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Introduction

Geometry, the study of structural relations is as old as mathematics itself. During
the nineteenth century the development of analysis led to the need of understanding
the notions of continuity and convergence in a more broader context. The concept of
metric spaces was thus developed. But later it was found that some structural prop-
erties could not be explained using distances. A major breakthrough came in 1914
through Hausdorft’s “Mengenlehre” which paved way for the origin of topology. Haus-
dorff explained the structure of space using the idea of a neighbourhood.The concept
of open sets was favoured by many mathematicians during the 1920s. It was the strik-
ing similarity in the definition of topology to that of a lattice which made open sets
a favourable concept. The topology on a set is a collection of subsets that are closed
under arbitrary unions and finite intersection. This unmistakable similarity between
the definition of topology and complete lattices triggered the investigation into the
frame work of pointless topology .Frames are complete distributive lattices. In other
words,frame theory is the application of lattice theory to topology. Marshal Stone
in his famous paper [65] established a representation theorem for Boolean algebras:
“Every boolean algebra is isomorphic to the Boolean algebra of open closed sets of
totally disconnected compact hausadorff spaces”. This theorem made a huge impact

in many areas of modern mathematics. It initiated the study of various topological
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concepts from a lattice theoretic perspective. The study started with Wallmann[70]
in 1938 later followed with Mckinsey and Tarski[41], Dowker and Papert[17] among
others. This view of pointless topology provides the platform to construct topological
spaces from algebraic data.

Ehresmann and Benabon[21] were the first to look at complete lattices with meet
distributes over arbitrary joins as generalised topological spaces. They called these
lattices as local lattices, while Dowker and Papert[17] called them as frames. The
frame theory approach to topology considers the lattice of open sets as the basic no-
tion. Hence, they were referred to as “point free topology”. Many of the basic ideas
in topology say for example continuity, compactness etc can be defined using open
sets alone. With the advent of frames, many topological theorems were generalised
to frame theory. Topologists of the period started working with the idea of frames
and topology was consistently studied from the lattice theoretic viewpoint. Obvious
examples of frames are lattice 2.X of open sets of a topological space X, the complete
Boolean algebras and complete chains. A frame that is isomorphic to some QX is
called spatial. All finite distributive lattices, all complete chains are spatial. But, a
complete Boolean algebra is spatial if and only if it is atomic, showing that frames
considerably surpass the classical topology. By the late 1980’s many of the topological
notions like compactness, uniform space, nearness etc. were explored in the context
of point free topology. The topologists Dona Papert and C.H.Dowker extended the
notion of separation axioms[19] and quotient spaces[17] to a more wider framework of
complete lattices. Thus,frame theory became the hotspot for topologists and lattice
theorists.From thereon, in works of topology the points of space were seldom men-
tioned.

One problem that arose was that the frame homomorphisms analogue of con-
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tinuous maps could not be interpreted as generalised continous maps in the context
of frames.This led to the intervention of category theory into frame theory. Isbell
in[31] pointed out that frame homomorphisms behave properly in the dual category
of frames. J.R.Isbell in “Atomless parts of space ”[31] expresses the relationship be-
tween frames and spaces in a categorical perspective thus introducing a wide range of
categorical tools to work. This motivated him to introduce the separate terminology
for dual category of frames as “locales 7. Note that frame and locale are synonymous
as long as no reference is made to morphisms. In other words, the objects of category
Frm and category Loc are identical. Category theory has played an important role
in developing the rich literature in locale theory.

One of the main advantages of frame theory is that it does not require the Ax-
iom of Choice for proving many of theorems like Tychnoff theorem and Stone-Cech
compactificationc. The change in the perspective of topology to frame theory gives
us more balanced results. For example, in the classical setting coproducts of regular
frames does not preserve the Lindeloff property,while in the context of frame theory,
coproducts of regular frames preserve the Lindeloff property. Also, frames are more
algebraic while locales are topological. The concept of sublocales and subframes em-
phasises this fact.

When the points are abandoned there arises a natural question whether the ge-
ometric information about the spaces are lost. The spaces that are not Tj are not
adequately presentable. That is where the importance of sober spaces arises. Ales
Pultr in his book [56] states that “If a complete lattice is isomorphic to the Q(X)
of a sober space X, then X can be reconstructed from the lattice by purely lattice
theoretic methods ”.In other words, Sober spaces are fully embedded in the category

of locales. Sober spaces highlights the fact that not every space comes from a locale.
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Any locale that is isomorphic to the lattice of open sets of a topological space is said
to have “enough points “ or it is spatial . The Boolean algebra of all open sets U of the
real line with U = int(Cl(U)) is an example for non spatial frame.In other words, non
spatial frames are not just copies of some already existing topological space. Thus
existence of non spatial frames establishes the fact that the category of locales are
much larger than that of topological spaces.

Another interesting role of frames is highlighted in the book “Topology via
logic” by Steven Vickers. Frames being complete Heyting algebra becomes an order
complete model for intuitionistic propositional calculus.The development of lattice
theoretic topology favoured the developments in generalised sheaf and topos theory.
It is to be noted that the theory of sheaf has a correspondence with predicate formula
in the case of propositional logic. Thus a theorem by Marshal stone influenced almost
all the branches of mathematics including the representation theory of rings and other
generalised algebraic systems.

The connection between Boolean algebra and Boolean rings instigated the devel-
opment of L-slices.In [59] Sabna K.S. introduced L-slices and their basic properties.
L-slices are modelled in line with the concept of modules. Modules can be viewed
as the action of a ring over an abelian group. Module theory deals with group ac-
tions on vector spaces or equivalently group ring actions which is a generalisation
of representation theory. They are also the central notion of commutative algebra.
The refoundation of algebraic geometry using locales which are semi rings in place of
rings began in[58] .In [58] they discusses the basic properties of L-slices.The factor of
L-slices with respect to a subslice is defined. Analogous to the isomorphism theorem
in rings, an isomorphism theorem for L-slice is derived. This shows the inevitable

relation between algebra and L-slices. The basic theories of algebra are well captured



by L-slices. For example,they have shown that finitely generated L-slice of a locale L
with n generators is isomorphic to the quotient slice of L-slice (m, L™). The benefit
of L-slices is that we are equipped with both topological and algebraic tools to study
its structure. The relation between the category L-Slice of L-slices and TopWMod
of topological weak modules has been derived. The scope of L-slices is well extended
to the branch of Cryptography through Diffie Hellman key exchange protocol.

Now we introduce generalised locales. It is a synonym that we use for quan-
tales. The concept of quantales dates back to 1930s, when M.Ward and Dilworth
[16] started working with residuated lattices. The term was coined by C.J.Mulvey
[46] from the two words quantum logic and locale. The study on lattices over which
an additional binary operation of multiplication or residuation was initiated by the
works of Ward and Dilworth[16].They have shown that theory of ideals in rings can
be conveniently formulated using the residuated lattices. Locales are the lattice the-
oretic counter parts of topological spaces which describes commutative C* algebras.
C.J.Mulvey[46] investigated the possibility of a substitute for locales so that they
would describe C'* algebras more efficiently. This led to the “quantisation” of the
term locale. C.A.Akemann|[3] had developed a structure on the lattice of right ideals
R(A) of a C*algebra A from which the original structure could be reconstructed.
C.J. Mulvey suggested to view R(A) as a lattice with multiplication so that in the
commutative case R(A) exhibits the structure of a locale. Thus, quantales were even-
tually developed as a generalisation of locales. The ideals in commutative algebra
could be considered as the paving stone to the development of quantales. Some ex-
amples of quantales include frames, ideal lattices of rings and C* algebra. .Niefield
and Rosenthal [50] developed the theory of quotients and subobjects and applied

this to its spectrum construction. The importance of ideal theory in quantales is as
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important as the ideal theory in rings. The complete lattice of ideals of a quantale
helps in the construcution of various spectrum for the quantale. The relation between
locales and quantales has motivated many mathematicians to investigate and analyse
the counter parts of localic terms like coherent frames, algebraic frames etc. in the
background of quantales. The study of quantales in [39] shows that the theory is
developed parallel to that in locales.The definition of subobjects, quotient objects are
all exactly the generalisation of what we had in frame theory. Locales have found
application in propositional logic while their generalised counterpart quantales have
found a remarkable application in analysis of the semantics of linear logic . Through
out the development of locale theory mathematicians viewed them as generalised
spaces. The striking similarity in the domain of locales and quantales motivates us
to consider quantales as “generalised locales”.

The wide possibility of L-slices prompted the study of various properties it
exhibits. This motivated the title of this thesis “ A study on properties of L-slices,
morphism class of L-slices and generalised locales”. The study in this thesis explores
different aspects of L-slices , for a locale L and each chapter deals with different prop-
erties. The first chapter introduces a new concept called the Box & which leads to the
category Batch. The second and third chapters are dedicated to the study of L-slices
Hom(o,J) and Hom(L, J) , for a locale L. The fourth chapter exploits the algebraic
property of L-slices to obtain the Zariski topology on L-slices. The fifth chapter deals
with quantales which we observe to be generalised locales and give generalised version
of L-slices.The final chapter introduces a graph theoretic approach to L-slices. The

detailed structure of the thesis is as follows.
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Organization of the Thesis

The thesis is divided into seven chapters.The first chapter deals with basic
definitions and preliminaries needed for the development of the study.
The second chapter is tilted The Box &, stack of filters G, and the Category Batch.
We define regular filter, associated filter based on the filter F,. Analogous to the
notion of sequential continuity, we develop the concept of F-continuity. Some prop-
erties of F-continuous slice morphisms are studied. We introduce a particular type of
slice called R-A slice, where all regular filters are associated filters. We observe that
the F-continuous image of R-A slice is also a R-A slice. The core of the chapter is
the concept of Box & = {(F,z) : F' is associated to x € (o,J)}. We observe the

following on a Box 6.

e The projection map 7 arranges the Box & into stacks of filters &, on the germ
x. Thus the Box & is remodelled into the ordered Box &, ). Also, (A, &(,.))

is an L-slice.

e Each member of the stack &, can be extended to a larger one in the same stack.
And for z € (0,J) and G € &, (8,))g ={FeF: FnGeS,}is a filter on §

containing &,.

e We define a map called section on &. The collection of sections I'((o, J'), §) on
S is partially ordered as s < ¢ if and only if s(z) <g §'(z) for all x € (o, J").

We find that I'((o, J'), &) is a join semilattice with bottom element .

e A Batch is a triplet (&, 7, (0, J)) where & is a Box over the L-slice (o, .J)

and 7 is the projection of & to (o,J). Also for X = (6,7, (0,J)) and Y =
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(&', 7, (1, K)) any two Batches, the morphism between the Batches is defined
as a pair (1, f).

e We prove that the Batch is a category with class of objects as Batches and the

morphism class as the pair (¢, f).

Chapter 3 studies Hom(o, J) through the ideals of the form (a : ) gom. On
Hom(ao, J),for each z € (o, J) the collection B, = {(a : z)gom : a € L} forms a basis
for a topology. For a € L the collection J, = {(a : ) gom : « € (0, J)} forms an L-slice
(A, Ja), where X : L x J, — J, is defined as A(b, (a : ) gom) = (a : 0(b,Z)) gom- We

observe the following on J,.

e On (0, J) if we define a relation as x ~, y if and only if (a : ) gom = (@ : Y) Hom,

then ~, is a congruence. Consequently, (v, J/ ~,) is a quotient slice.

e The map ¢, : (7, (0,J)/ ~a) — (A, J,) defined as ¢([z]) = (a : )gom 1S a

surjective slice morphism.

e The map F, : (0,J) — (A, J,) defined as F,(x) = (a : &) gom is a slice morphism
and F, = ¢,0 ~,.

The ideals (a : ) gom also allows a quotienting of the locale L. Fix any z € (o, J)
and consider the corresponding ideal (a : )gom of Hom(o,J). The relation R,
on (M, L) defined as aR,b if and only if (a : )gom = (b : X)gom is found to
be a congruence relation. Thus (mg,, L/R,) is a quotient slice. The next con-
struction leads us to a topology on the L-slice (m,L). For f € Hom(o,J) and
xe(o,J), By ={|f:z]L: fe Hom(o,J)} forms a basis for topology on the L-slice
(m, L). Hence £ = ((m, L),B) forms a topological space with basis B,. Similarly,
the subslices of the form [a : f].) allows B,y = {[a : flws) : f € Hom(o, J)}

Xiv



to form a basis for a topology on (o, J). In this particular study that we have con-
structed three topologies on the three different domains involved. And the topologies
generated through the ideals on (m, L) and Hom(o,JJ) makes the slice morphisms
1 = o, continuous for every b € L. Similarly the subslices constructed on (o, J)
permits the continuity of the slice morphism o, for every z € (o, J).

The fourth chapter is devoted to the study of the L-slice Hom(L, J). The devel-
opment of the ring C'(X) involves the study of real valued functions on the topological
space X . The case under our consideration involves the study of all L-slice morphisms
from (m, L) to (o, J). The ring C'(X) has two important concepts called Zero sets and
fixed ideals. We examine the structure and properties of Zero sets and fixed ideals of

Hom(L, J).The main results we obtained are as follows:

e The collection of all zero sets Z(L, J) is an L-slice with the action defined as

AN:LxZ(L,J)— Z(L,J) as Ma, Z(f)) = Z((a, [)).

e For fe Hom(L,J) and an element x € (0, J) theset { f:x), ={re L: f(r) <
x} is an ideal of (m1, L). The collection %?AL) ={{f 2y, : fe Hom(L,J)} the
zero sets of slice morphisms from (M, L) to (o, J) forms a basis for a topology
on (M, L). Also, if every f # 0o is a unit then the topology generated by

‘B((); 1) is Sierpinski topology.

o We define the concepts of Z-filters, Z-ideals and strong Z-ideals. The interrela-
tion between the concept of Z-filters and Z-ideals are studied. We found that if
F is a Z-filter on L then the family Z< [F| = {f € Hom(L,J) : Z(f) € F} is
an ideal in Hom(L, J). Also, if I is a strong Z-ideal then Z[I] is a Z-filter on
(m, L).

e Let 91 denote the collection of all fixed ideals M,. Define x : L x M — IMN

XV



as ~(a, M,) = M Then (%®,9M) is an L-slice. Define a slice morphism

m(ap)-
e (ML) — M as pla) = M,. Let Z — Fil denote the collection of all Z-
filters in Z(L,.J). The map Z : M — Z — Fil is the natural map that takes
each M, € M to the corresponding Z-Filter Z|[M,]. Now, the composition
Zow:(m, L) — Z — Fil takes each element r € (M, L) to the Z-Filter Z[M,.].

Thus to each a € (M, L) we associated a Z-filter in Z(L, J) through 9.

Chapter 5 make use of the algebraic properties of L-slice. We examine the
possibility of Zariski topology on L-components. Given a locale L and a L-slice
(0,J), for m € (0,J) and r € L, we have constructed (o,J) ideals [r — m] =
{n € (0,J) : o(r,n) < m}. Their properties and characteristics are studied. Simi-
larly for a given L-slice (o, J) and n,m € (o, J) we examine the properties of ideals
[r = m] ={ne(o,J):0(r,n) <m}on L. We define L-prime element of (o,C) as
an element p # 1¢, for which every r € L and n € (0, C') with o(r,n) < p implies that
either r € [1c — p]L or n < p. The set of all L -prime elements of (o, C') is called the
spectrum of (o, C') and is denoted by Spec(o,C). On Spec(o,C) we define the sets
C(n) = {p € Spec(o,C) : n < p}.

If the L-prime element of (o, C) is also a meet irreducible element of C' then the we
denote the spectrum as Spec, (o, C'). The topology ¥ generated by the family of closed
sets v = {C(n) : n € (0,C)} defined on Spec, (o, C) is called the Zariski topology on
Spec,(o,C). If we define C*(n) = {p € Spec(o,C) : [1c = n] € [1c — p]} then the
collection v* = {C*(n) : n € (0,C)} forms a collection of closed sets for the Zariski
topology Q* on Spec(o, C'). We examine the properites exhibited by ¥ and Q*. Some

of the results obtained are as follows:

e (Spec,(o,C), W) is a Ty space.

Xvi



e If every element of Spec(o,C') is maximal element then the singleton sets will

be closed in Q* and hence (Spec(o, C), 2*) will be a T} space.
o (Spec(o,C),Q*) is irreducible if and only if (o, C) is without zero divisors.

The sixth chapter emphasies the importance of generalised locales or quantales.
In the first section we develop a quotient quantale using a specific ideal. Second
section deals with the maps called deductions and their properties. It is well known
that a quotient quantale can be constructed through the maps called quantic nucleus.
Here we try to do the same through the ideals constructed from the newly defined
maps called deductions. The third section introduces the graphs that are associated
with quantales. This section motivated us to look into the possibilities of introducing
graph theory in the context of L-slices. The last section introduces the generalised L-
slice which we call Q-slices. We discuss some of the basic differences in the properties
exhibited by L-slices and Q-slices.

The seventh chapter is a graph theoretic approach to L-slices. We introduce two
graphs associated with L-slices. We begin with the definition of torsion elements of
an L-slice and then define the total graph of L-slice I'(7(o, J)). The total graph
I'(T(o,J)) is complete if and only if the L-slice is not faithful. The subgraph with
vertices from T'(o,J) is always complete. The chromatic number x(I'(T(o,J))) of
I'(T(o,J)) is such that either always I'(T'(o, J)) = 1 or x(I'(T'(, J))) = n + 1, where
n =| T(o,J) |. Also if T(o,J) is proper ideal then the diameter and radius of
I, (T (o, J)) will be the same and equal to 1. Whenever | T'(o, J) |= n = 3, then the
girth of I',(T'(0, J)) is three and the circumference of I',,(T(o, J)) is n. The second
graph is the one that is associated with the weak Zariski topology on L-slice. For a

subset T of Spec(o, C') we introduce a graph Gp(w*). The graph exists if and only
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if f T =C(/AT) and T is not an irreducible subset of Spec(o, C). The weak Zariski
topology graph Gp(w*) is connected and diam(Gr(w*)) < 2. We define a subgraph
Gl (w*) of Gr(w*) and show that it is bipartite.

The study on properties of L-slices, morphism class of L-slices and generalised
locales opens up a wide possibility for research in different perspectives. The study
can be further taken up by researchers of different interests. We conclude the thesis

by emphasizing few open problems that arose during the study.
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Chapter 1

Preliminaries

This chapter includes some preliminary concepts on Order theory, Category theory,

Frames and Locales ,Quantales and Graph Theory required for the next chapters.

1.1. Order theoretical concepts

Definition 1.1.1. [35] Let L be a set. A partial order on L is a binary relation &
which is

i. reflexive : for alla € L, a C a,

ii. antisymmetric: if a E b and b E a, then a = b, and

iii. transitive: if a £ b and b = ¢, then a E c.

A partially ordered set (also called poset) is a set equipped with a partial order.

Definition 1.1.2. [12] An element z € A < L is called minimal if a € A,a E z
implies a = x. If L has a unique minimal element, then it is called the least element

(bottom) of L denoted by Oy.



Definition 1.1.3. [12] An element x € A < L is called maximal if a € A,z & a
implies ¢ = x. If L has a unique maximal element, then it is called the greatest

element (top) of L denoted by 1;.

Definition 1.1.4. [12] An element x € L is called an upperbound of A < L, if for all
a € A, we have a & . The least element of the set of all upperbounds of A in L, if

it exists, is called the least upperbound (supremum)of A. It is denoted by | | A.

Definition 1.1.5. [12] An element z € L is called a lowerbound of A < L, if for all
a € A, we have x E a. The greatest element of the set of all lowerbounds of A in L,

if it exists, is called the greatest lowerbound (infimum) of A. It is denoted by [ | A

Definition 1.1.6. [56] A poset L is called a join-semilattice (resp.meet-semilattice)

if there is a supremum a s b (resp.infimum a m b) for any two a,b € L.

Definition 1.1.7. [35] A partially ordered set L in which for every pair of elements
a,b, there exists the supremum a L b and the infimum a m b is called a lattice. A
partially ordered set L for which every set A € L has the supremum | | A and the

infimum [ ] A exist in L is called a complete lattice.

Definition 1.1.8. [35] A lattice L is distributive if a m (bu¢) = (amb) u (a ™ ¢)

which is equivalent to a L (bri¢) = (a b)) M (auwc).

Definition 1.1.9. [12] A map f: L — M, where L, M are partially ordered sets, is
called monotone(order preserving) if a =, b = f(a) S f(b) for all a,be L. If f is

bijective and its inverse f~! is also monotone, then it is called an order isomorphism.

Definition 1.1.10. [35] Let L be a distributive lattice with greatest element 1, and
least element Oy. The complement a® of an element a € L is the one satisfying

arma®=0;,and aua®=1j.



Definition 1.1.11. [35] A Boolean algebra is a distributive lattice with 07, and 1, in

which every element has a complement.

Definition 1.1.12. [56] An element p # 1 in a lattice L is said to be meet-irreducible

if for any a,b € L, a m b E p implies that either a E p or b E p.

Definition 1.1.13. [56] An element p # 0 in a lattice L is join-irreducible if for any

a,be L,p E aubimplies that either p C a or p & b.

Definition 1.1.14. [56] A lattice A is said to be a Heyting algebra if for each pair of
elements (a,b) in A, there exist an element a — b such that ¢ = (¢ — b) if and only

ifemacb.

1.2. Categorical Concepts

Definition 1.2.1. [29] A category C consist of:

i. A class ObC of objects (notation: A, B,C....)

ii. A class MorC of morphisms (notation: f,g, h...). Each morphism f has a domain
or source A (notation: dom(f)) and a codomain or target B (notation: codom(f))
which are objects of C'; this is indicated by writing f : A — B.

iii. A composition law that assign to each pair (f, g) of morphisms satisfying
dom(g) = codom(f) a morphism g o f : dom(f) — codom(g), satisfying

(a) ho(go f) = (hog)o f whenever the compositions are defined.

(b) For each object A of C there is an identiy ids : A — A such that foids = f

and td4 o g = g whenever the composition is defined.

Definition 1.2.2. [29] A category B is said to be a subcategory of the category C

provided that the following conditions are satisfied.



i. Ob(B) < 0b(C).

ii. Mor(B)< Mor(C).

iii. The domain, codomain and composition functions of B are restriction of the
corresponding functions of C.

iv. Every B-identity is a C' -identity.

Definition 1.2.3. [29] If C is a category we can take the same class of objects and
morphisms, and interchange the domains and codomains (which leads to inverted
composition). Thus f : A — Bisnow f : B — A and we have a composition
f#g=go f. Thus obtained category is called the dual or opposite of C and denoted
by C.

Definition 1.2.4. [29] Let C,D be categories. A functor from C to D is a triple
(C,F,D) where F' is a function from the class of morphisms of C to the class of
morphisms of D (i.e. F': MorC — MorD) satisfying the following conditions.

i. F' preserves identities: i.e., if e is a C-identity, then F'(e) is a D- identity.

ii. F preserves composition: F(f og) = F(f)o F(g);i.e., whenever

dom(f) = codom(g), then dom(F(f)) = codom(F(g)) and the above equality holds.

Definition 1.2.5. [29] A triple (C, F, D) is called a contravariant functor from C
to D if and only if (C?, F, D) is a functor (or, equivalently, if and only if (C, F, D)

is a functor).

1.3. Frames and Locales

Definition 1.3.1. [56] A frame is a complete lattice L satisfying the infinite distribu-
tivity law am | |B =| {amb;be B} forallae L and B < L.



Definition 1.3.2. [56] A map f: L — M between frames L, M preserving all finite
meets (including the top 1) and all joins (including the bottom 0) is called a frame

homomorphism. A bijective frame homomorphism is called a frame isomorphism.

Remark. The category of frames is denoted by Frm. The opposite of category Frm
is the category Loc of locales. We can represent the morphism in Loc as the infima
-preserving f : L — M such that the corresponding left adjoint f* : M — L preserves
finite meet. If we do not refer to the morphisms in the category Loc of locales and

the category Frm of frames, then the objects frames and locales are same.

Remark. The category of topological spaces and continuous maps is denoted by Top
Definition 1.3.3. [56] The functor 2 : Top — Frm maps objects and morphisms as
follows

i. A topological spaces (X, (X)) is mapped into frame of open sets (X))

ii. 2 sends morphism f: X — Y in Top to the frame homomorphism

Q(f) : QUY) — Q(X) defined by Q(f)(V) = f~1(V).

Theorem 1.3.4. [56] The functor Q2 : Top — Frm is a contravariant functor
Definition 1.3.5. [35] A subset I of a locale L is said to be an ideal if

i. I is a sub-join-semilattice of L; that is O, € I and a € I,b e I implies a b e [ ;and

ii. I is a lower set; that isa€ [ and b = a imply b e [.

If a € L, the set | (a) = {x € L;x E a} is an ideal of L. | (a) is the smallest
ideal containing a and is called the principal ideal generated by a. A proper ideal [

is prime if z my € I implies that either z € I or y € I [35].

Definition 1.3.6. [56] A subset F of locale L is said to be a filter if
i. F'is a sub-meet-semilattice of L; that is 1, € FFand ae F,be F implyambe F.

ii. F'is an upper set; that isa e F and a E b imply b € F.
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Definition 1.3.7. [56] A filter F is proper if F' # L, that is if 0 ¢ F.

A proper filter F' in a locale L is prime if ay L ay € F implies that a; € F or as € F' .

Definition 1.3.8. [56] A proper filter F' in a locale L is a completely prime filter
if for any indexing set J and a; € L, i € J, | |a; € F = 3i € J such that a; € F.

Completely prime filters are denoted by c.p filters.

Example 1.3.9. [56] U(z) = {V € Q(X);x € V'} is a completely prime filter in the
locale Q(X).

For an element a of alocale L, set X, = {F S L; F' # ¢, F is c.p filters;a € F}.
We can easily check that Yo = ¢, 3| jo,=J X4, ; Vars = Xa N 2 and
¥ ={all cp filters}.
The spectrum of a locale is defined as follows.
Sp(L)=({all c.p filters}, {¥, : a€ L}). Then Sp(L) is a topological space with the
topology Q(Sp(L)) ={X,:a€ L}.

Definition 1.3.10. [56] A locale L is said to be spatial if it is isomorphic to Q(X)

of some topological space X.

Definition 1.3.11. [56] Let L be a frame. An equivalence relation 6 on L is said to
be a congruence on L if (a,b) € 0 = (ame,brmic)efand (auw| |S,bu|]S) e b for
all ce LS C L.

Definition 1.3.12. [56] A subset of a frame L which is closed under the same finite
meets and arbitrary joins in the frame is called a subframe. That is a subframe is

itself a frame under the induced order of L.

The concept of sublocale is something different, corresponding to quotient frames.



Definition 1.3.13. [56] Let L be a locale. A subset S € L is a sublocale of L if
i. S is closed under meets, and

ii. For every se S and everyze L, z — se S.

A sublocale is always nonempty, since 1 = []¢ € S. The least sublocale {1} will
be denoted by 0

Proposition 1.3.14. [56/ Let L be a locale. A subset S < L is a sublocale if and
only if it is a locale in the induced order and the embedding map 7 : S € L is a localic

map.

Definition 1.3.15. [56] A nucleus in a locale L is a mapping v : L — L such that

ii. a £ b= v(a) E v(b)
iii. v(v(a)) = v(a) and

iv. v(amb) = v(a) mv(b).

Sublocales of a locale L have alternate representations in[56.

i) Sublocales of a locale can also be represented using frame congruence. A sublocale
homomorphism g : L — M induces a frame congruence E, = {(z,y) : g(z) = g(y)}
and a frame congruence gives rise to a sublocale homomorphism z — Ex : L — L/E,
where L/E denotes the quotient frame defined by the congruence E, and Ex denotes
the E-class.

ii) Sublocales of a locale can also be represented using nucleus. The translation be-
tween nuclei and frame congruence resp. sublocale homomorphism is straight forward:
v By ={(z,y) : v(z) = v(y)},

Ew—vg=(xw||Ex):L— L

v — vy, = v restricted to L — v[L],



h— v, = (x — hyh(x)): L > L
We can relate sublocales and nuclei directly. For a sublocale S € L, set

vs(a) = jé(a) =[{s€ S : a & s} and for a nucleus v : L — L, set S, = v[L].

1.4. L-Slice

Given a locale L and a join semilattice J with bottom element 0;, we have introduced
a new concept of an action o of locale L on join semilattice J together with a set
of conditions. The pair (o, J) is called L-slice. L-slice, though algebraic in nature

adopts properties of L through the action o.

Definition 1.4.1. [58] Let L be a locale and J be join semilattice with bottom
element 0;. By the “action of L on J”we mean a function ¢ : L x J — J such that
the following conditions are satisfied.
i. o(a,xy v x9) = o(a,z1) v ola,zy) for all a € L, xy, 29 € J.
ii. o(a,05) =0, for all a € L.
iii. o(amb,x) =o0(a,0(b,x)) =o(b,o(a,z)) for all a,be L,z € J.
iv. o(1p,z) =z and (0, x) = 0; for all x € J.
v. o(aub,x) =0(a,z) v o(bx) fora,be L,x € J.
If o is an action of the locale L on a join semilattice J, then we call (o, J) as

L-slice.

Next proposition gives sufficient conditon for a subset S € O(L) of order preserv-

ing maps on L, to be an L-slice.

Proposition 1.4.2. [58] Let L be a locale, and let S be a set of order preserving maps
L — L such that :



i. The constant map 0 € S (0 takes everything to 0).

1. If f,ge S, then fvges.

iti. For alla € L and for all f € S, the meet of the constant map a and f is in S (i.e.
fraes).

Then the map o : L x S — S defined by o(a, f)(x) = f(x)ma is an action of L on S.

Examples 1.4.3. [58] 1. Let L be a locale and I be any ideal of L. Consider each
x € I as constant map x: L — L. Then by proposition 1.4.2, (0,1) is an L-slice. In
particular (o, L) is an L-slice.

2. Let the locale L be a chain with Top and Bottom elements and J be any join
semilattice with bottom element. Define o : L x J — J by o(a,j) = j Ya # 0 and

0(0r,7) =0y. Then o is an action of L on J and (o,J) is an L-slice.
Proposition 1.4.4. [58] The product of two L-slices of a locale L is an L-slice.

Definition 1.4.5. [58] Let (o, .J), (i, K) be L-slices of a locale L. A map
f:(o,J) = (u, K) is said to be L-slice homomorphism if

i f(xy v ag) = f(x1) v f(z) for all xy, 25 € J.

ii. f(o(a,z)) = p(a, f(z)) for all a € L and all x € (o, J).

Definition 1.4.6. [58] Let (o, J) be an L-slice of a locale L. A subjoin semilattice

J' of J is said to be L-subslice of J if J’ is closed under action by elements of L.

Examples 1.4.7. [58] 1. Let L be a locale and O(L) denotes the collection of all order
preserving maps on L. Then (o,0(L)) is an L-slice, where o : L x O(L) — O(L) is
defined by o(a, f) = f,, where f, : L — L is defined by f.(z) = f(x) ma. Let
K ={feO(): f(x) £ x,Yx € L}. Then (0,K) is an L-subslice of the L-slice
(0, O(L)).

2. Let (0,J) be an L-slice and let x € (0,J). Define {x) = {o(a,z);a € L}. Then

9



(0,{x)) is an L-subslice of (c,J) and it is the smallest L-subslice of (o,J) containing

X.

Definition 1.4.8. [58] Let (o, .J) be an L-slice of a locale L. An equivalence relation
R on (o, J) is called an L-slice congruence if
i. xRy implies x v zRy v z for any x,y, z € (0, J)

ii. 2Ry implies o(a,z)Ro(a,y) for all a € L, z,y € (o, J).

Proposition 1.4.9. [58] Let (o, J), (11, K) be two L-slices of a locale L and let
f (o, J) = (u, K) be an L-slice homomorphism. Then the relation R on (o, J)

defined by xRy if and only if f(x) = f(y) is a congruence on (o, J).

Definition 1.4.10. [58] The L-slice congruence R discussed in proposition 1.4.9 is

called natural congruence associated with the L-slice homomorphism f : (o,J) —

(1, K).

Let R be a congruence on (o, J) and let J/R denotes the collection of all equiv-
alence classes with respect to the relation R. Then J/R is a join semilattice with
bottom element [0,], where the partial order < on J/R is defined by [z] < [y] if and
only if # < y in (0,J). In the next proposition, we will show that (v, J/R) is an
L-slice where the action vy : L x J/R — J/R is defined by ~(a, [z]) = [o(a, x)].

Proposition 1.4.11. /58] If R is a congruence relation on (o, J), then (v, J/R) is

an L-slice.

Definition 1.4.12. [58] Let (o, J) be an L-slice of a locale L and R be a congruence
on (o, J). Then the L-slice (v, J/R) described in proposition 1.4.11 is called quotient

slice of L-slice (o, J) with respect to the congruence R.
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Proposition 1.4.13. [58] Let R be an L-slice congruence on an L-slice (o,J) of a
locale L and let (v, J/R) be the corresponding quotient slice. Then the map

7 (0,J) = (v, J/R) defined by w(x) = [x] is an onto L-slice homomorphism.

Definition 1.4.14. [58] Let (o, J) be an L-slice of a locale L. For each a € L, the

map o, : (0, J) — (0, J) defined by o,(z) = o(a,x) is an L-slice homomorphism.

Definition 1.4.15. [58] A subslice (o, /) of an L-slice (o, J) is said to be ideal of

(0,J) if x € (0,1) and y € (o, J) are such that y < z, then y € (o, I).

Definition 1.4.16. [58] An ideal (o, ) of an L-slice (o, J) is a prime ideal if it has
the following properties:

i. If a and b are any two elements of L such that o(a m b,x) € (o, 1), then either
o(a,z) € (o,I) or o(b,x) € (o,I).

ii. (o,1) is not equal to the whole slice (o, J).

Definition 1.4.17. [58] Let (o, J) be an L-slice of a locale L. Then the annihilator

of the L-slice (o, J) is defined by Ann(J) = {a € L : o, = 0}.

Definition 1.4.18. [58] An L-slice (o,J) of a locale L is said to be faithful if
Ann(J) = {0}.

Example 1.4.19. [58] The L-slice (m, L) is faithful.

Definition 1.4.20. [58] Let (o, J), (i, K) be L-slices of a locale L. A map
f:(o,J) — (u, K) is said to be L-slice homomorphism if

. f(z1 v xe) = f(xr) v f(z2) for all z1, 25 € (0, J).
ii. f(o(a,z)) = pla, f(z)) for all a € L and all x € (o, J).

Examples 1.4.21. [58] i. Let (0,J) be an L-slice and (o,J") be an L-subslice of

(0,J). Then the inclusion map i : (o, J") — (0,J) is an L-slice homomorphism.
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ii. Let I =] (a),J =] (b) be principal ideals of the locale L. Then (o,1), (o,J) are
L-slices. Then the map f : (0,1) — (0,J) defined by f(z) = x m b is an L-slice

homomorphism.

Proposition 1.4.22. [58] If f : (0,J) — (u, K) is a L-slice homomorphism, then

f(0s) = Ok.

Proposition 1.4.23. [58] The composition of two L-slice homomorphisms is an L-

slice homomorphism.

Proposition 1.4.24. [58] Let (0,J), (11, K) be L-slices of a locale L and f : (o, J) —
(u, K) be L-slice homomorphism.

i. Let kerf ={xe J: f(x) =0g}. Then (o,kerf) is an ideal of (o,J).

it. Let imf ={ye K :y = f(z) for some x € (0,J)}. Then (u,imf) is an
L-subslice of (u, K ).

Definition 1.4.25. [58] Let (o, J), (i, K) be L-slices of a locale L. A map
f:(o,J) — (u, K) is said to be an L-slice isomorphism if

i. f is one-one

ii. f is onto

iii. f is an L-slice homomorphism.

Lemma 1.4.26. [58] Let (0,J), (u, K) be two L-slices of a locale L.

i. The map 0:(o,J) — (1, K) defined by 0(x)=0x for x € (o,J) is an L-slice homo-
morphism.

it. If f,g:(o,J) = (u, K) are L-slice homomorphism, then the map
fvg:(o,J)— (1K) defined by (f v g)(x) = f(x) v g(x) for x € (0,J) is an L-slice

homomorphism.
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Proposition 1.4.27. [58] Let (0,J),(u, K ) be L-slices of a locale L and L- Hom(J,K)
denote the collection of all L-slice homomorphisms from (o,J) to (u, K). Then

(0, L — Hom(J, K)) is an L-slice, where the action,

d:LxL—Hom(J,K)— L— Hom(J,K) is defined by 6(a, f)(z) = p(a, f(zx)) for all
x € (0,J).

Definition 1.4.28. [58] Let (o, .J) be an L-slice of a locale L. For each a € L, define
04 (0,J) = (0,J) by 0.(z) = o(a, ).

Proposition 1.4.29. [58/ Let (0,J) be an L-slice. For each a € L, o, : (0,J) —

(0,J) is an L-slice homomorphism.

Proposition 1.4.30. [58] Let (o, J) be an L-slice of a locale L. For each x € J,

o, : (M, L) — (0,J) is an L-slice homomorphism.

Proposition 1.4.31. [58] Let (o, J) be an L-slice of a locale L and let P = {0, : x €
(0,J)}. Then (9, P) is an L- subslice of (0, L — Hom(L, J)).

Proposition 1.4.32. [58] Let (0, J) be an L-slice of a locale L. For each x € (o,.J),
let F, ={a€ L;o(a,x) =x}. Then F, is a filter in L.

Proposition 1.4.33. [58] The filter F, is proper for x # 0;.

Proposition 1.4.34. [58] Let x € (0,J) be join-irreducible element of (o,J), then

F, is a prime filter in L.

Definition 1.4.35. [58] An element z € (o, J) is said to be compact element of the L-
slice (o, J), if for any collection {a,} of L whenever o(ua,, ) = x, then there exist a
finite sub collection {ay, as, ....a, } of {a,} such that o(ay,z) vo(az, z)v..vo(a,, x) =

x. A slice (o, J) is compact if each element x € (o, J) is compact.
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Example 1.4.36. [58] Let (0, J) be any L-slice. Then 0; is a compact element.

Proposition 1.4.37. [58] Let x € (o, J) be join-irreducible compact element of (o, J),

then F, is a completely prime filter.

Proposition 1.4.38. [58] Let F = {a € L : o(a,x) = x Yz € (0,J)}. Then F =
(F: and F is a filter in L

1.5. Quantales

Definition 1.5.1. [39] The category SL of sup-lattices has as its objects complete
lattices and if P and @) are complete lattices, a function f : P — @) is a morphism of

sup-lattices iff it preserves arbitrary sups.

Definition 1.5.2. [39] Let P be a poset . An order preserving function j : P — P is
called a closure operator if and only if it satisfies
i) a < j(a), forallae P

ii) j(j(a)) = j(a) for all a € P

Let Py = {a € P: j(a) = a}.Then P; is a complete lattice since it is closed under

infimums.

Definition 1.5.3. [39] Let P be a poset . An order preserving map g : P — P is
called a coclosure operator iff it satisfies

i) g(a) <aforallae P

ii)g(g(a)) = g(a) for all a € P.

Definition 1.5.4. [39] A quantale is a complete lattice () with an associative binary
operation = satisfying i) a = (vaba) = Va(a*b,) and ii) (Vaba) *a = Vo(be * a) for all

ae@ and {b,} < Q.
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Since a * — and — = a preserves arbitrary supremums , they have right adjoints we
shall denote by a —, — and a —; — respectively. Thus, a = c < b iff ¢ < a —, b and

cra<bifc<a—;b

Definition 1.5.5. [39] A quantale @ is commutative if and only if a * b = b = a for

every a,be @ .

Definition 1.5.6. [39] Let @ be a quantale and let a € @) . Also, let T" denote the
top element of the quantale ().

i) @ is right sided iff a« T < a

ii) a is left-sided iff T+ a < a

iii) a is two-sided iff a is both right sided and left sided.

iv) a is strictly right (left)sided iff a + T = a (T * a = a)

v) a is idempotent iff a = a = a

vi) an element 1 € ) is a left unit iff 1 *a = a for all a € Q

vii)an element 1 € ) is a right unit iff a » 1 = a for all a € @

viii) an element 1 € @ is a unit iff it is both a right and left unit.

Definition 1.5.7. [39] Let @ be a quantale

i) @ is right- sided(left- sided) iff every a € @ is right-sided(left- sided)
ii) @ is two sided iff every every a € @ is two sided

iii) @ is idempotent iff every a € @) is idempotent

iv) @ is(left)rightunital iff @ has a (left)right unit 1

v) @ is unital iff Q) has a unit 1.

Examples 1.5.8. [39] i) Any frame is a quantale with » = A. It is commutative

Jidempotent,unital with unit T (and hence two-sided)
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ii) Sub(R),the set of additive subgroups of R is a quantale with sup = ¥ and with
A+B=AB = {alb1 + agby + ....a,b, : a; € A,bZ € B}

Definition 1.5.9. [15] Let I be a subset of a quantale Q. I is called a left(respectively
right)ideal of @

i) X < I implies \/ X € [

ii)zelandy <z thenyel

iii) z € I imples a+*x € [ (resp x=a € I) for all a € Q

Definition 1.5.10. Let I be a subset of a quantale Q. I is called a left(right) » ideal
of Q if
i) X < I implies \/ X € [

ii) zelimplesaxx el (respx+acl)forallae@

Definition 1.5.11. [43] A nonempty subset F of @) is said to be a filter if it satisfies
the following conditions:

i)o¢F

ii)Ifae Fbe @ and a <bthenbe F

iii) If a,be @ thenaxbe F

Definition 1.5.12. [28] A binary relation # on @ is a congruence on @ if and only if
i) 0 is an equivalence relation
i) If (z;,y;) € 0 for all i € I | then (Vverx;, Vieryi) € 0,where I is some indexed set

iii) If (a,b) € 6, then (c*a,c+b) € @ and (a=c,b=c) € for any c € Q

Definition 1.5.13. [39] Let P and @) be quantales. A function f : P — @ is a
homomorphism of quantales if f preserves arbitrary sups and it also preserves the

operation =.
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Definition 1.5.14. [39] Let @ be a quantale. A quantic nucleus on @) is a closure

operator j such that j(a) = j(b) < j(a = b) for all a,be @

Definition 1.5.15. [39] Let @ be a quantle .A quantic conucleus on @ is a coclosure

operator g sucht that g(a) = g(b) = g(a = b)

Given a closure operator j on a complete lattice (), then it can be easily seen that

the set Q; = {a € Q : j(a) = a} is again complete.

Proposition 1.5.16. [39] If Q is a quantale and S < @Q then S = Q; for some
quantic nucleus j iff S is closed under infs and a —, s and a —; s are in S, whenever

a€@ and s€S.

Now , such an S is called the quantic quotient of ). Also, a s b = inf{se S :

axb< s}

Definition 1.5.17. [39] If @ is a quantale , a subset S of @ is a subquantale iff S is

closed under sups and =.

Theorem 1.5.18. [39] Let Q be a quantale .If g is a quantic conucleus on Q, then
Qg = {a € Q:gla) = a} is a subquantale of Q). Moreover,if S is any subquantale of

Q, then S = @, , for some quantic conucleus g.

Also, subquantales can be described in terms of a quantic conucleus. Thus, quotient

quantales and subquantales can be defined using quantic nuclei and quantic conuclei.

1.6. Graph Theory

Definition 1.6.1. [49] A graph G = (V, E) consists of a set of objects V' = {vy, vy - - }

called vertices and another set E' = {eq, ey, - - - } whose elements are called edges such
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that each edge ey, is identified with an unordered pair (v;,v;) of vertices.The vertices
v;v; associated with edge e, are called the end vertices of e;. Two edges are adjacent

if they are incident on a common vertex.

Definition 1.6.2. [49] A graph that has neither self-loops nor parallel edges is called

a simple graph.

Definition 1.6.3. [7] The number of edges incident on a vertex v; is called the degree
of the vertex v;. The minimum(respectively,maximum) of the degrees of the vertices

of a graph G is denoted by 0(G) or d(respectively, A(G) or A)

Definition 1.6.4. [7] A graph in which all vetices are of equal degree is called a
regular graph. A vertex having no incident edge is called an isolated vertex. A vertex
of degree one is called a pendant vertex . A graph without any edges is called a null

graph or an empty graph.

Definition 1.6.5. [7] A graph G is called finite if both V(G) and E(G) are finite. A
graph that is not finite is called infinite.The number of vertices of a graph is called

the order of G and the number of edges of GG is called the size of G.

Definition 1.6.6. [7] A simple graph G is said to be complete if every pair of distinct
vertices of GG are adjacent in G. A complete graph on n vertices is denoted by K.

On the other hand,a graph with no edges is called a totally disconnected graph.

Definition 1.6.7. [7] A graph is trivial if its vertex set is a singleton and it contains
no edges. A graph is bipartite if its vertex set can be partitioned into two nonempty
subsets X and Y such that each edge of G has one end in X and the other in Y.The
pair (X,Y) is called a bipartition of the bipartite graph. The bipartite graph with

bipartition (X, Y") is denoted by G(X,Y').A simple bipartite graph is complete if each
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vertex of X is adjacent to all vertices of Y. If G(X,Y') is complete with | X |= p and
| Y |= ¢, then G(X,Y) is denoted by K, ,. A complete bipartite graph of the form

K, 4 is called a star.
Theorem 1.6.8. [23] A graph is bipartite if and only if it contains no odd cycles.

Definition 1.6.9. [49] A graph H is called a subgraph of G if all the vertices and all

the edges of H are in GG and each edge of H has the same end vertices in H as in G.

Definition 1.6.10. [7] A subgraph H of G is said to be an induced subgraph of G if
each edge of GG having its ends in vertex set of H is also an edge of H. The induced

subgraph of G with vertex S € V(G) is called the subgraph of G induced by S.

Definition 1.6.11. [7] A clique of G is a complete subgraph of G. A clique of G is a
maximal clique of G if it is not properly contained in another clique of GG. The order

of a maximum clique of G is called the clique number of G and is denoted by w(G).

Definition 1.6.12. [7] A walk in a graph G is an alternating sequence denoted as
W voeivieqvs - - - e,v, of vertices and edges beginning and ending with vertices in
which v;_; and v; are the ends of e;.A walk is called a path if all the vertices are

distinct.A cycle is a closed path.The length of a walk is the number of edges in it.

Definition 1.6.13. [23] The girth of a graph G,denoted as g(G), is the length of the

shortest cycle in G ; the circumference ¢(G) the length of any longest cycle.

Definition 1.6.14. [7] Let G be a graph.Two vertices u and v of G are said to be
connected if there is a v — v path in G. The maximal connected subgraphs of G are

called components of G.

Definition 1.6.15. [7] Let G be a connected graph and d(u, v) denotes the length of

the shortest u — v path.
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i) The diameter of G is defined as max{d(u,v) : u,v € V(G)} and is denoted by
diam(G).

ii) If v is a vertex of G, its eccentricity e(v) is defined by e(v) = max{d(u,v) : u €
V(G)}.

iii) The radius of G, r(G), is the minimum eccentricity of G, that is , r(G) =

min{e(v) : v e V(G)}.

Definition 1.6.16. [7] A vertex colouring of G with vertex set V isamap f:V — S,
where S is a set of distinct colours;it is proper if adjacent vertices of G recieve distinct

colours of S; that is,uv € E(G), then f(u) # f(v).

Definition 1.6.17. [7] The chromatic number of a graph G, denoted by x(G), is
the minimum number of colours needed for a proper vertex colouring of G. G is

k-chromatic .if x(G) = k.

Definition 1.6.18. [7] A k-colouring of a graph G is a vertex colouring of G that

uses k-colours.

Theorem 1.6.19. [34] Let G be a non empty graph . Then x(G) = 2 if and only if

G is bipartite.

Theorem 1.6.20. [34] Let G be a graph .Then x(G) = 3 if and only if G has an odd

cycle.

Definition 1.6.21. [49] A set of vertices in a graph is said to be an independent
set of vertices or simply an independent set if no two vertices in the set are adja-
cent.The number of vertices in the largest independent set of a graph G is called the

independence number, 5(G).
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Chapter 2

The Box G, stack of filters G, and

the Category Batch

This chapter presents the novel idea of Batch. The filter F, on a locale L forms the
centre of study.Through this filter we develop the notions of regular filter associated
filter,F-continuity on L-slices and R-A slice.The idea of associated filter is further
developed to construct Box & and stack of filters &, on L-slice. We study the sections
on Box & and their properties are investigated .The Box & leads to the concept of
Batch and Batch morphisms which are later shown to form a category Batch with
objects as Batches and morphism class as Batch morphisms . Let L be a locale with
top element 1, and J be a join —semilattice with bottom element 0; . On the locale

L, we have the definition of the L-slice (o, J) as follows :

Definition 2.0.1. [58] Let L be a locale and J be join semilattice with bottom
element 0;. By the “action of L on J”we mean a function o : L x J — J such that

the following conditions are satisfied.
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i. o(a,zy v x9) = o(a,x1) v o(a,xs) for all a € L, x1, 29 € J.

ii. o(a,05) =0, for all a € L.

iii. o(amb,x) =o0(a,0(b,x)) =o(b,o(a,z)) for all a,be L,z € J.
iv. o(1p,z) =z and o(0p,x) = 0 for all x € J.

v. o(aub,x) =o(a,z) v olbx) fora,be Lyx e J.

If o is an action of the locale L on a join semilattice J, then we call (o, J) as
L-slice. For each xz € (0,J), F, ={a€ L : o(a,x) = x} is a filter on L. Any filter F

on a locale L is said to be trivial if F= {1,}

2.1. Regular Filter F, Idle points with respect to
F and Knotp

Definition 2.1.1. A filter F' on a locale L is said to regularise x € (o, J), if F n F,
is a nontrivial filter. Then F' is called the regular filter of x and x is called the knot

point of F.

Definition 2.1.2. For a regular filter F' of x, the elements in F' n F, are called the
idle points of F' with respect to the action o on = € (o, J). The intersection of any

two filters is again a filter . Thus the set F'n F}, of idle points of F' form a filter on L.

Proposition 2.1.3. Let f : (0,J) — (u, K) be an L-slice homomorphism and let F

regularise x € (o, J) then F regularise f(x) € (u, K).

Proof. Let F regularise z € (0, J). Then there exist a # 1y in F such that o(a, z) = .
Also, f(o(a,x)) = f(z) implies u(a, f(x)) = f(x). That is, a € Fyq) and hence

F n Fy(yy is nontrivial. Thus F regularise f(x). O
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Theorem 2.1.4. Let f : (0,J) — (1, K) be a one-one L-slice homomorphism then F

reqularise x € (o, J) if and only if F regularise f(x) € (u, K).

Proof. From proposition 2.1.3 it follows that if F' regularise = € (o, J) then F' regu-
larise f(x) € (i, K). To prove the converse part, suppose that F' regularise f(x). We

have F' n Fy(,y nontrivial . Let s € Fyuy n I

s€ Frwy = pls, f(z)) = f(2)

Thus F regularise x € (o, J). O

Definition 2.1.5. Let F' and G be any two regular filters at = € (o, J). We define
F ~, G, if F and G have the same idle points at x € (o, J). In other words, F' ~, G

if and only if F, n ' = F, nG.

Proposition 2.1.6. Let (0, J) be an L-slice and x € (o, J). Then the relation ~, on

all reqular filters at x is an equivalence relation.

Proof. Since F' ~, F, the relation is reflexive. F ~, G if and only if G ~, F,
hence symmetric. Also, if F' ~, G then FnF, = Gn F, and G ~, H, implies

G n F, = H n F,. Thus the relation is transitive. O

Remark. For each x € (o,J), the regular filters at = is partitioned into equivalence

classes with respect to the set of same idle points each filter generates.
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2.2. Knoty for a filter F

Definition 2.2.1. For a filter ' on the locale L, we define the collection of knot
points of filter F as the set Knotp = {x € (0,J) : F regularises x}.

Note that since the filter F, = L, Knotp is nonempty .
Proposition 2.2.2. If 'S G then Knotp S Knotg.

Proof. If x € Knotrp then F' n F, is nontrivial implies G n F, is also nontrivial.

Therefore x € Knotg. O

Proposition 2.2.3. If F and G be filters on the locale L then we have

Knotpa € Knotrp n Knotg.

Proof. 1f © € Knotpn~g then (F n G) n F, is nontrivial. Therefore there exists 1, #
be (F,nF)n G and hence F, n F is nontrivial. Thus x € Knotp.

Similarly, (F, n F) n G = F n (F, n G) is nontrivial implying that z € Knotg . O

Definition 2.2.4. A subset J' of the L-slice (o, J) is said to be a semislice if o(a, x) €

J' , for x € J and any a € L.

Theorem 2.2.5. For any filter F' on the locale L, Knotg is a semislice of the L-slice
(0, J).

Proof. For x € Knotp, F, n F is nontrivial. Let b € F, n F and a € L, then
o(b,o(a,z)) = o(a,0(b,x)) = o(a,x). Thus b € F,(,, and F regularise o(a,x).

Therefore o(a,z) € Knotp for every a € L. O
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2.3. Associated Filter

Definition 2.3.1. Consider a filter ' on L.

a) Let x € (0,J) be such that F, < F. Then F is called the associated filter of
x € (0,J) and the pair (F,z) is the associated filter element with respect to z.
b)Also, if we impose an additional condition that F, # 1, and F, < F, then such a

filter F' is said to be strongly associated to x.

Remark. From now onwards, the tuple (F,x) would suggest that F' is an associated
filter of the element x € (o, J) and will be addressed as the associated filter element

of z.

Examples 2.3.2. i) Consider the meet L-slice (M, L). Then a filter F is said to be
associated with x, if 1 © € F.

ii)Fy, = L, for 05 € (0,J).Thus the only associated filter of 0, is the locale L.
We have the following observations on (r, L)

Observation. Consider the L-slice (M, L) and x € (o, J) with x <y. For any filter
F on L, if (F,x), then (F,y).

Proof. Since (F,z),t x < F. Also, x <y implies T y € 1 z. Hence 1y < F. O]
Observation. If (F,x) and (G,y) in L-slice (M, L) then (F n G,z v y) .
We now generalise the above results for any L-slice (o, J).

Lemma 2.3.3. For any two filters F,G on locale L and z € (o,J), if (F,x) and
(G, z) then (F n G, x).

Proof. Since F' and G are associated filters of x, we have F, € F and F, < GG. Thus

F, <€ F n G and hence (F n G, x). O
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Lemma 2.3.4. Let F and G be filters on locale L with F' < G. If (F,x) then (G, )

for some x € (o0, J).
Proof. (F,z) implies F, € F. Since F' < G and F, < F', we have (G, z). O
Lemma 2.3.5. Every strongly associated filter of x € (o, J) regularise x.

Proof. Let F be a strongly associated filter of z € (o,J). Then F, is nontrivial and

F, < F. Hence F, = F n F, is nontrivial. O

Definition 2.3.6. For z € (0, J), we define [F' : 2], to be the set of all filters of L

that are associated with z.

Theorem 2.3.7. Let P(L) denote the power set locale of a locale L, then [F : x|y is
a filter on P(L).

Proof. Follows from the lemma 2.3.3 and lemma 2.3.4 [
Proposition 2.3.8. If oy, : (0,J) — (0, J) is one-one and (F,z) then (F,o(b,x)).
Proof. For a € F, 4, we have o(a,0(b,z)) = o(b, x)
ola,o(b,z)) =0(b,z) = o(amb,x)=0c(bx)
= o(b,o(a,x)) = o(b,x)
= op(o(a,z)) = op(x)

= ofa,x) ==z

= ack},

Thus Fg(b’m) c F,cF. ]
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Theorem 2.3.9. Let f: (0,J) — (1, K) be a one-one slice homomorphism and if a

filter F on L is strongly associated to x € (o,J) then F is strongly associated to f(x).

Proof. A filter F on L is strongly associated to x € (o, J) implies F, is nontrivial and

F, € F. Since f is a slice homomorphism, Fy,) is nontrivial. Now,

re Fray = pr, f(z) = f(z)

That is Fy) € F, € F. Thus F is strongly associated to f(x). O

We observe from Theorem 2.3.7 that for each x € (o,.J), the collection of all

associated filters form a filter on the power locale B(L).

2.4. Continuity of L-slice morphisms with respect
to associated filters

This section deals with continuity of L-slice morphisms in terms of associated filters.
Classical topology uses the notion of sequences to define the continuity of functions on
a topological space. On similar lines , we use associated filters to define the continuity

of a slice morphism .

Definition 2.4.1. A slice homomorphism f : (0,J) — (u, K) is said to be semi-

continuous at x € (o, J), if for any filter F' associated to z implies F' is associated
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to f(z). A slice homomorphism is said to be semi-continuous on (o, J), if it is semi-

continuous at every z € (o, J).
Remark. Every slice isomorphism is semi-continuous on (o, .J).
Theorem 2.4.2. Composition of semi-continuous slice morphism is semi-continuous.

Proof. Consider any two semi-continuous slice morphisms f : (o,J) — (i, K) and
g: (uK) — (6, M). Let (F,z) be an associated filter element. Since f is semi-
continous, F' associated to f(x). Also, the semi-continuity of g ensures that F is

associated to g(f(x)). Thus F is associated to (g o f)(x). O

Definition 2.4.3. A slice homomorphism f : (o0,J) — (u, K) is said to be F-
continuous at x € (o,J) if Fy,) < F,. A slice morphism is said to be continuous

on (o, J) if it is continuous at every x € (o, J).

Remark. For the meet slices (m, L) and (1, M ),continous L-slice homomorphism from

f:(m, L) — (m, M) is precisely identity morphisms.
Proposition 2.4.4. Every F-continuous slice morphism is semi-continuous.

Proof. Let f : (0,J) — (i, KK) be F-continuous at some z € (0,J) . ie, Fyg) S F;.
Consider an associated filter element (F,z). Then Fy,, < F, < F implies that

(F, f(x)). Hence f is semi-continous at z € (o, J). O

Theorem 2.4.5. If f : (0,J) — (u, K) is F-continuous and F reqularise f(x) €

(u, K) then F regularise z € (o, J).

Proof. F regularise f(x) implies F' N Fy(; is nontrivial. The F-continuity of f shows

that F,) © F,. Hence F' regularise . O
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Theorem 2.4.6. Composition of two F-continous slice morphisms on (o,J) is F-

continous.

Proof. Consider any two F-continuous slice morphisms f : (o,J) — (i, K) and g :
(1, K) — (6, M), then Fyy € F, and Fy(yz)) S Fy(), for some x € (0, J). Thus go f

is F-continous at z € (o, J). O

We have the following results which are obvious.
Theorem 2.4.7. Let f : (0,J) — (u, K) be bijective L-slice morphism, then f=' :
(u, K) — (o, J) is F-continous.
Theorem 2.4.8. If f : (0,J) — (u, K) is a F-continuous morphism of L-slices and

x is a compact element of (o, J) then f(x) is a compact element of (u, K).

Proof. Let there exist a collection {a, : « € I, for some indexed set I} elements
of the locale L, such that p(uaa, f(z)) = f(x). Then wa, € Fjupy S F, which
implies o(Laq, ) = z. Since x is a compact element of (¢, .J), we can find a finite
sub collection {ay, as,as.....a,} such that o(ua,,z) = x. Thus f(o(ua,,x)) = f(z)

implies u(wa,, f(z)) = f(z), showing that f(z) is a compact element of (u, K). O

2.5. R-A slice

Definition 2.5.1. A L-slice (o, J) is said to be a R-A slice if every regular filter at

x is associated to x.

Example 2.5.2. If (0,J) is an L-slice having the property that for each xz € (o, J),
o, : (M, L) — (0,J) is one-one then (o,J) is a R-A slice.
Theorem 2.5.3. Let f : (0,J) — (u, K) be a slice morphism and (u, K) be a R-A

slice. If F, is nontrivial for some x € (o, J) then f is semi-continuous at x.
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Proof. Let F be associated to x. Then F regularise x. Since f is a slice morphism F
regularises f(x). Also (i, K) is a R-A slice would imply that F' is associated to f(z).

Thus f is semi- continuous at x. O]

Theorem 2.5.4. Let f : (0,J) — (u, K) be a F-continuous L-slice morphism and let
(0,J) be a R- A slice, then (i, K) is also a R-A slice.

Proof. Let F regularise f(z), then Fj,) n F' is nontrivial. Since f is continous at x,
we have Fy,) & F, which impiles I, n F' is nontrivial. Hence F' regularise x and F'
is associated to . Thus Fy,) S F, S F implies that F" associated to f(x). So (i, K)
is also a R-A slice. O

2.6. The Box & of associated filter elements and
stack of filters &,

Definition 2.6.1. a) Let § denote the collection of filters on the locale L. Then the
Box & € § x (0, J) is defined as & = {(F,x) : F is associated to x}. In other words,
G is the collection of all associated filter elements.

b) We define a projection map on the Box S as 7w : & — (0,J) such that n(F,z) = z.

The inverse image 7 !(z) is the collection of all associated filter elements of z.
As a subobject of the box &, we define sub-box.

Definition 2.6.2. &’ is said to be a sub-box of & if

)&’ c6

ii) 7(&") = (o, J)

Example 2.6.3. If we consider &' = {(F,,x);x € (0,J)} then & € & and n(&') =

(0, J)
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We investigate the structure of the box &.

Proposition 2.6.4. If we define a relation <g as (F,z) <g¢ (G,y) if F 2 G and

x <y, then (6, <g) is a join semilattice.

Proof. The relation <g is reflexive follows immediately. Suppose (F,z) <g (G, y) and
(G,y) <g (F,x), then we have F 2 G, G 2 F and = < y,y < x. Thus F = G and
x =y would imply antisymmetry. Now (F,z) <¢ (G,y) and (G,y) <e (H, z) would
give ' 2 G,z < y,and G 2 H,y < z. Hence (F,z) <g (H, z) proves transitivity.
Therefore (S, <g) is a poset. Also the join can be defined as (F,z) ug (G,y) =

(F nG,x v y). Hence (6, <g, ug) is a join semilattice. O

2.7. The stack of filters S,

Definition 2.7.1. For each z € (0, J), 7~ !(z) provides us a stack of filters of L over
(o, J) which are associated with z. The stack of filters at x denoted by &, = {F' €

L:(Fz)enr ()}

Observation. Also by the proposition 2.6.4, the stack of filters at x would be a join

semilattice with bottom element (L, x).

Observation. Algebraically, S, has the structure of a commutative idempotent monoid.
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Some Properties of the map 7
i) Since there can be more than one filter associated to an element z € (o, J), gener-
ally 7 is not one-one.
ii) 7 is a surjective map.
iii) If  is join irreducible compact element, then 7/7~1(x) is injective.
Proof: For any join irreducible and compact element z of (o, J), the filter F, is com-
pletely prime filter. All completely prime filters are maximal. Hence the only proper

filter that is associated to x is Fj.

In the next section we observe that the Box & can be transformed into a join semi-
lattice on which an action of the locale L can be defined and thus modelling it into

an L-slice.

Definition 2.7.2. The map 7 arranges the Box & into stacks of filters &, at z. The

Box can now be viewed as &, ;) = {6, : x € (0, J)}.
Lemma 2.7.3. G, ) is a join semilattice.

Proof. We partially order &, ;) as 6, < 6, if and only if z <y , for z,y € (0, J)
Consequently, <g is a partial order and the join is defined as &, Lz &, = &,,,. Also

Sy, is the bottom element of &, ;) With respect to <g. ]

Thus the Box & is remodelled into the ordered Box &, ). For each z € (o,.J)

the ordered Box &4,y gives the collection of all those associated filters at .
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Theorem 2.7.4. The map X : L x S, 5y — So,yy defined as Ma,S,) = Sy(aq) 15

an action on S, 5y and (A, S, y)) is an L-slice.
Proof. We examine all the properties of L-slice.

i) Maub, &)= Go(auba)
= Go(ax)vo(bz)

= 60-(0,,‘%) l—IIG Ga(b,x)
= AMa, 6,) ug A(b,6,)

i) Ma, &, L 62)= AMa, Gpyy)
= 6a(a,xvy)

= GU(a,x)va(a,y)
= Ma, 6,) ug AMa, S,)

V) Mamb,6,)= Go(amba)

= Ga(a,a(b,x))

= )\(a, 6(,(1;71))

= Aa, \(b,6,))
Similarly Aa m b, &,) = \b, AM(a,S,))
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Thus (A, 8(,,)) is an L-slice. O

The next section deals with some constructive properties of the stack of filters &,.
Note that whenever we study the properties of elements of &,, we look at it as an

associated filter of x rather than as an associated filter element with respect to x.

2.8. Extending the stack &, to a filter on §

For z € (0,J) we observe that any fixed member of the stack of filters &, can be
extended to another filter that is associated to x. Fix F' € &, and a € L. Define a

set (Flay=4{be L:avbe F}.
Theorem 2.8.1. {Fla) is an associated filter of x and consequently (F|a) € &,.

Proof. First we prove that (Fla) is a filter. Let by, by € {(Fl|a), then a v b; € F and
a v by e Fimplies (a v b)) A (av by) € F.

Hence a v (by A bg) € F would imply by A by € (F|a). Thus (F'|a) is a meet semilattice.
Let be{(Flay and b < c¢. Since be (Flay,avbe F. Alsob < cimpliessavb<avec.
Because F' is a filter and a v b € F would imply a v ¢ € F. Thus ¢ € (F|a). Hence
(F|ay is a upperset of L. Also F being a filter ensures us that F' < (F|ay and hence
(Flay € &,. O

Thus any member of the stack G, is expanded to a larger one in the same stack.
Now we extend the stack &, to a filter on §. Fix x € (0,J), G € &, and define a

collection (8,)g ={Fe&,: FnGe&,}.
Theorem 2.8.2. (G,)¢ is a filter on F containing S, .

Proof. First we prove that (S,)¢ is a filter on F.

(&.)¢ is nonempty since Fj, € (S,)¢q-
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Hy, Hy € (6,)g implies H1nG € &, and H nG € &,. Therefore (HynHy) NG € &,
and hence (S,)¢ is a meet semilattice.

Suppose H € (6,)g and H € K. Then F, € Hn G < K n G implies K n G € &,.
Therefore K € (S,)q and hence (&,)¢ is filter on §.

Also for every H € (8,)g , Hn G € &, implies that &, < (&,)¢. O

We call (S,)¢ as the extended stack. We make a few observations on the extended
stack (&,)q
i) (62)r = 6, = (Ga)r,
i) If H < G, then (&,)n < (6,)a
iii) If z € (0,J) and F, = {1.}, then (&,)c = §.

Proposition 2.8.3. For G1,G2 € G,,(6.)c, N (G1)ay, = (62)c1nGs -

Proof. H € (&,)c, N (S.)a, gives HN Gy € &, and H n Gy € G,

Then F, € (H nGy) n (H n Gy) = Hn (G n Gy). Therefore H € (S,)a,na,-
Now, let K € (6,)g,na, then F, € K n (G1 N Gy) = (K nGy) n (K N Gy).

Hence F, € (K nGy) and F, < (K n G3). Consequently, K € (&,)g, N (6)a,. U

Lemma 2.8.4. If § is the collection of all filters on locale L then &, and § are join

semilattices .

Proof. Partially order &, as F' <g, G if and only if FF 2 G . Then G, is a join
semilatice with F' g, G = F' n G. Similarly § can be ordered with <* such that
Fy <* Fy if and only if F7 2 F3, so that § is a join semilattice with F} L' Fy =

Fyn F. [l
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Theorem 2.8.5. The map Fil : &, — § defined as Fil(G) = (&,)g is a join

semilattice homomorphism.

Proof. The above proposition shows that Fil(G, ue, Go) = Fil(Gy) u' Fil(G3).

Thus F'il is a join semilattice homomorphism. O]

Remark. Consequently the extended stack (&,)g, for a fixed G € &,, can also be
viewed as join semilattice homomorphism on &,.

The next section deals with maps called section on Box &.

2.9. Section on the Box &

Definition 2.9.1. Let (o, J') be a subslice of (o, /). The map s : (o, J") — & is said
to be a section if

i) The diagram commutes

T

e (.))

(a.])

where id is the inclusion map.
ii. §:(0,J") = &, defined as 5(z) = 77! (7 0 s)(x) is a slice morphism. Alterna-

tively, s € Hom((0, J'), (A, S(6.1)))

Theorem 2.9.2. Let (o0, W7) and (o, Ws) be two subslices of (o, J). For a Box & over
(0,J) and sy, s2 any two sections on & if we define Wy = {x € Wy n Wy @ §1(z) =
Sa(x)}, then (o, Wy) is also a subslice of (o, J).

36



Proof. Let x1, 19 € W.

S~1(331 \Y IQ) = S~1(I1) \ §1(I2)
= Sg(l‘l) A\ §2(£L’2)

= §2(ZE1 vV l’g)

Therefore, x1 v x5 € Wj.

Suppose, x € Wy and a € L, then

s1(o(a,x)) = Ma,s(x))

Therefore o(a,x) € Wy. Hence (o, W) is a subslice. O
We further investigate the structure of collection of all sections on the Box &.

Definition 2.9.3. Define I'((0, J'), &) to be the set of all sections on the Box &.

Partially order I'((o, J'), &) as s < &' if and only if s(z) <g §'(x),Vz € (0, J').
Theorem 2.9.4. I'((0, J'), &) is a join semilattice with bottom element.

Proof. If s,8' € I'((0,J"), &), then 5 : (0,J") = & and & : (0,J) — S,y are
slice morphisms. The join of two slice morphisms is again a slice morphism.
It remains to prove that s v s’ = § v .

Suppose s(z) = (F,z) and §'(x) = (G, ), then s(x) ug §'(z) = (F n G, z).
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s(x) ue §'(z) = (F n G, x) implies

svs'(z) = 7 Y ((mo(svs)(x))

5(r) = 6, = s'(z). Therefore s v s'(z) = 5(z) v s'(z) implies s v § is a section.
Define 0(z) = (L, z),Yx € (0, J"). Now we prove that 0 is a section on &.

0(z) =7 !((1 0 0)(2)) = &,

0(z v y) =6,y =6, Lg &, = 0(z) v 0(y)

0(0(a,z)) = Gyan) = Ma,&,) = AMa,0(z)). 0 is a slice morphism and thus 0 is
a section on &. Also, 0(x) <g s(z),Vz € (0,J). Therefore I'((o,J), &) is a join

semilattice with bottom element. O

2.10. The Category Batch

This section introduces a new concept called Batch. Batch is based on the Box &

and the projection map 7. We study some of its properties.

Definition 2.10.1. A Batch is a triplet (&, 7, (o,J)), where & is a Box over the
L-slice (o, J) , 7 is the projection of & to (o, .J). For each 7~ !(z) we obtain the stack

of filters of L associated with =, S,.
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Definition 2.10.2. If X = (6,7, (0,J)) and Y = (&, 7', (u, K)) are any two
Batches, then the morphism between the Batches is defined as a pair (¢, f) such
that

i) ¢ : & - & is order preserving

ii) /7 1(z) is a bijection from 7 () to (7')1(f(x))

iii) f: (0,J) = (i, K) is a slice morphism

iv) The following diagram commutes.

(e.))

— WK

Definition 2.10.3. Let B, = (S, 7, (0, J)) and By = (&', 7, (1, K)) be two Batches
and (¢, f) : By — By be the Batch morphism, then we define Kery = {(F,x) :
W(F,2) = (L,0)} and Kerf = {x € (0,.7); f(x) = O}

Ima) denotes the set of image of & under ¢ and I'mf denotes the image of (o, J)
under f.
The composition of two Batch morphisms (11, f1) and (19, f2) between two batches
is defined as (11, f1) © (¥a, fo) = (o 041, fao f1). The next lemma shows that this is

again a Batch morphism.
Lemma 2.10.4. The composition of Batch morphisms is again a Batch morphism.

Proof. Let X = (&y,71,(0,J)),Y = (62,7, (1, K)) and Z = (&3, 73, (7, R)) be any
three Batches. The Batch morphisms from X to Y and Y to Z are (¢4, f1) and

(b9, f2) respectively.
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The definition of Batch morphisms provides the following diagrams

e (o.))

such that my 0 ¢y = f; o7 and

S,

Jﬁ

— > (LK)
T3

T

(. K)

y

Ss

such that w3 0y = f5 0 mo.

lfz

—> R

1 and v are order preserving then so is ¥y 0 1. Also 1y 0 1)1 /77 (2) is a bijection.

Similarly, f; and fy are slice morphisms implies that f; o f; is also a slice morphism.

Moreover,

T3 0 (g 011 )

Thus (12 011, fo o f1)is a Batch morphism from X to Y.

= (m30¢2) 01
= (faom)oth
= fao(moi)
= fao(from)
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Lemma 2.10.5. If Idg is the identity map on a Boxr & defined as Idg(F,x) =
(F,z) and Id, 5y the identity slice morphism, then (Ids, Id s, 5) is the identity Batch
morphism on X = (&, 7, (0, J)).

Proof. First we prove that (Id@,]d(o—’J)) is a Batch morphism. Since Idg is the
identity map on &, it is order preserving. Also, Ids/n~'(z) — n~'(Id(,, s (z)) is
a bijection. Now it remains to prove the commutativity of the following diagram.
(molds)(F,x) =7n(F,z) =2 and (Id, g om)(F,x) = Ide j(x) = .

T

& (a.))

[d@ l l Id(O'J)

€ ———— 2 (@)
i

Therefore the diagram commutes and hence (/ds, Id(,,;)) is a Batch morphism on X.
For any (% f) : X — Y we have ([d67 [d(O',J)) © (1/1, f) = WOIClG, fOId(U,J)) = (?ﬂ, f)
Thus (I/ds, Id(,;)) becomes an identity morphism on X.

]

Theorem 2.10.6. Batch is a category whose objects are Batches, morphisms are
Batch morphisms and the composition of morphisms is the composition of Batch mor-

phisms.

Proof. The above two lemma shows that the collection of Batch morphisms is closed
under composition and (I/ds, Id,s)) is the identity morphism on a Batch.

We prove that the composition of Batch morphisms is associative.
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Let X Y and Z be any three Batches. The Batch morphisms between them are

(U1, f1) : X =Y, (o, f2) 1 Y — Z and

(13, f3) : Z — W. The composition of order

preserving maps as well as slice morphisms are associative . Therefore,

(¥, f3) o [(¥2, f2) © (¥1, f1)]

Thus Batch is a category with objects Batches and morphisims Batch morphisms.

(¥3, f3) © [(¥2 0 ¥, f2 0 f1)]
[s 0 (Y2 091), f3o (f20 f1)]
[(¥3 0 42) 41, (f3 0 f2) © fi]
(V3 04, f30 f2) o (¥, f1)
[(¥3, f3) © (12, f2)] o (¥, f1)

[]

Theorem 2.10.7. Let B, = (6,7, (0,J)) and By = (&', 7, (11, K)) be two Batches

and (1, f) :
and only if (F,x) € Keri.

Proof.

x € Kerf

B — By be the Batch morphism, then for any (F,x) € &,z € Kerf if
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Thus, x € Kerf implies (F,z) € Ker.

For the converse,

(F,x) € Kery = (F,z) = (L,0k)

Consequently, x € Kerf. n

Theorem 2.10.8. Consider the Batches B, = (6,7, (0,J)) and By = (&', 7', (u, K))
and the Batch morphism (1, f) : B1 — Bo. If f is injective, then |Kery| = 1.

Proof. Tf f is one-one then Kerf = {0;} . Hence the result follows from the above

lemma. O

Lemma 2.10.9. For the Batches B, = (&, m,(0,J)) and By = (&', 7', (u, K)) and
the Batch morphism (¢, f) : By — By, '~ H(y) € Ima) if and only if y € Imf.

Proof. Suppose that 7'~'(y) € Imiy. Then (G,y) € 7" *(y) will imply (G,y) =
W(F,x), for some (F,x) € & .That is,

Thus y e Imf.
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For the converse, let y € Imf. Then y = f(x) = (f o m)((F, z)), for some associated
filker F' of x. Therefore y = (7' o )((F,x)) implies ¥((F,z)) = ' '(y). Thus

7' y) € Ima.

Hence any associated filter of y is an element of I'mq) if and only if y € Imf. m

Theorem 2.10.10. Consider the Batches B, = (6,7, (0, J)) and By = (&', 7', (i, K))
and the Batch morphism (¢, f) : By — By. If f: (0,J) = (u, K) is a slice isomor-

phism, then Im) is a sub-box of G.

Proof. Since f is a slice isomorphism, we have Imf = (u, K). Also the above lemma
states that y € (u, K) = Imf if and only if y € 7(Ima). Therefore 7(Imy) = (u, K).
Thus I'm is sub-box of &. O
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Chapter 3

A Quotient slice through the ideals

of L-slice Hom(o, J)

The chapter is mainly concerned with constructive properties of L-slices. We develop
ideals of the form (a : )gom in Hom(o, J). The L-slice J,, the system of contractive
operators with respect to a € L is defined .The congruence relation ~, on (o, J)
defined as = ~, y if and only if (a : *)gom = (@ : Y)Hom aids the development of
quotient slice of (o, J) . Also the ideals (a : x)pgom assist in constructing a quotient
slice of (m, L). For each f € Hom(o,J) and z € (o, J), through the ideals [f : x|, of
L evolve the topological space £ = ((m, L), B ) with basis ®B. Also the collection
of subslices [a : f](s.s) of (0,.J) guarantees the existence of a topology on (o,.J) with
basis B, s). The last section will deal with the topological continuity of maps o} for
every b € L and o, for every = € (o, J). It is already proved that (Hom(o, J), <) with
usual ordering f < g if and only if f(z) < g(x), forms an L-slice. We denote the join
of fand g as f v g and Oy, for the bottom element of Hom(c, J). The operator id

denotes the identity operator on the L-slice Hom(o, J).

45



We define two different types of collection of operators on Hom(o, J).

Definition 3.0.1. Consider the L-slice (o, J). For any a € L and z € (o, J) we define
the set [a : z]gom of expansive-slice operators as [a : z|gom = {f € Hom(o,J) :

o(a, ) < f(z)}.

Remark. All increasing operators, that is, all those slice morphisms which have the
property that x < f(z),Vx € (0, J) will definitely be in the set [a : z]gom . Hence

la : 2] gom includes, but is not limited to, the increasing operators on (o, J).

We investigate the properties of [a : ] mom-
Proposition 3.0.2. [a : ] gom is nonempty and upward closed set of L-slice Hom(o, J).

Proof. It f = id, then id € [a : x]gom. Suppose f € [a : x]gom and f < g , for some
g € Hom(o,J). Since f € [a : Z]gom, we have o(a,z) < f(x). Also f < g implies

f(z) < g(x),Vx e (0,J). Thus g € [a : ] gom. O
Proposition 3.0.3. If a £ b, then [b: x|gom S |a : ] Hom-

Proof. Let f € [b: z]|gom then o(b,z) < f(x). But, a £ b implies o(a,z) < o(b, z).

Thus o(a,z) < o(b,x) < f(z). Hence f € [a: x]gom. O

3.1. The class E,

Fix a € L and collect all the sets of the form [a : #]gom. The set E, = {[a : Z]mom :
x € (0,J)} denotes a system of expansive operators with respect to a € L. The study

on F, yield the following properties for its elements.
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Proposition 3.1.1. [a: y]gom N [a: Z]gom S [a: 2 Vv Y] Hom-

Proof. Let f € [a: ylgom N [a: x]gom then o(a,y) < f(y) and o(a,x) < f(x). Hence
o(a,y)vol(a,x) < f(y)v f(x) implies o(a, x vy) < f(xvy). Thus the slice morphism
fela:zvyluom- O
Proposition 3.1.2. [a: 0(a, )| gom S @ : ] Hom.

Proof. Let f € [a : o(a,z)]|gom then o(a,o(a,x)) < f(o(a,z)). Since f is a slice
morphism and o is an action, we obtain the result. O]

Proposition 3.1.3. For anybe L,[a: x]gom S [a : 0 (b, )] Hom-

Proof. If f € [a : ]gom then proof follows from o(a,o(b,x)) < o(a,z) Vbe L. [

3.2. A well behaved class of operators (a : z)g,, in
Hom(o, J)

Definition 3.2.1. For f € Hom(o,J) we define a subset (a : x)gom of Hom(o, J)
as (a : T)gom = {f € Hom(o,J) : o(a, f(x)) < z} and is called the collection of

contractive - slice operators.

An operator in Hom(o, J) is said to be a decreasing operator if it has the property
that f(z) < x. Hence (a : x)pgom will definitely contain all decreasing operators. A
detailed study of (a : &) gom led us to the fact that this set is more well behaved than
the collection of expansive operators. The structure of the set [a : x|gom Was found
to be just an upper closed set, whereas here we get more richer properties. The ideal

(a: x)gom leads to the construction of a quotient slice of (o, J).

Proposition 3.2.2. (a: z)gom is an ideal of Hom(o, J)
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Proof. 0 : (0,J) — (0, J) defined as 0;(z) =0, Yz € (0,J) belongs to (a : =) gom.
Hence (a : x)gom is nonempty. Let f,g € (a : Z)gom, then o(a, f(z)) < z and
o(a,g(x)) < x. Therefore o(a, f(x) v g(z)) = o(a, f(z)) v o(a, g(x)) < z.

Hence o(a, f v g(x)) < x implies f v g€ (a: 2)gom. Fix any f € (a : ) gom . If there
exists h € Hom(o, J) such that h < f then o(a, h(z)) < o(a, f(z)) < x. Therefore
he(a:x)gom. Also o(a,d(b, f)(x)) = o(a,a(b, f(x))) = a(b,o(a, f(x))) < o(b,z) <
x. That is, 6(b, f) € (a : ) gom- Thus (a : )gom is an ideal of Hom(o, J). O

The ideal (a : ) gom exhibits the following properties.
Proposition 3.2.3. If a £ b then (b: Z)gom S (@ T) gom-

Proof. a £ b implies o(a,z) < o(b,z) . Also for f € (b: z)gom, we have o(b, f(r)) <

x. Therefore o(a, f(z)) < o(b, f(z)) < x would provide f € (a: x)gom- O

Proposition 3.2.4. (a: Z)gom O (a: Y)Hom S (@ TV Y) Hom-

N
<

Proof. Let f € (a : x)gom O (a : Y)mom implies o(a, f(x)) < z and o(a, f(y))

Hence o(a, f(z v y)) < z v y shows that f € (a: 2V y)gom- O
Proposition 3.2.5. (a: 7)gem S (a: 0(b,7))Hom, for be L.

Proof. Forany f € Hom(o,J), we have o(a, f(o(b,z))) = o(a,c(b, f(x))) = a(b,o(a, f(x))).
If f e (a: T)gom, then o(b,o(a, f(z))) < o(b,z). Therefore o(a, f(o(b,x))) <
o(b, ). O

Proposition 3.2.6. (a: 0(b,2))gom S (a M b : x)gom for any be L.

Proof. Let (a: (b, x))gom- Then we obtain the following

o(a, f(o(b,z))) <olbz) <z = o(a,0(, f(x)) <obx)<z
= o(anb, f(x)) <z
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Therefore f € (amb: x)gom-

Proposition 3.2.7. Ifa,be L then (a: x)gom N (b: ) gom = (@ U b Z) gom.

Proof. If f € (a: 2)gom O (b: T)gom then o(aid, f(x)) = o(a, f(x)) vo(b, f(z)) < .

Similarly, if g € (a L b : T) gom then o(a L1 b, g(z)) < x.

olaub g(r)) v = oa,g(@))valbg(r) <z

= o(a,9(x)) <z and o(b,g(x)) <=z

Thus g € (@ : )gom O (b ¢ ) gom. Therefore (a : ) gom N (b @ T)gom =

I)Hom'
Proposition 3.2.8. (01, : 2)gom = Hom(o, J).
Proof. o(0y, f(x)) =0; < x,Vz € (0,J). Thus (01 : ) gom = Hom(o, J).

Proposition 3.2.9. On Hom(o,J), for each x € (0, J) the collection

B, ={(a:2)gom : a € L} forms a basis for a topology.

Proof. Tt follows directly from proposition 3.2.7 and proposition 3.2.8.
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3.3. The L-slice J,

Definition 3.3.1. The collection J, = {(a : ) gom; = € (0, J)} is called the system of

contractive operators with respect to a € L.

On J, we define a binary operation w as (a : ) gom W (@ : Y) Hom = (@ : TV Y) Hom.-
The operation w is commutative and idempotent.
Also (a: @) gomw (@ :07)gom = (a: Vv 05)gom = (@ : ) gom, implies that (a : 07)gom
is an identity element with respect to w. Algebraically, (J,, w) is a commutative

idempotent monoid.
Lemma 3.3.2. (J,, w) is a join semilattice

Proof. Define a partial ordering <., such that (a : 2)gom <o (@ : y)mom if and only if
x < y. Then the join would be defined by (@ : ) gom Ve (@ Y)Hom = (@ TV Y)Hom-

Consequently (J,, w) will be a join semilattice with bottom element (a : 0;)gom. O
Theorem 3.3.3. (A, J,) is an L-slice with action A : L x J, — J, defined as
A, (@ : )rom) = (a: (b, 2)) Hom

Proof.

LA, (a: %) fom Ve (@ Y)Hom)= Ab, (a2 V Y)Hom)

a:o(b,z Vv Y))Hom
a:

=
= (a:0(,7))Hom Ve (@ :0(b,Y))Hom
=\

(b, (a: x)gom) Ve Ab, (@ :Y)Hom)

2)\((), (a : OJ)Hom): (Cl : O'(b, OJ))Hom

= (a : OJ)Hom

20



Similarly we get A(b ¢, (a: ) gom) = A, A(b, (@ : T) gom))

4.
M1z, (a: ) gom) = (a:0(1L,2))Hom
= (a:Z)Hom
and
A0z, (@: 2)gom) = (a:0(0L,2))Hom
= (Cl : OJ)Hom
5.
AMowe,(a:2)gom) = (a:0(buc,))mom

= (a:0(b,x) vo(c,2))Hom
= (a:0(,2)Hom Ve (a:0(¢,2))gom

= A0b,(a:2)gom) Ve Ac (a: ) Hom)

Thus (), J,), the system of contractive operators forms an L-slice.
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3.4. A Quotient slice of (0,J) through the system
of contractive operators J,

On (o, J) we define a relation as x ~, y if and only if (a : Z)gom = (@ : Y)Hom- It
can be easily observed that ~, is an equivalence relation. Now we prove that ~, is a

congruence.
Theorem 3.4.1. (v, J/ ~,) is a quotient slice.

Proof. Let x,y € (0,J) be such that x ~, y . By definition, (a : )gom = (@ : Y) Hom-
Also, (a: 2)gom Ve (a: 2)Hom = (@ Y)Hom V & (@ : 2) Hom implies that (a : zv 2)gom =
(a:yv z2)gom- That is, x v z ~, y v z. We have A(b, (a : Z)gom) = b, (@ : Y) Hom),
for any b€ L. Then (a: 0(b,z))gom = (a : 0(b,y))gom would imply o (b, ) ~, o(b,y).
Therefore ~, is a congruence relation. Thus (v, J/ ~,) becomes a quotient slice with

the action defined as v : L x (0,J)/ ~o— J/ ~, and 7(a, [z]) = [o(a, x)]. O

Theorem 3.4.2. The map ¢, : (v, J/ ~a) = (A, Jo) defined as ¢,([x]) = (a : T)gom

18 a surjective slice morphism.

Proof. 1t is evident from the definition that ¢, is surjective. We prove that it is a

slice morphism.

da([z] v [y]) = ¢ullz v y])
= (a:2VY)om
= (a:2)Hom Ve (@ Y)Hom

= Qba([x]) Vi ¢a([y])
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Thus ¢, preserves joins.

¢a(v(b, [7])) = ¢u([o(b,2)])
= (a:0(b,2))Hom
= A0, (a:2)Hom)

= A, ¢a([2]))

¢, preserves action. Hence ¢, is a slice morphism. O]

Theorem 3.4.3. For each a € L we can define a slice morphism ~4: (o,J) —

(v J/ ~a) as ~o (2) = [2].

Proof.
~a(zvy) = [zvy]
= [z] v [y]
= ~ao (P)V ~a (y)
~a (0(b,z)) = [o(b,x)]
= (b, [z])
= (b, ~a (7))
Therefore ~, is a slice morphism . O
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The ideals (a : ) gom yields a quotient slice of (o, J) and an L-slice on the Hom-
slice Hom(o,J) such that there arises a natural slice morphism between (o, J) and

(A, J,) which makes the diagram below commute.

@) —~a . (@]~

\./"

(4Ja)

Theorem 3.4.4. The map F, : (0,J) — (A, J,) defined as F,(x) = (a : T)pom 1S a

slice morphism and F, = ¢,0 ~,.

Proof. Fy(x~vy)=(a:2V Y gom =(a:2)Hom W (a:Y)gom = Fulr) w F,(y)
F,(o(b,z)) = (a : 0(b,2)mom = A, (a : ®)gom) = A, Fu(x)) Thus F, is a slice
morphism.

Also 940 ~a (1) = da([7]) = (@ 2)rom = Fau(w). O

The ideals (a : ) pgom also allows a quotienting of the locale L, viewed as an L-
slice (m, L). Fix any x € (0, J) and consider the corresponding ideal (a : ) gom of

Hom(o, J). The following lemma gives an equivalence relation on (r, L)

Lemma 3.4.5. The relation R, defined on the L-slice (m, L) as a R, b if and only

if (a:2)gom = (b:2)gom s an equivalence relation.

Proof. The definition of the relation shows that R, is reflexive. Also, whenever a R, b
then (a: 2)gom = (b : )Hgom, implies b R, a That is, R, is symmetric. Also, if
a R, band b R, ¢ then (a : 2)gom = (b : 2)gom and (b : 2)gom = (¢ : ©)gom- Thus
we obtain the transitivity property of R,. Hence R, is an equivalence relation on

(M, L). 0
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Proposition 3.4.6. R, defines a congruence relation on (m, L).

Proof. Let aR,b and ¢ € L. It follows from proposition 3.2.7 that (a ¢ : x)gom =
(@ ) Hom O (€ T)gom = (b2 T)Hom O (¢ T)gom = (b L ¢ ) gom. Hence a ¢ R,
bue.

Now it remains to show that R, is compatible with the action m on (m, L).

If fe(ame: z)gom then

olame, f(z) <z = o(a,o(c f(z)) <z

= o(b,d(c, f)(z)) < x
= o(b,o(c, f(x))) <=z
= obme f(x) <z

= fedmnc:x)gom

Thus we obtain (a M ¢: x)gom S (b ™ ¢ : ) gom. Similarly we can prove that (bme:
T)Hom S (amc : x)gom. Consequently, we observe that (amic: ) gom = (brc : &) gom.-
Hence (m(a,¢) : ) gom = (M(b, ¢) : &) gom implies that R, is a congruence relation on

(m, L). O

Theorem 3.4.7. (mg,, L/R,) is a quotient slice with action Mg, : Lx L/R, — L/R,
defined as mg,(a,[b]) = [a ™ b].

Proof. Follows from the above proposition. n
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Remark. The congruence relation can also be viewed as a map between the two L-
slices (m, L) and (mg,,L/R,) defined as R,(a) = [a]. We propose the following

theorem.
Theorem 3.4.8. R, : (M, L) — (Mg,, L/R.) is an onto slice morphism.
Proof. Proof follows directly from Theorem 3.4.7. O]

The ideals of Hom(o,J) are utilised to construct quotient slices on (rm, L) and
(o, J). Further, we prove that there exists a special slice morphism between the two

quotient slices.

Theorem 3.4.9. The map ¢ : (Mg,,,L/R;) — (v,J/ ~a) defined as ¢([b]) =

[o(b,x)] is a slice morphism.

Proof.
o(la] u[[o]]) = ¢(lawb]) = [o(aw b z)] = [o(a,z) v o(b )]
= lo(a,2)] v [o(b,2)] = o(la]) v o([0])
¢(Mr,(c,[a])) = ¢([cwa]) = [o(cua z)] =[o(c o(a,1))]
= (e [o(a, 2)]) = ~(c, ¢([a]))
Hence ¢ is a slice morphism. O]
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Remark. Summarising the above results : For a fixed a € L and z € (o, J), we have
developed two L-slices and their respective quotient slices. The diagram with L-slices

and the corresponding maps between them commutes.

(0.]) v, (0.))/~a)
Oq o
(n,L) B (Mg, (M, L)/Ry)

3.5. A Prime Ideal on L through the Hom-slice
Hom(o, J)

For each L-slice morphism f on (o, J), we define a prime ideal on L. We study some

of its properties and define a basis for a topology on (o, J).

Definition 3.5.1. Let f be a slice morphism in Hom(o,J) and x € (o,J). Define
the set [f : x|, ={a€ L:o(a, f(x)) < a}. Since 0f € [f : ], shows that the set is

nonempty.
Theorem 3.5.2. The set [f : x| is an ideal of L.

Proof. If a,b € [f : x|, then o(a, f(z)) < x and o(b, f(x)) < z will imply that
olau b, f(z)) < z. Therefore a L be [f : x|, proving that it is a join semilattice.

Also, if b < a and a € [f : x]L, then o(b, f(z)) < o(a, f(z)) < x. Hence be [f : z];
and [f : x]; is a lower set. Any nonempty set which is a lower set and is a join

semilattice is an ideal of the locale L. O
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The above theorem shows that [f : ]z is also an ideal of the meet slice (m, L).

The next theorem establishes the possibility of [f : 2], to be a prime ideal.
Theorem 3.5.3. If x is a prime element of (0, J), then [f : x| is a prime ideal.

Proof. Whenever a m b € [f : x|z, we have o(a m b, f(z)) < 2. Since x is prime,
olamb, f(z)) < x implies either o(a, f(z)) < = or o(b, f(z)) < x. That is, either

a€|f:x]porbe[f:x],. Hence [f: x|, is a prime ideal of L. O
We study the properties of the ideal [f : x| of L.

Proposition 3.5.4. For f,ge Hom(o,J), if f < g, then [g: x|, € [f : x]L for any
x € (o,J).

Proof. If f < g then f(x) < g(x) will give o(a, f(z)) < o(a,g(z)) Ya € L. If
be [g: x|, then (b, g(z)) < x would imply o(b, f(z)) < x. Thus b € [f : z], and

lg:z]o < [f:x]L O

Proposition 3.5.5. For z,y € (0,J) and a fived slice morphism f € Hom(o,J),
[frzlonlfyles[f iz vyl

Proof. Let ae [f : z]pnlf : ylr then o(a, f(xvy)) = o(a, f(x) v f(y)) = o(a, f(2)) v
o(a, f(y)) <z vy. Therefore [f:z|pn|f:ylo S [f:2VvylL. O

Proposition 3.5.6. For the slice morphisms f,g € Hom(o,J) and a fized x € (o, J),

[f:zlonlg:zle=[fvg: z]L

Proof. a € [f : x]p n g : x]r implies o(a, f(z)) < z and o(a, g(x)) < x. Therefore
ola, (f v g)(x)) = ola, f(x) v g(x)) = o(a, f(z)) v o(a,9(x)) < 2 will imply that

aefvg:x]p. Thus [f:z]pn]g:z]o S [f vg:z]L.
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Now for the reverse inequality, let us consider b € [fvg : x]|,. Theno(b, (fvg)(z)) <z
implies that o (b, f(z)) v o(b,g(z)) < x. That is, o(b, f(z)) < x and o(b, g(x)) < z.
Therefore be [f : x|p n[g: x]L. O

Proposition 3.5.7. For any x € (0,J),[Opom : x|p = L
Proof. The property follows from the definition of 0z, . ]

Fix x € (0, J). For each slice morphism f € Hom(o, J) consider the collection of

ideals B, = {[f : z]. : f € Hom(o, J)}.
Theorem 3.5.8. £ = ((m,L),B1) forms a topological space with basis By,.

Proof. The propositions 3.5.6 and 3.5.7 shows that the collection 8 forms a basis

for topology on the L-slice (m, L). O
Remark. Through the L-slice morphisms in Hom(o, J), we have constructed ideals in
Hom(o, J) and on the L-slice (m, L).

Analogous to the above definitions, we try to develop and study the structure of

sets [a : fo.0) in (o, J).

3.6. The Subslice [a: f] ) of (c,J)

The structure of sets (a : ) gom defined on Hom(o, J) and [f : x];, defined on (m, L)
were that of ideals in the respective domains. In contrast, here we obtain a weaker

structure which is of a subslice.

Definition 3.6.1. We define the set [a : f](,s) as a subset of (¢,.J) . For a € L and
feHom(o,J),[a: flon ={x € (0,J): o(a, f(x)) < x}.Since 05 € [a : fl(s.), it is

nonempty.
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Theorem 3.6.2. The set [a : f](,.) is a subslice of (o, J).

Proof. Let z,y € [a : flws then o(a, f(z)) < z and o(a, f(y)) < y. We have
o(a, f(zvy)) = ola, f(z)) v ola, f(y)) <z vy. Thus [a: fle. is a join semilattice.
Letbe Landz € [a: [l Nowola, f(o(b,z))) = o(a,a(b, f(z))) = o(b, o(a, f(x)))
o(b,z) < x. Hence o(b,z) € [a: flio. O

Theorem 3.6.3. For a € L, the collection B, 5y = {[a : fl.) @ f € Hom(o,J)}

forms a basis for a topology on (o, J).

Proof. First we prove that [a : flon N [a : gl = la : f v gle.). Consider
r € [a: flog nla: glen, then o(a, f v g(x)) = o(a, f(x)) v o(a,g(x)) < x.
Therefore z € [a : f v gles) and [a : fl@on N la: gl S [a: f v gle,.. For the
reverse inequality, let us consider y € [a : f v ¢](.). The relation o(a, (f v ¢)(y)) <y
implies that o(a, f(y)) v o(a, g(y)) < y. Therefore o(a, f(y)) <y and o(a, g(y)) < .
Hence y € [a : flo.y N [a: gl(e.7)- Also, [a: Opom](o,sy = (0,J) . Thus the collection

By = {la: fle.s) o f € Hom(o,J)} forms a basis for a topology on (a, J). O

Remark. The collection of ideals 9B, yields a topology on the L-slice Hom(o, J) .

Similarly, through the collection of subslices B, jy on (o, J) and collection of ideals
B, on (m, L) we obtain three topologies on the three different domains involved.
Once topology is defined on a structure we can talk about the continuity of morphisms

defined on the structure. In this regard, we propose the following two theorems.

Theorem 3.6.4. The map v : (M, L) — Hom(o, J) defined as 1(b) = oy, is a contin-

uous slice morphism.

Proof. (bwic) = ope. But, oy e(z) =0(bve,x) =0(b,x) volex)= o) voz).

Therefore ¥(b L ¢) = op.e = () v ¥(c). By definition ¢¥(m(b, ¢)) = opne.
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Also, we have the following equations :

oyme(z) = o(bre )
— o(b,o(c,x))
= o(b,o.(2))
= (b, o) ()

= 0(b,¥(c))(x)

Thus v is a slice morphism. To prove continuity, let us consider an open set

(a:x)gom in Hom(o, J)

Y a2 pom = {beL:1p(b) € (a:a)nom}
= {beL:oye(a:2)mom}
= {beL:o(a,o4(x)) <z}
= {beL:o(a,o(bz)) <z}
= {beL:o(bo,(2)) <z}

= [oa:x]L € B

O

Similarly, the continuity of the slice morphism o, defined on (m, L) is established

in the following theorem
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Theorem 3.6.5. The slice morphism o, : (M, L) — (o, J) defined as 0,(a) = o(a, z)

is continuous for every x € (o, J).

Proof. To prove continuity of o, , consider the open set [a : f]5. of (o, J).

o o flosy = {beL:oub)€la: flomn)
= {beL:obx)ela: flon}
= {beL:ola, f(o(bz))) <o(bz)<ux}
= {beL:o(a,o(b, f(x))) < x}
= {beL:o(bd(a,f)(z) <z}

= [d(a, f): z]L € By,

]

Thus the topologies generated through the ideals on (m, L) and Hom(o, J) makes
the slice morphisms 1 = o, continuous for every b € L. Similarly, the subslices which
are constructed on (o, J) permits the continuity of the slice morphism o, for every

x € (o,J).
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Chapter 4

The Zero sets and Fixed Ideals of
Hom(L,J)

The set C(X) of all real valued continuous functions on a toplogical space X is
extensively studied by Gillman and Jerison in [25] . On similar lines we have tried
to study the special morphism class Hom(L, J). The collection Hom(J, K) of all
L-slice morphisms between the L-slice (o, J) and (i, K) is an L-slice (6, Hom(J, K)).
Also we know that any locale L can be viewed as the meet L-slice (m, L). Consider
the L-slice (3, Hom(L, J)) of all slice morphisms from (m, L) to (o, J). Hom(L,J) is
nonempty through the existence of the slice morphism o, : (m, L) — (o, J) defined as
o.(a) = o(a,z). Thus there is a possibility of extending the study of L-slices through
the morphism class Hom(L, J) . In this chapter we try to develop theories analogous
to that in the ring C'(X). Hence we utilise the same terminologies as in [25] so as
to observe the interrelations between the two theories. Also throughout this chapter

whenever we mention z € (o, J) is nonzero it will imply that x # 0,.
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4.1. The sets Z(L,J) and Coz(L, J)

On studying the properties of Hom(L,.J) , we observe the properties of subsets of
the form {a € (m,L) : f(a) = 0;}. We begin with the definition of zero divisors on

the locale L.

Definition 4.1.1. A locale L is said to have no zero divisors on (o, J) if o(a,x) = 0,

implies either a = 0y, or x = 0;. A locale L is then called a o-domain.
Example 4.1.2. If L is a chain then L is a m-domain.

Definition 4.1.3. The zero set of a slice morphism f € Hom(L,J) is defined as

Z(f)={a€ (m,L): f(a) = 0,}. The collection of all zero sets is denoted as Z (L, J).

Definition 4.1.4. The cozero set is the dual of zero set and is defined as the set
Coz(f) = {a € (m,L) : f(a) # 0;}. The collection of all cozero sets is denoted as

Coz(L, J).

Definition 4.1.5. A slice morphism f € Hom(L,J) is said to be a multiple of

g€ Hom(L,J) if f =(r,g) for some r € L
We investigate a few basic properties of the zero set.

Proposition 4.1.6. If the slice morphism f € Hom(L,J) is a multiple of the slice
morphism g € Hom(L, J) then Z(g) < Z(f).

Proof. If a € Z(g) then g(a) = 0; . Also f(a) = 6(r,g)(a) = o(r,g(a)) = 0;. Thus

Z(g9) € Z(f). 0

Proposition 4.1.7. If f < g then Z(g) < Z(f)

Proof. 1t a € Z(g) then f(a) < g(a) = 0, implies f(a) =0, . O
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The next proposition gives a better understanding of the structure of Z(f) for

fe Hom(L, J)
Proposition 4.1.8. Z(f) is an ideal of the meet L-slice (m, L).

Proof. For a,be Z(f) then f(auwb) = f(a) v f(b) =0, implies a L be Z(f).

If ce Z(f) and r € L then f(m(r,c)) = o(r, f(c)) = o(r,0;) = 0;. Thus rm(r,c) €
Z(f). Also if a € Z(f) and d < a then f(d) < f(a) = 0; implies f(d) = 0;. Thus
de Z(f). Hence Z(f) is an ideal of the meet L-slice (m, L).

Thus Z(L, J) is a collection of ideals of (m, L). O

Remark. 1f o, : J — J is one-one for every a € L then for be Z(f),a — be Z(f).

We investigate the properties of Coz(f), for f € Hom(L,J) and we have the

following observations.

1. If f % Opom, then there exists a € (m, L) such that f(a) # 0;. So, Coz(f) is

non-empty if f # Opom.

2. Ifa,b e Coz(f) then f(a) # 04, f(b) # 0, will imply f(awb) = f(a)v f(b) # 0,.
Thus a L1 b e Coz(f).

3. For ce Coz(f) and a € L, m(a,c) = a m ¢ need not belong to Coz(f).

4. Let ¢ € Coz(f) and a £ b for some b € L. Since f is a slice morphism and

f(a) # 0y implies f(a) < f(b) and f(b) # 0. Therefore b € Coz(f).

Thus from the above observations Coz(f) is an upperset and Coz(L, J) is a collection

of upper sets of (m, L).
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4.2. The subslice Hom*(L, J)

We begin this section by introducing bounded slice morphisms.

Definition 4.2.1. A function f : (m, L) — (o, J) is said to be bounded if there exists

some y, z € (0, J) such that y < f(a) < 2V a€e L.

Example 4.2.2. Fiz x € (0,J), then o, : (m,L) — (0,J) defined as o,(a) = o(a, z)

15 a bounded slice morphism with bounds 0; and x.
The collection of all bounded functions are denoted as Hom*(L, J).
Theorem 4.2.3. Hom*(L, J)is a subslice of Hom(L, J)

Proof. For f,g € Hom*(L,J), we show that f v g€ Hom*(L,J). Let y, z be bounds
for f and m,n be that of g. Then y v m < f(a) v gla) <zvnVaeL. Thus fvyg
is a bounded slice morphism with bounds y v m and z v n. Also if f is bounded,
we can show that d(a, f) is bounded. Let x; and zy be the bounds of f. Then
x1 < f(b) < xy, V b € L implies o(a,z1) < o(a, f(b)) < o(a,x2). Therefore the
relations o(a, z1) < d(a, f)(b) < o(a,x2) ¥ b € L shows that §(a, f) is bounded. Thus
Hom*(L,J) is a subslice of Hom(L, J). O

The theorem below gives the condition when a bounded function in a Hom-slice
Hom(L, J) becomes a bounded function of another Hom-slice. Consider two L-slices

Hom(L,J) and Hom(L, K) . Let t be a slice morphism between these two L-slices .

Theorem 4.2.4. Fvery slice morphism t : Hom(L,J) — Hom(L, K) takes bounded

functions to bounded functions if |Hom(J, K)| > 1 and the diagram below commutes.
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(n,L Hom(],K)

N

(w.K)

Note that tf denotes t(f) and |Hom(J, K)| is the cardinality of the set Hom(J, K)

Proof. Suppose f € Hom*(L, J) then there exists z,y € (o, J) such that z < f(a) <y
V a € L. Subsequently, g(z) < g(f(a)) < g(y) implies g(z) < tf(a) < g(y). Therefore
tf is bounded. |

4.3. The L-slice Z(L,J)

Let Z(L,J) = {Z(f) : f € Hom(L,J)}. For each f € Hom(L,.J) we have already
shown that Z(f) is an ideal of (M, L). Now we look at the structure of the collection

of all zero sets.
Theorem 4.3.1. Z(L, J) is a join semilattice.

Proof. Partially order Z(L, J) as Z(f) <’ Z(g) if and only if Z(g) < Z(f).

Consider a € Z(f) n Z(g) . Accordingly, f(a) = 0, and g(a) = 0, will imply that
(fvg)(a) = f(a)vg(a) =0;. Thusa€ Z(fvg) and Z(f)nZ(g9) < Z(fvg). Simliarly
forbe Z(f v g) we have (f v g)(b) = 0;. Also f(b) v g(b) = 0, implies f(b) = 0, and
g(b) = 0. Therefore be Z(f)n Z(g) implies Z(f v g) = Z(f)nZ(g). Hence Z(L, J)
is closed under finite intersection. Thus Z(L, J) is a join semilattice with join defined
as the intersection of zero sets. Also Z(0pem) = (M, L). Consequently, we obtain that

(Z(L,J),<’) is a join semilatttice with bottom element Z(0popm ). O
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Theorem 4.3.2. The map \ : L x Z(L,J) — Z(L,J) defined as \a, Z(f))
Z(0(a, f)) is an action on Z(L,J) and (X, Z(L, J)) is an L-slice.

Proof. We prove all the axioms for A to be an action on Z(L, J).

i) Ma, Z(f) 0 Z(9))= Ma, Z(f v 9))
= Z(6(a, f v g))
= Z(8(a, f) v 6(a, g))
= Z(0(a, f)) n Z(5(a, 9))
= Ma, Z(f)) 0 Ma, Z(9))-

i) A(a, Z(0hom))= Z(6(a, Opom))
= Z(O}wm), VYa e L.

iii) Aa b, Z(f))= Z(8(a b, f)).
And Ma, Ab, Z(f)))= Ma, Z(6(b, f))
= Z(5(a,5(b, f)))
= Z(8(anb, f)).
Similarly A(b, \(a, Z(f))) = Z(6(a 1 b, f)).
Thus Aa nb, Z(f)) = Ma, Ab, Z(f))) = Ab, Aa, Z(f)))-

iv) Az, Z(f)) = Z(6(1, f)) = Z(f) and
MOz, Z(f)) = Z(6(0L, f)) = Z(Opom) for all f € Hom(L,J).

v) Ma, Z(f)) n A, Z(f))= Z(3(a, f)) n Z(5(b, f))
(0(a, f) v o(b, f))
(6(a b, f))

Mawb, Z(f)).

A
A

Thus (A, Z(L, J)) is a L-slice.
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Remark. We may also view Z(L,J) as the image set of an onto slice morphism Z.
The map Z : (0, Hom(L,J)) — (N, Z(L,J)) is defined as Z(f) = Z(f) .It is a
slice morphism because Z(f v g) = Z(f v g) = Z(f) n Z(g) = Z(f) n Z(g) and
Z(0(a, f)) = Ma, Z(f)) = Ma, Z(f)). Also the kernel of Z is {0y}

Definition 4.3.3. A slice morphism f € Hom(L,J) is called a unit of Hom(L, J) if
Z(f) = {0}

Example 4.3.4. Fix a nonzero x € (0,J). Define o, : (M, L) — (0,J) as 0,(01) = 0,
and o.(a) = x, for every a # 0p. Then o, is a slice morphism which is a unit of

Hom(L,J).

Definition 4.3.5. The set of all units of Hom(L, J) is called Units.

Lemma 4.3.6. Units is a join semilattice.

Proof. 1f f,g € Units then Z(f)n Z(g) = Z(f v g) = {0.}. Thus f v g is a unit. O
Lemma 4.3.7. If g is a unit and g < f then f e Units.

Proof. g < f implies Z(f) < Z(g). Since g is a unit Z(g) = {0.} will imply that
Z(f) =1{0.}. Thus f is a unit. O

Remark. Units is an upper set.

Next we try to endow a topology on the locale L. Analogous to the topology we
have developed in Hom(o, J), we try to construct a topology on (m, L) through the
zero sets of the L-slice Hom(L, J).For each slice morphism f in Hom(L, J) we obtain

a collection of ideals on the locale L. and study the topology so obtained.
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4.4. The ideal {f : z); and the Sierpinski topology

Definition 4.4.1. Let f be a slice morphism such that f € Hom(L, J) and x € (o, J)
then the set (f : x), ={re L: f(r) < x}.

Note that the zero set of f is always a subset of {f : z).
Theorem 4.4.2. (f : x);, is an ideal of (M, L).

Proof. 0r, € {f : x), for every f and for every z. Hence it is nonempty. Let r,s €
{f :x)p. Then f(r) < z and f(s) < x implies f(rus) < z. Thusruse{f: ).
If re{f:x),and b e (m, L) then f(n(b,r)) = o(b, f(r)) < o(b,x) < x.Therefore,
m(b,r) € {f : xyp. Alsoif a € {f : ), and b E a then clearly b € {f : x);. Hence
{f :x)p is an ideal of (M, L). O

Properties of the ideal {f : =),

Property 1. If f is surjective then for every y € (o, J) there exists a € (M, L) such

that f(a) = y. Then | a < {f:y)r.
Property 2. If f < g then (f : 2y, 2 (g : z)r.
Property 3. If x <y then (f 1 2), € {f : y)r.
Property 4. (Opm : ), = L = {0, : z)1.
Property 5. (f: 0,5, = Z(f).

Proof. If r € {f : 05y then f(r) = 0, implies r € Z(f). Also Z(f) is always a subset
of {f : x)y, for every z € (0,J). Thus {f : 0,)L = Z(f). O
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Property 6. (f ), n{f:yyr<={f:xVvyrL.

Proof. It re{(f:xy, n{f :yy, then f(r) <z and f(r) <y will imply f(r) <z v y.

Thus {f:axyp n{f:ypr<{f:xvyr. O
Property 7. {(f :x)ypn{g:ax)yp ={f v g:z)L.

Proof. It re (f :x), n{g: xy, then f(r) <z and g(r) < z shows that f v g(r) < z.
Therefore (f : x),n{(g:2), € {fvg:x),. Alsoif se (f vg:x), then fvyg(s) <z

implies f(s) <z and g(s) <. Thus (f :x)yp n{g:x)p ={f v g:ax)L. O

Definition 4.4.3. Consider the collection B¢, = {{f : x)r : f € Hom(L, J)}.
The property 4 and property 7 shows that the collection %Eﬁm L forms a basis for a

topology on (M, L).

Also each open set of the topology so generated contains a zero set.In particu-
lar, for the collection ’B(()j‘ = 0L f e Hom(L,J)} the zero sets of slice

morphisms from (m, L) to (o, J) forms a basis for a topology on (m, L).

Proposition 4.4.4. If every f # Opom is a unit then the topology generated by %[(); L)

1s Sierpinski topology.

Proof. The property 4 shows that (Opem : 2y, = L . If 2 = 0, then (Opop, : 05y = L.
Also , since every slice morphism f € Hom(L,J) is a unit we have Z(f) = {0.}.

The definition of %?ﬂ‘ L) shows that the topology so generated by ‘B?; ) will be

To, = {Lv {OL}va}' L]
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4.5. Ideals and Z-filter of Hom(L,J)

Hom(L, J) is an L-slice and an ideal of Hom(L, J) can be defined accordingly.

Definition 4.5.1. Anideal I in Hom(L, J) is a set such that it satisfies the following
conditions.

i) f,ge I implies fvgel

ii) If f el then é(r, f) el

iii) If feland h < f then he .

Note that an ideal will always mean a proper ideal that is, I # {Opom}

Definition 4.5.2. An ideal I is said to be prime ideal if §(r m's, f) € I implies either
d(r,f)elord(s, f)el.

Remark. In the theory of locales, filters are defined as a generalisation of the concept
of filters in a topological space. Filters are not defined in the usual setting of an
L-slice. When the locale L is viewed as an L-slice there arises the problem of defining
a filter in terms of the action involved. Here we define the notion of Z-filter in terms

of the zero sets of the L-slice Hom(L, J).

Definition 4.5.3. A nonempty subfamily F of Z(L,J) is called Z-filter on (m, L)
provided

i) {0} ¢ F

i) Z(f), Z(g) € F implies Z(f) n Z(g) € F.

i) Z(f) e F and Z(f) < Z(g) then Z(g) € F.

Remark. Z(f) is nonempty for every f € Hom(L, J). Also Z(0pem) = L implies every

Z-filter contains L.
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Note that a filter F' on L will denote the usual order theoretic filter on L. We have

the following theorem on Z-filters.

Theorem 4.5.4. The intersection of any filter F' on L with Z(L,J) is a Z-filter on
(M, L).

Proof. We have already shown that L belongs to every Z-filter. Thus F'n Z(L, J) is
nonempty. Consider the set Zp = {F n Z(f) : Z(f) € Z(Hom(L, J))}. By the above
observation each set belonging to Zg is nonempty. Let F'n Z(f),F n Z(g) € Zp.
Then (F ~ Z(f)) 0 (F ~ 2(g)) = F n (Z(f) ~ Z()) = F o (Z(f v g)). Therefore
(F'nZ(f)) n (FnZ(g) € Zp. O

Analogous to Z-filters we introduce two new terminologies Z-ideals and strong

Z-ideal.

Definition 4.5.5. An ideal I of Hom(L, J) is said to be a Z-ideal if Z(f) € Z|I]
then f e I.

Definition 4.5.6. An ideal I of Hom(L, J) is said to be a strong Z-ideal if f € I and

Z(f) € Z(g) then g < f. Consequently, g € I.
We now study the relationship between strong Z-ideals and Z-filters.

Theorem 4.5.7. Let F be a Z-filter on L. The sub-family Z|F| of Hom(L,J)
defined as Z<[F| = {f € Hom(L,J) : Z(f) € F} is an ideal in Hom(L, J).

Proof. Let f,g € Z<|F] then Z(f) € F,Z(g) € F implies Z(f)nZ(g) = Z(fvyg) € F.
Therefore f v g € Z<[F] . Hence Z<[F] is a join semilattice. Let f e Z<[F]|. We
know that o(r, f) < f implies Z(f) < Z(d(r, f)). Since F is Z-filter Z(d(r, f)) € F
and thus 0(r, f) € Z<[F]. Also whenever g < f, Z(f) € Z(g) and F being a Z-filter
guarantees that g € Z<[F|. Hence Z[F] is an ideal of Hom(L, J). O
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Remark. The converse of the theorem need not be true. That is, if I is an ideal of
Hom(L,J) then Z[I| = {Z(f) : f € I} is not necessarily a Z-filter. Z|I] will be a set

which has the finite intersection property.

Theorem 4.5.8. If I is a strong Z-ideal of Hom(L,J) then Z[I] is a Z-filter on
(m, L).
Proof. Z[I] # {0.}. For Z(f),Z(g) € Z[I], Z(f v g) = Z(f) n Z(g) € Z[I]. Also if

Z(f) e Z|I] and Z(g) € Z(L,J) such that Z(f) < Z(g) then I being strong Z-ideal
shows that g € I. Therefore Z(g) € Z[I]. Thus Z|I] is a Z-filter. O

Remark. If for some Z-filter F, Z|F] is a strong Z-ideal,then Z|Z[F]]| = F.

We examine the change in the structure of Z [F] when F is given an additional
condition. Let us consider Z< [F] as the image of the map Z<. Let us denote the
collection of all Z-filters as Z and the collection of all ideals in Hom(L,J) as I . The

map £ is a map from Z to I.
Definition 4.5.9. A maximal Z-filter is called Z-ultra filter on (m, L).

Theorem 4.5.10. If U is an Z-ultra filter on (M, L) , then Z[U] is a mazimal

ideal in Hom(L, J).

Proof. We know that Z<[U] is an ideal in Hom(L,J). It remains to show that
the map Z< : Z — I preserves inclusion. Let F and G be two Z-filters such that
F < G. We show that Z<(F) € Z<(G). The set Z<[F] is an ideal of Hom(L, J).
If fe Z<|F] then Z(f) € F will imply Z(f) € G. Therefore Z=(F) € Z(G) and
thus Z< preseves inclusion. Hence if U is an Z-ultra filter then Z* [U] is a maximal

ideal. O

The next theorem gives a characterisation for Z-ultra filter.
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Theorem 4.5.11. Let U be an Z-ultra filter on (M, L). If a zero set Z has nontrivial

intersection with every member of the ultra filter U then Z € U.

Proof. Since U u {Z} has the finite intersection property, U U {Z} generates a Z-filter.
Now this Z-filter contains ¢/ and U being maximal the Z-filter so generated must be

U itself. Therefore, Z € U. m

Example 4.5.12. Let a € (m,L) and [ = {f € Hom(L,J) :| a € Z(f)}, then I is

an Z-ideal.

Proof. Tt can be easily shown that [ is an ideal. To prove that it is Z-ideal, let us
consider f € I and any g € Hom(L, J) such that Z(f) = Z(g). Then | a € Z(f) =

Z(g) implies g € I. O
Lemma 4.5.13. Let I and J be any two Z-ideals, then Z[I n J]| = Z[I] n Z|[J].

Proof. Since I and J are ideals, sois I nJ. Also Z[I nJ| ={Z(f): f e I nJ}. Then
Z(f)e Z[I] and Z(f) € Z[J]. Hence Z[I n J| < Z[I] n Z[J].

Let Z(g) € Z[I] n Z[J]. Then I and J being Z-ideals imply that g € I and g € J.
Therefore Z(g) € Z[I n J]|. Thus Z[I n J] = Z[I] n Z|J]. O

Theorem 4.5.14. The intersection of any two Z-ideals is a Z-ideal.

Proof. Let I and J be any two Z-ideals. Let Z(f) € Z[I nJ| = Z[I]| n Z[J]. Since T
and J are Z-ideals Z(f) € Z[I] and Z(f) € Z|[J] shows that f € I and f € J. Hence
felnl. O

Proposition 4.5.15. Let S be a subset of a locale L. The family of all functions in

Hom(L, J) such that f(S) = {0,} is a Z-ideal.
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Proof. I ={fe Hom(L,J): f(s)=0,,Yse S}. Forany f € I, we have S € Z(f). If
fyge I then (fvg)(s) = f(s)vg(s)=0,,YseS. Therefore fvgel. Alsoif fel
and h < f then S < Z(f) < Z(h) implies h e I. For f e I,S < Z(f) < Z(6(r, [))
implies (r, f) € I. Thus [ is an ideal of Hom(L,J). Consider g € Hom(L,J)
such that Z(f) = Z(g), for some f € I. Then S € Z(f) = Z(g).Thus g € I and

consequently [ is a Z-ideal . O]

Theorem 4.5.16. Let I be any ideal in Hom(L, J) that contains a prime ideal. If
there exists a g € Hom(L, J) such that 6(r m's,g9) = Opom then either 6(r,g) € I or
d(s,g)el.

Proof. Let P be the prime ideal contained in I . Let g be such that there exists
r,s € (M, L) with (r 11 5,9) = Opom - Since P is a prime ideal §(r m's,g) = Ogom € P

implies either (r, g) € P or §(s,g) € P. Hence §(r,g) € I or 6(s,g) € 1. O

4.6. Fixed Ideals of Hom(L,J)

For any ideal I of Hom(L, J)define (Z[I] = {Z(f) : f € I}. For any slice morphism
f e Hom(L,J), Z(f) always contains {0} and hence nonempty. Whenever we say
that a set involving zero sets is nontrivial, it would imply that the set contains an
element other than 0z.In the first chapter we had introduced regular filters on the

locale L. In a similar manner we give a definition of ideals on Hom(L, J).

Definition 4.6.1. An ideal I is said to be fixed if (| Z[I] is nontrivial. Also, if
(N Z[I] = {0.} then I is said to be free.

Obviously the ideal I = {0y} is fixed. Also any ideal I is a free ideal if and only

if for every a € (m, L) there is a slice morphism in I such that it does not vanish at a.
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Note that in [25] Gillmann and Jerrison defines fixed ideal as that ideal for which
() Z|I] is nonempty. But in our case this arises naturally for every ideal in the L-slice
Hom(L,J). Every zero set contains 0, and hence any intersection of zero sets is
nonempty. Similar is the case of free ideal. Thus the definitions in the background of

L-slices differ and we explore the various results associated with it.

Proposition 4.6.2. If Z(f) is nontrivial for some f € Hom(L, J) then the principal
ideal | f is fived.

Proof. Yor every g €| f,Z(f) < Z(g). Let a(s 01) € Z(f) then a € Z(g) for every
g€l f.Thus a e (Z[| f] and consequently | f is fixed. ]

Remark. Suppose that the ideal I is free. If there exists f € I such that Z(f) is
nontrivial then by the above proposition | f is fixed. Thus every free ideal contains
a fixed ideal. However, the converse is not true. If I is a fixed ideal then [ Z[I] is

nontrivial and hence it will never contain a free ideal.

Example 4.6.3. Consider a nonempty set H of the L-slice (m, L). Also let H # {0}.
We have already shown that I = {f € Hom(L,J) : f[H] = {0;}} is an Z-ideal in
Hom(L,J). Obviously, I is a fized ideal.

Proposition 4.6.4. The intersection of any two fized ideals is also a fixed ideal.

Proof. Let I and J be any two fixed ideals. We have that I n J is also an ideal.
Let (Y Z[I] = A, where A is nonempty and A < (m,L). For every f € I and
a € A, f(a) = 0;. Similarly for the fixed ideal J there exists a nonempty set B <
(m, L) such thatg(b) = 0, for every ge J and be B. If he I nJ then h(a) = 0, and
h(b) = 0, for every a € Aand b e B .Thus AuB < Z(h) for every h € I n.J.Therefore
I nJis a fixed ideal. O
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Note that the above proposition is not true in the case of free ideals. But we have

the following proposition concerning maximal ideals and free ideals.

Proposition 4.6.5. Let J be any free ideal then the maximal ideal containing J is

also a free ideal.

Proof. Let M be the maximal ideal containing.J. Since J is a free ideal we have
N Z[J] = {0.}. Suppose that a # 0; € (Z[M]. Then f(a) = 0;,Yf € M and
J < M shows that g(a) = 0;,Yg € J.But J is a free ideal .Thus we arrive at a

contradiction. Hence M is also a free ideal. O

4.7. The fixed ideal M, of Hom(L, J)

Definition 4.7.1. For each p in the L-slice (m, L) , we define a subset of Hom(L, J)
as M, = {f e Hom(L,J) : f(p) = 0;}. In other words, f € M, if and only if p € Z(f).

Remark. The set M, is the set of all those functions that vanish at p.Thus whenever
p belongs to the zero set of a slice morphism f it will belong to the set M,. Hence

the zero sets and the sets M, are related to each other.

We investigate the structure and properties of the set M,. The previous section
on zero sets have shown that the zero set of a slice morphism is an ideal. Similarly

the next theorem shows that for each p € (m, L) the set M, is an ideal of Hom(L, J)
Theorem 4.7.2. The set M, is an ideal of Hom(L, J) for every p e (r, L),

Proof. 1f f,g € M, then f v g(p) = f(p) v g(p) = 0. Therefore f v g € M,,.
Also if h < f then h(p) = 0, and d(a, f)(p) = o(a, f(p)) = 0, shows that M, is an
ideal of Hom(L, J). O
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Proposition 4.7.3. If L is a o - domain then M, is a prime ideal for every p € (m, L).

Proof. If §(am b, f) € M, then §(a m b, f)(p) = o(am b, f(p)) = o(a,o(b, f(p)) = 0,.
Since L is a ¢ - domain, either a = 0y or o(b, f(p)) = 0;. That is, either we have

o(a, f(p)) =0y or o(b, f(p)) = 0;. Therefore either §(a, f) € M, or §(b, f) e M,. [

Proposition 4.7.4. The ideal M, exhibits the following properties
i)If p E q then M, < M,

i) My, My = M,

iii) My, = Hom(L,J)

iv)For p # 0r, M, is a fized ideal.

Proof. 1) Let f € M,. Since f is a slice morphism f(p) < f(¢) = 0, implies f(p) = 0,.
Thereforef € M,.

ii) If f € M, n M,, then f(puq) = f(p) v f(¢) = 0;. Therefore f € M, , and
M, M, < M,,,. Let g € M, . Then g(puq) = g(p) v g(g) = 0, implies that
g(p) =0, and g(¢) = 0;.Thus g € M, n M,. Consequently, M, n M, = M,_,.

iii) f(0,) = 0, for every f € Hom(L,J). Hence , My, = Hom(L, J).

iv)Let p # 0. From the definition of the ideal M, it follows p € (| Z[M,].Thus M,
is fixed. [l

The similarity in the properties of fixed ideals M, of Hom(L, J) and the zero sets
(m, L) are illustrated by i) and ii) of the above proposition.
The next theorem gives more insight into the relationship between the zero sets

and fixed ideal M,,.

Theorem 4.7.5. i)If M, < M,, then | (Z|M,] |= 3
ii) M, is a strong Z-ideal.
iii) Z| M, is Z-filter.
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Proof. 1) M, < M, shows that to every f € M,, the corresponding zero set Z(f)
contains the set {0z, p, ¢}. Thus | (Z[M,] |= 3.

ii) Let f € M, and Z(f) < Z(g). Therefore p € Z(g) and hence g € M,.Thus M, is
strong Z-ideal.

iii) Follows from theorem 4.5.8 O

In the previous section we have developed topology which contains zero sets as
open sets. Here on similar lines, we can develop a topology for which the fixed ideals

M, will form a basis .

Theorem 4.7.6. The collection M = {M, : p e (m, L)} forms a basis for a topology
on Hom(L, J).

Proof. The proposition 4.7.4 guarantees the existence of such a basis and we hence

the theorem. O

Remark. Consider the open set {f : 0;), belonging to the basis %?i,L)’ For any r in

(m, L), re{f:0;), implies that f € M, , the open set in 9.
We show that 91 is a join semilattice and eventually construct an L-slice on 901 .

Lemma 4.7.7. M is a join semilattice.

Proof. Partially order the collection 9 as M, < M, if and only if M, 2 M,. The
join is then defined as M, v M, = M, n M, = M,,. Also, My, = Hom(L, J). Thus

M is a join semilattice with bottom element My, . O
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Theorem 4.7.8. The map =X : L x M — M defined as R(a, M,) = M-(qp) is an

action on M and consequently (=, M) is an L-slice.

Proof.

=M

n(a,p) u m(a,q)
= Moap) ¥ Mrag)
= =(a, M,) » ®(a, M,), for all a € L and M, M, € M.

2. R(a,Moy,) = Mn(a0,) = My, forall a e L.

3. For all a,be L and M, e M, ®(a 11 b, Mp)= M (arb,p)

|
<

r(a,m(b,p))
= ~(a, Moo )
= ~(a, ~(b, M,)).
Also, ®(a m b, M,)) = ®(b, ®(a, M,)).

4. (1., M,) = M, p) = M, and ~(0p, M,) = Mo, p) = My, for all M, e M

5. ~aw b, Mp) = Mrauep)= Mn(ap) u nvp)
= Mn(ap) ¥ Map)
= =(a, M,) » ®(b, M,), for all a,be L and M, € M.

Thus = is an action of locale L on 9t and (&,9) is an L-slice. O

Now we may associate to each a € (m, L) an Z-filter in Z(L, J) through a slice

morphism.
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Theorem 4.7.9. The map p : (M, L) — (R, M) defined as p(a) = M, is a slice

morphism.

Proof. p(a ub) = My = My x My = p(a) » p(b) for every a,b € (m, L). Thus p
preserves join. Also pu(mi(a,r)) = Mn, = ®(a, M,) = ®(a, p(r)), for all r € (M, L).

Therefore it preserves action. Hence p is a slice morphism. O

Let Z — Fil denote the collection of all Z-filters on the locale L. Define a map
on M as Z : M — Z — Fil is the natural map that takes each M, € 9 to the
corresponding Z-Filter , Z[M,]. The composition Zou : (m, L) — Z — Fil takes each
element r € (m, L) to the Z-Filter Z[M,].
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Chapter 5

Zariski topology on L-slices

Modules are the action of a ring on a group. The postulates for Modules and L-slices
are somewhat similar. The algebraic properties of L-slices prompts us to elaborate
the study of L-slices in the direction of Modules. In [59] L-slices and TopW-Modules
are found to be related. This resulted in observing the L-slice (o, J) as a module.
We have tried to extend the idea of Zariski topology on modules to L-slices. Given
a locale L and a L-slice (o, J), for m € (0, J) and r € L, we have constructed (o, J)
ideals [r — m],5y = {n € (0,J) : o(r,n) < m}. Their properties and characteristics
are studied. Similarly for a given L-slice (o, J) and n,m € (o, J), we examine the
properties of L-ideals [n — m], = {r € (0, J) : o(r,n) < m}. The notion of L-prime
elements on (o, J) and their properties are discussed. The collection of L-prime
elements is defined as Spec(c, J) and the possibility of existence of Zariski topology

on it is examined.
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5.1. Implicative Ideals of L

In this section we define sets on the locale L which are found to be ideals called
implicative ideals.
Let L be a locale and (o, J) be an L - slice with bottom element 0;. For n,l € (o, J),

define a set [l - n|p, ={re L:o(rl) < n}.
Proposition 5.1.1. Forn,l € (0,J), [l = n]; is an ideal of L.

Proof. We know that 0(0.,1) <n V¥V le (0,J). Hence [l — n]. is nonempty.
Let a,be [l — n|r. Then o(a,l) < n and o(b,1) < nimplies o(avb,l) < n. Therefore
avbe [l > n]p. Ifce Land ¢ < atheno(c,l) < o(a,l) < nimplies that c € [l — n]y.

Hence [l — n] is an ideal of L. O

Definition 5.1.2. For n,l € (0, J), the ideal [ — n]|,, is called the implicative ideal

of the locale L.

Proposition 5.1.3. i) If n,l € (0,J) and n <[ then [x > n|, S [z = ]y Vx €
(0, )
it) If n,l,k € (0,J) and n <1 then [l - k], € [n — k]L.

Proof. i) If r € [x — n] then o(r,z) < n < [ implies r € [z — [];. Therefore
|t = n|p S|z —1]L Yae (o).
ii) s € [ = k] = o(s,]) < k. Since n < l,0(s,n) < o(s,l) < k. Therefore

s€[n—k]p. Thus [l - k], < [n — k] O

Proposition 5.1.4. Forn,l € (o,J), [ > klon[n >kl =[l vn—Ek]L.
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Proof. Let re [l = k] n[n — k]

rell - klpnn—kl, < o(rl)<kando(r,n) <k
< o(rl)vo(r,n) <k
< o(rlvn) <k

< rellvn—k]g
Therefore [l > k]lpn[n—klp=[l vn— k] O

Similarly we obtain the following proposition.

Proposition 5.1.5. Forn,l,ke (0,J), [k >l n [k —>n]L=[k—>1vn]L.

5.2. Implicative Ideals of (o, J)
Let n e (0,J) and r € L then we define a set [rr — n],.5) = {l € (0,J]) : o(r,1) < n}.
Proposition 5.2.1. Forre L andn € (0,J), [r — nls is an ideal of (o, J).

Proof. 05 € [r — n](, and hence it is nonempty.Let I,m € [r — n]. then

o(r,l) < n and o(r,m) < n implies o(r,l v m) < n. Hence [ v m € [r — n], 5.

]
Also, if < [ for some x € (0, J) then o(r,z) < o(r,l) < n. Thus z € [r — n],.).
If € [r - n]ey) and a € L then o(r,o(a,z)) = o(a,o(r,z)) < o(r,z) < n.

Therefore [ — n](,,s) is an ideal of (o, J). O

Definition 5.2.2. The ideal [r — n], ) is called the implicative ideal of (o, J).
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The following properties of implicative ideals of (¢, J) can be easily verified.

Proposition 5.2.3. i) Forr,se L, ifr < s, then [r — n]w,5) 2 [s = 1]
i) For m,n € (0,J), n <m implies [r — n].n S [r — m]©,1)

ii1) [ — 1l U [r — m]en S [r—nvmlen

Lemma 5.2.4. Letne€ (0,J) andr,s€ L
Z) [OL - n](a-’J) = (U, J)
i) (1, = n]e,) =l n

i) [r = n]o,n O [s = n)en =[rus—nle., wherer,se L.

Proof. i, ii follows from definitions. To prove iii , let I € [r — n].pn N [s = n]6.)
then o(r,1) < n and o(s,l) <n implies o(r L s,1) <n. Hence l € [rus — n],s) and

[r = 0]y N[5 = 1)@, S [1 15 = n]e,s). Consider m e [r s — n]e,. ). Then

melrus—nles = o(rus,m)<n
= o(r,m)vo(s,m)<n
= o(r,m) <nand o(s,m) <n

= me[r—nlenl[s—nley

Thus [r — n]e.n 0 [s = 1] 2 [rus = n]e.n.

Hence [ — 1] 0 [s = 1] = [r us — n]en-

The following theorem is obvious consequence of the above lemma.

Theorem 5.2.5. The collection {[r — n],y) : n € (0,J),r € L} forms a basis for a

topology on the L-slice (o, J).
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5.3. Ideal Element of (o,C)

In this section we introduce the concept of L -component (o,C). We construct a
L-slice over a sup lattice. A complete L -slice is called a L -component, that is, it is
the action of a locale on a sup lattice. Further, we define the action of an ideal on

x € (0,C) and ideal elements of (o, C).

Definition 5.3.1. Let L be a locale and C' be a sup lattice with bottom element O¢
and top element 1. The L -component (o, C') is the action of L on C' which is defined
as a map o : L x C — (C such that it satisfies the following conditions in addition to
the definition of L-slice

i) o(a, \/ ;) = \/ o(a, z;) for {x;}icr € (0,C), for some indexed set I

ii) o(l ], @i, ) =V, 0(a;, ) for {a;}ier € L, for some indexed set I.
Example 5.3.2. (m, L) is an L-component.

Definition 5.3.3. Let [ be an ideal of the locale L. For z € (o,C') we define the

action of I on x as o(I,7) = \/{vF_,0(a;,x) : k€ N,a; € I} and is denoted as Ix.

Definition 5.3.4. Let I be an ideal of the locale L and n € (0,C). The element

[n:1]=\V{zre(o,C): Ir <n} of (0,C) is called an ideal element of (o,C).
Properties of ideal elements

Proposition 5.3.5. Let (0,C) be a L- component and I be an ideal of a locale L
then for every n € (o,C')

i)n<|n:I]

i) Iln : I] < n.
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Proof. 1) We have

o(a;,n) <n VYa;el = v o(a,n)<n
= \/{viio(a,z): ke N aje I} <

= In<n

Therefore n < [n: I].
ii) Let [n: I] =m and {z € (0,C) : Ix < n} = X so that we have \/:L‘ =m

reX
For any a € I,0(a,m) = of \/3: \/J(a, x). Therefore o(a,z) < Iz < n implies
zeX reX
\/0 a,z) < n so that o(a, m) < n. Thus for every a; € I,

o(a;,m)<n = \/lea(ai,m) n
= \/{\/l 10(a;,m) : ke N} <
= Im<n
= In:I1<n
O

Proposition 5.3.6. Let I,J be ideals of a locale L and x € (0,C). If I < J then
Iz < Jz.

Proof. Iz = \/{vF_,o(a;,z):a;el,keN}< \/{vlecr(bi,x) b€ J ke N} =
Thus [z < Jz for all z € (0,C). O
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Proposition 5.3.7. For z,n e (0,C), [z —» n]L € [r — [z — n]Lz]L.

Proof. Let r € [x — n]y. Then o(r,x) < n implies o(r,z) < [z — n]|yz. Hence

r €|z — v = n]pz]L. Therefore [z — n], S [v — [v — n]Lz]L. O
Proposition 5.3.8. For z,n € (0,C), [z — n]pz < n.

Proof. [x — n]rr = \/{vl_,0(a;,2) : a; € [v — n];,k € N} = \/{vl 1o(a;,x
o(a;, ) < n,k e N}. Hence the proof. O

5.4. L-Prime Elements and Spec(o,C)

Definition 5.4.1. An element p # 1¢ of (0,C) is said to be L-prime element if for

every r € L and n € (0,C),o(r,n) < p implies that either r € [1o — p]. or n < p.

Example 5.4.2. If we consider the L-slice (m, L) then the L-prime elements are

precisely the meet irreducible elements of L.
Properties of L-prime elements

Theorem 5.4.3. If p be a L-prime element and x € (o,C) then [x — p] is a prime
tdeal of L.

Proof. Let rms € [x — p], then o(rms,x) < pimplies o(r,o(s,z)) < p. The L-prime
element p shows that either o(s,z) < p or r € [1¢ — p|r. That is, either 2 < p or
s €[z — p|p or r € [I¢ — p|r. From proposition 5.1.3 that [1c — p|. € [z — p];.

Thus s € [z — p]p or r € [x — p|,. Hence [z — p]; is a prime ideal. O

Corollary 5.4.4. If p is a L-prime element then [1c — p|p is a prime ideal of a

locale L.
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Proof. Follows from the above theorem. m
Theorem 5.4.5. If p and q are any two L-prime elements then so is p A q.

Proof. Let o(r,n) < p A q, for some n € (0,C) and r € L . Then o(r,n) < p and
o(r,n) < q. Since p and ¢ are L-prime elements, we have the following statements:
i) either n < p or r € [1¢ — p]; and ii) either n < q or r € [1¢ — ¢].. From these

two statements the theorem follows. O

Definition 5.4.6. The set of all L -prime elements of (o, C') is called the spectrum
of (0,C) and is denoted by Spec(a, C).

5.5. Zariski topology on Spec,(c,C)
Definition 5.5.1. For n € (0,C) we define C(n) = {p € Spec(o,C) : n < p}.

Proposition 5.5.2. Forn € (o,C) and p € Spec(o, C') we have the following :
i) C(0¢) = Spec(o, C)

it) C(lc) = ¢

i) (e C(ni) = C(\/jep i) for some indexed set I

i) C(n)u C(l) < C(n Al).

Proof. i) C(0¢) = {p € Spec(c,C) : 0c < p}. Since O¢ is the bottom element, 0c < p
for every p € Spec(o,C). Hence C(0¢) = Spec(o, C).

ii) C(1l¢) = {p € Spec(o,C) : 1¢ < p}. Since 1¢ is the top element, no p € Spec(o, C)
belongs to C'(1¢). Hence C'(1¢) is empty.

iii) p € (;c; C(n;) implies n; < p , for every i in some indexed set /. Then we have

V ey i < p. Therefore p € C(\/,o;ni). Thus (e, C(ni) € C(V ey 1i)-
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Suppose p € C(V .oy i)-

\/nigp = n; <pViel
1€l

= pelC(n;)Viel

Hence C(\/,;c; i) S [;e; C(ni) and consequently ()., C(n;) = C(V e 1ui)-
iv) Let pe C(n) u C(l).

peC(n)uC(l) = peC(n)orpeC(l)
= n<porl<p
= nAl<p

= peC(nAal)

Hence C(n) u C(l) € C(n A l). O
The above proposition leads us to the following theorem.

Theorem 5.5.3. On Spec(o,C),A = {C(n) : n € (0,C)} forms a basis for some

topology 2.

Definition 5.5.4. Spec,(o,C) is the set of all p € (o,C) such that p is meet irre-

ducible as well as an L-prime element of (o, C')
Proposition 5.5.5. On Spec,(o,C), C(n) u C(l) = C(n Al).

Proof. We have C(n) uC(l) € C(nal). lf pe C(nal)thenn Al <p. The L-prime
element p being meet irreducible, either n < p or | < p. That is, either p € C'(n) or

pe C(l). Hence pe C(n) u C(l) and C(n) u C(l) = C(n A l). O
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Proposition 5.5.6. The collection v = {C(n) : n € (0,C)} defined on Spec,(o,C)

forms a family of closed sets for some topology on Spec,(c,C).
Proof. Follows from Proposition 5.5.2 and proposition 5.5.5. O]

Definition 5.5.7. The topology ¥ generated by the family of closed sets v is called

the Zariski topology on Spec, (o, C).

5.6. Zariski Topology of L-Component

In this section we define a new type of sets C*(n) and have tried to define a Zariski

topology on Spec(a, C).

Definition 5.6.1. For n € (0,C), we define C*(n) = {p € Spec(c,C) : [1c = n], S

[1c — plL}-

Proposition 5.6.2. Let (0,C) be a L-component. The set C*(n) has the following
properties

i) C*(0¢) = Spec(o, C)

i) C*(1) = 6

1) (Nie; C*(n:) = C*(V,eslle = nille), for some indexed set I

i) C*(n) v C*(l) = C*(n A l).

Proof. 1) C*(0¢) = {p € Spec(c,C) : [1¢ = Oc]r € [lc — p|L}. It is obvious that
[1c — 0c]r € [1c — plr, Vp € (0,C). Hence C*(0¢) = Spec(o, C).

ii) C*(1¢) = {p € Spec(o,C) : [1c = 1ol € [le = ple}. And [1¢ — 1] = {r €
L;o(r,1¢) < 1¢} = L. Since p # 1o, C*(1¢) = ¢.

iii) Let p € (),c; C*(n;). From Propositions 5.3.6 and 5.3.8 [1¢ — n;] lc < p,Vie I

implies that \/,_;[1c = ni]rle < p. Thus p e C*(\/,;[1c — nilcle).
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Consider p € C*(\,e;[1lc — n;]rle). For any j in the indexed set [

e = il = [le = [le = nilelele € [le = Velle = nylile]e = [1e — ple-
Therefore p € C*(n;),Vj e I.

iv) Let n,l € (0,C). For p € C*(n A l), [lc = n Al]ly, € [le — p|r. That is,
[lc = n]r n[le = )L € [l¢ — p]r. Since [1¢ — p]; is a prime ideal, either
[lc = n]L S [le¢ = plL or [1¢ = l]L € [1¢ — p]r. Therefore p e C*(n) v C*(1).

If pe C*(n) u C*(1), then [1¢ — n]L S [1c — p|L or [l = ] € [1le¢ — p]r. Hence

[lc = n Al]L € [1c — p]r which implies p € C*(n A l). O

Theorem 5.6.3. The collection v* = {C*(n) : n € (0,C)} forms a collection of closed

sets for some topology ¥* on Spec(o,C').
Proof. Follows from the above proposition. n

Definition 5.6.4. The topology Q* on Spec(o, C') with v* as the collection of closed

sets is called the Zariski topology on Spec(a, C').

Theorem 5.6.5. If every L-prime element of (o,C') is meet irreducible in C, then

v <yt

Proof. Let C(n) € v then p € C(n) implies [1¢ — n] € [1l¢ — p]. Hence p € C*(n)

and v € y*. O]

Remark. On Spec(o,C') we have defined two topologies, one with respect to the
closed sets {C*(n) : n € (0,C)} and another with {C'(n) : n € (0,C)} as basis for
open sets.Also,for A€ Q* and Be A, An B® # ¢.
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5.7. Properties of Zariski Topology ()" and V¥

Definition 5.7.1. An element m € Spec(o, C) is said to be o- maximal if it satisfies
the conditions
i) m < n implies m = n for n € Spec(c, C)

ii) [lc — m] is a maximal ideal of the locale L.
Theorem 5.7.2. If x € Spec(o,C) is a o- mazimal element then {x} is closed.

Proof. Suppose x is a o- maximal element of (,C). By definition [1c — z]z is a

maximal ideal of the locale L. Thus C*(z) = {z} and hence it is closed. O
Theorem 5.7.3. For q € Spec(o,C),Cl({q}) = C*(q).

Proof. We have to show that the smallest closed set containing {q} is C*(g). Obvi-
ously, ¢ € C*(q). Now let ¢ € C*(n) for some n € (0,C). We prove C*(q) < C*(n).
If y € C*(q) then [1¢ — ¢q]L € [le = y]o. Also, [1c — n]L € [lc — ¢]z. Therefore
y e C*(n). Thus Cl({q}) = C*(q). O

Theorem 5.7.4. If p < q for some p,q € Spec(a,C) then q € Cl({p}).
Proof. p < qimplies [1¢ — p]r € [lc — ¢]z. Thus ¢ € C*(p) implies g € Cl({p}). O

Remark. If every element of Spec(c, C) is o-maximal, then the singleton sets will be

closed in Q* and hence (Spec(o, C), 2*) will be a Ty space.

Theorem 5.7.5. On (Spec,(o,C), V) we have the following
i) Cl({p}) = C(p), for p € Spec,(o,C)

it) {p} is closed in Spec,(o,C) if and only if p is maximal in Spec, (o, C)

ii) q € Cl({p}) if and only if p < q, for p,q € Spec,(a,C)
iv) (Spec,(0,C), V) is a Ty space.
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Proof. i) Clearly p € C(p). We show that C(p) is the smallest closed set containing p.
If pe C(n) for some n € (0,C) and g € C(p) then we have p < ¢ and n < p. Clearly,
q € C(n). Thus C(p) <€ C(n).

ii) Suppose {p} is closed in Spec, (o, C) then {p} = C(n) for some n € (o,C). That
is, p is the only element such that n < p. If p is not maximal in Spec, (o, C) then
for any g # p, with p < ¢, implies g € C(n). But {p} = C(n). Hence we arrive at a
contradiction. Therefore p is a maximal element of Spec, (o, C).

Now suppose p is maximal then we have to show that Cl({p}) = {p}. We know that
Cl({p}) = C(p).If p # q € C(p) then p < ¢ is a contradiction to the fact that p is
maximal. Thus {p} is closed in Spec, (o, C).

iii) Follows from definition.

iv) Let p and ¢ be two distinct points then either p € ¢ or ¢ £ p. Without loss
of generality, suppose the latter. Then p ¢ Cl({g}) and hence p € Cl({q})¢ which

definitely deos not contain g. Thus (Spec, (o,C), ¥) is a T, space. O

Remark. (Spec,(o,C),¥) is a Ty space while (Spec(o, C),2*) is not.

5.8. A Study on (Spec(o,C), Q")

In this section we study a few properties of (2*.

Definition 5.8.1. An L-Component (o, C) is said to be without zero divisors if for

p # 0c and q # O¢ implies p A ¢ # Oc¢.

Examples 5.8.2. i) If C is a chain then the L-Component (o,C) is without zero
divisors.

ii) If C is atomic then L-Component (o, C) is without zero divisors.
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Lemma 5.8.3. Consider Spec(o,C) of the L-slice (0,C). Let X*(n) denote the
complement of C*(n) in (Spec(o,C),Q*). Then we have the following

i) X*(1¢) = Spec(o, C)

it) X*(n) = & if and only if n = O¢

iii) X*(n) n X*(m) = X*(n A m)

Proof. The proof of i) and ii) follows easily from definitions. To prove iii), suppose
p € X*(n) n X*(m). Then [1c¢ — n]p & [l¢ — p]r and [1¢ —» m], € [1c — plL-
Since [1l¢ — p]p is a prime ideal [1¢ — n]p N [le = m]L € [le — p]e. That
is, [lc = n Am|, € [l¢ — p|r. Therefore p € X*(n A m) and hence we get

X*(n) n X*(m) € X*(n A m). Similarly we can prove the reverse inclusion. O

Theorem 5.8.4. (Spec(o,C),Q*) is irreducible if and only if (o,C) is without zero

divisors.

Proof. (Spec(o,C),Q*) is irreducible if and only if the intersection of any pair of
nonempty open sets is nonempty. If X*(n) and X*(m) are two non empty open sets
then by the above lemma X*(n A m) is nonempty. That is, X*(n A m) # ¢ if and
only if whenever n # 0c and m # 0¢ implies n A m # 0c. Thus X*(n A m) # ¢ if

and only if (o, C') is without zero divisors. O

Theorem 5.8.5. Let f : (0,C) — (u, K) be the L-component isomorphism between
the L-components (o,C) and (p, K) . If q € Spec(u, K) then f~'(q) € Spec(a,C).

Proof. Let f~'(q) = p. Also, if o(r,n) < p then f(o(r,n)) < f(p) will imply that

w(r, f(n)) < f(p). Since f(p) = q € Spec(u, K), we have that either f(n) < f(p)

or u(r,1x) < f(p). Thus either n < p or o(r,1¢) < p. Therefore we have that
f~(q) = p e Spec(o,C). O
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Theorem 5.8.6. If f : (0,C) — (u,K) be a L-component isomorphism then f

induces a map f, : Spec(u, K) — Spec(o,C) such that f. is continous.

Proof. We know that

g€ f, (X*(n)) < filg) € X*(n)
< [le = n] & [le = fulq)]
< [k = f()] & [1x = f(fi(9))]
< f(f«() e X*(f(n))

< qe X*(f(n)).
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Chapter 6

Generalised locales and the QQ-Slice

D(Q)

This chapter deals with the abstract notion of locales called quantales. Algebraically
quantales can be considered as semirings. Topologically speaking they are the abstract
notion of generalised spaces which are in turn named locales. Locales or frames are
complete lattices where meet distributes over infinite joins. While defining quantales
C.J. Mulvey introduced an associative binary operation * on a complete lattice such
that * distributes over infinite joins.The similarity in the definitions of locales and
quantales justifies the review of the already established definition of quantales as
generalised locales. Thus quantales can be rightfully called as generalised locales.
Since the notion of quantales are already established and much developed, we prefer
the terminology quantales to that of generalised locales. This chapter is divided into
four sections. In the first section we develop a quotienting of quantale using a specific
ideal. Second section deals with the maps called deductions and their properties.It

is well known that a quotient quantale can be constructed through the maps called
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quantic nucleus. Here we try to do the analogue through the ideals constructed
from the newly defined maps called deductions . The third section introduces the
graphs that are associated with quantales. This section motivated us to look into the
possibilities of introducing graph theory in the context of L-slices. The last section
introduces the generalised L-slice which we call Q-slices. We discuss the differences

in the basic properties exhibited by L-slices and Q-slices.

6.1. Ideals of a (Generalised locales or Quantales
and their properties

In [59] authors have developed a quotient frame using the ideals of a locale. We
investigate the possibility of existence of such a quotient quantale in the context of
generalised locales or rather quantales.

Let (Q,V, A, *) be a quantale with top element 7" and bottom element 0. Let I be

any Q-ideal in ). For each a € @ define I, ={xr e Q :ax+z € I}.
Proposition 6.1.1. [, is a Q-ideal of a commutative quantale Q).

Proof. Since 0 = a+0 I, is nonempty. Let J be any indexed set and {z;};c; € I,. Then
axx; € I,Vie J. Since [ is anideal, \/,.;a*x; € I. Also \/,.;a*x; = ax\/ ., z; € I.
Thus \/,.; i € I,. Let x € I, and y € @ then a+x € I implies y = (a+ x) € I. Since Q
is commutative y = (a * x) = a* (y = x) € [.Therefore y » x € I,. Similarly x »y € I,. If
yel, and x € QQ with z < y then a * z < a * y implies that a * z belongs to the ideal

I. Thus z € 1,. O

Note that if a € I then I, = Q.
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Proposition 6.1.2. Let Q) be a quantale and I be any @Q)-ideal then
i) If a,b € Q with a < b then I, 2 I,
i) [ <1, Yae @

Proof. 1) Let a,b € @ such that a < b. For x € I,b+xz € I and a * z < bz implies
that a = x € I. Therefore z € I,.

ii)follows directly from the definition of I,. O]
Theorem 6.1.3. For any Q-ideal I and a € Q, I, "Iy = I,.p.

Proof. We have

zel,nl, © xe€l,and x e,
< ax*xelandbsxel
< (axx)v(brx)el

< x €l

Therefore, I, N I, = 1,.y. O

Theorem 6.1.4. Let Q) be a commutative and idempotent quantale. If I is a prime

Q-ideal then I, U I, = I,4.

Proof. Let x € I, U I.

rel,orxel, = a*xe€lorbsxel
= (axx)*(brx)el
= (a=b)xxel

= JZE]a*b
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Therefore 1, U I, € I,.

For the reverse inclusion, consider y € I,4.Then we have (a = b) »y € I. Also y = (a =
bxy) = (axy) = (bxy) belongs to the ideal I. Since [ is a prime ideal, either a =y € I
or b=y e I. That is, either x € I, or y € I,. Therefore y € I, U ly. Thus I,., < I, U I,

and consequently I, U I, = I 4. O

Theorem 6.1.5. If [ is a prime (Q)-ideal of a quantale ) then for each a € Q, 1, is a

prime QQ-ideal.

Proof. Let I be a prime Q-ideal and let x =y € I,. Then a = (z + y) € I would imply
that either a = x € [ or y € I . That is, either z € I, or y € I. Since I < I, we have

that either x € I, or y € I,. Thus [, is a prime Q-ideal. O

Definition 6.1.6. An element a € () is said to be quasi prime to a Q-ideal I, if a ¢ I

and a = x € I implies x € I.
Proposition 6.1.7. If a € Q) is quasi prime to a Q-ideal I of Q) then I, = 1I.

Proof. 1f y € I, then a =y € I implies y € I. Hence I, < I. The proof follows from

Proposition 6.1.2. O
Remark. If I is a maximal Q-ideal then I, = I.

Lemma 6.1.8. Let I is a Q-ideal of Q). For any a,b,c € Q and S < Q, if I, = I,

then
Z) ]a*c = Ib*c

”) Iav\/S = Ibv\/S
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Proof. i. Let a,b,ce L and I, = I.

x € Iy ifand only if (axc)*x =a=(cxx)el
if and only if cxx € I, = I
if and only if b# (c*x) = (bxc)xx el
if and only if x € [y,..

Therefore I, = I, implies I 4. = lpse.

ii. Let I, = I, and S < L.

rel,,ygifandonlyif (av\/ S)+x=\(avs)raxel
if and only if (a*x) v (s*x) e [ forall se S
if and only if (a+z) e I and (s=x) € I for all s€ S
if and only if bxx e I and (s=x) e [ for all se S
if and only if bxz € I and \/ g(s*x) €]
if and only if bxaz v \/ g(s*x) el
if and only if (bv \/,g)xx €l

if and only if x € vy o)
Hence I, = I, implies I\ s = I,y s ]
Remark. Q being commutative will give us I..q = Ioxp-

Definition 6.1.9. Fix an ideal I in () and define a relation #; on @) as a 6; b if and

only if I, = I.
The following theorems are an immediate consequence of the above lemma.

Theorem 6.1.10. For an ideal I in a commutative quantale Q) , 01 is a congruence

relation on Q).
Theorem 6.1.11. The quotient Q/0; is a quantale.
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6.2. Deductions on Quantales

In this section we introduce the map deductions on quantales and study some of its

basic properties.

Definition 6.2.1. Consider the quantale (Q,\/,A,*). Amapd: Q — @ on a
quantale @ is called a deduction on () if it satisfies the following conditions.

1) d(\V,;e; 0i) = Vie; d(bi), where I is some indexed set.

ii) d(a +b) = a = d(b) , this property is called translation in second variable.

If @ is commutative we impose the additional condition that d(a=b) = a*d(b) = d(a)=b.

Example 6.2.2. Let(Q,\/, A, *) be a quantale. Define d, : Q — Q for a € Q) such

that d,(z) =z * a.

Lemma 6.2.3. Let d be a deduction on a quantale (Q, v, A, *). For any x,y € Q we

have

i) d(0) = 0

i) x <y implies d(z) < d(y)

Proof. 1) d(0) = d(00) =0=d(0) =0

ii)d(y) = d(z v y) = d(z) v d(y). Thus d(z) < d(y). O
Lemma 6.2.4. If Q is right unital with e as the right unit and e < d(e) then

i) a < d(a)

it) T = d(T), where T is the top element of Q.

Proof. 1) Since e < d(e), we have axe < a=d(e) = d(a=e) = d(a). That is, a < d(a).
ii) T' < d(T). Since T is the top element, d(T') = T. O
Proposition 6.2.5. If Q is right unital with right unit e and d(e) = e then the only

deduction map s the identity.
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Proof. Let d: @ — @ be a deduction. d(a) =d(axe) =a=d(e) =axe=aV aeQ

Hence d is the identity map on Q. ]

Proposition 6.2.6. The deduction map d : Q — Q is a Cech closure operator, if Q

is right unital with right unit e and e < d(e).
Proof. Follows from definition and lemma 6.2.3 and 6.2.4. O]

Proposition 6.2.7. If Q) is right unital with right unit e and e < d(e) for a deduction
d on @ then d(a +b) < d(a) = d(b),Va,b e Q.

Proof. We have
d(a) =d(b) = (d(a)v a)=d(b)
= (d(a) «d(b)) v (a = d(b))
= (d(a)=d(b)) v d(a=b)
Hence the proof. O

Definition 6.2.8. A quantic dual on a quantale () is a preclosure operator d such that

d(axb) < d(a)+d(b) V a,b € Q. A quantic dual is said to be strict if d(a=b) = d(a)=d(b).
The above proposition will give the following theorem.

Theorem 6.2.9. Let @ be a right unital quantale with right unit e and e < d(e).

Then any deduction d on @ is a quantic dual on Q).

Theorem 6.2.10. The kernel Ky = {a € Q : d(a) = 0} of the deduction d on Q is a
left-sided Q-ideal.
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Proof. 1f {a;}ier € Kq then d(a;) = 0,Vie I.

d(V e @i) = Vyey d(a;) = 0. Therefore \/, ; a; € K.

Ifbe @ and a € Ky then d(b+a) =b=d(a) =b+0=0. Therefore K is a left-sided
Q-ideal. O]

6.3. The Sub-Quantale (),

Definition 6.3.1. For a quantale () and a deduction d on it we define the stationary

points of d to be the set Q; = {a € Q : d(a) = a}.
Theorem 6.3.2. (Qg4, \/, A, *) is a subquantale of (Q,\/, A, *).

Proof. If {a;}ier be a collection in Q4 then d(\/,; a;) = V,e; d(a;) = ;s @i- There-
fore \/,c; a; € Qq. Since d(a+b) = a+d(b) =a=+b ¥V a,be Qq, Qg is closed under the

operation *. Also d(0) = 0 implies 0 € @);. Thus @, is a subquantale of Q. ]

Example 6.3.3. Let Q = {0, T} and * is defined as follows
0+7T=T+*0=0=0+0andT+T ="1T.
(Q, =) is a quantale. Letd, : Q — Q be a deduction defined as d;(0) = 0 and d(T) =0

, then Qq, = {0} is a subquantale of Q.

Example 6.3.4. Let Q be the chain 0 < a < T and the binary operation = defined as
follows

0:0=0%xa=0+«T=a+x0=T=+=0=0

ara=a,axT =T

Txa=T,T+=T=T

Consider the deduction d : Q) — @ defined as d(0) = 0,d(a) = T,d(T) = T, then
Q4 = {0,T} is a subquantale of Q.
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6.4. Properties of Deduction Maps

This section deals with some more properties of deduction maps. In particular, we
deal with how the ideals and filters of a quantale are mapped by the deduction maps.
We have a few definitions on deductions which are analogous to that of derivations

on quantales.

Definition 6.4.1. Let d be a deduction on a quantale () then
i) d is right sided if and only if d(T = a) < d(a).

ii)d is left sided if and only if d(a = T') < d(a).

iii)d is two sided if and only if d is both right and left sided.
iv)d is idempotent if and only if d(a * a) = d(a).

v) d is commutative if and only if d(a = b) = d(b * a).

Theorem 6.4.2. Let d be a deduction on a quantale Q. Then the following two
conditions are equivalent

i) d is two sided

ii) d(a +b) < d(a) A d(b) YV a,be Q.

Proof. 1f d is two sided then d(a *b) < d(a+T) < d(a) and d(a *b) < d(T = b) < d(b).
Therefore d(a = b) < d(a) A d(b) Va,be Q.

If ii) holds then d(a = T) < d(a) A d(T) = d(a), hence d is left sided. Similarly
d(T = a) <d(T) A d(a) = d(a), that is d is right sided. O

Theorem 6.4.3. Let d: Q) — @ be a deduction on the commutative quantale () then

if I is a #-ideal of Q, so is d(I).

Proof. Let I be a #-ideal of the quantale and {n;};c; € d(I), for some indexed set J.

There exists {x;}ics € I such that d(x;) = n;, for each n;.
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Also, ey ni = V,ey d(x:) = d(\/,o; ;). Since I is an ideal of Q) we have \/,_; z; € 1.
Thus, V,.;ni = d(V,e;2:) € d(I). Let a € @ and m € d(I) then we have that
a+*m = a=*d(xr) =d(a=*x)implies that a * m € d(I). @ being commutative implies

that m = a € d(I). Thus d(I) is a =-ideal of Q. O

Theorem 6.4.4. Let d : (Q — @ be a strict quantic dual on a quantale. If F is any
filter on Q, so is d~'(F).

Proof. Since d(0) = 0, 0 ¢ d™(F). If x € d”(F) and = < y for some y € Q, then
d(z) < d(y) which implies y € d™*(F). Also for any r,s € d"*(F) we have d(r),d(s) €
F. Since F is a filter and d is strict quantic dual we have d(r) = d(s) = d(r = s) € F.

Therefore r = s € d™'(F). Hence d™*(F) is a filter. O

6.5. The congruence 6,

In this section we define an equivalence relation on () with respect to the deduction

d. Also, we examine the possible existence of a congruence relation on Q).

Definition 6.5.1. Let d be a deduction on Q then define [a|? = {z € Q : d(z+a) = 0}.

Or , equivalently, [a]? = {z € Q : x » d(a) = 0}.

Lemma 6.5.2. We have the following observations
i) If a € Ky then [a]? = Q

ii) If d is idempotent then a ¢ Ky implies a ¢ [a]?.

Proof. i) If a € K4, then d(a) = 0 and z = d(a) = 0,Vz € Q. Hence, [a]? = Q.
ii)Suppose a € [a]?. Since d is idempotent we have d(a) = d(a + a) = a * d(a) = 0,

which is a contradiction to a ¢ Kj.
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Lemma 6.5.3. [a]|%is a left sided «-ideal of Q.

Proof. Let {a;}ics < [a]?, for some indexed set J. Then d(a; + a) = 0,V aj.

Also d((\/ ey @i) *a) = d(\ i (a; * a)) = ey d(a; = a) = 0. Therefore \/,_; a; € [a]’.
For z € Q and b € [a]?, d((z +b)+a) = x +d(b+a) = z + (b+d(a)) = 0. Therefore

zbe [a]h.

[
Theorem 6.5.4. If Q is commutative then |a]? is a x-ideal of Q.
Proof. Follows from definition and the above lemma. m

Theorem 6.5.5. Let d be a deduction on Q, then for any a,b € @, we have the
following

i) a < b= [b]? < [a]?

i) [a v b]¢ = [a]? ~ [b]%.

Proof. i) If a < b and y € [b]? then y+d(b) = 0. Also, d(a) < d(b) implies y+d(a) = 0.
Thus [b]? < [a]®.

ii) For z € [av b]4, 0 =z +d(avb) = (xv+d(a)) v (x+d()). That is, z € [a]? and
z € [b]®. Therefore [a v b]* < [a]? ~ [b]“.

If 2 € [a]? " [b]? then 0 = z = (d(a) v d(b)) = z+d(a v b). Thus z € [a v b]* and
[a v b]* = [a]? ~ [b]%. O
Definition 6.5.6. Let d be a deduction on (). For z,y € @), define a relation 6; on

Q such that (z,y) € 6, if and only if [z]? = [y]*.
Theorem 6.5.7. For any deduction d, 0y is an equivalence relation on Q).
Proof of the theorem is direct.
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Definition 6.5.8. A binary relation 6 defined on @ is a left congruence on @ if and
only if

i) 0 is an equivalence relation on @

i) If (@;,v;) € 0, for all ¢ € I then (\/,.; %i, Vie; ¥i) € 0, where I is some indexed set
iii) If (a,b) € 6 then (c*a,c=b) € 6.

Theorem 6.5.9. For any deduction d on @), 04 is a left congruence.

Proof. We have already shown in theorem 6.5.7 that 6, is an equivalence relation on
Q. If (s, yi) € b4, then [2;]* = [y;]%. Theorem 6.5.5 shows that [\/,.; ;]* = (e, [7:]%
Hence (\/,e; %i, Ve ¥i) € 0a. Let (a,b) € 04. By definition x € [c = a]? if and only if
d(z+ (c+a)) =0. Also 0 = d(x * (c*a)) = (v =) *d(a) if and only if z = ¢ € [a]?.
Since (a,b) € 8y , z +c € [b]*. And (x +¢) » d(b) = 0 if and only if d(z * (¢« b)) = 0.

Thus z € [c * a]? if and only if z € [c * b]? showing that [c+ a]? = [c = b]“. O

Theorem 6.5.10. If d is a commutative deduction on Q) then 64 is a congruence on

Q.
Proof. Direct computations will give the result. O

Theorem 6.5.11. If d is a commutative deduction on Q, then Q/0y defines a quotient

quantale.

Proof. 6, is a congruence and hence the theorem follows. O
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6.6. Graphs on Quantales with respect to the map
Deduction

In this section we introduce the theory of graphs into the domain of quantales. We
are familiar with the interplay of ring theory and graphs. Similarly, we investigate
the possible development of graphs in the theory of quantales.

The Graph G(Q,d)

Definition 6.6.1. Let @ be a quantale. A graph G = (V, E¢) where the vertex set
Ve = Q and the edge set Eg = {(a,b) : [a]? = [b]¢,a # b} is called the ‘graph with

respect to the deduction d’ and is denoted as G(Q, d).
Theorem 6.6.2. G(Q,d) is always a disconnected graph.

Proof. Let us define a relation 84 on @ such that (a, b) € 0, if and only if [a]? = [b]%.
6.5.7 shows that 6, is an equivalence relation on Q. If (a,b) € Eg then (a,b) € §; and
thus belongs to the same equivalence class. Every equivalence class is either equal or

disjoint. Hence, G(Q, d) is always a disconnected graph. ]

Let E(Q, 0;) denote the set of all equivalence classes with the respect to 6, and

C(G) denote the collection of components of G(Q, d).
Theorem 6.6.3. E(Q,0;) and C(G) are equivalent sets.

Proof. Let X € E(Q,0,). Since X is nonempty, there exists some a € X. The vertex
a is in one of the connected components of G(Q,d), say C(a). All other vertices in
C(a) will fall in the same equivalence class X. We define f : E(Q,6;) — C(G) as
f(X) = C(a). Clearly, f is well defined. Let X, Y € E(Q, 8,;) such that f(X) = f(Y).
Let a € X and b e Y, then C(a) = f(X) = f(Y) = C(b). That is, a and b belong
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to the same connected component, and so [a]¢ = [b]¢ implying that they lie in the

same equivalence class. Hence X =Y. To prove f is onto, consider any connected
component, say D. Let p be any vertex in D. Then D = C(p). Let Z € E(Q,0y)
be such that p € Z. Hence f(Z) = D. Therefore E(Q,8;) and C(G) are equivalent

sets. O]
Corollary 6.6.4. For any quantale Q and a deduction d on Q, w(G(Q,d)) = |E(Q, 8,)]
Observation. For the graph G(Q,d), we observe the following properties:

1. FEach equivalence class X € E(Q, ;) will become a connected component.

2. Fach component is a complete subgraph of G(Q,d).

3. The number of vertices in each component is equal to | X|.

Proof. 1) and 3) follow easily from the previous theorem, so we prove only the second
property. Every X € E(Q, ;) is mapped to a component f(X) of G(Q,d). Let X =
{ur, ug, uz, - -+ ,up}, then [u;]* = [u;]%,Vi,j € {1,2,--- ,k}. Therefore (u;,u;) € Eg,

Vi,j € {1,2,...k}. Thus the component f(X) is complete. ]

6.7. The Graph 7

In this section, we introduce a different type of graph using the map deduction on a
commutative quantale ). We observe that the graph developed is always connected,

in particular it can be a star graph.

Definition 6.7.1. An element a of a commutative quantale () is said to be a zero

divisor if there exist b # 0 such that a = b = 0.
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Definition 6.7.2. If the deduction d is the identity map on a commutative quantale
Q then [a]¢ = {z € Qld(x +a) =0} = {xr € Qlz *a = 0 = a +x}. We introduce two
new terminologies the zero set of a and the closure set of a.

The zero set of a is defined and denoted as [a|® = {x € Q|z # 0,2 » a = 0}.

The closure set of a is defined and denoted as ([a]) = {a} U [a]°.

Remark.

1. If [a]° # &, then both the sets [a]® and [a] are lower sets of Q.

2. If [a]° # & then [a]° is a Q ideal.

Definition 6.7.3. Let (Q be a commutative quantale. A graph G = (V, E) where the

vextex set V = @ and the edge set E = {(a,b) : [a] n [b] # &,a # b} is called the

‘Zero-graph of )’ and is denoted as Zg.
Lemma 6.7.4. For a commutative quantale ), Zg is always connected.

Proof. Since 0+ a = 0,Va € @, we have [0]° = (). Hence 0 has an edge with every

other vertices of Zg. O

Theorem 6.7.5. For a commutative quantale QQ, Zg 1is either a star graph or contains

a cycle Cs.

Proof. Since, 0 has an edge with every other vertices of Zg, it will always contain a
star graph with internal node at 0. If there is any other edge (a,b) € E in the graph

then 0 — a — b — 0 will form the triangle Cj O
Corollary 6.7.6. If Q has zero divisors then Zg is not bipartite.

The following theorem is obtained from the above observations.
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Theorem 6.7.7. If ) does not have any nonzero divisors then Zg will have the

following properties:
1. Z¢g 1s a star graph.
2. g 1s a bipartite graph.
3. The chromatic number x(Zg)=2.

Theorem 6.7.8. Let y € Q) be such that [y]° # &, then the subgraph induced by the

set |y <V, is a clique of Zg.

Proof. Let x € |y]°. For a,be |y, a+x < y=x, implies a » x = 0. Similarly
bxx < y=ximplies b*x = 0. Hence z € [a]® n [b]° and ([a]) » ([b]) # &. Therefore
any two vertices of | y € V is always connected by an edge. Thus the subgraph

induced by the set | y € V is a clique of Zg. O
Theorem 6.7.9. If Z¢ is not a star graph then x(Zg) = 3.

Proof. If Z¢g is not a star graph then it will contain an odd cycle. Hence the result

follows. OJ

These results motivated us to look into the possibility of a graph theoretic study

on L-slices. The next chapter is a detailed study on such graphs.

6.8. The Q-slice ©(Q)

The discussions in the previous sections clarify the inevitable link between locales and
quantales. As L-slices are defined on locales, we may define generalised L-slices on

quantales. We coin the term Q-slices and investigate the basic structural differences
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between L-slices and Q-slices. Also we give a specific example for the generalised

L-slices through the collections of deductions on a quantale.

Definition 6.8.1. Let (J, <, v) be a join semilattice with bottom element 0.

Let(Q, <, v, *) where < is the partial order on @) and v, = denote the join and as-
sociative binary operation respectively. Also, let Og be the bottom element and top
element 1g. By the "action of () on J” we mean a function og : @ x J — J such

that the following conditions are satisfied.

1. 0g(a,x1 v x3) = 0¢ (a,21) v 0g (a,z2) for all a €  and for all x;,z9 € J for

all @ € Q. Also, if J is a sup lattice then o¢ (a, vierx;) = Vierog (a, z;).
2. 0g(a,0;) =0y for all a € Q.

3. oglaxb,x) =o0g(a,o(b,x)) ) for all a,be Q,z e J. Also, if Q) is commutative
then o(a = b,x) = og(a,o(b,z)) = og(b,o(a,x)) ) for all a,be Q,x € J.

4. 0g (lg,z) = x and og (0g,xz) = 0, for all z € J
4. If @ is unital with unit e then og(e,z) = x for all z € J.
5. oglav b,x) =ogla,x) v og(b,x) for a,be Q,x € J.

If o is an action of the quantale ) on a join semilattice J, then we call (og, J) as

Q-slice.
Example 6.8.2. All locales are quantales with = = m. Thus all L-slices are (Q-slices.

Example 6.8.3. The quantale itself can be treated as a Q-slice with og = * that is,

action can be considered as «(q,x) = q = x, for q,x € Q. Thus (»,Q) is a Q-slice.
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Definition 6.8.4. (0¢g,J) and (wg, K) be any two Q-slices then a map from f :
(0g,J) — (wg, K) is said to be Q-slice morphism if f preserves finite joins and

f(og(q, 7)) = wolq, f(x)).

Theorem 6.8.5. Every deduction on @ is a slice morphism on the Q-slice (x, Q).

Proof. A deduction map preserves finite joins. Also d(+(q,x)) = d(q * 7)

= q = d(z) = *(q,d(z))
Thus deductions are definitely Q-slice morphisms. m

Differences between L-slices and Q-slices
Let (J, <) be a join semilatice. If (o, J) is a L-slice and (0, J) be a Q-slice on J then

we observe the following differences in (o, J) and (og, J)

1. For the L-slice (o,J), we know that o(a,o(a,x)) = o(ama,z) = o(a,x) for

a € L. But,for a Q- slice (g, J),00(q*q,x) # 0g(q, ), for ¢ € Q.

2. For the L-slice (o,J),0(a,z) < x ¥ 2 € J. But the same need not hold for

og(a, ).

3. The set F, is a filter in the locale L for x € J but for the Q-slice the set

{qe @ :0¢(q,x) = x} need not be a filter.
Let ©(Q) denote the collection of all deductions on (@, <, v, *).
Lemma 6.8.6. ©(Q) is a join semilattice

Proof. Define < on ©(Q) as d; < dp if and only if d;(z) < dy(z) for all x € Q.

Thus < is a partial order on D(Q).
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Also, the join is defined as di(x)0da(x) = dyi(z) v da(x).We show that d;0ids is a

deduction on Q).

d10da(Vierwi) = di (Vierws) v da (Yierv;)
= Vierdi (z;) ¥ Vierds (2;)
= Vier (dy (@) v da (7))
= VierdiDidy (7).

Therefore d,Cidy preserves arbitrary joins.

diCidy(a + b) = dy(a = b) v da(a = b)
= (a = dy(b) v (axdy(D))
= ax (dy(b) v dy(b))

= a* (dltldg(b))

Thus d;idy is a deduction on Q.
Define Ogg)(z) = 0g,Vx € Q. Clearly, Ogg) is a deduction and is the bottom
element of (D(Q),<). Thus (D(Q), <) is a join semilattice with bottom element

The join semilattice (D(Q), <) allows the construction of a Q-slice . Let @ be a
commutative quantale. Consider the Q- slice (*, Q) and the collection of all deductions
on the quantale , D(Q). We will transform ©(Q) into a Q-slice.

To define an action we consider a map 6 : @ x D(Q) — D(Q) which is defined as

0(q,d)(x) = d(+(q,x)) for z,q € Q and d € D(Q).
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Theorem 6.8.7. The map 6 : Q x D(Q) — D(Q) is an action of Q on D(Q) and
thus (6,9(Q) is a Q-slice.

Proof. First we show that 6(q, d) is a deduction on Q).

0(q.d) (vierz:) = d (+ (q, Yierz:))
= d (Vier * (¢, 7))
= Vierd (+ (q,2:))
= Vierf(q, d) ()

0(q,d)(a+b) = d(+(q,a = b))

_ged(ash)
= gravd®)( Q is commutative )
=axq+d(b)
=axd(q=b)
= axd(x(q,0))

= a+0(q,d)(b)

Thus 0(q, d) is satisfies the conditions to be a deduction map and thus belongs to
2(Q).

Now we prove the conditions for ©(Q) to become a Q-slice.
1. 0(0g,d)(x) = d(0g *x) = d(0g) = 0g,Vzx € Q. Thus 0 (0g,d) = 0n(q)-

2. Let @ be unital with unit e. (e, d)(z) = d(e = z) = d(z),YVx € Q
Therefore 6(e, d) = d.

3. 0 (q, 0@(@)) (J}) = OQ(Q) (q #* SL‘) = OQ,VI € Q Therefore 0 (a, O@(Q)) = 0@(@).
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0(q1v q2,d) (z) =d(+(q1 v @, 7))
=d((q1 v q2) * ¥)

= (q1 v q2) * d(x)

0 (q,diCids) () = diCida(q » @)
= di(q ) v da(q * x)
= q+di(z) v q = dy(z)
=0(q,d) (z) v 0 (g2, d) (x)
=0(q,d) 5 0 (g2, d) (x)

Therefore 6 (q,d1C1 do) = 0 (q1,d) 06 (go, d)
6. 0(q1* gz, d) (x) =d((q*q)*z) =d((q*q=*z))
0 (qb 0 (q2a d)) (.CE) =0 (q2> d) (Q1 # .%’)

=d(q*(q1* 7))

=d(q *q=x) (.- Q is commutative)

Similarly, 6 (¢2,0 (q1,d)) (z) = d(q1 * q2 = )
Thus 0 (Ch * C]27d) =0 (C]h 0 (Q27d)) =0 (Q2a9 (th))-
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Therefore 6 is an action of @) on D(Q). Hence (0, D(Q)) is a Q-slice.
[

This last section reveals that the deductions which have been defined on quantales
can be structurally viewed in a different way. We have shown that deductions are
Q-slice morphisms on (x, Q). In L-slices we have already proved that Hom(J, K) is
a L-slice. The above theorem proves the possibility of the existence of a generalised
L-slice on the collection of all deductions.

Here we have given only the basics of the generalised L-slices. The Q-slices which are
the generalisation of L-slices can be further studied. Also, this chapter envisaged the

development of the succeeding chapter.
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Chapter 7

Graphs Associated with L-slices

This chapter deals with the graph theoretic approach to L-slices. The idea of relating
graphs with algebraic structures was started by the work of Beck in [11]. The algebraic
properties of L-slices prompted us to consider the possibility of various graphs that
could be associated with it. The chapter introduces two different graphs on L-slices.
The total graph I'((T(o, J)) is defined. We derive a characterisation for such graphs
to be nonempty. The structural properties of I'((T'(o, J)) is studied. The weak Zariski
Topolgy on (o, J) gives us the graph Gr(w*). The conditions under which the graph is
nonempty is examined. Also some of the structural properties of Gr(w*) is obtained.
Here we consider only finite L-slices and consequently the graphs under consideration

woud be the finite ones.

7.1. Total Graph of L-Slice

Definition 7.1.1. Let (o, .J) be an L-slice and L* = L\{0.}. We define the torsion
elements of a L-slice T'(o, J) as T'(0, J) = {x € (0, J) : o(a,z) = 0; for some a € L*}.

It is evident that T'(o, J) is always nonempty
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The structure of T'(o, J).
Theorem 7.1.2. T(o,J) is an ideal of L-slice (o, J).

Proof. 1f z,y € T(0, J) then there exists a, b € L* such that o(a,z) = 0; and o (b, y) =
0. Also, o(amb,z vy)=o0(a,o(b,xvy)) =0c(a,obzx)valby))=oc(aocbx)) =
o(b,o(a,z)) = o(b,0;) = 0,. Therefore x v y e T(c, J).

If 2 < x then o(a, z) < o(a,x) implies o(a, z) = 0;. Therefore z € T(o, J). Consider
o(b,x) € (0,J), then o(a,o(b,z)) = o(b,o(a,x)) = o(b,0;) = 0;. Hence T(c,J) is
an ideal of (o, J). O

Examples 7.1.3. i) Let L be a locale and let J =| x for some x € L. Then (m,J) is
a slice and T(m,J) ={ye J:m(a,y) =0;} ={yeJ:amy=0,}.

i1) Consider the locale represented by the following Hasse diagram

Let J =] b=1{0,a,b{}} then T(m,J) = {0,}.

Note that for any L-slice (o, J) the annihilator Ann(J) = {x € (0,J) : o(a,z) =

0; Yz e (o,J)} € T(o,J). We now define the total graph of the L-slice (o, J).
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Definition 7.1.4. The vertex set Vr of I'(T'(o, J)) is the set of all elements of the

L-slice and the edge set Ep of I'(T'(o, J)) = {(z,y) : x vy € T(o, J)}.

Theorem 7.1.5. The total graph U'(T(o,J)) is complete if and only if T(o,J) =
(0,J).

Proof. Suppose I'(T(o, J)) is complete then there exists an edge between every x,y €
Vr. That is, x v y € T(o,J). In particular, every vertex is adjacent to 0;. Hence
xv 0y =a¢€T(oJ) Y € (0,J). Thus T(o,J) = (0,J). Conversely suppose
that T'(o,J) = (o,J). Since J is a join semilattice, for any two vertices u,v €

Vr implies u v v e J = T(o,J). Thus I'(T'(0, J)) is complete. O
Corollary 7.1.6. The above theorem is necessarily satisfied if Ann(J) # {0,}.

Proof. Suppose a € Ann(J). The definition of Ann(.J) shows that o(a,x) =0;, V€

(o,J). Evidently, (o, J) = (0, J) and I'(T'(c, J)) is complete. O

Examples 7.1.7. i) Let X = {a,b,c}. Then P(X) = {¢, {a}, {b}, {c}, {a, b}, {a,c}, {b,c}, {a,b,c}}.
Let A = {b,c}. | A ={C e P(X) : C < A} implies | A = {¢,{b},{c},{b,c}}.

| A is a join semilattice under the partial ordering <. Also, (P(X), <) is a locale.

Define the action m on | A as m(B,A;) = B n Ay where Ay €] A. The annihi-

lator Ann(| A) = {¢,{a}} and T(m,| A) = {¢,{b},{c},{b,c}} =| A. Therefore

(T (m, | A)) is complete. Also, T'(T(m, | A)) is the complete graph K.

{b,c}

{6} {c}
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it) In Example 7.1.3 ii), we observed that T'(m,| b) = {0;}. Then the total graph

L(T(m, ] b)) is totally disconnected.

b. X

-@®

Now we can generalise the above as follows.
Proposition 7.1.8. I'(T'(0, J)) is totally disconnected if and only if T(c,J) = {0,}.

Proof. Since I'(T'(0, J)) is totally disconnected we have that 0, is not connected with
any other vertices. Hence z v 0; = x ¢ T(o,J) implying that T'(o,J) = {0,}.
Conversely, let T'(o,J) = {0;}. Any two vertices z,y of I'(T'(o, J)) is connected if
and only if z v y = 0; and that is possible if and only if + = 0;,y = 0,.Hence
I'(T(o,J)) is totally disconnected. O

We have already shown that T'(o,J) is an ideal of (o,J). Now we propose the

next two theorems which is a consequence of the structure of T'(c, .J).

Theorem 7.1.9. The subgraph induced by the set T'(o,J) is always complete. In

particular, if | T(o, J) |= n then the subgraph induced will be the complete graph K,.

Proof. Since T(o,J) is an ideal of (o,J), if z,y € T(0,J) then x v y € T(o,J).

Therefore the subgraph induced by T'(o, J) is always complete. O
Corollary 7.1.10. The clique number w(I'(T' (o, J))) is | T(o, J) |.

Corollary 7.1.11. The subgraph induced by (o, J)\T (o, J) is totally disconnected and
the independence number B(I'(T (o, J))) =| (o, I\T'(c, J) |
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Theorem 7.1.12. If T(o,J) is a proper ideal of (o,J) then I'(T'(o,J)) is always

disconnected.

Proof. Let z,y € (0,J) such that x € T(o,J) and y € (o, J)\T(0, J). The subgraph
induced by T'(o, J) and (o, J)\T'(o, J) are disjoint. Suppose they are connected then
xvyeT(o,J). But T(o,J) is an ideal would imply that y € T(c,J), which is a
contradiction. Thus the subgraphs induced by T'(o, J) and (o, J)\T' (o, J) will always

be disjoint. Thus I'(T'(o, J)) is always disconnected. O

Let us consider some L-slices and examine the properties of total graph associated

with them.

Example 7.1.13. Let J be given by the Hasse diagram

And let L = {0 < ¢ < 1}. Define the action on J as m(a,xz) = amx for a € L and
x e J. The ideal T(o,J) = {0,b,d} and it is a proper ideal of (m,J). I'(T(m,J)) is

disconnected and the graph is
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Thus the total graph of the L-slice is the union of two K3 graphs and two K
graphs.
If we consider L = {0 < a < 1} then T'(m, J) = {0,b}. Then the total graph of L-slice

is

c @ .d

2 @ b

The total graph of the L-slice is the union of one K, graph and four K; graphs.
If we let L = {0 < d < 1} then T'(m, J) = {0} and ['(T'(m, J)) is disconnected.

Remark. A L-slice is said to be a o-domain over L if there exists no torsion elements

for the L-slice. In other words, there exists no a € L* such that o(a,z) = 0.

Examples 7.1.14. i) If L is a chain then the L-slice (m, L) is a o-domain over L.
Let T*(0,J) = {x # 0y : Ja € L* such that o(a,z) = 0} then the corresponding total

graph is denoted by I'(T*(o, J)).
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In this case, if T*(o, J) is nonempty then T* (o, J) is a subslice. Also, if an L-slice is
a o-domain over L then the corresponding I'(T*(o, J)) is an empty graph.

ii) If L is a chain then T'(T*(m, L)) is an empty graph.

Definition 7.1.15. A locale L is said to have zero divisors if for a € L* there exists
be L* such that am b = 0y.

Lemma 7.1.16. Let a be a zero divisor of the locale L. If x € (0,J) then o(a,x) €
T(o,J).

Proof. 1f a is a zero divisor of L then there exists b € L such that amb = 0. Therefore

o(b,o(a,z)) =c(amb,x) =0(0r,z) = 0y implies that o(a,x) € T(o, J). O

Lemma 7.1.17. If the top element 11, of the locale L is the join of n zero divisors of

L then every element of the L-slice (o, J) is the join of n torsion elements.

Proof. Let 15, = z; L 25 U ..... U 2z,, where each z; is a zero divisor of L.
For any z € (0,J), o(1p,2)=0(z1 L 2o L1 ... L 2y, 2)
=o(z1,2) v o(z,T)........ o(zn, x)
=z =o0(2,2) vo(z,r).. ... o(zn, x)
The above lemma states that each o(z;,x) € T'(o, J). Hence the result. O

A characterisation of the total graph of an L-slice based on the zero

divisors of the locale L.

Theorem 7.1.18. If L has a finite basis of zero divisors then the total graph of the
L-slice (0, J) is complete.

Proof. 1f {21, z9, ...z, } be the finite basis of zero divisors then from the above lemma
x = o0(z,2) v olze,x)........ 0(zn, z), where each o(z;,x) € T(o,J). And the fact

that T'(o, J) is an ideal will give us the theorem. O
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Proposition 7.1.19. The chromatic number xU'(T (o, J)) of T'(T(o, J)) is such that
either always xI'(T'(o,J)) =1 or xI'(T'(0,J)) =n + 1, where n =| T'(o, J) |.

Proof. 1t T(o, J) = {0,} then graph I'(T'(o, J)) is totally disconnected and xI'(T'(c, J))
is one. We know that the subgraph induced by T'(o,J) is the complete graph K,,.
Theorem 7.1.12 shows that if T'(o,J) is a proper ideal then I'(T'(o,J)) is always
disconnected. Thus if T'(o, J) # {0} then xI'(T'(0, J)) = n + 1. O

Remark. Theorem 7.1.8 (t = {0}) and Theorem 7.1.12 (¢ # {0}) shows that I'(7'(o, J))

is never a critical graph.
Property 8. The diameter of the graph diam(I'(T'(o, J))) € {1, w0}

Proof. The theorem 7.1.5 shows that diam(I'(T'(o,J))) = 1. If T(0,J) = {0,} then
the graph is totally disconnected and diam()['(T'(o, J))) = 0. O

Property 9. The radius r(I'(T'(c, J))) € {0, 1}.

Proof. The graph I'(T'(o, J)) is either complete or disconnected. Hence the radius of

the total graph of the L-slice will be either 0 or 1. O]

Let us denote the subgraph induced by T'(e¢,J) as I',(T(o, J)), where n denotes

the cardinality of the set T'(o, J).

Property 10. If T'(o, J) is proper ideal then the diameter and radius of I',,(T (o, J))

will be the same and equal to 1.
Proof. The property is obtained through the completeness of the subgraph. O]

Property 11. Whenever |T(o, J)|=n = 3, then the girth of T',,(T (o, J)) denoted as
gr(Lw(T' (o, J))) = 3 and the circumference of I',(T(0,J)), c¢(I'n(T(0, J))) = n.
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Proof. Follows from the completeness of T',(T'(o, J)). O
The above property can also be restated as
Property 12. If |T(o, J)|=n = 3 if and only if gr(I',(T'(c, J))) = 3

In this section we have defined and studied various properties of the total graph.
We have observed that I'(T'(o, J)) is complete if |[Ann(J)|= 2. If |T(o, J)|= 2 then

I'(T(o,J)) disconnected. Thus I'(T' (o, J)) is either complete or disconnected.

7.2. Graphs associated with weak Zariski topology
w* on Spec(a,C)

We have shown in Chapter 5 that the sets C'(n) = {p € Spec(o,C) : n < p} forms
basis for a topology on prime spectrum Spec(a, C'). Also, if C'(n) v C(l) = C(n A l)
the collection v = {C(n) : n € (0,C)} will then be the collection of closed sets on
Spec(o, C') and the topology so formed may be called weak Zariski topology w* on
Spec(o,C) .

This section deals with graphs associated with this weak Zariski topology w*. For a
subset T of Spec(o, C') we introduce a graph Gr(w*). We study some of its properties

and show that it has a bipartite subgraph.

Definition 7.2.1. Let 7" be a nonempty subset of Spec(o, C'). The graph Gr(w*) has
as vertex set V(Gr(w*)) = {ne (0,C):3 l€ (0,C) such that C(n)u C(l) =T}.
Also, two vertices n and k are adjacent if and only if C(n) U C(k) = T. In other
words, the graph Gr(w*) has n as vertex if and only if there exists a [ € (o, C') such

that C(n A l) =T.
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Remark. We study the properties of graphs associated with the weak Zariski topology.
The definition itself gives us two conditions for such a graph to exist. We state them

as our next two propositions.

Proposition 7.2.2. Gr(w*) # ¢ if and only if T is closed and is not an irreducible
subset of Spec(o,C).

Proof. Follows directly from the definition of Gp(w*). O
The above proposition can be rephrased as follows.

Proposition 7.2.3. Gr(w*) # ¢ if and only if T = C(AT) and T is not an irre-
ducible subset of Spec(a,C).

Proof. Suppose Gr(w*) # ¢. The above proposition shows that T is closed.So it
remains to show that 7= C(AT). We know that T < C(AT). Let C(n) be
any closed subset of Spec(o,C) containing T. Then n < p Vp € T implies that
n < /\,erp = ¢ Therefore for evey I € C(q) implies [ € C'(n). That is, C(n) 2 C(g).
Hence C(g) is the smallest closed set containing 7. Thus 7' = C(q) = C(/\ epp) =
C(AT). O

Theorem 7.2.4. The weak Zariski topology graph Gr(w*) is connected and the

diameter of the graph , diam(Gr(w*)) < 2.

Proof. 1f n and k are not adjacent then C'(n) u C(k) # T. Now there exists vertices
[ and k such that C(n) v C(l) =C(nAl) =T and C(m)u C(k) =C(m A k) =T. If
[ = m then n — 1 — k is a path of length two. If [ # m then n — (I A m) — k is a path

of length two. Hence G'r(w*) is connected and diam(Gr(w*)) < 2. O
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Corollary 7.2.5. If Gp(w*) contains a cycle then the girth g(Gr(w*)) <3 .

Proof. Suppose g(Gr(w*)) =k > 3. Let ny —ng—ng—---—mng_1 —ni —ny be a cycle
with length k. Then clearly nq — (ny A ng_1) —ng — ny is a cycle of length 3. Hence

a contradiction. Therefore g(Gr(w*)) < 3. O

Examples 7.2.6. i) Let C = {1,2,3,4,5} and (C,<) be complete lattice with < as
the usual ordering ‘less than or equal to’. Let the locale be (L = {1,2,5},<). The
action o defined as o(a,z) = a mx will make C an L-component (m,C).

In this case Spec(o,C) = {2,3,4} and C(1) = Spec(o,C), C(2) = {2,3,4}, C(3) =
{3,4}, C(4) = {4}, C(5) = ¢. Also, C(n)uC(m) = C(nam) for everyn,m € (m,C).
If T = {3,4} then V(Gr(w*)) = {3,4,5}. The graph Gp(w*) is K.

If T ={2,3,4} then V(Gr(w*)) = {1,2,3,4,5} and the graph Gr(w*) is K 3.

Also if T = {2,4} then Gr(w* = ¢)
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it) Consider the complete lattice

Let L = {0,a,1}. The spectrum Spec(o,C) = {z,a,b}. C(0) = Spec(o,C),
C1) = ¢, Clx) = {z,a,b}, C(c) = {a,b}, C(a) = {a}, C(b) = {b}. It can be easily
verified that C(n) U C(m) = C(n A m) for every pair n,m € (0,C). For T = {z,a}
then Gr(w*) = 6. If T = {a,b} then V(Gp(w*)) = {1,¢,a,b} and the graph is

b a

If T = {a} then V(Gr(w*)) = {1,a} and the graph is

o—0

1 a
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Remark. Since C'(1¢) = ¢ the top element 1o will always belong to the vertex set

and deg(1l¢) = 1. Also deg(1¢) is the cardinality of the set {n € (0,C) : C(n) =T}

Proposition 7.2.7. For any finite set T and Gr(w*) # ¢ we have that
T M V(GT(O)*) #= ¢

Proof. Let p € T then we have C(p) u C(/\ q) = T.Therefore, p € V(Gr(w*)).

qeT,g#p

]

7.3. The subgraph G’ (w*)

Definition 7.3.1. The subgraph G7(w*) of Gp(w*) has vertex set V(G (w*)) defined
as {n € (0,C) : there exist [ € (0,C) such that C(n) v C(l) = T, C(n),C(l) #
T,C(n)nC(l) = ¢}, where (u,v) € E(Gp(w*)) if and only if C(u)uC(v) = T, C(u) N
C(v) = ¢.

Note that the degree of u is the number of vertices k with C(v) = C(k).
Proposition 7.3.2. G7.(w*) # ¢ if and only if T = C(Nger ) and is disconnected.

Proof. We have already shown Gr(w*) # ¢ then T' = C(A .1 q). Letn,l € V(Gr(w®)),
then C'(n)uC(l) =T,C(n)nC(l) = ¢. Thus, T is disconnected. The converse follows

easily from the definition. O]
Theorem 7.3.3. G.(w*) is a bipartite graph.

Proof. A graph is bipartite if and only if it does not contain an odd cycle [23]. We
will show that G7-(w*) does not have an odd cycle. Suppose g(Gr(w*)) = k > 4.
Consider the cycle ny — ng —ng — -+ — ngp_1 — np — ny of length k. It is evident

that C'(ng_1) = C(ny). The cycle ny —ny —ng — -+ — ng_o — ny is of length k — 1.
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Thus ¢(Gr(w*)) < 4. We show that g(G7(w*)) # 3. Suppose n; — ny — nz — ny is
3-cycle. Then ¢ = (C(n1) n C(ng)) v (C(n3) N C(ny)) = C(n1) N (C(ng) u C(ng)) =
C(n1) n'T = C(ny).Thus we arrive at a contradiction. Hence the graph does not

contain an odd cycle. O
Corollary 7.3.4. If G(w*) contains a cycle then gr(Gp(w*)) = 4

Remark. Go(w*) is a complete bipartite graph if and only if C(n) = C(l) for every

vertices [, n belonging to same vertex set.

Examples 7.3.5. i) Consider the complete lattice C to be

For L = {0,a,1}, Spec(0,C) = {z,a,b}.If T = {a,b}, then V(Gr(w*)) = {a,b}.
Hence G (w*) is K1 1. Also if T = {a}, then V(Gp(w*)) = ¢.
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it) Consider the complete lattice C' to be

18
6 9
2 3
1

For L = {1,2,18}, Spec(o,C) = {2,6,9}.If T = {6,9}, then V(Gr(w*)) = {3,6,9, 18}

1 9
3 6

and V(G (w*)) = {6,9} and the graph is K, ;.

and the corresponding graph s

iii) Consider the complete lattice C' to be

L ={0,d,e, 1}, Spec(o,C) = {b,d,e}. If T = {d, e}, then V(Gr(w*)) = {d,e, 1} and

the corresponding graph is
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and V(Gp(w*)) = ¢. If T = {b,e}, then V(Gr(w*)) = {f,b,e,1} and the correspond-

ing graph is

!

V(Gr(w*)) = {b,e} and G (w*) is K, ;.

This chapter introduces the concepts of total graphs and that of graphs associated
with the weak Zariski topology. The introduction of concepts of algebraic graph
theory into L-slices is initiated through this chapter.Different types of graphs can be
studied in the background of L-slices. The topological properties of L-slices can be

used to study the graphs associated with them.
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Conclusion

The classical topology involves the concept of a point and its neighbourhood. From
Stone’s representation theorem there envisaged a journey from the realm of point-
set topology to point free topology.Isbell [31]emphasises the importance of point-
free topology. The benefit of thinking from a point free domain is that both lat-
tice theoretic, in turn algebraic tools could be brought into play. Thus frame/locale
became a breakthrough for topologists. The algebraic concept of ‘group action’ in
the background of locales is studied by Sabna K.S. and Mangalambal N.R [58].The
structure thus developed is called L-slices. The benefit of L-slices is that both al-
gebraic and topological tools were put into action. Moreover [59] showcases many
algebraic concepts like action,annihilator,isomorphism theorem and so on. Similarly,
the topological properties like compactness were also discussed.Thus L-slices ensures
the availability of both topological and algebraic tools. This frame work of L-slices is
used in our thesis.

We have investigated L-slices from different perspectives. For each x € (o, J), the
filter F), has assisted in the development of category Batch. We have defined asso-
ciated filter , R-A slice on the basis of F,. Also it enables us to define F-continuous
slice morphisms parallel to the concept of sequential continuity in classical topology.

Further, F, prompted the development of the concept called Box & and the stack of
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filters &, which consequently led to Batch .

The study on Hom slice Hom(o, J) led to the development of class of expansive
and contractive operators. The class of contractive operators (a : &) gom forms a basis
for the topology on Hom(o, J). Also through the system of contractive operators J,,
evolved the quotient slice (y,J/ ~,). The subslice [a : f](,.) of (0, J) permits the
topological notion of continuity in the dominion of L-slices.

The ring C(X) is the study of continuous real valued functions on the topological
space X. In other words,C'(X) deals with all those continuous function with range set
in R. Equivalently, in Hom(L, J) we studied the properties of all L-slice morphisms
with the domain fixed as the locale L. We defined the collection of zero sets and fixed
ideals of L-slices and found that they have the structure of an L-slice.

The similarity between the structure of L-slices and modules prompted us to con-
sider the possibility of Zariski topology on L-slices. There we introduced L-component
thus succeeding in the definition of the Zariski topology €2*. Some properties of (2*
were also investigated.

The possibility of generalising L-slices led to the development of Q-slices.Quantales
are well known to be the generalisation of locales. We have studied a particular type
of maps called deduction on quantales. The ideals constructed using deductions led
to a quotienting of quantales. Also we defined Q-slices and showed that the collection
of all deductions ®(Q) is a Q-slice.

Graph theoretic development of L-slices led us to the total graph I'(T'(o, J)) and
Gr(w*) on L-slices. We have shown that if 7'(o, J) is a proper ideal of (o, J) then
['(T(o,J)) is disconnected. Also we showed that I'(T(o, J)) is complete if and only
if the L-slice (o, J) is not faithful. We were also able to prove that the weak Zariski

topology graph Gr(w*) is connected and diam(Gp(w*)) < 2.
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The first, third and last chapters leave ample scope for further study. The first chap-
ter introduced the category Batch and some of its basic properties. The Batch can be
studied for its categorical properties like subobjects, monomorphism,epimorphism,limit
and so on. Chapter 3 leaves open a far more wide area of studying the properties of
fixed ideals.The study can be developed in the direction of relationship between fixed
ideals and maximal ideals. Similarly, last chapter paves way for a graph theoretic ap-
proach to L-slices.More concepts of graph theory can be developed in the background

of L-slices. A characterisation of L-slices and different types of graphs can be studied.
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