ ñ pa [ c, b [ cq P θ and pa \
�
S, b \

�
Sq P θ for

all c P L, S � L.

Definition 1.3.12. [56] A subset of a frame L which is closed under the same finite

meets and arbitrary joins in the frame is called a subframe. That is a subframe is

itself a frame under the induced order of L.

The concept of sublocale is something different, corresponding to quotient frames.
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Definition 1.3.13. [56] Let L be a locale. A subset S � L is a sublocale of L if

i. S is closed under meets, and

ii. For every s P S and every x P L, xÑ s P S.

A sublocale is always nonempty, since 1 �
d
φ P S. The least sublocale t1u will

be denoted by 0

Proposition 1.3.14. [56] Let L be a locale. A subset S � L is a sublocale if and

only if it is a locale in the induced order and the embedding map j : S � L is a localic

map.

Definition 1.3.15. [56] A nucleus in a locale L is a mapping v : LÑ L such that

i. a � vpaq,

ii. a � bñ vpaq � vpbq

iii. vpvpaqq � vpaq and

iv. vpa[ bq � vpaq [ vpbq.

Sublocales of a locale L have alternate representations in[56].

i) Sublocales of a locale can also be represented using frame congruence. A sublocale

homomorphism g : L Ñ M induces a frame congruence Eg � tpx, yq : gpxq � gpyqu

and a frame congruence gives rise to a sublocale homomorphism x ÞÑ Ex : LÑ L{E,

where L{E denotes the quotient frame defined by the congruence E, and Ex denotes

the E-class.

ii) Sublocales of a locale can also be represented using nucleus. The translation be-

tween nuclei and frame congruence resp. sublocale homomorphism is straight forward:

v ÞÑ Ev � tpx, yq : vpxq � vpyqu,

E ÞÑ vE � px ÞÑ
�
Exq : LÑ L;

v ÞÑ vh � v restricted to LÑ vrLs,
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h ÞÑ vh � px ÞÑ h�hpxqq : LÑ L

We can relate sublocales and nuclei directly. For a sublocale S � L, set

vSpaq � j�Spaq �
d
ts P S : a � su and for a nucleus v : LÑ L, set Sv � vrLs.

1.4. L-Slice

Given a locale L and a join semilattice J with bottom element 0J , we have introduced

a new concept of an action σ of locale L on join semilattice J together with a set

of conditions. The pair pσ, Jq is called L-slice. L-slice, though algebraic in nature

adopts properties of L through the action σ.

Definition 1.4.1. [58] Let L be a locale and J be join semilattice with bottom

element 0J . By the “action of L on J”we mean a function σ : L � J Ñ J such that

the following conditions are satisfied.

i. σpa, x1 _ x2q � σpa, x1q _ σpa, x2q for all a P L, x1, x2 P J .

ii. σpa, 0Jq � 0J for all a P L.

iii. σpa[ b, xq � σpa, σpb, xqq � σpb, σpa, xqq for all a, b P L, x P J .

iv. σp1L, xq � x and σp0L, xq � 0J for all x P J .

v. σpa\ b, xq � σpa, xq _ σpb, xq for a, b P L, x P J .

If σ is an action of the locale L on a join semilattice J , then we call pσ, Jq as

L-slice.

Next proposition gives sufficient conditon for a subset S � OpLq of order preserv-

ing maps on L, to be an L-slice.

Proposition 1.4.2. [58] Let L be a locale, and let S be a set of order preserving maps

LÑ L such that :
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i. The constant map 0 P S(0 takes everything to 0).

ii. If f, g P S, then f _ g P S.

iii. For all a P L and for all f P S, the meet of the constant map a and f is in S (i.e.

f [ a P S).

Then the map σ : L�S Ñ S defined by σpa, fqpxq � fpxq[ a is an action of L on S.

Examples 1.4.3. [58] 1. Let L be a locale and I be any ideal of L. Consider each

x P I as constant map x : LÑ L. Then by proposition 1.4.2, (σ, I) is an L-slice. In

particular (σ, L) is an L-slice.

2. Let the locale L be a chain with Top and Bottom elements and J be any join

semilattice with bottom element. Define σ : L � J Ñ J by σpa, jq � j @a � 0 and

σp0L, jq � 0J . Then σ is an action of L on J and (σ, J) is an L-slice.

Proposition 1.4.4. [58] The product of two L-slices of a locale L is an L-slice.

Definition 1.4.5. [58] Let (σ, J), (µ,K) be L-slices of a locale L. A map

f : pσ, Jq Ñ pµ,Kq is said to be L-slice homomorphism if

i. fpx1 _ x2q � fpx1q _ fpx2q for all x1, x2 P J .

ii. fpσpa, xqq � µpa, fpxqq for all a P L and all x P pσ, Jq.

Definition 1.4.6. [58] Let (σ, J) be an L-slice of a locale L. A subjoin semilattice

J 1 of J is said to be L-subslice of J if J 1 is closed under action by elements of L.

Examples 1.4.7. [58] 1. Let L be a locale and OpLq denotes the collection of all order

preserving maps on L. Then pσ,OpLqq is an L-slice, where σ : L � OpLq Ñ OpLq is

defined by σpa, fq � fa, where fa : L Ñ L is defined by fapxq � fpxq [ a. Let

K � tf P OpLq : fpxq � x, @x P Lu. Then pσ,Kq is an L-subslice of the L-slice

pσ,OpLqq.

2. Let pσ, Jq be an L-slice and let x P pσ, Jq. Define xxy � tσpa, xq; a P Lu. Then
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pσ, xxyq is an L-subslice of pσ, Jq and it is the smallest L-subslice of pσ, Jq containing

x.

Definition 1.4.8. [58] Let pσ, Jq be an L-slice of a locale L. An equivalence relation

R on pσ, Jq is called an L-slice congruence if

i. xRy implies x_ zRy _ z for any x, y, z P pσ, Jq

ii. xRy implies σpa, xqRσpa, yq for all a P L, x, y P pσ, Jq.

Proposition 1.4.9. [58] Let pσ, Jq, pµ,Kq be two L-slices of a locale L and let

f : pσ, Jq Ñ pµ,Kq be an L-slice homomorphism. Then the relation R on pσ, Jq

defined by xRy if and only if fpxq � fpyq is a congruence on pσ, Jq.

Definition 1.4.10. [58] The L-slice congruence R discussed in proposition 1.4.9 is

called natural congruence associated with the L-slice homomorphism f : pσ, Jq Ñ

pµ,Kq.

Let R be a congruence on pσ, Jq and let J{R denotes the collection of all equiv-

alence classes with respect to the relation R. Then J{R is a join semilattice with

bottom element r0J s, where the partial order ¤ on J{R is defined by rxs ¤ rys if and

only if x ¤ y in pσ, Jq. In the next proposition, we will show that pγ, J{Rq is an

L-slice where the action γ : L� J{RÑ J{R is defined by γpa, rxsq � rσpa, xqs.

Proposition 1.4.11. [58] If R is a congruence relation on pσ, Jq, then pγ, J{Rq is

an L-slice.

Definition 1.4.12. [58] Let pσ, Jq be an L-slice of a locale L and R be a congruence

on pσ, Jq. Then the L-slice pγ, J{Rq described in proposition 1.4.11 is called quotient

slice of L-slice pσ, Jq with respect to the congruence R.
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Proposition 1.4.13. [58] Let R be an L-slice congruence on an L-slice pσ, Jq of a

locale L and let pγ, J{Rq be the corresponding quotient slice. Then the map

π : pσ, Jq Ñ pγ, J{Rq defined by πpxq � rxs is an onto L-slice homomorphism.

Definition 1.4.14. [58] Let pσ, Jq be an L-slice of a locale L. For each a P L, the

map σa : pσ, Jq Ñ pσ, Jq defined by σapxq � σpa, xq is an L-slice homomorphism.

Definition 1.4.15. [58] A subslice pσ, Iq of an L-slice (σ, J) is said to be ideal of

pσ, Jq if x P pσ, Iq and y P pσ, Jq are such that y ¤ x, then y P pσ, Iq.

Definition 1.4.16. [58] An ideal pσ, Iq of an L-slice (σ, J) is a prime ideal if it has

the following properties:

i. If a and b are any two elements of L such that σpa [ b, xq P pσ, Iq, then either

σpa, xq P pσ, Iq or σpb, xq P pσ, Iq.

ii. pσ, Iq is not equal to the whole slice (σ, J).

Definition 1.4.17. [58] Let pσ, Jq be an L-slice of a locale L. Then the annihilator

of the L-slice pσ, Jq is defined by AnnpJq � ta P L : σa � 0u.

Definition 1.4.18. [58] An L-slice pσ, Jq of a locale L is said to be faithful if

AnnpJq � t0u.

Example 1.4.19. [58] The L-slice p[, Lq is faithful.

Definition 1.4.20. [58] Let (σ, J), (µ,K) be L-slices of a locale L. A map

f : pσ, Jq Ñ pµ,Kq is said to be L-slice homomorphism if

i. fpx1 _ x2q � fpx1q _ fpx2q for all x1, x2 P pσ, Jq.

ii. fpσpa, xqq � µpa, fpxqq for all a P L and all x P pσ, Jq.

Examples 1.4.21. [58] i. Let pσ, Jq be an L-slice and pσ, J 1q be an L-subslice of

pσ, Jq. Then the inclusion map i : pσ, J 1q Ñ pσ, Jq is an L-slice homomorphism.
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ii. Let I �Ó paq, J �Ó pbq be principal ideals of the locale L. Then pσ, Iq, pσ, Jq are

L-slices. Then the map f : pσ, Iq Ñ pσ, Jq defined by fpxq � x [ b is an L-slice

homomorphism.

Proposition 1.4.22. [58] If f : pσ, Jq Ñ pµ,Kq is a L-slice homomorphism, then

fp0Jq � 0K.

Proposition 1.4.23. [58] The composition of two L-slice homomorphisms is an L-

slice homomorphism.

Proposition 1.4.24. [58] Let (σ, J),(µ,K) be L-slices of a locale L and f : pσ, Jq Ñ

pµ,Kq be L-slice homomorphism.

i. Let kerf � tx P J : fpxq � 0Ku. Then pσ, kerfq is an ideal of (σ, J).

ii. Let imf � ty P K : y � fpxq for some x P pσ, Jqu. Then pµ, imfq is an

L-subslice of (µ,K).

Definition 1.4.25. [58] Let (σ, J), (µ,K) be L-slices of a locale L. A map

f : pσ, Jq Ñ pµ,Kq is said to be an L-slice isomorphism if

i. f is one-one

ii. f is onto

iii. f is an L-slice homomorphism.

Lemma 1.4.26. [58] Let (σ, J), (µ,K) be two L-slices of a locale L.

i. The map 0:pσ, Jq Ñ pµ,Kq defined by 0(x)=0K for x P pσ, Jq is an L-slice homo-

morphism.

ii. If f, g : pσ, Jq Ñ pµ,Kq are L-slice homomorphism, then the map

f _ g : pσ, Jq Ñ pµ,Kq defined by pf _ gqpxq � fpxq_ gpxq for x P pσ, Jq is an L-slice

homomorphism.
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Proposition 1.4.27. [58] Let (σ, J),(µ,K) be L-slices of a locale L and L- Hom(J,K)

denote the collection of all L-slice homomorphisms from pσ, Jq to pµ,Kq. Then

pδ, L�HompJ,Kqq is an L-slice, where the action,

δ : L�L�HompJ,Kq Ñ L�HompJ,Kq is defined by δpa, fqpxq � µpa, fpxqq for all

x P pσ, Jq.

Definition 1.4.28. [58] Let pσ, Jq be an L-slice of a locale L. For each a P L, define

σa : pσ, Jq Ñ pσ, Jq by σapxq � σpa, xq.

Proposition 1.4.29. [58] Let pσ, Jq be an L-slice. For each a P L, σa : pσ, Jq Ñ

pσ, Jq is an L-slice homomorphism.

Proposition 1.4.30. [58] Let pσ, Jq be an L-slice of a locale L. For each x P J,

σx : p[, Lq Ñ pσ, Jq is an L-slice homomorphism.

Proposition 1.4.31. [58] Let pσ, Jq be an L-slice of a locale L and let P � tσx : x P

pσ, Jqu. Then pδ, P q is an L- subslice of pδ, L�HompL, Jqq.

Proposition 1.4.32. [58] Let pσ, Jq be an L-slice of a locale L. For each x P pσ, Jq,

let Fx � ta P L;σpa, xq � xu. Then Fx is a filter in L.

Proposition 1.4.33. [58] The filter Fx is proper for x � 0J .

Proposition 1.4.34. [58] Let x P pσ, Jq be join-irreducible element of pσ, Jq, then

Fx is a prime filter in L.

Definition 1.4.35. [58] An element x P pσ, Jq is said to be compact element of the L-

slice pσ, Jq, if for any collection taαu of L whenever σp\aα, xq � x, then there exist a

finite sub collection ta1, a2, ....anu of taαu such that σpa1, xq_σpa2, xq_..._σpan, xq �

x. A slice pσ, Jq is compact if each element x P pσ, Jq is compact.
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Example 1.4.36. [58] Let pσ, Jq be any L-slice. Then 0J is a compact element.

Proposition 1.4.37. [58] Let x P pσ, Jq be join-irreducible compact element of pσ, Jq,

then Fx is a completely prime filter.

Proposition 1.4.38. [58] Let F � ta P L : σpa, xq � x @x P pσ, Jqu. Then F �
�
Fx and F is a filter in L

1.5. Quantales

Definition 1.5.1. [39] The category SL of sup-lattices has as its objects complete

lattices and if P and Q are complete lattices, a function f : P Ñ Q is a morphism of

sup-lattices iff it preserves arbitrary sups.

Definition 1.5.2. [39] Let P be a poset . An order preserving function j : P Ñ P is

called a closure operator if and only if it satisfies

i) a ¤ jpaq, for all a P P

ii) jpjpaqq � jpaq for all a P P

Let PJ � ta P P : jpaq � au.Then Pj is a complete lattice since it is closed under

infimums.

Definition 1.5.3. [39] Let P be a poset . An order preserving map g : P Ñ P is

called a coclosure operator iff it satisfies

i) gpaq ¤ a for all a P P

ii)gpgpaqq � gpaq for all a P P .

Definition 1.5.4. [39] A quantale is a complete lattice Q with an associative binary

operation � satisfying i) a � p_αbαq � _αpa � bαq and ii) p_αbαq � a � _αpbα � aq for all

a P Q and tbαu � Q.

14



Since a �� and �� a preserves arbitrary supremums , they have right adjoints we

shall denote by a Ñr � and a Ñl � respectively. Thus, a � c ¤ b iff c ¤ a Ñr b and

c � a ¤ b iff c ¤ aÑl b

Definition 1.5.5. [39] A quantale Q is commutative if and only if a � b � b � a for

every a, b P Q .

Definition 1.5.6. [39] Let Q be a quantale and let a P Q . Also, let T denote the

top element of the quantale Q.

i) a is right sided iff a � T ¤ a

ii) a is left-sided iff T � a ¤ a

iii) a is two-sided iff a is both right sided and left sided.

iv) a is strictly right (left)sided iff a � T � a pT � a � aq

v) a is idempotent iff a � a � a

vi) an element 1 P Q is a left unit iff 1 � a � a for all a P Q

vii)an element 1 P Q is a right unit iff a � 1 � a for all a P Q

viii) an element 1 P Q is a unit iff it is both a right and left unit.

Definition 1.5.7. [39] Let Q be a quantale

i) Q is right- sided(left- sided) iff every a P Q is right-sided(left- sided)

ii) Q is two sided iff every every a P Q is two sided

iii) Q is idempotent iff every a P Q is idempotent

iv) Q is(left)rightunital iff Q has a (left)right unit 1

v) Q is unital iff Q has a unit 1.

Examples 1.5.8. [39] i) Any frame is a quantale with � � ^. It is commutative

,idempotent,unital with unit T (and hence two-sided)
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ii) Sub(R),the set of additive subgroups of R is a quantale with sup � Σ and with

A �B � AB � ta1b1 � a2b2 � ....anbn : ai P A, bi P Bu

Definition 1.5.9. [15] Let I be a subset of a quantale Q. I is called a left(respectively

right)ideal of Q

i) X � I implies
�
X P I

ii) x P I and y ¤ x then y P I

iii) x P I imples a � x P I (resp x � a P I) for all a P Q

Definition 1.5.10. Let I be a subset of a quantale Q. I is called a left(right) � ideal

of Q if

i) X � I implies
�
X P I

ii) x P I imples a � x P I (resp x � a P I) for all a P Q

Definition 1.5.11. [43] A nonempty subset F of Q is said to be a filter if it satisfies

the following conditions:

i) 0 R F

ii) If a P F,b P Q and a ¤ b then b P F

iii) If a, b P Q then a � b P F

Definition 1.5.12. [28] A binary relation θ on Q is a congruence on Q if and only if

i) θ is an equivalence relation

ii) If pxi, yiq P θ for all i P I , then p_iPIxi,_iPIyiq P θ,where I is some indexed set

iii) If pa, bq P θ, then pc � a, c � bq P θ and pa � c, b � cq P θ for any c P Q

Definition 1.5.13. [39] Let P and Q be quantales. A function f : P Ñ Q is a

homomorphism of quantales if f preserves arbitrary sups and it also preserves the

operation �.
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Definition 1.5.14. [39] Let Q be a quantale. A quantic nucleus on Q is a closure

operator j such that jpaq � jpbq ¤ jpa � bq for all a, b P Q

Definition 1.5.15. [39] Let Q be a quantle .A quantic conucleus on Q is a coclosure

operator g sucht that gpaq � gpbq ¥ gpa � bq

Given a closure operator j on a complete lattice Q, then it can be easily seen that

the set Qj � ta P Q : jpaq � au is again complete.

Proposition 1.5.16. [39] If Q is a quantale and S � Q then S � Qj for some

quantic nucleus j iff S is closed under infs and aÑr s and aÑl s are in S, whenever

a P Q and s P S.

Now , such an S is called the quantic quotient of Q. Also, a �S b � infts P S :

a � b ¤ su

Definition 1.5.17. [39] If Q is a quantale , a subset S of Q is a subquantale iff S is

closed under sups and �.

Theorem 1.5.18. [39] Let Q be a quantale .If g is a quantic conucleus on Q, then

Qg � ta P Q : gpaq � au is a subquantale of Q. Moreover,if S is any subquantale of

Q, then S � Qg , for some quantic conucleus g.

Also, subquantales can be described in terms of a quantic conucleus.Thus, quotient

quantales and subquantales can be defined using quantic nuclei and quantic conuclei.

1.6. Graph Theory

Definition 1.6.1. [49] A graph G � pV,Eq consists of a set of objects V � tv1, v2 � � � u

called vertices and another set E � te1, e2, � � � u whose elements are called edges such
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that each edge ek is identified with an unordered pair pvi, vjq of vertices.The vertices

vivj associated with edge ek are called the end vertices of ek. Two edges are adjacent

if they are incident on a common vertex.

Definition 1.6.2. [49] A graph that has neither self-loops nor parallel edges is called

a simple graph.

Definition 1.6.3. [7] The number of edges incident on a vertex vi is called the degree

of the vertex vi. The minimum(respectively,maximum) of the degrees of the vertices

of a graph G is denoted by δpGq or δ(respectively, ∆pGq or ∆)

Definition 1.6.4. [7] A graph in which all vetices are of equal degree is called a

regular graph. A vertex having no incident edge is called an isolated vertex. A vertex

of degree one is called a pendant vertex . A graph without any edges is called a null

graph or an empty graph.

Definition 1.6.5. [7] A graph G is called finite if both V pGq and EpGq are finite. A

graph that is not finite is called infinite.The number of vertices of a graph is called

the order of G and the number of edges of G is called the size of G.

Definition 1.6.6. [7] A simple graph G is said to be complete if every pair of distinct

vertices of G are adjacent in G. A complete graph on n vertices is denoted by Kn.

On the other hand,a graph with no edges is called a totally disconnected graph.

Definition 1.6.7. [7] A graph is trivial if its vertex set is a singleton and it contains

no edges. A graph is bipartite if its vertex set can be partitioned into two nonempty

subsets X and Y such that each edge of G has one end in X and the other in Y .The

pair pX, Y q is called a bipartition of the bipartite graph. The bipartite graph with

bipartition pX, Y q is denoted by GpX, Y q.A simple bipartite graph is complete if each
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vertex of X is adjacent to all vertices of Y . If GpX, Y q is complete with | X |� p and

| Y |� q, then GpX, Y q is denoted by Kp,q. A complete bipartite graph of the form

K1,q is called a star.

Theorem 1.6.8. [23] A graph is bipartite if and only if it contains no odd cycles.

Definition 1.6.9. [49] A graph H is called a subgraph of G if all the vertices and all

the edges of H are in G and each edge of H has the same end vertices in H as in G.

Definition 1.6.10. [7] A subgraph H of G is said to be an induced subgraph of G if

each edge of G having its ends in vertex set of H is also an edge of H. The induced

subgraph of G with vertex S � V pGq is called the subgraph of G induced by S.

Definition 1.6.11. [7] A clique of G is a complete subgraph of G. A clique of G is a

maximal clique of G if it is not properly contained in another clique of G. The order

of a maximum clique of G is called the clique number of G and is denoted by ωpGq.

Definition 1.6.12. [7] A walk in a graph G is an alternating sequence denoted as

W : v0e1v1e2v2 � � � envn of vertices and edges beginning and ending with vertices in

which vi�1 and vi are the ends of ei.A walk is called a path if all the vertices are

distinct.A cycle is a closed path.The length of a walk is the number of edges in it.

Definition 1.6.13. [23] The girth of a graph G,denoted as gpGq, is the length of the

shortest cycle in G ; the circumference cpGq the length of any longest cycle.

Definition 1.6.14. [7] Let G be a graph.Two vertices u and v of G are said to be

connected if there is a u� v path in G. The maximal connected subgraphs of G are

called components of G.

Definition 1.6.15. [7] Let G be a connected graph and dpu, vq denotes the length of

the shortest u� v path.
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i) The diameter of G is defined as maxtdpu, vq : u, v P V pGqu and is denoted by

diampGq.

ii) If v is a vertex of G, its eccentricity epvq is defined by epvq � maxtdpu, vq : u P

V pGqu.

iii) The radius of G, rpGq, is the minimum eccentricity of G, that is , rpGq �

mintepvq : v P V pGqu.

Definition 1.6.16. [7] A vertex colouring of G with vertex set V is a map f : V Ñ S,

where S is a set of distinct colours;it is proper if adjacent vertices of G recieve distinct

colours of S; that is,uv P EpGq, then fpuq � fpvq.

Definition 1.6.17. [7] The chromatic number of a graph G, denoted by χpGq, is

the minimum number of colours needed for a proper vertex colouring of G. G is

k-chromatic ,if χpGq � k.

Definition 1.6.18. [7] A k-colouring of a graph G is a vertex colouring of G that

uses k-colours.

Theorem 1.6.19. [34] Let G be a non empty graph . Then χpGq � 2 if and only if

G is bipartite.

Theorem 1.6.20. [34] Let G be a graph .Then χpGq ¥ 3 if and only if G has an odd

cycle.

Definition 1.6.21. [49] A set of vertices in a graph is said to be an independent

set of vertices or simply an independent set if no two vertices in the set are adja-

cent.The number of vertices in the largest independent set of a graph G is called the

independence number, βpGq.
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Chapter 2

The Box S, stack of filters Sx and

the Category Batch

This chapter presents the novel idea of Batch. The filter Fx on a locale L forms the

centre of study.Through this filter we develop the notions of regular filter ,associated

filter,F-continuity on L-slices and R-A slice.The idea of associated filter is further

developed to construct Box S and stack of filters Sx on L-slice. We study the sections

on Box S and their properties are investigated .The Box S leads to the concept of

Batch and Batch morphisms which are later shown to form a category Batch with

objects as Batches and morphism class as Batch morphisms . Let L be a locale with

top element 1L and J be a join –semilattice with bottom element 0J . On the locale

L, we have the definition of the L-slice pσ, Jq as follows :

Definition 2.0.1. [58] Let L be a locale and J be join semilattice with bottom

element 0J . By the “action of L on J”we mean a function σ : L � J Ñ J such that

the following conditions are satisfied.
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i. σpa, x1 _ x2q � σpa, x1q _ σpa, x2q for all a P L, x1, x2 P J .

ii. σpa, 0Jq � 0J for all a P L.

iii. σpa[ b, xq � σpa, σpb, xqq � σpb, σpa, xqq for all a, b P L, x P J .

iv. σp1L, xq � x and σp0L, xq � 0J for all x P J .

v. σpa\ b, xq � σpa, xq _ σpb, xq for a, b P L, x P J .

If σ is an action of the locale L on a join semilattice J , then we call pσ, Jq as

L-slice. For each x P pσ, Jq, Fx � ta P L : σpa, xq � xu is a filter on L. Any filter F

on a locale L is said to be trivial if F� t1Lu

2.1. Regular Filter F, Idle points with respect to

F and KnotF

Definition 2.1.1. A filter F on a locale L is said to regularise x P pσ, Jq, if F X Fx

is a nontrivial filter. Then F is called the regular filter of x and x is called the knot

point of F .

Definition 2.1.2. For a regular filter F of x, the elements in F X Fx are called the

idle points of F with respect to the action σ on x P pσ, Jq. The intersection of any

two filters is again a filter . Thus the set F XFx of idle points of F form a filter on L.

Proposition 2.1.3. Let f : pσ, Jq Ñ pµ,Kq be an L-slice homomorphism and let F

regularise x P pσ, Jq then F regularise fpxq P pµ,Kq.

Proof. Let F regularise x P pσ, Jq. Then there exist a � 1L in F such that σpa, xq � x.

Also, fpσpa, xqq � fpxq implies µpa, fpxqq � fpxq. That is, a P Ffpxq and hence

F X Ffpxq is nontrivial. Thus F regularise fpxq.
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Theorem 2.1.4. Let f : pσ, Jq Ñ pµ,Kq be a one-one L-slice homomorphism then F

regularise x P pσ, Jq if and only if F regularise fpxq P pµ,Kq.

Proof. From proposition 2.1.3 it follows that if F regularise x P pσ, Jq then F regu-

larise fpxq P pµ,Kq. To prove the converse part, suppose that F regularise fpxq. We

have F X Ffpxq nontrivial . Let s P Ffpxq X F

s P Ffpxq ñ µps, fpxqq � fpxq

ñ fpσps, xqq � fpxq

ñ σps, xq � x

ñ s P F X Fx

Thus F regularise x P pσ, Jq.

Definition 2.1.5. Let F and G be any two regular filters at x P pσ, Jq. We define

F �x G, if F and G have the same idle points at x P pσ, Jq. In other words, F �x G

if and only if Fx X F � Fx XG.

Proposition 2.1.6. Let pσ, Jq be an L-slice and x P pσ, Jq. Then the relation �x on

all regular filters at x is an equivalence relation.

Proof. Since F �x F , the relation is reflexive. F �x G if and only if G �x F ,

hence symmetric. Also, if F �x G then F X Fx � G X Fx and G �x H, implies

GX Fx � H X Fx. Thus the relation is transitive.

Remark. For each x P pσ, Jq, the regular filters at x is partitioned into equivalence

classes with respect to the set of same idle points each filter generates.
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2.2. KnotF for a filter F

Definition 2.2.1. For a filter F on the locale L, we define the collection of knot

points of filter F as the set KnotF � tx P pσ, Jq : F regularises xu.

Note that since the filter F0J � L, KnotF is nonempty .

Proposition 2.2.2. If F � G then KnotF � KnotG.

Proof. If x P KnotF then F X Fx is nontrivial implies G X Fx is also nontrivial.

Therefore x P KnotG.

Proposition 2.2.3. If F and G be filters on the locale L then we have

KnotFXG � KnotF XKnotG.

Proof. If x P KnotFXG then pF X Gq X Fx is nontrivial. Therefore there exists 1L �

b P pFx X F q XG and hence Fx X F is nontrivial. Thus x P KnotF .

Similarly, pFx X F q XG � F X pFx XGq is nontrivial implying that x P KnotG .

Definition 2.2.4. A subset J 1 of the L-slice pσ, Jq is said to be a semislice if σpa, xq P

J 1 , for x P J 1 and any a P L.

Theorem 2.2.5. For any filter F on the locale L, KnotF is a semislice of the L-slice

pσ, Jq.

Proof. For x P KnotF , Fx X F is nontrivial. Let b P Fx X F and a P L, then

σpb, σpa, xqq � σpa, σpb, xqq � σpa, xq. Thus b P Fσpa,xq and F regularise σpa, xq.

Therefore σpa, xq P KnotF for every a P L.
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2.3. Associated Filter

Definition 2.3.1. Consider a filter F on L.

aq Let x P pσ, Jq be such that Fx � F . Then F is called the associated filter of

x P pσ, Jq and the pair pF, xq is the associated filter element with respect to x.

bqAlso, if we impose an additional condition that Fx � 1L and Fx � F , then such a

filter F is said to be strongly associated to x.

Remark. From now onwards, the tuple pF, xq would suggest that F is an associated

filter of the element x P pσ, Jq and will be addressed as the associated filter element

of x.

Examples 2.3.2. i) Consider the meet L-slice p[, Lq. Then a filter F is said to be

associated with x, if Ò x � F .

ii)F0J � L, for 0J P pσ, Jq.Thus the only associated filter of 0J is the locale L.

We have the following observations on p[, Lq

Observation. Consider the L-slice p[, Lq and x P pσ, Jq with x ¤ y. For any filter

F on L , if pF, xq, then pF, yq.

Proof. Since pF, xq, Ò x � F . Also, x ¤ y implies Ò y � Ò x. Hence Ò y � F .

Observation. If pF, xq and pG, yq in L-slice p[, Lq then pF XG, x_ yq .

We now generalise the above results for any L-slice pσ, Jq.

Lemma 2.3.3. For any two filters F,G on locale L and x P pσ, Jq, if pF, xq and

pG, xq then pF XG, xq.

Proof. Since F and G are associated filters of x, we have Fx � F and Fx � G. Thus

Fx � F XG and hence pF XG, xq.
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Lemma 2.3.4. Let F and G be filters on locale L with F � G. If pF, xq then pG, xq

for some x P pσ, Jq.

Proof. pF, xq implies Fx � F . Since F � G and Fx � F , we have pG, xq.

Lemma 2.3.5. Every strongly associated filter of x P pσ, Jq regularise x.

Proof. Let F be a strongly associated filter of x P pσ, Jq. Then Fx is nontrivial and

Fx � F . Hence Fx � F X Fx is nontrivial.

Definition 2.3.6. For x P pσ, Jq, we define rF : xsL to be the set of all filters of L

that are associated with x.

Theorem 2.3.7. Let PpLq denote the power set locale of a locale L, then rF : xsL is

a filter on PpLq.

Proof. Follows from the lemma 2.3.3 and lemma 2.3.4

Proposition 2.3.8. If σb : pσ, Jq Ñ pσ, Jq is one-one and pF, xq then pF, σpb, xqq.

Proof. For a P Fσpb,xq, we have σpa, σpb, xqq � σpb, xq

σpa, σpb, xqq � σpb, xq ñ σpa[ b, xq � σpb, xq

ñ σpb, σpa, xqq � σpb, xq

ñ σbpσpa, xqq � σbpxq

ñ σpa, xq � x

ñ a P Fx

Thus Fσpb,xq � Fx � F .
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Theorem 2.3.9. Let f : pσ, Jq Ñ pµ,Kq be a one-one slice homomorphism and if a

filter F on L is strongly associated to x P pσ, Jq then F is strongly associated to fpxq.

Proof. A filter F on L is strongly associated to x P pσ, Jq implies Fx is nontrivial and

Fx � F . Since f is a slice homomorphism, Ffpxq is nontrivial. Now,

r P Ffpxq ñ µpr, fpxqq � fpxq

ñ fpσpr, xqq � fpxq

ñ σpr, xq � x

ñ r P Fx

That is Ffpxq � Fx � F . Thus F is strongly associated to fpxq.

We observe from Theorem 2.3.7 that for each x P pσ, Jq, the collection of all

associated filters form a filter on the power locale PpLq.

2.4. Continuity of L-slice morphisms with respect

to associated filters

This section deals with continuity of L-slice morphisms in terms of associated filters.

Classical topology uses the notion of sequences to define the continuity of functions on

a topological space. On similar lines , we use associated filters to define the continuity

of a slice morphism .

Definition 2.4.1. A slice homomorphism f : pσ, Jq Ñ pµ,Kq is said to be semi-

continuous at x P pσ, Jq, if for any filter F associated to x implies F is associated
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to fpxq. A slice homomorphism is said to be semi-continuous on pσ, Jq, if it is semi-

continuous at every x P pσ, Jq.

Remark. Every slice isomorphism is semi-continuous on pσ, Jq.

Theorem 2.4.2. Composition of semi-continuous slice morphism is semi-continuous.

Proof. Consider any two semi-continuous slice morphisms f : pσ, Jq Ñ pµ,Kq and

g : pµ,Kq Ñ pδ,Mq. Let pF, xq be an associated filter element. Since f is semi-

continous, F associated to fpxq. Also, the semi-continuity of g ensures that F is

associated to gpfpxqq. Thus F is associated to pg � fqpxq.

Definition 2.4.3. A slice homomorphism f : pσ, Jq Ñ pµ,Kq is said to be F-

continuous at x P pσ, Jq if Ffpxq � Fx. A slice morphism is said to be continuous

on pσ, Jq if it is continuous at every x P pσ, Jq.

Remark. For the meet slices p[, Lq and p[,Mq,continous L-slice homomorphism from

f : p[, Lq Ñ p[,Mq is precisely identity morphisms.

Proposition 2.4.4. Every F-continuous slice morphism is semi-continuous.

Proof. Let f : pσ, Jq Ñ pµ,Kq be F-continuous at some x P pσ, Jq . i.e, Ffpxq � Fx.

Consider an associated filter element pF, xq. Then Ffpxq � Fx � F implies that

pF, fpxqq. Hence f is semi-continous at x P pσ, Jq.

Theorem 2.4.5. If f : pσ, Jq Ñ pµ,Kq is F-continuous and F regularise fpxq P

pµ,Kq then F regularise x P pσ, Jq.

Proof. F regularise fpxq implies F XFfpxq is nontrivial. The F-continuity of f shows

that Ffpxq � Fx. Hence F regularise x.
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Theorem 2.4.6. Composition of two F-continous slice morphisms on pσ, Jq is F-

continous.

Proof. Consider any two F-continuous slice morphisms f : pσ, Jq Ñ pµ,Kq and g :

pµ,Kq Ñ pδ,Mq, then Ffpxq � Fx and Fgpfpxqq � Ffpxq, for some x P pσ, Jq. Thus g � f

is F-continous at x P pσ, Jq.

We have the following results which are obvious.

Theorem 2.4.7. Let f : pσ, Jq Ñ pµ,Kq be bijective L-slice morphism, then f�1 :

pµ,Kq Ñ pσ, Jq is F-continous.

Theorem 2.4.8. If f : pσ, Jq Ñ pµ,Kq is a F-continuous morphism of L-slices and

x is a compact element of pσ, Jq then f(x) is a compact element of pµ,Kq.

Proof. Let there exist a collection taα : α P I, for some indexed set Iu elements

of the locale L, such that µp\aα, fpxqq � fpxq. Then \aα P Ffpxq � Fx which

implies σp\aα, xq � x. Since x is a compact element of pσ, Jq, we can find a finite

sub collection ta1, a2, a3.....anu such that σp\an, xq � x. Thus fpσp\an, xqq � fpxq

implies µp\an, fpxqq � fpxq, showing that fpxq is a compact element of pµ,Kq.

2.5. R-A slice

Definition 2.5.1. A L-slice pσ, Jq is said to be a R-A slice if every regular filter at

x is associated to x.

Example 2.5.2. If pσ, Jq is an L-slice having the property that for each x P pσ, Jq,

σx : p[, Lq Ñ pσ, Jq is one-one then pσ, Jq is a R-A slice.

Theorem 2.5.3. Let f : pσ, Jq Ñ pµ,Kq be a slice morphism and pµ,Kq be a R-A

slice. If Fx is nontrivial for some x P pσ, Jq then f is semi-continuous at x.
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Proof. Let F be associated to x. Then F regularise x. Since f is a slice morphism F

regularises fpxq. Also pµ,Kq is a R-A slice would imply that F is associated to fpxq.

Thus f is semi- continuous at x.

Theorem 2.5.4. Let f : pσ, Jq Ñ pµ,Kq be a F-continuous L-slice morphism and let

pσ, Jq be a R- A slice, then pµ,Kq is also a R-A slice.

Proof. Let F regularise fpxq, then Ffpxq X F is nontrivial. Since f is continous at x,

we have Ffpxq � Fx which impiles Fx X F is nontrivial. Hence F regularise x and F

is associated to x. Thus Ffpxq � Fx � F implies that F associated to fpxq. So pµ,Kq

is also a R-A slice.

2.6. The Box S of associated filter elements and

stack of filters Sx

Definition 2.6.1. aq Let F denote the collection of filters on the locale L. Then the

Box S � F� pσ, Jq is defined as S � tpF, xq : F is associated to xu. In other words,

S is the collection of all associated filter elements.

bq We define a projection map on the Box S as π : SÑ pσ, Jq such that πpF, xq � x.

The inverse image π�1pxq is the collection of all associated filter elements of x.

As a subobject of the box S, we define sub-box.

Definition 2.6.2. S1 is said to be a sub-box of S if

i) S1 � S

ii) πpS1q � pσ, Jq

Example 2.6.3. If we consider S1 � tpFx, xq;x P pσ, Jqu then S1 � S and πpS1q �

pσ, Jq
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We investigate the structure of the box S.

Proposition 2.6.4. If we define a relation ¤S as pF, xq ¤S pG, yq if F � G and

x ¤ y, then pS,¤Sq is a join semilattice.

Proof. The relation ¤S is reflexive follows immediately. Suppose pF, xq ¤S pG, yq and

pG, yq ¤S pF, xq, then we have F � G, G � F and x ¤ y, y ¤ x. Thus F � G and

x � y would imply antisymmetry. Now pF, xq ¤S pG, yq and pG, yq ¤S pH, zq would

give F � G, x ¤ y, and G � H, y ¤ z. Hence pF, xq ¤S pH, zq proves transitivity.

Therefore pS,¤Sq is a poset. Also the join can be defined as pF, xq \S pG, yq �

pF XG, x_ yq. Hence pS,¤S,\Sq is a join semilattice.

2.7. The stack of filters Sx

Definition 2.7.1. For each x P pσ, Jq, π�1pxq provides us a stack of filters of L over

pσ, Jq which are associated with x. The stack of filters at x denoted by Sx � tF P

L : pF, xq P π�1pxqu

Observation. Also by the proposition 2.6.4, the stack of filters at x would be a join

semilattice with bottom element pL, xq.

Observation. Algebraically, Sx has the structure of a commutative idempotent monoid.
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Some Properties of the map π

i) Since there can be more than one filter associated to an element x P pσ, Jq, gener-

ally π is not one-one.

ii) π is a surjective map.

iii) If x is join irreducible compact element, then π{π�1pxq is injective.

Proof: For any join irreducible and compact element x of pσ, Jq, the filter Fx is com-

pletely prime filter. All completely prime filters are maximal. Hence the only proper

filter that is associated to x is Fx.

In the next section we observe that the Box S can be transformed into a join semi-

lattice on which an action of the locale L can be defined and thus modelling it into

an L-slice.

Definition 2.7.2. The map π arranges the Box S into stacks of filters Sx at x. The

Box can now be viewed as Spσ,Jq � tSx : x P pσ, Jqu.

Lemma 2.7.3. Spσ,Jq is a join semilattice.

Proof. We partially order Spσ,Jq as Sx ¤
1
S Sy if and only if x ¤ y , for x, y P pσ, Jq

Consequently, ¤1
S is a partial order and the join is defined as Sx\

1
SSy � Sx_y. Also

S0J is the bottom element of Spσ,Jq with respect to ¤1
S.

Thus the Box S is remodelled into the ordered Box Spσ,Jq. For each x P pσ, Jq

the ordered Box Spσ,Jq gives the collection of all those associated filters at x.
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Theorem 2.7.4. The map λ : L � Spσ,Jq Ñ Spσ,Jq defined as λpa,Sxq � Sσpa,xq is

an action on Spσ,Jq and pλ,Spσ,Jqq is an L-slice.

Proof. We examine all the properties of L-slice.

i) λpa\ b,Sxq� Sσpa\b,xq

� Sσpa,xq_σpb,xq

� Sσpa,xq \
1
S Sσpb,xq

� λpa,Sxq \
1
S λpb,Sxq

ii) λpa,Sx \
1
S Sxq� λpa,Sx_yq

� Sσpa,x_yq

� Sσpa,xq_σpa,yq

� λpa,Sxq \
1
S λpa,Syq

iii) λpa,S0J q� Sσpa,0J q

� S0J

iv) λp1L,Sxq� Sσp1L,xq

� Sx

and

λp0L,Sxq� Sσp0L,xq

� S0J

v) λpa[ b,Sxq� Sσpa[b,xq

� Sσpa,σpb,xqq

� λpa,Sσpb,xqq

� λpa, λpb,Sxqq

Similarly λpa[ b,Sxq � λpb, λpa,Sxqq
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Thus pλ,Spσ,Jqq is an L-slice.

The next section deals with some constructive properties of the stack of filters Sx.

Note that whenever we study the properties of elements of Sx, we look at it as an

associated filter of x rather than as an associated filter element with respect to x.

2.8. Extending the stack Sx to a filter on F

For x P pσ, Jq we observe that any fixed member of the stack of filters Sx can be

extended to another filter that is associated to x. Fix F P Sx and a P L. Define a

set xF |ay � tb P L : a_ b P F u.

Theorem 2.8.1. xF |ay is an associated filter of x and consequently xF |ay P Sx.

Proof. First we prove that xF |ay is a filter. Let b1, b2 P xF |ay, then a _ b1 P F and

a_ b2 P F implies pa_ b1q ^ pa_ b2q P F .

Hence a_pb1^b2q P F would imply b1^b2 P xF |ay. Thus xF |ay is a meet semilattice.

Let b P xF |ay and b ¤ c . Since b P xF |ay, a_ b P F . Also b ¤ c implies a_ b ¤ a_ c.

Because F is a filter and a _ b P F would imply a _ c P F . Thus c P xF |ay. Hence

xF |ay is a upperset of L. Also F being a filter ensures us that F � xF |ay and hence

xF |ay P Sx.

Thus any member of the stack Sx is expanded to a larger one in the same stack.

Now we extend the stack Sx to a filter on F. Fix x P pσ, Jq, G P Sx and define a

collection pSxqG � tF P Sx : F XG P Sxu.

Theorem 2.8.2. pSxqG is a filter on F containing Sx.

Proof. First we prove that pSxqG is a filter on F .

pSxqG is nonempty since Fx P pSxqG.
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H1, H2 P pSxqG implies H1XG P Sx and H1XG P Sx. Therefore pH1XH2qXG P Sx

and hence pSxqG is a meet semilattice.

Suppose H P pSxqG and H � K. Then Fx � H X G � K X G implies K X G P Sx.

Therefore K P pSxqG and hence pSxqG is filter on F.

Also for every H P pSxqG , H XG P Sx implies that Sx � pSxqG.

We call pSxqG as the extended stack. We make a few observations on the extended

stack pSxqG

i) pSxqL � Sx � pSxqFx

ii) If H � G , then pSxqH � pSxqG

iii) If x P pσ, Jq and Fx � t1Lu, then pSxqG � F.

Proposition 2.8.3. For G1, G2 P Sx, pSxqG1 X pSxqG2 � pSxqG1XG2.

Proof. H P pSxqG1 X pSxqG2 gives H XG1 P Sx and H XG2 P Sx.

Then Fx � pH XG1q X pH XG2q � H X pG1 XG2q. Therefore H P pSxqG1XG2 .

Now, let K P pSxqG1XG2 then Fx � K X pG1 XG2q � pK XG1q X pK XG2q.

Hence Fx � pK XG1q and Fx � pK XG2q. Consequently, K P pSxqG1 X pSxqG2 .

Lemma 2.8.4. If F is the collection of all filters on locale L then Sx and F are join

semilattices .

Proof. Partially order Sx as F ¤Sx G if and only if F � G . Then Sx is a join

semilatice with F \Sx G � F X G. Similarly F can be ordered with ¤� such that

F1 ¤
� F2 if and only if F1 � F2, so that F is a join semilattice with F1 \

1 F2 �

F1 X F2.
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Theorem 2.8.5. The map Fil : Sx Ñ F defined as FilpGq � pSxqG is a join

semilattice homomorphism.

Proof. The above proposition shows that FilpG1 \Sx G2q � FilpG1q \
1 FilpG2q.

Thus Fil is a join semilattice homomorphism.

Remark. Consequently the extended stack pSxqG, for a fixed G P Sx, can also be

viewed as join semilattice homomorphism on Sx.

The next section deals with maps called section on Box S.

2.9. Section on the Box S

Definition 2.9.1. Let pσ, J 1q be a subslice of pσ, Jq. The map s : pσ, J 1q Ñ S is said

to be a section if

i) The diagram commutes

where id is the inclusion map.

ii. s̃ : pσ, J 1q Ñ Spσ,Jq defined as s̃pxq � π�1pπ � sqpxq is a slice morphism. Alterna-

tively, s̃ P Homppσ, J 1q, pλ,Spσ,Jqqq

Theorem 2.9.2. Let pσ,W1q and pσ,W2q be two subslices of pσ, Jq. For a Box S over

pσ, Jq and s1, s2 any two sections on S if we define W0 � tx P W1 XW2 : s̃1pxq �

s̃2pxqu, then pσ,W0q is also a subslice of pσ, Jq.
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Proof. Let x1, x2 P W0.

s̃1px1 _ x2q � s̃1px1q _ s̃1px2q

� s̃2px1q _ s̃2px2q

� s̃2px1 _ x2q

Therefore, x1 _ x2 P W0.

Suppose, x P W0 and a P L, then

s̃1pσpa, xqq � λpa, s̃1pxqq

� λpa, s̃2pxqq

� s̃2pσpa, xqq

Therefore σpa, xq P W0. Hence pσ,W0q is a subslice.

We further investigate the structure of collection of all sections on the Box S.

Definition 2.9.3. Define Γppσ, J 1q,Sq to be the set of all sections on the Box S.

Partially order Γppσ, J 1q,Sq as s ¨ s1 if and only if spxq ¤S s
1pxq, @x P pσ, J 1q.

Theorem 2.9.4. Γppσ, J 1q,Sq is a join semilattice with bottom element.

Proof. If s, s1 P Γppσ, J 1q,Sq, then s̃ : pσ, J 1q Ñ Spσ,Jq and s̃1 : pσ, J 1q Ñ Spσ,Jq are

slice morphisms. The join of two slice morphisms is again a slice morphism.

It remains to prove that ˜s_ s1 � s̃_ s̃1.

Suppose spxq � pF, xq and s1pxq � pG, xq, then spxq \S s
1pxq � pF XG, xq.
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spxq \S s
1pxq � pF XG, xq implies

˜s_ s1pxq � π�1ppπ � ps_ s1qpxqq

� π�1ppπpF XG, xqq

� π�1pxq

� Sx

s̃pxq � Sx � s̃1pxq. Therefore ˜s_ s1pxq � s̃pxq _ s̃1pxq implies ˜s_ s1 is a section.

Define 0pxq � pL, xq, @x P pσ, J 1q. Now we prove that 0 is a section on S.

0̃pxq � π�1ppπ � 0qpxqq � Sx

0̃px_ yq � Sx_y � Sx \
1
S Sy � 0̃pxq _ 0̃pyq

0̃pσpa, xqq � Sσpa,xq � λpa,Sxq � λpa, 0̃pxqq. 0̃ is a slice morphism and thus 0 is

a section on S. Also, 0pxq ¤S spxq, @x P pσ, Jq. Therefore Γppσ, J 1q,Sq is a join

semilattice with bottom element.

2.10. The Category Batch

This section introduces a new concept called Batch. Batch is based on the Box S

and the projection map π. We study some of its properties.

Definition 2.10.1. A Batch is a triplet pS, π, pσ, Jqq, where S is a Box over the

L-slice pσ, Jq , π is the projection of S to pσ, Jq. For each π�1pxq we obtain the stack

of filters of L associated with x,Sx.
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Definition 2.10.2. If X � pS, π, pσ, Jqq and Y � pS1, π1, pµ,Kqq are any two

Batches, then the morphism between the Batches is defined as a pair pψ, fq such

that

i) ψ : SÑ S1 is order preserving

ii) ψ{π�1pxq is a bijection from π�1pxq to pπ1q�1pfpxqq

iii) f : pσ, Jq Ñ pµ,Kq is a slice morphism

iv) The following diagram commutes.

Definition 2.10.3. Let B1 � pS, π, pσ, Jqq and B2 � pS1, π1, pµ,Kqq be two Batches

and pψ, fq : B1 Ñ B2 be the Batch morphism, then we define Kerψ � tpF, xq :

ψpF, xq � pL, 0Kqu and Kerf � tx P pσ, Jq; fpxq � 0Ku.

Imψ denotes the set of image of S under ψ and Imf denotes the image of pσ, Jq

under f .

The composition of two Batch morphisms pψ1, f1q and pψ2, f2q between two batches

is defined as pψ1, f1q � pψ2, f2q � pψ2 �ψ1, f2 � f1q. The next lemma shows that this is

again a Batch morphism.

Lemma 2.10.4. The composition of Batch morphisms is again a Batch morphism.

Proof. Let X � pS1, π1, pσ, Jqq, Y � pS2, π2, pµ,Kqq and Z � pS3, π3, pγ,Rqq be any

three Batches. The Batch morphisms from X to Y and Y to Z are pψ1, f1q and

pψ2, f2q respectively.
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The definition of Batch morphisms provides the following diagrams

such that π2 � ψ1 � f1 � π1 and

such that π3 � ψ2 � f2 � π2.

ψ1 and ψ2 are order preserving then so is ψ2 � ψ1. Also ψ2 � ψ1{π
�1
1 pxq is a bijection.

Similarly, f1 and f2 are slice morphisms implies that f2 � f1 is also a slice morphism.

Moreover,

π3 � pψ2 � ψ1q � pπ3 � ψ2q � ψ1

� pf2 � π2q � ψ1

� f2 � pπ2 � ψ1q

� f2 � pf1 � π1q

Thus pψ2 � ψ1, f2 � f1qis a Batch morphism from X to Y .
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Lemma 2.10.5. If IdS is the identity map on a Box S defined as IdSpF, xq �

pF, xq and Idpσ,Jq the identity slice morphism, then pIdS, Idpσ,Jqq is the identity Batch

morphism on X � pS, π, pσ, Jqq.

Proof. First we prove that pIdS, Idpσ,Jqq is a Batch morphism. Since IdS is the

identity map on S, it is order preserving. Also, IdS{π
�1pxq Ñ π�1pIdpσ,Jqpxqq is

a bijection. Now it remains to prove the commutativity of the following diagram.

pπ � IdSqpF, xq � πpF, xq � x and pIdpσ,Jq � πqpF, xq � Idpσ,Jqpxq � x.

Therefore the diagram commutes and hence pIdS, Idpσ,Jqq is a Batch morphism on X.

For any pψ, fq : X Ñ Y we have pIdS, Idpσ,Jqq� pψ, fq � pψ �IdS, f �Idpσ,Jqq � pψ, fq.

Thus pIdS, Idpσ,Jqq becomes an identity morphism on X.

Theorem 2.10.6. Batch is a category whose objects are Batches, morphisms are

Batch morphisms and the composition of morphisms is the composition of Batch mor-

phisms.

Proof. The above two lemma shows that the collection of Batch morphisms is closed

under composition and pIdS, Idpσ,Jqq is the identity morphism on a Batch.

We prove that the composition of Batch morphisms is associative.
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Let X ,Y and Z be any three Batches. The Batch morphisms between them are

pψ1, f1q : X Ñ Y, pψ2, f2q : Y Ñ Z and pψ3, f3q : Z Ñ W . The composition of order

preserving maps as well as slice morphisms are associative . Therefore,

pψ3, f3q � rpψ2, f2q � pψ1, f1qs � pψ3, f3q � rpψ2 � ψ1, f2 � f1qs

� rψ3 � pψ2 � ψ1q, f3 � pf2 � f1qs

� rpψ3 � ψ2q � ψ1, pf3 � f2q � f1s

� pψ3 � ψ2, f3 � f2q � pψ1, f1q

� rpψ3, f3q � pψ2, f2qs � pψ1, f1q

Thus Batch is a category with objects Batches and morphisims Batch morphisms.

Theorem 2.10.7. Let B1 � pS, π, pσ, Jqq and B2 � pS1, π1, pµ,Kqq be two Batches

and pψ, fq : B1 Ñ B2 be the Batch morphism, then for any pF, xq P S, x P Kerf if

and only if pF, xq P Kerψ.

Proof.

x P Kerf ñ fpxq � 0K

ñ fpπpF, xqq � 0K

ñ pf � πqpF, xq � 0K

ñ pπ1 � ψqrpF, xqs � 0K

ñ π1pψpF, xqq � 0K

ñ pψpF, xqq � π1�1p0Kq

ñ ψpF, xq � pL, 0Kq
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Thus, x P Kerf implies pF, xq P Kerψ.

For the converse,

pF, xq P Kerψ ñ ψpF, xq � pL, 0Kq

ñ π1pψpF, xqq � 0K

ñ pπ1 � ψqrpF, xqs � 0K

ñ pf � πqpF, xq � 0K

ñ fpxq � 0K

Consequently, x P Kerf .

Theorem 2.10.8. Consider the Batches B1 � pS, π, pσ, Jqq and B2 � pS1, π1, pµ,Kqq

and the Batch morphism pψ, fq : B1 Ñ B2. If f is injective, then |Kerψ| � 1.

Proof. If f is one-one then Kerf � t0Ju . Hence the result follows from the above

lemma.

Lemma 2.10.9. For the Batches B1 � pS, π, pσ, Jqq and B2 � pS1, π1, pµ,Kqq and

the Batch morphism pψ, fq : B1 Ñ B2, π
1�1pyq P Imψ if and only if y P Imf .

Proof. Suppose that π1�1pyq P Imψ. Then pG, yq P π1�1pyq will imply pG, yq �

ψpF, xq, for some pF, xq P S .That is,

y � pπ1 � ψqpF, xq

� pf � πqpF, xq

� fpxq

Thus y P Imf .
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For the converse, let y P Imf . Then y � fpxq � pf � πqppF, xqq, for some associated

filter F of x. Therefore y � pπ1 � ψqppF, xqq implies ψppF, xqq � π1�1pyq. Thus

π1�1pyq P Imψ.

Hence any associated filter of y is an element of Imψ if and only if y P Imf .

Theorem 2.10.10. Consider the Batches B1 � pS, π, pσ, Jqq and B2 � pS1, π1, pµ,Kqq

and the Batch morphism pψ, fq : B1 Ñ B2. If f : pσ, Jq Ñ pµ,Kq is a slice isomor-

phism, then Imψ is a sub-box of S.

Proof. Since f is a slice isomorphism, we have Imf � pµ,Kq. Also the above lemma

states that y P pµ,Kq � Imf if and only if y P πpImψq. Therefore πpImψq � pµ,Kq.

Thus Imψ is sub-box of S.
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Chapter 3

A Quotient slice through the ideals

of L-slice Hompσ, Jq

The chapter is mainly concerned with constructive properties of L-slices. We develop

ideals of the form pa : xqHom in Hompσ, Jq. The L-slice Ja, the system of contractive

operators with respect to a P L is defined .The congruence relation �a on pσ, Jq

defined as x �a y if and only if pa : xqHom � pa : yqHom aids the development of

quotient slice of pσ, Jq . Also the ideals pa : xqHom assist in constructing a quotient

slice of p[, Lq. For each f P Hompσ, Jq and x P pσ, Jq, through the ideals rf : xsL of

L evolve the topological space L � pp[, Lq,BLq with basis BL. Also the collection

of subslices ra : f spσ,Jq of pσ, Jq guarantees the existence of a topology on pσ, Jq with

basis Bpσ,Jq. The last section will deal with the topological continuity of maps σb for

every b P L and σx for every x P pσ, Jq. It is already proved that pHompσ, Jq,¨q with

usual ordering f ¨ g if and only if fpxq ¤ gpxq, forms an L-slice. We denote the join

of f and g as f O g and 0Hom for the bottom element of Hompσ, Jq. The operator id

denotes the identity operator on the L-slice Hompσ, Jq.
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We define two different types of collection of operators on Hompσ, Jq.

Definition 3.0.1. Consider the L-slice pσ, Jq. For any a P L and x P pσ, Jq we define

the set ra : xsHom of expansive-slice operators as ra : xsHom � tf P Hompσ, Jq :

σpa, xq ¤ fpxqu.

Remark. All increasing operators, that is, all those slice morphisms which have the

property that x ¤ fpxq, @x P pσ, Jq will definitely be in the set ra : xsHom . Hence

ra : xsHom includes, but is not limited to, the increasing operators on pσ, Jq.

We investigate the properties of ra : xsHom.

Proposition 3.0.2. ra : xsHom is nonempty and upward closed set of L-slice Hompσ, Jq.

Proof. If f � id, then id P ra : xsHom. Suppose f P ra : xsHom and f ¨ g , for some

g P Hompσ, Jq. Since f P ra : xsHom, we have σpa, xq ¤ fpxq. Also f ¨ g implies

fpxq ¤ gpxq, @x P pσ, Jq. Thus g P ra : xsHom.

Proposition 3.0.3. If a � b, then rb : xsHom � ra : xsHom.

Proof. Let f P rb : xsHom then σpb, xq ¤ fpxq. But, a � b implies σpa, xq ¤ σpb, xq.

Thus σpa, xq ¤ σpb, xq ¤ fpxq. Hence f P ra : xsHom.

3.1. The class Ea

Fix a P L and collect all the sets of the form ra : xsHom. The set Ea � tra : xsHom :

x P pσ, Jqu denotes a system of expansive operators with respect to a P L. The study

on Ea yield the following properties for its elements.
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Proposition 3.1.1. ra : ysHom X ra : xsHom � ra : x_ ysHom.

Proof. Let f P ra : ysHom X ra : xsHom then σpa, yq ¤ fpyq and σpa, xq ¤ fpxq. Hence

σpa, yq_σpa, xq ¤ fpyq_fpxq implies σpa, x_yq ¤ fpx_yq. Thus the slice morphism

f P ra : x_ ysHom.

Proposition 3.1.2. ra : σpa, xqsHom � ra : xsHom.

Proof. Let f P ra : σpa, xqsHom then σpa, σpa, xqq ¤ fpσpa, xqq. Since f is a slice

morphism and σ is an action, we obtain the result.

Proposition 3.1.3. For any b P L, ra : xsHom � ra : σpb, xqsHom.

Proof. If f P ra : xsHom then proof follows from σpa, σpb, xqq ¤ σpa, xq @ b P L.

3.2. A well behaved class of operators pa : xqHom in

Hompσ, Jq

Definition 3.2.1. For f P Hompσ, Jq we define a subset pa : xqHom of Hompσ, Jq

as pa : xqHom � tf P Hompσ, Jq : σpa, fpxqq ¤ xu and is called the collection of

contractive - slice operators.

An operator in Hompσ, Jq is said to be a decreasing operator if it has the property

that fpxq ¤ x. Hence pa : xqHom will definitely contain all decreasing operators. A

detailed study of pa : xqHom led us to the fact that this set is more well behaved than

the collection of expansive operators. The structure of the set ra : xsHom was found

to be just an upper closed set, whereas here we get more richer properties. The ideal

pa : xqHom leads to the construction of a quotient slice of pσ, Jq.

Proposition 3.2.2. pa : xqHom is an ideal of Hompσ, Jq
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Proof. 0J : pσ, Jq Ñ pσ, Jq defined as 0Jpxq � 0J @ x P pσ, Jq belongs to pa : xqHom.

Hence pa : xqHom is nonempty. Let f, g P pa : xqHom, then σpa, fpxqq ¤ x and

σpa, gpxqq ¤ x. Therefore σpa, fpxq _ gpxqq � σpa, fpxqq _ σpa, gpxqq ¤ x.

Hence σpa, f O gpxqq ¤ x implies f O g P pa : xqHom. Fix any f P pa : xqHom . If there

exists h P Hompσ, Jq such that h ¨ f ,then σpa, hpxqq ¤ σpa, fpxqq ¤ x. Therefore

h P pa : xqHom. Also σpa, δpb, fqpxqq � σpa, σpb, fpxqqq � σpb, σpa, fpxqqq ¤ σpb, xq ¤

x. That is, δpb, fq P pa : xqHom. Thus pa : xqHom is an ideal of Hompσ, Jq.

The ideal pa : xqHom exhibits the following properties.

Proposition 3.2.3. If a � b then pb : xqHom � pa : xqHom.

Proof. a � b implies σpa, xq ¤ σpb, xq . Also for f P pb : xqHom, we have σpb, fpxqq ¤

x. Therefore σpa, fpxqq ¤ σpb, fpxqq ¤ x would provide f P pa : xqHom.

Proposition 3.2.4. pa : xqHom X pa : yqHom � pa : x_ yqHom.

Proof. Let f P pa : xqHom X pa : yqHom implies σpa, fpxqq ¤ x and σpa, fpyqq ¤ y.

Hence σpa, fpx_ yqq ¤ x_ y shows that f P pa : x_ yqHom.

Proposition 3.2.5. pa : xqHom � pa : σpb, xqqHom, for b P L.

Proof. For any f P Hompσ, Jq, we have σpa, fpσpb, xqqq � σpa, σpb, fpxqqq � σpb, σpa, fpxqqq.

If f P pa : xqHom, then σpb, σpa, fpxqqq ¤ σpb, xq. Therefore σpa, fpσpb, xqqq ¤

σpb, xq.

Proposition 3.2.6. pa : σpb, xqqHom � pa[ b : xqHom for any b P L.

Proof. Let pa : σpb, xqqHom. Then we obtain the following

σpa, fpσpb, xqqq ¤ σpb, xq ¤ x ñ σpa, σpb, fpxqqq ¤ σpb, xq ¤ x

ñ σpa[ b, fpxqq ¤ x
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Therefore f P pa[ b : xqHom.

Proposition 3.2.7. If a, b P L then pa : xqHom X pb : xqHom � pa\ b : xqHom.

Proof. If f P pa : xqHomXpb : xqHom then σpa\ b, fpxqq � σpa, fpxqq_σpb, fpxqq ¤ x.

Similarly, if g P pa\ b : xqHom then σpa\ b, gpxqq ¤ x.

σpa\ b, gpxqq ¤ x ñ σpa, gpxqq _ σpb, gpxqq ¤ x

ñ σpa, gpxqq ¤ x and σpb, gpxqq ¤ x

Thus g P pa : xqHom X pb : xqHom. Therefore pa : xqHom X pb : xqHom � pa \ b :

xqHom.

Proposition 3.2.8. p0L : xqHom � Hompσ, Jq.

Proof. σp0L, fpxqq � 0J ¤ x, @x P pσ, Jq. Thus p0L : xqHom � Hompσ, Jq.

Proposition 3.2.9. On Hompσ, Jq, for each x P pσ, Jq the collection

Bx � tpa : xqHom : a P Lu forms a basis for a topology.

Proof. It follows directly from proposition 3.2.7 and proposition 3.2.8.
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3.3. The L-slice Ja

Definition 3.3.1. The collection Ja � tpa : xqHom;x P pσ, Jqu is called the system of

contractive operators with respect to a P L.

On Ja we define a binary operation Z as pa : xqHomZpa : yqHom � pa : x_ yqHom.

The operation Z is commutative and idempotent.

Also pa : xqHomZpa : 0JqHom � pa : x_0JqHom � pa : xqHom, implies that pa : 0JqHom

is an identity element with respect to Z. Algebraically, pJa,Zq is a commutative

idempotent monoid.

Lemma 3.3.2. pJa,Zq is a join semilattice

Proof. Define a partial ordering ¤Z such that pa : xqHom ¤Z pa : yqHom if and only if

x ¤ y. Then the join would be defined by pa : xqHom _Z pa : yqHom � pa : x_ yqHom.

Consequently pJa,Zq will be a join semilattice with bottom element pa : 0JqHom.

Theorem 3.3.3. pλ, Jaq is an L-slice with action λ : L � Ja Ñ Ja defined as

λpb, pa : xqHomq � pa : σpb, xqqHom

Proof.

1.λpb, pa : xqHom _Z pa : yqHomq� λpb, pa : x_ yqHomq

� pa : σpb, x_ yqqHom

� pa : σpb, xqqHom _Z pa : σpb, yqqHom

� λpb, pa : xqHomq _Z λpb, pa : yqHomq

2.λpb, pa : 0JqHomq� pa : σpb, 0JqqHom

� pa : 0JqHom
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3.λpb[ c, pa : xqHomq� pa : σpb[ c, xqqHom

� pa : σpb, σpc, xqqqHom

� λpb, pa : σpc, xqqHomq

� λpb, λpc, pa : xqHomqq

Similarly we get λpb[ c, pa : xqHomq � λpc, λpb, pa : xqHomqq

4.

λp1L, pa : xqHomq � pa : σp1L, xqqHom

� pa : xqHom

and

λp0L, pa : xqHomq � pa : σp0L, xqqHom

� pa : 0JqHom

5.

λpb\ c, pa : xqHomq � pa : σpb\ c, xqqHom

� pa : σpb, xq _ σpc, xqqHom

� pa : σpb, xqqHom _Z pa : σpc, xqqHom

� λpb, pa : xqHomq _Z λpc, pa : xqHomq

Thus pλ, Jaq, the system of contractive operators forms an L-slice.

51



3.4. A Quotient slice of pσ, Jq through the system

of contractive operators Ja

On pσ, Jq we define a relation as x �a y if and only if pa : xqHom � pa : yqHom. It

can be easily observed that �a is an equivalence relation. Now we prove that �a is a

congruence.

Theorem 3.4.1. pγ, J{ �aq is a quotient slice.

Proof. Let x, y P pσ, Jq be such that x �a y . By definition, pa : xqHom � pa : yqHom.

Also , pa : xqHom_Zpa : zqHom � pa : yqHom_Zpa : zqHom implies that pa : x_zqHom �

pa : y _ zqHom. That is, x _ z �a y _ z. We have λpb, pa : xqHomq � λpb, pa : yqHomq,

for any b P L. Then pa : σpb, xqqHom � pa : σpb, yqqHom would imply σpb, xq �a σpb, yq.

Therefore �a is a congruence relation. Thus pγ, J{ �aq becomes a quotient slice with

the action defined as γ : L� pσ, Jq{ �aÑ J{ �a and γpa, rxsq � rσpa, xqs.

Theorem 3.4.2. The map φa : pγ, J{ �aq Ñ pλ, Jaq defined as φaprxsq � pa : xqHom

is a surjective slice morphism.

Proof. It is evident from the definition that φa is surjective. We prove that it is a

slice morphism.

φaprxs _ rysq � φaprx_ ysq

� pa : x_ yqHom

� pa : xqHom _Z pa : yqHom

� φaprxsq _Z φaprysq
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Thus φa preserves joins.

φapγpb, rxsqq � φaprσpb, xqsq

� pa : σpb, xqqHom

� λpb, pa : xqHomq

� λpb, φaprxsqq

φa preserves action. Hence φa is a slice morphism.

Theorem 3.4.3. For each a P L we can define a slice morphism �a: pσ, Jq Ñ

pγ, J{ �aq as �a pxq � rxs.

Proof.

�a px_ yq � rx_ ys

� rxs _ rys

� �a pxq_ �a pyq

�a pσpb, xqq � rσpb, xqs

� γpb, rxsq

� γpb,�a pxqq

Therefore �a is a slice morphism .
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The ideals pa : xqHom yields a quotient slice of pσ, Jq and an L-slice on the Hom-

slice Hompσ, Jq such that there arises a natural slice morphism between pσ, Jq and

pλ, Jaq which makes the diagram below commute.

Theorem 3.4.4. The map Fa : pσ, Jq Ñ pλ, Jaq defined as Fapxq � pa : xqHom is a

slice morphism and Fa � φa� �a.

Proof. Fapx_ yq � pa : x_ yqHom � pa : xqHom Z pa : yqHom � Fapxq Z Fapyq

Fapσpb, xqq � pa : σpb, xqqHom � λpb, pa : xqHomq � λpb, Fapxqq Thus Fa is a slice

morphism.

Also φa� �a pxq � φaprxsq � pa : xqHom � Fapxq.

The ideals pa : xqHom also allows a quotienting of the locale L, viewed as an L-

slice p[, Lq. Fix any x P pσ, Jq and consider the corresponding ideal pa : xqHom of

Hompσ, Jq. The following lemma gives an equivalence relation on p[, Lq

Lemma 3.4.5. The relation Rx defined on the L-slice p[, Lq as a Rx b if and only

if pa : xqHom � pb : xqHom is an equivalence relation.

Proof. The definition of the relation shows that Rx is reflexive. Also, whenever a Rx b

then pa : xqHom � pb : xqHom, implies b Rx a That is, Rx is symmetric. Also, if

a Rx b and b Rx c then pa : xqHom � pb : xqHom and pb : xqHom � pc : xqHom. Thus

we obtain the transitivity property of Rx. Hence Rx is an equivalence relation on

p[, Lq.
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Proposition 3.4.6. Rx defines a congruence relation on p[, Lq.

Proof. Let aRxb and c P L. It follows from proposition 3.2.7 that pa \ c : xqHom �

pa : xqHom X pc : xqHom � pb : xqHom X pc : xqHom � pb \ c : xqHom. Hence a \ c Rx

b\ c.

Now it remains to show that Rx is compatible with the action [ on p[, Lq.

If f P pa[ c : xqHom then

σpa[ c, fpxqq ¤ x ñ σpa, σpc, fpxqqq ¤ x

ñ σpa, δpc, fqpxqq ¤ x

ñ δpc, fq P pa : xqHom � pb : xqHom

ñ σpb, δpc, fqpxqq ¤ x

ñ σpb, σpc, fpxqqq ¤ x

ñ σpb[ c, fpxqq ¤ x

ñ f P pb[ c : xqHom

Thus we obtain pa [ c : xqHom � pb [ c : xqHom. Similarly we can prove that pb [ c :

xqHom � pa[c : xqHom. Consequently, we observe that pa[c : xqHom � pb[c : xqHom.

Hence p[pa, cq : xqHom � p[pb, cq : xqHom implies that Rx is a congruence relation on

p[, Lq.

Theorem 3.4.7. p[Rx , L{Rxq is a quotient slice with action [Rx : L�L{Rx Ñ L{Rx

defined as [Rxpa, rbsq � ra[ bs.

Proof. Follows from the above proposition.
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Remark. The congruence relation can also be viewed as a map between the two L-

slices p[, Lq and p[Rx , L{Rxq defined as Rxpaq � ras. We propose the following

theorem.

Theorem 3.4.8. Rx : p[, Lq Ñ p[Rx , L{Rxq is an onto slice morphism.

Proof. Proof follows directly from Theorem 3.4.7.

The ideals of Hompσ, Jq are utilised to construct quotient slices on p[, Lq and

pσ, Jq. Further, we prove that there exists a special slice morphism between the two

quotient slices.

Theorem 3.4.9. The map φ : p[Rx , , L{Rxq Ñ pγ, J{ �aq defined as φprbsq �

rσpb, xqs is a slice morphism.

Proof.

φpras \ rrbssq � φpra\ bsq � rσpa\ b, xqs � rσpa, xq _ σpb, xqs

� rσpa, xqs _ rσpb, xqs � φprasq _ φprbsq

φp[Rxpc, rasqq � φprc\ asq � rσpc\ a, xqs � rσpc, σpa, xqqs

� γpc, rσpa, xqsq � γpc, φprasqq

Hence φ is a slice morphism.
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Remark. Summarising the above results : For a fixed a P L and x P pσ, Jq, we have

developed two L-slices and their respective quotient slices. The diagram with L-slices

and the corresponding maps between them commutes.

3.5. A Prime Ideal on L through the Hom-slice

Hompσ, Jq

For each L-slice morphism f on pσ, Jq, we define a prime ideal on L. We study some

of its properties and define a basis for a topology on pσ, Jq.

Definition 3.5.1. Let f be a slice morphism in Hompσ, Jq and x P pσ, Jq. Define

the set rf : xsL � ta P L : σpa, fpxqq ¤ xu. Since 0L P rf : xsL shows that the set is

nonempty.

Theorem 3.5.2. The set rf : xsL is an ideal of L.

Proof. If a, b P rf : xsL, then σpa, fpxqq ¤ x and σpb, fpxqq ¤ x will imply that

σpa\ b, fpxqq ¤ x. Therefore a\ b P rf : xsL proving that it is a join semilattice.

Also, if b ¤ a and a P rf : xsL, then σpb, fpxqq ¤ σpa, fpxqq ¤ x. Hence b P rf : xsL

and rf : xsL is a lower set. Any nonempty set which is a lower set and is a join

semilattice is an ideal of the locale L.
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The above theorem shows that rf : xsL is also an ideal of the meet slice p[, Lq.

The next theorem establishes the possibility of rf : xsL to be a prime ideal.

Theorem 3.5.3. If x is a prime element of pσ, Jq, then rf : xsL is a prime ideal.

Proof. Whenever a [ b P rf : xsL, we have σpa [ b, fpxqq ¤ x. Since x is prime,

σpa [ b, fpxqq ¤ x implies either σpa, fpxqq ¤ x or σpb, fpxqq ¤ x. That is, either

a P rf : xsL or b P rf : xsL. Hence rf : xsL is a prime ideal of L.

We study the properties of the ideal rf : xsL of L.

Proposition 3.5.4. For f, g P Hompσ, Jq, if f ¨ g, then rg : xsL � rf : xsL for any

x P pσ, Jq.

Proof. If f ¨ g then fpxq ¤ gpxq will give σpa, fpxqq ¤ σpa, gpxqq @ a P L. If

b P rg : xsL then σpb, gpxqq ¤ x would imply σpb, fpxqq ¤ x. Thus b P rf : xsL and

rg : xsL � rf : xsL.

Proposition 3.5.5. For x, y P pσ, Jq and a fixed slice morphism f P Hompσ, Jq,

rf : xsL X rf : ysL � rf : x_ ysL.

Proof. Let a P rf : xsLXrf : ysL then σpa, fpx_yqq � σpa, fpxq_fpyqq � σpa, fpxqq_

σpa, fpyqq ¤ x_ y. Therefore rf : xsL X rf : ysL � rf : x_ ysL.

Proposition 3.5.6. For the slice morphisms f, g P Hompσ, Jq and a fixed x P pσ, Jq,

rf : xsL X rg : xsL � rf O g : xsL

Proof. a P rf : xsL X rg : xsL implies σpa, fpxqq ¤ x and σpa, gpxqq ¤ x. Therefore

σpa, pf O gqpxqq � σpa, fpxq _ gpxqq � σpa, fpxqq _ σpa, gpxqq ¤ x will imply that

a P rf O g : xsL. Thus rf : xsL X rg : xsL � rf O g : xsL.
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Now for the reverse inequality, let us consider b P rfOg : xsL. Then σpb, pfOgqpxqq ¤ x

implies that σpb, fpxqq _ σpb, gpxqq ¤ x. That is, σpb, fpxqq ¤ x and σpb, gpxqq ¤ x.

Therefore b P rf : xsL X rg : xsL.

Proposition 3.5.7. For any x P pσ, Jq, r0Hom : xsL � L

Proof. The property follows from the definition of 0Hom.

Fix x P pσ, Jq. For each slice morphism f P Hompσ, Jq consider the collection of

ideals BL � trf : xsL : f P Hompσ, Jqu.

Theorem 3.5.8. L � pp[, Lq,BLq forms a topological space with basis BL.

Proof. The propositions 3.5.6 and 3.5.7 shows that the collection BL forms a basis

for topology on the L-slice p[, Lq.

Remark. Through the L-slice morphisms in Hompσ, Jq, we have constructed ideals in

Hompσ, Jq and on the L-slice p[, Lq.

Analogous to the above definitions, we try to develop and study the structure of

sets ra : f spσ,Jq in pσ, Jq.

3.6. The Subslice ra : f spσ,Jq of pσ, Jq

The structure of sets pa : xqHom defined on Hompσ, Jq and rf : xsL defined on p[, Lq

were that of ideals in the respective domains. In contrast, here we obtain a weaker

structure which is of a subslice.

Definition 3.6.1. We define the set ra : f spσ,Jq as a subset of pσ, Jq . For a P L and

f P Hompσ, Jq, ra : f spσ,Jq � tx P pσ, Jq : σpa, fpxqq ¤ xu.Since 0J P ra : f spσ,Jq, it is

nonempty.
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Theorem 3.6.2. The set ra : f spσ,Jq is a subslice of pσ, Jq.

Proof. Let x, y P ra : f spσ,Jq then σpa, fpxqq ¤ x and σpa, fpyqq ¤ y. We have

σpa, fpx_ yqq � σpa, fpxqq_σpa, fpyqq ¤ x_ y. Thus ra : f spσ,Jq is a join semilattice.

Let b P L and x P ra : f spσ,Jq. Now σpa, fpσpb, xqqq � σpa, σpb, fpxqqq � σpb, σpa, fpxqqq ¤

σpb, xq ¤ x. Hence σpb, xq P ra : f spσ,Jq.

Theorem 3.6.3. For a P L, the collection Bpσ,Jq � tra : f spσ,Jq : f P Hompσ, Jqu

forms a basis for a topology on pσ, Jq.

Proof. First we prove that ra : f spσ,Jq X ra : gspσ,Jq � ra : f O gspσ,Jq. Consider

x P ra : f spσ,Jq X ra : gspσ,Jq, then σpa, f O gpxqq � σpa, fpxqq _ σpa, gpxqq ¤ x.

Therefore x P ra : f O gspσ,Jq and ra : f spσ,Jq X ra : gspσ,Jq � ra : f O gspσ,Jq. For the

reverse inequality, let us consider y P ra : f Ogspσ,Jq. The relation σpa, pf Ogqpyqq ¤ y

implies that σpa, fpyqq _ σpa, gpyqq ¤ y. Therefore σpa, fpyqq ¤ y and σpa, gpyqq ¤ y.

Hence y P ra : f spσ,Jq X ra : gspσ,Jq. Also, ra : 0Homspσ,Jq � pσ, Jq . Thus the collection

Bpσ,Jq � tra : f spσ,Jq : f P Hompσ, Jqu forms a basis for a topology on pσ, Jq.

Remark. The collection of ideals Bx yields a topology on the L-slice Hompσ, Jq .

Similarly, through the collection of subslices Bpσ,Jq on pσ, Jq and collection of ideals

BL on p[, Lq we obtain three topologies on the three different domains involved.

Once topology is defined on a structure we can talk about the continuity of morphisms

defined on the structure. In this regard, we propose the following two theorems.

Theorem 3.6.4. The map ψ : p[, Lq Ñ Hompσ, Jq defined as ψpbq � σb is a contin-

uous slice morphism.

Proof. ψpb\ cq � σb\c. But, σb\cpxq � σpb_ c, xq � σpb, xq_σpc, xq � σbpxq_σcpxq.

Therefore ψpb\ cq � σb\c � ψpbq O ψpcq. By definition ψp[pb, cqq � σb[c.
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Also, we have the following equations :

σb[cpxq � σpb[ c, xq

� σpb, σpc, xqq

� σpb, σcpxqq

� δpb, σcqpxq

� δpb, ψpcqqpxq

. Thus ψ is a slice morphism. To prove continuity, let us consider an open set

pa : xqHom in Hompσ, Jq

ψ�1pa : xqHom � tb P L : ψpbq P pa : xqHomu

� tb P L : σb P pa : xqHomu

� tb P L : σpa, σbpxqq ¤ xu

� tb P L : σpa, σpb, xqq ¤ xu

� tb P L : σpb, σapxqq ¤ xu

� rσa : xsL P BL

Similarly, the continuity of the slice morphism σx defined on p[, Lq is established

in the following theorem
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Theorem 3.6.5. The slice morphism σx : p[, Lq Ñ pσ, Jq defined as σxpaq � σpa, xq

is continuous for every x P pσ, Jq.

Proof. To prove continuity of σx , consider the open set ra : f spσ,Jq of pσ, Jq.

σ�1
x ra : f spσ,Jq � tb P L : σxpbq P ra : f spσ,Jqu

� tb P L : σpb, xq P ra : f spσ,Jqu

� tb P L : σpa, fpσpb, xqqq ¤ σpb, xq ¤ xu

� tb P L : σpa, σpb, fpxqqq ¤ xu

� tb P L : σpb, δpa, fqpxq ¤ xu

� rδpa, fq : xsL P BL

Thus the topologies generated through the ideals on p[, Lq and Hompσ, Jq makes

the slice morphisms ψ � σb continuous for every b P L. Similarly, the subslices which

are constructed on pσ, Jq permits the continuity of the slice morphism σx for every

x P pσ, Jq.
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Chapter 4

The Zero sets and Fixed Ideals of

HompL, Jq

The set CpXq of all real valued continuous functions on a toplogical space X is

extensively studied by Gillman and Jerison in [25] . On similar lines we have tried

to study the special morphism class HompL, Jq. The collection HompJ,Kq of all

L-slice morphisms between the L-slice pσ, Jq and pµ,Kq is an L-slice pδ,HompJ,Kqq.

Also we know that any locale L can be viewed as the meet L-slice p[, Lq. Consider

the L-slice pδ,HompL, Jqq of all slice morphisms from p[, Lq to pσ, Jq. HompL, Jq is

nonempty through the existence of the slice morphism σx : p[, Lq Ñ pσ, Jq defined as

σxpaq � σpa, xq. Thus there is a possibility of extending the study of L-slices through

the morphism class HompL, Jq . In this chapter we try to develop theories analogous

to that in the ring CpXq. Hence we utilise the same terminologies as in [25] so as

to observe the interrelations between the two theories. Also throughout this chapter

whenever we mention x P pσ, Jq is nonzero it will imply that x � 0J .
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4.1. The sets ZpL, Jq and CozpL, Jq

On studying the properties of HompL, Jq , we observe the properties of subsets of

the form ta P p[, Lq : fpaq � 0Ju. We begin with the definition of zero divisors on

the locale L.

Definition 4.1.1. A locale L is said to have no zero divisors on pσ, Jq if σpa, xq � 0J

implies either a � 0L or x � 0J . A locale L is then called a σ-domain.

Example 4.1.2. If L is a chain then L is a [-domain.

Definition 4.1.3. The zero set of a slice morphism f P HompL, Jq is defined as

Zpfq � ta P p[, Lq : fpaq � 0Ju. The collection of all zero sets is denoted as ZpL, Jq.

Definition 4.1.4. The cozero set is the dual of zero set and is defined as the set

Cozpfq � ta P p[, Lq : fpaq � 0Ju. The collection of all cozero sets is denoted as

CozpL, Jq.

Definition 4.1.5. A slice morphism f P HompL, Jq is said to be a multiple of

g P HompL, Jq if f � δpr, gq for some r P L

We investigate a few basic properties of the zero set.

Proposition 4.1.6. If the slice morphism f P HompL, Jq is a multiple of the slice

morphism g P HompL, Jq then Zpgq � Zpfq.

Proof. If a P Zpgq then gpaq � 0J . Also fpaq � δpr, gqpaq � σpr, gpaqq � 0J . Thus

Zpgq � Zpfq.

Proposition 4.1.7. If f ¤ g then Zpgq � Zpfq

Proof. If a P Zpgq then fpaq ¤ gpaq � 0J implies fpaq � 0J .
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The next proposition gives a better understanding of the structure of Zpfq for

f P HompL, Jq

Proposition 4.1.8. Zpfq is an ideal of the meet L-slice p[, Lq.

Proof. For a, b P Zpfq then fpa\ bq � fpaq _ fpbq � 0J implies a\ b P Zpfq.

If c P Zpfq and r P L then fp[pr, cqq � σpr, fpcqq � σpr, 0Jq � 0J . Thus [pr, cq P

Zpfq. Also if a P Zpfq and d ¤ a then fpdq ¤ fpaq � 0J implies fpdq � 0J . Thus

d P Zpfq. Hence Zpfq is an ideal of the meet L-slice p[, Lq.

Thus ZpL, Jq is a collection of ideals of p[, Lq.

Remark. If σa : J Ñ J is one-one for every a P L then for b P Zpfq, aÑ b P Zpfq.

We investigate the properties of Cozpfq, for f P HompL, Jq and we have the

following observations.

1. If f � 0hom, then there exists a P p[, Lq such that fpaq � 0J . So, Cozpfq is

non-empty if f � 0hom.

2. If a, b P Cozpfq then fpaq � 0J , fpbq � 0J will imply fpa\bq � fpaq_fpbq � 0J .

Thus a\ b P Cozpfq.

3. For c P Cozpfq and a P L,[pa, cq � a[ c need not belong to Cozpfq.

4. Let c P Cozpfq and a � b for some b P L. Since f is a slice morphism and

fpaq � 0J implies fpaq ¤ fpbq and fpbq � 0J . Therefore b P Cozpfq.

Thus from the above observations Cozpfq is an upperset and CozpL, Jq is a collection

of upper sets of p[, Lq.

65



4.2. The subslice Hom�pL, Jq

We begin this section by introducing bounded slice morphisms.

Definition 4.2.1. A function f : p[, Lq Ñ pσ, Jq is said to be bounded if there exists

some y, z P pσ, Jq such that y ¤ fpaq ¤ z @ a P L.

Example 4.2.2. Fix x P pσ, Jq, then σx : p[, Lq Ñ pσ, Jq defined as σxpaq � σpa, xq

is a bounded slice morphism with bounds 0J and x.

The collection of all bounded functions are denoted as Hom�pL, Jq.

Theorem 4.2.3. Hom�pL, Jqis a subslice of HompL, Jq

Proof. For f, g P Hom�pL, Jq, we show that f O g P Hom�pL, Jq. Let y, z be bounds

for f and m,n be that of g. Then y _m ¤ fpaq _ gpaq ¤ z _ n @ a P L. Thus f _ g

is a bounded slice morphism with bounds y _ m and z _ n. Also if f is bounded,

we can show that δpa, fq is bounded. Let x1 and x2 be the bounds of f . Then

x1 ¤ fpbq ¤ x2, @ b P L implies σpa, x1q ¤ σpa, fpbqq ¤ σpa, x2q. Therefore the

relations σpa, x1q ¤ δpa, fqpbq ¤ σpa, x2q @ b P L shows that δpa, fq is bounded. Thus

Hom�pL, Jq is a subslice of HompL, Jq.

The theorem below gives the condition when a bounded function in a Hom-slice

HompL, Jq becomes a bounded function of another Hom-slice. Consider two L-slices

HompL, Jq and HompL,Kq . Let t be a slice morphism between these two L-slices .

Theorem 4.2.4. Every slice morphism t : HompL, Jq Ñ HompL,Kq takes bounded

functions to bounded functions if |HompJ,Kq| ¡ 1 and the diagram below commutes.
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Note that tf denotes tpfq and |HompJ,Kq| is the cardinality of the set HompJ,Kq

Proof. Suppose f P Hom�pL, Jq then there exists x, y P pσ, Jq such that x ¤ fpaq ¤ y

@ a P L. Subsequently, gpxq ¤ gpfpaqq ¤ gpyq implies gpxq ¤ tfpaq ¤ gpyq. Therefore

tf is bounded.

4.3. The L-slice ZpL, Jq

Let ZpL, Jq � tZpfq : f P HompL, Jqu. For each f P HompL, Jq we have already

shown that Zpfq is an ideal of p[, Lq. Now we look at the structure of the collection

of all zero sets.

Theorem 4.3.1. ZpL, Jq is a join semilattice.

Proof. Partially order ZpL, Jq as Zpfq ¤1 Zpgq if and only if Zpgq � Zpfq.

Consider a P Zpfq X Zpgq . Accordingly, fpaq � 0J and gpaq � 0J will imply that

pfOgqpaq � fpaq_gpaq � 0J . Thus a P ZpfOgq and ZpfqXZpgq � ZpfOgq. Simliarly

for b P Zpf O gq we have pf O gqpbq � 0J . Also fpbq_ gpbq � 0J implies fpbq � 0J and

gpbq � 0J . Therefore b P ZpfqXZpgq implies Zpf Ogq � ZpfqXZpgq. Hence ZpL, Jq

is closed under finite intersection. Thus ZpL, Jq is a join semilattice with join defined

as the intersection of zero sets. Also Zp0homq � p[, Lq. Consequently, we obtain that

pZpL, Jq,¤1q is a join semilatttice with bottom element Zp0homq.
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Theorem 4.3.2. The map λ : L � ZpL, Jq Ñ ZpL, Jq defined as λpa, Zpfqq �

Zpδpa, fqq is an action on ZpL, Jq and pλ, ZpL, Jqq is an L-slice.

Proof. We prove all the axioms for λ to be an action on ZpL, Jq.

i) λpa, Zpfq X Zpgqq� λpa, Zpf _ gqq

� Zpδpa, f _ gqq

� Zpδpa, fq _ δpa, gqq

� Zpδpa, fqq X Zpδpa, gqq

� λpa, Zpfqq X λpa, Zpgqq.

ii) λpa, Zp0homqq� Zpδpa,0homqq

� Zp0homq, @a P L.

iii) λpa[ b, Zpfqq� Zpδpa[ b, fqq.

And λpa, λpb, Zpfqqq� λpa, Zpδpb, fqq

� Zpδpa, δpb, fqqq

� Zpδpa[ b, fqq.

Similarly λpb, λpa, Zpfqqq � Zpδpa[ b, fqq.

Thus λpa[ b, Zpfqq � λpa, λpb, Zpfqqq � λpb, λpa, Zpfqqq.

iv) λp1L, Zpfqq � Zpδp1L, fqq � Zpfq and

λp0L, Zpfqq � Zpδp0L, fqq � Zp0homq for all f P HompL, Jq.

v) λpa, Zpfqq X λpb, Zpfqq� Zpδpa, fqq X Zpδpb, fqq

� Zpδpa, fq O δpb, fqq

� Zpδpa\ b, fqq

� λpa\ b, Zpfqq.

Thus pλ, ZpL, Jqq is a L-slice.

68



Remark. We may also view ZpL, Jq as the image set of an onto slice morphism Z.

The map Z : pδ,HompL, Jqq Ñ pλ, ZpL, Jqq is defined as Zpfq � Zpfq .It is a

slice morphism because Zpf O gq � Zpf O gq � Zpfq X Zpgq � Zpfq X Zpgq and

Zpδpa, fqq � λpa, Zpfqq � λpa,Zpfqq. Also the kernel of Z is t0homu.

Definition 4.3.3. A slice morphism f P HompL, Jq is called a unit of HompL, Jq if

Zpfq � t0Lu

Example 4.3.4. Fix a nonzero x P pσ, Jq. Define σx : p[, Lq Ñ pσ, Jq as σxp0Lq � 0J

and σxpaq � x, for every a � 0L. Then σx is a slice morphism which is a unit of

HompL, Jq.

Definition 4.3.5. The set of all units of HompL, Jq is called Units.

Lemma 4.3.6. Units is a join semilattice.

Proof. If f, g P Units then Zpfq XZpgq � Zpf O gq � t0Lu. Thus f O g is a unit.

Lemma 4.3.7. If g is a unit and g ¨ f then f P Units.

Proof. g ¨ f implies Zpfq � Zpgq. Since g is a unit Zpgq � t0Lu will imply that

Zpfq � t0Lu. Thus f is a unit.

Remark. Units is an upper set.

Next we try to endow a topology on the locale L. Analogous to the topology we

have developed in Hompσ, Jq, we try to construct a topology on p[, Lq through the

zero sets of the L-slice HompL, Jq.For each slice morphism f in HompL, Jq we obtain

a collection of ideals on the locale L and study the topology so obtained.
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4.4. The ideal xf : xyL and the Sierpinski topology

Definition 4.4.1. Let f be a slice morphism such that f P HompL, Jq and x P pσ, Jq

then the set xf : xyL � tr P L : fprq ¤ xu.

Note that the zero set of f is always a subset of xf : xyL.

Theorem 4.4.2. xf : xyL is an ideal of p[, Lq.

Proof. 0L P xf : xyL for every f and for every x. Hence it is nonempty. Let r, s P

xf : xyL. Then fprq ¤ x and fpsq ¤ x implies fpr \ sq ¤ x. Thus r \ s P xf : xyL.

If r P xf : xyL and b P p[, Lq then fp[pb, rqq � σpb, fprqq ¤ σpb, xq ¤ x.Therefore,

[pb, rq P xf : xyL. Also if a P xf : xyL and b � a then clearly b P xf : xyL. Hence

xf : xyL is an ideal of p[, Lq.

Properties of the ideal xf : xyL

Property 1. If f is surjective then for every y P pσ, Jq there exists a P p[, Lq such

that fpaq � y. Then Ó a � xf : yyL.

Property 2. If f ¨ g then xf : xyL � xg : xyL.

Property 3. If x ¤ y then xf : xyL � xf : yyL.

Property 4. x0hom : xyL � L � xσx : xyL.

Property 5. xf : 0JyL � Zpfq.

Proof. If r P xf : 0JyL then fprq � 0J implies r P Zpfq. Also Zpfq is always a subset

of xf : xyL for every x P pσ, Jq. Thus xf : 0JyL � Zpfq.
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Property 6. xf : xyL X xf : yyL � xf : x_ yyL.

Proof. If r P xf : xyL X xf : yyL then fprq ¤ x and fprq ¤ y will imply fprq ¤ x_ y.

Thus xf : xyL X xf : yyL � xf : x_ yyL.

Property 7. xf : xyL X xg : xyL � xf O g : xyL.

Proof. If r P xf : xyL X xg : xyL then fprq ¤ x and gprq ¤ x shows that f O gprq ¤ x.

Therefore xf : xyLXxg : xyL � xf O g : xyL. Also if s P xf O g : xyL then f O gpsq ¤ x

implies fpsq ¤ x and gpsq ¤ x. Thus xf : xyL X xg : xyL � xf O g : xyL.

Definition 4.4.3. Consider the collection Bx
p[,Lq � txf : xyL : f P HompL, Jqu.

The property 4 and property 7 shows that the collection Bx
p[,Lq forms a basis for a

topology on p[, Lq.

Also each open set of the topology so generated contains a zero set.In particu-

lar, for the collection B0J
p[,Lq � txf : 0JyL : f P HompL, Jqu the zero sets of slice

morphisms from p[, Lq to pσ, Jq forms a basis for a topology on p[, Lq.

Proposition 4.4.4. If every f � 0hom is a unit then the topology generated by B0J
p[,Lq

is Sierpinski topology.

Proof. The property 4 shows that x0hom : xyL � L . If x � 0J then x0hom : 0JyL � L.

Also , since every slice morphism f P HompL, Jq is a unit we have Zpfq � t0Lu.

The definition of B0J
p[,Lq shows that the topology so generated by B0J

p[,Lq will be

τ0J � tL, t0Lu, φu.
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4.5. Ideals and Z-filter of HompL, Jq

HompL, Jq is an L-slice and an ideal of HompL, Jq can be defined accordingly.

Definition 4.5.1. An ideal I in HompL, Jq is a set such that it satisfies the following

conditions.

i) f, g P I implies f O g P I

ii) If f P I then δpr, fq P I

iii) If f P I and h ¨ f then h P I.

Note that an ideal will always mean a proper ideal that is, I � t0homu

Definition 4.5.2. An ideal I is said to be prime ideal if δpr[ s, fq P I implies either

δpr, fq P I or δps, fq P I.

Remark. In the theory of locales, filters are defined as a generalisation of the concept

of filters in a topological space. Filters are not defined in the usual setting of an

L-slice. When the locale L is viewed as an L-slice there arises the problem of defining

a filter in terms of the action involved. Here we define the notion of Z-filter in terms

of the zero sets of the L-slice HompL, Jq.

Definition 4.5.3. A nonempty subfamily F of ZpL, Jq is called Z-filter on p[, Lq

provided

i) t0Lu R F

ii)Zpfq, Zpgq P F implies Zpfq X Zpgq P F .

iii)Zpfq P F and Zpfq � Zpgq then Zpgq P F .

Remark. Zpfq is nonempty for every f P HompL, Jq. Also Zp0homq � L implies every

Z-filter contains L.
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Note that a filter F on L will denote the usual order theoretic filter on L. We have

the following theorem on Z-filters.

Theorem 4.5.4. The intersection of any filter F on L with ZpL, Jq is a Z-filter on

p[, Lq.

Proof. We have already shown that L belongs to every Z-filter. Thus F X ZpL, Jq is

nonempty. Consider the set ZF � tF XZpfq : Zpfq P ZpHompL, Jqqu. By the above

observation each set belonging to ZF is nonempty. Let F X Zpfq, F X Zpgq P ZF .

Then pF X Zpfqq X pF X Zpgqq � F X pZpfq X Zpgqq � F X pZpf O gqq. Therefore

pF X Zpfqq X pF X Zpgqq P ZF .

Analogous to Z-filters we introduce two new terminologies Z-ideals and strong

Z-ideal.

Definition 4.5.5. An ideal I of HompL, Jq is said to be a Z-ideal if Zpfq P ZrIs

then f P I.

Definition 4.5.6. An ideal I of HompL, Jq is said to be a strong Z-ideal if f P I and

Zpfq � Zpgq then g ¨ f . Consequently, g P I.

We now study the relationship between strong Z-ideals and Z-filters.

Theorem 4.5.7. Let F be a Z-filter on L. The sub-family ZÐrFs of HompL, Jq

defined as ZÐrFs � tf P HompL, Jq : Zpfq P Fu is an ideal in HompL, Jq.

Proof. Let f, g P ZÐrFs then Zpfq P F , Zpgq P F implies ZpfqXZpgq � ZpfOgq P F .

Therefore f O g P ZÐrFs . Hence ZÐrFs is a join semilattice. Let f P ZÐrFs. We

know that δpr, fq ¨ f implies Zpfq � Zpδpr, fqq. Since F is Z-filter Zpδpr, fqq P F

and thus δpr, fq P ZÐrFs. Also whenever g ¨ f, Zpfq � Zpgq and F being a Z-filter

guarantees that g P ZÐrFs. Hence ZÐrFs is an ideal of HompL, Jq.
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Remark. The converse of the theorem need not be true. That is, if I is an ideal of

HompL, Jq then ZrIs � tZpfq : f P Iu is not necessarily a Z-filter. ZrIs will be a set

which has the finite intersection property.

Theorem 4.5.8. If I is a strong Z-ideal of HompL, Jq then ZrIs is a Z-filter on

p[, Lq.

Proof. ZrIs � t0Lu. For Zpfq, Zpgq P ZrIs, Zpf O gq � Zpfq X Zpgq P ZrIs. Also if

Zpfq P ZrIs and Zpgq P ZpL, Jq such that Zpfq � Zpgq then I being strong Z-ideal

shows that g P I. Therefore Zpgq P ZrIs. Thus ZrIs is a Z-filter.

Remark. If for some Z-filter F , ZÐrFs is a strong Z-ideal,then ZrZÐrFss � F .

We examine the change in the structure of ZÐrFs when F is given an additional

condition. Let us consider ZÐrFs as the image of the map ZÐ. Let us denote the

collection of all Z-filters as Z and the collection of all ideals in HompL, Jq as I . The

map ZÐ is a map from Z to I.

Definition 4.5.9. A maximal Z-filter is called Z-ultra filter on p[, Lq.

Theorem 4.5.10. If U is an Z-ultra filter on p[, Lq , then ZÐrUs is a maximal

ideal in HompL, Jq.

Proof. We know that ZÐrUs is an ideal in HompL, Jq. It remains to show that

the map ZÐ : Z Ñ I preserves inclusion. Let F and G be two Z-filters such that

F � G. We show that ZÐpFq � ZÐpGq. The set ZÐrFs is an ideal of HompL, Jq.

If f P ZÐrFs then Zpfq P F will imply Zpfq P G. Therefore ZÐpFq � ZÐpGq and

thus ZÐ preseves inclusion. Hence if U is an Z-ultra filter then ZÐrUs is a maximal

ideal.

The next theorem gives a characterisation for Z-ultra filter.
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Theorem 4.5.11. Let U be an Z-ultra filter on p[, Lq. If a zero set Z has nontrivial

intersection with every member of the ultra filter U then Z P U .

Proof. Since UYtZu has the finite intersection property, UYtZu generates a Z-filter.

Now this Z-filter contains U and U being maximal the Z-filter so generated must be

U itself. Therefore, Z P U .

Example 4.5.12. Let a P p[, Lq and I � tf P HompL, Jq :Ó a � Zpfqu, then I is

an Z-ideal.

Proof. It can be easily shown that I is an ideal. To prove that it is Z-ideal, let us

consider f P I and any g P HompL, Jq such that Zpfq � Zpgq. Then Ó a � Zpfq �

Zpgq implies g P I.

Lemma 4.5.13. Let I and J be any two Z-ideals, then ZrI X Js � ZrIs X ZrJs.

Proof. Since I and J are ideals, so is IXJ . Also ZrIXJs � tZpfq : f P IXJu. Then

Zpfq P ZrIs and Zpfq P ZrJs. Hence ZrI X Js � ZrIs X ZrJs.

Let Zpgq P ZrIs X ZrJs. Then I and J being Z-ideals imply that g P I and g P J .

Therefore Zpgq P ZrI X Js. Thus ZrI X Js � ZrIs X ZrJs.

Theorem 4.5.14. The intersection of any two Z-ideals is a Z-ideal.

Proof. Let I and J be any two Z-ideals. Let Zpfq P ZrI X Js � ZrIs XZrJs. Since I

and J are Z-ideals Zpfq P ZrIs and Zpfq P ZrJs shows that f P I and f P J . Hence

f P I X J .

Proposition 4.5.15. Let S be a subset of a locale L. The family of all functions in

HompL, Jq such that fpSq � t0Ju is a Z-ideal.

75



Proof. I � tf P HompL, Jq : fpsq � 0J , @s P Su. For any f P I, we have S � Zpfq. If

f, g P I then pf _ gqpsq � fpsq _ gpsq � 0J , @s P S. Therefore f _ g P I. Also if f P I

and h ¤ f then S � Zpfq � Zphq implies h P I. For f P I, S � Zpfq � Zpδpr, fqq

implies δpr, fq P I. Thus I is an ideal of HompL, Jq. Consider g P HompL, Jq

such that Zpfq � Zpgq, for some f P I. Then S � Zpfq � Zpgq.Thus g P I and

consequently I is a Z-ideal .

Theorem 4.5.16. Let I be any ideal in HompL, Jq that contains a prime ideal. If

there exists a g P HompL, Jq such that δpr [ s, gq � 0Hom then either δpr, gq P I or

δps, gq P I.

Proof. Let P be the prime ideal contained in I . Let g be such that there exists

r, s P p[, Lq with pr [ s, gq � 0Hom . Since P is a prime ideal δpr [ s, gq � 0Hom P P

implies either δpr, gq P P or δps, gq P P . Hence δpr, gq P I or δps, gq P I.

4.6. Fixed Ideals of HompL, Jq

For any ideal I of HompL, Jqdefine
�
ZrIs � tZpfq : f P Iu. For any slice morphism

f P HompL, Jq, Zpfq always contains t0Lu and hence nonempty. Whenever we say

that a set involving zero sets is nontrivial, it would imply that the set contains an

element other than 0L.In the first chapter we had introduced regular filters on the

locale L. In a similar manner we give a definition of ideals on HompL, Jq.

Definition 4.6.1. An ideal I is said to be fixed if
�
ZrIs is nontrivial. Also, if

�
ZrIs � t0Lu then I is said to be free.

Obviously the ideal I � t0Homu is fixed. Also any ideal I is a free ideal if and only

if for every a P p[, Lq there is a slice morphism in I such that it does not vanish at a.
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Note that in [25] Gillmann and Jerrison defines fixed ideal as that ideal for which
�
ZrIs is nonempty. But in our case this arises naturally for every ideal in the L-slice

HompL, Jq. Every zero set contains 0L and hence any intersection of zero sets is

nonempty. Similar is the case of free ideal. Thus the definitions in the background of

L-slices differ and we explore the various results associated with it.

Proposition 4.6.2. If Z(f) is nontrivial for some f P HompL, Jq then the principal

ideal Ó f is fixed.

Proof. For every g PÓ f, Zpfq � Zpgq. Let ap� 0Lq P Zpfq then a P Zpgq for every

g PÓ f .Thus a P
�
ZrÓ f s and consequently Ó f is fixed.

Remark. Suppose that the ideal I is free. If there exists f P I such that Zpfq is

nontrivial then by the above proposition Ó f is fixed. Thus every free ideal contains

a fixed ideal. However, the converse is not true. If I is a fixed ideal then
�
ZrIs is

nontrivial and hence it will never contain a free ideal.

Example 4.6.3. Consider a nonempty set H of the L-slice p[, Lq. Also let H � t0Lu.

We have already shown that I � tf P HompL, Jq : f rHs � t0Juu is an Z-ideal in

HompL, Jq. Obviously, I is a fixed ideal.

Proposition 4.6.4. The intersection of any two fixed ideals is also a fixed ideal.

Proof. Let I and J be any two fixed ideals. We have that I X J is also an ideal.

Let
�
ZrIs � A, where A is nonempty and A � p[, Lq. For every f P I and

a P A, fpaq � 0J . Similarly for the fixed ideal J there exists a nonempty set B �

p[, Lq such thatgpbq � 0J for every g P J and b P B. If h P I X J then hpaq � 0J and

hpbq � 0J for every a P A and b P B .Thus AYB � Zphq for every h P IXJ .Therefore

I X J is a fixed ideal.
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Note that the above proposition is not true in the case of free ideals. But we have

the following proposition concerning maximal ideals and free ideals.

Proposition 4.6.5. Let J be any free ideal then the maximal ideal containing J is

also a free ideal.

Proof. Let M be the maximal ideal containingJ . Since J is a free ideal we have
�
ZrJs � t0Lu. Suppose that a � 0L P

�
ZrM s. Then fpaq � 0J , @f P M and

J � M shows that gpaq � 0J , @g P J .But J is a free ideal .Thus we arrive at a

contradiction. Hence M is also a free ideal.

4.7. The fixed ideal Mp of HompL, Jq

Definition 4.7.1. For each p in the L-slice p[, Lq , we define a subset of HompL, Jq

as Mp � tf P HompL, Jq : fppq � 0Ju. In other words, f PMp if and only if p P Zpfq.

Remark. The set Mp is the set of all those functions that vanish at p.Thus whenever

p belongs to the zero set of a slice morphism f it will belong to the set Mp. Hence

the zero sets and the sets Mp are related to each other.

We investigate the structure and properties of the set Mp. The previous section

on zero sets have shown that the zero set of a slice morphism is an ideal. Similarly

the next theorem shows that for each p P p[, Lq the set Mp is an ideal of HompL, Jq

Theorem 4.7.2. The set Mp is an ideal of HompL, Jq for every p P p[, Lq,

Proof. If f, g PMp then f _ gppq � fppq _ gppq � 0J . Therefore f _ g PMp.

Also if h ¤ f then hppq � 0J and δpa, fqppq � σpa, fppqq � 0J shows that Mp is an

ideal of HompL, Jq.
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Proposition 4.7.3. If L is a σ - domain then Mp is a prime ideal for every p P p[, Lq.

Proof. If δpa[ b, fq P Mp then δpa[ b, fqppq � σpa[ b, fppqq � σpa, σpb, fppqq � 0J .

Since L is a σ - domain, either a � 0L or σpb, fppqq � 0J . That is, either we have

σpa, fppqq � 0J or σpb, fppqq � 0J .Therefore either δpa, fq PMp or δpb, fq PMp.

Proposition 4.7.4. The ideal Mp exhibits the following properties

i)If p � q then Mq �Mp

ii) Mp XMq �Mp\q

iii) M0L � HompL, Jq

iv)For p � 0L,Mp is a fixed ideal.

Proof. i) Let f PMq. Since f is a slice morphism fppq ¤ fpqq � 0J implies fppq � 0J .

Thereforef PMp.

ii) If f P Mp X Mq, then fpp \ qq � fppq _ fpqq � 0J . Therefore f P Mp\q and

Mp XMq � Mp\q. Let g P Mp\q. Then gpp \ qq � gppq _ gpqq � 0J implies that

gppq � 0J and gpqq � 0J .Thus g PMp XMq. Consequently, Mp XMq �Mp\q.

iii) fp0Lq � 0J for every f P HompL, Jq. Hence , M0L � HompL, Jq.

iv)Let p � 0L. From the definition of the ideal Mp it follows p P
�
ZrMps.Thus Mp

is fixed.

The similarity in the properties of fixed ideals Mp of HompL, Jq and the zero sets

p[, Lq are illustrated by i) and ii) of the above proposition.

The next theorem gives more insight into the relationship between the zero sets

and fixed ideal Mp.

Theorem 4.7.5. i)If Mp �Mq, then |
�
ZrMps |¥ 3

ii) Mp is a strong Z-ideal.

iii) ZrMps is Z-filter.
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Proof. i) Mp � Mq shows that to every f P Mp, the corresponding zero set Zpfq

contains the set t0L, p, qu. Thus |
�
ZrMps |¥ 3.

ii) Let f P Mp and Zpfq � Zpgq. Therefore p P Zpgq and hence g P Mp.Thus Mp is

strong Z-ideal.

iii) Follows from theorem 4.5.8

In the previous section we have developed topology which contains zero sets as

open sets. Here on similar lines, we can develop a topology for which the fixed ideals

Mp will form a basis .

Theorem 4.7.6. The collection M � tMp : p P p[, Lqu forms a basis for a topology

on HompL, Jq.

Proof. The proposition 4.7.4 guarantees the existence of such a basis and we hence

the theorem.

Remark. Consider the open set xf : 0JyL belonging to the basis B0J
p[,Lq. For any r in

p[, Lq , r P xf : 0JyL implies that f PMr , the open set in M.

We show that M is a join semilattice and eventually construct an L-slice on M .

Lemma 4.7.7. M is a join semilattice.

Proof. Partially order the collection M as Mp ® Mq if and only if Mp � Mq. The

join is then defined as Mp YMq �Mp XMq �Mp\q. Also, M0L � HompL, Jq. Thus

M is a join semilattice with bottom element M0L .
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Theorem 4.7.8. The map Z : L �M Ñ M defined as Zpa,Mpq � M[pa,pq is an

action on M and consequently pZ,Mq is an L-slice.

Proof.

1. Zpa,Mp YMqq� Zpa,Mp\qq

�M[pa,p\qq

�M[pa,pq \ [pa,qq

�M[pa,pq YM[pa,qq

� Zpa,MpqYZpa,Mqq, for all a P L and Mp,Mq PM.

2. Zpa,M0Lq �M[pa,0Lq �M0L for all a P L.

3. For all a, b P L and Mp PM,Zpa[ b,Mpq�M[pa[b,pq

�M[pa,[pb,pqq

� Zpa,M[pb,pqq

� Zpa,Zpb,Mpqq.

Also, Zpa[ b,Mpq � Zpb,Zpa,Mpqq.

4. Zp1L,Mpq �M[p1L,pq �Mp and Zp0L,Mpq �M[p0L,pq �M0L , for all Mp PM

5. Zpa\ b,Mpq �M[pa\b,pq�M[pa,pq \ [pb,pq

�M[pa,pq YM[pb,pq

� Zpa,MpqYZpb,Mpq, for all a, b P L and Mp PM.

Thus Z is an action of locale L on M and pZ,Mq is an L-slice.

Now we may associate to each a P p[, Lq an Z-filter in ZpL, Jq through a slice

morphism.
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Theorem 4.7.9. The map µ : p[, Lq Ñ pZ,Mq defined as µpaq � Ma is a slice

morphism.

Proof. µpa \ bq � Ma\b � Ma YMb � µpaq Y µpbq for every a, b P p[, Lq.Thus µ

preserves join. Also µp[pa, rqq � M[pa,rq � Zpa,Mrq � Zpa, µprqq, for all r P p[, Lq.

Therefore it preserves action. Hence µ is a slice morphism.

Let Z � Fil denote the collection of all Z-filters on the locale L. Define a map

on M as Z̃ : M Ñ Z � Fil is the natural map that takes each Mp P M to the

corresponding Z-Filter , ZrMps. The composition Z �µ : p[, Lq Ñ Z�Fil takes each

element r P p[, Lq to the Z-Filter ZrMrs.
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Chapter 5

Zariski topology on L-slices

Modules are the action of a ring on a group. The postulates for Modules and L-slices

are somewhat similar. The algebraic properties of L-slices prompts us to elaborate

the study of L-slices in the direction of Modules. In [59] L-slices and TopW-Modules

are found to be related. This resulted in observing the L-slice pσ, Jq as a module.

We have tried to extend the idea of Zariski topology on modules to L-slices. Given

a locale L and a L-slice pσ, Jq, for m P pσ, Jq and r P L, we have constructed pσ, Jq

ideals rr Ñ mspσ,Jq � tn P pσ, Jq : σpr, nq ¤ mu. Their properties and characteristics

are studied. Similarly for a given L-slice pσ, Jq and n,m P pσ, Jq, we examine the

properties of L-ideals rn Ñ msL � tr P pσ, Jq : σpr, nq ¤ mu. The notion of L-prime

elements on pσ, Jq and their properties are discussed. The collection of L-prime

elements is defined as Specpσ, Jq and the possibility of existence of Zariski topology

on it is examined.
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5.1. Implicative Ideals of L

In this section we define sets on the locale L which are found to be ideals called

implicative ideals.

Let L be a locale and pσ, Jq be an L - slice with bottom element 0J . For n, l P pσ, Jq,

define a set rl Ñ nsL � tr P L : σpr, lq ¤ nu.

Proposition 5.1.1. For n, l P pσ, Jq, rl Ñ nsL is an ideal of L.

Proof. We know that σp0L, lq ¤ n @ l P pσ, Jq. Hence rl Ñ nsL is nonempty.

Let a, b P rl Ñ nsL. Then σpa, lq ¤ n and σpb, lq ¤ n implies σpa_b, lq ¤ n. Therefore

a_b P rl Ñ nsL. If c P L and c ¤ a then σpc, lq ¤ σpa, lq ¤ n implies that c P rl Ñ nsL.

Hence rl Ñ nsL is an ideal of L.

Definition 5.1.2. For n, l P pσ, Jq, the ideal rl Ñ nsL is called the implicative ideal

of the locale L.

Proposition 5.1.3. i) If n, l P pσ, Jq and n ¤ l then rx Ñ nsL � rx Ñ lsL @ x P

pσ, Jq

ii) If n, l, k P pσ, Jq and n ¤ l then rl Ñ ksL � rnÑ ksL.

Proof. i) If r P rx Ñ nsL then σpr, xq ¤ n ¤ l implies r P rx Ñ lsL. Therefore

rxÑ nsL � rxÑ lsL @ x P pσ, Jq.

ii) s P rl Ñ ksL ñ σps, lq ¤ k. Since n ¤ l, σps, nq ¤ σps, lq ¤ k. Therefore

s P rnÑ ksL. Thus rl Ñ ksL � rnÑ ksL.

Proposition 5.1.4. For n, l P pσ, Jq, rl Ñ ksL X rnÑ ksL � rl _ nÑ ksL.
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Proof. Let r P rl Ñ ksL X rnÑ ksL.

r P rl Ñ ksL X rnÑ ksL ô σpr, lq ¤ k and σpr, nq ¤ k

ô σpr, lq _ σpr, nq ¤ k

ô σpr, l _ nq ¤ k

ô r P rl _ nÑ ksL

Therefore rl Ñ ksL X rnÑ ksL � rl _ nÑ ksL.

Similarly we obtain the following proposition.

Proposition 5.1.5. For n, l, k P pσ, Jq, rk Ñ lsL X rk Ñ nsL � rk Ñ l _ nsL.

5.2. Implicative Ideals of pσ, Jq

Let n P pσ, Jq and r P L then we define a set rr Ñ nspσ,Jq � tl P pσ, Jq : σpr, lq ¤ nu.

Proposition 5.2.1. For r P L and n P pσ, Jq, rr Ñ nspσ,Jq is an ideal of pσ, Jq.

Proof. 0J P rr Ñ nspσ,Jq and hence it is nonempty.Let l,m P rr Ñ nspσ,Jq then

σpr, lq ¤ n and σpr,mq ¤ n implies σpr, l _ mq ¤ n. Hence l _ m P rr Ñ nspσ,Jq.

Also, if x ¤ l for some x P pσ, Jq then σpr, xq ¤ σpr, lq ¤ n. Thus x P rr Ñ nspσ,Jq.

If x P rr Ñ nspσ,Jq and a P L then σpr, σpa, xqq � σpa, σpr, xqq ¤ σpr, xq ¤ n.

Therefore rr Ñ nspσ,Jq is an ideal of pσ, Jq.

Definition 5.2.2. The ideal rr Ñ nspσ,Jq is called the implicative ideal of pσ, Jq.
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The following properties of implicative ideals of pσ, Jq can be easily verified.

Proposition 5.2.3. i) For r, s P L, if r ¤ s , then rr Ñ nspσ,Jq � rsÑ nspσ,Jq

ii) For m,n P pσ, Jq, n ¤ m implies rr Ñ nspσ,Jq � rr Ñ mspσ,Jq

iii) rr Ñ nspσ,Jq Y rr Ñ mspσ,Jq � rr Ñ n_mspσ,Jq

Lemma 5.2.4. Let n P pσ, Jq and r, s P L

i) r0L Ñ nspσ,Jq � pσ, Jq

ii) r1L Ñ nspσ,Jq �Ó n

iii) rr Ñ nspσ,Jq X rsÑ nspσ,Jq � rr \ sÑ nspσ,Jq, where r, s P L.

Proof. i, ii follows from definitions. To prove iii , let l P rr Ñ nspσ,Jq X rs Ñ nspσ,Jq

then σpr, lq ¤ n and σps, lq ¤ n implies σpr\ s, lq ¤ n. Hence l P rr\ sÑ nspσ,Jq and

rr Ñ nspσ,Jq X rsÑ nspσ,Jq � rr \ sÑ nspσ,Jq. Consider m P rr \ sÑ nspσ,Jq. Then

m P rr \ sÑ nspσ,Jq ñ σpr \ s,mq ¤ n

ñ σpr,mq _ σps,mq ¤ n

ñ σpr,mq ¤ n and σps,mq ¤ n

ñ m P rr Ñ nspσ,Jq X rsÑ nspσ,Jq

Thus rr Ñ nspσ,Jq X rsÑ nspσ,Jq � rr \ sÑ nspσ,Jq.

Hence rr Ñ nspσ,Jq X rsÑ nspσ,Jq � rr \ sÑ nspσ,Jq.

The following theorem is obvious consequence of the above lemma.

Theorem 5.2.5. The collection trr Ñ nspσ,Jq : n P pσ, Jq, r P Lu forms a basis for a

topology on the L-slice pσ, Jq.
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5.3. Ideal Element of pσ,Cq

In this section we introduce the concept of L -component pσ,Cq. We construct a

L-slice over a sup lattice. A complete L -slice is called a L -component, that is, it is

the action of a locale on a sup lattice. Further, we define the action of an ideal on

x P pσ,Cq and ideal elements of pσ,Cq.

Definition 5.3.1. Let L be a locale and C be a sup lattice with bottom element 0C

and top element 1C . The L -component pσ,Cq is the action of L on C which is defined

as a map σ : L� C Ñ C such that it satisfies the following conditions in addition to

the definition of L-slice

i) σpa,
�
xiq �

�
σpa, xiq for txiuiPI P pσ,Cq, for some indexed set I

ii) σp
�
i ai, xq �

�
i σpai, xq for taiuiPI P L, for some indexed set I.

Example 5.3.2. p[, Lq is an L-component.

Definition 5.3.3. Let I be an ideal of the locale L. For x P pσ,Cq we define the

action of I on x as σpI, xq �
�
t_k

i�1σpai, xq : k P N, ai P Iu and is denoted as Ix.

Definition 5.3.4. Let I be an ideal of the locale L and n P pσ,Cq. The element

rn : Is �
�
tx P pσ,Cq : Ix ¤ nu of pσ,Cq is called an ideal element of pσ,Cq.

Properties of ideal elements

Proposition 5.3.5. Let pσ,Cq be a L- component and I be an ideal of a locale L

then for every n P pσ,Cq

i) n ¤ rn : Is

ii) Irn : Is ¤ n.
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Proof. i) We have

σpai, nq ¤ n @ ai P I ñ _k
i�1σpai, nq ¤ n

ñ
ª

t_k
i�1σpai, xq : k P N, ai P Iu ¤ n

ñ In ¤ n

Therefore n ¤ rn : Is.

ii) Let rn : Is � m and tx P pσ,Cq : Ix ¤ nu � X so that we have
ª
xPX

x � m.

For any a P I, σpa,mq � σpa,
ª
xPX

xq �
ª
xPX

σpa, xq. Therefore σpa, xq ¤ Ix ¤ n implies

ª
xPX

σpa, xq ¤ n so that σpa,mq ¤ n. Thus for every ai P I,

σpai,mq ¤ n ñ _k
i�1σpai,mq ¤ n

ñ
ª

t_k
i�1σpai,mq : k P Nu ¤ n

ñ Im ¤ n

ñ Irn : Is ¤ n.

Proposition 5.3.6. Let I, J be ideals of a locale L and x P pσ,Cq. If I � J then

Ix ¤ Jx.

Proof. Ix �
�
t_k

i�1σpai, xq : ai P I, k P Nu ¤
ª

t_k
i�1σpbi, xq : bi P J, k P Nu � Jx.

Thus Ix ¤ Jx for all x P pσ,Cq.
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Proposition 5.3.7. For x, n P pσ,Cq, rxÑ nsL � rxÑ rxÑ nsLxsL.

Proof. Let r P rx Ñ nsL. Then σpr, xq ¤ n implies σpr, xq ¤ rx Ñ nsLx. Hence

r P rxÑ rxÑ nsLxsL. Therefore rxÑ nsL � rxÑ rxÑ nsLxsL.

Proposition 5.3.8. For x, n P pσ,Cq, rxÑ nsLx ¤ n.

Proof. rx Ñ nsLx �
�
t_k

i�1σpai, xq : ai P rx Ñ nsL, k P Nu �
ª

t_k
i�1σpai, xq :

σpai, xq ¤ n, k P Nu. Hence the proof.

5.4. L-Prime Elements and Specpσ,Cq

Definition 5.4.1. An element p � 1C of pσ,Cq is said to be L-prime element if for

every r P L and n P pσ,Cq, σpr, nq ¤ p implies that either r P r1C Ñ psL or n ¤ p.

Example 5.4.2. If we consider the L-slice p[, Lq then the L-prime elements are

precisely the meet irreducible elements of L.

Properties of L-prime elements

Theorem 5.4.3. If p be a L-prime element and x P pσ,Cq then rxÑ psL is a prime

ideal of L.

Proof. Let r[s P rxÑ ps, then σpr[s, xq ¤ p implies σpr, σps, xqq ¤ p. The L-prime

element p shows that either σps, xq ¤ p or r P r1C Ñ psL. That is, either x ¤ p or

s P rx Ñ psL or r P r1C Ñ psL. From proposition 5.1.3 that r1C Ñ psL � rx Ñ psL.

Thus s P rxÑ psL or r P rxÑ psL. Hence rxÑ psL is a prime ideal.

Corollary 5.4.4. If p is a L-prime element then r1C Ñ psL is a prime ideal of a

locale L.
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Proof. Follows from the above theorem.

Theorem 5.4.5. If p and q are any two L-prime elements then so is p^ q.

Proof. Let σpr, nq ¤ p ^ q, for some n P pσ,Cq and r P L . Then σpr, nq ¤ p and

σpr, nq ¤ q. Since p and q are L-prime elements, we have the following statements:

i) either n ¤ p or r P r1C Ñ psL and ii) either n ¤ q or r P r1C Ñ qsL. From these

two statements the theorem follows.

Definition 5.4.6. The set of all L -prime elements of pσ,Cq is called the spectrum

of pσ,Cq and is denoted by Specpσ,Cq.

5.5. Zariski topology on Spec^pσ,Cq

Definition 5.5.1. For n P pσ,Cq we define Cpnq � tp P Specpσ,Cq : n ¤ pu.

Proposition 5.5.2. For n P pσ,Cq and p P Specpσ,Cq we have the following :

i) Cp0Cq � Specpσ,Cq

ii) Cp1Cq � φ

iii)
�
iPI Cpniq � Cp

�
iPI niq,for some indexed set I

iv) Cpnq Y Cplq � Cpn^ lq.

Proof. i) Cp0Cq � tp P Specpσ,Cq : 0C ¤ pu. Since 0C is the bottom element, 0C ¤ p

for every p P Specpσ,Cq. Hence Cp0Cq � Specpσ,Cq.

ii) Cp1Cq � tp P Specpσ,Cq : 1C ¤ pu. Since 1C is the top element, no p P Specpσ,Cq

belongs to Cp1Cq. Hence Cp1Cq is empty.

iii) p P
�
iPI Cpniq implies ni ¤ p , for every i in some indexed set I. Then we have

�
iPI ni ¤ p. Therefore p P Cp

�
iPI niq. Thus

�
iPI Cpniq � Cp

�
iPI niq.
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Suppose p P Cp
�

iPI niq.

ª
iPI

ni ¤ p ñ ni ¤ p @ i P I

ñ p P Cpniq @ i P I

Hence Cp
�

iPI niq �
�
iPI Cpniq and consequently

�
iPI Cpniq � Cp

�
iPI niq.

iv) Let p P Cpnq Y Cplq.

p P Cpnq Y Cplq ñ p P Cpnq or p P Cplq

ñ n ¤ p or l ¤ p

ñ n^ l ¤ p

ñ p P Cpn^ lq

Hence Cpnq Y Cplq � Cpn^ lq.

The above proposition leads us to the following theorem.

Theorem 5.5.3. On Specpσ,Cq,Λ � tCpnq : n P pσ,Cqu forms a basis for some

topology Ω.

Definition 5.5.4. Spec^pσ,Cq is the set of all p P pσ,Cq such that p is meet irre-

ducible as well as an L-prime element of pσ,Cq

Proposition 5.5.5. On Spec^pσ,Cq, Cpnq Y Cplq � Cpn^ lq.

Proof. We have CpnqYCplq � Cpn^ lq. If p P Cpn^ lq then n^ l ¤ p . The L-prime

element p being meet irreducible, either n ¤ p or l ¤ p. That is, either p P Cpnq or

p P Cplq. Hence p P Cpnq Y Cplq and Cpnq Y Cplq � Cpn^ lq.
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Proposition 5.5.6. The collection ν � tCpnq : n P pσ,Cqu defined on Spec^pσ,Cq

forms a family of closed sets for some topology on Spec^pσ,Cq.

Proof. Follows from Proposition 5.5.2 and proposition 5.5.5.

Definition 5.5.7. The topology Ψ generated by the family of closed sets ν is called

the Zariski topology on Spec^pσ,Cq.

5.6. Zariski Topology of L-Component

In this section we define a new type of sets C�pnq and have tried to define a Zariski

topology on Specpσ,Cq.

Definition 5.6.1. For n P pσ,Cq, we define C�pnq � tp P Specpσ,Cq : r1C Ñ nsL �

r1C Ñ psLu.

Proposition 5.6.2. Let pσ,Cq be a L-component. The set C�pnq has the following

properties

i) C�p0Cq � Specpσ,Cq

ii) C�p1Cq � φ

iii)
�
iPI C

�pniq � C�p
�

iPIr1C Ñ nis1Cq, for some indexed set I

iv) C�pnq Y C�plq � C�pn^ lq.

Proof. i) C�p0Cq � tp P Specpσ,Cq : r1C Ñ 0CsL � r1C Ñ psLu. It is obvious that

r1C Ñ 0CsL � r1C Ñ psL, @p P pσ,Cq. Hence C�p0Cq � Specpσ,Cq.

ii) C�p1Cq � tp P Specpσ,Cq : r1C Ñ 1CsL � r1C Ñ psLu. And r1C Ñ 1CsL � tr P

L;σpr, 1Cq ¤ 1Cu � L. Since p � 1C , C
�p1Cq � φ.

iii) Let p P
�
iPI C

�pniq. From Propositions 5.3.6 and 5.3.8 r1C Ñ nisL1C ¤ p, @i P I

implies that
�

iPIr1C Ñ nisL1C ¤ p. Thus p P C�p
�

iPIr1C Ñ nisL1Cq.
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Consider p P C�p
�

iPIr1C Ñ nisL1Cq. For any j in the indexed set I

r1C Ñ njsL � r1C Ñ r1C Ñ njsL1CsL � r1C Ñ
�

JPIr1C Ñ njsL1CsL � r1C Ñ psL.

Therefore p P C�pnjq, @j P I.

iv) Let n, l P pσ,Cq. For p P C�pn ^ lq, r1C Ñ n ^ lsL � r1C Ñ psL. That is,

r1C Ñ nsL X r1C Ñ lsL � r1C Ñ psL. Since r1C Ñ psL is a prime ideal, either

r1C Ñ nsL � r1C Ñ psL or r1C Ñ lsL � r1C Ñ psL. Therefore p P C�pnq Y C�plq.

If p P C�pnq Y C�plq, then r1C Ñ nsL � r1C Ñ psL or r1C Ñ lsL � r1C Ñ psL. Hence

r1C Ñ n^ lsL � r1C Ñ psL which implies p P C�pn^ lq.

Theorem 5.6.3. The collection γ� � tC�pnq : n P pσ,Cqu forms a collection of closed

sets for some topology Ω� on Specpσ,Cq.

Proof. Follows from the above proposition.

Definition 5.6.4. The topology Ω� on Specpσ,Cq with γ� as the collection of closed

sets is called the Zariski topology on Specpσ,Cq.

Theorem 5.6.5. If every L-prime element of pσ,Cq is meet irreducible in C, then

ν � γ�.

Proof. Let Cpnq P ν then p P Cpnq implies r1C Ñ ns � r1C Ñ ps. Hence p P C�pnq

and ν � γ�.

Remark. On Specpσ,Cq we have defined two topologies, one with respect to the

closed sets tC�pnq : n P pσ,Cqu and another with tCpnq : n P pσ,Cqu as basis for

open sets.Also,for A P Ω� and B P Λ,AXBc � φ.
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5.7. Properties of Zariski Topology Ω� and Ψ

Definition 5.7.1. An element m P Specpσ,Cq is said to be σ- maximal if it satisfies

the conditions

i) m ¤ n implies m � n for n P Specpσ,Cq

ii) r1C Ñ msL is a maximal ideal of the locale L.

Theorem 5.7.2. If x P Specpσ,Cq is a σ- maximal element then txu is closed.

Proof. Suppose x is a σ- maximal element of pσ,Cq. By definition r1C Ñ xsL is a

maximal ideal of the locale L. Thus C�pxq � txu and hence it is closed.

Theorem 5.7.3. For q P Specpσ,Cq, Clptquq � C�pqq.

Proof. We have to show that the smallest closed set containing tqu is C�pqq. Obvi-

ously, q P C�pqq. Now let q P C�pnq for some n P pσ,Cq. We prove C�pqq � C�pnq.

If y P C�pqq then r1C Ñ qsL � r1C Ñ ysL. Also, r1C Ñ nsL � r1C Ñ qsL. Therefore

y P C�pnq. Thus Clptquq � C�pqq.

Theorem 5.7.4. If p ¤ q for some p, q P Specpσ,Cq then q P Clptpuq.

Proof. p ¤ q implies r1C Ñ psL � r1C Ñ qsL. Thus q P C�ppq implies q P Clptpuq.

Remark. If every element of Specpσ,Cq is σ-maximal, then the singleton sets will be

closed in Ω� and hence pSpecpσ,Cq,Ω�q will be a T1 space.

Theorem 5.7.5. On pSpec^pσ,Cq,Ψq we have the following

i) Clptpuq � Cppq, for p P Spec^pσ,Cq

ii) tpu is closed in Spec^pσ,Cq if and only if p is maximal in Spec^pσ,Cq

iii) q P Clptpuq if and only if p ¤ q, for p, q P Spec^pσ,Cq

iv) pSpec^pσ,Cq,Ψq is a T0 space.
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Proof. i) Clearly p P Cppq. We show that Cppq is the smallest closed set containing p.

If p P Cpnq for some n P pσ,Cq and q P Cppq then we have p ¤ q and n ¤ p. Clearly,

q P Cpnq. Thus Cppq � Cpnq.

ii) Suppose tpu is closed in Spec^pσ,Cq then tpu � Cpnq for some n P pσ,Cq. That

is, p is the only element such that n ¤ p. If p is not maximal in Spec^pσ,Cq then

for any q � p, with p ¤ q, implies q P Cpnq. But tpu � Cpnq. Hence we arrive at a

contradiction. Therefore p is a maximal element of Spec^pσ,Cq.

Now suppose p is maximal then we have to show that Clptpuq � tpu. We know that

Clptpuq � Cppq.If p � q P Cppq then p ¤ q is a contradiction to the fact that p is

maximal. Thus tpu is closed in Spec^pσ,Cq.

iii) Follows from definition.

iv) Let p and q be two distinct points then either p ¦ q or q ¦ p. Without loss

of generality, suppose the latter. Then p R Clptquq and hence p P Clptquqc which

definitely deos not contain q. Thus pSpec^pσ,Cq,Ψq is a T0 space.

Remark. pSpec^pσ,Cq,Ψq is a T0 space while pSpecpσ,Cq,Ω�q is not.

5.8. A Study on pSpecpσ,Cq,Ω�q

In this section we study a few properties of Ω�.

Definition 5.8.1. An L-Component pσ,Cq is said to be without zero divisors if for

p � 0C and q � 0C implies p^ q � 0C .

Examples 5.8.2. i) If C is a chain then the L-Component pσ,Cq is without zero

divisors.

ii) If C is atomic then L-Component pσ,Cq is without zero divisors.
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Lemma 5.8.3. Consider Specpσ,Cq of the L-slice pσ,Cq. Let X�pnq denote the

complement of C�pnq in pSpecpσ,Cq,Ω�q. Then we have the following

i) X�p1Cq � Specpσ,Cq

ii) X�pnq � H if and only if n � 0C

iii) X�pnq XX�pmq � X�pn^mq

Proof. The proof of i) and ii) follows easily from definitions. To prove iii), suppose

p P X�pnq X X�pmq. Then r1C Ñ nsL � r1C Ñ psL and r1C Ñ msL � r1C Ñ psL.

Since r1C Ñ psL is a prime ideal r1C Ñ nsL X r1C Ñ msL � r1C Ñ psL. That

is, r1C Ñ n ^ msL � r1C Ñ psL. Therefore p P X�pn ^ mq and hence we get

X�pnq XX�pmq � X�pn^mq. Similarly we can prove the reverse inclusion.

Theorem 5.8.4. pSpecpσ,Cq,Ω�q is irreducible if and only if pσ,Cq is without zero

divisors.

Proof. pSpecpσ,Cq,Ω�q is irreducible if and only if the intersection of any pair of

nonempty open sets is nonempty. If X�pnq and X�pmq are two non empty open sets

then by the above lemma X�pn ^mq is nonempty. That is, X�pn ^mq � φ if and

only if whenever n � 0C and m � 0C implies n ^m � 0C . Thus X�pn ^mq � φ if

and only if pσ,Cq is without zero divisors.

Theorem 5.8.5. Let f : pσ,Cq Ñ pµ,Kq be the L-component isomorphism between

the L-components pσ,Cq and pµ,Kq . If q P Specpµ,Kq then f�1pqq P Specpσ,Cq.

Proof. Let f�1pqq � p. Also, if σpr, nq ¤ p then fpσpr, nqq ¤ fppq will imply that

µpr, fpnqq ¤ fppq. Since fppq � q P Specpµ,Kq, we have that either fpnq ¤ fppq

or µpr, 1Kq ¤ fppq. Thus either n ¤ p or σpr, 1Cq ¤ p. Therefore we have that

f�1pqq � p P Specpσ,Cq.
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Theorem 5.8.6. If f : pσ,Cq Ñ pµ,Kq be a L-component isomorphism then f

induces a map f� : Specpµ,Kq Ñ Specpσ,Cq such that f� is continous.

Proof. We know that

q P f�1
� pX�pnqq ô f�pqq P X

�pnq

ô r1C Ñ ns � r1C Ñ f�pqqs

ô r1K Ñ fpnqs � r1K Ñ fpf�pqqqs

ô fpf�pqqq P X
�pfpnqq

ô q P X�pfpnqq.
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Chapter 6

Generalised locales and the Q-Slice

D(Q)

This chapter deals with the abstract notion of locales called quantales. Algebraically

quantales can be considered as semirings. Topologically speaking they are the abstract

notion of generalised spaces which are in turn named locales. Locales or frames are

complete lattices where meet distributes over infinite joins. While defining quantales

C.J. Mulvey introduced an associative binary operation * on a complete lattice such

that * distributes over infinite joins.The similarity in the definitions of locales and

quantales justifies the review of the already established definition of quantales as

generalised locales. Thus quantales can be rightfully called as generalised locales.

Since the notion of quantales are already established and much developed, we prefer

the terminology quantales to that of generalised locales. This chapter is divided into

four sections. In the first section we develop a quotienting of quantale using a specific

ideal. Second section deals with the maps called deductions and their properties.It

is well known that a quotient quantale can be constructed through the maps called
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quantic nucleus. Here we try to do the analogue through the ideals constructed

from the newly defined maps called deductions . The third section introduces the

graphs that are associated with quantales. This section motivated us to look into the

possibilities of introducing graph theory in the context of L-slices.The last section

introduces the generalised L-slice which we call Q-slices. We discuss the differences

in the basic properties exhibited by L-slices and Q-slices.

6.1. Ideals of a Generalised locales or Quantales

and their properties

In [59] authors have developed a quotient frame using the ideals of a locale. We

investigate the possibility of existence of such a quotient quantale in the context of

generalised locales or rather quantales.

Let pQ,
�
,^, �q be a quantale with top element T and bottom element 0. Let I be

any Q-ideal in Q. For each a P Q define Ia � tx P Q : a � x P Iu.

Proposition 6.1.1. Ia is a Q-ideal of a commutative quantale Q.

Proof. Since 0 � a�0 Ia is nonempty. Let J be any indexed set and txiuiPJ P Ia. Then

a �xi P I,@i P J . Since I is an ideal,
�

iPJ a �xi P I. Also
�

iPJ a �xi � a �
�

iPJ xi P I.

Thus
�

iPJ xi P Ia. Let x P Ia and y P Q then a � x P I implies y � pa � xq P I. Since Q

is commutative y � pa � xq � a � py � xq P I.Therefore y � x P Ia. Similarly x � y P Ia. If

y P Ia and x P Q with x ¤ y then a � x ¤ a � y implies that a � x belongs to the ideal

I. Thus x P Ia.

Note that if a P I then Ia � Q.
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Proposition 6.1.2. Let Q be a quantale and I be any Q-ideal then

i) If a, b P Q with a ¤ b then Ia � Ib

ii) I � Ia @a P Q

Proof. i) Let a, b P Q such that a ¤ b. For x P Ib, b � x P I and a � x ¤ b � x implies

that a � x P I. Therefore x P Ia.

ii)follows directly from the definition of Ia.

Theorem 6.1.3. For any Q-ideal I and a P Q, Ia X Ib � Ia_b.

Proof. We have

x P Ia X Ib ô x P Ia and x P Ib

ô a � x P I and b � x P I

ô pa � xq _ pb � xq P I

ô x P Ia_b

Therefore, Ia X Ib � Ia_b.

Theorem 6.1.4. Let Q be a commutative and idempotent quantale. If I is a prime

Q-ideal then Ia Y Ib � Ia�b.

Proof. Let x P Ia Y Ib.

x P Ia or x P Ib ñ a � x P I or b � x P I

ñ pa � xq � pb � xq P I

ñ pa � bq � x P I

ñ x P Ia�b
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Therefore Ia Y Ib � Ia�b

For the reverse inclusion, consider y P Ia�b.Then we have pa � bq � y P I. Also y � pa �

b � yq � pa � yq � pb � yq belongs to the ideal I. Since I is a prime ideal, either a � y P I

or b � y P I. That is, either x P Ia or y P Ib. Therefore y P IaY Ib. Thus Ia�b � IaY Ib

and consequently Ia Y Ib � Ia�b.

Theorem 6.1.5. If I is a prime Q-ideal of a quantale Q then for each a P Q, Ia is a

prime Q-ideal.

Proof. Let I be a prime Q-ideal and let x � y P Ia. Then a � px � yq P I would imply

that either a � x P I or y P I . That is, either x P Ia or y P I. Since I � Ia we have

that either x P Ia or y P Ia. Thus Ia is a prime Q-ideal.

Definition 6.1.6. An element a P Q is said to be quasi prime to a Q-ideal I, if a R I

and a � x P I implies x P I.

Proposition 6.1.7. If a P Q is quasi prime to a Q-ideal I of Q then Ia � I.

Proof. If y P Ia then a � y P I implies y P I. Hence Ia � I. The proof follows from

Proposition 6.1.2.

Remark. If I is a maximal Q-ideal then Ia � I.

Lemma 6.1.8. Let I is a Q-ideal of Q. For any a, b, c P Q and S � Q, if Ia � Ib

then

i) Ia�c � Ib�c

ii) Ia_�S � Ib_
�
S
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Proof. i. Let a, b, c P L and Ia � Ib.

x P Ia�c if and only if pa � cq � x � a � pc � xq P I

if and only if c � x P Ia � Ib

if and only if b � pc � xq � pb � cq � x P I

if and only if x P Ib�c.

Therefore Ia � Ib implies Ia�c � Ib�c.

ii. Let Ia � Ib and S � L.

x P Ia_�S if and only if pa_
�
Sq � x �

�
pa_ sq � x P I

if and only if pa � xq _ ps � xq P I for all s P S

if and only if pa � xq P I and ps � xq P I for all s P S

if and only if b � x P I and ps � xq P I for all s P S

if and only if b � x P I and
�

sPSps � xq P I

if and only if b � x_
�

sPSps � xq P I

if and only if pb_
�

sPSq � x P I

if and only if x P Ipb_�sPSq
.

Hence Ia � Ib implies Ia_�S � Ib_
�
S.

Remark. Q being commutative will give us Ic�a � Ic�b.

Definition 6.1.9. Fix an ideal I in Q and define a relation θI on Q as a θI b if and

only if Ia � Ib.

The following theorems are an immediate consequence of the above lemma.

Theorem 6.1.10. For an ideal I in a commutative quantale Q , θI is a congruence

relation on Q.

Theorem 6.1.11. The quotient Q{θI is a quantale.
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6.2. Deductions on Quantales

In this section we introduce the map deductions on quantales and study some of its

basic properties.

Definition 6.2.1. Consider the quantale pQ,
�
,^, �q. A map d : Q Ñ Q on a

quantale Q is called a deduction on Q if it satisfies the following conditions.

i) dp
�

iPI biq �
�

iPI dpbiq, where I is some indexed set.

ii) dpa � bq � a � dpbq , this property is called translation in second variable.

IfQ is commutative we impose the additional condition that dpa�bq � a�dpbq � dpaq�b.

Example 6.2.2. LetpQ,
�
,^, �q be a quantale. Define da : Q Ñ Q for a P Q such

that dapxq � x � a.

Lemma 6.2.3. Let d be a deduction on a quantale pQ,_,^, �q. For any x, y P Q we

have

i) dp0q � 0

ii) x ¤ y implies dpxq ¤ dpyq

Proof. i) dp0q � dp0 � 0q � 0 � dp0q � 0

ii)dpyq � dpx_ yq � dpxq _ dpyq. Thus dpxq ¤ dpyq.

Lemma 6.2.4. If Q is right unital with e as the right unit and e ¤ dpeq then

i) a ¤ dpaq

ii) T � dpT q, where T is the top element of Q.

Proof. i) Since e ¤ dpeq, we have a � e ¤ a � dpeq � dpa � eq � dpaq. That is, a ¤ dpaq.

ii) T ¤ dpT q. Since T is the top element, dpT q � T .

Proposition 6.2.5. If Q is right unital with right unit e and dpeq � e then the only

deduction map is the identity.
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Proof. Let d : QÑ Q be a deduction. dpaq � dpa � eq � a � dpeq � a � e � a @ a P Q

Hence d is the identity map on Q.

Proposition 6.2.6. The deduction map d : Q Ñ Q is a Čech closure operator, if Q

is right unital with right unit e and e ¤ dpeq.

Proof. Follows from definition and lemma 6.2.3 and 6.2.4.

Proposition 6.2.7. If Q is right unital with right unit e and e ¤ dpeq for a deduction

d on Q then dpa � bq ¤ dpaq � dpbq, @a, b P Q.

Proof. We have

dpaq � dpbq � pdpaq _ aq � dpbq

� pdpaq � dpbqq _ pa � dpbqq

� pdpaq � dpbqq _ dpa � bq

Hence the proof.

Definition 6.2.8. A quantic dual on a quantale Q is a preclosure operator d such that

dpa�bq ¤ dpaq�dpbq @ a, b P Q. A quantic dual is said to be strict if dpa�bq � dpaq�dpbq.

The above proposition will give the following theorem.

Theorem 6.2.9. Let Q be a right unital quantale with right unit e and e ¤ dpeq.

Then any deduction d on Q is a quantic dual on Q.

Theorem 6.2.10. The kernel Kd � ta P Q : dpaq � 0u of the deduction d on Q is a

left-sided Q-ideal.
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Proof. If taiuiPI P Kd then dpaiq � 0, @i P I.

dp
�

iPI aiq �
�

iPI dpaiq � 0. Therefore
�

iPI ai P Kd.

If b P Q and a P Kd then dpb � aq � b � dpaq � b � 0 � 0. Therefore Kd is a left-sided

Q-ideal.

6.3. The Sub-Quantale Qd

Definition 6.3.1. For a quantale Q and a deduction d on it we define the stationary

points of d to be the set Qd � ta P Q : dpaq � au.

Theorem 6.3.2. pQd,
�
,^, �q is a subquantale of pQ,

�
,^, �q.

Proof. If taiuiPI be a collection in Qd then dp
�

iPI aiq �
�

iPI dpaiq �
�

iPI ai. There-

fore
�

iPI ai P Qd. Since dpa � bq � a � dpbq � a � b @ a, b P Qd, Qd is closed under the

operation *. Also dp0q � 0 implies 0 P Qd. Thus Qd is a subquantale of Q.

Example 6.3.3. Let Q � t0, T u and * is defined as follows

0 � T � T � 0 � 0 � 0 � 0 and T � T � T .

pQ, �q is a quantale. Let d1 : QÑ Q be a deduction defined as d1p0q � 0 and d1pT q � 0

, then Qd1 � t0u is a subquantale of Q.

Example 6.3.4. Let Q be the chain 0 ¤ a ¤ T and the binary operation � defined as

follows

0 � 0 � 0 � a � 0 � T � a � 0 � T � 0 � 0

a � a � a, a � T � T

T � a � T, T � T � T

Consider the deduction d : Q Ñ Q defined as dp0q � 0, dpaq � T, dpT q � T , then

Qd � t0, T u is a subquantale of Q.
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6.4. Properties of Deduction Maps

This section deals with some more properties of deduction maps. In particular, we

deal with how the ideals and filters of a quantale are mapped by the deduction maps.

We have a few definitions on deductions which are analogous to that of derivations

on quantales.

Definition 6.4.1. Let d be a deduction on a quantale Q then

i) d is right sided if and only if dpT � aq ¤ dpaq.

ii)d is left sided if and only if dpa � T q ¤ dpaq.

iii)d is two sided if and only if d is both right and left sided.

iv)d is idempotent if and only if dpa � aq � dpaq.

v) d is commutative if and only if dpa � bq � dpb � aq.

Theorem 6.4.2. Let d be a deduction on a quantale Q. Then the following two

conditions are equivalent

i) d is two sided

ii) dpa � bq ¤ dpaq ^ dpbq @ a, b P Q.

Proof. If d is two sided then dpa � bq ¤ dpa � T q ¤ dpaq and dpa � bq ¤ dpT � bq ¤ dpbq.

Therefore dpa � bq ¤ dpaq ^ dpbq @a, b P Q.

If ii) holds then dpa � T q ¤ dpaq ^ dpT q � dpaq, hence d is left sided. Similarly

dpT � aq ¤ dpT q ^ dpaq � dpaq, that is d is right sided.

Theorem 6.4.3. Let d : QÑ Q be a deduction on the commutative quantale Q then

if I is a �-ideal of Q, so is dpIq.

Proof. Let I be a �-ideal of the quantale and tniuiPJ P dpIq, for some indexed set J .

There exists txiuiPJ P I such that dpxiq � ni, for each ni.
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Also,
�

iPJ ni �
�

iPJ dpxiq � dp
�

iPJ xiq. Since I is an ideal of Q we have
�

iPJ xi P I.

Thus,
�

iPJ ni � dp
�

iPJ xiq P dpIq. Let a P Q and m P dpIq then we have that

a �m � a � dpxq � dpa � xq implies that a �m P dpIq. Q being commutative implies

that m � a P dpIq. Thus dpIq is a �-ideal of Q.

Theorem 6.4.4. Let d : Q Ñ Q be a strict quantic dual on a quantale. If F is any

filter on Q, so is d�1pF q.

Proof. Since dp0q � 0, 0 R d�1pF q. If x P d�1pF q and x ¤ y for some y P Q, then

dpxq ¤ dpyq which implies y P d�1pF q. Also for any r, s P d�1pF q we have dprq, dpsq P

F . Since F is a filter and d is strict quantic dual we have dprq � dpsq � dpr � sq P F .

Therefore r � s P d�1pF q. Hence d�1pF q is a filter.

6.5. The congruence θd

In this section we define an equivalence relation on Q with respect to the deduction

d. Also, we examine the possible existence of a congruence relation on Q.

Definition 6.5.1. Let d be a deduction on Q then define rasd � tx P Q : dpx�aq � 0u.

Or , equivalently, rasd � tx P Q : x � dpaq � 0u.

Lemma 6.5.2. We have the following observations

i) If a P Kd then rasd � Q

ii) If d is idempotent then a R Kd implies a R rasd.

Proof. i) If a P Kd, then dpaq � 0 and x � dpaq � 0, @x P Q. Hence, rasd � Q.

ii)Suppose a P rasd. Since d is idempotent we have dpaq � dpa � aq � a � dpaq � 0,

which is a contradiction to a R Kd.
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Lemma 6.5.3. rasdis a left sided �-ideal of Q.

Proof. Let taiuiPJ � rasd, for some indexed set J . Then dpai � aq � 0, @ ai.

Also dpp
�

iPI aiq � aq � dp
�

iPIpai � aqq �
�

iPI dpai � aq � 0. Therefore
�

iPI ai P ras
d.

For x P Q and b P rasd, dppx � bq � aq � x � dpb � aq � x � pb � dpaqq � 0. Therefore

x � b P rasd.

Theorem 6.5.4. If Q is commutative then rasd is a �-ideal of Q.

Proof. Follows from definition and the above lemma.

Theorem 6.5.5. Let d be a deduction on Q, then for any a, b P Q, we have the

following

i) a ¤ bñ rbsd � rasd

ii) ra_ bsd � rasd X rbsd.

Proof. i) If a ¤ b and y P rbsd then y �dpbq � 0. Also, dpaq ¤ dpbq implies y �dpaq � 0.

Thus rbsd � rasd.

ii) For x P ra _ bsd, 0 � x � dpa _ bq � px � dpaqq _ px � dpbqq. That is, x P rasd and

x P rbsd. Therefore ra_ bsd � rasd X rbsd.

If z P rasd X rbsd then 0 � z � pdpaq _ dpbqq � z � dpa _ bq. Thus z P ra _ bsd and

ra_ bsd � rasd X rbsd.

Definition 6.5.6. Let d be a deduction on Q. For x, y P Q, define a relation θd on

Q such that px, yq P θd if and only if rxsd � rysd.

Theorem 6.5.7. For any deduction d, θd is an equivalence relation on Q.

Proof of the theorem is direct.
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Definition 6.5.8. A binary relation θ defined on Q is a left congruence on Q if and

only if

i) θ is an equivalence relation on Q

ii) If pxi, yiq P θ, for all i P I then p
�

iPI xi,
�

iPI yiq P θ, where I is some indexed set

iii) If pa, bq P θ then pc � a, c � bq P θ.

Theorem 6.5.9. For any deduction d on Q, θd is a left congruence.

Proof. We have already shown in theorem 6.5.7 that θd is an equivalence relation on

Q. If pxi, yiq P θd, then rxis
d � ryis

d. Theorem 6.5.5 shows that r
�

iPI xis
d �

�
iPIrxis

d.

Hence p
�

iPI xi,
�

iPI yiq P θd. Let pa, bq P θd. By definition x P rc � asd if and only if

dpx � pc � aqq � 0. Also 0 � dpx � pc � aqq � px � cq � dpaq if and only if x � c P rasd.

Since pa, bq P θd , x � c P rbsd. And px � cq � dpbq � 0 if and only if dpx � pc � bqq � 0.

Thus x P rc � asd if and only if x P rc � bsd showing that rc � asd � rc � bsd.

Theorem 6.5.10. If d is a commutative deduction on Q then θd is a congruence on

Q.

Proof. Direct computations will give the result.

Theorem 6.5.11. If d is a commutative deduction on Q, then Q{θd defines a quotient

quantale.

Proof. θd is a congruence and hence the theorem follows.
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6.6. Graphs on Quantales with respect to the map

Deduction

In this section we introduce the theory of graphs into the domain of quantales. We

are familiar with the interplay of ring theory and graphs. Similarly, we investigate

the possible development of graphs in the theory of quantales.

The Graph GpQ, dq

Definition 6.6.1. Let Q be a quantale. A graph G � pVG, EGq where the vertex set

VG � Q and the edge set EG � tpa, bq : rasd � rbsd, a � bu is called the ‘graph with

respect to the deduction d’ and is denoted as GpQ, dq.

Theorem 6.6.2. GpQ, dq is always a disconnected graph.

Proof. Let us define a relation θd on Q such that pa, bq P θd if and only if rasd � rbsd.

6.5.7 shows that θd is an equivalence relation on Q. If pa, bq P EG then pa, bq P θd and

thus belongs to the same equivalence class. Every equivalence class is either equal or

disjoint. Hence, GpQ, dq is always a disconnected graph.

Let EpQ, θdq denote the set of all equivalence classes with the respect to θd and

CpGq denote the collection of components of GpQ, dq.

Theorem 6.6.3. EpQ, θdq and CpGq are equivalent sets.

Proof. Let X P EpQ, θdq. Since X is nonempty, there exists some a P X. The vertex

a is in one of the connected components of GpQ, dq, say Cpaq. All other vertices in

Cpaq will fall in the same equivalence class X. We define f : EpQ, θdq Ñ CpGq as

fpXq � Cpaq. Clearly, f is well defined. Let X, Y P EpQ, θdq such that fpXq � fpY q.

Let a P X and b P Y , then Cpaq � fpXq � fpY q � Cpbq. That is, a and b belong
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to the same connected component, and so rasd � rbsd implying that they lie in the

same equivalence class. Hence X � Y . To prove f is onto, consider any connected

component, say D. Let p be any vertex in D. Then D � Cppq. Let Z P EpQ, θdq

be such that p P Z. Hence fpZq � D. Therefore EpQ, θdq and CpGq are equivalent

sets.

Corollary 6.6.4. For any quantale Q and a deduction d on Q, ωpGpQ, dqq � |EpQ, θdq|

Observation. For the graph GpQ, dq, we observe the following properties:

1. Each equivalence class X P EpQ, θdq will become a connected component.

2. Each component is a complete subgraph of GpQ, dq.

3. The number of vertices in each component is equal to |X|.

Proof. 1) and 3) follow easily from the previous theorem, so we prove only the second

property. Every X P EpQ, θdq is mapped to a component fpXq of GpQ, dq. Let X �

tu1, u2, u3, � � � , uku, then ruis
d � rujs

d, @i, j P t1, 2, � � � , ku. Therefore pui, ujq P EG,

@i, j P t1, 2, . . . ku. Thus the component fpXq is complete.

6.7. The Graph ZG

In this section, we introduce a different type of graph using the map deduction on a

commutative quantale Q. We observe that the graph developed is always connected,

in particular it can be a star graph.

Definition 6.7.1. An element a of a commutative quantale Q is said to be a zero

divisor if there exist b � 0 such that a � b � 0.
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Definition 6.7.2. If the deduction d is the identity map on a commutative quantale

Q then rasd � tx P Q|dpx � aq � 0u = tx P Q|x � a � 0 � a � xu. We introduce two

new terminologies the zero set of a and the closure set of a.

The zero set of a is defined and denoted as ras� � tx P Q|x � 0, x � a � 0u.

The closure set of a is defined and denoted as prasq � tau Y ras�.

Remark.

1. If ras� � H, then both the sets ras� and ras are lower sets of Q.

2. If ras� � H then ras� is a Q ideal.

Definition 6.7.3. Let Q be a commutative quantale. A graph G � pV,Eq where the

vextex set V � Q and the edge set E � tpa, bq : ras X rbs � H, a � bu is called the

‘Zero-graph of Q’ and is denoted as ZG.

Lemma 6.7.4. For a commutative quantale Q, ZG is always connected.

Proof. Since 0 � a � 0, @a P Q, we have r0s� � Q. Hence 0 has an edge with every

other vertices of ZG.

Theorem 6.7.5. For a commutative quantale Q, ZG is either a star graph or contains

a cycle C3.

Proof. Since, 0 has an edge with every other vertices of ZG, it will always contain a

star graph with internal node at 0. If there is any other edge pa, bq P E in the graph

then 0� a� b� 0 will form the triangle C3

Corollary 6.7.6. If Q has zero divisors then ZG is not bipartite.

The following theorem is obtained from the above observations.
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Theorem 6.7.7. If Q does not have any nonzero divisors then ZG will have the

following properties:

1. ZG is a star graph.

2. ZG is a bipartite graph.

3. The chromatic number χpZGq=2.

Theorem 6.7.8. Let y P Q be such that rys� � H, then the subgraph induced by the

set Ó y � V, is a clique of ZG.

Proof. Let x P rys�. For a, b P Ó y, a � x ¤ y � x, implies a � x � 0. Similarly

b � x ¤ y � x implies b � x � 0. Hence x P ras� X rbs� and prasq X prbsq � H. Therefore

any two vertices of Ó y � V is always connected by an edge. Thus the subgraph

induced by the set Ó y � V is a clique of ZG.

Theorem 6.7.9. If ZG is not a star graph then χpZGq ¥ 3.

Proof. If ZG is not a star graph then it will contain an odd cycle. Hence the result

follows.

These results motivated us to look into the possibility of a graph theoretic study

on L-slices. The next chapter is a detailed study on such graphs.

6.8. The Q-slice DpQq

The discussions in the previous sections clarify the inevitable link between locales and

quantales. As L-slices are defined on locales, we may define generalised L-slices on

quantales. We coin the term Q-slices and investigate the basic structural differences
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between L-slices and Q-slices. Also we give a specific example for the generalised

L-slices through the collections of deductions on a quantale.

Definition 6.8.1. Let pJ,¤,_q be a join semilattice with bottom element 0J .

LetpQ,¤,O, �q where ¤ is the partial order on Q and O, � denote the join and as-

sociative binary operation respectively. Also, let 0Q be the bottom element and top

element 1Q. By the ”action of Q on J” we mean a function σQ : Q � J Ñ J such

that the following conditions are satisfied.

1. σQ pa, x1 _ x2q � σQ pa, x1q _ σQ pa, x2q for all a P Q and for all x1, x2 P J for

all a P Q. Also, if J is a sup lattice then σQ pa,_iPIxiq � ViPIσQ pa, xiq.

2. σQ pa, 0Jq � 0J for all a P Q.

3. σQpa � b, xq � σQpa, σpb, xqq ) for all a, b P Q, x P J . Also, if Q is commutative

then σpa � b, xq � σQpa, σpb, xqq � σQpb, σpa, xqq ) for all a, b P Q, x P J .

4. σQ p1Q, xq � x and σQ p0Q, xq � 0J for all x P J

4’. If Q is unital with unit e then σQpe, xq � x for all x P J .

5. σQpaO b, xq � σQpa, xq _ σQpb, xq for a, b P Q, x P J.

If σQ is an action of the quantale Q on a join semilattice J , then we call pσQ, Jq as

Q-slice.

Example 6.8.2. All locales are quantales with � � [. Thus all L-slices are Q-slices.

Example 6.8.3. The quantale itself can be treated as a Q-slice with σQ � � that is,

action can be considered as �pq, xq � q � x, for q, x P Q. Thus p�, Qq is a Q-slice.
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Definition 6.8.4. pσQ, Jq and pωQ, Kq be any two Q-slices then a map from f :

pσQ, Jq Ñ pωQ, Kq is said to be Q-slice morphism if f preserves finite joins and

f pσQpq, xqq � ωQpq, fpxqq.

Theorem 6.8.5. Every deduction on Q is a slice morphism on the Q-slice p�, Qq.

Proof. A deduction map preserves finite joins. Also dp�pq, xqq � dpq � xq

� q � dpxq � �pq, dpxqq

.

Thus deductions are definitely Q-slice morphisms.

Differences between L-slices and Q-slices

Let pJ,¤q be a join semilatice. If pσ, Jq is a L-slice and pσQ, Jq be a Q-slice on J then

we observe the following differences in pσ, Jq and pσQ, Jq

1. For the L-slice pσ, Jq, we know that σpa, σpa, xqq � σpa [ a, xq � σpa, xq for

a P L. But,for a Q- slice pσQ, Jq , σQpq � q, xq � σQpq, xq, for q P Q.

2. For the L-slice pσ, Jq, σpa, xq ¤ x @ x P J . But the same need not hold for

σQpa, xq.

3. The set Fx is a filter in the locale L for x P J but for the Q-slice the set

tq P Q : σQpq, xq � xu need not be a filter.

Let DpQq denote the collection of all deductions on pQ,¤,O, �q.

Lemma 6.8.6. DpQq is a join semilattice

Proof. Define À on DpQq as d1 À d2 if and only if d1pxq ¤ d2pxq for all x P Q.

Thus À is a partial order on DpQq.
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Also, the join is defined as d1pxqr\d2pxq � d1pxq O d2pxq.We show that d1r\d2 is a

deduction on Q.

d1r\d2pOiPIxiq � d1 pOiPIxiq O d2 pOiPIxiq

� OiPId1 pxiq O OiPId2 pxiq

� OiPI pd1 pxiq O d2 pxiqq

� OiPId1r\d2 pxiq .
Therefore d1r\d2 preserves arbitrary joins.

d1r\d2pa � bq � d1pa � bq O d2pa � bq

� pa � d1pbqq O pa � d2pbqq

� a � pd1pbq O d2pbqq

� a � pd1r\d2pbqq

Thus d1r\d2 is a deduction on Q.

Define ODpQqpxq � 0Q, @x P Q. Clearly, ODpQq is a deduction and is the bottom

element of pDpQq,Àq. Thus pDpQq,Àq is a join semilattice with bottom element

ODpQq.

The join semilattice pDpQq,Àq allows the construction of a Q-slice . Let Q be a

commutative quantale. Consider the Q- slice p�, Qq and the collection of all deductions

on the quantale , DpQq. We will transform DpQq into a Q-slice.

To define an action we consider a map θ : Q � DpQq Ñ DpQq which is defined as

θpq, dqpxq � dp�pq, xqq for x, q P Q and d P DpQq.
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Theorem 6.8.7. The map θ : Q � DpQq Ñ DpQq is an action of Q on DpQq and

thus pθ,DpQq is a Q-slice.

Proof. First we show that θpq, dq is a deduction on Q.

θpq, dq pOiPIxiq � d p� pq,OiPIxiqq

� d pOiPI � pq, xqq

� OiPId p� pq, xiqq

� OiPIθpq, dq pxiq

θpq, dqpa � bq � dp�pq, a � bqq

� q � dpa � bq

� q � a � dpbqp7 Q is commutative q

� a � q � dpbq

� a � dpq � bq

� a � dp�pq, bqq

� a � θpq, dqpbq

Thus θpq, dq is satisfies the conditions to be a deduction map and thus belongs to

DpQq.

Now we prove the conditions for DpQq to become a Q-slice.

1. θ p0Q, dq pxq � d p0Q � xq � d p0Qq � 0Q, @x P Q. Thus θ p0Q, dq � 0DpQq.

2. Let Q be unital with unit e. θpe, dqpxq � dpe � xq � dpxq, @x P Q

Therefore θpe, dq � d.

3. θ
�
q,0DpQq

�
pxq � 0DpQqpq � xq � 0Q, @x P Q. Therefore θ

�
a,0DpQq

�
� 0DpQq.
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4.

θ pq1 O q2, dq pxq � d p� pq1 O q2, xqq

� d ppq1 O q2q � xq

� pq1 O q2q � dpxq

� pq1 � dpxqq O pq2 � dpxqq

� d pq1 � xq O d pq2 � xq

� θ pq1, dq pxq O θ pq2, dq pxq

� θ pq1, dq r\ θ pq2, dq pxq

Thus θ pq1 O q2, dq � θ pq1, dq r\ θ pq2, dq

5.

θ pq, d1r\d2q pxq � d1r\d2pq � xq
� d1pq � xq O d2pq � xq

� q � d1pxq O q � d2pxq

� θ pq1, dq pxq O θ pq2, dq pxq

� θ pq1, dq r\ θ pq2, dq pxq

Therefore θ pq, d1r\ d2q � θ pq1, dq r\θ pq2, dq

6. θ pq1 � q2, dq pxq � d ppq1 � q2q � xq � d ppq1 � q2 � xqq

θ pq1, θ pq2, dqq pxq � θ pq2, dq pq1 � xq

� d pq2 � pq1 � xqq

� d pq1 � q2 � xq p7 Q is commutative)

Similarly, θ pq2, θ pq1, dqq pxq � d pq1 � q2 � xq

Thus θ pq1 � q2, dq � θ pq1, θ pq2, dqq � θ pq2, θ pq1, dqq.
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Therefore θ is an action of Q on DpQq. Hence pθ,DpQqq is a Q-slice.

This last section reveals that the deductions which have been defined on quantales

can be structurally viewed in a different way. We have shown that deductions are

Q-slice morphisms on p�, Qq. In L-slices we have already proved that HompJ,Kq is

a L-slice. The above theorem proves the possibility of the existence of a generalised

L-slice on the collection of all deductions.

Here we have given only the basics of the generalised L-slices. The Q-slices which are

the generalisation of L-slices can be further studied. Also, this chapter envisaged the

development of the succeeding chapter.
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Chapter 7

Graphs Associated with L-slices

This chapter deals with the graph theoretic approach to L-slices. The idea of relating

graphs with algebraic structures was started by the work of Beck in [11]. The algebraic

properties of L-slices prompted us to consider the possibility of various graphs that

could be associated with it. The chapter introduces two different graphs on L-slices.

The total graph ΓppT pσ, Jqq is defined. We derive a characterisation for such graphs

to be nonempty. The structural properties of ΓppT pσ, Jqq is studied. The weak Zariski

Topolgy on pσ, Jq gives us the graph GT pω
�q. The conditions under which the graph is

nonempty is examined. Also some of the structural properties of GT pω
�q is obtained.

Here we consider only finite L-slices and consequently the graphs under consideration

woud be the finite ones.

7.1. Total Graph of L-Slice

Definition 7.1.1. Let pσ, Jq be an L-slice and L� � Lzt0Lu. We define the torsion

elements of a L-slice T pσ, Jq as T pσ, Jq � tx P pσ, Jq : σpa, xq � 0J for some a P L
�u.

It is evident that T pσ, Jq is always nonempty
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.

The structure of T pσ, Jq.

Theorem 7.1.2. T pσ, Jq is an ideal of L-slice pσ, Jq.

Proof. If x, y P T pσ, Jq then there exists a, b P L� such that σpa, xq � 0J and σpb, yq �

0J . Also, σpa[ b, x_ yq � σpa, σpb, x_ yqq � σpa, σpb, xq _ σpb, yqq � σpa, σpb, xqq �

σpb, σpa, xqq � σpb, 0Jq � 0J . Therefore x_ y P T pσ, Jq.

If z ¤ x then σpa, zq ¤ σpa, xq implies σpa, zq � 0J . Therefore z P T pσ, Jq. Consider

σpb, xq P pσ, Jq, then σpa, σpb, xqq � σpb, σpa, xqq � σpb, 0Jq � 0J . Hence T pσ, Jq is

an ideal of pσ, Jq.

Examples 7.1.3. i) Let L be a locale and let J �Ó x for some x P L. Then p[, Jq is

a slice and T p[, Jq � ty P J : [pa, yq � 0Ju � ty P J : a[ y � 0Ju.

ii) Consider the locale represented by the following Hasse diagram

b

b

b b

b

b

1

d

c

a

b

0

Let J �Ó b � t0, a, btuu then T p[, Jq � t0Ju.

Note that for any L-slice pσ, Jq the annihilator AnnpJq � tx P pσ, Jq : σpa, xq �

0J @x P pσ, Jqu � T pσ, Jq. We now define the total graph of the L-slice pσ, Jq.
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Definition 7.1.4. The vertex set VT of ΓpT pσ, Jqq is the set of all elements of the

L-slice and the edge set ET of ΓpT pσ, Jqq � tpx, yq : x_ y P T pσ, Jqu.

Theorem 7.1.5. The total graph ΓpT pσ, Jqq is complete if and only if T pσ, Jq �

pσ, Jq.

Proof. Suppose ΓpT pσ, Jqq is complete then there exists an edge between every x, y P

VT . That is, x _ y P T pσ, Jq. In particular, every vertex is adjacent to 0J . Hence

x _ 0J � x P T pσ, Jq @x P pσ, Jq. Thus T pσ, Jq � pσ, Jq. Conversely suppose

that T pσ, Jq � pσ, Jq. Since J is a join semilattice, for any two vertices u, v P

VT implies u_ v P J � T pσ, Jq. Thus ΓpT pσ, Jqq is complete.

Corollary 7.1.6. The above theorem is necessarily satisfied if AnnpJq � t0Ju.

Proof. Suppose a P AnnpJq. The definition of AnnpJq shows that σpa, xq � 0J , @x P

pσ, Jq. Evidently, T pσ, Jq � pσ, Jq and ΓpT pσ, Jqq is complete.

Examples 7.1.7. i) Let X � ta, b, cu.Then PpXq � tφ, tau, tbu, tcu, ta, bu, ta, cu, tb, cu, ta, b, cuu.

Let A � tb, cu. Ó A � tC P PpXq : C � Au implies Ó A � tφ, tbu, tcu, tb, cuu.

Ó A is a join semilattice under the partial ordering �. Also, pPpXq,�q is a locale.

Define the action [ on Ó A as [pB,A1q � B X A1 where A1 PÓ A. The annihi-

lator AnnpÓ Aq � tφ, tauu and T p[, Ó Aq � tφ, tbu, tcu, tb, cuu �Ó A. Therefore

ΓpT p[, Ó Aqq is complete. Also, ΓpT p[, Ó Aqq is the complete graph K4.

b

b b

b

{b,c}

{c}{b}

/0

122



ii) In Example 7.1.3 iiq, we observed that T p[, Ó bq � t0Ju. Then the total graph

ΓpT p[, Ó bqq is totally disconnected.

b b

b

a

0

b

Now we can generalise the above as follows.

Proposition 7.1.8. ΓpT pσ, Jqq is totally disconnected if and only if T pσ, Jq � t0Ju.

Proof. Since ΓpT pσ, Jqq is totally disconnected we have that 0J is not connected with

any other vertices. Hence x _ 0J � x R T pσ, Jq implying that T pσ, Jq � t0Ju.

Conversely, let T pσ, Jq � t0Ju. Any two vertices x, y of ΓpT pσ, Jqq is connected if

and only if x _ y � 0J and that is possible if and only if x � 0J , y � 0J .Hence

ΓpT pσ, Jqq is totally disconnected.

We have already shown that T pσ, Jq is an ideal of pσ, Jq. Now we propose the

next two theorems which is a consequence of the structure of T pσ, Jq.

Theorem 7.1.9. The subgraph induced by the set T pσ, Jq is always complete. In

particular, if | T pσ, Jq |� n then the subgraph induced will be the complete graph Kn.

Proof. Since T pσ, Jq is an ideal of pσ, Jq, if x, y P T pσ, Jq then x _ y P T pσ, Jq.

Therefore the subgraph induced by T pσ, Jq is always complete.

Corollary 7.1.10. The clique number ωpΓpT pσ, Jqqq is | T pσ, Jq |.

Corollary 7.1.11. The subgraph induced by pσ, JqzT pσ, Jq is totally disconnected and

the independence number βpΓpT pσ, Jqqq �| pσ, JqzT pσ, Jq |.
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Theorem 7.1.12. If T pσ, Jq is a proper ideal of pσ, Jq then ΓpT pσ, Jqq is always

disconnected.

Proof. Let x, y P pσ, Jq such that x P T pσ, Jq and y P pσ, JqzT pσ, Jq. The subgraph

induced by T pσ, Jq and pσ, JqzT pσ, Jq are disjoint. Suppose they are connected then

x _ y P T pσ, Jq. But T pσ, Jq is an ideal would imply that y P T pσ, Jq, which is a

contradiction. Thus the subgraphs induced by T pσ, Jq and pσ, JqzT pσ, Jq will always

be disjoint. Thus ΓpT pσ, Jqq is always disconnected.

Let us consider some L-slices and examine the properties of total graph associated

with them.

Example 7.1.13. Let J be given by the Hasse diagram

b

b b

b b

b

1

dc

ba

0

And let L � t0 ¤ c ¤ 1u. Define the action on J as [pa, xq � a [ x for a P L and

x P J . The ideal T pσ, Jq � t0, b, du and it is a proper ideal of p[, Jq. ΓpT p[, Jqq is

disconnected and the graph is

124



Thus the total graph of the L-slice is the union of two K3 graphs and two K1

graphs.

If we consider L � t0 ¤ a ¤ 1u then T p[, Jq � t0, bu. Then the total graph of L-slice

is

b

b b

b b

b

1

dc

ba

0

The total graph of the L-slice is the union of one K2 graph and four K1 graphs.

If we let L � t0 ¤ d ¤ 1u then T p[, Jq � t0u and ΓpT p[, Jqq is disconnected.

Remark. A L-slice is said to be a σ-domain over L if there exists no torsion elements

for the L-slice. In other words, there exists no a P L� such that σpa, xq � 0J .

Examples 7.1.14. i) If L is a chain then the L-slice p[, Lq is a σ-domain over L.

Let T �pσ, Jq � tx � 0J : Da P L� such that σpa, xq � 0Ju then the corresponding total

graph is denoted by ΓpT �pσ, Jqq.
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In this case, if T �pσ, Jq is nonempty then T �pσ, Jq is a subslice. Also, if an L-slice is

a σ-domain over L then the corresponding ΓpT �pσ, Jqq is an empty graph.

ii) If L is a chain then ΓpT �p[, Lqq is an empty graph.

Definition 7.1.15. A locale L is said to have zero divisors if for a P L� there exists

b P L� such that a[ b � 0L.

Lemma 7.1.16. Let a be a zero divisor of the locale L. If x P pσ, Jq then σpa, xq P

T pσ, Jq.

Proof. If a is a zero divisor of L then there exists b P L such that a[b � 0L. Therefore

σpb, σpa, xqq � σpa[ b, xq � σp0L, xq � 0J implies that σpa, xq P T pσ, Jq.

Lemma 7.1.17. If the top element 1L of the locale L is the join of n zero divisors of

L then every element of the L-slice pσ, Jq is the join of n torsion elements.

Proof. Let 1L � z1 \ z2 \ ... . . \ zn, where each zi is a zero divisor of L.

For any x P pσ, Jq, σp1L, xq� σpz1 \ z2 \ ... . . \ zn, xq

� σpz1, xq _ σpz2, xq. . . . . . ..σpzn, xq

ñ x � σpz1, xq _ σpz2, xq. . . . . . ..σpzn, xq

The above lemma states that each σpzi, xq P T pσ, Jq. Hence the result.

A characterisation of the total graph of an L-slice based on the zero

divisors of the locale L.

Theorem 7.1.18. If L has a finite basis of zero divisors then the total graph of the

L-slice pσ, Jq is complete.

Proof. If tz1, z2, ....znu be the finite basis of zero divisors then from the above lemma

x � σpz1, xq _ σpz2, xq. . . . . . ..σpzn, xq, where each σpzi, xq P T pσ, Jq. And the fact

that T pσ, Jq is an ideal will give us the theorem.
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Proposition 7.1.19. The chromatic number χΓpT pσ, Jqq of ΓpT pσ, Jqq is such that

either always χΓpT pσ, Jqq � 1 or χΓpT pσ, Jqq � n� 1, where n �| T pσ, Jq |.

Proof. If T pσ, Jq � t0Ju then graph ΓpT pσ, Jqq is totally disconnected and χΓpT pσ, Jqq

is one. We know that the subgraph induced by T pσ, Jq is the complete graph Kn.

Theorem 7.1.12 shows that if T pσ, Jq is a proper ideal then ΓpT pσ, Jqq is always

disconnected. Thus if T pσ, Jq � t0Ju then χΓpT pσ, Jqq � n� 1.

Remark. Theorem 7.1.8 pt � t0uq and Theorem 7.1.12 pt � t0uq shows that ΓpT pσ, Jqq

is never a critical graph.

Property 8. The diameter of the graph diampΓpT pσ, Jqqq P t1,8u

Proof. The theorem 7.1.5 shows that diampΓpT pσ, Jqqq � 1. If T pσ, Jq � t0Ju then

the graph is totally disconnected and diampqΓpT pσ, Jqqq � 8.

Property 9. The radius rpΓpT pσ, Jqqq P t0, 1u.

Proof. The graph ΓpT pσ, Jqq is either complete or disconnected. Hence the radius of

the total graph of the L-slice will be either 0 or 1.

Let us denote the subgraph induced by T pσ, Jq as ΓnpT pσ, Jqq, where n denotes

the cardinality of the set T pσ, Jq.

Property 10. If T pσ, Jq is proper ideal then the diameter and radius of ΓnpT pσ, Jqq

will be the same and equal to 1.

Proof. The property is obtained through the completeness of the subgraph.

Property 11. Whenever |T pσ, Jq|� n ¥ 3, then the girth of ΓnpT pσ, Jqq denoted as

grpΓnpT pσ, Jqqq � 3 and the circumference of ΓnpT pσ, Jqq, cpΓnpT pσ, Jqqq � n.
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Proof. Follows from the completeness of ΓnpT pσ, Jqq.

The above property can also be restated as

Property 12. If |T pσ, Jq|� n ¥ 3 if and only if grpΓnpT pσ, Jqqq � 3

In this section we have defined and studied various properties of the total graph.

We have observed that ΓpT pσ, Jqq is complete if |AnnpJq|¥ 2. If |T pσ, Jq|¥ 2 then

ΓpT pσ, Jqq disconnected. Thus ΓpT pσ, Jqq is either complete or disconnected.

7.2. Graphs associated with weak Zariski topology

ω� on Specpσ,Cq

We have shown in Chapter 5 that the sets Cpnq � tp P Specpσ,Cq : n ¤ pu forms

basis for a topology on prime spectrum Specpσ,Cq. Also, if Cpnq Y Cplq � Cpn ^ lq

the collection ν � tCpnq : n P pσ,Cqu will then be the collection of closed sets on

Specpσ,Cq and the topology so formed may be called weak Zariski topology ω� on

Specpσ,Cq .

This section deals with graphs associated with this weak Zariski topology ω�. For a

subset T of Specpσ,Cq we introduce a graph GT pω
�q. We study some of its properties

and show that it has a bipartite subgraph.

Definition 7.2.1. Let T be a nonempty subset of Specpσ,Cq. The graph GT pω
�q has

as vertex set V pGT pω
�qq � tn P pσ,Cq : D l P pσ,Cq such that Cpnq Y Cplq � T u.

Also, two vertices n and k are adjacent if and only if Cpnq Y Cpkq � T . In other

words, the graph GT pω
�q has n as vertex if and only if there exists a l P pσ,Cq such

that Cpn^ lq � T .
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Remark. We study the properties of graphs associated with the weak Zariski topology.

The definition itself gives us two conditions for such a graph to exist. We state them

as our next two propositions.

Proposition 7.2.2. GT pω
�q � φ if and only if T is closed and is not an irreducible

subset of Specpσ,Cq.

Proof. Follows directly from the definition of GT pω
�q.

The above proposition can be rephrased as follows.

Proposition 7.2.3. GT pω
�q � φ if and only if T � Cp

�
T q and T is not an irre-

ducible subset of Specpσ,Cq.

Proof. Suppose GT pω
�q � φ. The above proposition shows that T is closed.So it

remains to show that T � Cp
�
T q. We know that T � Cp

�
T q. Let Cpnq be

any closed subset of Specpσ,Cq containing T . Then n ¤ p @p P T implies that

n ¤
�

pPT p � q. Therefore for evey l P Cpqq implies l P Cpnq. That is, Cpnq � Cpqq.

Hence Cpqq is the smallest closed set containing T . Thus T � Cpqq � Cp
�

pPT pq �

Cp
�
T q.

Theorem 7.2.4. The weak Zariski topology graph GT pω
�q is connected and the

diameter of the graph , diampGT pω
�qq ¤ 2.

Proof. If n and k are not adjacent then Cpnq Y Cpkq � T . Now there exists vertices

l and k such that Cpnq YCplq � Cpn^ lq � T and Cpmq YCpkq � Cpm^ kq � T . If

l � m then n� l� k is a path of length two. If l � m then n� pl^mq � k is a path

of length two. Hence GT pω
�q is connected and diampGT pω

�qq ¤ 2.
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Corollary 7.2.5. If GT pω
�q contains a cycle then the girth gpGT pω

�qq ¤ 3 .

Proof. Suppose gpGT pω
�qq � k ¡ 3. Let n1�n2�n3�� � ��nk�1�nk�n1 be a cycle

with length k. Then clearly n1 � pn2 ^ nk�1q � nk � n1 is a cycle of length 3. Hence

a contradiction. Therefore gpGT pω
�qq ¤ 3.

Examples 7.2.6. i) Let C � t1, 2, 3, 4, 5u and pC,¤q be complete lattice with ¤ as

the usual ordering ‘less than or equal to’. Let the locale be pL � t1, 2, 5u,¤q. The

action σ defined as σpa, xq � a[ x will make C an L-component p[, Cq.

In this case Specpσ,Cq � t2, 3, 4u and Cp1q � Specpσ,Cq, Cp2q � t2, 3, 4u, Cp3q �

t3, 4u, Cp4q � t4u, Cp5q � φ. Also, CpnqYCpmq � Cpn^mq for every n,m P p[, Cq.

If T � t3, 4u then V pGT pω
�qq � t3, 4, 5u. The graph GT pω

�q is K1,2.

b b

b
5

3 4

If T � t2, 3, 4u then V pGT pω
�qq � t1, 2, 3, 4, 5u and the graph GT pω

�q is K2,3.

b b b

b b

3 4 5

1 2

Also if T � t2, 4u then GT pω
� � φq
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ii) Consider the complete lattice

b

b b

b

b

b

1

a b

c

x

0

Let L � t0, a, 1u. The spectrum Specpσ,Cq � tx, a, bu. Cp0q � Specpσ,Cq,

Cp1q � φ, Cpxq � tx, a, bu, Cpcq � ta, bu, Cpaq � tau, Cpbq � tbu. It can be easily

verified that Cpnq Y Cpmq � Cpn ^mq for every pair n,m P pσ,Cq. For T � tx, au

then GT pω
�q � φ. If T � ta, bu then V pGT pω

�qq � t1, c, a, bu and the graph is

b b

b b

b a

c1

If T � tau then V pGT pω
�qq � t1, au and the graph is

b b
1 a
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Remark. Since Cp1Cq � H the top element 1C will always belong to the vertex set

and degp1Cq ¥ 1. Also degp1Cq is the cardinality of the set tn P pσ,Cq : Cpnq � T u

Proposition 7.2.7. For any finite set T and GT pω
�q � φ we have that

T X V pGT pω
�q � φ.

Proof. Let p P T then we have Cppq Y Cp
�

qPT,q�p qq � T .Therefore, p P V pGT pω
�qq.

7.3. The subgraph G
1

T pω
�q

Definition 7.3.1. The subgraph G
1

T pω
�q of GT pω

�q has vertex set V pG
1

T pω
�qq defined

as tn P pσ,Cq : there exist l P pσ,Cq such that Cpnq Y Cplq � T, Cpnq, Cplq �

T,CpnqXCplq � φu, where pu, vq P EpG
1

T pω
�qq if and only if CpuqYCpvq � T,CpuqX

Cpvq � φ.

Note that the degree of u is the number of vertices k with Cpvq � Cpkq.

Proposition 7.3.2. G
1

T pω
�q � φ if and only if T � Cp

�
qPT qq and is disconnected.

Proof. We have already shownGT pω
�q � φ then T � Cp

�
qPT qq. Let n, l P V pG

1

T pω
�qq,

then CpnqYCplq � T,CpnqXCplq � φ. Thus, T is disconnected. The converse follows

easily from the definition.

Theorem 7.3.3. G
1

T pω
�q is a bipartite graph.

Proof. A graph is bipartite if and only if it does not contain an odd cycle [23]. We

will show that G
1

T pω
�q does not have an odd cycle. Suppose gpG

1

T pω
�qq � k ¡ 4.

Consider the cycle n1 � n2 � n3 � � � � � nk�1 � nk � n1 of length k. It is evident

that Cpnk�1q � Cpn1q. The cycle n1 � n2 � n3 � � � � � nk�2 � n1 is of length k � 1.
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Thus gpG
1

T pω
�qq ¤ 4. We show that gpG

1

T pω
�qq � 3. Suppose n1 � n2 � n3 � n1 is

3-cycle. Then φ � pCpn1q XCpn2qq Y pCpn3q XCpn1qq � Cpn1q X pCpn2q YCpn3qq �

Cpn1q X T � Cpn1q.Thus we arrive at a contradiction. Hence the graph does not

contain an odd cycle.

Corollary 7.3.4. If G
1

T pω
�q contains a cycle then grpG

1

T pω
�qq � 4

Remark. G
1

T pω
�q is a complete bipartite graph if and only if Cpnq � Cplq for every

vertices l, n belonging to same vertex set.

Examples 7.3.5. i) Consider the complete lattice C to be

b

b b

b

b

b

1

a b

c

x

0

For L � t0, a, 1u, Specpσ,Cq � tx, a, bu.If T � ta, bu, then V pG
1

T pω
�qq � ta, bu.

Hence G
1

T pω
�q is K1,1.Also if T � tau, then V pG

1

T pω
�qq � φ.
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ii) Consider the complete lattice C to be

b

b b

b b

b

18

96

32

1

For L � t1, 2, 18u, Specpσ,Cq � t2, 6, 9u.If T � t6, 9u, then V pGT pω
�qq � t3, 6, 9, 18u

and the corresponding graph is

and V pG
1

T pω
�qq � t6, 9u and the graph is K1,1.

iii) Consider the complete lattice C to be

b

b b

b

b

b

1

b e

f

d

0

L � t0, d, e, 1u, Specpσ,Cq � tb, d, eu. If T � td, eu, then V pGT pω
�qq � td, e, 1u and

the corresponding graph is
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b

b b

1

d e

and V pG
1

T pω
�qq � φ. If T � tb, eu, then V pGT pω

�qq � tf, b, e, 1u and the correspond-

ing graph is

bb b

b b

1 f

eb

V pG
1

T pω
�qq � tb, eu and G

1

T pω
�q is K1,1.

This chapter introduces the concepts of total graphs and that of graphs associated

with the weak Zariski topology. The introduction of concepts of algebraic graph

theory into L-slices is initiated through this chapter.Different types of graphs can be

studied in the background of L-slices.The topological properties of L-slices can be

used to study the graphs associated with them.
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Conclusion

The classical topology involves the concept of a point and its neighbourhood. From

Stone’s representation theorem there envisaged a journey from the realm of point-

set topology to point free topology.Isbell [31]emphasises the importance of point-

free topology. The benefit of thinking from a point free domain is that both lat-

tice theoretic, in turn algebraic tools could be brought into play. Thus frame/locale

became a breakthrough for topologists. The algebraic concept of ‘group action’ in

the background of locales is studied by Sabna K.S. and Mangalambal N.R [58].The

structure thus developed is called L-slices. The benefit of L-slices is that both al-

gebraic and topological tools were put into action. Moreover [59] showcases many

algebraic concepts like action,annihilator,isomorphism theorem and so on. Similarly,

the topological properties like compactness were also discussed.Thus L-slices ensures

the availability of both topological and algebraic tools.This frame work of L-slices is

used in our thesis.

We have investigated L-slices from different perspectives. For each x P pσ, Jq, the

filter Fx has assisted in the development of category Batch. We have defined asso-

ciated filter , R-A slice on the basis of Fx. Also it enables us to define F-continuous

slice morphisms parallel to the concept of sequential continuity in classical topology.

Further, Fx prompted the development of the concept called Box S and the stack of
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filters Sx which consequently led to Batch .

The study on Hom slice Hompσ, Jq led to the development of class of expansive

and contractive operators. The class of contractive operators pa : xqHom forms a basis

for the topology on Hompσ, Jq. Also through the system of contractive operators Ja,

evolved the quotient slice pγ, J{ �aq. The subslice ra : f spσ,Jq of pσ, Jq permits the

topological notion of continuity in the dominion of L-slices.

The ring CpXq is the study of continuous real valued functions on the topological

space X. In other words,CpXq deals with all those continuous function with range set

in R. Equivalently, in HompL, Jq we studied the properties of all L-slice morphisms

with the domain fixed as the locale L. We defined the collection of zero sets and fixed

ideals of L-slices and found that they have the structure of an L-slice.

The similarity between the structure of L-slices and modules prompted us to con-

sider the possibility of Zariski topology on L-slices. There we introduced L-component

thus succeeding in the definition of the Zariski topology Ω�. Some properties of Ω�

were also investigated.

The possibility of generalising L-slices led to the development of Q-slices.Quantales

are well known to be the generalisation of locales. We have studied a particular type

of maps called deduction on quantales. The ideals constructed using deductions led

to a quotienting of quantales. Also we defined Q-slices and showed that the collection

of all deductions DpQq is a Q-slice.

Graph theoretic development of L-slices led us to the total graph ΓpT pσ, Jqq and

GT pω
�q on L-slices. We have shown that if T pσ, Jq is a proper ideal of pσ, Jq then

ΓpT pσ, Jqq is disconnected. Also we showed that ΓpT pσ, Jqq is complete if and only

if the L-slice pσ, Jq is not faithful. We were also able to prove that the weak Zariski

topology graph GT pω
�q is connected and diampGT pω

�qq ¤ 2.
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The first, third and last chapters leave ample scope for further study. The first chap-

ter introduced the category Batch and some of its basic properties. The Batch can be

studied for its categorical properties like subobjects, monomorphism,epimorphism,limit

and so on. Chapter 3 leaves open a far more wide area of studying the properties of

fixed ideals.The study can be developed in the direction of relationship between fixed

ideals and maximal ideals. Similarly, last chapter paves way for a graph theoretic ap-

proach to L-slices.More concepts of graph theory can be developed in the background

of L-slices. A characterisation of L-slices and different types of graphs can be studied.
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