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for optimizing the size and location of DG units should be able to handle

the uncertainty of DG sources. The objective is to optimally integrate solar

Photovoltaic source in unbalanced radial distribution network considering

the uncertainty of the PV source. The main objectives of the thesis can be

enumerated as

1. Analyze various unbalanced distribution feeders for their steady state

conditions before and after the integration of DG units for voltage

profile, current flows, losses, etc.

2. Model the uncertainty associated with PV sources using a suitable

modelling technique to represent the fluctuating power output.

3. Apply Stochastic Learning algorithms such as Learning Automata (LA)

and Reinforcement Learning (RL) for optimally allocating PV units in

standard unbalanced test feeders.

4. Conduct the power flow and optimally integrate the PV units in a

practical distribution feeder for analyzing the impacts.

The first stage of the research work is concerned with the development of

power flow algorithms for the unbalanced distribution network that can han-

dle the DG units as PV nodes for including their representative features.

Power flow methods for power distribution systems are quite different in

comparison to transmission systems owing to their radial topology, unbal-

anced operation, and high R/X ratio. A power flow algorithm is developed

by modifying the Forward- Backward sweep algorithms for incorporating the

DG units modelled as PQ nodes as well as PV nodes. The algorithm is vali-

dated for balanced distribution feeder as well as two unbalanced test feeders.
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The voltage profile, current flows, losses, etc. is compared for three cases, i.e.

without adding DG units, by adding DG units as PQ nodes and by adding

DG units as PV nodes.

The second stage of the work involves the uncertainty modelling of the

solar PV generation. The solar irradiance data collected from the national

solar radiation data base, are modelled using Beta Probability Distribution

Function (PDF). The beta PDF is used to generate random samples that

feature the behaviour of historical data that can be used to calculate the

random power output produced from solar PV units. This data is used for

calculating capacity factors for various types of modules which help in se-

lecting the suitable PV module for the selected site. This power output can

be treated in the power flow as a multi-state variable to analyze the hourly

variation of system parameters.

In third stage, stochastic learning algorithms are used for optimally inte-

grating PV units in the unbalanced distribution feeders. The optimal alloca-

tion is formulated as a Single Stage Decision making problem and is solved

using Learning Automata. The PV units are integrated so as to minimize

the power losses in the distribution feeders. The algorithm is validated for

IEEE 33-bus balanced feeders and is implemented for IEEE 13-Bus and 37-

bus unbalanced distribution feeders. For efficient and accurate representation

of distribution system parameters the optimal integration is formulated as

a Multistage Decision Problem (MDP). MDP is solved using RL for IEEE

33-bus balanced distribution feeder.

In order to check the suitability of the proposed algorithm, a 4.3 MVA

practical distribution feeder is considered for a case study. The selected

iii



feeder spans over 7.3 km with 55 buses. The optimum size of the PV units

to be installed at specified locations is determined using the proposed algo-

rithms so as to minimize the power losses in the system. The locations are

selected based on the voltage profile and the type of customers. The voltage

profile, energy losses, hourly variation in voltage profile, loss reduction, etc.

was analyzed for the selected feeder. The results show that there is much

scope for installing PV units in the selected locations for minimizing losses

and improving the voltage profile.

The integration of more PV units in the distribution system is to be ex-

pected in the near future as many initiatives are taken for deployment of

more energy from PV source. This requires the DG integrated system to be

analyzed thoroughly with methods to find out the capacity of PV installa-

tion so that the stable operation of existing grid is not affected. The optimal

sizing of PV units and the associated computation and analysis of system

parameters are very important from the utility side before permitting the

willing customers to connect PV units at their premises. The utility can

suggest the proper sizing for the customers who are ready to connect DG

sources. The customer is also benefited by the installation of PV units with

proper sizing with which they can maintain the reliability and efficiency of

their system. The proposed solution suggests a solution scheme for the util-

ities to integrate DG sources in the distribution network optimally.

Keywords: Unbalanced Distribution Network, Forward- Backward Sweep,

Optimal Distributed Generation Placement, Uncertainty Modelling, Rein-

forcement Learning, Learning Automata
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Chapter 1

Introduction

The global power sector has witnessed a rapid growth in the penetration

of Distributed Generation (DG) sources in the past few decades. This is

driven by a keen interest among the countries to reduce the greenhouse gas

emissions thereby mitigating global warming. Moreover, the introduction of

Distributed Generation (DG) sources contribute to the diversification of en-

ergy resources, reduction of system losses, on-peak operating costs and the

reduction of transmission and distribution costs. In a developing country

like India, efficient and buoyant power sector with high financial robustness

is the need of the hour for booming economic growth and poverty allevia-

tion. However, in the last few years the growth of demand for electric power

has exceeded the growth in the generation which leads to considerable peak

energy shortages. This is hindered by the inefficiency of generation, trans-

mission, distribution and the remarkable level of technical and commercial

losses. Even though the performance of all the three sectors of the power

system is equally important, the customer is mostly linked to the distribu-
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tion system since the return originates at the customer end. Therefore the

inadequate performance of the distribution system harms the security of the

entire system.

Taking account of the above situation, the major focus of the Indian Elec-

tricity Act 2003 (Act, 2003) was towards the improvement in the performance

of the distribution system and the rural electrification through distributed

generation. The thrust of the act was to provide reliable supply to Rural

India using the decentralized, distributed generation facility wherever the

conventional electric grid was not possible. In addition to this, the Electric-

ity Amendment bill introduced in 2014 strongly recommends the integration

of renewable energy and Distributed Generation (DG) sources to the power

system. This motivated Indian electric power industry to witness a marked

up penetration of the local and intermittent sources of energy in the past

few years. The installed capacity of renewable energy sources has reached

38.5 GW in 2015 and the growth of renewable installed capacity is drastic as

compared to 18 GW in 2010.

India is blessed with immense potential for solar power owing to its ge-

ographic location within the tropic region. Most of the parts of India have

300-330 sunny days in a very year that is sufficient to meet the entire energy

demand within the country. Unleashing a percentage of the available poten-

tial of 750 GW solar power is expected to provide electricity access to 300

million people who lives without electricity in Rural India. The Government

has launched Jawaharlal Nehru National Solar Mission (JNNSM) which aims

to achieve the installed solar capacity of 100 GW by 2022 of which 40 GW

is to be contributed by the rooftop panels (mnr, 2012). The Central and

2



State Government have taken many initiatives as a result of which the in-

stalled capacity of the solar photovoltaic has reached 8.63 GW in 2016. The

contribution of DG sources in the power generation is expected to rise in

the forthcoming years, resulting in a scenario where local generation will be

much cheaper than the energy supplied by the electric utilities.

There are numerous benefits that can be achieved with the integration

of DG sources. Minimization of Losses, maximization of reliability, improve-

ment in voltage profile and elimination of system upgrades are a few. But

the introduction of DG sources causes problems in the power network that

have not been outlined beforehand. The traditional power system operation

was based on the peak load which was very much accountable and hence the

generation control could be ideally performed. Further the addition of dis-

persed generation units cause a transformation of the distribution network

to ’active’ involving bi-directional power flow. Therefore, efficient analysis

of the distribution system with DG is very much needed in the present sit-

uation. The decision about the DG placement is taken by the owners and

the investors and in most of the cases, Distribution System Operators (DSO)

have little influence over the location and size of DG units. But the impacts

of the DG placement on the operation of the distribution network are criti-

cal. The improper placement of DG causes greater losses than the systems

without DGs. On the other hand, optimal integration of DG resources helps

to improve the performance of the distribution network in terms of voltage

profile and losses. Appropriate strategies for finding out the optimal capacity

and the location of the DG sources should be investigated so as to accomplish

the advantages with the integration of DG sources.
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There are so many factors that have to be considered in determining the

optimum location and capacity of DG systems. Some of them are the pen-

etration level of DGs, location uncertainty, varying and intermittent power

output from DGs etc. This has generated interest among the researchers and

engineers to study the integration issues associated with DGs, the impact of

such integration on the electric power system and the pros and cons associ-

ated with DGs. Minimization of network losses is a significant aspect to be

considered for the reliable and efficient operation of DG integration. There

is a significant variation in the methods that are adopted for optimally inte-

grating DG units in the distribution network. The commonly used methods

can be categorized as Analytical methods, Numerical methods and Heuristic

methods. The application of the first two methods is limited to small and

medium systems, whereas most of the heuristic methods lack the ability to

handle stochastic data that exists in practical situations. The power produc-

tion from DG sources is uncertain in nature and therefore the optimization

technique employed should be able to handle such uncertainty. Stochas-

tic learning algorithms such as Reinforcement Learning (RL) and Learning

Automata (LA) can be used for optimization problems in power system in-

volving stochastic data and situations. The application of such methods in

solving stochastic power system problems are a few.

The main objective of the thesis work is to analyze the unbalanced ra-

dial distribution system with PV source by optimally integrating them to

the distribution network. The stochastic learning algorithms such as LA and

RL are used for optimally integrating DG sources in unbalanced distribution

systems by considering the random power output from DG sources. In this
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thesis, the integration is done after analyzing the DG integrated distribution

system for impacts on voltage profile and losses and also by modelling the

uncertainty associated with the solar Photovoltaic generation. The applica-

tion and suitability of stochastic learning algorithms for optimal integration

of DG units in the unbalanced distribution network are explored in the the-

sis.

For determining the optimum DG location and size, the DG integrated

system should be analyzed by conducting the power flow. Also the uncer-

tainty associated with the DG source should be modelled to represent the

random variation of power output from such sources. The following section

gives an insight to the preliminary analysis and modelling before integrating

PV source in the distribution network. The uncertainty modelling of the solar

PV source is discussed in section 1.1.2. The optimal integration is discussed

in section 1.1.3. The objectives of the research work is given in Section 1.2.

Then the outline of the thesis structure is given in the concluding section.

1.1 Research Focus

1.1.1 Power Flow Analysis for DG integrated Unbal-

anced Distribution System

Power Flow Analysis is an important and basic tool for any power system

which is used in the planning, design as well as the operational stages. It

helps to determine the steady state behaviour of the power system. Distribu-

tion networks are characterized by a highly radial topological structure which
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is different from the highly meshed structure of the transmission networks.

This makes distribution systems as an ill conditioned power system. They

also possess some features, which rules out the application of conventional

well established power flow algorithm for distribution networks. Efficient

Distribution power flow helps in realizing various applications in distribu-

tion automation and distribution management like VAR planning, switching,

state estimation etc. and able to solve the load flow for distribution systems

with any number of nodes, with radial or meshed topology, to which unbal-

anced loads and Distributed Energy Resources (DER) may be connected.

The increased penetration level of DG sources in the distribution sys-

tem necessitates the development of power flow algorithms that can handle

DG sources as well as the unbalance associated with the distribution network.

These DG sources should be included in the power flow with their generating

characteristics which requires DG units to be modelled as voltage controlled

bus (PV bus). The integration of DG sources may change the topology of

the radial distribution network and the power carried by the feeders are sub-

jected to changes in direction depending upon the load and DG levels. In

the distribution power flow studies DG units can be included as PQ nodes

or PV nodes. The DG units modelled as PQ buses can be treated in the

power flow as negative PQ loads with currents injected into the bus. But

when DG units are modelled as PV nodes, modification in the power flow are

necessary. Most of the research work dealing with power flow algorithms do

not address the unbalance in the distribution network. Also the DG sources

were included simply as PQ nodes by utilizing constant power modelling. An

unbalanced power flow algorithm that can handle the DG source by mod-
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elling them as PV nodes is presented in the research work in the first stage.

The algorithm is a sweep based algorithm with a capability to incorporate

DG units as PV nodes. The DG units were included as PQ nodes and PV

nodes to analyze the impact of modelling on the losses and voltage profile.

The basic algorithm is also validated with the standard distribution analysis

software openDSS.

1.1.2 Uncertainty Modelling of Solar Irradiance and

Solar PV generation

The power produced from DG sources such as wind and PV generation is

fluctuating in nature. Therefore the uncertainty associated with power pro-

duction from such sources should be modelled appropriately. If the available

data are sufficient, solar irradiance is to be modelled as as a random variable

for which probabilistic distributions are used.

Several probability distribution functions were used by researchers for

modelling the uncertainty associated with PV source. Weibull, Log-normal

and Beta are a few. The best fitting distribution for the selected solar irra-

diance data should be determined. The selected PDF can be used to model

the irradiance data and the corresponding power output. This is done by

generating random samples that feature the behaviour of the historical data.

Depending upon the characteristics there are many different types of mod-

ules, cells and arrays that are available in the market. The type of the module

that is best suited for a particular site should be determined depending upon

the capacity factor. This selection should be regardless of the size of the

module and the power rating. The modelling of uncertainty associated with
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the solar irradiance and the corresponding power output helps in finding out

the capacity factors and thereby helps in the selection of a particular module

that yields maximum power output for the selected site.

1.1.3 Optimal Allocation of PV units

The deployment of DG sources, especially solar Photovoltaic (PV) units is

one of the promising solutions to meet the rising power demand. The in-

tegration of such sources improves the overall efficiency of the distribution

network by reducing the total power losses, improving the voltage profile,

eliminating the need for system upgrades and thereby reducing the cost of

the overall system. But these benefits can be achieved only if the DG units

of optimum capacity are integrated at suitable locations in the distribution

network. The problem of determination of optimal capacity and location

of the installation of DG units is generally termed as Optimal Distributed

Generation Placement (ODGP) problem. In ODGP problem, techniques are

utilized in order to optimally allocate DG units in the distribution system so

as to minimize one or more objective functions such as minimization power

losses, energy losses, cost etc. subjected to various technical and operational

constraints. While considering the optimal placement of intermittent DG

sources such as wind and solar PV units, the optimization technique should

be able to handle the uncertainty associated with the power production from

such sources.

Reinforcement learning (RL) and Learning Automata (LA) are stochastic

learning methods which involve learning from interactions with the environ-

ment, mapping the situations to actions so as to maximize the reward and
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minimize the penalties. RL and LA can handle the stochastic data and can

be applied in decision making situations without the need to formulate a

precise mathematical model to start with. RL have been applied to many

decision making situations in power system such as unit commitment, eco-

nomic dispatch and automatic generation control. The application of RL and

LA for Optimal Integration of DG sources is presented in the third stage of

the thesis work.

A thorough analysis of the distribution feeders is very much essential

before installing PV units in the distribution system. Most of the feeders

are experiencing a power deficit and poor voltage regulation during peak

hours. The peak power deficit is high as 1600 MW since 80% of the load is

contributed by the domestic consumers. The expansion of the transmission

grid is impractical owing to the constraints on the right of way permission

for laying of new lines. The ultimate solution in order to meet the peak

shortage is the integration of more and more renewable energy resources into

the distribution grid. The state government of Kerala has already launched

a unique off-grid solar rooftop program known as the 10,000 Solar Rooftop

Program with the help of the state nodal agency ANERT (Agency for Non-

conventional Energy and Rural Technology) and is in the final phase. The

state is now planning for the 25000 rooftop power program which would be

grid connected apart from the large scale ground mounted solar power plants

to be commissioned. Analysis is conducted on a practical distribution feeder

in Kerala state where there is scope for installation of PV units. The im-

pacts of the PV installation on the practical distribution feeder after the

installation of PV size of optimal size at specified location are presented in
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the fourth and final stage of the thesis work.

1.2 Objectives

Efficient operation of the distribution system after the installation of DG

units depends on the capacity of DG installation and the point of inter-

connection in the distribution feeder. This requires stochastic optimization

algorithms for the determination of optimum capacity and location of DG

installation. The optimum allocation of solar PV units so as to minimize

the total power losses in the unbalanced radial distribution network using

stochastic learning algorithms, namely RL and LA is the main focus of the

research work. This is done by analyzing the DG integrated unbalanced

distribution network by developing a suitable power flow algorithm. The un-

certainty associated with the random PV power output is also considered in

optimal allocation. The main objectives of the thesis can be enumerated as

1. analyze various unbalanced distribution feeders for their steady state

conditions before and after the integration of DG units for voltage

profile, current flows, losses etc.

2. Model the uncertainty associated with PV sources using suitable mod-

elling technique to represent the fluctuating power output.

3. Apply Stochastic Learning algorithms such as Learning Automata (LA)

and Reinforcement Learning (RL) for optimally allocating PV units in

standard unbalanced test feeders.
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4. Conduct the power flow and optimally integrate the PV units in a prac-

tical distribution feeder for analyzing the impacts of PV integration.

1.3 Outline of the thesis

The thesis focuses on optimal allocation of PV units in radial distribution

network considering the inherent unbalanced nature of the distribution net-

work and uncertainty associated with the PV source. As a preliminary step,

the DG integrated distribution system is analyzed by a suitable power flow

algorithm. The uncertainty associated with the PV units is also modelled

to include them as a random variable. Different power flow algorithms and

modelling techniques are reviewed in detail. The various existing solution

methodologies adopted are also reviewed in detail, emphasizing their advan-

tages and limitations.

As a first step towards integrating PV units in the distribution system, a

power flow algorithm is developed for analyzing the unbalanced radial distri-

bution feeder. The power flow algorithm is capable of handling the DG units

as PV nodes for including their representative features. The power flow algo-

rithm is developed by modifying the Forward-Backward sweep algorithm for

inclusion of PV nodes. The algorithm is validated for balanced distribution

feeder as well as two unbalanced test feeders. The voltage profile, current

flows, losses, etc. is compared to three cases, i.e. without adding DG units,

by adding DG units as PQ nodes as well as by adding DG units as PV nodes

to analyze the impact of DG modelling on system parameters.

The power production from intermittent renewable energy sources are

11



Chapter 1. Introduction

uncertain in nature and are subjected to fluctuations depending upon the

weather condition. This uncertainty should be modelled by appropriate prob-

ability distribution functions. Here for representing and modelling the un-

certainty associated with PV source, Beta PDF is used. Beta PDF is used to

generate random samples that feature the behaviour of historical data that

can be used to calculate the random power output produced from solar PV

units. This data is used for calculating capacity factors for various types of

modules which helps in selecting the suitable PV module for the selected site.

This power output can be treated in the power flow as a multi-state variable

to analyze the hourly variation of system parameters.

Optimal allocation of PV units is very important from the utility side as

well as customer side for efficient operation of the PV integrated distribution

system. The optimal PV integration is formulated as a single stage decision

making problem and is solved using LA. The same is also modelled as multi-

stage decision making problem which is solved using RL. The PV units are

integrated so as to minimize the power losses in the distribution feeders. The

algorithm is validated for IEEE- 33 bus balanced feeders and is implemented

for IEEE 13-Bus and 37-bus unbalanced distribution feeders.

Finally a practical distribution feeder of 4.3 MVA capacity is taken as a

case study. The power flow is carried out for the practical feeder and the

optimum PV size to be installed at specified locations is determined by ap-

plying the stochastic learning algorithms namely, LA and RL. The locations

for PV installation are selected based on the voltage profile and the type

of customers. The voltage profile, energy losses, hourly variation in voltage

profile, loss reduction, etc. was analyzed for the selected feeder. The results
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shows that there is much scope for installing PV units in the selected loca-

tions for minimizing losses and improving voltage profile.

The Chapters of the thesis are organized as follows

For stating the problem and thus developing solution approach, a thor-

ough review has been conducted to study the various power flow algorithms

for distribution network and the modelling techniques used for representing

the uncertainty of DG source. A review was also conducted in order to study

the various techniques that are used for optimally allocating the DG sources

in the distribution network. A detailed description of all these techniques is

given in Chapter 2.

The unique characteristics of the distribution system necessitates separate

power flow algorithms for distribution networks. The power flow algorithm

that is developed for unbalanced radial distribution feeder is described in

Chapter 3. The comprehensive modelling of different distribution system

components that is used in the iterative routine for power flow are also dis-

cussed. The power flow algorithm is validated for distribution feeders of

varying complexity and size.

The DG units can be included in the power algorithm as PQ nodes as well

as PV nodes. This modelling depends on the type of DG that is selected and

the method of their interconnection to the grid. DG units to be modelled in

the power flow algorithm as PV nodes for representing their features. The

power flow algorithm is modified so as to include DG units as PV nodes,

which is discussed in Chapter 4. Also the different type of DG units, their

interconnection methods are also discussed.

The uncertainty associated with the PV source is modelled using Beta
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PDF which is used in the output power calculation. This can be helpful in

the selection of the module that is best suited for the selected site based on

Capacity Factors. Modelling of solar irradiance using Beta PDF is discussed

in Chapter 5.

RL and LA are stochastic learning algorithms that can be used to handle

the stochastic data that exists in practical situations. These algorithms do

not require precise model to start with the solution. The optimal allocation

of PV units is solved using LA and also by RL. The application of stochastic

learning algorithms for optimal allocation of PV units in various distribution

feeders is discussed in Chapter 6 which is also compared with the results from

literature.

Chapter 7 discusses the application of stochastic learning algorithms for

a practical distribution feeder of 4.3 MVA capacity. The optimal size of PV

units to be installed at specified locations is determined using LA and RL.

The locations were selected based on the voltage and the type of customers.

The PV integrated system is analyzed for voltage profile, losses, energy losses

etc.

The important contributions are given in the concluding chapter Chapter

8. The limitations and the scope for further work are also presented.
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Chapter 2

Literature Review and Problem

Definition

Ever mounting demand for electricity and increased concern for global warm-

ing has motivated the global power sector to transform the energy system to

one that is cleaner and less dependent on coal and other fossil fuels. This

resulted in the widespread use of renewable energy resources, especially Dis-

tributed Energy Resources (DERs) in the power system. The commonly

used DG sources are Wind Turbines, Photovoltaic (PV) sources, Fuel cells,

Internal Combustion (IC) engines, Gas turbines, micro-turbines, etc. In a

developing country like India, deployment of such sources is expected to meet

the growing electricity demand and rural electrification and therefore helps

in booming economic growth.

The decision about the size and location of Distributed Generation (DG)

is mostly taken by the owners and investors and Distribution System opera-

tors (DSOs) have little influence over this decision. But the impacts of DG
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integration on the distribution system operations are challenging. Proper

integration of DG sources improves the efficiency of the distribution system

in terms of reduction of power losses, improvement in the voltage profile,

etc. Also, improper integration of DG sources may cause greater losses than

the system without DG units thus reducing the performance of the system.

Therefore, proper analysis of the DG integrated distribution system is very

much needed to place the DG units of optimum size at the optimum locations

to realize the advantages of DG integration.

The analysis of various parameters of any power system is to be done

based on power flow studies. There are many power flow methods such as

Newton-Raphson, Gauss Seidal etc., which are used for power flow studies.

But these techniques cannot be used for distribution system because of some

unique characteristics of the distribution system. Distribution networks are

characterized by a highly radial topological structure which is different from

the highly meshed structure of the transmission networks. Therefore, special

power flow algorithms have been developed for the distribution system. Most

of these methods are based on Kirchoff s Voltage Law (KVL) and Kirchoff

s Current Law (KCL) leading to the power flow. The analysis of the DG

integrated distribution system by conducting suitable power flow method is

a prior task before planning any DG integration. Various power flow algo-

rithms that have been used for conducting power flow of the distribution

network are reviewed in Section 2.1.

The output power from the distributed energy sources such as Wind and

Solar power follows the fluctuations of the primary source of energy such

as wind speed and solar irradiance. This random nature of the DG sources
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should be modelled using suitable uncertainty model, so that the power out-

put can be predicted in advance. The various techniques that are used for

modelling the uncertainty associated with the DG sources are reviewed in

Section 2.2. The power output should be considered as a time dependent

variable in the power flow so that seasonal and hourly variation of the ran-

domly varying solar and wind power output can be analyzed. This helps to

plan the size of the DG unit to get the optimum power output. Therefore,

uncertainty modelling also plays a vital role while planning DG integration

in distribution network.

Plenty of research work has been done so as to optimally allocate the DG

units in a distribution network and a state of the art of these techniques is

discussed in Section 2.3. Distribution networks are inherently unbalanced in

nature and DG units further add to this unbalance. Therefore the power

flow algorithm should be able to handle the unbalance as well as the time

dependent power output from the DG source. The optimization technique

that is chosen for optimally allocating the DG sources should necessarily

be a stochastic optimization technique. Most of the research works have

used heuristic optimization techniques that are not so efficient in handling

the stochastic data that exists in practical situations. The analysis was also

carried out for balanced distribution networks without considering the unbal-

ance and random nature of DG sources. In fact, modelling the randomness

associated with the DG sources is of great importance in deciding the opti-

mum size of DG units.

The chapter is organized as follows. Section 2.1 discusses the various

power flow algorithms for distribution networks that has been developed so
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far. The scope of the algorithms along with their limitations are discussed.

Section 2.2 describes the various techniques that have been developed to

model the uncertainty associated with the PV source. Section 2.3 provides

a review of the various methods used for optimal DG placement with their

objective functions, advantages and disadvantages. Section 2.4 discusses var-

ious applications of reinforcement learning. The conclusion of the literature

review is presented in Section 2.5.

2.1 Review of Techniques for Powerflow

Power Flow Analysis is an important and basic tool for any power system

which is used in the planning, design as well as the operational stages. It

helps to determine the steady state behaviour of the power system. Distri-

bution networks are characterized by a highly radial topological structure

which necessitates special power flow algorithms for their analysis. An effi-

cient distribution power flow must be able to solve the load flow for distri-

bution systems with any number of nodes, with radial or meshed topology,

to which unbalanced loads and Distributed Energy Resources (DER) may

be connected. Several methods for solving the distribution power flow were

developed by various researchers. The following section summarizes the ef-

forts made for solving distribution power flow with a critical study of each

method including their special features, their advantages and limitations.

These methods for solving distribution power flow can be mainly classified

as Forward- Backward sweep Methods, Newton based methods and Gauss-

Seidal or Fixed point algorithms.
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Figure 2.1: A two bus distribution network

2.1.1 Forward-Backward sweep Methods

The most popular method for solving distribution power flow falls in the

category of Forward-Backward sweep method and these methods takes the

advantage of the radial topology of the distribution networks. The basic steps

in the method are called as forward and backward sweep. Forward sweep is

used to compute the new voltage at each node starting from the substation

node to the far end nodes. The currents flowing through each component

are computed using Backward Sweep, starting from the far end nodes to

the source node. The sweep based power flow algorithms can be classified

mainly into two groups, Kirchoff’s formulation and Quadratic equation based

sweep algorithms. As a first step, formulation of voltage equations involved

in forward-backward sweep algorithm is discussed in the next section.

2.1.2 Voltage Formulation for Distribution Network

A simple model for distribution lines is given in Fig. 2.1. The real and
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reactive power at the receiving end can be calculated as (Berg et al., 1967)

Pr =
VsVr
Z

cos(θz − δr + δs)−
V 2
r

Z
cosθz (2.1)

Qr =
VsVr
Z

sin(θz − δr + δs)−
V 2
r

Z
sinθz (2.2)

Here Vs and Vr represents the sending end and receiving end voltages respec-

tively. θz, δr, δs stands for the phase angles of the Line impedance and bus

voltages respectively. Eq. (2.1) and (2.2) can be rewritten as

cos(θz − δr + δs) =
PrZ

VsVr
+
Vr
Vs
cosθz (2.3)

sin(θz − δr + δs) =
PrZ

VsVr
+
Vr
Vs
sinθz (2.4)

Applying the trigonometric identity,

cos2(θz − δr + δs) + sin2(θz − δr + δs) = 1 (2.5)

Substituting Eq. (2.3) and (2.4) in (2.5), we get the well known bi-quadratic

equation given by Eq. (2.6). The maximum real root of the equation gives the

receiving end voltage magnitude. Eq. (2.7) gives line receiving end voltage

in terms of sending end voltage and sending end branch powers.

V 4
r + 2V 2

r (PrR +QrX)− V s2V r2 + (P 2
r +Q2

r)Z2 (2.6)

Vr =

√
V 2
s − 2(PsR +QsX)

(P 2
s +Q2

s)Z
2

V s2
(2.7)
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KVL equations in complex form for distribution line in Fig. 2.1 is given by

Vs = Vr + IsZ (2.8)

Vr = Vs − IsZ (2.9)

Equations (2.6), (2.7), (2.8) and (2.9) are widely used for calculating the

sending end and receiving end voltages when forward-backward sweep algo-

rithms are used.

a. Kirchhoffs Formulation-based Sweep Algorithms

Most of the distribution power flow methods based on forward-backward

sweep employs Kirchoff’s Voltage Law (KVL) and Kirchoff’s Current Law

(KCL) for calculating node voltages and branch currents in forward and

backward sweep. The algorithm for distribution power flow using basic KVL

and KCL was first proposed by Berg (Berg et al., 1967) for conducting unbal-

anced load flow for radial distribution systems. The concept used in develop-

ing the algorithm is that any portion of unbalanced three phase networks can

be represented as a 6 element Wye-delta network and any point of electri-

cal interest such as transformers, sectionalizing devices, changes in wire size,

junctions, ends of taps etc. can be considered as nodes. But the method

confined only for radial distribution networks, and considering all the nodes

as PQ nodes. A similar but more efficient algorithm for solving radial dis-

tribution feeders was proposed (Kersting and Mendive, 1976) by modifying

the ladder network theory. In the method, initial voltages are assumed for

the far end node which is used to calculate the load currents. The backward
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sweep equations are used to calculate the currents in the branches. In the

forward sweep, new voltages are computed by using the currents calculated

from the backward sweep. The convergence is achieved if the difference in

the value of the node voltages is within limits. A comprehensive model is

developed for various distribution feeder components. The method can be

extended for three phase networks, but can be applied only for radial distri-

bution network.

A combination of multi port compensation technique and Kirchoff’s laws

were used to formulate a power flow algorithm for the balanced distribution

network of either radial or weakly meshed configuration (Shirmohammadi

et al., 1988). The algorithm involves the transformation of the weakly meshed

network into the radial network by introducing appropriate break points and

then solving the radial network using forward-backward sweep algorithm.

The breaking is compensated by injecting currents at the breakpoints. But

the convergence became poor as the number of breakpoints increased. This

limitation had overcome in (Luo and Semlyen, 1990) by using nodal power

injections instead of complex currents, i.e. Here the breaking is compen-

sated by injecting power instead of current injections and sensitivity matrix

is obtained to calculate the corrections in the breakpoint power injections by

using the voltage mismatch as inputs. The PV buses are treated as break-

points so that DG sources can be incorporated. A combination of the two

methods described above is used to develop a power flow algorithm for three

phase unbalanced distribution network with a capability to incorporate dis-

persed generators as PV buses (Cheng and Shirmohammadi, 1995a). The

other issues associated with distribution systems such as Multiphase opera-
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tion, unbalanced distributed loads, voltage regulators etc. are also addressed.

The limitation comes only when the number of loops increases, which affects

the computational efficiency of the method.

A power flow algorithm involving algebraic expressions for computing the

voltage magnitudes for balanced distribution feeders was discussed in (Ghosh

and Das, 1999) by modifying the forward-backward sweep algorithm. In the

backward sweep, the power transferred is also calculated instead of simply

applying Kirchoff’s Current Law (KCL). Another robust algorithm was devel-

oped by modifying the forward-backward sweep algorithm (Thukaram et al.,

1999) where KCL is applied to find out the branch currents in the backward

sweep. Using these values of currents in Eq. (2.9) in the forward sweep, the

new node voltages are computed. The voltage magnitude in two consequent

iterations is compared for checking the convergence.

A power flow algorithm for balanced and radial feeders was proposed

(Aravindhababu et al., 2001) based on a matrix named as branch to node

matrix (C). The matrix is formed based on the topological characteristics

of the distribution network, which is to be computed only once during the

solution and therefore reduces the computational burden. This matrix along

with the branch voltages are used in calculating the new node voltages. The

convergence characteristics of the compensation based method were exploited

in order to develop an adaptive distribution power flow for radial and weakly

meshed distribution network (Zhu and Tomsovic, 2002). Along with break

point compensation, PV node compensation was also proposed. Compre-

hensively modelling scheme is adopted for various distribution system ele-

ments and operational constraints were also included. The reactive power to
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be injected for maintaining voltage mismatch was found out from PV node

compensation. The method was found to be reliable and fast and is checked

for various radial and weakly meshed distribution system. The algorithm is

also implemented for dynamic simulations.

The modified ladder theory was used in (Liu et al., 2002) with efforts

to improve the convergence characteristics of the forward-backward sweep

algorithm. In order to speed up the forward-backward sweep algorithm, a

ratio of the node voltage to the new sending end voltage is calculated. Also

the ratio of the new sending end voltage to the given value is also calculated.

In the forward sweep, the new node voltage is adjusted using this ratio and

hence in calculating new load currents in the backward sweep. Even though

the method proved to be efficient, it was unable to handle unbalanced and

meshed distribution network.

An unbalanced power flow algorithm that fully utilizes the topological

structure of the distribution network was developed by (Teng et al., 2000).

The method is based on two matrices namely Bus Injection to Branch Cur-

rent (BIBC) and Branch Current to Bus Voltage (BCBV) matrices. The

BIBC matrix represents the relation between injected bus currents and the

branch currents. BCBV matrix gives the relation between bus currents and

the branch voltages. Once these two matrices are developed, the power flow

algorithm can be solved for any unbalanced radial distribution network. The

algorithm is extended for three phase networks with DG sources in (Teng,

2003). The method was robust and efficient compared to other methods, but

the application was limited, since the matrices are to be formulated using

direct observation.
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The compensation method proposed by (Shirmohammadi et al., 1988)

was used to develop software objects for various distribution system com-

ponents using Object oriented technology (Selvan and Swarup, 2004). The

developed components can be used for analyzing the distribution feeder for

any analysis. The algorithm is first developed for radial distribution network

and is extended to the weakly meshed distribution system. This transforma-

tion was easy since the method used object oriented technology. The weakly

meshed distribution network is converted to radial one by the introduction

of break points which are compensated by injecting currents.

Khushalani et.al., developed an unbalanced power flow algorithm(Khushalani

and Schulz, 2006; Khushalani et al., 2007) by modifying the forward-backward

sweep method with a capability to incorporate the DG units as PQ and PV

nodes. A comprehensive modelling strategy for each and every component

is developed before performing the load flow calculations. For modelling DG

unit as PV node, the positive sequence voltage mismatch vector was com-

puted and hence the reactive power injection to maintain the voltage within

limits. The impact of modelling on voltage profile improvement is also ana-

lyzed. It is concluded that modelling DG units as PV nodes caused better

voltage and reduced losses than the case when DG units are modelled as PQ

nodes.

An improved forward and backward sweep algorithm was proposed (Chang

et al., 2007) which involved backward sweep and decomposed forward sweep.

Using backward sweep, the updated values of voltage are calculated using

KVL and currents by KCL for each upstream bus. At the end of the back-

ward sweep, the feeder network is decomposed into two independent resistive
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networks representing real and reactive component for each phase. A voltage

ratio is calculated based on the maximum node voltage mismatch vector and

this ratio is used to update the voltages in the forward sweep algorithm. This

method showed good convergence characteristics and designed to handle un-

balanced radial distribution feeders.

A loop analysis based method with modification in forward-backward

sweep was proposed in (Augugliaro et al., 2008). The method involved only

backward sweep where all the system quantities are determined during back-

ward sweep with a scaling factor which is same for all the variables. The

scaling factor is the ratio of the required source voltage to the calculated

one. The loads are simulated as impedances in each iteration and therefore

the network transforms into one containing only impedances. The voltages

and currents are expressed as linear functions of a single branch current for

radial system and two currents for each independent mesh in the case of a

meshed system. The reactance value that is required to maintain the voltage

within limits is computed in each iteration. The algorithm is compared with

the Newton-Raphson method and found to have better convergence.

A simple algorithm based on KVL and KCL for solving power flow for

radial distribution system also proposed by (Kumar and Selvan, 2008). Here

the usual KCL and KVL are performed, but each lateral and sub lateral were

treated as individual main lines. The current in any node is estimated from

the neighbouring node currents and the adjacent branch currents. The cur-

rent equations are formulated individually for laterals, sublaterals and main

lines. This simplification causes better computational efficiency and conver-

gence characteristics of the novel method. It is validated for IEEE-34 bus
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distribution system. But the inclusion of PV nodes is not addressed in the

algorithm.

The algorithm in (Augugliaro et al., 2008) was improved in (Augugliaro

et al., 2010) for solving distribution system with radial or meshed distribution

system supplying voltage dependent loads. The transfer function method is

used to express each quantity in terms of impedances and to convert meshed

network into radial one, cuts are introduced and the current is injected at the

cuts. The algorithm is capable of handling loads of any dependency, start-

ing from the simple radial network to meshed network. Other benefits are

in terms of computational efficiency and possible extension to transmission

network with a limited number of loops. But the application of the method

was limited to balanced distribution feeders.

The radial topology of the distribution network was utilized to develop a

power flow algorithm known as Fast and Flexible Radial Power flow (FFRPF)

for solving unbalanced distribution network (AlHajri and El-Hawary, 2010).

The method involved the calculation of a single matrix known as Radial Con-

figuration Matrix (RCM) which is a bus-bus oriented matrix that is derived

from RDS configuration and consists of two submatrices, three phase section

Bus matrix (SBM) and Bus section matrix (BSM) matrix. SBM is used to

calculate the nodal currents in the backward sweep and BSM is used for

nodal voltage calculation in the forward sweep. The algorithm is validated

for balanced and unbalanced system and the results were compared with the

conventional methods. The use of RCM makes the method computationally

efficient with fast convergence. The method can be used only for radial distri-

bution system and PV node incorporation is not addressed in the algorithm.
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A robust power flow algorithm for solving multiphase, heavily loaded and

highly meshed distribution network was developed in (Dilek et al., 2010).

The method is based on the formulation of a matrix called sensitivity ma-

trix. The independent loops are broken at certain points which are called

as co-trees. The current injections and extractions are used in a correlation

process and is continued until the voltage at the co-trees closely agree. The

algorithm is implemented for several distribution feeders in United States

of varying capacity and is compared with the conventional power flow algo-

rithms. Another algorithm based on the decomposition of the real and reac-

tive component was developed in (Chang et al., 2012) for analyzing weakly

meshed distribution system. After decomposition of real and reactive power

component of each series component, a linear proportion principle is applied

to calculate the ratio of the specified to the calculated voltages. The meshed

distribution network is radialized by using the concept of breakpoints. The

algorithm also introduced a new bus indexing scheme for the calculation of

bus voltages at the junction in the forward sweep. The algorithm is validated

for various IEEE benchmark systems and compared with the conventional

forward-backward sweep method for its improved computational efficiency.

The inclusion of DG units is not addressed in these algorithms.

An improvement in the forward-backward sweep algorithm was made for

solving, active and passive distribution network (De Oliveira-De Jesus et al.,

2013). The power flow algorithm is solved using the elements of a real, quasi-

symmetric matrix called TRX matrix. The TRX matrix acted as a complete

database with information on the topological structure of the network, branch

impedance, etc. The matrix helps to get the state of the system from the
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topology and branch matrix that are stored in the Distribution Management

System (DMS) database. The TRX matrix constitutes only real numbers,

The method is formulated for single phase and three phase unbalanced dis-

tribution network. The algorithm is validated for the IEEE 37-bus, 123-bus

and also for a 8500-node distribution feeders and compared with the conven-

tional algorithms in the literature. The method served as a scheme for the

on-line and off-line study of the distribution system.

A loop analysis based continuation power flow was proposed in (Ju et al.,

2014b) which involves the forward-backward sweep as the major portion and

Newton’s method for the correction part. The use of forward-backward sweep

helped for the easy implementation of the solution for distribution systems.

The corrector step involved the formation of a 2nd order Jacobian matrix.

The power flow algorithm is developed by making use of node-path incidence

matrix. The algorithm is tailored for radial and weakly meshed systems and

found to be efficient. But the algorithm did not deal with the unbalanced

distribution network. The same algorithm was extended by the authors for

handling PV nodes by using a Hybrid Power Flow(HPF) (Ju et al., 2014a).

In the power flow procedure, the PV nodes are modelled as V θ buses and

Newton’s method is used to find the corrections in the voltage angle devia-

tions. The algorithm is validated for IEEE 123-bus system and can be used

in distribution systems with large scale integration of distributed Energy Re-

sources (DERs) for achieving faster convergence. The algorithms provide a

direction towards the development of power flow algorithm for unbalanced

distribution networks with DG sources.

The direct forward-backward sweep algorithm was modified in (Lisboa
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et al., 2014) which is based on the formation of the incidence matrix that

features the radial topological characteristics of the distribution networks.

Based on the bus incidence matrix, linear equations are solved to get the

solution instead of a matrix inversion. The solution algorithm involves linear

storage complexity and therefore the computational burden is minimized.

The algorithm had capability to include various load models and unbalanced

operation of the distribution network. The algorithm is validated with a set

of test instances varying from hundred to several thousand of nodes. An-

other algorithm based on forward-backward sweep algorithm was developed

so as to improve the convergence characteristics for the unbalanced radial

distribution system (Samal and Ganguly, 2015). Here the backward sweep

equations are modified by introducing three matrices denoted as A,B,C

for calculating the branch powers. A gives information on the downstream

buses, B identify the end boss and C calculates the actual branch currents.

The dimensions of the matrices are nXn, 1Xn and nXn respectively. The

algorithm had better convergence characteristics compared to the normal

forward-backward sweep algorithm and is validated for a 25-bus unbalanced

distribution system. These algorithms are not capable to include DG sources

by PV modelling.

To include the uncertainties associated with individual DG units, a Com-

plex Affine Arithmetic Three Phase Power Flow algorithm ((CATFBS) was

proposed (Wang et al., 2015). The influence of the individual DG unit is

analyzed by proposing a new index denoted as Relative Influence of Uncer-

tain Variables on Outcomes (RIUVO). The proposed power flow algorithm

for including the effect of uncertainty of the multiple DG unit is validated
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for IEEE 13-bus and 292-bus distribution system. The algorithm showed

better efficiency compared to the Monte-Carlo method for simulating the

uncertainty.

One of the new algorithm in the class of forward-backward sweep al-

gorithm was proposed by (Alinjak et al., 2016) based on a search method

called as breadth-first search method. A modified Incidence Matrix (MIM)

is formed using the breadth first search method. The algorithm is based

on renumbering of nodes or branches which helps in a simplified procedure

for detecting nodes. The search strategy helped to minimize the search for

connections between nodes. The algorithm is tested for several unbalanced

distribution feeders and the results were compared with the results from

backward/forward sweep. The algorithm is found to be more efficient and

accurate than backward-forward sweep which can be used for planning of

active distribution systems.

Recently an improved load flow technique based on forward-backward

sweep was proposed (Ghatak and Mukherjee, 2017) by using a single load

current to bus voltage (LCBV) matrix that replaces the forward and back-

ward sweep in a single step. Using this matrix, the bus voltages are directly

determined from load current injections. The method took care of any recon-

figuration problems that occurs without changing the main algorithm. The

algorithm includes comprehensive modelling of various distribution system

components, including voltage regulator, DG sources etc. and also takes care

of weakly meshed networks. The algorithm is validated for test feeders of

varying size and complexity. The results proved its robustness, efficiency and

faster compared to the conventional algorithm and provided a direction in
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developing power flow algorithms for unbalanced distribution system with

DG sources.

From the literature review, it is clear that most of the power flow methods

considered distribution systems as balanced networks. The meshed config-

uration of the distribution network and the handling of PV nodes is not

addressed in most of the algorithms. Each method has its own limitations

in analyzing modern distribution systems. Efficient algorithms that can in-

corporate the unbalance and DG sources is very much needed in the present

situation.

b. Quadratic Equation Based Sweep algorithms

The Quadratic Equation based sweep algorithms use a quadratic equation

that relates the receiving end voltage to the sending end voltage and the

branch power. Several power flow methods based on such equations were de-

veloped. (Cespedes, 1990) proposed a method for solving balanced/unbalanced

radial distribution feeders eliminating voltage phase angles in the solution

which helped to obtain exact solution for voltage magnitudes. The method

used forward voltage calculation with backward power summation. The load

power and branch power losses are used to calculate the branch power in the

backward process. The convergence is checked by calculating the real and

reactive power mismatches. Another algorithm based on quadratic equa-

tion was proposed by (Das et al., 1994) which is called as Forward Sweeping

method that can be applied for balanced distribution network. Here the dis-

tribution network is solved by calculating the total real and reactive power

fed through any node. The node voltages are computed using Eq. (2.6) in
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the forward process and the total active and reactive power for each branch

are calculated in the backward process. The method proposed by (Das et al.,

1994) was improved in (Ghosh and Das, 1999) by modifying the convergence

criteria to improve the convergence characteristics. The first method used

maximum branch active and reactive power losses mismatch as the conver-

gence criteria, whereas in (Ghosh and Das, 1999), the total transferred active

and reactive power power along with their previous values is used. The appli-

cation of these classes of methods was limited for balanced radial distribution

feeders.

A slight modification was done in the compensation method by making

use of reduced order impedance matrix (Haque, 1996a). Here an algorithm

is developed for solving power flow for distribution systems which can be

either radial or meshed configuration. The process involved the conversion

of meshed network into radial network with the introduction of loop break

points. At the end of loop break points, power injections are calculated by

means of a reduced order bus impedance matrix. The sending end branch

power is used to calculate the receiving end branch power and voltage in the

forward process. The same algorithm was extended for including voltage de-

pendent load models in (Haque, 1996b). The load flow results of distribution

system for various voltage dependent load models were compared. The al-

gorithm was further extended to network with more than one feeding source

in (Haque, 2000). But none of these algorithms addressed the unbalance of

the distribution network.

A method that employs the Quadratic equation was given by Afsari (Af-

sari et al., 2002) for solving balanced radial distribution network. Here using
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Eq. (2.6), the node voltage calculation is carried out separately for the later-

als in the sub iterations. But instead of source voltage, the first node voltage

on the lateral was considered. The difference in the actual source voltage

with the calculated voltage is added to the last node voltage and backward

process is repeated. This is continued until the difference in the source volt-

age is within the tolerance limits. The method showed good convergence

characteristics because of the special procedure employed. But similar to

other methods, unbalance of the distribution network is not considered in

the method.

The quadratic equation was used by Ranjan and Das (Ranjan and DAS,

2003) for solving balanced radial distribution system. In the forward pro-

cess, node voltages were calculated by solving Eq.(2.6) for each branch. In

the backward process, the total active and reactive power transferred along

with the power losses for each branch is found out by using a computerised

branch and node numbering scheme. The maximum difference of the trans-

ferred active and reactive power from the source with their previous values

is used as the convergence criteria. The method proved to be efficient for

balanced and radial distribution network. The unbalance and weakly meshed

topology of the distribution network is not addressed in the work.

Similar to the previous methods, Eminoglu et al. used quadratic equa-

tion for power flow analysis (Eminoglu and Hocaoglu, 2005). In the forward

process Eq. (2.6) is used to compute the node voltages. But the backward

process uses KVL based equations as given by Eq. (2.8) for computing new

node voltages. The ratio Flow method is employed wherein the voltage ra-

tio was used to update the value of node voltages. Voltage dependent load
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models are also incorporated into the quadratic equation to check the effect

of load models on the convergence criteria. The maximum node voltage mis-

match was used as the convergence criteria.

A forward backward sweep algorithm based on the power summation

method was developed (Moghaddas-Tafreshi and Mashhour, 2009) so as to

include the PQ and PV nodes more efficiently for the unbalanced distribution

network. The algorithm used the real and reactive power as the flow variables

and hence the required reactive power injection so as to maintain the voltage

within limits can be found out directly by using positive sequence reactive

matrix. The algorithm is validated for IEEE 13-bus distribution feeder and

it was found that incorporating DG units as PV node gave better results

compared to the other cases. The losses are minimized and the voltage is

improved when DG units are incorporated as PV node.

Another algorithm for solving the power flow for radial distribution net-

work was solved in (Singh and Ghose, 2013) based on a matrix transformation

for solving branch flows in the radial distribution network. Two algorithms,

namely current flow based forward-backward sweep and power flow based

forward-backward sweep is used. In the current flow based algorithm, a ma-

trix named as Load current Matrix (LCM) is formed to store the value of the

load current. Each row of LCM represents the sending end node of a branch

and the column represents the receiving end node. The backward sweep equa-

tions were carried out by transforming the LCM. Similarly a power flow based

forward-backward sweep was also performed by forming a matrix called as

Branch current matrix (BCM) which is transformed for the backward sweep.

The algorithm is implemented for IEEE 34-bus distribution system and due
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to the elimination of network identification or renumbering, it was found to

be fast and computationally efficient compared to the conventional forward-

backward sweep algorithms.

The convergence characteristics of the Sweep based algorithms was stud-

ied (Eminoglu and Hocaoglu, 2008) by comparing various sweep based meth-

ods. The quadratic equation based methods proved to be faster in compari-

son with the KVL based algorithms. The effect of different load models such

as Constant Current (CI), Constant power (CP) and Constant Impedance

(CI) models was also studied. The increase in the voltage dependency of

the load models created convergence difficulties for the Quadratic equation

based methods due to the variation of branch power and current with volt-

age magnitude on each iteration. But this effect was comparatively less in

the case of KVL based sweep algorithms. In Kirchoff’s law based algorithms

with loads modelled as Constant Current (CI) models, the number of itera-

tions required were minimized. The technique adopted for conducting power

flow should be chosen properly based on the load models, loading conditions,

convergence, R/X ratio of the line etc. to obtain fast and accurate solution

for the distribution system.

2.1.3 Modified Newton/Newton Like methods

Conventional Newton-Raphson methods or Newton like methods that are

applied to transmission systems fails to converge when applied to the distri-

bution system. Because of the radial nature and high R/X ratio of the dis-

tribution network, such problems may create ill condition problems for the

Newton-Raphson methods. The conventional Newton-Raphson algorithms
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are modified so as to conduct power flow for distribution system and such

methods are commonly called as Modified Newton or Newton Like methods.

One of the early work using Newton like methods was done by Baran and

Wu (Baran and Wu, 1989) who proposed an iterative algorithm for solving

distribution network. The solution algorithm is based on three nonlinear

equations that represent real power, reactive power and voltage magnitudes

which were solved iteratively. Using terminal conditions of main laterals and

feeders, the number of equations was subsequently reduced, which is solved

using the Newton-Raphson method. But the method showed poor conver-

gence characteristics with increased number of loops. The Newton-Raphson

method was modified by using the numerical properties of the system Ja-

cobian in (Chiang, 1991). Three solution algorithms, namely decoupled al-

gorithm, fast decoupled algorithm and very fast decoupled algorithms are

analyzed. The algorithm assumed that the system Jacobian matrix can be

considered as an identity matrix. The convergence characteristics of these

algorithms were analyzed and proved to be fast and computationally efficient

for network with high R/X ratio for balanced radial and weakly meshed net-

work.

Zimmerman et al. (Zimmerman and Chiang, 1995) developed a novel

power flow algorithm for solving three phase unbalanced radial distribution

system based on the fast decoupled approach. With the current values known

at one end of the feeder and the sublateral, the voltage and current for the

rest of the feeder are calculated. Using the numerical characteristics of the

distribution line, decoupling approximations are made in the Jacobian ma-

trix, which is used to update unknown end voltages. These approximations
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make the solution of the reduced load flow equations very fast and therefore

is called as fast decoupled method.

Some improvement in the convergence characteristics was achieved by

using a robust and efficient modified Newton method proposed by (Zhang

and Cheng, 1997). Here the approximate Jacobian matrix is represented as

the product UDUT where U is a constant triangular matrix based upon the

system topology and D is a diagonal matrix which depends on the radial

structure and gets updated during each iteration. The efficiency and ro-

bustness of the method were found to be comparable with that of Forward-

Backward sweep method. A similar work was done (Le Nguyen, 1997) for

balanced and unbalanced meshed distribution network with complex rep-

resentation of the Jacobian matrix so that the solution obtained is also in

complex form. The component of mismatch arising from the voltage changes

is neglected here in forming the Jacobian matrix.

Most of the algorithms did not consider the unbalance associated with the

distribution network. A fast algorithm was developed based on the Newton-

Raphson method by Teng et al. (Teng and Chang, 2002). The branch voltage

is used as a state variable along with the conventional bus branch data in

an unbalanced radial distribution network. The advantage of the topolog-

ical characteristics of the radial distribution network is taken into account

in forming the Jacobian matrix. The upper triangular Jacobian matrix is

decomposed into a diagonal and identity matrix and the branch voltages

were obtained by solving the identity matrix by the backward substitution

method. The current mismatch is used for checking convergence criterion.

The method is found to be fast and robust for large distribution networks
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with radial topology.

Another class of Newton-like methods that were used for solving distri-

bution systems are called as current injection methods. A current injection

method was proposed by Costa et al. (da Costa et al., 1999) for solving

balanced distribution network based on current injection equations. The Ja-

cobian matrix had the same form as that of the nodal admittance matrix and

for each network branch, the Jacobian matrix takes the form of a 2x2 matrix.

For PV buses, a new dependent variable ∆Q is introduced with an additional

constraint on zero voltage deviation. The diagonal elements of the matrix

are updated in each iteration. Using the value of current injections and the

transferred power, the node voltages are computed. The current mismatch

which is used as the convergence criteria is also formulated in Newton form

which can therefore be applied for the power flow solution of practical feed-

ers.

The Newton method proposed by Costa et al., (da Costa et al., 1999) was

extended for solving three phase power flow in (Garcia et al., 2000). In this

method the PV node representation required updating of the corresponding

column of the Jacobian matrix. Therefore the increment in reactive power

became a state variable. But this method showed some convergence prob-

lems which reduced the computational efficiency of the algorithm. Therefore

the same authors made some improvements in the PV node representation.

The new PV node representation is made using an augmented linearized sys-

tem of equations for representing ∆Q as the state variable by including the

controlled voltage equation in the Jacobian matrix. By this new represen-

tation the convergence limitation associated with the previous method was
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eliminated (Garcia et al., 2004).

An effort was made to improve the convergence of the Three phase Dis-

tribution Current Injection method (TCIM) under stressed operating con-

ditions (de Oliveira et al., 2007). An optimization factor is introduced in

order to correct the voltage updates in each iteration. The performance of

the algorithm under different operating conditions and taking various load

models is also taken into account. A methodology for calculating multiple

three phase power flow solution is also presented. But DG units were not in-

cluded in the analysis. The TCIM was improved so as to include the neutral

conductors and grounding (Penido et al., 2008) based on four wire current

injection method. To include DG sources, an induction machine is mod-

elled with control strategies and is integrated in the distribution network.

The method is based on the currents injected at every node and in series

and shunt components, which are used to formulate the power flow problem.

The formulated equations are solved iteratively using the Newton-Raphson

method. The algorithm is validated for IEEE 34-bud distribution system

and was implemented for a large practical distribution system.

A power flow algorithm was developed on branch frame of reference to

solve power flow for unbalanced radial distribution network (Chen and Yang,

2009). The method utilize graph theory, current injection technique and

branch impedance matrix to solve the power flow algorithm directly and

hence is called as direct ZBR method. The method utilizes the radial topol-

ogy of the distribution network in forming three matrices namely the element

bus incidence matrix A, cut-set incidence matrix B and branch path inci-

dence matrix K. The limitation with the method is that common elements

40



2.1 Review of Techniques for Powerflow

of the distribution network can not be included since the impedance ma-

trix should be kept constant. This limitation had overcome in (Segura et al.,

2011) by developing a Generalized Single Equation load Flow (GSELF) which

incorporate transformer and voltage regulator in different types of connec-

tions. The model for each and every component of the distribution feeder is

expressed in terms of nodal voltages and branch currents which can be up-

dated in the iterative process. The models for shunt capacitors, DG sources,

loads of different models etc. can also be incorporated. The method found

to be efficient and fast compared to the forward-backward sweep method.

A comparison between TCIM and the backward forward sweep algorithm

was presented in (de Araujo et al., 2010). Even though the forward-Backward

sweep algorithms showed good performance for the radial system, the effect

of voltage controlled devices and meshed topology deteriorate the compu-

tational performance of the system. The number of iterations for soving

such systems did not increase much for TCIM. This is because of the special

structure which allows to incorporate the changes directly in the algorithm.

TCIM is found to be better than Forward-Backward sweep algorithms for

the networks other than the very simple radial networks. But PV node rep-

resentation is not addressed in TCIM.

A power flow algorithm that used the bus incidence matrix was proposed

in (Farag et al., 2011) for three phase unbalanced distribution systems with

high penetration of DG sources. The bus incidence matrix give the rela-

tionship between the bus currents and branch currents. Also the unbalance

of lines, loads, etc. are modelled and incorporated in the power flow. The

algorithm take into account, the Static Voltage Regulators (SVR) and the
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inclusion of DG units. The algorithm is validated for IEEE 13-bus and 37

bus distribution feeder and compared with the direct method (Teng, 2003).

The DG units are incorporated as PQ nodes as well as PV nodes. The results

are analyzed without and with the incorporation of DG units and SVR. The

algorithm worked efficiently for three phase unbalanced radial distribution

feeders.

The Modified Augmented Nodal Analysis (MANA) was used to derive

three solution algorithms for solving unbalanced distribution network (Kocar

et al., 2014). The algorithms are called as Fixed-point algorithms, Newton

based algorithm and Dishonest Newton’s method. The fixed point algorithms

use the MANA equations directly. The newton’s method add the augmented

section so that the constraints on the load flow can be incorporated. In the

case of Newton’s MANA solution, coefficient of the Jacobian matrix is up-

dated on each iteration, but this is avoided in dishonest Newton’s method.

The most accurate system is found to be the Newton’s MANA method in

terms of accuracy and speed. The algorithm is validated for IEEE-8500 node

benchmark system and was compared with other methods in the literature

and found to have good performance. The only limitation was the computa-

tional burden involved in calculating the Jacobian matrix.

A new algorithm that efficiently handles the meshed network and PV

nodes was developed which uses powers as flow variables in (Li et al., 2014).

Here the information on the terminal power and voltage states is used to form

two equations for angle difference and voltage drop. These equations along

with node-branch incidence matrix is used to solve the power flow using the

powers as the flow variables. The PV nodes are handled by considering the
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point of interconnection as break points and solving them using Thevenin’s

equivalent circuit. The algorithm is found to have good convergence char-

acteristics as compared with forward-backward sweep algorithm. Another

algorithm based on complex pu normalization was developed in (Tortelli

et al., 2015). Here the problem of the conventional power flow algorithms for

solving distribution systems with high R/X ratio was addressed by introduc-

ing complex power base and thus adopting complex pu (cpu) normalization

instead of normalization. Utilizing cpu enables the application of fast de-

coupled power flow methods for distribution systems and therefore can be a

promising solution for active distribution systems. But the unbalance is not

addressed in the algorithm. But these method are intended only for balanced

feeders.

The algorithm proposed in (Li et al., 2014) was improved in (Li et al.,

2016) by redeveloping the calculation for the link branch powers. This is

achieved by combining the link branches, slack bus and PV nodes into a sin-

gle matrix. Compared to the previous method, more precision was achieved.

Also a model was introduced for tap changing transformers. The multiple

slacks and PV nodes were treated as loop links and is introduced in the

power flow in the form of the combined matrix. The method uses only real

number matrix operations which improves its solution speed. The method

is validated for IEEE 69-bus distribution system. The algorithm proved to

be more efficient, robust and fast compared to the conventional methods for

distribution systems with high amount of dispersed generator sources.

A correction current injection method was used for power flow in unbal-

anced and three phase distribution networks (Sunderland et al., 2016). The
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power flow algorithm allowed any number of phases and neutral conductors

with a flexibility to represent any kind of voltage dependency and also ca-

pable of including different types of grounding. This enable the power flow

algorithm to be applied to practical distribution systems whose requirements

varies. The algorithm also had the capability to include dispersed generation

units by suitable modelling technique. The algorithm proved to be fast, ro-

bust and efficient for four wire distribution networks with meshed topology

and high amount of dispersed generation.

The Newton like methods developed for distribution system are efficient

in handling the PV node representation and weakly meshed topology of the

distribution network compared to forward-backward sweep method. But the

formation of the Jacobian matrix for such systems is a difficult and tedious

task which limits their application.

2.1.4 Gauss-Seidal of Fixed Point type methods

One of the early algorithms for solving distribution system with Gauss-Seidal

method was done based on the Implicit Gauss Zbus method (Chen et al.,

1991). The method used sparse bi-factored Ybus matrix and equivalent cur-

rent injection to solve the distribution power flow. The concept used is that

the voltage at any bus arise from the specified source voltage and equivalent

current injection. The loads, co generators, capacitors etc., are modelled

as equivalent current injections. The solution technique is carried out by

applying superposition principle, considering each source separately. The

convergence characteristics of the algorithm were found to be comparable

with that of the Newton method. The effect of cogenerators was also consid-
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ered, but included them as constant power loads.

Teng et al., (Teng, 2002) proposed a new distribution power flow based on

modified Gauss-Seidal method and Implicit Z bus method which can be used

for solving radial, meshed or looped network. The method used triangular

factorization of the Ybus matrix and optimal ordering scheme which take the

advantage of sparsity of the system equations. The three phase distribution

network is decomposed into three single phase networks and the solution is

done in each phase separately. The factorization of the admittance matrix is

done only once during the entire procedure. The method showed good con-

vergence properties compared to the previous method. But the method did

not consider the DG source representation by modelling them as PV nodes.

The Zbus Gauss method was further improved in (Vieira et al., 2004) for

solving unbalanced distribution network. The technique involve the decou-

pling of the three phases by decomposing the various component models. The

implicit factorization of sparse Ybus matrix is also done separately for each

phase and the problem is solved by Zbus-Gauss method. The decoupling

caused a substantial improvement in the performance of the conventional

Zbus-Gauss method when applied to unbalanced network. Parallel process-

ing techniques can be employed and therefore the method can be used in real

time operation of the large distribution system. The DG sources, inclusion

is not addressed in the method.

Chen et al., proposed an unbalanced power flow algorithm based on

the loop frame reference (Chen and Yang, 2010) which is based on loop

impedance matrix (Stagg and El-Abiad, 1968), current injection and graph

theory. The solution involved the formation of the branch path incidence
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matrix, K that can be calculated from the primitive impedance matrix that

is obtained by direct observation. Therefore the computations on the bus

admittance matrix were not necessary. The method showed good conver-

gence characteristics and accuracy for large unbalanced radial distribution

networks but not suitable to handle meshed networks. The inclusion of PV

nodes and DG sources are not addressed.

A new method utilizing the Implicit ZBus method was proposed by Yang

(Yang, 2016). Graph theory, sparse matrix techniques and current injection

were used to improve the performance of the Gauss implicit ZBus method.

The method is referred to as direct ZBus method. The complex calculations

involved in power flow, such as Gaussian elimination, LU factorization and in-

version are eliminated by using the loop incidence matrix for calculating the

impedance matrix. Four IEEE test cases are validated with the proposed

method and the performance is compared with the previous Gauss-Seidal

based algorithm and found to have superior performance.

The power flow studies for distribution networks can be classified as

Forward- Backward sweep algorithm, Modified Newton methods and Gauss-

Seidal or Fixed point methods. The developments in all these methods were

analyzed in detail. Forward-Backward sweep algorithms are the most com-

monly used algorithms owing to their simplicity and robustness. The DG

integration and the unbalanced operation are still challenging issues as far

as distribution power flow studies are concerned.
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2.1.5 Distributed Generation (DG) modelling for power

flow studies

The Distributed Generation (DG) had been proposed as one of the possible

solutions to todays energy and environmental challenges. Accordingly the

number of DG sources integrated in the power system have been increased in

the past decade. These DG sources should be included in the power flow so

as to retain their features which requires DG units to be modelled as voltage

controlled bus (PV bus). The integration of DG sources may change the

topology of the radial distribution network into meshed one and the power

carried by the feeders are subjected to changes in direction depending upon

the load and DG levels. In the distribution power flow studies DG units can

be included as PQ nodes or PV nodes. The DG units modelled as PQ buses

can be treated in the power flow as negative loads with currents injected into

the bus. But when DG units are modelled as PV nodes, modification in the

power flow is necessary.

There are some sweep based algorithms that incorporate the DG sources

as PV nodes in the power flow for the radial balanced distribution network.

Some of these algorithms handled PV nodes accurately in the balanced distri-

bution network. One of the earlier method was proposed by (Shirmohammadi

et al., 1988) which handled PV nodes considering them as break points. The

current injected is calculated from the breakpoint current injection. Here the

reactive power to be injected is given by Eq. (2.10)

Qk
pv =

Qk−1
pv −Qk−2

pv

V k−1
pv − V k−2

pv

(V k
pv − V k−1

pv ) +Qk−1
pv (2.10)
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It is evident from the equation that the performance of the system heavily

depends on the assumed initial conditions. If the assumed values of the initial

voltage and reactive power are not proper, the convergence was slow. There-

fore, some improvements were made in the algorithm in (Luo and Semlyen,

1990). This is done with the use of a linearised relation between injected

power and sensitivity matrix. For this, the PV nodes were considered as PV

breakpoints in contrast to the loop breakpoints by the authors in the previ-

ous work. The incremental power change is calculated with the assumption

that all the voltages are close to 1.0 p.u which is calculated as

Z(∆S)∗ = ∆V (2.11)

The sensitivity matrix Z is obtained from the Thevenin’s equivalent circuit

as seen from the breakpoints. The obtained ∆S is added to the power ob-

tained from the last iteration.

Most of the sweep base algorithm modelled DG sources as Constant Power

sources or PQ nodes. In such methods, DGs are modelled by injecting cur-

rents that are obtained using the voltage values and constant real and reac-

tive power values. Some of the algorithms, model DG units as PV nodes as

given in (Cheng and Shirmohammadi, 1995b; Zhu and Tomsovic, 2002). In

the method developed in (Cheng and Shirmohammadi, 1995b), the reactive

power injection required to maintain the voltage values within the limits is

found using the PV node voltage and the injected current as given in Eq.

(2.12).

[Z][∆Iq] = [∆V ] (2.12)
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The constant real matrix Z is computed from the real part of the sensitivity

matrix obtained from Eq. (2.11). Once the required reactive power is calcu-

lated, these are modelled as PQ buses with the injected current added in the

next iteration.

A similar approach was used in (Zhu and Tomsovic, 2002) where the PV

node voltage mismatch obtained from Forward-backward sweep is compared

with the PV node convergence criteria. If the convergence is not achieved,

break point voltage mismatch and current injection required to maintain the

voltage within limit to be found out. This current is to be added to the main

current to obtain the total current that is to be used for voltage calculation

in the next iteration. DG units were modelled as PV nodes and Eq. (2.12)

is used in (Khushalani et al., 2007) for finding the reactive power needed to

maintain the voltage within limits. Also the reactive power limit that can be

generated by DG units is found using Eq. (2.13).

Qj
G,MIN ≤ QG ≤ QG,MAX (2.13)

A method that models the DG sources as shunt capacitors was developed

in (Augugliaro et al., 2008) and here, the reactance that is needed to main-

tain the voltage within limits is computed in each iteration. This equation

is obtained by using Thevenin’s equivalent circuit as seen from the DG con-

nected bus. The PV node representation of DG is modified so as to include

the neutral connections with different types of grounding as described in

(Penido et al., 2008). Here some control strategies for induction generators

were also modelled so as to represent the presence of DG.

Active and reactive power were used as variables by Moghaddas et al.
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(Moghaddas-Tafreshi and Mashhour, 2009) so that the reactive power limit

to maintain the voltage within limits can be calculated easily. The voltage

mismatch vector is calculated and the reactive power injection required to

maintain the voltage for the unconverged node is given by

Z[∆Q] = [∆V ] (2.14)

and the reactive power required to maintain voltage is given by

Qi
new,cal = Qi

old,reg + 3 ∗ |Qi| (2.15)

Here Qold,reg is the regulated Q value from previous iteration.

A generalized power flow algorithm for networks with high penetration of

DG units were incorporated into the power flow as PV units, but by using a

dummy node and branch to maintain the voltage within limits (Farag et al.,

2011; Ghatak and Mukherjee, 2017). The dummy reactive power injection is

calculated as

Qspec = |V t
i |(

V t
dummy,i − |V t

i |
βi

) (2.16)

Here Qspec is the dummy reactive power specified value, V t
dummy,i, V

t
i are the

dummy node voltage and the PV node voltage in iteration i. The updating

of dummy node voltages is given by

∆V t
dummy,i = V spec

i − |V t
i | (2.17)

V t+1
dummy,i = V t

dummy,i + ∆V t
dummy,i (2.18)
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In Generalized single-equation load flow method proposed by (Segura

et al., 2011), the DG units were incorporated as voltage controlled buses in

the power flow. The asynchronous generators used for DG interconnection

were modelled as current injection in parallel with shunt admittance. The

DG units which are treated as PV nodes are solved using appropriate break

points (Li et al., 2014, 2016). The Solar PV units and micro wind generators

were modelled and incorporated in the power flow as PV nodes (Sunderland

et al., 2016) by considering the varying generation from these sources.

Even though there are plenty of methods developed to solve distribution

system of radial and meshed topology, the unbalance associated with the dis-

tribution network is not addressed in many cases. The extension of balanced

power flow methods may not work as far as decoupling is done properly. And

also most of the methods are not designed to handle the renewable energy

sources. A power flow algorithm that can include the DG units efficiently is

very much needed and such a power flow algorithm is developed as described

in Chapter 3 and Chapter 4.

2.2 Review of techniques for Uncertainty Mod-

elling of Solar Photovoltaic(PV) genera-

tion

The contribution of renewable energy sources like photovoltaic, wind, etc.

in the power system is increasing day by day. This situation demands

improved methods to deal with the fluctuating power output. There are
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many techniques to handle the uncertainty associated with the various power

system parameters. A review of the decision making in uncertain situa-

tions for energy systems is given in (Soroudi and Amraee, 2013). They

are mainly divided into Probabilistic approach, Possibilistic approach, Hy-

brid Possibilistic-Probabilistic approaches, Information gap decision theory,

Robust optimization and Interval analysis. But as far as renewable en-

ergy generators are concerned, they are associated inherently with aleatory

uncertainties and epistemic uncertainties (Helton and Oberkampf, 2004).

Aleatory uncertainties are caused due to inherent variability in the system

behaviour. Imprecision due to lack of knowledge and information on the

system which are referred as epistemic uncertainty (Helton and Oberkampf,

2004). In the case of PV generation, the solar irradiation falls in the cat-

egory of the aleatory uncertainty and the operational parameters such as

= IMPP , VMPP , VOC , ISC , Not, Kc, Ta which are provided by the manufactur-

ers and end users falls in the category of epistemic uncertainty (Li and Zio,

2012).

The PV source modelling scheme for representing the source uncertainty

is mainly divided into three types which can be categorized as Time se-

ries based method, Probabilistic methods and Stochastic methods. Time

series based methods use different types of models such as regression, Unob-

served Component Models (UCM), Autoregressive Integrated Moving Aver-

age (ARIMA), Neural Network and transfer function using cloud cove index,

etc. The suitability of these models in predicting the global horizontal irra-

diance (GHI) of six different sites at resolutions of 5,15,30 and 60 minutes

is compared in (Reikard, 2009). It is found that, except for high resolution,
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ARIMA model gave better performance than other models.

Based on the results from (Reikard, 2009), Yang et al. used three dif-

ferent time-series forecasts to predict the hourly solar irradiance of various

components of solar irradiance such as global horizontal irradiance (GHI),

diffuse horizontal irradiance (DHI), direct normal irradiance (DNI) and cloud

cover (Yang et al., 2012). In all the three forecasts, ARIMA model is used

to predict the irradiance components. It was found that, considering the ef-

fect of cloud conditions gave more accurate forecasts. The Time series based

methods use enormous amounts of data gathered at the location where the

PV source is installed in order to predict the variation of the solar irradiance

of that particular location. Therefore the modelling becomes a difficult task.

Probabilistic methods involve the generation of random numbers that

features the behaviour of historical data. The most important probabilistic

method is Monte-Carlo simulation. Some authors have also used Probabil-

ity Density Functions (PDF) such as Beta, Weibull, Log-Normal, etc. for

modelling solar irradiance. Abdelaziz et al. used Monte-Carlo method for

modelling stochastically dependent renewable energy based distributed gen-

erators (Abdelaziz et al., 2015). Wind energy generators and PV source are

considered as DG sources and the stochastic dependence between these and

the system demand is modelled using Monte-Carlo method. The stochastic

dependence between the random variables is expressed in terms of rank cor-

relation coefficient. A similar approach was used in (Mohamed and Hegazy,

2015) for modelling the solar irradiance. An algorithm based on Monte-Carlo

(MC) method is used in developing a model for PV based DG system. The

disadvantage with the MC method was the convergence problem associated
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in dealing with large amount of data.

Another prominent method based on probabilistic method is the usage

of appropriate probability distribution functions such as Beta PDF, Weibull

PDF, etc. In (Salameh et al., 1995), three distributions, namely Weibull,

Log-Normal and Beta were used to model the 30 year solar irradiance and it

was found that the Beta distribution gives the best fit. Beta distribution was

used to fit 5 minute-averaged solar radiation indices (Assuncao et al., 2003)

and (Ettoumi et al., 2002) used Beta distribution to process the daily global

radiation. It is also found that the statistical features of the solar irradiance

can be best described by the Beta distribution functions. The same distri-

bution is used by several authors to model the uncertainty associated with

the solar PV generation for optimally planning the DG integration (Atwa

et al., 2010; Soroudi et al., 2012). In (Atwa et al., 2010), Beta PDF was

used in generating a probabilistic generation model to minimize the energy

losses in the distribution system. Here the data obtained for three years is

divided into seasons and used to model the solar irradiance uncertainty. Also

based on capacity factors, four different types of modules were analyzed to

check their suitability for the selected site. Also the seasonal variation in

energy losses was also estimated so as to find the share of PV units in the

hybrid DG system so as to minimize the energy losses. Soroudi et al. used

Beta PDF to model the uncertainty of solar irradiance and an unsymmetrical

two-point estimate method is used to handle this uncertainty in the planning

of DG sources (Soroudi et al., 2012). Similarly Beta PDF is used to model

the probabilistic nature of solar irradiance in a DG planning study (Kayal

and Chanda, 2015) so as to optimally allocate DG units in the distribution
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system.

Stochastic methods such as Markov process, neural network and fuzzy

based methods can also be used to model the power output and the uncer-

tainty associated with PV source. A Hidden Markov model was used for

modelling the daily global irradiance in (Hocaoğlu, 2011). Here the cross

dependency of irradiance and temperature are considered using a dual pa-

rameter based approach. The cross dependency is accommodated with the

help of an algorithm called the Viterbi decoding algorithm. In addition,

stochastic methods such as neural network (Kashyap et al., 2015) and fuzzy

methods (Wang et al., 2016) are also used in predicting the solar irradiance

for short and long term basis.

Solar irradiation can be efficiently modelled by a probabilistic distribu-

tion (e.g. Beta distribution) when sufficient data is available. Most often,

historic solar irradiation data are available from NREL (National Renewable

Energy Laboratory) site, and therefore probability representation is the best

suited. There are several literatures which shows that Beta distribution is

the best fit for solar irradiance. Therefore Beta PDF is a simple and efficient

method to model the uncertainty associated with the solar irradiance.

2.3 Review of Techniques for Optimal Dis-

tributed Generation Placement

The optimal Distributed Generation Placement (ODGP) has become increas-

ingly important in the recent years because of the widespread integration of

the DG sources into the distribution network. There are a plenty of works
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done in order to determine the best location for DG installation with the suit-

able capacity. The difference comes in the methods adopted for ODGP. The

methods can be broadly classified as Analytical methods, Numerical methods

and Heuristic methods. Analytic methods uses simple analytic expression to

calculate the most beneficial DG size and capacity based on some rules of

thumb. Numeric methods incorporates techniques likes Dynamic Program-

ming, Non linear programming etc. in order to determine the best size and

suitable location for DG installation. Heuristic methods utilizes heuristics al-

gorithms like Genetic Algorithm (GA), Particle Swarm Optimization (PSO)

etc. to solve the integration of Distributed Energy Resources(DER). All these

methods with the related works done are reviewed below.

2.3.1 Analytical Methods

Analytical methods use simple analytical expressions to solve the Optimal

DG placement problem. One of the earlier work done in this was by making

use of a technique called ”2/3 rule” (Willis, 2000). It is suggested to install

a DG unit of 2/3 capacity of incoming generation at 2/3 of the length of the

line. The method is basically based on Zero point analysis which is the point

on the feeder where power flow due to DG output is zero. This method can

therefore be applied only for a distribution system with uniform loadings.

Analytical expressions for radial and meshed distribution networks were

developed in order to determine the suitable location for DG installation in

(Wang and Nehrir, 2004). The objective of DG integration was to minimize

the power losses of the system with voltage deviation within limits. The

parameters of the overhead transmission line is assumed to be uniform in
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this case and the simulations are carried out for DG integrated systems with

loads of time invariant and time variant characteristics. The algorithm is

validated using 6-bus networked system and also for IEEE 30-bus system.

Another method based on exact loss formula was developed in (Acharya

et al., 2006) for optimally integrating the DG sources in the distribution net-

work. Here analytic expressions are used to calculate the power loss in the

distribution system while integrating DG sources. The sizing and placement

of DG is based on the simultaneous maximum demand when the losses are

maximum. The methodology is tested for three different distribution systems

of varying size and complexity. The limitation of the method is that it is

suitable for a distribution system with a single DG.

The micro generation in Low Voltage(LV) networks cause reduction in

the network losses and the resulting avoided losses were quantified by mak-

ing use of analytical expression as described in (Costa and Matos, 2009).

This helped to define the economic value related to the avoided losses of

the micro generators. Thus optimum location and size of single and multi-

ple DGs in the LV distribution network are determined. Another analytical

method based on loss sensitivity factor was developed (Gözel and Hocaoglu,

2009) to determine the optimum size and location of the DG units in a radial

distribution system so as to minimize the power losses of the system.

Analytical methods were also used in conjunction with other well known

algorithms. (Lee and Park, 2009) used analytical method in combination

with Kalman Filter algorithm for determining optimal location and size for

DG installation. The location of the multiple DGs are based on the distribu-

tion factor and load concentration buses so as to minimize the total losses of
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the system. The size of the multiple DG units are determined using Kalman

Filter algorithm.

In addition to the determination of size and location of DG units, an-

cillary service such as reactive power, power factor, etc. can also be opti-

mized while integrating DG sources. Analytical expressions were developed

for finding out the optimal size and power factor of the DG units in a ra-

dial distribution system so as to minimize the losses in the system in (Hung

et al., 2010). The power losses in the system were estimated using Exact

loss formula and the DG units considered were capable of generating both

real power and reactive power. The same work was improved by using an

Improved Analytic method to accommodate multiple DG units (Hung and

Mithulananthan, 2013).

An analytical method based on the change in real and reactive power

components was used for optimal allocation of DG units in the distribution

system (Naik et al., 2015). The optimal size of the DG unit is determined

first which is followed by finding the optimal location for their installation so

as to minimize the losses. A similar approach was used in (Viral and Khatod,

2015) where the location for DG installation is determined first followed by

the estimation of optimal size of the DG unit. The analytical method is de-

veloped based on a loss saving equation developed from the losses saved due

to DG integration. But these methods considered only balanced distribution

feeders.

An analytical method was used so as to optimally allocate DG sources

in the distribution network without the formation of bus impedance matrix

in (Tah and Das, 2016). Two types of novel buses which are called as P
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buses and PQV buses were considered. P buses were specified by real power

and were selected based on loss reduction. The voltage at the PQV buses

was controlled remotely by connecting shunt capacitors at P buses. The

analytical method was derived based on a mathematical expression so as to

minimize losses in IEEE 33-bus and 69 bus distribution system.

Optimal locations and sizes of multiple DG units were determined si-

multaneously but separately using an analytical method in (Shahzad et al.,

2016). A Load Concentration Factor (LCF) was used to determine the op-

timal location for DG placement and exact loss formula to estimate the size

of the DG unit. The operational power factor is estimated using an exhaus-

tive method which helps in achieving more loss reduction and better voltage

profile compared to the other methods. Since the process does not involve

iterations, computationally the method found to be more efficient.

2.3.2 Numerical Methods

There are several numerical techniques like Gradient Search, Non-linear pro-

gramming, Sequential Quadratic Programming, etc. to determine the op-

timal integration of DG sources into a distribution network. The optimal

placement of DG sources can be formulated as a Non-linear programming

method and several numeric techniques can be used to solve the same. Some

of the techniques are discussed below.

a. Gradient Search Algorithm

A gradient search based generalized optimization algorithm for optimally al-

locating the distributed energy resources in distribution, sub transmission
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or transmission system at the selected nodes was proposed (Rau and Wan,

1994). Three objective functions, namely minimization of losses, minimiza-

tion of Var injection and the minimization of the line loading were considered

individually and optimized using a second order algorithm with the trans-

formation of variables. The algorithm is compared for the convergence with

the reduced gradient method giving a superior convergence characteristics.

b. Linear Programming

Linear Programming was also used to address the problem of optimum alloca-

tion of Distributed Energy resources (DERs). The fundamental concept was

to approximate the resulting power flow as a Linear Programming Problem.

This is done by using linear sensitivity factors that characterize constraints

on voltage, thermal and short circuit limits which are determined from the

AC power flow (Liew and Strbac, 2002). The resulting Linear Programming

Problem (LPP) is solved for maximizing the capacity of DG subjected to

various constraints.

Linear programming can be considered as a robust optimization method

which possess a high potential for solving Optimal DG allocation problem

by utilizing the AC optimal power flow as a means for formulating the LPP.

Linear programming was used to maximize the energy harvested from a por-

tion of the network with the optimal allocation of DG where non-firm DG

access to the network is also considered (Keane and Malley, 2007). The work

was extended in (Keane et al., 2009) by employing AC load flow sensitivities

for optimizing the allocation among curtailment of adjacent wind farms.

60



2.3 Review of Techniques for Optimal Distributed Generation Placement

c. Sequential Quadratic Programming

One of the earlier works using Sequential Quadratic Programming (SQP) for

ODGP was proposed in (Vovos et al., 2005) for optimizing the cost function.

The optimization is done by formulating the problem as optimal power flow

and solving the same by SQP by taking into account the fault level con-

straints.

An improved SQP was used in (AlHajri et al., 2010) to optimally allocate

DG units. The location of DG units was determined using all possible com-

bination search approach. The problem of determination of the DG rating

is formulated as a Non-Linear optimization problem and solved using Fast

Sequential Quadratic Programming (FSQP). But the fault level constraints

were not taken into account here.

The optimal allocation problem involving the minimization of cost and

losses was formulated as a non linear problem, and solved using Sequen-

tial Quadratic Programming (SQP) in (Darfoun and El-Hawary, 2015). The

SQP gives a pareto-set of optimal solution and the decision is taken using

fuzzy decision theory. The multiple objective functions were taken using

the weighted-sum method. The algorithm is tested on a 15-bus distribution

system to check the effectiveness.

d. AC Optimal Power Flow and Mixed Integer Non Linear Pro-

gramming

AC optimal power flow is a well known analysis technique that is often used

for solving economic dispatch problem. The AC optimal power flow, which

is basically a Non Linear Programming (NLP) problem can also be used for
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solving the problem of Optimal allocation of DG sources.

Optimal power flow was used to maximize the generation capacity in

(Harrison and Wallace, 2005) by modelling fixed power factor loads as neg-

ative loads and by performing negative load shedding. The constraints on

voltage limits and thermal limits were also taken into account while perform-

ing the optimal power flow.

The determination of optimal capacity at predetermined locations was

done with the help of optimal power flow in (Vovos et al., 2005) taking into

account the fault level constraints. The allocation of DG sources is based

on their respective cost functions and the limits on fault level is taken as an

additional constraint. The algorithm was improved for conducting optimal

generation planning by directly incorporating the fault level constraints in

OPF (Vovos and Bialek, 2005). This is done by converting the fault level

constraints into non linear inequality constraints which can be directly intro-

duced in the optimization process.

The above mentioned studies emphasis only on thermal and voltage limits

without considering the other network aspects. In fact, the flexibility pro-

vided by AC OPF allows an insight into other complex aspects also. Incorpo-

ration of multiple periods to deal with the variability and the coincidence of

renewable energy generation and demand, advanced control strategies such

as coordinated voltage control, adaptive power factor and generation curtail-

ment are a few. These characteristics were embedded in (Ochoa et al., 2010)

to determine the maximum DG capacity that can be allotted.

The capacity of the network to accommodate new generation under se-

curity constraints was discussed in (Dent et al., 2010a). The analysis is done
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using OPF in order to maximize the generation capacity. The reduction

in network capacity to accommodate new generation by imposing the secu-

rity constraints is validated using IEEE reliability test systems with N − 1

security constraints and can be extended to systems with any number of con-

straints. The algorithm was modified to include constraints on voltage step

change due to DG interconnection (Dent et al., 2010b). The voltage step

changes that occur while disconnecting a DG from the network are taken as

constraints and are incorporated in OPF. It is found that progressively wider

step changes enable greater amount of DG to be connected in the distribu-

tion network.

The time varying characteristics of the DG sources, renewable energy and

its influence on energy loss minimization was investigated in (Ochoa and Har-

rison, 2011). Coordinated voltage control and dispatchable DG power factor

were also incorporated in OPF to analyze the extra energy loss benefits. The

trade off between the energy losses and generation capacity was also consid-

ered which was proven to be an efficient technique by incorporating most of

the complex characteristics of the network into OPF.

The NLP formulated AC OPF do not have the capability to incorporate

integer variables such as tap positions or discrete values of DG capacities.

But this disadvantage can be overcome by considering a Mixed Integer Non

Linear Programming approach which would restrict the size of the problem

based on the solution method adopted. Such methods can also be used in

DG planning situations. An integrated distribution network planning model

based on MINLP was implemented by (El-Khattam et al., 2004) in hybrid

electricity markets as an alternative to ODGP by using heuristic cost-benefit
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analysis. The heuristic cost-benefit analysis aims to obtain DG sizing and

siting so as to minimize discoś investment and operating costs as well as pay-

ment toward loss compensation. In addition to the optimal site and size the

DG operating hour was also determined according to the given load-curve

scenario.

The nodal price and line loss sensitivity were used as economic and op-

erational criteria so as to select zones for placing DG units in pool based

electricity market (Kumar and Gao, 2010). The zone with maximum vari-

ation in the aforementioned criteria were selected for DG integration. The

optimum size and number of DG units for these zones was found out using

MINLP technique. The optimization is done for both pool based and hybrid

electricity market. The energy cost and the losses were also analyzed for the

DG integrated distribution system.

A probabilistic planning method was used in order to optimally allo-

cate different types of DG units in a distribution network so as to minimize

the energy losses of the system (Atwa et al., 2010). Here a probabilistic

generation-load model was developed to simulate all possible operating con-

ditions considering the discrete size and the allowable maximum penetration

of DG units. The same approach was applied for minimizing energy losses

in a wind based DG system where wind power generation is modelled using

Rayleigh PDF. The Optimal DG planning problem was then formulated as

a MINLP problem taking into account the uncertainty of the DG units. The

algorithm was validated for rural distribution feeder for all possible combi-

nations of DG units.

The MINLP was formulated in two stages so that multiple objectives can
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be taken into account (Porkar et al., 2011) for minimizing the total cost and

maximizing the total system benefits. The minimization of the total cost ver-

sus investment payback is done in the first stage followed by maximization of

total system benefits in the second stage. The effect of DG implementation

under different distribution conditions is simulated by taking into account

different DG types.

Another objective function that can be taken into account is the voltage

stability margin. An attempt to determine the optimal DG location and

size was done in (Al Abri et al., 2013) using voltage stability index based

method. The candidate buses for DG installation are selected based on the

sensitivity to voltage. The probability of load and DG units are taken into

account while sizing the DG units. For optimizing the DG unit allocation,

it is formulated as a MINLP so as to improve voltage stability margin con-

sidering the probabilistic nature of the renewable energy resources and load.

In (Kaur et al., 2014), the optimal DG allocation problem was divided

into siting planning model and capacity planning model so as to minimize

losses in the distribution system. The first phase of the allocation problem

is solved by making use of sensitivity analysis and the capacity planning

formulated as MINLP is solved using integrated Sequential Quadratic Pro-

gramming and Branch and Bound algorithm.

A MINLP approach is used in (Kumar et al., 2016) to solve optimal allo-

cation problem in a pool based electricity market with PV units. The solar

PV units were incorporated with their uncertainty described by Beta PDF.

The PV integrated system is analyzed for a 24-bus test system in a pool

based electricity market. The algorithm is found to be effective for systems
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with limited number of buses which are of balanced nature.

e. Dynamic Programming

A novel methodology based on dynamic programming was presented in (Khalesi

et al., 2011) for optimal allocation of DG sources in the distribution network

so as to minimize the total losses in the system along with a view to enhance

reliability and voltage profile of the system. The time varying characteristics

of the loads and the prices of energy were also taken into account for the

simulation to make the results more realistic. All the objectives were based

on a cost-benefit form and simulated in a test network to validate the results.

f. Ordinal Optimization

Ordinal Optimization can also be used for optimally allocating the DG units

in the distribution network. The ordinal optimization was used for specifying

the location and capacities of the DG units such that a tradeoff between

loss minimization and DG capacity maximization is achieved (Jabr and Pal,

2009). The objective function is formed using LP method and the problem

was solved using optimal power flow to find out the best alternative for DG

planning.

g. Exhaustive Search

In the case of ODGP problem, when a single technical issue such as volt-

age rise or losses to be addressed, exhaustive search would be beneficial. In

the case of exhaustive search, a number of technical issues and constraints

can be clubbed so that the formulated objective function includes various
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technical and non-technical parameters or indices. This type of methodology

was adopted by various researchers. An attempt was made by Chradeja et

al., to quantitatively assess the technical benefits of Distributed Generation

(Chiradeja and Ramakumar, 2004). Indices for voltage profile improvement,

line-loss reduction, environmental impact reduction and DG benefit were pro-

posed and the distribution network with DG was analyzed with these indices.

Similarly, a multi objective performance index was developed based on vari-

ous indices by providing proper weights for these indices (Ochoa et al., 2006)

and the performance of the system is analyzed for IEEE 34-Bus distribution

feeder.

The reliability aspect of the DG integrated distribution system is very

important and can be used to develop indices (Zhu et al., 2006). The opti-

mization of DG location and sizing was done so as to minimize the power

loss and maximize the system reliability. The reliability is analyzed in terms

of system average interruption duration index based on set theory. The op-

timization was performed considering the time varying load patterns and

economic impacts.

A fault in the system is often characterized by reconfiguration of the sys-

tem. The resulting network was used to analyze the effect of DG in the

distribution network (Kotamarty et al., 2008). The objective of the study

was to find the optimal locations for DG installation that resulted in the least

voltage deviations. The changes in the voltage profile with DGs placed at

different locations of varying size before and after the occurrence of the fault

in an unbalanced IEEE 37-bus distribution feeder are analyzed. The results

of the contingency analysis were used to determine the optimal location of
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DG in order to obtain the minimum voltage deviations.

The algorithm proposed in (Ochoa et al., 2006) was improved in (Ochoa

et al., 2008a) so as to include time varying characteristics of generation. The

time varying characteristics of the demand and distributed generation is rep-

resented using a multi-objective performance index that takes into account

the hourly variation of the load and wind power generation. This can be

useful in deciding the connection points where DG is to be inserted in the

distribution network without affecting the normal working condition of the

network.

Recently an exhaustive search method was used by (Mohd Zin et al.,

2015) to determine the size and installation location of DG units. Instead of

finding the optimal size of DG units to be installed, a new method for size

optimization is proposed by installing small sized DG units which are called

as modules with a provision to incorporate more than one module at each

bus. The optimization is done so as to minimize the losses and to improve

the voltage profile. The algorithm is tested on IEEE standard test systems

such as IEEE 6-bus, 14- bus and 30-bus test systems.

2.3.3 Metaheuristic Methods

Metaheuristic method is defined as an iterative generation process which

guides a subordinate heuristic by combining intelligently different concepts

for exploring and exploiting the search space. In meta heuristics, the near op-

timal solutions can be found by using various learning strategies which helps

to structure information (Glover and Kochenberger, 2006). The meta heuris-

tic techniques can be used to model and include various technical and non-
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technical issues associated with various power system optimization problems.

The benefits of such methods is their ability to accommodate mixed integer

problems and that they do not require the closed formulation of the different

aspects as in classical optimization techniques. Such heuristic methods can

be used for maximizing the efficiency of distribution system incorporating

several objective functions. But they require fine and careful tuning of the

optimization parameters so that convergence can be achieved with minimum

computational time.

The most important disadvantage of such techniques is their inability to

find the global optimum which is most often countered by performing mul-

tiple runs. They provide a reasonable solution without guaranteeing how

good the solution is. In addition to a single optimum point, they provide

near optimal alternatives which increases their utility in DG allocation prob-

lems. This is because the DNOś have little control over DG integration and

different planning alternatives may be considered to minimize uncertainty

and risks.

There are numerous metaheuristic algorithms. Genetic Algorithms (GA),

Act Colony Optimization (ACO), Artificial Bee Colony Optimization (ABC),

Particle Swarm Optimization (PSO), Simulated Annealing (SA) are a few.

All these algorithms have been used by researchers for solving DG planning

problems. These techniques are discussed below.

a. Genetic Algorithm

Optimal DG placement was solved using GA or variants of GA by several

researchers. One of the early study that was done by (Kim et al., 1998) to
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optimally size the DG units in the distribution system for maximizing the

potential benefits by the integration of any DG type using GA and improved

Hereford ranch algorithm (variant of GA). The benefit is expressed as a per-

formance index for minimizing the losses in a meshed distribution system.

Also, Borges et al. used GA in combination with other methods to evaluate

the system reliability, losses and voltage profile to optimize the size and lo-

cation of DG units (Borges and Falcao, 2006). For the benefit cost relation,

the benefit is calculated based on the losses and the cost is based on the

investment and installation.

A similar study was carried out by (Teng et al., 2007) that use GA to

find the best trade off between the cost and the benefits of DG placement. A

value based method is used for allocating the DG units optimally for achiev-

ing power loss reduction, power cost reduction and reliability improvement.

It is seen that, with the installation of DG types of proper size at proper lo-

cations can contribute to the improvement in service reliability and efficiency

of the distribution system.

(Singh and Goswami, 2009) used a genetic algorithm based method to

determine the optimal size and location of the DG units in radial as well as

networked distribution system so as to minimize the power loss. Also the

placement of single and multiple DGs along with different load patterns such

as increased, centralized and uniform loadings is also considered. The effect

of load models is taken into account and a multi objective performance in-

dex was developed so as to formulate the DG placement problem (Singh and

Verma, 2009). The Integration of DG units at multiple locations was done

(Shukla et al., 2010) using GA based methodology for achieving minimum
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loss configuration. For determining the optimal location of DG units, the

loss sensitivity approach was used. The benefits from DG installation such

as technical benefits and economic benefits were quantified from the utility

and customer point of view respectively. The algorithm is validated using

IEEE 33-bus and 69-bus distribution system.

GA can also be used to handle multiple objectives such as profit max-

imization, loss reduction, voltage profile improvement, etc. simultaneously.

(Singh and Goswami, 2010) used a methodology based on the nodal pric-

ing for optimally allocating distributed generation for profit, loss reduction

and voltage profile improvement. The voltage rise issue associated with the

integration of DG in a weak distribution network is also addressed in the

algorithm. Another multiobjective optimization approach based on GA was

used (Shaaban et al., 2013) to optimally allocate different type of DG units

into the distribution system. The optimization is done so as to maximize

the savings in investment costs, minimize the cost of energy and minimize

the system interruption costs. The uncertainty associated with the load and

generation is modelled by combining probability generation and Monte-Carlo

simulation model.

Other heuristic approaches were also used along with GA in order to

avoid premature convergence and reaching local minima. (Celli et al., 2005)

used a multiobjective optimization approach based on GA and e-constrained

method for optimal siting and sizing of DG sources. The various objective

functions considered were, the cost of network upgrading, cost of power losses,

cost of energy not supplied and the cost of energy required by the served

customers. The optimization is carried out by finding non inferior solutions
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using GA and e-constrained method which helps to achieve optimality in the

development and operation of the power system. A similar work was done

in (Carpinelli et al., 2005), in which ODGP is formulated as a constrained

multi objective and non differentiable optimization problem. Here a double

trade off method is used where the multi objective ε-constrained method is

used to find the possible solution in the first trade off. In the second trade

off, the most robust solution is found out. The solution technique used here

are GA and ε-constrained method i.e For optimum allocation of DG units,

GA is used and ε-constrained method is used for achieving Pareto optimal

solution.

In (Gandomkar et al., 2005), optimal DG siting and sizing was done with

the help of the integrated use of Genetic algorithm and tabu search. The

objective is to reduce the power losses and also the harmonic power losses

by optimally placing the DG source. Here GA is used to optimally allocate

the DG sources in the distribution system and tabu search is incorporated

in GA so as to avoid the local minimum and premature convergence of GA.

(Harrison et al., 2008) used a hybrid method employing GA and OPF for

optimizing the location and capacity of DG sources. Here GA is utilized in

searching a large range of combinations of locations and OPF was utilized

in finding the available capacity for each combination. The chance of non-

optimal solution due to GA and the search space limitations employing OPF

alone are eliminated by employing the combined approach.

An Optimal Proposed Approach (OPA) method based on GA was pre-

sented in (El-Ela et al., 2010) to maximize the benefits of DG installation.

Various objective functions including line loss reduction, voltage profile im-
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provement, power flow reduction in critical lines, etc. are formulated as

multiobjective optimization algorithm using weights with constraints using

optimal proposed approach and solved using GA. Similarly, a combination

of GA and Immune Algorithm was used by (Soroudi and Ehsan, 2011) for

maximizing the benefits from DNO side as well as DG owners’ side. The sim-

ulations are carried out by considering the load and wind power generation

uncertainty associated with the system using two point estimate method.

The formulated multiobjective problem is solved using Hybrid Immune Ge-

netic Algorithm and is tested in various large distribution systems.

Most of the objectives which are crucial to the system were considered in

(Singh and Goswami, 2011) by multiobjective DG placement that considered

reliability, security, cost and operational aspects. Here an interactive trade

off algorithm was used to obtain the optimal locations. This is based on

e-constrained method and the formulated algorithm is solved using GA. The

proposed method is validated for an existing rural distribution feeder with

and without considering load models.

Non Dominated Sorted Genetic Algorithm (NSGA) (Deb et al., 2002) is

an extension of Genetic Algorithm which is specifically intended for solv-

ing Multi Objective Optimization (MOO) problems. The main objective of

NSGA is the improvement in the adaptive fit of population into paretofront

regions with constraints on certain objective functions. NSGA and its vari-

ants NSGA-II have been used by several researchers in the optimal integra-

tion of DG sources. NSGA was used to find the optimal sites for distributed

Wind Energy Generators in order to maximize the energy export and min-

imize the power losses and short circuit levels (Ochoa et al., 2008b). The
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variability associated with the load and the generation is also taken into ac-

count considering the voltage and thermal limits. A practical distribution

feeder was considered for incorporating a single DG and multiple DG units

with their optimal configuration.

NSGA-II was used for optimal allocation of DG units in the distribu-

tion network where Fuzzy numbers were used to represent the uncertainty

associated with the load, electricity price and the power flow parameters

(Haghifam et al., 2008). The objective is taken so as to minimize the in-

vestment and operation cost, technical risk due to uncertainty in load and

economic risk due to uncertainty in electricity price. The Pareto optimal

solutions were found using NSGA II. Another efficient algorithm based on

Multi-objective NSGA II was used for optimizing the location of DG units in

the unbalanced distribution network so as to optimize the technical as well

as economic criteria in (Dehghanian et al., 2013). The loss reduction, system

reliability improvement as well as minimization of cost were considered as

the criteria for optimizing the location. The uncertainty associated with the

stochastic generation from DG sources is modelled and incorporated using

Point Estimate Method (PEM). The method thus gave a reliable solution

by balancing the trade-off between the technical and economic criteria. The

algorithm was validated for IEEE 37-bus distribution feeders.

The earlier versions of NSGA II were improved in (Sheng et al., 2015)

by improving the mutation and crossover procedure so as to minimize losses,

minimize voltage deviation and to maximize the margin for voltage stabil-

ity. The decision from the Pareto set is obtained by making use of fuzzy

membership function which helped in achieving the best population diver-
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sity and therefore the solution returned better solutions compared to other

multi objective approaches. The algorithm is validated for several balanced

distribution feeders of varying complexity.

b. Tabu Search Algorithm

One of the important disadvantages of GA is that the chances of converging

into local minima is more. This can be overcome in a method called Tabu

Search (TS) (Glover, 1989). It has the capability to expand its own search

space and therefore prevent cycling of some solution and therefore reduces

the risk of being trapped in local minima.

There are several researches in which TS was used for integrating DG

sources in the distribution system. One of the earlier work was done by (Nara

et al., 2001) in which Tabu Search algorithm was used for optimal placement

of DG sources in distribution system with a view of reducing the power loss

in the distribution system. The implementation of the Tabu Search algo-

rithm is done using decomposition or coordination technique. The capacity

and location of each DG unit are determined using separate Tabu Searches.

The algorithm is validated for a distribution feeder in which industrial, com-

mercial and domestic loads coexists.

Optimal allocation of reactive sources was also considered along with DG

sources in (Golshan and Ali Arefifar, 2007), which is formulated as a combi-

natorial problem and solved using Tabu Search algorithm. Here the amount

of DG sources and reactive power sources are computed to make up a given

total of distributed generation for minimizing losses, line loadings and total

required reactive power capacity. The tap positions of control variables are
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considered as the control variables in the optimization problem. The pro-

posed algorithm is validated for IEEE 33- bus distribution system and also

for a meshed 6-Bus system.

(Novoa and Jin, 2011) formulated ODGP as a stochastic planning model

to allocate wind power generators in the distribution network to minimize

the life cycle cost of the DG system satisfying the reliability criterion. The

capital, environmental and operational aspects are considered under the cost.

The wind power volatility and load uncertainty are modelled using probabil-

ity distributions. The continuous stochastic ODGP is solved using Genetic

Algorithm and a combined TS and Scatter search.

c. Particle Swarm Optimization

Particle Swarm Optimization (PSO) algorithm is inspired by bird flocking or

fish schooling. It is based on the movement and intelligence of the swarm.

PSO is also seen to be one of the heuristic methods that is widely used in

solving ODGP. PSO was used for optimal sitting and sizing of DG units in

distribution systems with a view of achieving voltage profile improvement,

loss reduction, and THD (Total Harmonic Distortion) reduction in distribu-

tion networks (Sedighi et al., 2010). Fitness value sensitivity of PSO algo-

rithm was also considered while conducting load flow and THD calculation

of the system.

The DG planning problem formulated as a multiobjective optimization

problem is solved using PSO (El-Zonkoly, 2011) considering load models.

The multi objective function is transformed into a single objective function

using weight method. Various performance indices, including voltage profile
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index, short circuit index, MVA index, etc. were used to formulate the prob-

lem as multi objective taking into account the various technical constraints.

Similarly, an improved reinitialized social structure PSO was used for solving

multiple distributed generation placement in a microgrid system (Prommee

and Ongsakul, 2011). The optimal sizes and locations of DG placement are

determined so as to minimize the power loss of the system within real power,

reactive power and voltage limits. Five different combinations of microgrid

systems are considered for DG installations with real and reactive power ca-

pabilities. The algorithm is compared with basic PSO and various methods

in the literature and found to have superior performance.

Hybrid heuristic methods involving PSO was also been suggested by vari-

ous researchers for solving DG planning problems. A novel combined Genetic

algorithm-PSO was presented for optimal location and siting of DGs in dis-

tribution system so as to minimize the losses, better voltage regulation and

improve the voltage stability adhering to the system operating and security

constraints in (Moradi and Abedini, 2012). Here GA is used to search the

site for DG and the size is optimized by PSO. The proposed algorithm is

implemented for IEEE 33-bus and 69-bus radial distribution system. The

proposed algorithm found to give optimized solutions for the distribution

system.

A hybrid method employing discrete PSO and OPF was proposed in

(Prommee and Ongsakul, 2011) so as to optimally locate a large number of

combinations of DG units. Here discrete PSO is used to optimally locate a

large number of combinations of DG and OPF was used to determine the

available capacity of DG so to maximize the dispatch from DG units. The
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proposed algorithm is validated using IEEE 30 Bus distribution system and

found to have superior performance compared to other metaheuristic ap-

proaches.

(Pandi et al., 2013) used an approach based on PSO to simultaneously de-

termine the penetration level of utility owned inverter based and synchronous

based DG units, to achieve a maximum DG penetration level taking into ac-

count the standard harmonic limits and protection constraints. The proposed

method is solved for IEEE 30-bus looped distribution system. The integra-

tion of inverter based DG units is limited by the constraints imposed by

IEEE 519 standards on harmonic distortion and those of the synchronous

generators was limited by the protection constraints. Another Hybrid PSO

algorithm was proposed so as to solve the DG allocation problem to accom-

modate a single objective and multiple constraints (Aman et al., 2014). The

objective function is considered so as to maximize the loadability at the same

time minimizing the losses. The bus voltage limits and the line currents are

taken as the constraints.

d. Ant Colony Optimization and Artificial Bee Colony optimiza-

tion

Both ACO and ABC optimization mimics the dynamics of social insect pop-

ulation. The interactions are executed by observing various physical and/or

chemical signs such as bee dancing in the case of ABC, level of pheromone

secretion in ACO etc. This gives an insight into the behaviour of the social

insect colony.

78



2.3 Review of Techniques for Optimal Distributed Generation Placement

Optimal placement of DG units in radial distribution feeders was solved

using population based artificial bee colony algorithm in (Abu-Mouti and

El-Hawary, 2011b). The objective function is selected so as to minimize the

real power loss of the system subjected to equality and inequality constraints.

The proposed algorithm is tested for various test cases, including 33-bus and

69-bus radial distribution feeders to check the effectiveness of the algorithm.

Bee Colony Optimization was used for determining the optimal location,

size and power factor of DG units so as to minimize losses considering vari-

ous constraints on the system in (Sohi et al., 2011). The proposed algorithm

is validated with a practical distribution feeder in Iran. (Wang and Singh,

2008) used Ant Colony Optimization to optimally locate the recloser or DG

placement in radial distribution system so as to maximize the reliability of

the system. For this purpose a composite reliability index with System Aver-

age Interruption Duration Index (SAIDI) and System Average Interruption

Frequency Index (SAIFI) are developed. Simulations are carried out in two

practical distribution feeder for validating the effectiveness of the algorithm.

A heuristic method by combining the ACO and ABC algorithm was used

for optimally allocating multiple DG sources in distribution system so as to

optimize several objectives such as minimization of power losses, emissions,

cost and improvement in the voltage stability margin (Kefayat et al., 2015).

The global search capability of ABC and the local search capability of ACO

algorithms could be simultaneously achieved by combining these two algo-

rithms. Probabilistic load flow is performed and the effect of the stochastic

parameters was taken by using Point Estimate Method (PEM). The algo-

rithm was validated for IEEE 33- bus and 69-bus distribution systems.
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e. Practical Heuristic algorithms

Two different heuristic algorithms were used to optimally place DG units in a

competitive electricity market (Gautam and Mithulananthan, 2007). These

heuristic methods are based on Locational Marginal price (LMP) ranking

and consumer payment ranking. The aim of the optimal DG placement was

to simultaneously maximize the social welfare and to maximize the profit of

the DG owner. LMP is used as the basis for the candidate locations for DG

installation. The proposed algorithm is validated for IEEE 14- Bus system.

It was observed that for DG installation at a particular node, the LMP for

social welfare maximization is comparatively lesser that the LMP for profit

maximization.

A heuristic iterative algorithm based on continuation power flow was used

to optimally place the DG units in the distribution network (Hedayati et al.,

2008). The iterative algorithm is based on the determination of network

buses which are most sensitive to voltage collapse. This is based on the bi-

furcation theory which leads to the execution of Continuation power flow.

The algorithm is tested in IEEE 34 bus distribution system for reduction of

losses, improvement in voltage profile and increase of power transfer capacity

and maximum loading.

A probability based approach was used in (Khodr et al., 2010) to find out

the optimal location for DG installation taking into account the hourly load

changes and the daily load cycle. For different hourly load scenarios, the load

centers are calculated and these location points were properly weighted to

calculate the best fit probability distribution function. A heuristic approach

is used to calculate the regions of the higher probability for DG location.
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The methodology was also applied to a real case applying different bivariate

distribution functions.

In (Ghosh et al., 2010), a heuristic iterative technique based on the N-R

method of load flow was used for optimally sitting and sizing DG units in

the distribution system. This helps in optimizing the weighing factor of the

objective function, thus maximizing the potential benefits. The objective

function is selected so as to minimize both loss and the cost of the system.

The optimal siting and sizing improve the voltage profile at the load buses.

The proposed algorithm was validated for IEEE 6-bus, 14- bus and 30-bus

distribution system.

Another heuristic algorithm was used to optimally place DG units in small

distribution network (Koutroumpezis and Safigianni, 2010) by considering

various technical constraints. The ODGP was solved using reconfiguration

of the network structure. In cases where reconfiguration was not possible,

the algorithm optimally distribute the maximum allowable penetration of

the DG units in predetermined or random network buses. The DG deploy-

ment problem was approached by considering the location and size selection

independently in (Abu-Mouti and El-Hawary, 2011a). In the first stage, sen-

sitivity test was conducted for candidate location selection and a heuristic

curve fitting technique is used to find out the optimal size of DG units at the

preselected DG locations. The algorithm is validated for IEEE 33-bus and

69-bus distribution systems.

A heuristic method based on Continuation Power Flow (CPF) was pre-

sented in (Hemdan and Kurrat, 2011) for optimal DG placement so as to

enhance the Voltage Limit Loadability (VLL). The idea was to disperse the
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available power from DG between recommended nodes so as to maximize the

system benefits. The CPF is implemented for 85 bus system using PSAT.

The results showed some recommended nodes for connecting DG units so

that the increased load demand can be met.

A heuristic approach was used in (Hamedi and Gandomkar, 2012) to place

a single DG based on the power loss index or the Energy Not Supplied (ENS)

index. Here the reliability, power loss and power quality are evaluated in the

presence of distributed generation considering load variations over time. The

optimum locations for DGs are found out by optimum reliability and power

loss indices. Power quality was evaluated using total harmonic distortion

current (ITHD) and compared with ITHD in the case where DG is absent.

ENS cost is used as the index for reliability. The test system under study

was an actual distribution network with 14952 customers for increasing the

system reliability and reducing the losses.

Modern heuristic methods such as bat algorithm, Imperialist competitive

algorithm, Big-bang crunch optimization algorithm, Shuffled frog leaping

algorithm, Bacterial foraging algorithm, etc. were also proposed by some re-

searchers for optimal allocation of DG units. Bat algorithm is based on the

behaviour of a group of bats while seeking the best location for the available

food. Bat algorithm was used in (Yammani et al., 2013, 2016) for optimizing

the size and location of multiple DG units so as to improve the voltage profile,

minimize losses and also to maximize the capacity. The multiple DG units

such as solar, fuel cell and wind turbine generators were also considered. The

optimization is done under the conditions of future load enhancement and

considering different load models.
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Imperialist Competitive Algorithm (ICA) is an evolutionary algorithm

where the initial population is defined as a country (Xing and Gao, 2014).

ICA was used along with GA for optimizing the size and location of DG units

and capacitor banks in the distribution system (Moradi et al., 2014). In the

first step, ICA is used to find the optimal size and location of DG units and

capacitors in the distribution system. Afterwards GA is used to generate

a new set of colonies and search spaces of all the solutions. The algorithm

is used to minimize losses, improve voltage regulation and to increase the

voltage stability. The proposed algorithm is validated for IEEE 33-bus and

69-bus distribution feeders.

The Bacterial Foraging Algorithm (BFA) is an algorithm which mimics

the behaviour of the bacterial foraging process of E-coli bacteria to search

food so as to maximize the energy per unit time (Kowsalya et al., 2014).

BFA was used for optimal allocation of DG sources so as to minimize losses,

cost and voltage deviation. The optimal location for DG installation is se-

lected based on the Loss Sensitivity Factor and BFA was used to determine

the size of DG units. This algorithm was modified in (Devi and Geethan-

jali, 2014) by using Modified Bacterial Foraging optimization Algorithm for

DG allocation. These algorithms are validated for IEEE 33-Bus and 69-bus

distribution feeders without considering the unbalance of the distribution

network.

Another optimization algorithm which was developed based on the food

seeking behaviour a group of frogs called as Shuffled Frog Leap Algorithm

(SFLA). The frogs have a tendency to leap to locations where maximum food

is available. SFLA was used for DG allocation problem in (Yammani et al.,
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2012) for loss reduction and cost minimization. The algorithm was validated

for a 38-bus distribution system.

A comparatively newer algorithm called as Big Bang-Big Crunch algo-

rithm is a nature inspired algorithm with excellent convergence characteris-

tics and was used for Optimal DG allocation in (Othman et al., 2015). Here

random points are generated by BB-BC in an orderly fashion and shrinks

all these points to a single point. The second phase called as Big Crunch

phase produces a single output called as Centre of Mass with several inputs.

The algorithm is applied for balanced and unbalanced distribution feeders

for power loss and energy loss minimization. Due to fast convergence the

algorithm found to have better performance compared to the other meta

heuristic algorithms.

There are plenty of methods that were used for optimal allocation of DG

units in the distribution network. Analytical and numerical methods cannot

be applied to large systems since their results are only indicative born out of

assumptions. Heuristic methods are robust and therefore are premier to the

analytical and numerical methods which makes it use widely. They use the

entire search space to find out the optimal solutions and thereby provide the

near optimal solutions. They are suitable for highly complex and large scale

systems. But most of the heuristic methods are not so efficient in dealing

with the uncertainty and stochastic output from the DG source. The the-

sis work proposes the use of stochastic learning algorithms for optimal DG

placement that can effectively handle stochastic output of DG source.
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2.4 Reinforcement Learning and Applications

Reinforcement Learning (RL) is a Neuro-dynamic programming that involves

learning by continuous interactions with the environment (Sutton and Barto,

1998). The learning method in the case of Reinforcement learning is based

on rewards and punishments. The objective of the reinforcement learning

is to maximize the rewards received over time by selectively retaining the

outputs. In reinforcement learning an agent continuously observes the cur-

rent status of its environment which is referred to as ’state’ and chooses an

action from the set of possible actions. When an action is performed, the

state transition occurs and the system moves to a new state and an imme-

diate payoff or reward is obtained which depends on the previous state and

the action performed. The aim is to maximize the long term sum of the

reward. This is accomplished by exploiting the available information, at the

same time exploring for new solutions. The balance between exploration and

exploitation is an important aspect in reinforcement learning.

Reinforcement learning by combining the features of dynamic program-

ming and supervised learning can be used to solve problems that do not

have a mathematical model to start with. Reinforcement learning can be

considered as an approximation to dynamic programming and can be used

as an effective computational tool for building autonomous systems in vari-

ous fields of control. Some of the applications of Reinforcement learning are

discussed in the next section.
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2.4.1 Game Playing

Temporal difference learning algorithms are widely used for game playing

and its application for solving the tic-tac-toe problem is given in (Sutton

and Barto, 1998). Reinforcement learning had been used to solve the game

of Go by using the temporal difference learning algorithm (Silver et al., 2007).

The game of Go consists of a board with black and white players and the

aim is to place a single stone to an intersection on the board. The stone

once played cannot be moved, but only captured. The adjacent stones with

the same colour are called as blocks, and empty intersections adjacent to the

block is called as liberty. The score of the player is the number of stones

captured and the liberties. For solving this game, reinforcement learning

with linear evaluation and large number of binary features were applied.

Reinforcement learning algorithm called as the Tabular sarsa alorithm

was applied for solving First person shooter game (McPartland and Gal-

lagher, 2011). In the first part, navigation controller is used to learn the

strategy for path planning and in the second part, the combat controller was

used to learn a strategy for beating the state-machine opponent. For both

strategies, the reinforcement learning could be successfully applied.

2.4.2 Robotics Applications

Reinforcement learning methods were successfully applied for many robotic

and autonomous applications such as autonomous helicopter control, au-

tonomous driving control and robotic applications. The batch reinforcement

learning algorithm was applied for solving a robotic soccer problem in (Ried-
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miller et al., 2009). The autonomously acting agents in reinforcement learn-

ing are exploited in controlling a robot for playing a robot soccer game. The

batch reinforcement learning algorithm is found to have superior performance

as compared to all other algorithms in solving the robot soccer game.

Mobile path planning problem was solved using the Q-learning algorithm

in (Jaradat et al., 2011) in dynamic environments. In dynamic environments,

the state space corresponding to the learning algorithm is infinite. The state

space is redefined by limiting the number of states for solving the difficulty

of convergence. By employing the algorithm the robot was able to reach the

target without collision most of the time.

2.4.3 Power system Applications

The Automatic Generation Control (AGC) was modelled as a stochastic

multi-stage decision making problem and is solved using reinforcement learn-

ing algorithm in (Ahamed et al., 2002). RL is capable of handling systems

whose dynamics is not fully modelled and in the learning algorithm the con-

trol is evolved by observing system responses. RL algorithm with its features

handled the AGC objectives more qualitatively and thus proved to be very

effective in developing control strategies AGC.

The power system controllers such as Thyristor Controlled Series Ca-

pacitor (TCSC), static VAR compensators, etc. were applied in the power

system network so as to improve the power system stability (Ernst et al.,

2004). Such controllers require intelligent and systematic learning methods

so that their decision making capability is improved which helps in the real

time operation. The reinforcement learning algorithm is designed for offline
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mode of a dynamic brake controller and also for the online mode of TCSC

so as to improve power system stability.

Reinforcement learning was applied to solve the Constrained Load Flow

(CLF) problem so as to optimally control the reactive power in power sys-

tem (Vlachogiannis and Hatziargyriou, 2004). The Q-learning algorithm is

used to design control settings for reactive power compensating devices. The

voltage magnitudes and angles were taken as the state vector, whereas the

transformer tap position, shunt compensation settings were taken as the

control vector. The power flows and the reactive powers of PV buses are

considered as the constraint variables. The Q-learning algorithm gave better

convergence characteristics compared to other CLF algorithms with optimal

control settings. The algorithm is validated for IEEE 14 bus IEEE 136 bus

bar system for CLF based reactive power control.

The economic dispatch problem was formulated as a multi stage decision

making problem and was solved using reinforcement learning (Jasmin et al.,

2011). Two RL algorithms namely, ε-greedy algorithm and pursuit algorithm

are applied to distribute the power demand among various generating units

so as to minimize the operating cost. An algorithm that takes into account

of the transmission losses was also developed. The algorithm is validated for

test systems with varying complexity and quadratic cost functions. The com-

putational efficiency of the algorithm is found to be superior as compared to

other algorithms with a capability to include stochastic real time cost data.

The RL algorithm for solving AGC was improved in (Yu et al., 2011) by

using a stochastic optimal control strategy which considers NERCś Control

Performance Standards (CPS). The long term delay control loop that occurs
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with thermal AGC plants are effectively tackled by multistep Q-learning al-

gorithm. The RL based control strategies found to be effective in AGC by

enhancing the robustness and performance at the same time ensuring CPS

compliances. The relaxed control technique is also implemented by online

tuning relaxation factors for controlling the degree of compliance and relax-

ation.

The real time measurements were processed and used to design a con-

troller for power system stabilizers which is called as real-time close-loop

wide-area decentralized power system stabilizers (WD-PSSs) (Hadidi and

Jeyasurya, 2013). RL based PSS do not need any mathematical model or

complete information of the system. The WD-PSSs were found to be effective

in stabilizing the system after severe faults without tripping any generator or

load area. Thus stability margin was increased, which enhanced the damping

of oscillations. This framework is implemented on a sample power system

which gave better results compared to other controllers.

An intelligent Maximum Power Point Tracking (MPPT) algorithm was

developed for variable speed wind energy conversion systems based on rein-

forcement learning (Wei et al., 2015). The model free Q-learning algorithm

is used to update the action-value pairs which helps in online learning of the

controller. The optimum speed-power curve is then obtained which aids in

fast real time MPPT control of WECS without knowledge of wind turbine

parameters or wind speed information. The algorithm is validated by sim-

ulation as well as experimentation for a 1.5 MW DFIG and 200 W PMSG

wind turbine.
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2.5 Conclusion

A detailed review of various power flow algorithms for distribution network

is discussed in Section 2.1. Most of the power flow algorithms neglect the

unbalance of the distribution feeders and the handling of DG units in the

distribution system which necessitates an efficient power flow algorithm that

can incorporate DG sources in an unbalanced distribution network. The

varying power output from DG sources such as PV source should also be

taken into account by suitable uncertainty modelling. A review of various

techniques used for uncertainty modelling of solar PV generation is discussed

in Section 2.2. When sufficient data are available, probability representation

is best suited for representing the uncertainty of the PV source. Numerous

methods have been used by researchers for optimally allocating DG sources

in the distribution network, which are discussed in Section 2.3. Each method

has its own limitation in handling the optimal DG placement, but most of

the methods lack the ability to handle stochastic data that exist in practi-

cal systems. Therefore, development of an efficient method that can handle

stochastic data of DG sources and unbalance of the distribution network is

still relevant. Reinforcement learning is a Neuro-dynamic programming that

is efficient in handling stochastic data and are can be used to solve decision

making problems. Various applications of Reinforcement learning are dis-

cussed in Section 2.4. The application of reinforcement learning algorithms

for optimal allocation of DG units is to be investigated in the thesis. As a

first step, the power flow algorithm for unbalanced distribution network is

discussed in the next chapter.
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Chapter 3

Power Flow Studies for

Unbalanced Distribution

System

3.1 Introduction

The efficient and reliable power system operation necessitates the knowledge

of the steady state condition of the power system for varying load demand.

The power flow study is an important and basic tool for any power sys-

tem that gives an insight into the steady state behaviour and are used in

the planning, design and operational stages. In the last few decades, there

were considerable development in the solution algorithms and were success-

fully implemented for various systems. The major solution algorithms are

Newton-Raphson method, Gauss-Seidal method and fast decoupled meth-

ods. These algorithms have been developed for the power transmission sys-
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tems, but there are limitations in applying these algorithms for distribution

systems. Under steady state conditions, transmission systems assumed to

have balanced operation. In contrast distribution systems that are charac-

terized by high R/X ratio and unbalanced operation. Such systems pose ill

conditioned problems to Newton-Raphson algorithms whereas Gauss-Seidal

method fails to converge for such systems. Therefore, robust and efficient

solution algorithms for distribution systems is very much necessary.

An efficient and robust power flow algorithm for distribution systems

should be capable of solving systems with any number of nodes which may

be radial or weakly meshed in nature in which fluctuating DG sources or

any number of unbalanced loads may be connected. There are plenty of al-

gorithms that were developed in order to handle distribution systems which

are thoroughly reviewed in Chapter 2. But most of the algorithms work on

the assumption that the distribution network is balanced and is fed only

at one point. Distribution networks are inherently unbalanced due to the

unbalanced loads and the presence of DG sources. This requires a power

flow algorithm that can handle unbalance in the distribution system and the

DG sources if present. The algorithm should also be capable of handling

the fluctuating power output from the DG sources without affecting the ef-

ficiency of the algorithm. The Forward-Backward sweep algorithm proposed

by W.H Kersting is one of the algorithm that is used by several researchers

with modifications due to its simplicity and robustness. The limitation of

the method is that the algorithm is not designed to handle the DG sources

by considering them as PV nodes. Hence an efficient and general power flow

algorithm suitable for a DG integrated system is very needed for ensuring
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better steady state operation of the distribution system.

The contributions in the impact of DG sources in unbalanced distribution

system are very less. Initial discussion on the handling of PV nodes in the

unbalanced distribution system was given by several authors. To ensure bet-

ter steady state operation of the distribution network, an efficient power flow

technique with DG handling capability is very much essential. The chap-

ter describes the proposed power flow algorithm which is able to handle PV

nodes. For developing the power flow algorithm, it is necessary to model each

and every component in the distribution network which is also described in

the chapter. The proposed power flow algorithm uses the sweep algorithm

using basic Kirchoff’s laws with modification so that PV nodes can also be

included in the algorithm.

3.2 Component Modelling of Distribution Sys-

tem

The modelling of various components of distribution feeder is a critical step

in the analysis of the distribution system. The components of a distribution

feeder may be either series or shunt. The shunt components include spot

static loads, spot induction machines and capacitor banks. The modelling of

overhead and underground line segments is important for the computation

of impedance and admittance matrix. The final voltage transformation to

customers load is provided by transformer banks, which make it important to

model the various three phase transformer connections correctly. The maxi-

mum demand on the distribution feeder is determined by the loads connected
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Figure 3.1: General Feeder Component

to it. Thus the models developed for the components is to be used in the

iterative routine for power flow.

The sweep algorithm for solving distribution networks comprises two steps

known as forward sweep and backward sweep. Forward sweep equations use

KVL and helps in computing the new voltage at each bus as given by Eq.

(3.1). Using KCL, the new updated currents through each branch is com-

puted in backward sweep as per Eq. (3.2).

[V LNabc]m = [A] · [V LNabc]n − [B] · [Iabc]n (3.1)

The backward sweep equation gives

[Iabc]m = [c] · [V LNabc]n + [d] · [Iabc]n (3.2)

where [V LNabc]m, [V LNabc]n represents the value of voltage for nodes m and

n respectively and [Iabc]m, [Iabc]m represents the corresponding currents. The

matrices A,B, c, d are the generalised matrices.

For conducting the power flow algorithm, the initial node currents are

assumed as zero. Thus, using the forward-sweep, the no load voltages for

all the nodes can be calculated. The backward sweep is carried out for
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Figure 3.2: Three Phase Line Segment Model

calculating the currents at the end nodes and further progressing towards

the source node by summing up the branch currents. The updated value

of the currents is used in the next Forward sweep iteration for calculating

the new value of voltages. This procedure is repeated until the difference in

the voltages in two consequent iterations are within tolerance limits. The

generalized matrices of A,B, c and d matrices should be modelled for all

the series and shunt components using the appropriate equations (Kersting,

2012).

1. Three phase line segment model: The representation of a three phase

line segment is shown in Fig. 3.2. This model holds good for three

phase, two phase as well as single phase line by making the corre-

sponding admittance values as equal to zero. From this exact model,

the following equations can be written.

[V LGabc]n = [V LGabc]m + [Zabc] · [Ilineabc]n (3.3)
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Figure 3.3: General Three Phase Transformer Bank

where [Iabc]n in (3.3) is given by (3.4)

[Ilineabc]n = [Ilineabc]m +
1

2
[Yabc] · [V LGabc]m (3.4)

Equations (3.3) and (3.4) can be used form the generalized constant

matrices A,B, c and d for the line segment.

2. Three Phase transformer models: The generalised transformer bank

model is shown in Fig. 3.3. Here the upper case letters represent

the source side, whereas the lower case letters denotes the load side.

The forward and backward sweep equation for the transformer can be

written as

[V LNABC ] = [at] · [V LNabc] + [bt] · [Iabc] (3.5)

[IABC ] = [ct] · [V LNabc] + [dt] · [Iabc] (3.6)

where the matrices [at], [bt], [ct], [dt] in Equations (3.5) and (3.6) are

functions of the winding turns ratio nt which depends on the configu-

ration of the transformer.
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3. Capacitor Model: Capacitor banks either wye or delta are connected in

the distribution system to help in achieving proper voltage regulation

and for reactive power support. Capacitors can be modelled as constant

susceptance whose values are given by

B =
KV AR

kV 2 · 1000
Siemens (3.7)

The susceptance can be used to find the currents injected which is given

by

IC = jB · V (3.8)

In Wye connection IC and V denotes line currents and phase volt-

age whereas in Delta connection they represent delta currents and line

voltages.

4. Load Model: The usual load models used for distribution system stud-

ies are constant impedance, constant current or constant power models

that can be either in Wye or Delta. Sometimes hybrid models are also

used. If complex power [Sabc] and phase voltage [V LNabc] are given,

then current due to constant complex power is

Ipqi =

(
Si

V LNi

)∗
(3.9)

The constant load impedance is given by

Zi =
V LN2

i

S∗i · 1000
(3.10)
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Which can be used to compute the corresponding current due to con-

stant impedance

Izi =
V LN2

i

Zi
(3.11)

The constant current load results in a current whose magnitude given

by

Ipqi =

∣∣∣∣( Si
V LNi

)∗∣∣∣∣ (3.12)

This magnitude of current is kept constant throughout the iteration

and the angle is found out using Eq. (3.10) which changes during each

iteration.

3.3 Iterative Routine for Power Flow

The first step in the Power flow algorithm for the unbalanced distribution

system is a forward process. Using the value of the substation voltage, the

initial voltage for all the other nodes is calculated assuming the initial branch

current as equal to zero. This step returns the no load voltages which can

be used as the initial condition for the far end nodes to start the backward

process. The backward process starts by the computation of load currents if

present for the end nodes according the type of load model. The load can be

either Wye or Delta and may be modelled as constant impedance, constant

power or constant current according to the load model used. The equations

describing the same are given by Eq. (3.9)-(3.12). To this, capacitor current

if present should be added where capacitor current is given by Eq. (3.8).

The resulting value returns the total injected current at a particular bus.
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Initially, this computation is carried out for the end nodes. In the subse-

quent stages, the current of the branches connected to the end nodes to be

calculated and the total current that is injected at any node is given by Eq.

(3.13)

Inφ =
∑

Imφ + ICnφ + Iloadnφ φ = [a, b, c] (3.13)

Where
∑
Imφ represents the sum of all branch currents of all the nodes

connected to node n and ICnφ and Iloadnφ represents the currents injected by

the capacitor and the loads connected to node n. This is carried out starting

from the far end nodes to the source node. The equation for the backward

process is given by Eq. (3.2).

Using the updated values of currents, the forward process is to be carried

out to find out the updated voltages starting from the source node till far

end nodes. This is done by assuming the nominal voltage at the source bus

and using Eq. (3.1).

The voltage mismatch of the nodes in the subsequent iteration is used as

the convergence criteria which is given in Eq. (3.14). If this value is within the

defined tolerance limits, the convergence has been achieved. Otherwise, the

backward process is to be carried out using updated values of node voltages

obtained in the forward process.

∆V
n(k)
φ =

∣∣∣V n(k)φ

∣∣∣− ∣∣∣V n(k−1)
φ

∣∣∣ (3.14)
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Once the power flow has been converged the power loss should be found out.

The power loss is given by (Hung and Mithulananthan, 2013)

Ploss =
∑
m

∑
n

Amn(PmPn +QmQn) +Bmn(QmPn + PmQn) (3.15)

where

Amn =
Rmncos(δm − δn)

VmVn
(3.16)

Bmn =
Rmnsin(δm − δn)

VmVn
(3.17)

Fig. 3.4 summarizes the described power flow algorithm.

3.4 Results and Discussion

The proposed power flow algorithm is validated using three different test sys-

tems of varying complexity. Three IEEE standard distribution feeders are

considered, of which one is the balanced test feeder and the others are un-

balanced. IEEE 33-bus balanced distribution feeder is considered so that the

application of the power flow algorithm for balanced test feeder can be ver-

ified. The other feeders considered are IEEE 13-bus and 37-bus unbalanced

distribution feeders. The details of the test system are given in the following

sections. The results of the power flow algorithm are validated using results

obtained from the standard distribution analysis software openDSS (Dugan,

2012). The distribution analysis softwares even though give accurate results,

the representation of PV nodes and simulation under stochastic environments

is not possible with them.
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Figure 3.4: Flowchart for power flow of unbalanced distribution system
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3.4.1 IEEE 33-bus Balanced Distribution feeder

IEEE 33-Bus test system is a three phase balanced distribution system with

a reference voltage level of 12.66 kV. The single line diagram of the system

is given in Fig. 3.5. It consists of a single supply point with 33 buses, 3

laterals, 37 branches and 5 loops or tie switches that are kept open during

normal conditions. These tie switches (branches 33-37) are usually closed

during fault conditions so that continuity of supply is maintained. Another

use of these tie switches these can be closed to change the resistance of the

circuit to reduce losses. The real and reactive power for the system are 3715

kW , and 2300 kV AR. The results for the power flow are given in Table.

Figure 3.5: Single Line Diagram of IEEE 33-Bus distribution feeder

3.1. The real power losses obtained is 211.38 kW . The minimum voltage on

the system was found to be 0.9140 p.u. It took only two iterations for the

power flow to converge. The results are validated with that obtained using

OpenDSS (Dugan, 2012).
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Table 3.1: Voltage magnitude and angles for IEEE-33 Bus balanced test
feeder

Bus Number Voltage Magnitude(p.u) Voltage Angle(degrees)

1 1.0000 0.0000
2 0.9970 0.0148
3 0.9830 0.0985
4 0.9755 0.1658
5 0.9682 0.2341
6 0.9498 0.1446
7 0.9463 -0.0872
8 0.9415 -0.0539
9 0.9352 -0.1312
10 0.9294 -0.1980
11 0.9286 -0.1914
12 0.9271 -0.1812
13 0.9210 -0.2778
14 0.9187 -0.3585
15 0.9173 -0.3976
16 0.9160 -0.4223
17 0.9140 -0.5017
18 0.9134 -0.5120
19 0.9965 0.0039
20 0.9929 -0.0636
21 0.9922 -0.0831
22 0.9916 -0.1036
23 0.9794 0.0673
24 0.9727 -0.0220
25 0.9694 -0.0662
26 0.9479 0.1858
27 0.9453 0.2443
28 0.9339 0.3386
29 0.9257 0.4249
30 0.9222 0.5338
31 0.9180 0.4534
32 0.9171 0.4312
33 0.9168 0.4237
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3.4.2 IEEE 13-bus Unbalanced Distribution Feeder

The IEEE 13-bus test feeder is taken to evaluate the effectiveness the pro-

posed power flow algorithm. The feeder consists of two transformers 115/4.16kV

of Delta/GY configuration at the main substation and 4.16/0.48 kV of GY/GY

configuration in one of the lines. The feeder is characterized by both spot

and distributed loads, which are balanced, unbalanced, single phase, three

phase, delta and wye connected with all combinations of load models. There

are overhead lines and underground cables with different spacing of phases.

Three phase and single phase capacitors are utilized in the feeder topology.

The single line diagram of the distribution feeder is shown in Fig. 3.6 and

its data (Kersting, 2001) is given in Appendix. The voltage profile and cur-

Figure 3.6: Single Line Diagram of IEEE 13-Bus Distribution System

rent flows for the three phases are given in Table. 3.2 and 3.3 respectively.
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The real power losses obtained for the three phases are 90.8, 71.61 and 183.5

kW respectively. The minimum voltages for the three phases are 0.917 p.u,

0.9697 and 0.8970 p.u for the three phases. The results are validated with

that obtained using OpenDSS (Dugan, 2012).

Table 3.2: Voltage profile IEEE 13-bus feeder

Node ID Van 6 Van Vbn 6 Vbn Vcn 6 Vcn

650 1 0 1 -120 1 120
632 0.9576 -2.78 -0.9899 -121.77 0.9443 117.78
633 0.9543 -2.9 0.9877 -121.91 0.9425 117.56
634 0.9287 -3.44 0.9697 -122.5 0.9226 117.04
671 0.9240 -5.9 1.0013 -122.51 0.8985 115.7
692 0.9240 -5.9 1.0013 -122.51 0.8985 115.7
675 0.9170 -6.21 1.003 -122.8 0.898 115.72
680 0.9240 -5.9 1.0013 -122.51 0.8985 115.7
645 - - 0.982 -122.15 0.9430 117.65
646 - - 0.978 -122.21 0.9409 117.61
684 0.922 -5.93 - - 0.8992 115.56
652 0.918 -5.87 - - - -
611 - - - - 0.8970 115.56

3.4.3 IEEE-37 bus Unbalanced Distribution Feeder

The IEEE 37-Bus distribution feeder is a real feeder in California. The

single line diagram for the distribution feeder is given in Fig. 3.7. The feeder

consists of different types of loads such as spot loads, single phase and three

phase loads which may be balanced or unbalanced, Delta or Wye connected

that may be characterized by constant Z, constant kW, kVAR or constant

current type of modelling. The feeder also consists of both underground and
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Table 3.3: Current values of IEEE 13-bus feeder

Node ID Ia (A) 6 Ia Ib (A) 6 Ib Ic (A) 6 Ic

650-632 592.7 -28.7 438.4 -140.1 627.2 90.75
632-633 87.2 -39.2 63.5 -158.9 67.8 80.3
632-645 - - 147.8 -143.5 65.36 58.26
632-671 506.8 -27.8 230.1 -137.8 508.9 97.43
645-646 - - 62.25 -122.5 60.25 57.89
633-634 750.2 -38.3 559.3 -160.2 588.4 81.2
671-692 248.7 -20.67 67.1 -59.2 192.1 106.32
671-684 58.7 -38.63 0 0 71.9 118.51
671-680 0 0 0 0 0 0
692-675 218.7 -8.9 67.1 -59.2 137.2 106.7
684-611 - - - - 71.9 118.51
684-652 58.7 -38.63 - - - -

overhead lines with different spacing between phases. The substation and

inline transformers are of delta-delta type. The voltage profile for the feeder

is shown in Table. 3.4. The real power losses obtained for the three phases

are 49.17, 27.97 and 72.56 kW respectively. The minimum voltages for the

three phases are 0.956 p.u, 0.973 and o.954 p.u for the three phases.
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Figure 3.7: Single line diagram of IEEE 37-Bus Distribution System
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Table 3.4: Voltage Magnitude and angle of IEEE 37-bus feeder

Node ID Van 6 Van Vbn 6 Vbn Vcn 6 Vcn

790 1.000 0 1 -120.00 1.000 120.00
701 0.989 -0.091 0.989 -120.45 0.984 119.59
702 0.982 -0.147 0.984 -120.66 0.972 119.35
713 0.981 -0.159 0.982 -120.63 0.974 119.53
704 0.980 -0.167 0.981 -120.67 0.973 119.56
720 0.977 -0.209 0.977 -120.68 0.969 119.60
707 0.977 -0.298 0.975 -120.66 0.968 119.74
724 0.976 -0.3287 0.971 -120.64 0.969 119.76
722 0.976 -0.324 0.972 -120.66 0.969 119.73
706 0.977 -0.234 0.977 -120.69 0.975 119.64
725 0.978 -0.239 0.977 -120.69 0.973 119.62
714 0.979 -0.165 0.982 -120.62 0.974 119.53
718 0.978 -0.155 0.982 -120.58 0.97 119.50
705 0.982 -0.125 0.985 -120.60 0.977 119.53
742 0.982 -0.145 0.984 -120.60 0.977 119.55
712 0.982 -0.105 0.985 -120.62 0.976 119.54
703 0.976 -0.175 0.983 -120.71 0.972 119.25
727 0.975 -0.155 0.982 -120.70 0.971 119.25
744 0.974 -0.155 0.981 -120.69 0.970 119.23
729 0.974 -0.145 0.981 -120.68 0.970 119.22
728 0.973 -0.145 0.981 -120.69 0.970 119.23
730 0.971 -0.115 0.980 -120.74 0.966 119.16
709 0.969 -0.105 0.979 -120.75 0.965 119.12
775 0.969 -0.105 0.979 -120.75 0.965 119.12
731 0.969 -0.125 0.978 -120.75 0.965 119.15
708 0.966 -0.075 0.978 -120.75 0.963 119.06
732 0.966 -0.055 0.978 -120.76 0.962 119.06
733 0.964 -0.055 0.977 -120.74 0.961 119.00
734 0.961 -0.005 0.975 -120.75 0.958 118.92
710 0.960 0.035 0.974 -120.78 0.956 118.94
736 0.960 -0.015 0.973 -120.76 0.956 118.99
735 0.960 0.045 0.974 -120.79 0.956 118.95
737 0.957 0.035 0.974 -120.72 0.956 118.82
738 0.956 0.055 0.974 -120.72 0.954 118.79
711 0.956 0.085 0.974 -120.75 0.954 118.78
740 0.956 0.095 0.974 -120.76 0.953 118.79
741 0.956 0.085 0.974 -120.76 0.953 118.78
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3.5 Conclusion

The inherent unbalance and presence of DG sources necessitates a generalized

power flow algorithm that is well suited to handle the unbalance associated

with the distribution system. The chapter describes a modified general power

flow algorithm for analyzing unbalanced distribution feeders. The algorithm

is tested for three test feeders of varying size and complexity. The results

are compared with those obtained from the standard distribution analysis

package openDSS which demonstrates the efficiency and accuracy of the al-

gorithm. OpenDSS even though provide accurate results, it is not designed

to include generator (PV) nodes. The exact generation characteristics can be

included for renewable energy sources only if they are included as PV nodes

in the power flow algorithm. Also the simulation of stochastic environments

inherent in renewable energy generators are not possible in OpenDSS. The

power flow algorithm developed is able to handle the DG units as both PQ

and PV nodes with slight modification in the algorithm which is described

in Chapter 4.

109



Chapter 3. Power Flow Studies for Unbalanced Distribution System

110



Chapter 4

Integration of Distributed

Generation in Unbalanced

Distribution System

4.1 Modelling of Distributed Generation(DG)

system

Distributed generation (or DG) include small-scale electric power generators

that produce electricity close to the point of consumption (Ackermann et al.,

2001). The various DG units that are connected at distribution system are

given below.

1. Wind Turbines: The grid connected wind turbines can be classified as

fixed type and variable type. The fixed type of wind turbine requires

a gear box where the rotor of the squirrel cage induction generator is
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directly connected to the grid and the rotor is rotated using a propeller

through the grid. Variable speed wind turbine consists of a doubly fed

induction generator or a synchronous generator. Modern turbines uses

permanent magnets instead of the conventional generator. The output

of these generators are converted into grid compatible AC power by

using a rectifier and inverter.

2. Fuel cells: Fuel cells convert the stored chemical energy in the fuel

into electrical energy and thermal energy by using an electrochemical

process without the help of any electrical machines. Inverter is used to

convert the DC output power into AC power which is compatible with

the grid properties.

3. Photovoltaic (PV) systems: The PV systems produce DC power output

and are connected to the grid using inverter which converts the DC

power to grid compatible AC power.

4. Internal combustion (IC) engines: The IC engines use the principle of

conversion of chemical energy stored in gas or liquid fuels into mechan-

ical one. Similar to the wind turbines, these are directly connected to

the grid with the help of synchronous or induction generators.

5. Gas turbines: Gas turbines involve two stage conversion process. The

first stage involves the conversion of chemical energy into heat where

the chemical energy is derived from the potential energy stored in the

fossil fuels. In the second stage, the heat is converted into mechanical

energy and is used to rotate a synchronous generator which is directly

connected to the grid.
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6. Micro-turbines: The working of micro-turbines is similar to that of

gas turbines, but it uses a high speed permanent magnet synchronous

generator instead of the synchronous generator which is connected to

the grid using power electronic converters.

It is clear that depending upon the type of DG used, the modelling also

differs. The DG units can be connected to the grid by three ways, by using

a synchronous or asynchronous generator to connect directly to the grid,

by using electric machine and power electronic interfaces or by using only

power electronic converter as in the case of photovoltaic and fuel cells. The

operation of the machine determines the model of the DG for the power flow

studies where it is directly connected to the grid. When power electronic

interface is used, the controller circuitry determines the model of the DG.

The various modelling schemes are determined from the characteristics of the

machines as described below:

1. Induction generator model: In an induction generator, both active and

reactive powers can be represented as functions of slip (Naka et al.,

2001).

P = f(V, s)

Q = g(V, s)
(4.1)

where P and Q are produced active and reactive power, respectively, s

is the slip of induction generator speed and V is the bus voltage. For

the squirrel cage induction generator, P can be assumed as constant

and reactive power can be taken independent of slip. Thus Eq. (4.1)
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can be written as

P = Ps = constant (4.2)

Q = g(V ) (4.3)

At steady state the voltage magnitude is close to one p.u in squirrel

cage induction generators which make it possible to model it as PQ

node.

2. Synchronous Generator model: In accordance with the excitation sys-

tem, the synchronous generator can have Fixed excitation system and

regulating excitation system (Losi and Russo, 2005), (Chen et al.,

2006). In the second category, the machine can work either in volt-

age control mode (constant terminal voltage) and power factor control

mode (fixed power factor) which can be modeled as PV node and PQ

node respectively for power flow studies with DGs. The round rotor

synchronous generator modelled as fixed excitation induction generator

may inject reactive power to the grid and can be modelled by Eq. (4.4)

with Q as positive.

Q =

√
(
Eq
Xd

)2 − P 2 − V 2

Xd

(4.4)

where P and Q are the active and reactive power of the DG, Eq and

V are no load voltage and the generator terminal voltage respectively

and Xd represents the synchronous reactance. Under the assumption
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of constant P ,

P = Ps = constant (4.5)

Q = g(V ) (4.6)

Here the value of Q is always positive, i,e. Synchronous generator

without excitation can be used to inject reactive power to the grid.

3. Power Electronic Interfaces are used for grid connection of several DG

units like PV systems, Fuel cells etc. (Nehrir et al., 2006). In such

cases DG model for power flow studies depends on the control method

used for the converter (Chen et al., 2006). When the control method

employed to control P and V independently, PV model is used and

when it controls P and Q independently PQ model is used.

4.2 Integration of Dispersed Generation units

in the power flow solution

As mentioned in the previous section, the inverter connected DG sources are

modelled according to the controller circuitry used for inverter. Therefore

DG sources can be modelled as either PQ nodes or PV nodes in the dis-

tribution power flow. A review of the various modelling techniques for DG

integration for power flow are reviewed in Section. 2.1.5 of Chapter 2. The

DG units are considered as negative loads with currents injected into the bus

when PQ modelling technique is used. In order to include the representative

features of DG units, they should be modelled as PV nodes in the power flow

115



Chapter 4. Integration of Distributed Generation in Unbalanced Distribution
System

solution which requires slight modification in the power flow algorithm.

The positive sequence voltage and the real power for the PV node are

specified initially. The initial value of the reactive power is assumed to be

zero. With these values, the power flow algorithm is carried out till con-

vergence. The positive voltage mismatch vector is computed to check if the

value is within tolerance limits according to Eq. (4.7).

∆V k
1 =

∣∣V k
1spec

∣∣− ∣∣V k
1calc

∣∣ < ε (4.7)

where k is a PV node. The PV node voltage is converged if the computed

value of the voltage mismatch vector are within limits. If the value exceeds

the tolerance limits, the voltage values should be maintained within limits by

injecting reactive power. This is obtained by calculating positive sequence

sensitivity impedance matrix which is given by Eq. (4.8)

∆IkQ = inv(Zk
1 ) ∗∆V k

1 (4.8)

Matrix Zk
1 is a square matrix of the order npvt where npvt is the total number

of PV nodes (Khushalani et al., 2007). The sign of the reactive power injec-

tion is given by the sign of ∆V k
1 returns the sign of reactive power, whether

reactive power is injected or drawn from the grid . For positive ∆V k
1 , reac-

tive power is produced and injected into the grid and for negative values of

∆V k
1 , the reactive power is absorbed from the grid. The following equations

are used to calculate the reactive power to be injected so as to maintain the

116



4.2 Integration of Dispersed Generation units in the power flow solution

voltage to the specified limits.

∆IkQ,φ = ∆IkQ ∗ e
sign(∆V k1 )∗90o+δV kφ φ = a, b, c (4.9)

where δV k
φ are the angles of the converged voltages in the three phases at the

kth node which results in reactive power injection given by

Qnew
G = imag(V k

φ ∗ Ik∗φ ) (4.10)

Summing the reactive power injection to the previous value, the total reactive

power for a PV bus can be calculated using Eq. (4.11).

Qtotal
G = Qprevious

G +Qnew
G (4.11)

If the injected reactive power at any bus exceeds the limits, the reactive

power is fixed at the limiting value. Now the corresponding bus can be

converted into PQ node. The limiting current is given by Eq.(4.12)

∆IkQ,limit =

Qklimit
3

mag
(
V k

1

) (4.12)

The total current is given by summing up this injected current to the load

current.

IkQ,Φ = IkΦ + ∆IkQ,Φ Φ = a, b, c (4.13)

To check the convergence criteria for the voltage mismatch vector, the

load flow is executed again. The procedure is repeated until the voltage

mismatch vector for all the PV buses are within limits. Fig. 4.1 summarises
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the steps of the algorithm.

4.3 Results and Discussions

4.3.1 Results for IEEE-13 bus distribution system

For IEEE 13-bus distribution feeder, the DG unit was modelled using PQ

node and PV node. The voltage profile and current magnitudes of the dis-

tribution feeder without connecting DG units are given in Chapter 3.

1. A delta connected load of P=630 kW and Q=305 kW are connected

at node number 671. The power factor of the load was assumed to be

constant at 0.9. The DG unit was modelled as PQ node. The results

for voltage magnitudes and currents are given in Table. 4.1 and 4.2

respectively. The results are compared with the results obtained from

openDSS. The corresponding power loss for the distribution feeder are

32.6 kW, 8.2 kW and 60.5 kW for phase A, B and C respectively.

2. The DG unit is modelled as PV node in the second case. The specified

voltage at PV node is kept at 1.0 p.u. The reactive power to be injected

at the specified bus to maintain voltages within limits is computed as

1.51 MW. The results for the voltage profile and current magnitude

are given in Table. 4.3 ans 4.4 respectively. It can be seen that the

voltage is again improved when DG unit is modelled as PV node. The

corresponding power loss for the distribution feeder are 30.7 kW, 7.2

kW and 55.3 kW for phase A, B and C respectively.

The voltage profile for the three cases is plotted in Fig. 4.3. It can be
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Figure 4.1: Flowchart for power flow with DG units
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Figure 4.2: Single Line Diagram of IEEE 13-Bus Distribution System

Table 4.1: Voltage profile IEEE 13-bus feeder with DG unit as PQ node

Node ID Van 6 Van Vbn 6 Vbn Vcn 6 Vcn

650 1 0 1 -120 1 120
632 0.9821 -1.71 1.007 -120.45 0.9705 118.83
645 - - 0.9986 -120.63 0.9688 118.86
646 - - 0.9986 -120.74 0.9665 118.91
633 0.9775 -1.75 1.005 -120.53 0.968 118.82
634 0.9543 -2.51 0.986 -121.03 0.9484 118.32
671 0.9732 -3.53 1.034 -119.7 0.9532 118.22
692 0.9734 -3.53 1.034 -119.7 0.9532 118.22
675 0.9671 -3.76 1.037 -119.8 0.9503 118.24
684 0.971 -3.52 0 0 0.9503 118.12
611 - - - - 0.9482 117.97
652 0.9645 -3.48 - - - -
680 0.9733 -3.53 1.034 -119.7 0.9532 118.22
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Table 4.2: Current values of IEEE 13-bus feeder with DG unit as PQ node

Node ID Ia (A) 6 Ia Ib (A) 6 Ib Ic (A) 6 Ic

650-632 270.8 -26.5 138.04 -124.5 306.8 96.78
632-633 85.67 -36.96 63.4 -156.74 65.67 80.23
632-645 - - 146.5 -141.8 64.53 58.78
632-671 190.34 -20.9 97.45 -0.65 200.03 114.52
645-646 - - 63.72 -121.8 62.82 58.63
633-634 730.78 -36.97 547.3 -158.9 572.3 80.98
671-692 232.85 -16.77 67.91 -54.23 183.2 110.34
671-684 61.87 -36.7 - - 70.45 121.94
671-680 0 0 0 0 0 0
692-675 210.12 -4.17 - - 127.45 112.34
684-611 - - 67.91 -54.23 70.45 121.94
684-652 61.87 -36.7 - - - -

Table 4.3: Voltage profile IEEE 13-bus feeder with DG unit as PV node

Node ID Van 6 Van Vbn 6 Vbn Vcn 6 Vcn

650 1 0 1 -120 1 120
632 0.9889 -1.82 1.0137 -120.54 0.9786 118.73
645 - - 1.0045 -120.74 0.978 118.76
646 - - 1.0026 -120.82 0.974 118.81
633 0.9861 -1.87 1.012 -120.61 0.9763 118.75
634 0.9607 -2.62 0.9927 -121.8 0.9567 118.23
671 0.9871 -3.78 1.045 -119.8 0.9684 118.02
692 0.9871 -3.78 1.045 -119.8 0.9684 118.02
675 0.9808 -4.06 1.0485 -120.13 0.9667 118.05
684 0.9852 -3.83 - - 0.9665 117.91
611 - - - - 0.9642 117.76
652 0.9787 -3.76 - - - -
680 0.9871 -3.78 1.047 -119.8 0.9684 118.02
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Table 4.4: Current values of IEEE 13-bus feeder with DG unit as PV node
Node ID Ia (A) 6 Ia Ib (A) 6 Ib Ic (A) 6 Ic

650-632 250.4 -9.45 154.7 -97.89 274.34 111.32
632-633 84.23 -37.34 62.81 -157.2 64.33 81.24
632-645 - - 143.78 -143 64.33 58.67
632-671 178.98 3.54 155.84 -14.34 195.67 136.8
645-646 - - 62.4 -121.21 62.14 58.79
633-634 728.9 -37.12 545.2 -157.89 564.8 81.42
671-692 230.03 -16.8 68.89 -53.18 178.9 110.86
671-684 62.78 -37.64 - - 71.2 123.2
671-680 0 0 0 0 0 0
692-675 205.81 -3.76 68.89 -53.18 125.3 113.07
684-611 - - - - 71.2 123.2
684-652 62.78 -37.64 - - - -

Table 4.5: Comparison of Voltage Magnitudes in the three cases

Node ID
Without adding DG unit Adding DG unit as PQ node Adding DG unit as PV node

Va(p.u) Vb(p.u) Vc(p.u) Va(p.u) Vb(p.u) Vc(p.u) Va(p.u) Vb(p.u) Vc(p.u)

650 1 1 1 1 1 1 1 1 1
632 0.9576 0.9899 0.9443 0.9821 1.007 0.9705 0.9889 1.0137 0.9786
645 - 0.982 0.943 - 0.9986 0.9688 - 1.0045 0.978
646 - 0.978 0.9409 - 0.9986 0.9665 - 1.0026 0.974
633 0.9543 0.9877 0.9425 0.9775 1.005 0.968 0.9861 1.012 0.9763
634 0.9287 0.9697 0.9226 0.9543 0.986 0.9484 0.9607 0.9927 0.9567
671 0.924 1.0013 0.8985 0.9732 1.034 0.9532 0.9871 1.045 0.9684
692 0.924 1.0013 0.8985 0.9734 1.034 0.9532 0.9871 1.045 0.9684
675 0.917 1.003 0.898 0.9671 1.037 0.9503 0.9808 1.0485 0.9667
684 0.922 - 0.8992 0.971 - 0.9503 0.9852 0.9665
611 - - 0.897 - - 0.9482 - - 0.9642
652 0.918 - - 0.9645 - - 0.9787 - -
680 0.924 1.0013 0.8985 0.9733 1.034 0.9532 0.9871 1.047 0.9684
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seen that DG unit modelled as PQ node improves the voltage at all the

nodes whereas the voltage is again improved when DG unit is modelled as

PV node. This is due to the fact that PV nodes are ideal for representing

DG units. Also in the case of phase B, the voltage sometimes goes above

1.p.u which causes the voltage rise issue. The voltage on phase B before

DG installation was near to 1 p.u. Random installation of DG unit without

optimal size and location caused this issue of voltage rise.

Table 4.6: Comparison of Current Magnitudes in the three cases

Branches
Without adding DG unit Adding DG unit as PQ node Adding DG unit as PV node

Ia(A) Ib(A) Ic(A) Ia(A) Ib(A) Ic(A) Ia(A) Ib(A) Ic(A)

650-632 592.7 438.4 627.2 270.8 138.04 306.8 250.4 154.7 274.34
632-633 87.2 63.5 67.8 85.67 63.4 65.67 84.23 62.81 64.33
632-645 - 147.8 65.36 - 146.5 64.53 - 143.78 64.33
632-671 506.8 230.1 508.9 190.34 97.45 200.03 178.98 155.84 195.67
645-646 - 62.25 60.25 - 63.72 62.82 - 62.4 62.14
633-634 750.2 559.3 588.4 730.78 547.3 572.3 728.9 545.2 564.8
671-692 248.7 67.1 192.1 232.85 67.91 183.2 230.03 68.89 178.9
671-684 58.7 - 71.9 61.87 - 70.45 62.78 71.2
671-680 0 0 0 0 0 0 0 0 0
692-675 218.7 67.1 137.2 210.12 67.91 127.45 205.81 68.89 125.3
684-611 - - 71.9 - - 70.45 - 71.2
684-652 58.7 - - 61.87 - - 62.78 - -

The DG installation caused significant changes in the current values only

in the branches that serves as the path towards the substation node from node

selected for DG installation. In those lines, the current value has been de-

creased due to injected current in the reverse direction. In the other branches,

the change in the current values are not significant.
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Figure 4.3: Voltage profile for the three phase
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a. Impact of Modelling on the Losses

To analyze the impact of PQ and PV modelling on the losses of the system,

the losses are compared in the three cases, i.e without the addition of DG

unit, adding DG unit as PQ node and adding DG unit as PV node. It can

be observed that the losses are minimized from case 1 to case 3 which shows

that representing DG unit as PV node is more accurate than PQ node. A

comparison of power losses with the modelling scheme adopted is given in

Fig. 4.4.

Figure 4.4: Impact of Modelling on the total Losses

4.3.2 Results for IEEE 37-Bus distribution feeder

1. A delta connected load of P=550 kW and Q=267 kVAR are connected

at node number 706, as shown in Fig. 3.7. The power factor of the

load was assumed to be constant at 0.9. The DG unit was modelled as

PQ node. It took three iterations for the load flow to converge. The

results for voltage magnitudes are given in Table. 4.7. The results are

125



Chapter 4. Integration of Distributed Generation in Unbalanced Distribution
System

compared with the results obtained from openDSS. The corresponding

power loss for the distribution feeder are 24.5 kW, 13.1 kW and 60.7

kW for phase A, B and C respectively .

2. The DG unit is modelled as a PV node in the second case. The spec-

ified voltage at PV node is kept at 1.0 p.u. Similar to the previous

case, the load flow converged in three iterations. The results for the

voltage profile are given in Table. 4.8. It can be seen that the voltage

is again improved when the DG unit is modelled as PV node. The

corresponding power loss of the distribution feeder are 20.4 kW, 10.2

kW and 53.3 kW for phase A, B and C respectively.
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Table 4.7: Voltage profile for IEEE-37 Bus feeder adding DG sources as PQ
node

Node ID Va(p.u) 6 Va Vb(p.u) 6 Vb Vc(p.u) 6 Vc

790 1 0 1.0000 -120 1.0000 120
701 0.9953 -0.065 0.9955 -120.360 0.9905 119.670
702 0.9923 -0.138 0.9946 -120.570 0.9823 119.430
713 0.9908 -0.15 0.9923 -120.540 0.9843 119.610
704 0.9902 -0.158 0.9911 -120.580 0.9834 119.640
720 0.9832 -0.2 0.9834 -120.590 0.9756 119.680
707 0.9832 -0.289 0.9816 -120.570 0.9746 119.820
724 0.9829 -0.3197 0.9779 -120.550 0.9760 119.840
722 0.9823 -0.315 0.9783 -120.570 0.9758 119.810
706 0.9843 -0.225 0.9834 -120.600 0.9819 119.720
725 0.9845 -0.23 0.9840 -120.600 0.9800 119.700
714 0.986 -0.156 0.9890 -120.528 0.9810 119.614
718 0.9877 -0.146 0.9917 -120.488 0.9837 119.584
705 0.9903 -0.116 0.9933 -120.508 0.9853 119.614
742 0.9903 -0.136 0.9923 -120.508 0.9853 119.634
712 0.9903 -0.096 0.9933 -120.528 0.9843 119.624
703 0.987 -0.166 0.9940 -120.618 0.9830 119.334
727 0.986 -0.146 0.9930 -120.608 0.9820 119.334
744 0.9851 -0.146 0.9921 -120.598 0.9811 119.314
729 0.9851 -0.136 0.9921 -120.588 0.9811 119.304
728 0.9841 -0.136 0.9921 -120.598 0.9811 119.314
730 0.982 -0.106 0.9910 -120.648 0.9770 119.244
709 0.9798 -0.096 0.9898 -120.658 0.9758 119.204
775 0.9798 -0.096 0.9898 -120.658 0.9758 119.204
731 0.9798 -0.116 0.9888 -120.658 0.9758 119.234
708 0.977 -0.066 0.9890 -120.658 0.9740 119.144
732 0.977 -0.046 0.9890 -120.668 0.9730 119.144
733 0.9832 -0.046 0.9962 -120.648 0.9802 119.084
734 0.9822 0.004 0.9962 -120.658 0.9792 119.004
710 0.9819 0.029 0.9959 -120.688 0.9779 119.024
736 0.9819 -0.006 0.9949 -120.668 0.9779 119.074
735 0.9819 0.036 0.9959 -120.698 0.9779 119.034
737 0.9723 0.026 0.9893 -120.628 0.9713 118.904
738 0.9713 0.046 0.9893 -120.628 0.9693 118.874
711 0.9713 0.076 0.9893 -120.658 0.9693 118.864
740 0.9713 0.086 0.9893 -120.668 0.9683 118.874
741 0.9713 0.076 0.9893 -120.668 0.9683 118.864
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Table 4.8: Voltage profile for IEEE-37 Bus feeder adding DG sources as PV
node

Node ID Va(p.u) 6 Va Vb(p.u) 6 Vb Vc(p.u) 6 Vc

790 1 0 1 -120 1 120
701 0.9962 -0.082 0.9964 -120.390 0.9914 119.65
702 0.9931 -0.141 0.9954 -120.600 0.9832 119.41
713 0.9912 -0.153 0.9927 -120.570 0.9847 119.59
704 0.9909 -0.161 0.9918 -120.610 0.9838 119.62
720 0.9839 -0.203 0.9841 -120.620 0.9763 119.66
707 0.9841 -0.292 0.9825 -120.600 0.9753 119.80
724 0.9837 -0.3227 0.9787 -120.580 0.9768 119.82
722 0.9834 -0.318 0.9794 -120.600 0.9766 119.79
706 0.9851 -0.228 0.9842 -120.630 0.9827 119.70
725 0.985 -0.233 0.9845 -120.630 0.9808 119.68
714 0.9868 -0.159 0.9898 -120.558 0.9818 119.59
718 0.9902 -0.149 0.9942 -120.518 0.9845 119.56
705 0.9912 -0.119 0.9942 -120.538 0.9862 119.59
742 0.9913 -0.139 0.9933 -120.538 0.9862 119.61
712 0.9913 -0.099 0.9943 -120.558 0.9853 119.60
703 0.9902 -0.169 0.9972 -120.648 0.9840 119.31
727 0.9889 -0.149 0.9959 -120.638 0.9849 119.31
744 0.9871 -0.149 0.9941 -120.628 0.9840 119.29
729 0.9871 -0.139 0.9941 -120.618 0.9831 119.28
728 0.9864 -0.139 0.9944 -120.628 0.9831 119.29
730 0.9843 -0.109 0.9933 -120.678 0.9793 119.22
709 0.9821 -0.099 0.9921 -120.688 0.9781 119.18
775 0.9821 -0.099 0.9921 -120.688 0.9781 119.18
731 0.9821 -0.119 0.9911 -120.688 0.9781 119.21
708 0.9803 -0.069 0.9923 -120.688 0.9773 119.12
732 0.9803 -0.049 0.9923 -120.698 0.9763 119.12
733 0.9841 -0.049 0.9971 -120.678 0.9811 119.06
734 0.9831 0.001 0.9971 -120.688 0.9801 118.98
710 0.983 0.041 0.9970 -120.718 0.9790 119.00
736 0.983 -0.009 0.9960 -120.698 0.9790 119.05
735 0.983 0.051 0.9970 -120.728 0.9790 119.01
737 0.973 0.029 0.9900 -120.658 0.9724 118.88
738 0.9725 0.049 0.9905 -120.658 0.9705 118.85
711 0.9725 0.079 0.9905 -120.688 0.9705 118.84
740 0.9725 0.089 0.9905 -120.698 0.9695 118.85
741 0.9725 0.079 0.9905 -120.698 0.9695 118.84
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4.4 Conclusion

The chapter discusses various modelling schemes that can be adopted for

integrating DG units in the distribution system. Depending upon the inter-

connection method to the grid and the type used, the modelling for DG units

differs. The DG units can be modelled in the power flow algorithm as PQ

nodes and PV nodes. Modelling DG units as PQ nodes do not cause any al-

terations in the power flow. But the power flow algorithm to be modified for

integrating DG unit as PV node. A power flow algorithm is developed which

can handle DG units by PV modelling using the positive sequence impedance

matrix. The developed algorithm is validated for IEEE 13-bus and 37-bus

distribution feeder. The results show that modelling the DG unit as PV node

causes improvement in voltage profile and also a greater reduction in losses

than when the DG unit is modelled as PQ node. Therefore representing DG

unit as PV node is more accurate for power flow studies. In addition to the

PV modelling, the uncertainty associated with the fluctuating power output

from the DG sources should also be modelled which is discussed in the next

chapter.
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Chapter 5

Uncertainty Modelling of Solar

Photovoltaic(PV) Generation

Systems

5.1 Introduction

The penetration level of intermittent renewable sources of energy has marked

up a rapid increase in the last decade. The integration of such renewable en-

ergy resources helps in reducing the total power losses and improvement of

voltage profile. In addition, they produce clean energy which helps in meet-

ing the rising power demand with minimum environmental challenges. But

the power produced from such intermittent sources is subjected to uncer-

tainties. This is due to the fluctuating nature of primary solar energy from

which the power output is derived. The uncertainty associated with such

renewable energy sources can be categorized as aleatory uncertainties and
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epistemic uncertainties. Aleatory uncertainties are due to the inherent vari-

ability in the system behaviour. In the case of Photovoltaic (PV) generators,

solar irradiation falls in the category of aleatory uncertainty. The operational

parameters that are specified by the manufacturers and end users falls in the

category of epistemic uncertainties. When the information is available, it is

reasonable to ignore such uncertainties. If the available data are sufficient,

solar irradiance is to be modelled as a random variable for which probabilistic

distributions are used.

There are several literatures that models solar irradiance using proba-

bility distributions. In (Salameh et al., 1995), three distributions, namely

Weibull, Log-Normal and Beta were used to model the solar irradiance and

it is found that Beta distribution gives the best fit. (Assuncao et al., 2003)

used the Beta distribution to fit 5 minutes-averaged solar radiation indexes.

The same distribution is used by several authors to model the uncertainty

associated with the solar PV generation for optimally planning the DG inte-

gration (Atwa et al., 2010). In this study, the historic solar irradiance of the

selected site is taken from National Renewable Energy Laboratory (NREL)

solar radiation database. The Probability Distribution Function (PDF) that

is best suited for the data is found out and the solar irradiance is modelled

to represent the uncertainty.

There are so many different types of modules, cells and PV arrays depend-

ing upon the characteristics and plenty are available in the market. The type

of module that is best suited for a particular site should be found out. The

selection of PV module can be regardless of the size of the module and can be

based on capacity factors calculated for each type of module. The probability
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distribution modelling is also used to calculate the capacity factors for selec-

tion of the most suited module for the selected site. The chapter discusses

the uncertainty modelling of Solar PV units by a suitable PDF which helps

in estimating the random power output from the PV source and selecting

the optimum PV module suited for the selected site from four different PV

modules based on capacity factors. This would serve as a methodology while

designing solar PV systems which will help to model the uncertainty and

thereby increasing the efficiency of the distribution system with PV units.

5.2 Modelling of Solar irradiance from His-

torical Data

The site selected for the study lies at 10.52oN 76.21o E that experiences a

tropical monsoon climate. The irradiance data for one year, which is taken as

the study period is collected from National Solar Radiation Database (Sen-

gupta et al., 2014). The total study period is divided into four seasons and

a typical day is used to represent a particular season. Each day represent-

ing a season is segmented into 24 hours representing the hourly variation of

any season. This would result in 96 time segments for one year and 90 data

points for each of the 96 segments with 30 days in a month and 3 months

per season.

For simulating solar irradiance data using PDF, the frequency distribu-

tion corresponding to a typical hour in a season is generated. After obtain-

ing the time series of the solar irradiance level, a histogram is plotted for

the same hour. The data of the same hour found to be unimodal, except
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few cases where the data is bimodal in nature. There are several probability

distributions that are used to model the solar irradiance, the most commonly

used distributions are Beta, Log-normal and Weibull distributions. The fre-

quency histograms are tested with the predicted distribution functions and

Chi Square test is used to test the goodness of fit for the predicted distribu-

tion. A brief description of the three probability distributions used here is

given below.

1. Beta Probability Density Function is described by

fb(s) =
γ(α + β)

γ(α)γ(β)
∗ (s)α−1 ∗ (1− s)β−1

for0 ≤ s ≤ 1, α, β ≥ 0

0 otherwise

(5.1)

The mean(µ) and standard deviation (σ) of the random variable s is

used to calculate the parameters of the Beta Distribution Function.

β = (1− µ) ∗
(
µ ∗ (1 + µ)

σ2
− 1

)
(5.2)

α =
µ ∗ β
1− µ

(5.3)

2. Weibull Distribution Function is given by

f(x;λ, k) =


(
k

λ
)(
x

λ
)k−1, x ≥ 0

0 x < 0

(5.4)

Here k > 0 and λ > 0 are called shape factor and scale factor respec-
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tively.

3. Log-normal probability density function is described by

f(x) =
1√

2πσx
exp(−(lnx− µ)2

2σ2
) (5.5)

where µ and σ represents the mean and standard deviation.

The three distributions are tested for fitting the solar irradiance data cor-

responding to a typical hour. For the winter season, at 12 a.m, the plot of

the histograms and probability density functions is shown in Fig. 5.1. It can

be observed that, the irradiance data is best fitted for Beta and Log-normal

distributions. The same plot for 3 p.m in the summer season is shown in Fig.

5.2 and is best fitted for Weibull and Beta distributions. This is repeated for

different hours in various seasons. In most of the cases, Beta PDF was found

to give the best fit to the solar irradiance data. The Chi-Square test was

also conducted to check for the goodness of fit of Beta PDF for modelling

irradiance.

Figure 5.1: Histogram versus Irradiance level plotted for 12 p.m in the winter
season
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Figure 5.2: Histogram versus Irradiance level plotted for 12 p.m in the sum-
mer season

5.3 Modelling Solar Irradiance using Beta PDF

and Output Power Calculation

Beta PDF is used to model the randomness related to the hourly solar irradi-

ation data using the following equations (Atwa et al., 2010). For generating

the Beta PDF, mean and standard deviation of each hour data is estimated

(Maya and Jasmin, 2015).

fb(s) =
γ(α + β)

γ(α)γ(β)
∗ (s)α−1 ∗ (1− s)β−1

for 0 ≤ s ≤ 1, α, β ≥ 0

= 0 otherwise

(5.6)

Where

s solar irradiance in kW/m2

fb(s) Beta distribution function of s

α, β parameters of Beta distribution function
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The mean (µ) and standard deviation (σ) of the random variable s are used

to calculate the parameters of the Beta Distribution Function.

β = (1− µ) ∗
(
µ ∗ (1 + µ)

σ2
− 1

)
(5.7)

α =
µ ∗ β
1− µ

(5.8)

In order to represent the generated power from PV source as a multi-state

variable in the power flow, the Beta PDF which is continuous is divided into

a number of states. The states are selected such that in each state, the solar

irradiation is within limits, i.e between 0 and 1 kW/m2. For each of these

states, the probability of solar irradiation is estimated using Eq. (5.9)(Maya

and Jasmin, 2015).

Ps{Gy} =

∫ sy2

sy1

fb(v)dv (5.9)

Where

Ps{Gy} Probability of the solar irradiance being in state y

sy1 and sy2 solar irradiance limits of state y

The generated power from the PV source depends on ambient temperature,

solar irradiance and the characteristics of the module itself. For each time

segment, the output power can be calculated during different states using
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the following equations (5.10)-(5.14).

Tcy = TA + say

(
NOT − 20

0.8

)
(5.10)

Iy = say[Isc +Ki(Tc− 25)] (5.11)

Vy = Voc −Kv ∗ Tcy (5.12)

PSy(say) = N ∗ FF ∗ Vy ∗ Iy (5.13)

FF =
VMPP ∗ IMPP

Voc ∗ Isc
(5.14)

where

Tcy Cell Temperature in 0 C during state y

TA Ambient Temperature in 0 C

Kv Voltage Temperature coefficient V/0 C

Ki Current Temperature coefficient I/0 C

NOT Nominal operating temperature of cell in 0 C

FF Fill Factor

Isc Short circuit current in A

Voc Open-circuit voltage in V

IMPP Current at maximum power point in A

VMPP Voltage at maximum power point in B

PSy Output power of the PV module during state y

say Average solar irradiance of state y

When the power output is obtained for each of the states, the power flow

is carried out for each state to obtain the variation of the power flow param-

eters with solar irradiation and the PV module characteristics.
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The generated Beta PDF is used to synthetically generate hourly solar

irradiance data that will help in planning the DG integration. This is accom-

plished by generating some random samples from the Beta PDF that features

the behaviour of the historical data and thus helps in the modelling of ran-

domness associated with the solar irradiance. The four seasons in Kerala can

be divided as winter, summer, southwest monsoon and retreating monsoon,

whose hourly average solar radiation are 240.07 W/m2, 265.38 W/m2, 184.61

W/m2 and 223.3 W/m2 respectively according to the satellite data. From the

Beta PDF, the random samples that feature the behaviour of the historical

data is generated. The estimated solar irradiance for each season is plotted

in Fig. 5.3. The value of the samples generated are validated by selecting 3

Figure 5.3: Forecasted Hourly Solar Irradiance for various Seasons

days in the season randomly and checking the value of the irradiance against

the generated value. A plot of the same for summer season is given in Fig.5.4.

It can be observed that, both the plots are similar which proves the accuracy
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of the modelling technique.

Figure 5.4: Comparison of generated and actual value of irradiance

5.4 Selection of the Module type for the se-

lected site

The output of the PV module is dependent on the solar irradiance, ambient

temperature and the characteristics of the module itself. Therefore PV power

output should be considered as a multi state variable so that the various

parameters can be analyzed with respect to the solar irradiance. For this

purpose the solar irradiance is modelled using Beta PDF and the power

output for different types of modules is calculated. The characteristics of the

modules are given in Table. 5.1 (Atwa et al., 2010). The simulated power

output for Type D module using Equations (5.10)-(5.14) is given in Table

5.2.

For selecting a particular module type for a particular site, the capacity

140



5.4 Selection of the Module type for the selected site

Table 5.1: Characteristics of the Module types

Module Characteristics
Module Type

A B C D

Watt peak(W) 50.00 53.00 60.00 75.00

Open circuit voltage(V) 55.50 21.70 21.10 21.98

Short circuit current (A) 1.80 3.40 3.80 5.32

Voltage at maximum power(V) 38.00 17.40 17.10 17.32

Current at maximum power(V) 1.32 3.05 3.50 4.76

Voltage temperature coefficient(mV/0C) 194.00 88.00 75.00 14.40

Current temperature coefficient(mA/0C) 1.40 1.50 3.10 1.22

Nominal cell operating temperature(0C) 43.00 43.00 43.00 43.00

factor of various types of the PV modules should be calculated. The Capacity

Factor (CF) can be defined as the ratio between the average power output

and the rated power (Atwa et al., 2010). The hourly average power output of

a PV module is the summation of the power produced at all possible states

for this hour multiplied by the corresponding probability of each state. Thus

the average power output of each time segment is calculated, and then the

average power output of a typical day in each season and hence the annual

average output power can be estimated. A comparison of the CF of the

different modules is given in Fig. 5.5.

From Fig. 5.5 it is clear that module D is best suited for the selected

site as its capacity factor is more compared to all other modules. This is very

much independent on the power value of the module and there is a critical

role for the value of the parameters that are specified by the manufacturer

in deciding the module types that is best suited for a particular site.
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Table 5.2: Simulated Power output of PV module in Watts

Time (Hours) Simulated Power Output from PV module(Watts)

Winter Summer Monsoon R. Monsoon

12 a.m 0 0 0 0

1 a.m 0 0 0 0

2 a.m 0 0 0 0

3 a.m 0 0 0 0

4 a.m 0 0 0 0

5 a.m 0 0 0 0

6 a.m 0 0 0 0

7 a.m 0.0 0.299088 2.318076 1.130763

8 a.m 8.36854 7.379193 10.0398 13.40828

9 a.m 26.77009 32.23827 27.62869 26.32975

10 a.m 41.27643 48.23487 30.31874 47.28848

11 a.m 54.69465 57.08257 48.13533 59.67413

12 p.m 68.68222 70.58908 47.9654 58.36318

1.p.m 70.44084 70.71372 49.37414 65.69778

2 p.m 63.06829 68.35341 41.85735 57.03526

3 p.m 54.48318 64.68629 26.11653 46.75175

4 p.m 46.37736 46.65187 39.35413 36.02033

5 p.m 22.33481 24.97351 15.84026 22.87475

6 p.m 4.115785 18.39568 9.919551 5.875181

7 p.m 0.002215 0.191043 0.593094 0.0

8 p.m 0 0 0 0

9 p.m 0 0 0 0

10 p.m 0 0 0 0

11 p.m 0 0 0 0
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Figure 5.5: CF of PV modules

5.5 Conclusion

The uncertainty modelling of the Solar PV generator by using the probability

density function has been analyzed. The solar irradiance data is tested for

fitness using Beta, Weibull and Log-normal distributions and Beta PDF was

found to be the suitable distribution by fitting the solar irradiance data.

Beta PDF is used to generate random samples that feature the behaviour of

the historical data and the generated PDF is used to find out the random

power output for different types of modules. The capacity factors of four

different types of modules for the selected site are calculated. Thus the

optimum PV module that is best suited for the selected site is determined.

This information can be used to design the PV units of optimal capacity,

which are to be found out using appropriate optimization techniques. In the

next chapter, the stochastic learning algorithm used for optimal allocation

of PV units is explained.
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Chapter 6

Optimal Allocation of PV units

using Learning Automata and

Reinforcement Learning

6.1 Introduction

The substantial growth of distributed generation in the deregulated power

market is driven by various technical, commercial, economic as well as envi-

ronmental factors which surround the electric power industry (Lopes et al.,

2007). These may include reduction in power loss and on-peak operating

costs, improvement in voltage profile and load factors, elimination of system

upgrades and thereby improving the system integrity, reliability, efficiency,

etc. The integration of DG sources into the distribution network change the

overall scenario of the present distribution network from passive to active

which alter the normal operation of the distribution network. Therefore, in
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addition to the benefits, the distribution network is subjected to a number

of challenges such as voltage rise effect, power quality issues, stability and

protection issues. There is an absence of clear-cut policy in determining the

market mechanism in connection with the overall cost of electricity generated

from the DG integrated system. Therefore, strategic placement of the DG

units is very essential for maximising the benefits and limiting the challenges

by the addition of DG units into the distribution networks.

The optimal integration of the DG units into the distribution network

has been addressed by several researchers in different ways. Minimization of

network losses is the significant aspect to be considered for the reliable and

efficient operation of DG integration. The significant variation in the ap-

proaches to the optimal allocation of DG units comes through the methods

used for the optimization process. The methods can be broadly classified as

analytical method, numeric method and the heuristic method. A thorough

review of these methods for optimal DG placement is given in Chapter 2.

In most of the research works, the test feeders considered for validating

the analysis are of balanced nature. Unbalance is an inherent characteris-

tic of the distribution feeder. The unbalanced loading at the nodes and the

unbalanced multi phase operation are the reasons behind distribution sys-

tem unbalance. In practical situations, balanced loading at the distribution

feeders is unrealistic and therefore carrying out balanced studies for optimal

integration of DG sources is not relevant. The uncertainty associated with

the DGs is also not considered in most of the cases. The power output from

the DGs such as wind and solar Photovoltaics cannot be predicted in advance

and hence are uncertain. This uncertainty should also be taken into account
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while planning DGs in the distribution network along with the randomly

varying power output from such sources. This requires the optimization to

be run on a stochastic basis or stochastic optimization need to be done to

handle such uncertainties. Even though there are many heuristic methods

that are used in optimal DG placement, most of the methods are not so

efficient in handling the stochastic data that exist in practical system. The

power output from the PV source is random in nature which depends on

many parameters such as solar irradiance, ambient temperature and charac-

teristics of module etc.

The focus of the chapter is the optimal sizing of the PV units in order

to achieve power loss reduction and voltage profile improvement in a radial

distribution network of unbalanced nature. The method employed here is

stochastic learning algorithms, namely Learning Automata (LA) and Rein-

forcement Learning (RL) which are learning methods capable of handling

the stochastic data in practical system. The optimal sizing of PV units and

the associated computation and analysis of system parameters are very im-

portant from the utility side before permitting the customers who are willing

to connect PV units on their premises. The utility can suggest the proper

sizing for the customers. The customer is also benefited by the installation

of PV units with proper sizing with which they can maintain the reliability

and efficiency of their system. This necessitates a robust and efficient power

flow algorithm and optimization technique which can handle the uncertainty.
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Figure 6.1: Process of Learning Automata

6.2 Learning Automata Algorithm for Single

Stage Decision Making Problem

Learning automata (Thathachar and Sastry, 2011) is a simple model for

adaptive decision making in uncertain environments. It can be defined as an

automaton which selects one of its actions related to its past experiences and

rewards or punishments from the environment. This is similar to the way

by which an organism learns from the environment. In the simplest way, the

learning automata can be represented as shown in Fig. 6.1. LA algorithm is

explained with the help of N-arm bandit problem.

The n-arm bandit problem, consists of a slot machine with n arms. The

player is allowed to play on any of the arm a but has to pay a fee say 1 unit.

When played on any arm, the player is given with a random reward which is

represented by R(a). Assuming fixed probability distribution for each arm,

each arm is expected to return a random variable with uniform probability

distribution, which the player is unaware of. As an example, by playing on

arm 3, a random variable whose value lies between 0.5 and 0.8 is returned

by the machine, whose mean value Q(3)= 0.75. Similarly, by playing on arm

4, a random variable whose value lies between 0.6 and 0.8 is returned by the

machine, whose mean value Q(4)= 0.7 and so on.
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The player in the n-arm bandit problem has to find the arm that returns

maximum mean with minimum number of trials. For achieving the goal,

the LA algorithms continuously interact with the random environment by

performing sufficient number of actions which helps in obtaining the best

decision. Here the decision to be taken is the arm number on which the

player has to play to get maximum reward. One method is to make large

number of trials on each arm and find the mean returned by the machine for

each arm. Let Ri(a) denotes the reward obtained for playing an arm a in the

ith trial, then the mean value corresponding to each arm in a total of n trials

can be estimated as

Qn(a) =

n∑
i=1

Ri(a)

n

Once the value of Qn is obtained for arm a, the best arm, which is denoted

as ”greedy arm” (ag) can be found out as

Qn(ag) = maxa∈AQ
n(a) (6.1)

The corresponding action which gives the maximum is given by

Qn(ag) = maxa∈AQ
n(a)⇒ ag = arg maxa∈AQ

n(a) (6.2)

The method described above is direct and simple but not efficient. Suppose

the machine has m = 1000 arms and the number of trials, n =1000. Then

to find out the best arm, the player has to play 1000 ∗ 1000 = 106 times

which is not efficient. To solve the problem more efficiently, LA algorithm
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uses an iterative technique and also chooses the actions that have the highest

probability of being the best action. The iterative algorithm is based on the

recursive formulae derived below which helps to find out the updated value

of the performance index (Sutton and Barto, 1998).

Qn+1(a)


=

∑n
i=1R

i(a) +Rn+1(a)

n+ 1

=
nQn(a) +Rn+1(a) +Qn(a)−Qn(a)

n+ 1

= Qn(a) +
1

n+ 1
(Rn+1(a)−Qn(a))

(6.3)

Starting from an initial estimate Q0(a) = 0, the equation helps in finding

the estimates of the expected value. In n-arm bandit problem, Q(a) is the

expected value of reward corresponding to arm a. Similarly Qn(a) is the

expectation of Q(a) over n trials or observations.

The recursive equation can be used to estimate the expected value of R(a)

when the observations are selected independently.

Qn+1(a) = Qn(a) + αn[R(a)−Qn(a)] (6.4)

Here α is called the update factor whose value helps in the convergence of

the algorithm.

One distinct feature of LA algorithms is the balance between exploration

and exploitation. It explores the environment to gather information to build

a policy. The balance is possible by using the acquired knowledge to make

better decisions, but without leaving the unexplored areas. An agent can

follow certain actions to obtain more rewards, but the only way to choose
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the best action is the exploration of the environment. The strategy for ex-

ploration mainly depends on the time the agent and the environment are in

interaction. In the case of n-armed bandit problem, consider the situation

where the player thinks that a particular arm has the highest probability of

giving maximum reward. The dilemma lies, whether he has to select that

particular arm all the time or choose another arm with minimum informa-

tion.

In the initial stages of the algorithm, the action ag may not be the best

action since the calculated mean Qn(a) is far from the true value. But as

the algorithm proceeds and the number of trials n increases, the possibility

of ag being the best action increases. Therefore, in the initial phases of the

algorithm the requirement is to acquire maximum information by exploring

the unknown environment. As the number of trials increases, it is better

to exploit the available information. For balancing this trade off between

the exploration and exploitation, exploration strategies are used. The ex-

ploration strategy used here is the ε-greedy method which is explained in

Section 6.3.5.

6.3 Multi Stage Decision Problem (MDP) and

Reinforcement Learning

6.3.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL) is a machine learning approach which has the

features of both supervised and unsupervised learning. The main difference
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of reinforcement learning from other methods is that the emphasis is given

for learning by the individual by directly interacting with the environment

without depending on supervision or adequate models of the environment. In

reinforcement learning, an agent follows the trial and error process to interact

with the environment and to learn the optimal actions to be taken in each

state in order to maximize the reward signal. By exploration of an unknown

system, the sufficient experience is gained which helps such algorithms to act

in an optimal way.

Reinforcement Learning combines two disciplines to solve the problems

successfully which cannot be addressed individually by the two disciplines

which are dynamic programming and supervised learning. Dynamic pro-

gramming is a traditional method in the field of mathematics that has been

used to solve many optimization problems. But the application of dynamic

programming is limited to, problems which involves small and simple sys-

tems. Supervised learning on the other hand, requires various sets of input-

output pairs for training network. Reinforcement learning by combining the

features of these disciplines can be used to solve problems, to build into

powerful machine learning systems. In reinforcement learning the goal to be

achieved is defined.

The agent, otherwise the learner or decision maker continuously inter-

acts with the environment to achieve the defined goal. The agent performs

sufficient number of actions and the environment responds to each of these

actions in the form of rewards. The ultimate aim is to maximize the reward

over time. At each time step, t = 0, 1, 2, 3, ...., the agent interacts with the

environment and some representation of the environment’s state st ∈ S is
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Figure 6.2: Interaction between Agent and Environment in reinforcement
learning

obtained. Here S is the set of all possible state. Corresponding to each state,

an action at ∈ A(st) is performed, where A(st) is the set of actions for state

st. When an action is performed, the environment returns a numerical re-

ward rt+1 ∈ R and finds itself in a new state st+1. The interaction between

the agent and environment is shown in Fig. 6.2.

The main elements of a reinforcement learning system are state space,

action space, policy, reward function and a model of the environment (Sutton

and Barto, 1998) which are described in the following subsection with the

help of the grid-world problem.

6.3.2 Elements of Reinforcement Learning

The various elements of Reinforcement learning are explained with the ex-

ample of the canonical grid world problem for finding the shortest path given

in Fig. 6.3.

The grid considered here has 25 cells arranged in 5 rows and 5 columns.

At any instant, the agent can be placed in any one of the 25 cells. The agent

has to reach the goal state T by travelling through the cells. The crossed cells

have some obstacles and there is a cost incurred when agent moves from one
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Figure 6.3: Grid World problem

cell to another. The cost is high when the agent moves through the crossed

cells. The aim of the problem is to reach the goal state with minimum cost.

There are different paths that the agent can follow for reaching the goal and

depending upon the path the cost also varies. The optimum path that is to

be followed is the aim of the grid world problem. With respect to the same,

the various elements of reinforcement learning are described below.

1. State Space: The state is described by the cell number in which the

agent is placed or the current position of the agent. This cell number

is the subset of the entire 25 cells. This cell space is referred to as state

space which is the set of all possible states at any instant of time that

the agent can occupy. At any instant, the position or state of the agent

is denoted as xk ∈ X where X represents the state space. From the

initial state x0, the agent performs a series cell transitions or actions
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ao, a1, a2.....aN−1.

2. Action Space: The agent can perform any action ak ∈ Ak at any instant

of time, where Ak represents the set of possible actions that can be

taken at any instant. The action space depends upon the current state

xk. For example, if the agent is placed in cell number 8 i.e xk =

8, move to the right is not permitted since it represents an obstacle.

The permissible set of actions that can be performed at any instant k

constitutes the action space.

3. System Model: In Reinforcement learning, the agent interacts with the

environment to obtain a solution. In some cases, this would not be

possible, which necessitate a mathematical or simulation model of the

system. In the shortest path problem considered here, the next position

or state of the agent depends on the current state and the action that

is taken.

For the grid mentioned in Fig. 6.3, if xk = 8, ak = down then xk+1 = 13,

and if xk = 8, ak = left then xk+1 = 7. For such simple systems, by

direct observation the next state can be obtained, but for large systems,

simulation model is required to study the environment in which agent

moves so that xk+1 can be obtained.

4. Policy: A policy in reinforcement learning can be defined as any map-

ping from states of the environment to the actions that are taken in

that state. The next state is a function of the present state and the ac-

tion that is to be taken in the present state. In the example considered

here, if the current state of the system is xk = 21, there are many paths
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it can follow to reach the goal state. Each path can be considered as a

policy represented by π1, π2, etc. The ultimate aim is to find out the

optimum policy π∗ which returns minimum cost.

5. Reinforcement Function: Reinforcement function can be defined as the

goal that is to be achieved otherwise, should reflect the goal of the

agent. Reinforcement function maps the states into a reward or re-

inforcement which indicates the desirability of that particular state.

When an action is performed in a given state, a reward in the form of

a scalar value is returned by the environment. The ultimate goal of

RL is to maximize the sum of reinforcements received. In the case of

shortest path problem, each normal cell movement results in a cost of 2

unit. But moving to the cell with obstacle results in penalties or more

cost. The reinforcement function received by performing an action ak,

moving from xk to xk+1 is represented as g(xk, ak, xk+1). The reward rk

is the immediate reinforcement or the reinforcement function returned

by the RL environment at each time step.

6.3.3 Multi Stage Decision Problem(MDP)

Reinforcement learning can be applied successfully for problems in which

sequence of decisions to be taken and such problems are called as Multistage

Decision Problems (MDP). The rewards returned in each stage of decision

making can be stochastic in nature. The application of reinforcement learning

for solving MDP is described below.

If x ∈ X is the current state of the system and if system, moves to a new
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state y, by taking an action a ∈ A, and if the probability of such transition

is described by Pxy and can be calculated as

Pxy > 0 ∀x, y ∈ X, a ∈ A (6.5)∑
y∈X

Pxy = 1 ∀x ∈ X, a ∈ A (6.6)

An immediate reward g(xk, xk+1, a) is obtained corresponding to each

state and actions taken in that state. The goal is to find an optimal policy

which determines the actions to be taken in each state of the environment

such that the cumulative measure of reward obtained is optimum.

Suppose, we start from an initial state x0 and selects an action a0 ∈ A.

Depending upon the selected action, a new state x1 is obtained. The new

state is randomly chosen according to a probability Px0x1 . Now an action a1

is chosen and the system moves to another state x2. Then an action a2 is

chosen and so on. This can be pictorially represented as

x0
a0→ x1

a1→ x2
a2→ x3......... (6.7)

When these sequence of states, x0, x1.... are encountered with actions a0, a1...,

the total reward or pay off is obtained as

g(x0, a0) + γg(x1, a1) + γ2g(x2, a2) + ....... (6.8)

In terms of states, this can be written as

g(x0) + γg(x1) + γ2g(x2) + ....... (6.9)
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The ultimate aim of the reinforcement learning is to select actions over time,

so as to maximize the expected value of the reward.

E[g(x0) + γg(x1) + γ2g(x2) + .......] (6.10)

Here γ is called the discount factor and the reward at stage k is discounted

by γk. Therefore, positive values of rewards should be acquired in the initial

stages so as to maximize the expected value.

A policy as described in the previous section can be defined as a mapping

from a state to an action. We can say a policy π is followed, if an action

a = π(x) is performed in a state x. Therefore, the value function can be

defined as

V π(x) = E[g(x0) + γg(x1) + γ2g(x2) + .......|s0 = s, π] (6.11)

For a fixed policy π, according to Bellman’s equation,

V π(x) = g(x) + γ
∑
x′∈X

Px,π(x)(x
′)V π(x′) (6.12)

From the equation, it is clear that the value function corresponding to a policy

π consists of two terms, the first term g(x) is the immediate reward obtained

in state x and the second term is the expected sum of future discounted

rewards for state x′, where x′ is the state obtained by following a policy

π(x). For a finite stage MDP, such an equation for V π(x) can be developed

for each state and which can be solved for finding V π(x) for each state x.
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The optimal value function can thus be defines as

V ∗(x) = max
π
V π(x) (6.13)

The optimal value function can also be defined as ”best possible expected

sum of discounted rewards that can be attained using any policy” (Sutton

and Barto, 1998). Using Bellman’s equation, the optimal value function can

be written as

V ∗(x) = g(x) + γmax
a∈A

∑
x′∈X

Px,a(x
′)V ∗(x′) (6.14)

The first term of the equation represents the immediate reward of the state x.

The second term corresponds to the maximum of future discounted rewards

over all action a.

Accordingly the policy that corresponds to the optimal value function for a

maximization problem is given by

π∗(x) = g(x) + argmax
a∈A

∑
x′∈X

Px,a(x
′)V ∗(x′) (6.15)

Here π∗(x) returns an action a that corresponds to the maximum of ”max”

in Eq. (6.12).

For each state x and policy π, there exists an optimal value function given

by

V ∗(x) = V π∗(x) ≥ V π(x) (6.16)
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Corresponding to the optimal policy π∗, there exists an optimal value func-

tion V ∗, such that the value of π∗ is greater than any other policy. The policy

π∗ it is the optimal policy for all the states x ∈ X, independent of the initial

state.

Thus the MDP is formulated mathematically. Also procedure to be fol-

lowed to reach optimal policy and optimum function is obtained. The next

section describes the solution approach for reaching the optimal policy which

is described as Q-learning.

6.3.4 Q Learning Algorithm

The solution approach that is used here to find an optimal policy is the Q-

learning algorithm which finds the optimal policy by learning the values of

function Q(x, a). The value of the Q function is the value of taking an action

in a state under policy π. The Q-value corresponding to a policy π is defined

as

Qπ(x) = g(x) + γ
∑
x′∈X

Px,π(x)(x
′)V π(x′) (6.17)

Comparing Eq. (6.17) with Eq. (6.12),

Qπ(x, π(x)) = V π(x), ∀x ∈ X (6.18)

For optimal policy π∗, the above equations can be written as Qπ∗(x, π∗(x)) =

V π∗(x) = V ∗(x), ∀x ∈ X which returns optimum value of Q for the state

action pair (x, π∗). For a maximization problem, the optimal Q-value can be
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defined as

Q∗(x, a) = max
π
Qπ(x, a) (6.19)

which implies

Q∗(x, a) = Qπ∗(x, a) ∀x ∈ X, ∀a ∈ A (6.20)

The optimal policy then can be defined as

π∗(x) = argmaxa∈AQ
∗(x, a) (6.21)

The Q-learning method can be employed by generating a sequence of samples

which can be used to update the value of Q. An action corresponding to state

x is taken by the agent using some strategies to reach the next state x′ which

corresponds to an immediate reward given by g(x, a, x′) that is used to update

the value of Q iteratively

Qn+1(x, a) = Qn(x, a) + α[g(x, a, x′) + γmax
a∈A

Qn(x′, a)−Qn(x, a)]

∀x ∈ X, ∀a ∈ A
(6.22)

With small values of α, Qn converges to Q∗ and therefore for large values of

n, Q∗(x, a) can be approximated as Qn(x, a). The discount factor γ ∈(0,1)

and the learning parameter α ∈ (0, 1) should be chosen based on trial and

error method. The Q-learning algorithm for a MDP with N stages can be

summarised as follows

For all states x ∈ X and a ∈ A

Initialize the value of Q0(x, a) = 0
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For i = 1 : max iter

Observe the current state x0

For k=1:N

Pick an action ak using action selection strategy

Perform action ak and reach state xk+1

Obtain the immediate reward g(xk, ak, xk+1)

Update the value of Q(xk, ak)

Update the state from xk to xk+1

End

End

End

When every action is performed sufficient of times in each state, estimated

Q-values would converge to true Q-values. To select an action from the

action set various action selection strategies are used and most commonly

used method is the ε-greedy algorithm which is described in Section 6.3.5.

6.3.5 Action Selection based on ε-greedy method

The action that corresponds to the optimum values of Q is called as greedy

action. At any discrete step, there will be one action whose estimated per-

formance index upto that moment is best. That can be regarded as greedy

which is based on the current estimate of the performance index. But the

current estimate may be wrong. There may be better action. Therefore the

solution strategy should explore the goodness achieved for the greedy action
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at the same time exploring other possibilities. i.e Exploitation is the process

of extending the knowledge of the model by trying out so that more profitable

actions can be found out. At the same time, it has to exploit the knowledge

to achieve the maximum returns. This is achieved using exploration strategy

known as ε-greedy algorithm.

In the initial stages of the algorithm, the action ag may not be the best

action since the estimated mean Qn(a) is far from the true value. But as

the algorithm proceeds and the number of trials n increases, the possibility

of ag being the best action increases. Therefore, in the initial phases of the

algorithm the requirement is to acquire maximum information by exploring

the unknown environment. As the number of trials increases it is better

to exploit the available information. The ε-greedy algorithm maintains the

balance between exploration and exploitation by choosing the greedy action

ag with a probability of (1 − ε). The probability of selecting any random

action a is assigned as ε. Initially, the value of ε is selected as close to 1. As

the algorithm proceeds, the value of ε is decreased so that the probability of

choosing the greedy action ag increases. This is done because in the initial

phases of the algorithm, the deviation of the estimated mean Qn(a) from the

true value will be maximum.

6.4 Formulating Optimal Sizing of PV Units

as Learning Automata

The future distribution systems would be occupied with more number of DG

units which will change the entire scenario of the distribution network. This
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transformation requires proper analysis for the integration of DG units. Op-

timal allocation of the DG units helps to exploit the benefits of DG units

by minimizing the challenges. Photovoltaic source is the most abundant DG

source as far as tropic regions are concerned. It is also the type of DG unit

that can be installed by the consumers easily compared to any of DG units.

When the DG units have to be installed in any distribution network, the two

important aspects to be considered are the size of the DG unit and the lo-

cation of installation without affecting the normal operation of the network.

Each node of the distribution network is associated with an optimal size of

the PV unit and this size can be considered while permitting the willing cus-

tomers to install PV unit at their premises. Here the methodology utilizes

the learning automata approach for finding out the optimal size of the PV

unit at each node of the distribution network. For achieving this the optimal

sizing should be formulated as learning automata.

The solar irradiance data of California, which is the location for the IEEE

37-bus distribution feeder is studied. The suitability of the Beta PDF for fit-

ting the solar irradiance data is checked by conducting Chi-Square test. The

uncertainty is modelled using Beta PDF by generating random samples that

feature the behaviour of historical data. The data is divided into four seasons

and each season is represented by a typical day as explained in Chapter 5.

After finding the mean and standard deviation, Beta PDF is generated for

each hour corresponding to each season. The generated PDF is analyzed so

as to study the uncertainty. So if we select a particular hour, say 12 p.m.

in Season 3, the value of the irradiance varies randomly. Selection of the

number of modules to obtain a specific PV output is done based on the av-
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Figure 6.4: Random Variation of Power output

erage solar irradiance for that hour which is simulated using Beta PDF. So

by fixing the number of modules, the output power of the PV unit varies

randomly. The variation of the power output by choosing a PV size of 520

kW in season 2 at 11 noon for phase A in the case of IEEE 37-bus system is

shown in Fig. 6.4 for 100 trials. The frequency plot indicates that, there is

variation of power from 509 kW to 529 kW even though the power output is

chosen to be 520 kW. This random nature of the PV power output needs an

optimization method which is well capable of handling stochastic data. This

makes the application of stochastic learning algorithms very much suitable

here.

The objective function selected is the minimization of the total power

loss, i.e. Our problem is essentially a minimization problem. In the present

case, the learner (dispatcher) is to get a solution to find the optimum size of

the PV unit to be installed at a specific node satisfying the operating con-

straints such as voltage and power limits so as to minimize the total power
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loss which is selected as the objective function in this study. Here the total

network loss corresponding to ak, Loss(ak) where Loss is given by (Hung and

Mithulananthan, 2013).

Ploss =
∑
i

∑
j

Aij(PiPj +QiQj) +Bij(QiPj + PiQj) (6.23)

where

Aij =
Rijcos(δi − δj)

ViV j
(6.24)

Bij =
Rijsin(δi − δj)

ViV j
(6.25)

subjected to the constraints given below

|V min
i | ≤ |Vi| ≤ |V max

i |

|Pmin
DG,i| ≤ |PDG,i| ≤ |Pmax

DG,i|

|Qmin
DG,i| ≤ |QDG,i| ≤ |Qmax

DG,i|

(6.26)

Here the action set consists of the possible values of the PV unit. The

range of the PV size is assumed to vary from 250 kW to total load plus losses

in step size of 50 kW according to the size of the system in the case of IEEE

33-bus distribution system. The number of modules of PV unit that is re-

quired to generate the PV output power also vary accordingly. One of these

actions can be selected and applied. If the IEEE-33 bus distribution system

is considered, the action set can be written as A = [250, 300, 350, ....., 4000]

kW of PV unit and the size of action set is 76.

On applying an action ak, the environment (the distribution network)

returns a numerical value equal to the total power loss in the system cor-
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responding to action ak or a specific PV size. For example, In the case of

IEEE-33 bus RDS suppose we choose a specific action, i.e PV size of 2600

kW at bus number 6. Therefore, the number of PV units/modules so as to

yield the required power should be determined based on Eq. (6.27).

No modules = PV size/av power (6.27)

Here PV size is the selected value of size of PV unit and av power is the

average power output from the solar panel for the hour considered. But the

value of PV output power varies randomly which is modelled using Beta PDF

as explained in with respect to Fig. 6.4. To find out the actual power the

following equation is used.

PV out = No modules ∗ PV rand (6.28)

Here PV rand is the random output power that is obtained by modelling

the uncertainty of PV power using BetaPDF.

With this value of power from PV unit, the power flow algorithm is run

again by including PV power as explained in Chapter 3. After running the

load flow, in the nth trial, this action will return a reward which is the total

network losses. For this specific action, the total power loss in kW is 107.04.

This numerical value can be used to update the performance index in learning

automata Qn+1(ak) corresponding to the PV size of 2600 kW at bus number

6.

The input to the learning system is the specific point of installation of

PV unit and the range of PV size. The Learning Automata system learns by
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taking up continuous actions and updating the corresponding performance

index. The values of the performance index are first initialized as zero. One of

the action ak, a particular PV size will be selected from the 76 possible actions

in the action set, using ε-greedy strategy, i.e the action with minimum value

of the performance index (greedy action), ag is selected with a probability

of (1-ε) and one of the other actions in random with a probability of ε as

explained in Section 6.3.5. The loss value obtained by selecting a particular

action ak is denoted as Loss(ak) which acts as the numerical return provided

by the environment. It is then used to update the value of the performance

index as given by Eq. (6.29).

Qn+1(ak) = Qn(ak) + α [Loss(ak)−Qn(ak)] (6.29)

here α is called the learning parameter whose value lies between 0 and 1.

The learning parameter influences the convergence and correctness of the

optimum value of the performance index. A large value of α will make the

algorithm oscillatory and a very small value will slow down the convergence.

Here it is chosen as 0.1 by trial and error method. Various permissible values

of PV size are selected and loss corresponding to each value of PV size is

estimated from the power flow algorithm. The losses are used to update the

performance index. The action selection and updating performance index

are repeated sufficient number of times so that the value of the performance

index will be converging and afterwards the PV size that corresponds to the

minimum loss value will be chosen with highest probability. After the conver-

gence of the learning algorithm, the optimum size (action ak) corresponding

to minimum power loss is found as a∗ = argminQ(ak). The complete algo-
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rithm is given below.

Read the system parameters such as line data, load data etc

Initialize ε=0.5 and α=0.1

Choose suitable discretization step, 50 kW

Identify the max. no: of PV size installation ’m’

Generate the possible actions,a0...am−1

Initialize Q0(ak) = 0, 0 < k < m− 1

For (n = 0 to max iteration)

Begin

Select a PV size, ak using ε greedy algorithm,using the current

values of the performance index.

Calculate the number of PV modules corresponding to the selected

PV size by using Eq. (6.27).

Calculate the random power generated by PV unit using Eq. (6.28)).

Calculate Loss(ak) using Eq. (6.23) by running the Load Flow

using modified sweep algorithm.

Update Qn(ak) to Qn+1(ak) using Eq. (6.29).

End

Find the greedy action from the updated values of Q(ak), 0 < k < m−1
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Figure 6.5: Line diagram of IEEE 33-bus RDS

6.5 Results and Discussions

6.5.1 IEEE 33 bus balanced RDS

In order to validate the effectiveness of the developed algorithm by comparing

with the results obtained in the literature, IEEE 33 bus distribution system

is considered. The line diagram of IEEE 33-bus distribution feeder is shown

in Fig. 6.5. The size of the DG units assumed to vary from 250 kW to 3250

kW resulting in total number of actions equal to 60 with a discrete interval of

50 kW. The maximum power loss reduction with the installation of PV units

achieved was 49.19 %. The results are tabulated in Table. 6.1 and found to

be comparable with the results obtained from using the Improved Analytical

Method (IA), and Exhaustive Load Flow method (ELF) as given in(Hung

and Mithulananthan, 2013). The optimum size for the installation of DG

units for each bus is given in Fig. 6.6 and the real power loss associated with

the optimum size of PV units is shown in Fig. 6.7. The minimum voltage on

the system is also improved as a result of the addition of the PV unit from

0.9134 to 0.9525 as shown in Fig. 6.8.
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Table 6.1: Optimum size, Location, Power loss a for and Minimum Voltage
for IEEE-33 bus RDS

Methodology Installed
DG
Location

DG(kW) PLoss(kW) Loss Reduction(%) Min Voltage(pu)

No DG - - 211.38 - 0.9134

IA 6 2601 111.10 47.39 0.9425

ELF 6 2601 111.10 47.39 0.9425

Proposed LA
method

6 2600 107.4 49.19 0.9525

Figure 6.6: Optimum Size of PV units for each Bus
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Figure 6.7: Power Loss with Optimum size of PV units for each Bus

Figure 6.8: Voltage Profile variation with PV units for each Bus
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6.5.2 IEEE 13 bus unbalanced RDS

IEEE 13 bus RDS is a very unbalanced feeder which has unequal loading on

all the three phases. The feeder consists of two transformers 115/4.16kV of

Delta/GY configuration at the main substation and 4.16/0.48 kV of GY/GY

configuration in one of the lines. The feeder is characterized by both spot

and distributed loads, which are balanced, unbalanced, single phase, three

phase, delta and wye connected with all combinations of load models. There

are overhead lines and underground cables with different spacing of phases.

Three phase and single phase capacitors are utilized in the feeder topology.

A detailed description of the system is given in (Kersting, 2001) and the line

diagram is given in Fig. 6.9. The Size of the DG units in the case of this

feeder assumed to vary from 50 kW to 1500 kW. The optimum size of the PV

unit for each phase in shown in Fig. 6.10. The power loss with the addition

of the PV unit is shown for each phase in Fig. 6.11.

It can be seen that for Phase A, the minimum power loss obtained is

17.27 kW with the addition of PV unit of size 1300 kW at Bus no 692. For

Phase B, the minimum power loss achieved is 17.3 kW with the addition

of PV unit of size 1150 kW at Bus No 632. For Phase C, the minimum

power loss achieved is 25.9 kW with the addition of PV unit of size 1500

kW at Bus No 633. For the three phases altogether, the minimum power

loss obtained is 23.08 kW with the PV unit installed at Bus No 692 with

the optimum size of PV unit as 1300, 850 and 1500 kW for Phase A, B,

C respectively. For each case, the voltage profile is within allowable limit.

The power loss reduction achieved for each phase along with the average

power loss reduction is plotted for each node in Fig.6.12. For phases A, B,
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Figure 6.9: Line diagram of IEEE 13-bus RDS

Figure 6.10: Optimum Size of the PV units for each node for 13-Bus RDS
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Figure 6.11: Total Loss in kW with Optimum PV size at each node for 13
bus RDS
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Figure 6.12: Loss Reduction in Percentage with Optimum PV size installed
at each bus

C the maximum power loss reduction achieved in percentage are 80.9,75.3

and 85.87 respectively. On an average, the maximum power loss reduction is

achieved is 78.08 for node number 692 with the installation of PV unit of size

1300,850 and 1500 kW for phases A, B and C respectively. The results are

summarised in Table. 6.2. It is also seen that for buses with missing phases,

the loss reduction is comparatively less compared to the other buses where

all the phases are present.

6.5.3 IEEE 37 bus Unbalanced RDS

To check the effectiveness of the proposed methodology for application to

larger systems, IEEE 37 bus unbalanced RDS is considered. The feeder

consists of two transformers 230 kV/4.8 kV of Delta/Delta configuration at

the main substation and 4.8/0.48 kV of Delta/Delta configuration in one of

the lines. The Total real loading on the system are 727 kW, 639 kW and
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Table 6.2: Optimum size, Location and power loss for IEEE 13 bus RDS

Phase Installed
PV Lo-
cation

PV size
(kW)

Total
power
loss(kW)

Loss
minimization(%)

Without PV unit A - - 90.87 -

B - - 71.63 -

C - - 183.5 -

With PV Unit A 692 1300 17.27 80.9

B 632 1150 17.3 75.3

C 633 1500 25.9 85.87

1091 kW on phases A, B, C respectively. The Total reactive loading on the

system are 357 kVAr, 314 kVAr and 530 kVAr on phases A, B, C respectively.

A detailed description of the system is given in (Kersting, 2001) and line

diagram is given in Fig. 6.13. Due to the significant unbalance in the total

loading on the three phases, the DG size on the three phases assumed to

vary. For phase A, the DG size is assumed to vary from 26 kW to 780 kW.

For phase B, the DG size is assumed to vary between 21 kW to 630 kW and

for phase C, the DG size is assumed to vary between 30 kW to 1200 kW.

The optimal size of the PV unit at various buses are shown in Fig. 6.14. By

installing the PV unit of the optimum size, the total power loss incurred in

the system is shown in Fig. 6.15. The corresponding power loss reduction

achieved with the installation of PV unit is shown in Fig. 6.16. It can

be seen that the minimum loss achieved on the system is 8.9 kW for phase

A with the installation of PV unit of size 520 kW at bus number 734. For

phase B, the minimum loss achieved is 2.88 kW with the installation of PV
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Figure 6.13: Line diagram of IEEE 37-bus RDS

Figure 6.14: Optimum Size of the PV units for each node for 37-Bus RDS
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Figure 6.15: Total Loss in kW with Optimum PV size at each node for 37
bus RDS
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unit of size 567 kW at bus number 720. For phase C, the minimum loss

achieved is 18.63 kW with the installation of PV unit of size 1200 kW at

bus number 703. The minimum power loss on an average is 13.31 kW with

the installation of 780, 630 and 1200 kW at bus number 703 in phases A,

B and C respectively. For all the cases, the voltage profile is within limits.

The maximum loss reduction achieved are 82.31%, 89.67% and 74.32% at

the optimized location. The maximum power loss reduction achieved on an

average is 73.05 % with the installation of 780, 630 and 1200 kW at bus

number 703 in phases A, B and C respectively. A plot of the percentage loss

reduction is given in Fig. 6.16. The results for the IEEE 37 bus feeder is

summarised in Table 6.3.

Figure 6.16: Loss Reduction in Percentage with Optimum PV size installed
at each bus for 37 bus RDS
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Table 6.3: Optimum size, Location and power loss for IEEE 37 bus RDS

Phase Installed
PV Lo-
cation

PV size
(kW)

Total
power
loss(kW)

Loss
minimization(%)

Without PV unit A - - 49.17 -

B - - 27.97 -

C - - 72.56 -

With PV Unit A 734 520 8.9 82.31

B 720 567 2.88 89.67

C 703 1200 18.63 74.32

6.6 Optimal Distributed Generation Placement

as a Multistage Decision Problem(MDP)

Reinforcement Learning (RL) is a machine learning approach which has the

features of both supervised and unsupervised learning. The main objective

of Reinforcement Learning (RL) is to find an optimal policy that maximizes

the reward. Here an agent follows a systematic process to interact with the

environment and to learn the optimal actions to be taken in each state in

order to maximize the reward signal. By the exploration of an unknown sys-

tem, sufficient experience is gained which helps such algorithms to act in an

optimal way. The basic elements of the RL paradigm comprise mainly of the

elements which are policy, state space, action space reinforcement function

and value function which are explained in Section 6.3.1.

The Optimal DG placement problems deal with the determination of

the best location and the most beneficial capacity for DG installation. In
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most of the research work done earlier, the optimal DG placement problem

is formulated as a single stage decision making problem which are solved by

heuristics or Heuristic methods like Genetic Algorithm (GA), Particle Swarm

optimization (PSO) etc. The ODGP problem can be better represented as

a multi-stage decision making problem which helps to observe the current

system state and select the sequence of actions accordingly. This will allow

us to integrate the DG units more efficiently specifying the objectives.

In this view, the DG integrated Distribution system can be abstracted

as follows. At each instant k, k= 1,2,3....., the system observes the current

′state′ of the system xk, and takes an ′action′, ak. In the case of Optimal in-

tegration of DG sources, the voltage of the system, voltage angles, line flows,

etc. can be considered as state vector whose values are available after the

power flow. Here in this study, the voltage magnitude is taken as the state

vector since the voltage profile is a major factor of concern in DG placement.

The state vector at the instant k, xk can be the filtered or averaged values

of the quantity over the time interval k − 1 to k. This helps in discretising

the chosen quantity to transform into the state vector. The set of all possi-

ble states X is assumed to be finite. For the IEEE 33-bus system, the state

space can be represented as X = [V1, V2....Vn] where V represents the voltage

vector for the buses.

The possible actions for Optimal DG integration are the various values of

4P , where 4P represents the change in the value of the dispatched power

from DG from the previous state. The value of 4P can be either positive

or negative depending upon the value of the state vector, i.e. the voltage

magnitude. The finite action set is denoted by A. The action set can be

182



6.6 Optimal Distributed Generation Placement as a Multistage Decision
Problem(MDP)

represented as A = [50, 100, ............4000] kW of PV unit.

The objective of the DG placement problem considered here is the min-

imization of the power losses subjected to maximum and minimum power

limits. Depending upon the objective function, the reinforcement function

can be defined. The total power loss incurred should be the cumulative re-

ward over k stages. Therefore the reinforcement function in kth stage can be

defined as the power loss corresponding to an action ak.

Ploss =
∑
i

∑
j

Aij(PiPj +QiQj) +Bij(QiPj + PiQj) (6.30)

where

Aij =
Rijcos(δi − δj)

ViV j

Bij =
Rijsin(δi − δj)

ViV j

(6.31)

subjected to the constraints given below

|V min
i | ≤ |Vi| ≤ |V max

i |

|Pmin
DG,i| ≤ |PDG,i| ≤ |Pmax

DG,i|

|Qmin
DG,i| ≤ |QDG,i| ≤ |Qmax

DG,i|

(6.32)

Now the Optimal DG placement problem has been formulated as a Mul-

tistage Decision Problem (MDP) which passes through N stages. At each

stage k, a PV size is selected using some exploration strategy from one of the

state of voltage. This results in a new value of voltage and this transition

results in a reward corresponding to the size of PV units installed. So the
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problem can be simply defined as to be finding an optimal action ak corre-

sponding to state xk in each stage k. Now the formulated MDP can be solved

using Q-learning algorithm.

6.6.1 Q-learning algorithm for Optimal DG Placement

In the previous section, the optimal DG placement problem is modelled as a

multi-stage problem. In this section Q-learning algorithm to solve the MDP

is explained. At any stage k, the voltage values are considered as the state

vector. For representing the state vector xk in discrete form, the continuous

voltage values are divided into a number states depending upon their values

and the minimum and maximum voltages. For example, if the voltage value

is between 0.9 p.u and 0.91 p.u, then the state of the voltage is 1 and if it is

between 0.93 p.u and 0.94 p.u, then the state of the voltage is 4 and so on.

Here 10 states are considered depending upon the variation in the voltage

values.

Now an action ak is taken which is the change in value of the PV power

∆P whose value can be positive or negative. The increment or decrement in

PV power is selected based on ε-greedy algorithm. Here the size of the PV

unit is assumed to vary from 250 kW to a value which corresponds to the

sum of load and losses.

By performing this action, the system is moved to next state xk+1. The

next state or the new values of voltage are obtained after conducting the

load flow which also returns a reward. Since the power loss is taken as the

reward in the study, the reward function corresponding to action ak is given

by Eq. (6.30). Now Q-learning algorithm as described in Section 6.3.4can
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be used to find the solution for this problem. The Q-values, Q(x, a) can be

estimated for each state action pair which gets updated during each step of

the learning phase. Thus the Q-values can be updated using Eq.(6.33)

Qn+1(xk, ak) = Qn(xk, ak) + α[g(xk, ak, xk+1) + γ min
a′∈Ak+1

Qn(xk+1, a
′)−Qn(x, a)]

∀x ∈ X, ∀a ∈ A

(6.33)

Here α is called the learning parameter and γ is called as the discount factor

which is assumed as 1. In the last stage of the algorithm, Eq. (6.33) can be

written as

Qn+1(ak, xk) = Qn(ak, xk) + α [g(xk, ak, xk+1)−Qn(ak, xk)] (6.34)

During the initial phases of learning, the calculated Q-values, Qn(ak, xk

will be much deviated from the optimal value Q∗. As the learning proceeds,

the estimated Q-values approach optimal value Q∗. With small values of α

and sufficient number of state-action pairs, the value of Qn will be converging

to the optimal value Q∗.

The value of ε is very important in deciding the balance between the

exploration and exploitation. Value of ε is usually chosen as close to 1 in the

initial stages and as the learning proceeds, the value of ε reduced by 10 %

and the greedy action ultimately turns to be the best action. The learning

algorithm for optimal DG placement using MDP approach is explained in

Section 6.6.2.
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6.6.2 Learning Algorithm for Optimal Integration of

DG Sources

Read the system parameters such as line data, load data etc.

Identify the feasible state space X and action space A

Read the initial status of state vector x0. i.e voltage for all the nodes

Initialise Q(x, a) = 0 ∀x ∈ X and ∀a ∈ A.

Initialise k = 0

Initialize ε = 0.5 and α = 0.1 and γ = 1

For n = 0 : max iter

For k = 0 to N − 1

Do

Choose a PV unit to be installed using ε-greedy algorithm

Calculate the number of PV modules corresponding to the se-

lected PV size by using Eq. (6.27).

Calculate the random power generated by PV unit using Eq.

(6.28)) and run the power flow algorithm

Find the value of the state vector xk+1

Calculate loss using Eq. (6.30)

If (k < N − 1), update Qn to Qn+1 using Eq. (6.33)

Else update Qn to Qn+1 using Eq. (6.34)

186



6.7 Results and Discussions

End Do

Update the value of ε

End

Update Q-values

6.7 Results and Discussions

6.7.1 IEEE-33 Bus Balanced Distribution System

The proposed algorithm is validated for IEEE 33- Bus balanced distribution

system. The voltages of the various buses are discretised and grouped into

various states which are predefined earlier. Using the Reinforcement learning

approach, the optimum location and size of the PV unit to be installed is

determined. The size of the DG units assumed to vary from 250 kW to 3250

kW, resulting in total number of actions equal to 60 with a discrete interval

of 50 kW. The maximum power loss reduction with the installation of PV

units achieved was 49.19 %. The results are tabulated in Table. 6.4 and

found to be comparable with the results obtained from using the Improved

Analytical Method (IA), and Exhaustive Load Flow method (ELF) as given

in (Hung and Mithulananthan, 2013). The voltage profile of the system with

the installation of PV Units of optimum location and size is given in Fig.

6.17. The minimum voltage on the system is also improved as a result of the

addition of the PV unit from 0.9134 to 0.9525.
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Table 6.4: Optimum size, Location, Power loss and Minimum Voltage for
IEEE-33 bus RDS

Methodology Installed DG
Location

DG size
(kW)

PLoss (kW) Loss
Reduction(%)

Min Volt-
age(pu)

No DG - - 211.38 - 0.9134

IA 6 2601 111.10 47.39 0.9425

ELF 6 2601 111.10 47.39 0.9425

RL algorithm 6 2600 107.4 49.19 0.9525

Figure 6.17: Voltage Profile variation with PV units for each Bus
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6.8 Conclusion

The optimal integration of DG sources in the unbalanced distribution net-

work is a challenging issue in the planning of the distribution system. The

Photovoltaic type of DG is becoming popular because of its abundance. Here

the optimal sizing of the PV units in the unbalanced distribution network

is formulated as a Single Stage Decision making Process (SSDMP) using

Learning Automata (LA) algorithm. An effort is also made to model the op-

timal DG placement problem as a MDP using Reinforcement Learning. The

size of the PV unit is optimized so as to minimize the total network losses

of the system subjected to various operating constraints. The uncertainty

associated with the solar PV source is modelled using Beta PDF. The LA

algorithm was validated and compared with the results in the literature for

the balanced IEEE-33 bus distribution system and applied for the IEEE 13-

bus RDS and IEEE 37-bus RDS. The effectiveness of the RL algorithm for

optimal DG placement is validated using IEEE 33-bus distribution system.

The proposed algorithms can therefore be used to estimate the optimal PV

size to be installed in the distribution system with a capability to include

the uncertainty associated with the PV source.
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Chapter 7

Case Study of PV Integration

in Practical Distribution

System

7.1 Introduction

The very mounting demand for the electricity supply and the rising concern

about global warming and climate change has motivated the electricity sector

to adopt renewable and local sources of energy. In a developing country like

India, efficient and buoyant power sector with high financial robustness is the

need of the hour for booming economic growth and poverty alleviation. In-

dia is blessed with immense potential for solar power owing to its geographic

location within the tropic region. Most of the parts of India have 300-330

sunny days in a very year that is sufficient to meet the entire energy demand

within the country. The Indian Government have taken many initiatives for
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developing the renewable sources of energy for improving the rural electrifi-

cation and energy security exploiting the solar energy. The Government has

launched Jawaharlal Nehru National Solar Mission (JNNSM) which aims to

achieve the installed solar capacity of 100 GW by 2022 of which 40 GW is

to be contributed by the rooftop panels (mnr, 2012). The Central and State

Government has taken many initiatives as a result of which the installed ca-

pacity of the solar photovoltaic has reached 5 GW in 2015. The contribution

of DG sources in the power generation is expected to rise in the forthcoming

years, resulting in a scenario where local generation will be much cheaper

than the energy supplied by the electric utilities.

The conventional power system was designed to have centralized genera-

tion which is being supplied to the ultimate consumers using the extensive

transmission and distribution network resulting in a unidirectional power

flow. Introduction of DG sources, therefore causes problems in the power

network that have not been outlined beforehand. The traditional power sys-

tem operation was based on the peak load which was very much accountable

hence the generation control could be ideally performed. Further the addition

of dispersed generation units cause a transformation of the distribution net-

work to active involving bi-directional power flow. Therefore, efficient anal-

ysis of the distribution system with DG is very much needed in the present

situation. Appropriate strategies for finding out the optimal capacity and

the location of the DG sources should be investigated so as to accomplish

the advantages with the integration of DG sources.

As far as distribution systems in India, especially the state of Kerala is

considered, most of them are operating at their maximum capacity, which
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leads to overloading and under voltage situation during peak hours. The

state is suffering from a peak power deficit, which is as much as 1600 MW

since 80% of the demand comes from the domestic sector. The expansion

of the transmission grid is impractical owing to the constraints on the right

of way permission for laying of new lines. The ultimate solution in order

to meet the peak shortage is the integration of more and more renewable

energy resources into the distribution grid. The state has already launched a

unique off-grid solar rooftop programme known as the 10,000 Solar Rooftop

Programme with the help of the state nodal agency ANERT (Agency for

Non-conventional Energy and Rural technology) and is in the final phase.

The state is now planning for the 25000 rooftop power programme which

would be grid connected apart from the large scale ground mounted solar

power plants to be commissioned. Therefore a study of the effects of the

DG integrated distribution system is the need of the hour in the present sce-

nario.

The focus of the chapter is to analyze a real-life 4.3 MVA distribution

feeder in Kerala state, India which is unbalanced in nature. The aim is to

optimally size the PV units so as to attain power loss reduction and voltage

profile improvement in the radial distribution network. The selected area

has significant solar radiation with 4-5 sunny hours. The method employed

here is Learning Automata (LA) and Reinforcement Learning (RL) which

are capable of handling the stochastic data in practical system and is al-

ready validated for standard radial distribution feeders in Chapter 6. Here

the randomness of the Photovoltaic sources is considered using Beta PDF.

The randomness associated with the solar irradiance is modelled using beta
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PDF and this random power output is taken as the output power of DG. The

integrated system was analyzed for voltage profile and power loss reduction.

The optimal sizing of PV units and the associated computation and analysis

of system parameters are very important from the utility side before permit-

ting the willing customers to connect PV units at their premises. The utility

can suggest the proper sizing for the willing customers. The customer is

also benefited by the installation of PV units with Proper sizing with which

they can maintain the reliability and efficiency of their system. The chapter

discusses in detail, the application of stochastic learning algorithms namely

LA and RL for finding the optimal capacity of PV units to be installed at

selected locations in 4.3 MVA practical distribution feeder and the effect of

this integration on voltage profile and loss reduction.

7.2 Problem Formulation for the selected sys-

tem

The study has been conducted on a 4.3 MVA radial distribution network in

Kerala state, India which is spanning over a length of 7.2 km with 55 buses.

This network is indented to supply power to both single phase and three

phase loads. The details of the connected load for the distribution network

is shown in Table. 7.1 and the line diagram of the feeder is shown in Fig. 7.1.

The nearest generating station is about 150 km away from the site considered

and therefore the voltage drop in the peak hours is not within the desirable

limits. It is expected that the integration of the DG sources contributes to

the improvement in voltage profile, where the support from the grid is not
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Table 7.1: Details of Connected Load

Connected
Trans-
former
Capacity

No, of
trans-
formers
connected

Load Con-
nected to
each trans-
former

Total
Load(kVA)

100 23 84 1932
160 7 134 938
250 1 210 210
400 1 336 336
500 2 420 840
Total 34 - 4256

possible.

Figure 7.1: Single Line Diagram of the 55-Bus Radial Distribution Feeder

The analysis of the existing power distribution network indicates that the

main problem faced by the consumers in the selected site is the poor voltage

during the peak hours. On the other hand, high level of transmission and

distribution losses is the main challenge faced by the electric utility. The
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chapter evaluates the performance of a real-life distribution feeder in terms

of voltage profile and the network losses before and after the installation of

the PV units. There are many power flow methods that can be applied to

distribution systems which are reviewed in Chapter 2. The detailed power

flow algorithm employed here for the unbalanced distribution network is given

in Chapter 3.

From the results of the load flow studies, it can be seen that the voltage

profile for the system is not within the acceptable limits. The minimum

voltage on the system is 0.85 p.u which is far below the desirable limit of

10% and the voltage unbalance is above the allowable limit of 4%. Therefore,

with the introduction of PV units at the buses where the voltage profile is not

within limits there is a scope for improvement and since percentage unbalance

in different phases is high, carrying out balanced studies is not recommended.

The variation in voltage with the distance from the substation for phase A

is shown in Fig. 7.2 for the three phases.

Figure 7.2: Voltage Profile variation with distance from substation for phase
A
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7.3 Optimal size of PV unit for 4.3 MVA

Real-life Unbalanced RDS

Estimating the optimal size of the PV units has been modelled as a single

stage decision making problem and is solved using learning automata. The

concept of learning automata and the formulation of the optimal sizing prob-

lem as learning automata is explained in detail in Chapter 6. Minimization

of power loss is considered as the objective function. Here the penetration

level of the PV units in the distribution transformer assumed to vary between

20 % and 80 %. Therefore the action set considered here composed of the

PV units with rating varying between 20 kW and 80 kW in discrete step size

of 4 kW for distribution transformers with 100 kVA rating. The complete

algorithm for optimal sizing using learning automata is given in Section 6.4

in Chapter 6.

For the real life feeder, two cases have been considered. In the first case,

four nodes with minimum voltage were selected for DG installation. In the

second case, large consumers on the system are selected so that there is a

scope for the utility to install rooftop panels on the system. The voltage

profile improvement and the loss reduction with the installation of PV unit

is additionally analyzed. The sections of the radial distribution feeder with

minimum voltage are highlighted in the line diagram. A minimum of a node

from all these sections is taken into account for the installation of the PV

unit. The details of the two cases are given in the next sections.
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7.3.1 Case I- Installation of PV units in under voltage

sections

It is evident from Fig. 7.2 that as the distance from the substation increases,

there is a drop in the voltage which makes the voltage goes below the nominal

values. The Fig. 7.3 shows the sections in the distribution feeder where

the voltage is below the nominal value and where there is a scope for the

installation of PV unit.

At least one node belonging to each highlighted section is considered

Figure 7.3: Single Line Diagram of the 55-Bus RDS Under voltage Sections
Highlighted

for PV integration. The nodes selected are 28, 36, 41, 43, 46 and 55. For

finding out the optimum size of the PV unit at each of these nodes, learning

Automata (LA) algorithm is used. Most of the transformers used are rated

100 kVA and maximum PV penetration is restricted to 80%. The results for
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the optimum size of the PV unit size required so as to minimize the power

losses and improve the voltage profile is tabulated in Table. 7.2.

The installation of PV units of the specified size causes improvement in

Table 7.2: Optimum PV Size for the selected Nodes

Node Number Optimum Size(kW)

Phase A Phase B Phase C

28 40 60 20
36 56 24 28
41 40 24 24
43 40 64 32
46 40 24 40
55 64 24 52

voltage profile and loss reduction in the distribution feeder. The improvement

in the voltage profile of the three phases with the installation of the PV unit

is shown in Fig. 7.4.

It can be seen that by installing the PV unit at the selected locations,

there is a slight drop in voltage at the near end of the substation, but within

limits. But at the nodes where the voltage was sub nominal, there is a

significant improvement in the voltage profile. The minimum voltage on

the system is improved to 0.9093 p.u, 0.9182 p.u, 0.92 p.u from 0.8314 p.u,

0.8337 p.u and 0.8383 p.u for phases A, B and C respectively which are

within acceptable limits of ± 10%. There is also a significant reduction

in the power loss in ranges of 33%-40%. The results of the optimization

algorithm for optimal PV sizing is summarised in Table. 7.3.

With the installation of PV units of optimal size, the energy losses are

also minimized. The annual energy losses have been calculated by considering
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Figure 7.4: Voltage Profile for the three phases without and with PV units
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Table 7.3: Voltage profile and Power Loss without and With the addition of
PV Units

Without PV Units With PV Units

Phase Minimum
Voltage (p.u)

Loss (kW) Minimum
Voltage
(p.u)

Loss (kW) Loss Reduc-
tion (%)

A 0.8314 95.62 0.9093 59.05 38.24
B 0.8337 84.40 0.9182 56.069 33.56
C 0.8383 87.94 0.92 57.84 34.22

the hourly power output for each season. For this calculation, the solar

irradiance data of the site are taken from national solar irradiation database

and Beta PDF is used to model the uncertainty. The equation for calculating

the energy losses in a typical day representing a season is given by (Hung

et al., 2013).

Eloss,day =
24∑
t=1

P t
loss∆t, (7.1)

Here ∆t represents the time duration which is taken as one hour. The Energy

loss for a particular season can be calculated as

Eloss,season = No days× Eloss,day, (7.2)

Here No days represents the total number of days in a season and Eloss,day is

given by Eq. (7.1). Adding the value of energy loss for each season gives the

annual energy loss. The annual energy losses as a percentage of the total real

power for the three phases are shown in Fig. 7.5. The reduction in energy

losses is less compared to the power losses because of the hourly and seasonal

variation in Solar power output. This uncertainty associated with the solar
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power output is modelled using Beta PDF and power output is estimated by

randomly generating samples which is discussed in Chapter 5.

Figure 7.5: Annual Energy losses before and after the installation of PV units

7.3.2 Case II-Installation of PV Units on the High

Tension(HT) consumers

The selected distribution feeder is having a number of HT consumers, includ-

ing academic institutions, Government and Non-Governmental Organisations

where there is a scope for the utility to install rooftop PV panels. The se-

lected HT consumer is a Police Training Academy which is spread around

348 Acres. Three HT transformers were chosen from the selected organisa-

tion in which one transformer is of 250 kVA capacity and two others are of

500 kVA capacity. The load of the selected site is found to vary from 30

kVA to 84 kVA. Maximum 80% penetration of PV units is allowed for each

transformer. The selected nodes are highlighted in the Single line Diagram
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of the distribution feeder in Fig. 7.6. The optimum size of the PV panels

required to minimize the losses and improve the voltage profile are shown in

Table. 7.4.

With the installation of the PV units of the optimum size, the power

Table 7.4: Optimum PV Size for the selected Nodes

Node Number Optimum Size(kW)

Phase A Phase B Phase C
18 70 50 100
22 260 400 380
24 360 400 380

Figure 7.6: Single Line Diagram of the 55-Bus RDS under voltage Sections
Highlighted

losses are reduced and there is a significant improvement in the voltage profile

on all the three phases. The voltage profile without and with the installation

of the PV units is shown in Fig. 7.7.
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Table 7.5: Voltage profile and Power Loss without and With the addition of
PV Units

Without PV Units With PV Units

Phase Minimum
Voltage
(p.u)

Loss
(kW)

Minimum
Voltage
(p.u)

Loss
(kW)

Loss Re-
duction
(%)

A 0.8314 95.62 0.9285 64.77 32.26

B 0.8337 84.40 0.9187 61.89 26.67

C 0.8383 87.94 0.9163 64.78 26.33

It can be seen that the voltage improvement is more significant as com-

pared to the previous case where the PV units were installed based on the

voltage. The minimum voltage on the system is improved to 0.9285 p.u,

0.9197 p.u, 0.9163 p.u from 0.8314 p.u, 0.8337 p.u and 0.8383 p.u for phases

A, B and C respectively which are within acceptable limits of ± 10%. The

maximum voltage on the system are 1.009, 1.015 and 1.06 p.u for phases A,

B and C respectively. There is also a significant reduction in the power loss

about 30-40 %. The results of the optimization algorithm for optimal PV

sizing at the HT terminals are summarised in Table. 7.5.

7.3.3 Study of Power Loss variation with Seasonal changes

in Solar Irradiance- Uncertainty Modelling using

Beta PDF

The output of the PV module is dependent on the solar irradiance, ambient

temperature and the characteristics of the module itself. Therefore PV power
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Figure 7.7: Voltage Profile for the three phases without and with the addi-
tion of PV units
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output should be considered as a multi- state variable so that the seasonal

variations in the power loss can be related to the solar irradiance. For this

purpose the solar irradiance is modelled using Beta PDF as mentioned before.

Each season is represented by a typical day. The four seasons in Kerala can

be divided as winter, summer, south west monsoon and retreating monsoon

whose hourly average solar radiation are 240.07 W/m2, 265.38 W/m2, 184.61

W/m2 and 223.3 W/m2 respectively according to the satellite data. The data

of the selected location is for one year is taken and the hourly irradiance for

each season is predicted using Beta PDF. The predicted power output for

each season is plotted in Fig. 7.8.

To incorporate this uncertainty in the solar irradiance and the resulting

Figure 7.8: Forecasted Hourly Solar Irradiance for various Seasons

power output in the power flow, the solar power output should be considered

as multi-state variable in the power flow. As an example, the power output of

the bus number 28 for phase A is taken as a multi state variable whose power

206



7.3 Optimal size of PV unit for 4.3 MVA Real-life Unbalanced RDS

output is the output power of the solar panel. The number of modules of

the solar panel is selected in order to provide the optimal capacity of the PV

unit provided the solar irradiance is at its peak. The resulting hourly power

loss reduction for each season is plotted in Fig. 7.9. The main observations

on hourly and seasonal variations of power loss drawn from the plot are

described below.

Figure 7.9: Hourly power Loss Reduction for various Seasons

• The hourly variations illustrate that the loss reduction is marginal in

the mornings and evenings, but there is a significant reduction in the

power loss at noon hours when the solar radiation is at its peak.

• analyzing the seasonal variations, it can be observed that the power

loss reduction is minimum for the monsoons, indicating less number of

sunny hours and low intensity of the solar irradiance in the season.

• Also the seasonal variations in the power loss is marginal in the morning

and evening hours compared to the noon, which is the result of the

equitable climate and solar irradiance throughout the year.
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7.3.4 Estimation of Optimum PV size and Voltage pro-

file on Hourly Basis

As explained in Chapter 6, learning automata system makes decisions by

continuous interactions with the environment. In the case of optimal PV

sizing problem, the action ak to be taken is the selection of a PV size. When

a PV size is selected based on ε-greedy strategy, the random power output

from the installed PV unit should be found out. This is done based on the

modelling of uncertainty using Beta PDF. The number of PV units/modules

so as to yield the required power should be determined based on Eq. (7.3).

No modules = PV size/av power (7.3)

Here PV size is the selected value of size of PV unit and av power is the

average power output from the solar panel for the hour considered. But the

value of PV output power varies randomly which is modelled using Beta PDF

as explained in Section 6.1 with respect to Fig.6.4. To find out the actual

power Eq. (7.4) is used.

PV out = No modules ∗ PV rand (7.4)

Here PV rand is the random output power that is obtained by modelling

the uncertainty of PV power using Beta PDF.

With the power from the PV unit, the load flow is run again and the loss

corresponding to the selected action is obtained. Here the objective function
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considered is the minimization of power loss where loss is given by

Ploss =
∑
i

∑
j

Aij(PiPj +QiQj) +Bij(QiPj + PiQj) (7.5)

where

Aij =
Rijcos(δi − δj)

ViV j
(7.6)

Bij =
Rijsin(δi − δj)

ViV j
(7.7)

subjected to the constraints given below

|V min
i | ≤ |Vi| ≤ |V max

i |

|Pmin
DG,i| ≤ |PDG,i| ≤ |Pmax

DG,i|

|Qmin
DG,i| ≤ |QDG,i| ≤ |Qmax

DG,i|

(7.8)

The loss value is used to update the value of the performance index, which

is given by Eq. (7.9).

Qn+1(ak) = Qn(ak) + α [Loss(ak)−Qn(ak)] (7.9)

Sufficient number of actions are taken and the performance index is updated

till the value of Qn reaches the optimum value Q∗.

Now the Learning Automata (LA) algorithm is modified to determine the

optimum PV size for different hours of a day. The optimum size of PV units

to be installed at Bus Number 41 of the real bus RDS for different hours of a

typical day representing winter season from 8 a.m. to 8 p.m. for all the three

phases are plotted in Fig. 7.10. This can be repeated for all the seasons. The
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algorithm for analyzing the variation of optimum PV size on a daily basis is

given below.

Read the system parameters such as line data, load data, etc.

Identify the number of hours for with non zero value of PV output power

as No PV

Initialize ε=0.5 and α=0.1

Choose suitable discretization step, 50 kW

Identify the max. no: of PV size installation ’m’

Generate the possible actions,a0...am−1

Initialize Q0(ak) = 0, 0 < k < m− 1

For (no hours = 1 to No PV )

For (n = 0 to max iteration)

Begin

Select a PV size, ak using ε greedy algorithm,using the current

values of the performance index.

Calculate the number of PV modules corresponding to the selected

PV size by using Eq. (7.3).

Calculate the random power generated by PV unit using Eq. (7.4)).

Calculate Loss(ak) using Eq. (7.5) by running the Load Flow

using modified sweep algorithm.
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Update Qn(ak) to Qn+1(ak) using eqn 7.9.

End

Find the greedy action from the updated values of Q(ak), 0 < k < m−1

End

Figure 7.10: Optimum PV size for Bus No:41 for different hours

Similarly an analysis was also conducted in order to study the variation

of the voltage profile during different hours of the day. It can be seen that

there is a variation in the voltage profile at different times of the day, which

depends purely on the intensity of solar irradiation and the power output.

For the hours when the sun is at its peak, the voltage profile is near to 1

p.u and when the intensity is lower, there is not much improvement in the

voltage profile as compared to the case when PV units are not installed. The

voltage profile at Bus No: 41 for a typical day representing winter season

is shown in Fig. 7.11. The graph represents the variation of the voltage
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profile by installing PV unit of size 39 kW installed on phase A. The major

interpretation that can be made from the graph is that the voltage profile

has significant improvement during peak sunny hours.

Figure 7.11: Voltage Profile Variation for Bus No:41 for different hours

7.4 Multi-stage modelling of Optimal PV unit

sizing for 4.3 MVA practical distribution

system

The modelling the Optimal PV sizing problem as multi-stage problem using

RL is described in detail in Chapter 6 in Section 6.6. Q-learning algorithm is

used for updating the performance index and solving the MDP. The complete

algorithm is also given in Section 6.6 of Chapter 6.

At least one node belonging to each highlighted section is considered for

PV integration. The nodes selected are 28,36,41,43,46 and 55. For finding

out the optimum size of the PV unit at each of these nodes, Reinforcement
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Learning algorithm is used. All these nodes are 100 kVA transformers and

maximum permissible PV penetration is taken as 80%. The results for the

optimum size of the PV unit size required so as to minimize the power losses

and improve the voltage profile is tabulated in Table. 7.6.

The installation of PV unit of the specified size causes improvement

Table 7.6: Optimum PV Size for the selected Nodes

Node Number Optimum Size(kW)
Phase A Phase B Phase C

28 68 44 64
36 68 68 64
41 68 44 64
43 68 40 64
46 80 80 80
55 80 80 80

in the voltage profile and loss reduction in the distribution feeder. The

improvement in voltage profile of the three phases with the installation of

the PV unit is shown in Fig. 7.12.

It can be seen that by installing the PV unit at the specified locations,

there is a slight drop in voltage at the near end of the substation, but within

limits. But at the nodes where the voltage was sub nominal, there is a

significant improvement in the voltage profile. The minimum voltage on the

system is improved to 0.9093 p.u, 0.9108 p.u, 0.9018 p.u from 0.8314 p.u,

0.8337 p.u and 0.8383 p.u for phases A, B and C respectively which are

within acceptable limits of ± 10%. There is also a significant reduction in

the power loss about 27 %-32%. The results of the optimization algorithm

for optimal PV sizing are summarised in Table. 7.7.
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Figure 7.12: Voltage Profile for the three phases without and with PV units
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Table 7.7: Voltage profile and Power Loss without and With the addition of
PV Units

Without PV Units With PV Units

Phase Minimum
Voltage(p.u)

Loss(kW) Minimum
Volt-
age(p.u)

Loss(kW) Loss Reduc-
tion(%)

A 0.8314 95.62 0.9093 69.79 27.01
B 0.8337 84.40 0.9182 58.12 31.13
C 0.8383 87.94 0.92 63.08 28.26

7.5 Conclusion

The effect of integration of Photovoltaic (PV) unit on a real-life 4.3 MVA

distribution feeder for improvement in voltage profile and loss reduction is

analyzed. The size of the PV unit is optimized so as to minimize the total

network losses of the system subjected to various operating constraints. The

system parameters were analyzed by incorporating optimal size of the PV

units at the specified locations. Here the optimal sizing of the PV units in

the unbalanced distribution network is formulated as a Single Stage Decision

making Process using Learning Automata algorithm and multistage decision

making process using Reinforcement Learning. The locations for the PV unit

installation were chosen based on the voltage quality and type of customers.

The uncertainty associated with the Photovoltaic source is modelled using

Beta PDF. The LA and RL algorithm with their capability to incorporate the

uncertainty associated with the PV source found to be effective for optimizing

the size of the PV units. With the introduction of PV units, there is a

significant improvement in the voltage profile along with a reduction in the

network losses. This suggests a solution for utilities for the planning of the
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DG integrated distribution system.
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Chapter 8

Conclusions and Future Work

8.1 Introduction

The increased penetration of Distributed Generation (DG) sources in the

distribution system contributes to the diversification of energy resources, re-

duction of system losses, on-peak operating costs and the reduction of trans-

mission and distribution costs. But at the same time, the integration of such

sources changes the overall characteristics of the distribution network posing

several challenges to the power system operation unless integrated properly.

This necessitates an efficient analysis of the DG integrated system with ac-

curate power flow algorithms that can handle the DG sources and unbalance

associated with distribution network. Moreover, the DG sources of optimal

capacity are to be installed at optimal locations to ensure that benefits are

maximized with the integration of DG sources. There are so many factors

that have to be considered in determining the optimum location and capac-

ity of DG systems. Some of them are the penetration level of DGs, location
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uncertainty, varying and intermittent power output from DGs etc. Minimiza-

tion of network losses is a significant aspect to be considered for the reliable

and efficient operation of DG integration.

Review of various methods that are adopted for optimal DG placement is

carried out. These methods can be categorized as analytical, numerical and

heuristic methods. The analytical and numerical methods can be applied

only for small distribution feeders. Most of the heuristic methods discussed

in the review lack the ability to handle stochastic data existing in practi-

cal systems. Also the test feeders considered in most of the cases are of

balanced nature. The Unbalance is an inherent characteristic of the distri-

bution system which is not addressed in most of the work. The application

of stochastic learning algorithms namely, learning automata and reinforce-

ment learning for optimal allocation of PV units in unbalanced distribution

network are investigated in the thesis work. This is accomplished with the

help of the developed power flow algorithm that can handle the DG source as

PV nodes with their representative features. Also the uncertainty associated

with the PV power output is modelled using Beta PDF so that the variation

in system parameters with respect to the fluctuating power output is also

analyzed. The objective of the research work is to introduce the stochastic

learning algorithms for optimal integration of PV sources in the unbalanced

distribution system.
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8.2 Summary and Major findings

The review of existing methods for optimal allocation of DG sources led to the

scope of introducing efficient algorithms for optimally integrating DG sources

with the capability to handle stochastic data existing in practical situations.

Stochastic learning algorithms such as reinforcement learning and learning

automata are promising methods that can be used for solving optimization

problems. In this research work, application of stochastic learning algorithms

such as RL and LA is proposed for optimal integration of PV sources in

unbalanced distribution feeders.

8.2.1 Power Flow algorithm for DG integrated distri-

bution system

A power flow algorithm is developed by modifying the Forward-Backward

sweep algorithm for the unbalanced radial distribution feeders. The power

flow is carried out by modelling each and every component of the distribu-

tion feeder such as transformers, lines, loads, etc. The loads were modelled

by constant current, constant power and constant impedance models. The

power flow algorithm is modified so as to include the DG sources by mod-

elling them as PQ nodes as well as PV nodes. The inclusion of DG sources

as PQ nodes does not cause any change in the power flow algorithm since

they are treated as negative loads. When DG units are modelled as PV

nodes, modifications need to be done. The positive voltage mismatch vector

is estimated and if it is within limits, the power flow is converged. Otherwise

the reactive power injection required to maintain the voltage values within
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the limits is calculated using Positive sequence impedance sensitive matrix.

This is repeated until convergence is achieved.

The developed power flow algorithm is validated for IEEE 33-bus bal-

anced feeder and also for IEEE 13-bus and 37-bus unbalanced distribution

feeders. The voltage profile, current flows and the losses are analyzed in the

three cases, i.e. without DG units, including DG units as PQ nodes as well

as including DG unit as PV nodes. It is observed that the voltage profile is

more improved and losses are minimal when the DG units are modelled as

PV nodes. The power flow algorithm was first validated using openDSS and

extended to accommodate DG sources. The power flow algorithm developed

can be used for analyzing the DG integrated unbalanced distribution system.

8.2.2 Uncertainty Modelling of Solar Irradiance using

Beta PDF

The fluctuating power output from PV source is considered as a random vari-

able by modelling the uncertainty associated with the solar irradiance. The

solar irradiance data of a selected site are collected from the National solar

radiation database. The solar radiation data for one year is collected which

is divided into four seasons with an assumption that each year is represented

by a typical day in that season. The data are checked for its fitness against

Weibull, Log-Normal and Beta PDF which were used in the literature. For

the selected site, Beta PDF was found to be the best fitting distribution. The

beta PDF is used to generate random samples that feature the behaviour of

the historical data. The Beta PDF is generated for each season with 90 data
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points corresponding to 90 days in each season. This data is used to estimate

the power output from the PV source.

A methodology to find out the PV module that is best suited for a par-

ticular site is also presented. The selection is done based on the Capacity

factors for various types of modules. Four different types of modules were

considered for analysis based on the module characteristics. The module

that gives the highest capacity factor is the best module for the selected site.

Here Module B with a watt-peak rating of 75 W is found to give the high-

est capacity factor of 0.2444. The fluctuating power output is also treated

as a multi-state variable in the power flow to analyze the variation in sys-

tem parameters with respect to the fluctuating solar irradiance. The hourly

variation in voltage profile, losses, energy etc. was analyzed for a practical

distribution feeder.

8.2.3 Optimal Integration of PV source in the Unbal-

anced Distribution Network

The benefits of the DG integration is possible only if the DG units of op-

timal capacity are installed at optimal locations. The ODGP problem is

solved using several analytical, numerical and heuristic methods in previ-

ous literatures and most of the methods ignored the unbalance associated

with the feeders. Also the uncertainty associated with the intermittent DG

sources is not considered in most of the cases. Here stochastic learning algo-

rithms namely, Learning Automata (LA) and Reinforcement Learning (RL)

is introduced for optimal integration of PV source in the unbalanced distribu-

tion network. The ODGP problem is formulated as a Single Stage Decision
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Making Problem and is solved using LA so as to minimize losses in the distri-

bution network. The LA system continuously interacts with the environment

and perform sufficient number of actions. Depending upon the value of the

reward, the performance index is updated in each iteration. Here PV size to

be installed is the action and the corresponding value of loss is the reward.

The best action is selected using the value of updated performance index

and is termed as the greedy action. Here the ε-greedy algorithm is used as

an exploration strategy to choose the best action. The LA algorithm is val-

idated for IEEE 33-bus balanced distribution feeder. It is also implemented

for IEEE 13-bus and 37-bus distribution feeder for loss minimization. The

results proved that the losses are minimized and the voltage profile is im-

proved with the installation of PV unit of optimal capacity.

The ODGP problem is modelled as Multi Stage Decision Making Problem

(MSDMP) using RL so as to incorporate the effect of voltage values which is

also a major factor of concern. The ultimate goal is to maximize the reward

over time. For achieving this, at each time step the agent interacts with the

environment and some representation of the environment’s state xk ∈ X is

obtained. Here X is the set of all possible states. Corresponding to each

state, an action ak ∈ A is performed, where A is the set of actions. When

an action is performed, the environment returns a numerical reward rk ∈ R

and finds itself in a new state xk+1. Here the voltage values of the nodes are

included as state variables and depending upon the value of the node volt-

ages, the PV size changed and the corresponding losses are obtained which is

used to update Q-value. The new state variables are observed and the action

is changed accordingly. The Q-learning algorithm is applied for optimal PV
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integration and the losses and the voltage profile are analyzed for IEEE-33

bus distribution feeder.

The stochastic learning algorithms proposed for optimal PV integration

is implemented for a 4.3 MVA practical distribution feeder. The distribution

feeder consists of 55 buses spanning over a length of 7.3 km. The PV units

were installed depending upon the voltage level and type of customers. In

the first case PV units were installed in the under voltage sections at six

different locations. In the second case, the PV unit is installed in a high

voltage customer side. The voltage profile, power losses and energy losses

were analyzed for the two cases. The variation in the power loss and voltage

profile with the fluctuating solar irradiance is also analyzed. The randomly

varying power output from the PV unit was treated as a multi-state variable

in the power flow. The results for loss reduction and voltage profile shows

that there is a scope for installation of PV units in the distribution system

to meet the rising power demand and to improve the voltage profile.

8.3 Major Research Contributions

The research work analyzes the effects of optimal integration of solar PV units

in unbalanced distribution network in terms of voltage profile and losses.

Here stochastic learning algorithms namely, LA and RL are developed for

solving the problem of optimal integration of PV units in the unbalanced

distribution network. As a preliminary step, a power flow algorithm is de-

veloped that has the capability to include DG units as PV nodes with their

representative features. The uncertainty associated with the DG units is
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also modelled using Beta PDF and using the same the PV module that is

best suited for the selected site is determined by making use of capacity

factors. The developed stochastic algorithm is compared for power loss and

voltage profile with the Improved Analytical method and Exhaustive load

flow method in literature. The main contributions of the thesis can be sum-

marized as

• A power flow algorithm for solving unbalanced distribution system is

developed which has the capability to include DG units as PV nodes

and is validated for several unbalanced distribution feeders.

• The uncertainty associated with the solar irradiance is modelled using

Beta PDF and is utilized to estimate capacity factors and hence in

choosing the optimum PV module that is best suited for the selected

site.

• Stochastic learning algorithms namely, LA and RL are used in solv-

ing the problem of optimal allocation of PV units in the unbalanced

distribution network so as to minimize the power losses in the system.

• LA and RL are used in determining the optimum size of the PV units to

be installed at specified locations in the 4.3 MVA practical distribution

feeder. The loss minimization and voltage profile improvement with

PV integration is analyzed. Also the variation of system parameters

with respect to the fluctuating PV power output is also investigated.

The proposed algorithm can be used to find out the optimum size of PV units

to be installed at each node in the distribution system before permitting the
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willing customers to connect PV units at their premises. The utility can

suggest the proper sizing for the willing customers. Therefore, this suggests

a solution for utilities for the planning of the DG integrated distribution

system.

8.4 Limitation and Future Work

The thesis work concentrates only on the optimal allocation of PV units. The

other DG sources such as fuel cell, micro-turbines, diesel generators can also

be considered to optimally allocate a hybrid DG system. Also the storage

can also be considered by making use of batteries which need to be modelled

appropriately. The optimization of a battery connected hybrid DG system

will help in designing a reliable DG system that can be used to provide elec-

tric supply for a small community grid.

In the thesis work, the objective of the algorithm considered is limited

to the operational aspect of the system, i.e., the minimization of losses. The

algorithm can be extended to a multi-objective optimization by proper eco-

nomic analysis. The economic considerations are also equally important from

the customer side which necessitate the minimization of cost also to be con-

sidered for optimal integration.

As a future work, the optimization can be carried out for a hybrid DG

system with multiple DG units along with the battery. Minimization of cost

of the DG system can also be considered to transform the algorithm into a

multi-objective optimization.
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Overhead Line Configuration Data: 

 
Config. Phasing Phase  Neutral  Spacing 

  ACSR ACSR ID 

601 B A C N 556,500 26/7 4/0 6/1 500 

602 C A B N 4/0 6/1 4/0 6/1 500 

603 C B N 1/0 1/0 505 

604 A C N 1/0 1/0 505 

605 C N 1/0 1/0 510 

 

Underground Line Configuration Data: 

 
Config. Phasing Cable Neutral  Space 

ID 

606 A B C N 250,000 AA, CN None 515 

607     A N 1/0 AA, TS 1/0 Cu 520 

 

Line Segment Data: 

 
Node A Node B Length(ft.) Config. 

632 645 500 603 

632 633 500 602 

633 634 0 XFM-1 

645 646 300 603 

650 632 2000 601 

684 652 800 607 

632 671 2000 601 

671 684 300 604 

671 680 1000 601 

671 692 0 Switch 

684 611 300 605 

692 675 500 606 

 

Transformer Data: 

 
 kVA kV-high kV-low R - 

% 
X - % 

Substation: 5,000 115 - D 4.16 Gr. Y 1 8 

XFM -1 500 4.16 – Gr.W 0.48 – Gr.W 1.1 2 

 

Capacitor Data: 

 
Node Ph-A Ph-B Ph-C 

 kVAr kVAr kVAr 

675 200 200 200 

611   100 

Total 200 200 300 
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Regulator Data: 

 
Regulator ID: 1   

Line Segment: 650 - 632   

Location: 50   

Phases: A - B -C   

Connection: 3-Ph,LG   

Monitoring Phase: A-B-C   

Bandwidth: 2.0 volts   

PT Ratio: 20   

Primary CT Rating: 700   

Compensator Settings: Ph-A Ph-B Ph-C 

R - Setting: 3 3 3 

X - Setting: 9 9 9 

Volltage Level: 122 122 122 

 

Spot Load Data: 

 
Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3 

 Model kW kVAr kW kVAr kW kVAr 

634 Y-PQ 160 110 120 90 120 90 

645 Y-PQ 0 0 170 125 0 0 

646 D-Z 0 0 230 132 0 0 

652 Y-Z 128 86 0 0 0 0 

671 D-PQ 385 220 385 220 385 220 

675 Y-PQ 485 190 68 60 290 212 

692 D-I 0 0 0 0 170 151 

611 Y-I 0 0 0 0 170 80 

 TOTAL 1158 606 973 627 1135 753 

 

Distributed Load Data: 

 
Node A Node B Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3 

  Model kW kVAr kW kVAr kW kVAr 

632 671 Y-PQ 17 10 66 38 117 68 
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IEEE 13 NODE TEST FEEDER 

Impedances 

 
Configuration 601: 

 
           Z (R +jX) in ohms per mile 

 0.3465  1.0179   0.1560  0.5017   0.1580  0.4236 

                  0.3375  1.0478   0.1535  0.3849 

                                   0.3414  1.0348 

          B in micro Siemens per mile 

            6.2998   -1.9958   -1.2595 

                      5.9597   -0.7417 

                                5.6386 

 

Configuration 602: 
 

          Z (R +jX) in ohms per mile 

0.7526  1.1814   0.1580  0.4236   0.1560  0.5017 

                 0.7475  1.1983   0.1535  0.3849 

                                  0.7436  1.2112 

         B in micro Siemens per mile 

           5.6990   -1.0817   -1.6905 

                     5.1795   -0.6588 

                               5.4246 

 

Configuration 603: 
 

           Z (R +jX) in ohms per mile 

 0.0000  0.0000   0.0000  0.0000   0.0000  0.0000 

                  1.3294  1.3471   0.2066  0.4591 

                                   1.3238  1.3569 

          B in micro Siemens per mile 

            0.0000    0.0000    0.0000 

                      4.7097   -0.8999 

                                4.6658 

 

Configuration 604: 
 

           Z (R +jX) in ohms per mile 

 1.3238  1.3569   0.0000  0.0000   0.2066  0.4591 

                  0.0000  0.0000   0.0000  0.0000 

                                   1.3294  1.3471 

          B in micro Siemens per mile 

            4.6658    0.0000   -0.8999 

                      0.0000    0.0000 

                                4.7097 
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Configuration 605: 
 

           Z (R +jX) in ohms per mile 

 0.0000  0.0000   0.0000  0.0000   0.0000  0.0000 

                  0.0000  0.0000   0.0000  0.0000 

                                   1.3292  1.3475 

          B in micro Siemens per mile 

            0.0000    0.0000    0.0000 

                      0.0000    0.0000 

                                4.5193 

 

Configuration 606: 
 

          Z (R +jX) in ohms per mile 

0.7982  0.4463   0.3192  0.0328   0.2849 -0.0143 

                 0.7891  0.4041   0.3192  0.0328 

                                  0.7982  0.4463 

         B in micro Siemens per mile 

          96.8897    0.0000    0.0000 

                    96.8897    0.0000 

                              96.8897 

 

Configuration 607: 
 

           Z (R +jX) in ohms per mile 

 1.3425  0.5124   0.0000  0.0000   0.0000  0.0000 

                  0.0000  0.0000   0.0000  0.0000 

                                   0.0000  0.0000 

          B in micro Siemens per mile 

           88.9912    0.0000    0.0000 

                      0.0000    0.0000 

                                0.0000 
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IEEE 37 Node Test Feeder 
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Line Segment Data

Node A Node B Length(ft.) Config.

701 702 960 722

702 705 400 724

702 713 360 723

702 703 1320 722

703 727 240 724

703 730 600 723

704 714 80 724

704 720 800 723

705 742 320 724

705 712 240 724

706 725 280 724

707 724 760 724

707 722 120 724

708 733 320 723

708 732 320 724

709 731 600 723

709 708 320 723

710 735 200 724

710 736 1280 724

711 741 400 723

711 740 200 724

713 704 520 723

714 718 520 724

720 707 920 724

720 706 600 723

727 744 280 723

730 709 200 723

733 734 560 723

734 737 640 723

734 710 520 724

737 738 400 723

738 711 400 723

744 728 200 724

744 729 280 724

775 709 0 XFM-1

799 701 1850 721

Underground Cable Configurations (Config.)

Config. Phasing Cable Spacing ID

721 A B C 1,000,000 AA, CN 515

722 A B C 500,000 AA, CN 515

723 A B C 2/0 AA, CN 515

724 A B C #2 AA, CN 515
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Transformer Data

kVA kV-high kV-low R - % X - %

Substation: 2,500 230 D 4.8 D 2 8

XFM -1 500 4.8 D .480 D 0.09 1.81

Regulator Data

Regulator ID: 1

Line Segment: 799 -701

Location: 799

Phases: A - B -C

Connection: AB - CB

Monitoring Phase: AB & CB

Bandwidth: 2.0 volts

PT Ratio: 40

Primary CT Rating: 350

Compensator Settings: Ph-AB Ph-CB

R - Setting: 1.5 1.5

X - Setting: 3 3

Voltage Level: 122 122

Spot Loads

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-4

Model kW kVAr kW kVAr kW kVAr

701 D-PQ 140 70 140 70 350 175

712 D-PQ 0 0 0 0 85 40

713 D-PQ 0 0 0 0 85 40

714 D-I 17 8 21 10 0 0

718 D-Z 85 40 0 0 0 0

720 D-PQ 0 0 0 0 85 40

722 D-I 0 0 140 70 21 10

724 D-Z 0 0 42 21 0 0

725 D-PQ 0 0 42 21 0 0

727 D-PQ 0 0 0 0 42 21

728 D-PQ 42 21 42 21 42 21

729 D-I 42 21 0 0 0 0

730 D-Z 0 0 0 0 85 40

731 D-Z 0 0 85 40 0 0

732 D-PQ 0 0 0 0 42 21

733 D-I 85 40 0 0 0 0

734 D-PQ 0 0 0 0 42 21

735 D-PQ 0 0 0 0 85 40

736 D-Z 0 0 42 21 0 0

737 D-I 140 70 0 0 0 0

738 D-PQ 126 62 0 0 0 0

740 D-PQ 0 0 0 0 85 40

741 D-I 0 0 0 0 42 21

742 D-Z 8 4 85 40 0 0

744 D-PQ 42 21 0 0 0 0

Total 727 357 639 314 1091 530



 

 The Institute of Electrical and Electronics Engineers,  Inc. 

IEEE 37 NODE TEST FEEDER 

Phase Impedance and Admittance Matrices 
 
Configuration 721 

 
           Z (R +jX) in ohms per mile 

 0.2926  0.1973   0.0673 -0.0368   0.0337 -0.0417 

                  0.2646  0.1900   0.0673 -0.0368 

                                   0.2926  0.1973 

          B in micro Siemens per mile 

          159.7919    0.0000    0.0000 

                    159.7919    0.0000 

                              159.7919 

 

Configuration 722 

 

           Z (R +jX) in ohms per mile 

 0.4751  0.2973   0.1629 -0.0326   0.1234 -0.0607 

                  0.4488  0.2678   0.1629 -0.0326 

                                   0.4751  0.2973 

          B in micro Siemens per mile 

          127.8306    0.0000    0.0000 

                    127.8306    0.0000 

                              127.8306 

 

Configuration 723 

 

           Z (R +jX) in ohms per mile 

 1.2936  0.6713   0.4871  0.2111   0.4585  0.1521 

                  1.3022  0.6326   0.4871  0.2111 

                                   1.2936  0.6713 

          B in micro Siemens per mile 

           74.8405    0.0000    0.0000 

                     74.8405    0.0000 

                               74.8405 

 

Configuration 724 

 

           Z (R +jX) in ohms per mile 

 2.0952  0.7758   0.5204  0.2738   0.4926  0.2123 

                  2.1068  0.7398   0.5204  0.2738 

                                   2.0952  0.7758 

          B in micro Siemens per mile 

           60.2483    0.0000    0.0000 

                     60.2483    0.0000 

                               60.2483  



Table A.1: Load details of 4.3 MVA distribution feeder

Node No
Loadings in kVA

Node name Phase A Phase B Phase C distance in
km from
s/s

1 substation 0 0 0 0.00001
2 100 kva fireforce 57 31 53 0.7
3 160 kva pallimoola 74 85 88 1.05
4 junction 0 0 0 1.15
5 AR camp 20 25 13 1.95
6 IMA 38 40 36 2.23
7 AIR HT 54 40 38 2.33
8 BECH HT 60 50 48 2.63
9 junction 0 0 0 1.75

10 junction 0 0 0 2.05
11 100 kva manakulam 25 20 78 2.25
12 100kva royal street 85 71 68 2.75
13 100kva mannumkadu67 67 71 60 2.9
14 junction 0 0 0 1.85
15 100 kva policestation 69 70 65 1.97
16 100kva KAP duty office 28 48 8 2.065
17 junction 0 0 0 2.465
18 250kva KAP first 54 40 27 2.565
19 junction 0 0 0 2.645
20 junction 0 0 0 2.885
21 Academic canteen 10 3.4 6.2 2.995
22 Academy main 78 84 80 3.005
23 100kva LH 53 47 24 4.005
24 500 kva T and G 52.4 32 30 3.005
25 junction 0 0 0 3.145
26 100 kva upasana road 63 27 77 3.545
27 junction 0 0 0 3.745
28 100kva nest 60 56 54 3.845
29 100kva sangeertanam 71 76 42 3.945
30 junction 0 0 0 4.545
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Table A.2: Load details of 4.3 MVA distribution feeder

Node No
Loadings in kVA

Node name Phase A Phase B Phase C distance in
km from
s/s

31 100kva manavazhy 48 50 47 5.145
32 junction 0 0 0 5.645
33 100kva adiyara 53 56 61 5.945
34 junction 0 0 0 5.945
35 100 kva idea 45 51 48 6.245
36 100 kva jv 54 58 60 6.545
37 junction 0 0 0 5.545
38 400kva madhavam 75 78 64 5.745
39 100 kva indiranagar 105 57 54 5.945
40 junction 0 0 0 6.445
41 100 kva vrindavan 56 61 58 6.975
42 junction 0 0 0 6.645
43 100 kva pahipalam 55 44 82 6.995
44 junction 0 0 0 6.745
45 100 kva sandeepani 80 81 86 6.845
46 100 kva kuttumukku 55 44 66 7.195
47 100kva pulinchuvadu 60 96 64 3.645
48 junction 0 0 0 3.845
49 100 kva kangapadam 107 85 82 4.045
50 junction 0 0 0 4.445
51 junction 0 0 0 4.745
52 160 kva kangapadam ht 92 84 85 4.845
53 junction 0 0 0 5.245
54 Milma Ht 78 85 88 5.545
55 100kva health centre 52 60 58 6.045
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