
A Lightweight, Reliable, Secure, Paginated,
Disconnected, and Distributed Message
Transaction Model for Wireless Mobile

Environment

A Thesis Submitted to the University of Calicut in Partial Fulfilment

of the Requirements for Award of the Degree of

Doctor of Philosophy

in Computer Science, under Faculty of Science

by

Mohammed Shameer M C

(Reg. No: FKAPRSE001)

Under the guidance of

Dr. Abdul Haleem P P

DEPARTMENT OF COMPUTER SCIENCE

FAROOK COLLEGE (AUTONOMOUS)

July 2024

I would like to dedicate this thesis to those whom I love

Acknowledgements

In the name of Allaah, the Most Gracious and the Most Merciful. The first and

foremost, I would thank The Almighty for bestowing me in all realms of my life.

I am deeply grateful to my mentor and supervisor Dr. Abdul Haleem P P, As-

sociate Professor, Department of Information Technology, Kannur University. For

nearly eight years, he has guided, supported and trusted me. He invested his time

and energy for the completion of my work in a better way. His timely suggestion

opened up new avenues in the research progress. His involvements are really in-

fluential in shaping my experiment methods. His motivation and guidance was my

strength in weak hours.

The Research Department of Computer Science, Farook College (Autonomous)

provided a stimulating and encouraging environment for carrying out this research

work. I am thankful to the Principal, Dr. Aysha Swapna K. A. and former principals,

Prof. E. P. Imbichikoya and Dr. K. M. Naseer, for their constant support and keen

interest bestowed on me. I also appreciate all the support I have received from Dr.

V. Kabeer, HOD, Department of Computer Science, Farook College (Autonomous).

I extend my gratitude to my friends and colleagues in the Department and

outside for their constant support, constructive suggestions and criticisms of my

work and I cherish the time spent together in discussing them, which I really consider

as fruitful.

I wish to thank the reviewers of this dissertation, editors of journals, subject

experts, mentors and other well wishers for their contributions.

Finally, I would like to express my gratitude to my parents, wife and children

for their tremendous understanding and constant encouragement; no matter what

Acknowledgements

choices I have made, they supported me. It would be impossible for me to complete

my work without their wonderful understanding attitude.

Mohammed Shameer M C

Declaration

I hereby certify that the thesis titled “A Lightweight, Reliable, Secure, Paginated,

Disconnected, and Distributed Message Transaction Model for Wireless Mobile En-

vironment” submitted to the University of Calicut for the award of the degree of

Doctor of Philosophy in Computer Science under the Faculty of Science, is an inde-

pendent work done by me under the guidance and supervision of Dr. Abdul Haleem

P P, Associate Professor, Department of Information Technology, Kannur Univer-

sity, Kerala. I also declare that this thesis contains no material which has been

previously submitted for the award of any other degree, diploma, associateship, or

fellowship of any university or other institutions of higher studies, to the best of my

knowledge and belief. I also declare that this thesis does not include any materials

previously published by any other person, except where due reference is made in the

text.

(Signature)

Date: Name: Mohammed Shameer M C

Place: Farook College Reg. No: FKAPRSE001

Declaration

I hereby certify that the thesis titled “A Lightweight, Reliable, Secure, Paginated,

Disconnected, and Distributed Message Transaction Model for Wireless Mobile En-

vironment” submitted by Mr. Mohammed Shameer M C (Reg. No: FKAPRSE001),

for the award of the Degree of Doctor of Philosophy in Computer Science, to the Uni-

versity of Calicut during the period of his study at Farook College (Autonomous),

Farook College P. O., Kozhikode 673632, affiliated to the University of Calicut,

is a bonafide record of original research work carried out by him under my guid-

ance and supervision. It is his independent work and has not been included in

any other thesis submitted previously for the award of any degree, diploma, asso-

ciateship or fellowship of any other university or institutions of higher studies. I

further certify that the modifications and recommendations suggested by the ad-

judicators are incorporated to the thesis. The soft copy attached is the same as

that of the revised thesis. The contents of the thesis have been checked using an

anti-plagiarism database and no unacceptable similarity was found through the soft-

ware. The thesis is submitted as such to the University of Calicut with reference

to the letter No. 278696/RESEARCH-C-ASST-1/2023/Admn dated 04.07.2024.

(Signature)

Date: Dr. Abdul Haleem P P

Place: Farook College Associate Professor

Dept. of Information Technology

Kannur University

Abstract

LXML is a hierarchical data format inheriting XML features like extensibility,

human readability, and schema awareness. Unlike XML, it uses level numbers in-

stead of user-defined tags. This new format improves performance in verbosity,

content density, parsing, serialization, deserialization, marshalling, unmarshalling,

and transmission. LXML reduces message size by 40 - 48% compared to XML and

35 - 55% compared to JSON. Its schema is 80 - 90% smaller than XML Schema,

offering substantial performance benefits over XML and JSON.

The novel transaction model could be realized in a distributed environment

through a three-layer architecture (client agent, middleware, and host), supports

transactions in disconnected and distributed wireless mobile environments. It inte-

grates the efficient LXML message format with Service Oriented Architecture (SOA)

to enhance transmission efficiency. Reliability is ensured through packet acknowl-

edgement, sequencing mechanisms, and a message queuing system for network un-

availability. The middleware offloads resource-intensive computations to a server.

Performance evaluations show the model’s superiority in upload and download times,

LXML-to-web service conversions, transmission time, and content density, proving

its suitability for modern wireless mobile environments.

To counter rewriting attacks, a three-layer architecture safeguards message

transmissions using LXML Schema. This involves adding four fields (checksum,

timestamp, child count, and digital signature) and encrypting messages. Case stud-

ies demonstrate the approach’s effectiveness in detecting and preventing various

rewriting attacks. An evaluation and analysis for the additional processing and

memory overhead needed to implement these security measures reveals that they

i

ii Abstract

incur minimal additional processing time and memory. Consequently, the proposed

lightweight, reliable, secure, paginated, disconnected, and distributed transaction

model not only ensures reliability but guarantees the secure transmission of mes-

sages in an ever-evolving digital landscape as well.

In summary, the proposed innovative three-layer transaction model significantly

advances beyond traditional XML and JSON, delivering exceptional efficiency, scal-

ability, and security. This evolution is set to transform data exchange practices

across diverse domains, from enterprise systems to the Internet of Things, heralding

a more efficient and secure digital future.

Keywords: Data Interchange Formats, LXML, Transaction Model, Constrained

Mobile Networks, Security, Rewriting Attacks.

Abstract iii

അബ്‌സ്ട്രാക്ട്

പ്രോസസ്സിംഗ് വേഗത, ബാറ്ററി ലൈഫ്, സംഭരണശേഷി എന്നിവയിൽ വയർലസ് മൊബൈൽ
നെറ്റ്‌വർക്കുകൾക്കുള്ള സ്വാഭാവിക പരിമിതികൾമൂലം സാധാരണ ഡാറ്റ ഇൻറ്റർചേഞ്ച് മോഡലുകൾ
കാര്യക്ഷമമായി ഉപയോഗിക്കുന്നത് പ്രായോഗികമല്ല. അതുകൊണ്ടുതന്നെ വയർലസ് മൊബൈൽ
നെറ്റ്‌വർക്കുകളുടെ പരിമിതിയിൽ നിന്നുകൊണ്ട് മികച്ച കാര്യക്ഷമത ഉറപ്പുതരുന്ന പുതിയ ഡാറ്റ
ഇൻറ്റർചേഞ്ച് മോഡലുകൾ വികസിപ്പിക്കേണ്ടത് ഒരു അനിവാര്യതയാണ്.

കുറഞ്ഞ വിഭവലഭ്യതയിൽ ഉയർന്ന വിശ്വസ്തതയും ഡാറ്റ സുരക്ഷിതത്വവും ഉറപ്പുനൽകുന്ന LXML
അടിസ്ഥാനമാക്കി ഒരു ഡിസ്കണക്റ്റഡ് ട്രാൻസാക്ഷൻ മോഡൽ അവതരിപ്പിക്കുക എന്നതാണ് ഈ
പ്രബന്ധത്തിൻറെ ഉദ്ദേശം. XML എന്ന ഡാറ്റ ഇൻറ്റർചേഞ്ച് രീതിയെ അടിസ്ഥാനപ്പെടുത്തി
വികസിപ്പിച്ചെടുത്ത ഈ മോഡൽ, XML നിന്നും പലകാര്യങ്ങളിലും വിഭിന്നവും XML നെക്കാൾ വേഗതയിൽ
ഡാറ്റ കൈമാറ്റം ചെയ്യാൻ പ്രാപ്തവുമാണ്. XML ഉപയോഗിക്കുന്ന ഉപഭോക്തനിർമ്മിത ടാഗുകൾക്ക്
പകരം ലെവൽ നമ്പർ അനുസരിച്ചു ഡാറ്റ ക്രമീകരിക്കുകയാണ് ഇവിടെ ചെയ്യുന്നത്. XML, JSON എന്നീ
ഡാറ്റ കൈമാറ്റ രീതിയുമായി താരതമ്യം ചെയുമ്പോൾ LXMLന് യഥാക്രമം 40-48% വരെയും 35-55%
വരെയും ഡാറ്റ വ്യാപ്തം കുറയ്ക്കാൻ കഴിയുമെന്ന് പരീക്ഷണങ്ങളിലൂടെ വെളിപ്പെട്ടതാണ്. കൂടാതെ ഡാറ്റ
സാന്ദ്രത, പാഴ്സിങ് സമയം, സീരിയലൈസേഷൻ & ഡീസീരിയലൈസേഷൻ, മാർഷെല്ലിംഗ് &
അൺമാർഷെല്ലിംഗ് സമയം എന്നി പ്രകടന മാനദണ്ഡങ്ങളിലും LXML മറ്റു മോഡലുകളെക്കാൾ
വ്യക്തമായി മികച്ചുനിൽക്കുന്നു.

LXML സർവീസ് ഓറിയൻ്റെഡ് ആർക്കിടെക്ചർ (SOA) യുമായി ബന്ധിപ്പിച്ചാൽ മികച്ച പ്രസരണസാമർഥ്യം
പ്രകടമാകുന്നതാണ്. ഒരു ഡിസ്ട്രിബ്യൂട്ടഡ് സാങ്കേതിക ഘടനയിൽ മൂന്ന്‌പ്രവർത്തന പാളികളായാണ് ഈ
ന്യൂതന ഡാറ്റ ഇൻറ്റർചേഞ്ച് രീതി പ്രാവർത്തകമാക്കിയിരിക്കുന്നത്. നെറ്റ്‌വർക്ക് കണക്ഷൻ ലഭ്യമല്ലാത്ത
സാഹചര്യങ്ങളിൽ, മെസ്സേജുകൾ ലക്ഷ്യസ്ഥാനത്തു എത്തിക്കുന്നതിനു വേണ്ടിയും ഡാറ്റ
കൈമാറ്റതുടർച്ച നിലനിർത്തുന്നതിനും മെസ്സേജ് ക്യൂ എന്ന സാങ്കേതികവിദ്യ വഴി ഈ മോഡലിന്
സാധിക്കുന്നു. സംപ്രേക്ഷണ സമയം, അപ്‌ലോഡ്, ഡൗൺലോഡ് സമയം, ഉള്ളടക്കസാന്ദ്രത (Content
Density) മുതലായ പ്രകടനസൂചകങ്ങൾ ഉൾപ്പെടുത്തി നടത്തിയ മൂല്യനിർണയ പരീക്ഷണങ്ങളിൽ കിട്ടിയ
ഫലങ്ങൾ LXML അടിസ്ഥാനമാക്കിയ ട്രാൻസാക്ഷൻ മോഡലിൻ്റെ ശ്രേഷ്ഠത സൂചിപ്പിക്കുന്നു.

LXML ഒരു XML അടിസ്ഥിത പ്രസരണ മോഡലായതിനാൽ റീറൈറ്റിങ് ആക്രമണങ്ങൾക്ക് (rewriting
attacks) വിധേയപ്പെടാൻ സാധ്യതയുണ്ട്. ആയതിനാൽ അനധികൃതവും കണ്ടെത്താനാകാത്തതുമായ
കൃത്രിമത്വം തടയുന്നതിന് ഒരു മൂന്നു ലയർ സുരക്ഷ ചട്ടക്കൂട് (three layer security framework) ഇവിടെ
മുന്നോട്ടുവെക്കുന്നു. LXML സ്കീമ, എൻക്രിപ്ഷൻ, ഡിജിറ്റൽ സിഗ്നേച്ചർ, ചെക്ക്സം, ചൈൽഡ്കൗണ്ട്,
ടൈംസ്‌റ്റാമ്പ് തുടങ്ങിയ ഘടകങ്ങൾ ഉൾകൊള്ളുന്ന ഈ സെക്യൂരിറ്റി മോഡലിൽ ആപ്ലിക്കേഷനുകൾക്ക്
അനുയോജ്യമായ സുരക്ഷാ രീതികൾ അവലംബിക്കാവുന്നതാണ്. നിർദിഷ്ട ത്രീ ലെയർ ആർക്കിടെക്ചർ
LXML സന്ദേശത്തെ എല്ലാ തരത്തിലുമുള്ള റീറൈറ്റിംഗ് ആക്രമണങ്ങളിൽ നിന്നും സംരക്ഷിക്കുന്നതായി
കണ്ടെത്തി.

മേൽപ്രസ്താവിച്ച ത്രീ ലയർ ട്രാൻസാക്ഷൻ മോഡൽ പരമ്പരാഗത മോഡലുകളെ അപേക്ഷിച്ചു
പ്രസരണശേഷിയിലും കാര്യക്ഷമതയിലും, ഡാറ്റ സുരക്ഷയിലും വളരെയേറെ മുന്നിട്ടുനിൽകുന്നു. ഈ
പരിണാമം വിവിധ ഡൊമൈനുകളിൽ ഡാറ്റ കൈമാറ്റങ്ങളെ പരിപോഷിപ്പിക്കുന്നതോടപ്പം മികച്ച
സാധ്യതകളും തുറന്നിടുന്നു.

കീവേഡുകൾ: ഡാറ്റ ഇൻറ്റർചേഞ്ച് ഫോർമാറ്റ്, LXML, ട്രാൻസാക്ഷൻ മോഡൽ, കൺസ്ട്രയിൻറ്റ്
മൊബൈൽ നെറ്റ്‌വർക്ക്, സെക്യൂരിറ്റി, റീറൈറ്റിങ്‌അറ്റാക്സ്‌.

Contents

Abstract i

List of Tables ix

List of Figures xi

Nomenclature xiv

1 Introduction 1

1.1 Mobile Computing . 2

1.1.1 Mobility . 2

1.1.2 Wireless Connectivity . 2

1.1.3 Resource Limitations . 3

1.1.4 Frequent Disconnections and Network Issues 3

1.1.5 Context Awareness . 3

1.1.6 Multi Mode Operations . 3

1.1.7 Security and Privacy Issues 4

1.2 Device and Network Characteristics 4

1.3 Wireless Network and Communications 7

1.4 Middleware System in Mobility . 9

1.5 Resource Constrained Networks (RCN) 10

1.5.1 Device Limitations . 10

1.5.2 Network Issues . 11

1.5.3 Coverage and Infrastructure Issues 11

iv

Contents v

1.6 Transaction Models . 11

1.7 Open Issues in Mobile Transaction Models 13

1.8 Research Motivations . 13

1.9 Research Methodology . 16

1.10 Contributions . 17

1.11 Organization of the Thesis . 18

2 Literature Review 19

2.1 Introduction . 19

2.2 Data Interchange Formats . 19

2.2.1 XML . 20

2.2.2 JSON . 27

2.2.3 YAML . 30

2.3 Transaction Models . 32

2.4 The Middleware Components . 37

2.5 Ensuring Disconnectedness . 42

2.5.1 Disconnectedness using Caching of Data and Shared File System 42

2.5.2 Disconnectedness using Message Queues 43

2.5.3 Disconnectedness using Middleware Systems 44

2.6 Security: Possible Attacks and Solutions 45

2.7 Summary . 51

2.8 Research Gaps Identified . 52

3 LXML - The Proposed Lightweight Data Interchange Format 54

3.1 Introduction . 54

3.2 Characteristics of a Data Interchange Formats 54

3.3 Lightweight XML (LXML) Format 56

3.4 Handling Tag Attributes . 58

3.5 LXML Schema . 60

3.6 LXML Document Handling . 61

3.7 LXML Generation . 61

vi Contents

3.8 LXML Parsing . 65

3.9 Performance Evaluation . 67

3.9.1 Experimental Setup . 69

3.10 Applications . 85

3.11 Summary . 88

4 Layered Architecture for the Proposed Transaction Model 90

4.1 Introduction . 90

4.2 Proposed Architecture . 91

4.2.1 Client Agent . 91

4.2.2 Middleware Component . 92

4.2.3 The Host Server . 93

4.3 Characteristics of the Proposed Model 94

4.4 Summary . 96

5 Design and Implementation of the Client Agent Layer 98

5.1 Introduction . 98

5.2 The Client Agent . 98

5.2.1 Connection Management . 101

5.2.2 Message Transmission . 102

5.2.3 Message Expiration Management 104

5.2.4 Message Retransmission . 106

5.2.5 Measures to Ensure Disconnectedness 106

5.2.6 Pagination (Segmentation / Reassembly) 110

5.2.7 Delivery and Acknowledgement (Mechanisms to Ensure Reli-

ability) . 114

5.2.8 Message Parsing and Processing 116

5.3 Implementation . 116

5.3.1 Messaging Service . 117

5.3.2 Poll Service . 117

5.3.3 Database Connection . 118

Contents vii

5.3.4 Listener and DAOs . 118

5.3.5 Message Queue . 119

5.3.6 Helper and Utility Classes . 119

5.3.7 Configurations . 120

5.4 Summary . 120

6 Design and Implementation of the Middleware Layer 122

6.1 Introduction . 122

6.2 Need of Middleware . 122

6.3 The Middleware Component . 124

6.3.1 Gateway Interface . 124

6.3.2 Measures to Support Disconnectedness 127

6.4 Implementation . 128

6.4.1 Device Registry . 128

6.4.2 Push Service . 128

6.4.3 Request Response Handler and DAOs 128

6.4.4 Message Queue . 128

6.4.5 Helper and Utility Classes . 129

6.5 Summary . 129

7 Performance Evaluation of the Proposed Transaction Model 131

7.1 Introduction . 131

7.2 Turnaround Time . 131

7.3 Content Density . 137

7.4 Parsing Time in Client and Middleware 137

7.5 Transmission Time . 138

7.6 Processing Overhead in Client and Middleware 140

7.7 Summary . 140

8 Mechanisms to Ensure Secure Transaction of LXML Data 143

8.1 Introduction . 143

viii Contents

8.2 Possible Attacks on XML / SOAP Messages 143

8.3 Rewriting Attacks . 144

8.4 The Proposed Security Model . 144

8.4.1 LXML Schema Creation . 145

8.4.2 Message Creation . 146

8.4.3 Message Encryption . 148

8.5 Case Studies . 149

8.5.1 Scenario 1: Prevention of Redirection Attacks 150

8.5.2 Scenario 2: Prevention of Adding / Removing tags in LXML . 150

8.5.3 Scenario 3: Prevention of Injecting an Additional Block in a

Nested Tags . 154

8.5.4 Scenario 4: Prevention of Altering / Modifying the Data with-

out Affecting Tags . 154

8.6 Performance Evaluation . 155

8.6.1 Overhead for Encryption and Decryption 156

8.6.2 Storage Space . 160

8.7 Summary . 161

9 Conclusions 163

9.1 Future Research Directions . 164

9.1.1 Standardization and Compatibility 165

9.1.2 Interoperability and Integration 165

9.2 Further Enhancements . 165

10 Recommendations 167

References 169

Publications out of Thesis Work 185

List of Tables

1.1 Comparison of data rates for various mobile networks 7

2.1 Summary of the performance of various human readable data inter-

change formats . 31

2.2 Summary of the performance of various transaction models 35

2.3 Performance summary of various middleware components 40

2.4 Summary of the performance of various methods used to ensure dis-

connectedness . 45

2.5 Summary of the performance of various techniques for resolving rewrit-

ing attacks in XML . 49

3.1 An XML document with level numbers marked for its tags 57

3.2 The LXML message generated for a simple XML message with no

container tags . 58

3.3 LXML message for an XML with nested container tags 58

3.4 LXML generated for an XML document with mixed tags 59

3.5 LXML message for a XML message with attributes 60

3.6 XML message with corresponding LXML message and LXML Schema 62

3.7 An XML message, its LXML equivalent and Data Object 66

3.8 Data binding of a sample LXML document 67

3.9 Dataset for experiments . 68

3.10 Verbosity of XML, JSON and LXML documents for varying file sizes 69

3.11 Verbosity comparison of XML and LXML Schema 73

3.12 Comparison of content density for XML, JSON, and LXML documents 75

ix

x List of Tables

3.13 Parsing time for XML, JSON, and LXML documents of varying num-

ber of records . 76

3.14 Serialization and deserialization time (in ms) for XML, JSON and

LXML . 78

3.15 Marshalling and unmarshalling time of XML, JSON and LXML . . . 82

3.16 Transmission time (in ms) for XML, JSON and LXML documents of

small and medium categories . 87

3.17 LXML: Objectives Vs Accomplishments 88

5.1 Decoding a transaction . 105

5.2 Header of a request and response received using HTTP 105

5.3 Summary of the functions performed by the client agent tier 121

6.1 (a) Header of a device registration request, and (b) a sample status

message of unauthenticated device . 125

6.2 Summary of the middleware layer activities 130

7.1 Processing time for uploads and downloads Vs page sizes 133

7.2 Content density comparison for XML, JSON and LXML 138

7.3 Comparison of transmission time required (in ms) for XML, JSON

and LXML . 138

7.4 The proposed transaction model: Objectives Vs Accomplishments . . 141

8.1 An example of LXML document (a) and its corresponding LXML

Schema (b) . 146

8.2 Sample header of an LXML message for request and response 151

8.3 XML message, its LXML equivalent and LXML Schema 152

8.4 Measures to check rewriting attacks: Objectives Vs Accomplishments 162

List of Figures

3.1 Steps in handling LXML document 63

3.2 Generating LXML document . 63

3.3 Steps in LXML parsing . 65

3.4 Verbosity comparison (Y axis) of XML, JSON, and LXML (X axis)

for small category files . 70

3.5 Verbosity comparison (Y axis) of XML, JSON, and LXML (X axis)

for medium category files . 71

3.6 Verbosity comparison (Y axis) of XML, JSON, and LXML (X axis)

for large category files . 72

3.7 Comparison of content densities (Y axis) of XML, JSON, and LXML

(X axis) documents with varying sizes 74

3.8 Comparison of parsing time (Y axis) for XML, JSON, and LXML (X

axis) documents of varying number of records 77

3.9 Serialization and deserialization time in ms (Y axis) for XML, JSON,

and LXML (X axis) documents of small category 79

3.10 Serialization and deserialization time in ms (Y axis) for XML, JSON,

and LXML (X axis) documents of medium category 80

3.11 Serialization and deserialization time in ms (Y axis) for XML, JSON,

and LXML (X axis) documents of large category 81

3.12 Memory footprints (Y axis) for marshalling and unmarshalling for

XML, JSON, and LXML (X axis) documents of small category 83

3.13 Execution time (Y axis) for marshalling and unmarshalling for XML,

JSON, and LXML (X axis) documents of small category 84

xi

xii List of Figures

3.14 Transmission time (Y axis) for XML, JSON and LXML (X axis) doc-

uments of small and medium categories 86

4.1 Block diagram of the proposed transaction model 92

5.1 Functional block diagram of the client agent 99

5.2 Protocol diagram for polling service 110

5.3 Protocol diagram for segment acknowledgement mechanism 113

5.4 Protocol diagram representing packet delivery and acknowledgement

mechanism . 116

6.1 Functional block diagram of the middleware layer 125

7.1 Upload time in ms (along Y axis) Vs the number of pages (along X

axis) . 134

7.2 Download time in ms (along Y axis) Vs the number of pages (along

X axis) . 135

7.3 Upload and download time in ms (along Y axis) Vs the page size

(given in X axis) . 136

7.4 Comparison of transmission time (Y axis) for XML, JSON and LXML

Vs the number of objects (X axis) . 139

8.1 Format of LXML message . 147

8.2 Representation of encryption process at the sender 148

8.3 (a) Untampered LXML Schema (b) LXML message with additional

tag injected . 153

8.4 LXML Message representation displaying childcount attribute 154

8.5 Time consumed for encrypting and decrypting LXML (along Y axis)

Vs number of tags (along X axis) . 157

8.6 Encrypting time of SOAP and LXML messages (along Y axis) Vs

number of tags (along X axis) . 158

8.7 Decrypting time of SOAP and LXML messages (along Y axis) Vs

number of tags (along X axis) . 159

List of Figures xiii

8.8 Size comparison of XML and LXML for various number of objects . . 160

8.9 Size comparison of XML and LXML Schema 161

Nomenclature

Abbreviations

ACK Acknowledgement

AES Advanced Encryption Standard

API Application Programming Interface

ARM Advanced RISC Machine

B2B Business-to-business

CRM Customer Relationship Management

DAO Data Access Objects

DO Data Objects

ERP Enterprise Resource Planning

GPRS General Packet Radio Services

GSM Global System for Mobile communication

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

LXML Lightweight XML

MEC Mobile Edge Computing

NAK Negative Acknowledgement

OGSI Open Grid Services Infrastructure

P2P Peer to Peer

PDA Personal Digital Assistant

RCN Resource Constrained Networks

REST Representational State Transfer

RPC Remote Procedure Call

xiv

Nomenclature xv

SGML Standard Generalized Markup Language

SOAP Simple Object Access Protocol

WSDL Web Services Description Language

WSN Wireless Sensor Network

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

Chapter 1

Introduction

The increase in the use of small and portable devices coupled with wireless

networks paved the way for a new trend in computing called mobile computing or

nomadic computing, where users can access data at any time and from anywhere.

Wireless mobile computing has established its applications in various sectors includ-

ing commerce & business, telecommunications, emergency & disaster management,

and real time systems. The wide acceptance of wireless mobile communication is

due to the flexibility and freedom that they offer to the mobile workforce.

In a distributed wireless environment, the data will be shared and accessed by

multiple mobile users. Due to this, the maintenance of consistency and integrity

of shared data is much more difficult and complicated because of the inherent limi-

tations of the wireless computing environment and the restrictions imposed due to

mobility [1].

The popularity and widespread use of wireless mobile devices and wireless

mobile networks coupled with the easy affordability and accessibility to the Internet

has revolutionised the way people do their day to day business transactions and

needs. Mobile phones are being packed with several smart features which make

them capable of even processing the business logic that were hitherto done by PCs

or laptops. Inherent characteristics of wireless mobile devices and networks such as

mobility, constraints in resources such as energy, paved ways to new challenges to

be addressed by the developers and research fraternity. A brisk walkthrough of the

multifaceted features and complexities involved is outlined in the following sections.

1

2 Chapter 1. Introduction

1.1 Mobile Computing

Mobile computing has revolutionised the way devices communicate by providing

mobility, greater convenience and enhanced connectivity. It is a technology that

allows interaction between computing devices without using any physical media or

links. The basic characteristics of such devices are portability over the network they

are connected to. Components of mobile computing constitute portable computing

devices (such as laptops, smart phones, tablets, and PDAs), mobile applications,

wireless communication technologies, and clouds.

Mobile computing allowed versatility and flexibility in communication than tra-

ditional network communication. But the challenges in developing hardware compo-

nents and software for mobile portable devices are quite different from conventional

systems due to its inherent mobility [2][3]. This influenced both fixed as well as

wireless mobile networks. These challenges include mobility, wireless connectivity,

resource limitations, frequent disconnections and network issues, context awareness,

multi mode operations, and security and privacy.

1.1.1 Mobility

Mobile devices are designed to access information and carry out operation virtually

from anywhere having connectivity. In a wireless environment, both mobile devices

and users may change their location during communication. To establish a connec-

tion, the system should be aware of the device location [4]. As the location of a

device changes, keeping track of device location is really challenging.

1.1.2 Wireless Connectivity

Mobile computing depends on wireless technologies (such as Bluetooth and Wi-Fi),

cellular networks (such as 4G and 5G), for accessing online services, and to interact

with other devices.

1.1. Mobile Computing 3

1.1.3 Resource Limitations

Since mobile devices are designed to be portable, they have limited processing power,

low memory capacity and battery life compared with their traditional counterparts.

To overcome these limitations, increasing the capacity is not the adequate solution.

It may increase the size or weight of the handheld device and adversely affect its

portability. So designing energy efficient software and systems is the most adequate

solution in this scenario [5][6]. In other words, the system should conserve power by

reducing computation, data transmission, and communication.

1.1.4 Frequent Disconnections and Network Issues

Ensuring the reliability of wireless communication networks is really a challenging

task. They are subjected to frequent disconnections and failures in the network

due to many reasons such as bulkiness in transactions, inadequacy of network in-

frastructure, dependency to conventional networks, higher cost of maintenance, and

technological handicaps [7][8].

1.1.5 Context Awareness

Certain mobile applications are context aware in the sense that they utilise con-

textual information such as movement, location, and environmental information to

provide personalised services and customizations to the user [9].

1.1.6 Multi Mode Operations

Mobile devices support different ways to interact with the system and applications.

The device may operate in different modes and they support offline mode of com-

munication by storing and synchronising [10][11].

4 Chapter 1. Introduction

1.1.7 Security and Privacy Issues

Mobile computing exhibits unique security and privacy concerns mainly due to their

inherent mobility and wireless network features. Since mobile devices connect and

disconnect the network frequently, the chances of impersonation are higher. This

leads to unauthorised data access and theft. Special care should be exercised during

data transmission and management.

Mobile computing and distributed computing are two related concepts in net-

working. Mobile computing deals with mobility and portability of the devices during

data processing and communication; distributed computing deals with use of mul-

tiplicity of devices coordinating together to solve certain tasks or achieve a specific

goal. However, both these concepts are used together as most of the business ap-

plications are multi-tier applications whose constituents are scattered over different

geographical locations.

1.2 Device and Network Characteristics

Mobile computing in this thesis refers to computation using mobile devices with

limited capacities such as smart phones and tablets. Laptops and similar devices

are excluded from this set considering their computational power, resources, conve-

nience, affordability and data availability.

The central processing unit (CPU) on mobile devices is based on the ARM

architecture known for power efficiency. ARM is a family of processors with reduced

instruction architectures for processors. Clock frequencies of currently available

smart phones range from 200 MHz to 1 GHz. Devices with higher frequency have

higher speed. Memory availability with recent high-end models ranges from 64GB

to 256 GB and are expandable further.

Major concerns that should be addressed while targeting smartphones and

similar devices are as follows [12][13]:

(a) Compatibility: Different devices run different types of operating systems such

as Android, iOS, and Symbian. The applications developed in one platform

1.2. Device and Network Characteristics 5

may not be compatible with another. So developers should consider specific

features and guidelines for each platform separately.

(b) Screen Size and Resolution: The resolution and screen size of smartphone

devices varies depending on product model. This necessitates the development

of adaptive user interfaces that adjust itself with changes in size, resolution

and orientations.

(c) Need of Optimization: Compared with laptops and computers, the processing

speed and the storage capacity of smartphone devices are slower. Apart from

these limitations, battery life of mobile devices is also a major concern. The

portable battery is the main source of power in mobile devices. Though pro-

cessing power and storage capacity in smartphone devices has improved over

time, the progress in battery density is not up to the benchmark [14][15][16].

Due to these resource limitations, applications targeting mobile devices should

optimise resource utilisation and improve the performance to provide better

user experience.

From the perspective of mobile messaging and data interchange, the most im-

portant concern is battery life and energy consumption. Various operations such

as processing, storage, transmissions and network activities drain battery power.

Hence, battery power management is really a challenge in designing mobile transac-

tions. Accommodating a battery with a large space is not a feasible solution due to

space constraints [17].

The mobile communication networks are indeterminate in nature. Mobile con-

nectivity and network characteristics play significant roles in ensuring quality and

reliability in mobile communication. Some of the key characteristics include: (i)

coverage and signal strength (coverage determines the area where network signal

is available. Network services will be available only in the coverage area. Signal

strength determines the quality of the signal available to the device. Weak sig-

nals reduce the speed and create hindrance for communication), (ii) bandwidth and

latency (bandwidth is the maximum rate at which data is transmitted over the net-

6 Chapter 1. Introduction

work. Higher bandwidth results in faster data transfer. Latency refers to the delay

in transmission), (iii) quality of service (QoS refers to the ability of a network to set

boundaries to prioritise the delivery of various types of data in a reliable manner),

(iv) energy efficiency (mobile devices operate using the power provided by batteries.

Network intensive operations drain the battery swiftly. So the network should be

optimised for energy consumption), (v) scalability (scalability refers to the ability to

accommodate an increasing amount of mobile device and network traffic), and (vi)

security (should enforce robust measures to protect sensitive data from unauthorised

access and theft).

The main networking technology utilised by mobile devices is the inherent

phone network provided by the carrier operator. It can be 2G technologies (such as

GSM, and GPRS), 3G technologies (such as Universal Mobile Telecommunications

System, and EDGE), 4G technology or 5G technology. Global System for Mobile

communications (GSM) is a standard for cellular communications developed by the

European Telecommunications Standards Institute (ETSI). GSM offers data services

on circuit - switched data channels with a maximum bit rate of 14.4 kbps. General

Packet Radio Service (GPRS) is a packet switched technique that provides higher bit

rates for data transmissions [18]. EDGE is an inexpensive attempt to improve the

data rates of GSM without switching to 3G. Universal Mobile Telecommunications

System (UMTS) is a third generation technology capable of providing Internet mul-

timedia services along with voice [19]. 4G is a broadband standard that works with

LTE and WiMAX technologies having higher bandwidth. 5G is an improvement

to previous generations that offer higher bandwidth, lesser latency and high speed

connectivity to the Internet. It offers services such as Ultra HD streaming videos,

virtual reality and augmented reality media [20]. A comparative chart [20] showing

the data rates, accessing and transmission technologies of various mobile networks

is displayed in Table 1.1.

Mobile network is the only option for connecting with wider geographical areas.

For short communications, other networking technologies such as Bluetooth, NFC,

Wireless LAN or Wi-Fi can be utilised. Bluetooth is a very short range commu-

1.3. Wireless Network and Communications 7

Table 1.1: Comparison of data rates for various mobile networks

Gen Access Transmission Data Rate

2G GSM, CDMA Circuit switching 9.6 - 236 Kbps

3G GPRS, EDGE Packet switching 56 Kbps - 384 Kbps

WCDMA, UMTS Circuit & Packet Switch-

ing

384 Kbps - 5 Mbps

4G LTE, WiMAX Packet Switching 100 Mbps – 200Mbps

5G Packet Switching Up to 10 Gbps

nication technology that uses a Service Discovery Protocol (SDP) to dynamically

identify devices. Near Field Communication (NFC) is a short range wireless com-

munication technology based on RFID that spans a few centimetres [21]. WLAN is

an IEEE standard [22] for high data rate connectivity intended for business use.

1.3 Wireless Network and Communications

Wireless communications provide a tetherless connectivity that has revolutionised

the way people communicate and access information. The term wireless communi-

cation refers to the transmission of data and information over a distance without

using cables or wires or any other physical connections [23]. In wireless transmis-

sion, the medium of communication is air and data is transmitted in the form of

electromagnetic signals.

Wireless communication has gained huge importance and become a motivat-

ing theme for mobile computing which fundamentally transformed connectivity and

communication. There are two design perspectives for mobility: (i) mobile devices

are added to fixed networks using access points; the fixed network acts as the in-

frastructure provider for the mobile devices, and (ii) ad hoc networks that consist

of only mobile devices. Such a network does not have fixed infrastructures and its

service availability is not always guaranteed [14][15][24][25].

Recently wireless communication has introduced many advanced transmission

8 Chapter 1. Introduction

facilities such as multicarrier and channel adaptive transmission technologies. The

need for high data rate services due to technological advancement in the field has

imposed the following challenges in wireless communication [26].

(a) Scarcity of spectrum: The spectrum suited for wireless communication is be-

coming scarce due to the exponential growth in usage. In addition to band-

width restrictions, the propagation loss is comparatively higher in wireless

scenarios. This depletes the coverage area of transmission. To address this

situation, the existing spectrum should be effectively utilised [27].

(b) Infrastructure need: Strong infrastructure support is needed to tackle the

growing demand of wireless services. The wireless transmission system de-

mands efficiency in resource utilisation and dynamic response for service de-

mands in a heterogeneous environment. The main challenge to be addressed

here is to improve the potential performance efficiency with reduced complex-

ity and cost constraints [28].

(c) Energy efficiency: The transmission schemes employed in a wireless environ-

ment should be energy efficient to reduce the cost of transmission. Improving

channel conditions along with its optimal usage can lead to energy efficiency.

(d) Effective accessing techniques: Wireless communication demands strict re-

quirements such as high data rates, efficiency, low latency, and reliability. To

support these requirements effective accessing techniques with mechanisms for

buffering, caching, and short packet transmissions should be developed [29].

(e) Privacy and security: Since wireless networks employ broadcasting techniques

for transmitting information, they are vulnerable to security threats. Innova-

tive transmission mechanisms should be developed to maintain secrecy of data

being transmitted [30].

To support a wide variety of applications that demand high data rate, reliability

and seamless connectivity, wireless communication should provide efficient resource

1.4. Middleware System in Mobility 9

allocation and accessing schemes, infrastructure facilities, energy efficiency, privacy,

and security measures.

1.4 Middleware System in Mobility

Middleware is a common concept used along with distributed and multi-tier systems

and applications. It acts as an intermediary for facilitating integration and commu-

nication between systems and application components. Mobile computing includes a

middleware system to resolve any compatibility issues or to extend existing features

of the system.

The middleware system offers a standardized and reusable collection of features

and functionalities that allows hiding the intricacies and complexities during inter-

actions. The main advantage of using middleware is to support interoperability and

resolve incompatibility issues that arise due to differences in platform, and language

in distributed systems [14][15][31].

Common functionalities of middleware systems in mobile environments can be

summarized as follows [32][33]:

(a) It facilitates communication among various components in a distributed envi-

ronment.

(b) It supports integration of different applications and components. It provides

a way to resolve incompatibility issues to support interoperability and data

transformation as required by diverse applications.

(c) It supports load balancing and improves the scalability of the distributed sys-

tem.

(d) It supports better data management through data persistence, caching, and

support for abstraction.

(e) It is an option to enforce security and user authentication, and helps to main-

tain data authenticity and integrity.

10 Chapter 1. Introduction

1.5 Resource Constrained Networks (RCN)

Advancement in wireless mobile networks led to the development of technologies

and standards such as wireless local area networks, wireless sensor networks, satel-

lite based communication networks, wireless asynchronous transfer mode networks,

mobile IP, Bluetooth communication, and IoT networks [34]. The wireless local

area network covers and manages the communication within a building. The wire-

less sensor network consists of many small battery powered sensors connected and

are mainly used for monitoring and automation purposes. IoT networks connect di-

verse devices and objects that are integrated with sensors and actuators for sharing

data enabling automation, control and connectivity.

Each of these wireless mobile network categories have distinctive characteristics

that are customised to the needs of the individual application and serve a specific

purpose. However wireless mobile networks are often considered as resource con-

strained networks due to many intrinsic constraints and limitations such as device

limitations, and issues related to network, coverage and infrastructure.

1.5.1 Device Limitations

Wireless mobile devices face many limitations. The screen size and resolution of

a mobile device is much smaller when compared with personal computers. Such

devices require a data representation with fewer character sets to suit the mobile

environment. Limitation in storage capacity and caching is another constrain in the

mobile environment. To improve the responsiveness of applications that depends on

online / offline transactions, storage and caching is essential [2][35].

The processing capabilities of mobile devices are limited. So this limitation hin-

ders the capability of handling and processing large volumes of data and performing

complex computations in mobile devices.

Power requirements in mobile devices are usually drawn from the inbuilt bat-

tery. The capacity of the battery is comparatively less. Wireless communication,

connectivity management, network and data transmission consume much power and

1.6. Transaction Models 11

drain the battery [36]. Similarly, wireless communication protocols such as WLAN

and Bluetooth together with mobile data usage through network providers also con-

siderably increase battery power requirements [37]. Adding multiple battery units is

a solution but it increases the size and weight of the device and affects its mobility.

1.5.2 Network Issues

As the available frequency of the spectrum is shared between different operators, the

bandwidth allotted will be limited for data transmission. This limitation leads to

congestion in the network during peak hours and reduced data transmission rates.

Sharing of frequency spectrum results in interference which ultimately leads to noise

and degrades signal quality. These factors result in degradation in data transmission

rates, and channel capacity and performance. Apart from this, the spectrum allo-

cation policy and licensing enforced by the authorities may also lead to inefficient

utilization and scarcity [38].

1.5.3 Coverage and Infrastructure Issues

Wireless communication demands extensive modern infrastructure support to pro-

vide connectivity. Deploying and maintaining these complex infrastructures requires

large investments and resources. So, it is not economically feasible to provide con-

nectivity in remote areas [39].

Due to these limitations, wireless mobile networks demand careful resource

management, optimisation strategies, effective protocols and data interchange for-

mats to effectively utilise the resources in hand and to offer dependable and high

quality services to the mobile users.

1.6 Transaction Models

The term transaction model in mobile computing refers to a conceptual framework

that describes the characteristics and behaviour of transactions in mobile environ-

ments. It involves execution of operations to a database or a distributed system

12 Chapter 1. Introduction

using mobile devices. A transaction model is necessary to handle data communica-

tion and other control information transfer in a disconnected wireless environment

to maintain data consistency and maximise application concurrency [40].

The constraints for managing the transactions in a mobile environment are

quite different from that of conventional database oriented models. To be quali-

fied for a mobile wireless environment, these schemes should consider the inherent

characteristics of the environment such as bandwidth constraints, distributed and

disconnected environment and mobility in addition to the heterogeneous nature of

data. A transaction in mobile environment is quite different from traditional dis-

tributed database oriented environment [1][40][41] due the following reasons:

(a) Split transactions: Mobile transactions may prefer splitting of their computa-

tions to multiple operations that may be executed in different hosts – either

mobile host or static host – depending on the situation. Such split operations

may be later rejoined. Due to disconnection and mobility, there can be sit-

uations where a transaction needs to share their partial results and states to

other transactions as well.

(b) Mobility: Mobility is the most important characteristic of the wireless environ-

ment. When the host device changes its location, the state of the transaction

as well as the data objects changes. The stationary host should also support

this feature.

(c) Mobile transactions have in-deterministic life time. Few transactions with-

stand for a longer time due to mobility and frequent disconnections.

(d) The chances for data replication are higher in a mobile environment. So mo-

bile transactions should be equipped to handle frequent disconnections and

failures. At the same time, measures should be taken to ensure consistency,

and concurrency of shared data.

1.7. Open Issues in Mobile Transaction Models 13

1.7 Open Issues in Mobile Transaction Models

The main objective in designing a transaction model is to improve the availability of

data. A transaction processing model designed for the mobile computing environ-

ment should take into account the inherent limitations of the environment discussed

in the earlier section. In addition to the limitations, additional challenges to be

addressed while designing mobile transaction model include:

(a) Network transparency and transaction relocation: The main characteristics of

mobile transactions are non deterministic lifetime and relocation. The mobile

transactions follow a disconnected behaviour as the device can move from one

base station to another during a transaction [42]. Due to the inability to

retain such connectivity for longer time duration, a transaction is viewed as a

collection of sub transactions [43].

(b) Location sensitive transaction operations: Mobile transactions should deal

with location sensitive queries and such operations require manipulation of

location information [44].

(c) Programming language support.

The main factors that constitute a mobile transaction model include data

consistency and concurrency control, infrastructure development, performance con-

straints, communications costs, relocation mechanisms, user profiles and scalability

[2][45]. A model that considers the above factors for dealing with data intensive

transactions based on the legacy XML/HTML standard, inheriting the relevant fea-

tures of existing transaction models such as splitting, low resource intensive nature,

and suited for wireless environments is proposed in later chapters of this thesis.

1.8 Research Motivations

Advent of mobile pervasive computing facilitated a new realm of communication

and computation where users can access information virtually from anywhere. This

14 Chapter 1. Introduction

mobilization of information access led to the development of new ways of commu-

nication and user interactions. Many applications were developed that exploits the

mobility feature. Existing business applications were migrated or modified to reap

the harness of the technology.

A recent survey [46] revealed that 70% of the total web traffic is carried out

using mobile phones. A major portion of this web traffic is generated while access-

ing social media and e-commerce websites. Also, people prefer mobile phones over

desktop or laptop systems for accessing social media. The mobile data traffic is

estimated to grow by a multiple of 3 between 2023 and 2029. Also, the average data

usage per smartphone will increase by a factor of 2.7 [47].

The transition from conventional to wireless networking environment is not

a gradual process and there is a scarcity of infrastructure support to backup this

transition. This led to the reuse of conventional network infrastructures in wireless

environments. The exponential increase in the number of mobile users and data

traffic on one side, and the lack of adequate support infrastructures on the other

hand is really a bottleneck in the growth of communication field.

Affordability of high end devices is still a concern in the data communication

field. Even though the number of global smartphone users is 3.6 billion [48][49][50],

only one-third (35.13%) of the world population afford a smartphone. While 81% of

Americans own a smartphone, the smartphone penetration ratio in developing coun-

tries is still far behind (in Bangladesh, it is 5.4%, for instance). The statistics reveal

that only 4% of the adult population in Ethiopia and Uganda own smartphones [48].

It is undoubtedly established that mobile devices are becoming smarter in terms

of factors such as its computing power, memory capacity, battery power and veracity

of applications. It does not mean that the advantage achieved in battery power is

entirely available for the processing and transmission of data among the devices.

Operating systems consume the biggest chunk of battery power in mobile phones.

The hardware subsystems in the device consume their share of battery power (for

instance, multimedia, modem operations, memory, and LCD subsystems consume

39.5%, 21.5%, 19.4%, and 17.6%, of the entire battery power, respectively). The

1.8. Research Motivations 15

sensor network available in the smartphone also consumes considerable share of

battery power [51][52][53][54]. Power consumed by the applications and message

exchange between the devices are in addition to this. The power consumed for a

message exchange is found to be in proportion with the size of the message being

transferred [55]. Due to the use of smart mobile phones for a variety of applications

that need heavy processing, there is a scope for transaction models that can offload

some of the activities from the mobile device to a middleware system [52]. The

fact is that a mobile phone paves way for anywhere computing; but it is not always

feasible to charge it from anywhere anytime. Hence any attempt to develop an

apt transaction model that employs a lightweight message exchange format with

less verbosity that can effectively conserve battery power, is a crucial step in the

wireless mobile environment.

Existing data interchange formats were developed before the evolution of big

data and related concepts. Hence the extent of the suitability of these formats

for the current scenario is yet another bottleneck. As the requirement changes

due to technological advancement, to satisfy certain requirements like managing

complicated data structures, enabling streaming or real-time data processing, or

integrating latest technologies, a new format might be more efficient.

Since existing formats are not tailored for resource constrained wireless envi-

ronments, they face serious performance issues. Hence there is a clear scope for data

interchange formats with features such as performance optimization, quick parsing,

processing, transmission and data handling, that can provide enhanced application

responsiveness and user satisfaction. Providing a consistent, simplified, and devel-

oper - friendly approach with such a format can make data integration easier and

implementation more straightforward.

In order to enable more efficient and streamlined data interchange across differ-

ent systems and applications, the central theme of this thesis is to propose a novel

data interchange format that is capable of overcoming the constraints discussed

earlier, enhancing compatibility, increasing efficiency, and addressing evolving data

requirements. Since the targeted device is mobile, the network conditions are incon-

16 Chapter 1. Introduction

sistent, and the user and the device context is more significant, developing such a

data transaction model is really challenging.

1.9 Research Methodology

This research work can be categorized as applied research and the main goal of this

study is to improve the efficiency of data exchange in resource constrained wireless

mobile networks. With the advent of mobile communication technology and avail-

ability of powerful and versatile mobile devices, more and more business applications

are migrated to mobile platforms to take the advantage of data availability. But the

existing infrastructure available in the wireless environment is incapable of handling

this enormous amount of data generated. Since a complete revamping of existing

infrastructure is nearly impossible, a better alternative is to enhance the way data

is communicated.

The work on developing a new data interchange format started by analysing

the performance of existing data interchange formats that are used in resource con-

strained wireless environments. Based on this initial study and analysis, the poten-

tial strengths and the weakness of the existing formats are identified. The study

revealed that there are few formats that require improvement in messaging, while

other formats need improvement in processing interfaces. The main reason for the

need for improvement in messaging is mainly due to the verbosity of the underlying

format. The verbosity induces many secondary issues in transmissions and storage

as well. There are few formats that use complicated processing APIs that consume

much time for validating and parsing the document.

The first step in the process is the development of a data interchange format.

A new messaging format which is much more compact than the existing formats

is developed. This format inherits the benefits of the existing prominent formats

and at the same time overcomes their limitations. The format is evaluated against

six performance parameters that are considered as critical in the wireless mobile

environment. The values thus obtained are compared with that of existing formats

1.10. Contributions 17

to establish the advantage and relevance.

In the next phase, an architecture that makes use of this compact data inter-

change format is proposed. This proposed model follows a three - tier architecture

based on XML/HTML based agent communication model coupled with a middle-

ware component similar to that of Service Oriented Architecture (SOA). The client

side resides in mobile devices and CRM that provides data to multiple mobile de-

vices serves as the third tier. Since the newly proposed format is an unsupported

standard for currently available CRMs, the middleware component acts as a conver-

sion agent. The performance of this model is thoroughly evaluated and results are

found to be encouraging. An important feature to accommodate transactions even

in the disconnected state of a mobile device is also proposed in this phase.

As the model will be used to propagate sensitive business data in a distributed

environment, chances of security breach are higher. The final phase of the work,

analyses the security implications of the proposed format. It uses a three layered

approach to enforce data security.

When the implementation and performance evaluation of the model is com-

pleted, it reveals that the new format has achieved its objectives and has the poten-

tial to replace existing formats in bulk business data communications.

1.10 Contributions

The contributions of the thesis include the design and development of

(1) Schema definition for the data interchange format proposed in the thesis.

(2) A lightweight, extensible, and platform neutral data interchange format called

LXML.

(3) A three tier architecture to transform the LXML as a reliable transaction

model that supports transactions in paginated, distributed, and disconnected

environments.

(4) A layered architecture to check unauthorised modification of LXML messages.

18 Chapter 1. Introduction

1.11 Organization of the Thesis

This thesis is organized in eleven chapters. The first chapter introduces the topic

and presents an outline about mobile computing, wireless environment and their

characteristics. Chapter 2 is dedicated to discuss the state of the art in the areas

of relevant technologies concerned with the thesis. In Chapter 3, the problem def-

inition is outlined. Chapter 4 proposes the new data interchange format known as

LXML (Lightweight XML). In Chapter 5, the architecture of the proposed transac-

tion model is outlined. Chapter 6 and 7 are dedicated for the discussion on the design

and implementation of the client and the middleware architecture of the proposed

transaction model, respectively. In Chapter 8, the performance evaluation of the

proposed transaction model is presented. Chapter 9 discusses the measures taken to

ensure the protection of the LXML data from unauthorised and undetected modifi-

cations while in transit. Chapter 10 summarizes and concludes the discussion in the

thesis. Chapter 11 contains the recommendations. Details about the publications

out of the thesis and glossery of terms are also provided.

Chapter 2

Literature Review

2.1 Introduction

This chapter makes a review of the state of the art in the following areas that are

relevant to the thesis: (i) human readable data interchange formats, (ii) transaction

models, (iii) middleware architecture and services, (iv) methods for disconnected-

ness, and (v) methods to protect data from unauthorized modifications.

2.2 Data Interchange Formats

Advances in the field of wireless networks and infrastructure have revolutionized the

way people communicate and access information. This paved ways for the devel-

opment of new applications and services that can connect and communicate with

greater mobility, convenience and flexibility.

Wireless mobile devices are an inevitable component in any type of network

and their presence raises a number of concerns for the current network protocols and

applications. The main reason for these concerns is due to the inherent behaviour

and deficiencies of wireless devices and media such as low bandwidth, high latency,

indeterminate connectivity, and lack of adequate infrastructures.

Inter communication and data exchange among these heterogeneous devices in a

wireless environment is really a challenging task. The major concerns while designing

19

20 Chapter 2. Literature Review

an interchange format are interoperability and data transfer [56]. The format should

satisfy existing standards and be compatible with the existing systems, applications

and operating systems; any incompatibility may lead to inefficiency.

Another point to be kept in mind while designing a data interchange format for

a wireless environment is to maximize the storage and transmission efficiency [56].

To improve the transmission efficiency, the size and count of data packets should be

minimal, redundant and retransmissions should be avoided, and optimal compression

and encryption algorithms should be used. Lower transmission efficiency may lead

to slow data transfer rates, higher congestion and latency, resulting in higher cost

and decreased user satisfaction levels.

The available data interchange formats can be broadly classified as binary and

non-binary formats. Since binary formats are not human readable, the thesis gives

emphasis to non-binary formats. Binary formats and mechanisms such as compres-

sion - decompression are also not considered for review in this chapter due to the

basic reason that the scope of the thesis is on data interchange formats that are

human readable. Applications mostly rely on two standard formats for structuring

and interchanging data - XML and JSON. While XML is a mark-up language based

on a set of specifications, JSON is purely a data format for JavaScript applications.

This section surveys the prominent non binary data interchange formats available

in literature.

2.2.1 XML

Extensible mark-up language (XML) is the popular and the most widely used

markup language due to its powerful capabilities. XML provides a standard way for

representing structured and semi structured data on the Internet [57]. Structured

data has a consistent format for their content and provides an insight to the role and

usage of the content in the context of the document. XML is formally developed as

a meta-language for creating markup languages that defines standard file format for

data exchange through World Wide Web and Internet. XML is a widely accepted

standard for information interchange due to its simplicity, ease of use, extensibility

2.2. Data Interchange Formats 21

and self describing features [58].

XML is derived from SGML and is used for storing and transmitting data on

the web. SGML is an international standard for describing the structure and content

of various types of documents designed to be transmitted electronically. It is mainly

used for defining markups and every XML document should conform to the SGML

as well [57]. The main design goals of XML are to assist information systems in

document encoding, data serialization, and Internet based structured data exchange.

So XML comes with a combination of other standard family of technologies such

as XSLT, XPath and XML Schema that provides a clear distinction between the

document content definition and its formatting. This makes the document easy

to reuse the content wherever required. The XSLT (XML Stylesheet Language

Transformations) is used for applying style to the XML document. XML Path

Language (XPath) is used for locating tags and XML nodes in the document. XML

Schema defines the structure and rules for checking validity and well formedness of

the document [59][60][61].

XML provides a standard format for data interchange and can be used across

heterogeneous platforms and programming languages. The major characteristics of

XML are [62][63]: (i) structured (XML allows for structured data, which means that

it can be easily organized and searched. There are no predefined tags in XML and

the users are free to create their own tags to meet their specific needs depending on

different types of data. Its structure supports hierarchical representation of data and

its tags can be nested to any level of complexity. The rule and constraints related to

the structure of an XML document is defined inside the Document Type Definition

(DTD). DTD is helpful in validating the document), (ii) platform independent (XML

is a platform - independent format, which means that it can be used on any operating

system, applications or hardware platform), (iii) human - readable (XML is human

- readable, which makes it easy to understand and edit. XML documents are more

content oriented and it clearly separates XML content from its presentation. This

makes it a convenient format for data exchange. For presentation, it uses additional

tools such as XSLT), (iv) interoperability (XML allows interoperability, which means

22 Chapter 2. Literature Review

that it can be used by different software applications), and (v) customization (XML

is extensible and based on open standards, which means that it can be customized

to suit specific needs. Since XML is a markup language, it provides the capability

to create more powerful languages or extend capabilities of existing languages. The

main reason for this feature is due to the flexibility in defining XML tags).

In addition to the above mentioned characteristics, the most promising advan-

tages of XML include: It is based on international standards and is accepted by a

wide variety of systems and applications. It simplifies the data exchange between

devices and databases, improves data availability in heterogeneous systems, sup-

ports Unicode character representations, and it has a self-documenting structure

with strict syntax and schemas [64][65][66].

XML Schema

An XML Schema is a model that defines document structure and provides a blueprint

for building its contents in accordance with its structure, along with security pro-

vided by XML encryption. XML Schema defines the set of elements, attributes and

data types that can be used in an XML document. It is a XML based language

that simplifies the creation of sophisticated content models and focuses on reusing

elements, attributes, and data types to hold important data.

The strength of XML Schema lies in the variety of data types it supports and

simplifies the content description of the document. It is helpful in validating the

correctness of the document in terms of its structure and content. It can be used to

define allowable data patterns and restrictions, if any, in the document.

XML Schema is extensible in the sense that it can be reused or nested inside

other schemas. It can also be used to define the rules for multiple documents. It

supports creation of custom data types and elements while dealing with specialized

data. This really saves time and effort [67].

XML Schema is vulnerable to errors and can cause serious consequences in data

storage and transmission. There is no single standard mechanism to create XML

Schema. XML Schema can be complex in certain situations and maintaining such

2.2. Data Interchange Formats 23

a complex schema consumes much time and effort. Validating an XML document

is necessary to ensure the correctness of the document. The validation process is

resource intensive and hence it weakens the response time. This will adversely affect

the overall system performance [68].

Web Services and XML Protocols

Web service refers to a standardized method that allows different web based ap-

plications to communicate with each other over the Internet. It uses XML (the

data interchange format), SOAP (the protocol used for data transfer), WSDL (for

describing the services available), and UDDI (to list the available services) [69].

XML is the de facto standard used in web services for encoding and exchanging

data between applications. It provides the flexibility and versatility to define custom

tags and structures for representing data. When the client applications request for

a specific data, the service responds by returning an XML encoded message that

includes the required data. This XML message can be parsed to extract the data

contained.

XML is often used in conjunction with a protocol. The first attempt to use XML

for data interchange is with XML RPC. XML RPC is a protocol that allows invoking

a remote procedure using XML messages. It is a simple, platform independent

and easy to implement web service standard used in any applications. It lacks the

extensibility feature that is required in distributed applications. This led to the

development of Simple Object Access Protocol (SOAP) web services. SOAP is a

standard protocol for sending and receiving XML - based communications over the

Internet. It relies on HTTP or other related transport protocols for transmitting

SOAP messages [70].

Dependency to XML - based message format and the use of advanced features

like WS - Security and WS - Addressing can add complexity to SOAP web services.

Processing of large SOAP messages slows the processing especially in high traffic

conditions. Chances of compatibility issues and security vulnerabilities are also

higher [71][72].

24 Chapter 2. Literature Review

XML Parsing

XML parsing is the process of reading an XML document and extracting the data

contained in the document. Before parsing the document, the parsers check the well

formedness and validity of the document against the XML Schema. Numerous XML

parsers are available in the literature for creating and extracting XML documents.

They can be broadly classified into two categories, namely, Document Object Model

(DOM) parsers and Simple API for XML (SAX) parsers [73]. DOM is a tree based

parsing approach where the XML document elements are modelled as the nodes of

the tree. The tree nodes are traversed to read, search or update the data contained

in the element. SAX parsers support an event based parsing approach where the

document is parsed sequentially and generates events when it encounters an XML

element or nodes. Applications must register for events to get the notifications. SAX

parsers do not produce any in - memory representations as DOM parsers and are

very suitable for large XML documents that cannot be kept in memory as a whole

[74].

The criteria to choose a parser API for parsing an XML document depends

on many factors such as user requirements, the size of the document, programming

language and platform used. Parsing efficiency or performance while dealing with

large documents is also an important factor to be considered.

Parsing is a resource intensive operation as it consumes a significant amount

of memory and processing time to extract data contained in the document. Ad-

ditionally, parsing may cause security vulnerabilities such as rewriting or injecting

attacks. This underlines the need for a validation check before parsing [75][76].

Issues of XML in Resource Constrained Environments

Though XML is a popular format for storing and transmitting structured data in het-

erogeneous networks, it poses the following issues especially in resource constrained

networks [64][65][66][77][78][75]:

(a) Verbosity: The size of XML documents is relatively large when compared with

2.2. Data Interchange Formats 25

other formats. This verbose nature of XML is due to the fact that it uses large

number of descriptive tags to maintain the readability of the document [77].

In an XML document, the data is kept between tags. The users are free to

choose the tags names and since there is no restriction for the length of the

user defined tag name, it adds to the document size. Usage of nested tags

makes the document lengthier. XML requires every element to have opening

and closing tags even if there is no data content available between them.

XML supports complex data structures and data hierarchies. A document

with complex data structures leads to larger size with many levels of nesting

and makes it difficult to read and understand. The verbosity of XML also

makes it more readable and predictable, which can be beneficial in certain

contexts but is problematic in resource constrained networks where available

bandwidth and memory are limited.

(b) Parsing overhead: XML parsing can take longer time due to many reasons

such as verbose nature of the document, need for validation, use of nested

tags and structures, use of complex data structures, and encoding and parsing

methods adopted.

The main reason for this inefficiency in parsing is due to the verbosity and

complex syntax of XML documents. When the size of the document increases,

the time required for validating the document with the DTD increases and

requires more memory to process the document. The time required for trans-

mitting the document will also increase in proportion to the size of the docu-

ment. Thus XML parsing is computationally expensive in resource constrained

environments with limited processing capabilities.

(c) Need for validation: XML documents contain a document type definition that

defines the document structure and specifies the rules that every document

should confirm to. To ensure data integrity, every XML document should be

validated against its schema before processing. This process is complex and

resource intensive.

26 Chapter 2. Literature Review

(d) Size and complexity of data structure: Appropriate data structures are de-

signed for handling XML documents in various applications. Different ap-

proaches such as event driven approach and tree based DOM approach are

available for choosing the data structure and it depends on various factors

such as document size, its structure, complexity, and performance constraints.

Designing data structures for handling XML is quite hard as it encourages

non - relational data structures. It induces a large overhead in accessing the

information contained in the document.

(e) Lack of direct mapping of object to data models: Unlike JSON and other

formats, XML does not map its object directly to appropriate data models.

Recently, there are some third party frameworks such as JABX developed

for XML binding in Java language. Such frameworks are inherently complex

and resource intensive. JABX faces performance issues while handling large

XML documents. It does not support XML Schema with complex types.

Maintaining such a framework is also a challenging task.

(f) Network related overheads: These are the additional overheads required for

transmitting and receiving the XML documents over the Internet. These

overheads depend directly on the size of the document, protocols used for

transmission, encryption and decryption methods, and network characteristics

such as bandwidth.

(g) Security: XML is vulnerable to many security issues. Common security issues

faced by XML documents during its storage and transmission include - exter-

nal entity injections and rewriting attacks. These attacks deliberately insert

malicious contents to the document in order to corrupt it. These attacks are

serious enough to corrupt XPath queries and result in loss of data integrity,

denial of service and unauthorized content access. Rewriting attacks corrupts

the code by inserting or removing malicious contents without affecting the

document signature. Transmitting and processing a malformed XML corrupts

the entire system and its effects will be devastating.

2.2. Data Interchange Formats 27

2.2.2 JSON

JavaScript Object Notation (JSON) is a light weight, text based data interchange

format used to transmit data in web based applications. JSON is not a document

format or a markup language such as XML; it is simply a schemaless representation

of structured data [79]. In JSON, data is presented in the form of a key - value pair.

Though JSON is developed for JavaScript programming and is considered as

its native format, currently it is widely supported in many programming languages,

databases and web services for data interchange. It includes a minimal set of data

types and is more generic in nature. JSON format considerably depends on the

concepts of arrays and lists available with JavaScript. As it is a language indepen-

dent format, it is a widely accepted option for porting data between applications

developed using different programming languages [65].

JSON is an object serialization mechanism widely used in AJAX frameworks.

The popularity of JSON is increasing due to its inherent features such as simplicity,

flexibility, wide programming language and web framework support. The character-

istics of JSON as an alternative to XML [80] are:

(a) Simplicity: It uses a simple and easy to use syntax for data representation.

It represents data in the form of key - value pairs. It supports minimal data

types and relies on arrays and lists to represent data.

(b) Lightweight: It is a less verbose data interchange format. It has a higher

content density than XML. It is comparatively easy to generate and parse

JSON documents.

(c) Human readable: A simple JSON document is easy to read and use by human

and machine. The readability of the JSON document depends on the com-

plexity of its structure. A document having nested JSON objects is seldom

readable.

(d) Language independent: It has a consistent and well defined standard and is

supported by different languages and platforms. This language neutral ap-

28 Chapter 2. Literature Review

proach makes it suitable for integrating applications and services.

(e) Ease of parsing: Since it is a lightweight data interchange format, parsing is

comparatively easier.

Issues of JSON in Resource Constrained Environments

Though JSON has gained popularity in recent times, it is not always the most

preferred data interchange format due to the following reasons [60][81][82][83].

(a) Generic format with few data types: JSON is a generic format as it supports a

wide variety of programming languages and frameworks. In this format data

is represented as key - value pairs, in which key is string type and value can be

string, integer, Boolean or JSON object. JSON relies much on JavaScript list

and array data types. JSON supports only a few data types and does not have

types to represent date and timestamp values. It is very difficult to represent

complex data types in JSON.

(b) Absence of schema: JSON does not support schema and hence there is no

standard way to create the document structure and rules for defining tags. In

other words, there is no way to ensure the document is valid and according

to the acceptable form. A tree based structure is available in JSON as a

representative schema. This structure is not as capable as XML Schema.

It only provides basic details such as grammar specification and preliminary

semantic details to check correctness and document validity [84]. This results

in interoperability issues where there are higher chances that each user may

interpret it in different ways. Absence of schema may also increase the chances

of security breaches.

(c) Lack of namespaces: The namespace concept available in XML is used to avoid

naming conflicts among its elements. JSON does not support namespaces and

uses prefixes to avoid name conflicts. Use of namespace makes the element

more self describing, contextual and becomes easier to identify.

2.2. Data Interchange Formats 29

(d) Not extensible: When compared with XML, JSON format is not extensible

due to the following reasons: it does not support a formal schema and relies

on list and array data structures. There is no standard way to validate the

document. It does not support the namespace concept as well. It uses a fixed

data model with key - value pair to represent data, which is not flexible enough

to represent complex data types.

(e) Verbosity: Though JSON is a compact format compared to XML, it is not the

most compact and efficient format for representing data in resource constrained

environments.

(f) Poor readability: Readability of JSON depends on its document structure.

A JSON document with deeply nested structure will be difficult to read and

extract data. Such deeply nested complex data structures incur additional

processing overhead to extract relevant data.

(g) Parsing and performance issues: Even though JSON is a lightweight data

interchange format, it suffers serious performance issues in certain scenarios.

Parsing a JSON document with large size, complex data structures and deep

nesting consumes considerable processing time and memory. Additionally,

parsing performance depends on the characteristics such as the parser used,

programming language, and level of validation required. The JSON requires

frequent serialization - deserialization of its objects; the overall performance is

considerably affected due to this.

(h) Security issues: Similar to XML, JSON is vulnerable to security breaches.

JSON documents are often subjected to malicious injection / rewriting attacks

during transmissions which leads to attacks such as unauthorized disclosure

of information, denial of service, and data corruptions. Since JSON does

not support schema, it is very difficult to validate the data at the receiving

end. Sniffing JSON strings can easily identify the object properties and alter

its values. So, additional care should be exercised to ensure the document

validity, access control, encoding and input sanitization.

30 Chapter 2. Literature Review

2.2.3 YAML

YAML Ain’t Markup Language (YAML) is a human - friendly, flexible, platform neu-

tral, and Unicode based serialization language used to store and transmit data. The

applications of YAML range from configuration files to data transmission. YAML

presents data in both text format and by using native data structures. It supports

a variety of data types such as numbers, string, boolean, and null. Unlike in JSON

which uses braces for nesting, YAML uses indentation for representing nested struc-

tures [85]. XML and YAML are not at all related to each other. XML focuses on

structuring the document and imposes many constraints in that sense. But YAML

never imposes structural constraints to its objects. Since there are many similarities

between YAML and JSON as a data interchange format, YAML can be considered

as the superset of JSON [86][85]. While JSON focuses on simplicity, universality

and the ease of processing, YAML focuses on data serialization using some native

arbitrary data structures.

The advantages of YAML include good readability, easiness to use, implement

and release, extensible, strong expressive capabilities, good interaction between ap-

plications and programming languages, availability of native data structures that

matches with agile programming languages, availability of consistent models to sup-

port generic tools, and schema awareness [85][87].

Every programming language has different levels of comfort in using YAML. It

is not a preferred format for data models that need manual maintenance. Though

YAML is a lightweight, schema aware serialization format, it is not as popular as

JSON and XML due to the following reasons [88].

(a) Whitespace sensitivity: It uses indentation as delimiters for blocks and nested

structures. Due to this dependency on indentation, it is very difficult to rep-

resent complex data structures in YAML. A minor change in indentation may

result in issues in processing the elements.

(b) Limited data type support: It does not support all data types available in

other serialization formats. It lacks its own definition of data types; instead

2.2. Data Interchange Formats 31

it depends on data models to realize languages. As result, if compatibility is

not guaranteed, portability issues may arise during data exchange. It does

not support annotation of information and the use of block comments in the

document. Also it does not preserve order for key - value pairs in map types.

(c) Scalability issues: Unlike other serialization formats, YAML has a different

view to represent data and their relationships. Because of the syntax and

structure of YAML, the parsing is inefficient and consumes much time for

large dataset. Since YAML is not designed for efficiency in storage or parsing,

handling complex data structures in YAML is a bit challenging and risky.

(d) Security: It is mainly used in configuration management. If not properly

handled, YAML files are subjected to security risk. Additional policy files are

required for imposing security measures in YAML.

The advantages and disadvantages of data interchange formats discussed so far

are summarized in Table 2.1.

Table 2.1: Summary of the performance of various human

readable data interchange formats

Format Advantages Disadvantages

XML Human readable, platform in-

dependent, schema aware, ex-

tensible, self descriptive using

user defined tags and struc-

tures, highly popular.

Verbose with redundant tags,

complex syntax and structures,

higher parsing overhead, lack of

support to data objects, vul-

nerable to security risks.

32 Chapter 2. Literature Review

JSON Compact than XML, text

based, human readable, easy

to parse, language neutral and

widely supported.

Lack of schema support, lim-

ited data type support, lack of

support for namespace, com-

ments, and attributes, not suit-

able for binary data, perfor-

mance issues, vulnerable to se-

curity risks.

YAML Human readable, compact syn-

tax, uses indentation to denote

structure, supports language

independent object types, and

use of comments, self - descrip-

tive and expressive.

Whitespace-sensitive, no built-

in schema, limited data types,

prone to syntax and validation

errors, security risks, not suited

for bulk data.

2.3 Transaction Models

Due to the wide popularity of mobile services and applications, many services have

been migrated to mobile wireless platform. This necessitates the need for a mobile

transaction model to maintain consistency and maximizing concurrency of mobile

applications and services.

Transaction models employed in mobile wireless environment are considered as

the extensions of three base transaction models [89][90][91]: (i) open nested transac-

tions (this model is designed for long duration transactions), (ii) split transactions

(such transactions can be divided into smaller, and independent transactions that

are serializable and can be committed or aborted independently. The split transac-

tions can be later rejoined), and (iii) saga compensating transactions (these are a set

of independent transactions. Here each transaction has a compensating transaction

that can undo the effects of corresponding component).

Various mobile transaction models such as kangaroo transaction model [92],

2.3. Transaction Models 33

clustering model [93], isolation only model [94], multi database transaction model

[95], pro-motion model [96], toggle transaction model [92], XML / HTML based

agent communication model [97][98] are reported in the literature. A discussion on

the advantages and disadvantages of these models are presented below.

Kangaroo transaction model tracks data movement and behavior in a mobile

host transitioning between cells in a static network. It employs global and split

transactions using a data access agent at the base station. The agent processes user

transactions and commits them to the server. For each query, the agent creates

two transactions—global and local, known as joey transactions, to manage the base

station’s scope. When devices switch base stations, control transfers to a new agent.

The merits of the model include: (i) transaction splitting, (ii) sequence numbering

for each transactions, and (iii) support for status monitoring and tracking [92].

In this model, the communication is always channelized to the databases either

in the base station or in the host device. It never makes use of a consistent format

for messages transmission. This model induces additional overhead to maintain the

data access agent [92].

The clustering model is an open nested transaction model for fully distributed

systems, organizing data into clusters based on their meaning or storage location.

These clusters, which can be static or dynamic, contain mutually consistent data.

The consistency level varies with network bandwidth accessibility between clusters

[93].

The merits of this model include: (i) suitable for distributed systems, (ii) sup-

port for both connected and disconnected modes for transaction execution, and (iii)

ensuring data consistency within a fully distributed environment [44]. The demerits

of the model include: (i) a database oriented model with higher maintenance cost,

(ii) scalability issues and difficulty to manage large number of clusters, and (iii)

overhead for communication within cluster and outside [92][89].

Isolation only model is designed for the Coda file system. The model extends

regular file operations. Coda, a distributed file system, uses file hoarding and con-

currency control to support mobile clients in disconnected mode, resolving read and

34 Chapter 2. Literature Review

write conflicts based on operation significance [92][99]. The merits of this model

are its ability to resolve read/write conflicts effectively and its support for database

communication in both disconnected and distributed environments. A drawback of

this system is its compatibility limitation to devices not supporting coda file systems

[92][94].

This model uses a replication scheme with one master copy and many replicas,

handling base transactions on the master and tentative transactions on replicas.

During disconnection, tentative transactions work on replicas and convert to base

transactions upon reconnection. While supporting disconnected distributed transac-

tions, the model faces limitations like processing overhead from multiple transaction

executions, managing multiple data copies, and ensuring data integrity and consis-

tency with replicas [92][94].

Multi database transaction model is designed for a multi-database environ-

ment. The model handles messages from a mobile host to its coordinating site

asynchronously, allowing disconnection without interruption. Each workstation has

input, output, message, and transaction queues to manage local or sub-transactions.

The model’s highlight is its queuing and concurrency control mechanism. However,

it relies on conventional databases for mobile communication and the numerous

queues can cause bottlenecks [44][92][93][94][95].

Pro-motion model is based on the nested transaction model discussed earlier

[96][100]. It facilitates a distributed and disconnected mode of transaction process-

ing using client - server architecture. Mobile transactions are organized as nested

transactions, where the top - level transaction is executed on fixed hosts, and sub

- transactions are carried out on mobile hosts [101]. Disconnected transaction pro-

cessing is a prominent feature in this model [101]. The benefits of this model include:

(i) support for nested and sub - transactions, and (ii) disconnected architecture [92].

However, the main drawback of this model is its high resource requirements on the

mobile host [92].

In the toggle transaction model, a mobile multi database system is formed

by assembling a set of mobile databases. A multi database management system

2.3. Transaction Models 35

is developed to operate on these set of databases. This model employs a support

station to handle global transactions. When the device changes its location, another

support station handles transactions [92].

XML / HTML based agent communication model is a distributed processing

architecture based on XML/HTML is discussed in [97] and [98]. In this model,

XML is used as a payload for data exchange among nodes. The XML/HTML based

Agent Communication Model [97] operates on a mobile agent platform utilizing

Agent Communication Language (ACL) messages for both inter - agent communi-

cation and inter - platform migration. Its key advantage lies in offering distributed

processing capabilities very similar to client - server systems. Data transmission to

client nodes occurs via XML payload. However, the model is marked by certain

drawbacks, outlined in [97]: (i) a fixed / fully connected network architecture archi-

tecture necessitating agent module installation on communicating base stations, (ii)

the absence of a message queuing mechanism, and (iii) the lack of support for split

transactions.

The concept presented XML/HTML based approaches can be extended to the

resource constrained mobile environment due to following reasons [97][98]: (i) ability

to encode different types of messages in a simple and convenient manner at the

same time it is easy to change, (ii) simplifies the architecture of agent systems while

building programmable information base in XML, (iii) as agents can directly read

and manipulate data contained in XML, it is easier to enforce access control policies,

and (iv) less performance overhead when compared with other traditional database

oriented models.

The performance of various mobile transaction models available in the literature

are summarized in Table 2.2.

Table 2.2: Summary of the performance of various trans-

action models

Transaction

Model

Advantages Disadvantages

36 Chapter 2. Literature Review

Kangaroo trans-

action model

Sequence numbering, transac-

tion splitting and status mon-

itoring

Supports base station to device

communication only in fixed

networks, no specific message

format

Clustering model A model for distributed sys-

tem with connected and discon-

nected mode of operation

Scalability issues, higher main-

tanance cost and processing

overhead

Isolation only

model

Database model that supports

connected and disconnected

modes, handles read write con-

flicts

Compatible with coda file sys-

tem only

Multi database

transaction

Model

Queuing and concurrency con-

trol mechanism

Not suited for mobile environ-

ment due to the dependency

with traditional database sys-

tem, congestion due to queue-

ing

Pro-motion

model

Distributed and disconnected

mode of transaction processing

using client-server architecture

High resource requirements

Toggle transac-

tion model

Split transaction, multi

database model

Fixed network, complex

XML / HTML

based agent

communication

model

Distributed, client - server

based message exchange using

XML

Fixed or fully connected net-

work architecture, No queuing

mechanism, No message split /

rejoin

From the literature, it can be seen that a lot of issues are to be addressed in this

area such as [89][90][92]: (i) all the available transaction models are database ori-

ented, (ii) only few of them support (such as clustering model, two - tier transaction

model, pro-motion transaction model, and multi database transaction model) sup-

2.4. The Middleware Components 37

port distributed and disconnected architecture in the database level, (iii) since the

transaction models are database oriented, predicting the behaviour of these models

in mobile data connection is challenging, (iv) queuing mechanism is applied only

in multi database transaction model – but the transaction queuing creates bottle-

neck, (v) proper acknowledgement mechanisms are not addressed, (v) particularly

in XML based message exchange models, the huge verbosity of XML format can

be a limiting factor for the resource constrained devices and wireless networks, (vi)

data synching mechanism is not adopted, and (vii) lack of a middleware component

to support heterogeneous server communication.

Mobile wireless environments have to deal with heterogeneous types of transac-

tions and message exchanges. As the purview of transactions and exchanges cannot

be limited to database oriented activities alone, none of these models are suited for

data communication in mobile wireless environments. It can be concluded that the

XML/HTML based model is the model that can be considered as the base model

for the proposed work. This model is expected to use a lightweight data interchange

format as its payload.

2.4 The Middleware Components

In a distributed environment, middleware is a software layer that homogenizes infras-

tructure diversity. Its main goal is to provide services and abstractions to eliminate

heterogeneity, defining interaction paradigms for coordination. Middleware simpli-

fies distributed application development by managing data sharing, communication,

security, and other concerns, enabling seamless interoperability across systems. It is

crucial for addressing the growing complexity of distributed systems.

In this section, the state of the art in various middleware systems and their

features are explored.

Service Oriented Architecture (SOA) is a software development method using

reusable components known as services. Services process data or perform specific

tasks and return responses. SOA, a popular design for distributed systems, supports

38 Chapter 2. Literature Review

modularity, reusability, and scalability. Middleware in SOA handles business logic,

offering service encapsulation and flexibility, and resolves technological heterogene-

ity. It also manages distributed security, performance, and scalability. This section

discusses the state of the art in middleware architecture and SOA [102].

SOA is the ideal and most widely accepted paradigm for mobile oriented ser-

vices due to its agility, flexibility, dynamic and loosely coupled platform neutral

nature [103][104]. It is widely used along with SOAP, WSDL and ESB implemen-

tations. The services are offered using standard protocols including SOAP / HTTP

or Restful HTTP to send requests to read and / or update data. These services

are independent, self - contained and provide agility and improved interoperability

in business systems. SOA offers the following merits over the conventional enter-

prise application development [105][106][107]: (i) agility and flexibility: SOA allows

developers to assemble applications from reusable components, accelerating the soft-

ware design process and enabling quick responses to new business opportunities, (ii)

extensible: The functionalities developed for a particular environment or platform

can be seamlessly extended to a new environment without much effort, and (iii)

collaboration: SOA enables improved collaboration with business and technology.

This enables us to define the business scope in terms of services.

In spite of the fact that the SOA architecture is a natural option for busi-

ness application development, it has few disadvantages [105][108][109]: expensive

(implementing SOA is costly due to infrastructure, service interfaces, governance,

tools, and training. High expertise is also required to manage SOA), high response

time (SOA’s full validation of input parameters and additional communication layers

introduce performance overheads, resulting in high response times), high resource

consumption and bandwidth (this is due to verbose XML messages. Poorly designed

service interactions can lead to excessive communication and resource use, making

performance optimization challenging in resource-constrained environments), inte-

grating existing systems with new services is complex and time-consuming, and

performance optimization in heterogeneous distributed environments is difficult.

Representational State Transfer (REST) is an architectural style for designing

2.4. The Middleware Components 39

networked applications. It offers a simple and scalable alternative to SOA for web

services and APIs [104]. REST provides a lightweight, flexible, secure, and uniform

interface for interconnecting web resources, mainly used in client-server systems,

allowing independent evolution of client and server components [104][110].

An integrated architecture for connecting mobile systems to the SAP enter-

prise server is proposed in [111]. It uses a lightweight OSGi-based platform [111].

It facilitates communication between mobile devices and the SAP backend with-

out personal computers, handling connectivity, data management, compression, and

transfer. Data is transmitted as compressed XML business objects (BO) between

the client and SAP server, with RFC calls used on the server side for data transmis-

sion. This platform possesses the following demerits [111]: (i) since the framework

is dependent on XML for communication, it is prone to all inherent drawbacks of

XML including verbosity and huge processing requirements, (ii) even though the

generated BO is much smaller than the original BO, the total size of instance might

be still too large to be accommodated in the mobile memory, (iii) it uses B Trees

or B+ Trees for implementing the model and uses heavy indexing, making it more

complex to handle, and (iv) the framework incurs additional overhead to compress

the XML to make it lightweight.

MobileSOA applies SOA principles to lightweight mobile environments, based

on Web 2.0 [104][112]. It virtualizes local, remote, and ambient services uniformly,

accessed via a Web 2.0 front end. Mobile devices act as both producers and con-

sumers of web services using REST asynchronous interfaces. Challenges include

managing service dependencies, interoperability with conventional SOA applications,

limited bandwidth, connectivity issues, and device performance optimization. Con-

sequently, many enterprise system features are not addressed by this approach [110].

A data delivery framework for Mobile P2P communications [113] uses a repu-

tation value from neighboring peers for data dissemination in wireless ad hoc envi-

ronments. It employs proprietary schemes and mobile scheduling techniques, using

location-based methods like Euclidean distance and rectangular partitioning for high

data deliverability. However, it overlooks energy consumption, power levels, and the

40 Chapter 2. Literature Review

cost and performance overhead of distance calculations. Communication between

host servers in heterogeneous environments is not addressed. Other P2P data dis-

semination models include pure flooding, where messages are forwarded by peers

until they reach the target, and trustworthiness-based broadcast (TBB), which pre-

vents redundant transmissions using multipoint relaying [113][114][115][116].

Mobile edge computing (MEC) offloading brings computation and data storage

closer to where it is needed, at the edge of the mobile network. This distributed

computing architecture extends cloud resources to the network edge, reducing la-

tency, improving response times, and enhancing network resource efficiency. How-

ever, MEC can cause network congestion, incur costs, and face scalability issues. It

also struggles with task partitioning, transparency, portability, and is vulnerable to

physical and security threats [117][118][119].

Performances of various middleware components are summarized in Table 2.3.

Table 2.3: Performance summary of various middleware

components

Architectures Advantages Disadvantages

SOA Agility and flexibility, exten-

sible, collaboration, suited for

multi - backend systems and in-

tegration

High response time and re-

source consumption due to the

XML dependency, performance

optimization required

REST Simple, flexible, stateless and

compatible with existing tech-

nologies

Lacks flexible data queuing

mechanism, not suited for

multi - backend systems, not a

design for integration

OSGi SAP

Server

Lightweight architecture, bet-

ter data management, com-

pression and transfer schemes

Support for SAP server only,

prone to all inherent draw-

backs of XML, complex and in-

curs additional processing over-

heads

2.4. The Middleware Components 41

MobileSOA Flexibility, scalability, and en-

hanced user experiences

Complexity, performance con-

cerns, and resource consump-

tion

Data delivery

framework for

Mobile P2P

High data deliverability and

multi point data dissemination

Does not consider energy con-

sumption and power level,

broadcasting leads to redun-

dant transmissions of messages,

causes overloading and conges-

tions

MEC offloading Reduced latency, improved re-

sponse time, and more efficient

use of network resources

Causes network congestion,

cost and scalability issues,

challenges in partitioning,

providing transparency and

portability of tasks, vulnerable

security threats

The key challenge in a distributed environment is to share data and collaborate

between multiple sets of users without sacrificing the consistency and integrity of

data. Each of the above mentioned challenges have a serious impact on performance

and reliability of the system. Utmost care should be exercised in planning, designing

and maintaining such systems to address these challenges. In spite of the challenges

faced by SOA middleware architecture, it is the best suited model to incorporate as

a middleware component in the proposed system due to the following reasons:

(i) Loose coupling: SOA focuses on loosely coupled services that allows easier

integration and modification without affecting other components of the system.

(ii) Interoperability: SOA facilitates interoperability, enabling different services

to interact seamlessly regardless of underlying technologies, platforms, and

languages.

42 Chapter 2. Literature Review

(iii) Scalability and flexibility: The modular structure of SOA facilitates scalability

through the addition or modification of services as and when needed. It easily

adapt to changing requirements.

(iv) Modularity and reuse: SOA promotes the development of reusable services.

By creating services that may be shared by other components or applications,

middleware systems can reduce development time and effort.

(v) Abstraction: A layer of abstraction offered by SOA enables services to conceal

their underlying complexity.

2.5 Ensuring Disconnectedness

Disconnected mode ensures client devices can access and communicate critical data

during temporary failures of the shared repository. In distributed environments

with portable devices, unpredictable connectivity makes this mode essential. When

devices rejoin the network, all critical messages must be transmitted to maintain

data integrity.

Disconnectedness is primarily offered by cashing of data, shared file systems,

message queues, and middleware systems [8][120][121].

2.5.1 Disconnectedness using Caching of Data and Shared File Sys-

tem

Caching data and shared file systems support disconnected mode operations, but

mobile computing limitations make this challenging. The Coda file system addresses

these issues, enhancing data availability in distributed systems through caching [8].

Each Coda client has a local disk and connects to servers via a high-bandwidth net-

work. During server or network failures, Coda ensures ongoing data access using two

strategies: disconnected operations and server replication, relying on an optimistic

replica control approach where clients use cached copies of data [120][121].

2.5. Ensuring Disconnectedness 43

In Coda, cache misses aren’t always transparent, and significant misses can

disrupt transactions. Longer disconnects increase resource depletion and conflict

chances, requiring manual intervention [120]. The system is vulnerable to loss and

destruction. While Coda adapts to low bandwidth, change propagation time and

cache memory requirements are concerns in resource-constrained environments. Its

complex priority-based cache management and conflict resolution add significant

processing overhead. Thus, Coda isn’t suited for wireless mobile units, facing scal-

ability bottlenecks as user numbers increase and coordination becomes difficult in

varied networking scenarios [121].

2.5.2 Disconnectedness using Message Queues

In this model, a message queue serves as an intermediate repository for data ex-

change. The sender transfers data to the queue, and the receiver fetches it asyn-

chronously, detaching once communication is completed.

In long-distance communication without queues, each intermediate node must

always be available for message forwarding. A queuing system stores messages at

intermediary nodes until they’re ready for transmission, supporting asynchronous

communication. Without queuing, a business transaction system must maintain

many connections, and a single failure can render the system inoperable [122][123].

There are different types of message queues [123]: (i) point to point queues (a

single message is added to the queue and one application accesses it. Sender and the

receiver must be known to each other), and (ii) publish - subscribe queues (a copy

of message generated is broadcasted and every interested application subscribes it.

This method supports decoupling and publishers and subscribers are not required to

be known in advance). The main benefits of using a message queue include [123]: (i)

it supports asynchronous mode of communication without direct connection and is

independent of time, (ii) message prioritization, (iii) support data recovery, and (iv)

higher data integrity, and security. Though, the queuing model supports message

prioritization and reliable delivery of messages, shared access is limited and time

consuming [124].

44 Chapter 2. Literature Review

Message queues support seamless communication and coordination among the

components of a distributed application. Message queues are the best option to pro-

vide disconnectedness in distributed environment due to the following reasons [125]:

(i) optimization and better performance: queues support asynchronous communi-

cation where both the sender and receiver interact with the queue and not directly

with each other. This arrangement ensures that no component has to wait for an-

other, enhancing the optimization of data flow, (ii) improved reliability: message

queues ensure data persistence and minimize errors during system downtimes. En-

hanced fault tolerance can be achieved by using queues between components; even

if one part becomes inaccessible, others can still interact with the queue. Mirroring

the queue further improves availability, (iii) scalability: queues eliminate the risk of

collision of requests from different components and facilitate effective distribution of

workloads, and (iv) support for decoupling: message queues provide a streamlined

way for decoupling distributed systems.

2.5.3 Disconnectedness using Middleware Systems

Middleware systems enable applications to function in intermittently connected en-

vironments by implementing disconnected mode operations through: (i) caching

(manages local caches of frequently used data for client devices, allowing access to

recent data during disconnection. However, it can cause network delays and is vul-

nerable to failures), (ii) buffering (holds user actions and data modifications made

offline, synchronizing changes when connectivity is restored, ensuring data isn’t lost),

and (iii) push-pull communication (push refers to the server updations to the clients

upon reconnection and pull refers to the notification by the clients to the server

upon reconnection and request updates). Frequent push-pull can lead to network

congestion and potential data loss [126][127][128][129].

From the literature, it is clear that message queues are the best option to pro-

vide disconnectedness in a distributed environment. A summary of the performance

of various methods used to support disconnectedness is given in Table 2.4.

2.6. Security: Possible Attacks and Solutions 45

Table 2.4: Summary of the performance of various meth-

ods used to ensure disconnectedness

Methods Advantages Disadvantages

Caching of data and

shared file system

Optimistic replica control

approach

Resource scarcity and con-

flicts

Message queues Asynchronous communica-

tion, message prioritization,

support for reliability, in-

tegrity, scalability, data re-

covery, security, fault tol-

erance, and decoupling of

components, suited for dis-

tributed environments

Shared access is limited and

time consuming

Middleware systems Proper data synch, fast up-

dation

Network delays, vulnarable

to failures, congestion and

suffers potential loss of data

2.6 Security: Possible Attacks and Solutions

Data transmitted over the network is vulnerable to many types of attacks. Depend-

ing on binary serialization formats alone cannot safeguard the data and guarantee

secure transmissions across the networks. A robust and reliable security schema is

essential to maintain the integrity and confidentiality of data. Following are the

major attacks on web services and SOAP messages [130][131]: (i) parameter tam-

pering attacks: these attacks are also known as input validation or data manipula-

tion attacks that involve changing application data, including user passwords and

permissions and other information, by altering parameters that are communicated

46 Chapter 2. Literature Review

between the client and server. The XML injection and SQL injection attacks are

two different types of parameter tampering attacks, (ii) rewriting attacks: a message

is intentionally altered or corrupted by attackers without modifying its signature.

The attackers manipulate the content of the message, attempting to deceive the re-

cipient without being detected by the authentication mechanisms in place. Despite

the message being changed, the signature on the message remains intact, making

it appear genuine and trustworthy, (iii) denial of service (DoS): these attacks are

carried out to disrupt specific services or the overall functioning of an entire applica-

tion as intended. These attacks are typically executed by depriving the application

resources, making it unavailable to users. Various methods to achieve this attack

include intentional data overwriting and overloading servers with a flood of requests,

leading to slowed performance, unresponsiveness, or complete down, and (iv) error

handling: attackers may retrieve sensitive information about the internal state of

web services by catching uncaught exceptions.

This section focuses on rewriting attacks due to the following reasons [130][132]:

(a) wide impact: rewriting attacks pose a substantial security risk to system func-

tionalities, especially considering the widespread use of XML in data exchange and

storage representation among various applications, (b) data integrity and confiden-

tiality: rewriting attacks can result in the modification of both its structure and

content, leading to the corruption and inaccuracy of the information. This causes

a significant threat, especially when dealing with sensitive data such as personal,

financial, and government policy related information. The consequences of such al-

terations can be severe, potentially causing irreparable damage to the integrity and

reliability of the data, and (c) fraud and impersonalization: rewriting attacks can

lead to fraudulent transaction, identity theft, and impersonalization particularly in

financial transactions. Moreover, such manipulations can result in non - compliance

of regulations inviting legal actions, penalties and reputation damage.

Several standards such as WS Security, SOAP Account, WS Policy and WS

Policy Advisor are available in the literature to check rewriting attacks. The ap-

proaches used to prevent rewriting attacks in web services can be categorized into

2.6. Security: Possible Attacks and Solutions 47

policy - based approaches, inline approaches and string based approaches [133].

The integrity of SOAP messages is guaranteed by XML digital signatures. Be-

fore sending the message, the signer creates a hash of its contents. After receiving

the message, the receiver recalculates the hash for the received content. Any varia-

tion in the hash indicates a content change. Digital signatures can be applied to any

portion or even a specific element and are based on industry standard encryption

methods. Implementing digital signature and the verifying process is very complex

as it necessitates resource intensive operations such as computation of hash values

and message decryption. The main limitation of a XML digital signature is that a

signed XML element and along with its signature can be moved from one part of the

document to other while maintaining the validity of the signature. This behaviour

is mostly caused by the fact that the location of the signed element inside the SOAP

message hierarchy is not taken into account by the signature. This limits the scope

of an XML digital signature and could be exploited by the attackers to perform

unauthorized changes [134][135].

Rewriting attacks in XML files can be detected and prevented using Web Ser-

vice Policy (WS Policy). In this approach, appropriate security policies are recorded

in a policy file. Such policies impose a position for each signed XML element in the

policy file, and the person enforcing the policies should exercise utmost care while

prescribing security policies. A policy advisor tool to analyze the SOAP messages

is demonstrated in [135][136].

Bit Stream [137] is another policy - based approach that can locate and fix

SOAP faults. This method relies on SOAP elements to auto detect defects and

problems. Despite of its benefits, there are a number of issues with these techniques

such as (i) as WS Policy and WS Security rely on the XML digital signature specifi-

cations, these techniques will inherit the problems associated with employing XML

digital signatures, (ii) atmost care should be taken while framing policies because

any loop holes while prescribing policy can cause serious detrimental effects, and

(iii) the performance of policy advisors tend to degrade as the size of the policy file

increases [138][139][140].

48 Chapter 2. Literature Review

The structure of a SOAP message serves as the foundation for inline based

approaches, which modify the SOAP header by inserting additional elements to it.

The updated header is referred to as SOAP Account and it includes vital information

such as count of header elements, counts of child elements in the body, reference

counts for signing components, information about its parent, and child and sibling

objects. X.509 certificates are used to sign the SOAP accounts. The inline techniques

provide a novel idea to prevent rewriting attacks; it cannot guarantee to prevent all

types of attacks and is not efficient due to high complexity [139][141].

RewritingHealer presented in [141][142] is an extension to the inline approach

that incorporates additional information such as depth of the signed node and its

parent elements.

The XML - based attacks Tolerant SOAP (XaT-SOAP) approach [143], bifur-

cates the SOAP message to its content and header for enforcing security. A SOAP

message structure is framed first. Then a SOAP message is created according to the

structure and later the header is attached to it. This approach provides a provision

to validate the message and to detect rewriting attacks at the receiving end. This

approach exhibits significant improvements but still has serious flaws [141][143].

The string based approach [141][144] takes into account the absolute path from

the root node to the signed element using a subset of XPATH expressions referred

to as FastXPath. In normal circumstances, this strategy can protect the message

with minimal performance impact. But when the depth of the element increases,

the size of the SOAP message rapidly increases. This causes additional processing

overheads and performance issues. The cost for detecting security breaches is linearly

dependent on the depth of the XML. This is the main disadvantage of string based

approach [145].

To deal with Denial of Service (DoS) attacks in web environments, a self -

adaptive multi - agent architecture is proposed in [146]. The proposed method uses

a hierarchical classification approach with two phases. In the initial phase, a case

based reasoning engine is used for filtering attacks. The method is very complex as

it involves decision trees and neural networks for classification [146].

2.6. Security: Possible Attacks and Solutions 49

Fault Tolerant Web Services (FT-SOAP) is a fault tolerant framework pro-

posed for protecting SOAP messages from security attacks [147]. This framework is

based on the object fault tolerant service in COBRA architecture. Since COBRA

architecture is entirely different from that SOAP, the validity and performance is

yet to be proved.

A summary of the performance of various works to check rewriting attacks as

shown in Table 2.5

Table 2.5: Summary of the performance of various tech-

niques for resolving rewriting attacks in XML

Methods Advantages Disadvantages

Web Service Pol-

icy (WS Policy) WS

Security

Policy based approach, sup-

ports granular control

Complex to write policies

and maintain it, incurs ad-

ditional overheads, generates

false positives

XML Digital Signa-

tures

Standardized way to ensure

data integrity and authentic-

ity

Overhead for generating and

validating signature, difficulty

in key management, prone to

security attacks

Bit stream Policy based approach, uses

SOAP elements to auto detect

defects and problems

Inherits the problems associ-

ated with XML digital signa-

tures, complexity in writing

and managing policy files

RewritingHealer Inline approach, takes into

account the depth of signed

nodes

Inherits the problems of digi-

tal signature, complex to im-

plement

XML - based at-

tacks Tolerant

SOAP (XaT-

SOAP) approach

Inline based approach, pro-

vides provision to validate the

message, efficient

Cannot detect all types of

rewriting attacks

50 Chapter 2. Literature Review

FastXPath String based approach, pro-

tects all reasonable cases of

attacks

Requires long calculation

time in order to determine

the structural information,

processing overhead depends

on document size

Self - adaptive multi

- agent

Based on classification and

successfully defends DoS at-

tacks

Used for DoS attack only,

classification is a complex

process involving decision

trees and neural networks

Fault Tolerant

Web Services

(FT-SOAP)

FT-SOAP is interoperable,

less processing overheads

Only for COBRA, complex to

implement, validity and per-

formance is not analyzed for

SOAP

Several security standards and solutions have been developed to address rewrit-

ing attacks and enhance the overall security of data and applications. Commonly

used techniques to thwart unauthorized modifications include digital signatures, data

encryption, and secure communication protocols.

From the literature, it is very clear that many of the XML security standards

developed till date are based on concepts that overlap each other. Therefore, the

issues pertaining in one standard are carried over to the other. XML based methods

inherently suffer from message verbosity, causing performance related issues. Most

of these standards are prone to performance degradation and memory inefficiency

while implementing [148][149].

As there is no single solution to tackle rewriting attacks, a multifaceted com-

bination of these techniques, including input validation, encryption, secure coding

practices, adherence to security protocols, and ongoing security assessments, is vi-

tal in mitigating the risks associated with rewriting attacks and maintaining the

integrity and confidentiality of data. Thus, security in data transmission is always

implemented in different layers to ensure the integrity and confidentiality of the

2.7. Summary 51

data. This delegation of security measures to different layers of a communication

system ensures the data is protected even though there is a breach in one layer or the

other and the overall system reliability is not compromised. A layered approach is

most suited for data transmissions due to the following reasons: (i) defence in depth

approach (where each layer contributes to the overall system security. A security

breach in one layer can be tolerated and remaining layers act as a barrier to the

attackers guarante the overall system reliability), (ii) abstraction (makes it easier to

develop and maintain security measures in each layer without affecting other lay-

ers), (iii) adaptation (system can add or skip certain layers to meet specific security

requirements), (iv) flexibility and interoperability, and (vi) reduced complexity and

maintenance cost.

2.7 Summary

This chapter discusses the state of the art in four key characteristics of transac-

tion models for mobile wireless environments: data interchange formats, transac-

tion models, middleware architectures, methods for providing disconnectedness, and

methods for preventing unauthorized data modification.

Maximizing benefits in wireless mobile transmission requires modern infras-

tructure, support services, and specialized management. However, infrastructural

growth lags behind technological advancements, forcing stakeholders to reuse con-

ventional networks. Improving connectivity and enhancing existing systems, proto-

cols, and standards is essential to address this issue.

Human-readable non-binary data interchange formats like XML, JSON, and

YAML are verbose and unsuitable for mobile wireless environments. Their limi-

tations highlight the need for a novel format that improves data transmission in

resource-constrained settings, retaining XML’s advantages while being less verbose

and lightweight.

Mobile transaction models reported in the literature focus mainly on database-

oriented approaches, which are inadequate for the diverse transactions and message

52 Chapter 2. Literature Review

exchanges in mobile wireless environments. Thus, these models are unsuitable for

such environments. However, XML/HTML-based approaches offer viable features

for resource-constrained mobile settings.

Prominent middleware architectures show that SOA-based architecture is dom-

inant. It enables seamless communication between components as services, struc-

turing software as a collection of reusable, loosely coupled services with well-defined

interfaces. SOA middleware offers tools for service discovery, invocation, and co-

ordination, simplifying these processes within the application. For large-scale dis-

tributed networks, designing software with openness and standardization to interact

with various services is essential.

Due to unreliable and unpredictable mobile network conditions, a disconnected

mode of operation is essential. A queuing model is the most suitable for this, offering

asynchronous communication, reliability, fault tolerance, scalability, and component

decoupling. These benefits ensure seamless, efficient communication and reliable

message delivery despite network interruptions.

Unauthorized message adulteration during transit is a significant concern. Most

literature focuses on protecting XML documents, but many XML security standards

overlap, inheriting each other’s issues. XML’s verbosity leads to performance and

memory inefficiencies. Thus, there is a clear need for a novel transaction model

suitable for resource-constrained wireless environments.

2.8 Research Gaps Identified

The literature survey gives light into the following gaps:

1. Need of a schema-aware, human-readable, platform-independent, extensible,

and lightweight data interchange format suitable for wireless mobile environ-

ments as an alternative to widely-used formats like XML and JSON.

2. Development of a lightweight and reliable transaction model capable of sup-

porting transactions in distributed wireless mobile environments, including

support for paginated mode and operations during network disconnections.

2.8. Research Gaps Identified 53

3. Implementation of mechanisms to prevent unauthorized modifications of mes-

sages during transit, ensuring message integrity and security in wireless mobile

communication scenarios.

Chapter 3

LXML - The Proposed Lightweight

Data Interchange Format

3.1 Introduction

An effective data structuring and formatting mechanism is essential for man-

aging data traffic, to prevent excessive bandwidth usage and for ensuring portability

& interoperability in a resource constrained wireless environment. The data trans-

mission rates and performance can be significantly impacted by the selection of an

appropriate data interchange format [117][150]. Efficient communication between

the devices helps in mitigating the infrastructure costs to a great extent.

In this chapter, a novel data interchange format called Lightweight XML (LXML)

is proposed as an alternative to prominent data exchange formats such as XML and

JSON. The format is lightweight, schema aware, extensible, language and platform

neutral, and human readable that is well suited for resource constrained wireless

environments.

3.2 Characteristics of a Data Interchange Formats

A data interchange format defines the ways the data is communicated between the

devices and applications. In a heterogeneous environment with multiple data sources

and clients, the data interchange format plays a crucial role in communication and its

54

3.2. Characteristics of a Data Interchange Formats 55

efficiency [88][118][119][151]. The characteristics of a data interchange format are

simplicity, generality, unambiguity, extensibility, completeness, schema awareness,

ease of implementation, platform neutrality, adherence to existing standards and

availability [88][119][150].

(i) Simplicity: A non binary data interchange format should be human readable

and simple to use and understand. As the complexity of the format increases,

the overhead to transmission, parsing will be increasing dramatically.

(ii) Generality: The format should be independent of the platform, communica-

tion protocols and other methods used to exchange information. It should be

applicable in all circumstances and scenarios that are pertinent to a particular

domain.

(iii) Unambiguous: The format should represent the dataset in an unambiguous

way. Any attempt to make the model precise, should not affect the semantics

of the data exchanged. The model should act as a blueprint for easy mapping

of data in any domain.

(iv) Extensibility: The format should be extensible in the sense that information

can be included without any additional overhead. The format should be a

free - form structure that does not impose any structural restrictions. This

property is crucial due to the reasons such as system upgrades, technological

enhancements and additional requirement enhancement. Hence the format

should encourage the development and integration of related tools and appli-

cations.

(v) Completeness: The model should offer the ability to express and represent all

pertinent characteristics of the domain. Variety of dataset or dataset standards

may be used for exchange and the model should support federations for these

dataset.

(vi) Schema aware: Any data interchange format used in data communication

should adhere to a schema to avoid data inconsistency and transmission flaws.

56 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

Schema imposes a structure to the document and the validity and well formed-

ness of the document can be ensured based on the schema.

3.3 Lightweight XML (LXML) Format

XML is a hierarchical modelling language that uses user defined tags to represent

parent – child relationships. The proposed LXML format is based on XML. It uses

a hierarchical representation that never uses user defined tags to hold the data as

in XML. In any hierarchical representation, data items will be placed in different

levels. The top most tag will usually be a container tag that holds other containers

or atomic tags. This top container tag is kept in level 0 and its immediate child is

considered as level 1. A document contains many levels with a mix of atomic and

container tags in hierarchy. The deeper the data goes, the level number increases.

The LXML is a level number based hierarchical representation. The top most

tag in the document called the root tag is kept as such to identify the transaction

or the document. The immediate child nodes of the root tag are marked as level

0 and the level numbers of successive child nodes increases by 1. All sibling nodes

at a particular level will share the same level number. Table 3.1 shows an XML

document with level number identified for each tag.

To create a LXML message for a given set of data, the root tag is kept as

such without tags symbols or any angle brackets. The data items are included by

appending their corresponding level numbers as a pattern <Level Number> data.

A sample LXML message generated for a given simple XML document without any

container tags is shown in Table 3.2.

In Table 3.2, the root tag product is a container tag with three simple and

atomic child tags. These entire nodes are at the same level 0. In many scenarios such

as e - commerce and business transactions, the XML document contains repetitive

container tags as shown in Table 3.3. In such cases, the nested container tags are

considered as level 0 and its child tags constitute level 1.

In business transactions, a combination of simple atomic tags and nested con-

3.3. Lightweight XML (LXML) Format 57

Table 3.1: An XML document with level numbers marked for its tags

<products>

<brand>soniscorp</brand> --> level 0

<prodyear>2020</prodyear> --> level 0

<product> --> level 0

<name>television</name> --> level 1

<date>

<month>Jan</month> --> level 2

<year>2020</year> --> level 2

</date>

<price>1000</price> --> level 1

</product>

<product>

<name>refrigarator</name>

<date>

<month>Jan</month>

<year>2020</year>

</date>

<price>1500</price>

</product>

</products>

tainer tags together constitute a transaction. Such atomic tags are mostly used to

provide additional description about the container blocks. While creating LXML

messages for such XML structures, a sudden decrease in level number will be ob-

served to depict the level changes. The LXML message generated for an XML

document with mixed tags are shown in Table 3.4.

58 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

Table 3.2: The LXML message generated for a simple XML message with no con-
tainer tags

XML Format LXML Format

<product>

<name>television</name>

<manufacturer>sonis</manufacturer>

<price>100</price>

</product>

product

<00>television

<00>sonis

<00>1000

Table 3.3: LXML message for an XML with nested container tags

XML Format LXML Format

<products>

<product>

<name>television</name>

<brand>soniscorp</brand>

<price>1000</price>

</product>

<product>

<name>refrigarator</name>

<brand>abccorp</brand>

<price>1500</price>

</product>

</products>

Products

<00>

<01>television

<01>soniscorp

<01>1000

<00>

<01>refrigerator

<01>abccorp

<01>1500

3.4 Handling Tag Attributes

An atomic tag or nested tag can have associated attributes and values. An attribute

associated with any tags is used to provide additional information relevant to that

tag. A tag can have any number of attributes provided each attribute name is unique

3.4. Handling Tag Attributes 59

Table 3.4: LXML generated for an XML document with mixed tags

XML Format LXML Format

<invoice>

<brand>

<name>ABC Corp</name>

<model>Series A</model>

<addr>Delhi</addr>

</brand>

<products>

<product>

<name>A01</name>

<price>1400</price>

<units>15</units>

</product>

<product>

<name>A02</name>

<price>1450</price>

<units>10</units>

</product>

</products>

</invoice>

Invoice

<00>

<01>ABC Corp

<01>Series A

<01>Delhi

<00>

<01>

<02>A01

<02>1400

<02>15

<01>

<02>A02

<02>1450

<02>10

for a tag. In LXML messages, the attributes can be associated with the tag levels of

corresponding tags according to the format <level attribute1 = value1, attribute2

= value2> as shown in Table 3.5.

60 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

Table 3.5: LXML message for a XML message with attributes

XML Format LXML Format

<products>

<product series=’A’>

<name grade=’A1’>tv</name>

<brand>soniscorp</brand>

<price>1000</price>

</product>

<product series=’B’>

<name grade=’A2’>fridge</name>

<brand>abccorp</brand>

<price>1500</price>

</product>

</products>

products

<00 series=’A’>

<01 grade=’A1’>tv

<01>soniscorp

<01>1000

<00 series=’B’>

<01 grade=’A2’>fridge

<01>abccorp

<01>1500

3.5 LXML Schema

Schemas provide the fundamental building blocks for data organising tasks especially

while dealing with bulk amount of data. Document organisation, including sections,

paragraphs, lists, and figures, can be described by a document schema. Adherence

of a document to its schema is really helpful in document structuring, organizing

data, and processing and extracting data at the other end as well.

LXML uses a reference XML as its schema. The LXML messages are created

in accordance with this schema. Creation of LXML Schema is a one - time task and

provides the details of root tag, atomic tags, repeating container tags, attributes and

the overall document structure. Any number of LXML records could be added as per

this schema. The LXML Schema will be available at the source end where LXML

messages are created and at the destination end where the document is extracted

and processed. There will be a LXML Schema defined for each LXML transaction;

3.6. LXML Document Handling 61

it defines the mapping rules associated with it. The tag name given for the root tag

should exactly match with that defined in the LXML Schema. The tag name used

for atomic and other nested tags is not a concern for transmission but may help in

processing and database object creation during data storage.

Table 3.6(a) illustrates a sample invoice XML document that displays the de-

tails of products manufactured by a certain organization. This sample XML given

is a huge document that holds the details of thousands of products. The LXML

message generated corresponding to this sample XML is also displayed as Table

3.6(b). The LXML Schema required for handling LXML messages is as shown in

Table 3.6(c). It conveys the overall structure of the document including the details

of root tag, container tags, and repetitive tags. Any tag having attributes should

also be specified in the LXML Schema. It is very clear that the LXML Schema is

not an exact copy of the XML message and is independent of the size or number of

records available in the LXML document. LXML Schema is a hierarchical represen-

tation of elements contained in the original XML document. LXML Schema surely

helps in validating the LXML message at the destination and any mismatch can be

easily identified and isolated.

3.6 LXML Document Handling

Document handling refers to the collective steps taken to manage the LXML doc-

ument throughout their life cycle ranging from its creation, transmission, retrieval,

storage and ultimately, to its disposal. This involves organizing and managing the

document in such a way that it can be easily accessed by the users. The steps in

handling an LXML document are as demonstrated in Figure 3.1.

3.7 LXML Generation

When handling LXML documents, the first step is to create the LXML document

according to the format laid down by the LXML Schema. This step involves defining

62 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

Table 3.6: XML message with corresponding LXML message and LXML Schema

(a) XML Format (b) LXML (c) LXML Schema

<invoice>

<brand>

<name>ABC Corp</name>

<model>Series A</model>

<addr>Delhi</addr>

</brand>

<products>

<product>

<name>A01</name>

<price>1400</price>

<units>15</units>

</product>

<product>

<name>A02</name>

<price>1450</price>

<units>10</units>

</product>

<product>

<name>A0n</name>

<price>1550</price>

<units>40</units>

</product>

</products>

</invoice>

invoice

<00>

<01>ABC Corp

<01>Series A

<01>Delhi

<00>

<01>

<02>A01

<02>1400

<02>15

<01>

<02>A02

<02>1450

<02>10

<01>

<02>A0n

<02>1550

<02>40

<invoice>

<brand>

<name></name>

<model></model>

<addr></ addr>

</brand>

<products>

<product>

<name></name>

<price></price>

<units></units>

</product>

</products>

</invoice>

3.7. LXML Generation 63

XML Document

LXML Generation

Transmission

LXML Schema LXML Parsing

Storing/

Presenting

Receiving

Message

Figure 3.1: Steps in handling LXML document

XML Document

Mapping Rules

LXML Template

Figure 3.2: Generating LXML document

level based tags and attributes to represent the structure and content of the LXML

document. There are two ways to create LXML documents - a LXML document

can be generated from an existing XML document. This step is considered as easy

as the schema is already in hand. Alternatively, LXML documents can be directly

generated in accordance with the LXML Schema.

The LXML document represents data in a hierarchical fashion as in XML. The

LXML document is created from an XML document based on a set of mapping rules

(Figure 3.2). These mapping rules define the attributes, level numbers in case of

nested container tags and repetitive blocks. The mapping rules are defined in the

LXML Schema. The LXML thus generated is found to be less verbose than that of

64 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

the XML documents.

Algorithm 1: Algorithm to generate an LXML message

Data: Data in plain / XML form

Result: LXML String

Set level number l as 0

if the document has a non-empty root node then
Add the node to the resultant LXML

end

for each child node T in the XML document do

if T is a simple node then
Extract the data from the node and add to the LXML as <level

No> data

end

if T is a container node then
Increase the level number

for each child node T in the conatiner node do

if T is a simple node then
Extract the data from the node and add to the LXML as

<level No> data

end

end

Decrease level number

end

end

The steps to generate an LXML message from an XML is given as Algorithm

1. The root tag name of the XML is retained in LXML message to identify the

transaction. The data is extracted directly from simple non-nested tags and added

to the LXML message along with its level number. Container tags holds repeating

blocks in the XML and such blocks are iterated to retrive the data. The number

of iteration required depends on the level of nesting in the XML document. Nested

blocks keep data one level lower than its parent node. So each iteration increments

3.8. LXML Parsing 65

LXML Document

DOs

Mapping Rules

Data

Figure 3.3: Steps in LXML parsing

its level number to indicate the nesting. After processing nested blocks, the level

number is decremented.

The complexity of this algorithm depends on the level of nesting used in the

XML file. LXML generation of an XML file with only simple tags yields a constant

complexity where as the complexity for a file with one level of nesting will be O(n).

3.8 LXML Parsing

LXML parsing is the process of analysing the document and extracting information

after breaking it into its constituent components. Parsing is essential to migrate the

data contained in the document into any desired format or storage.

Though LXML is a format derived from XML, the parsing techniques used in

LXML are quite different from XML. In XML there are many parsing techniques

such as DOM and SAX which convert the document into a tree - like structure before

parsing. This tree structure creation incurs additional overhead in processing and

memory requirements. A template based mapping model is proposed for parsing

the LXML document. LXML parsing is carried out in two steps: (i) creating data

objects (DO), and (ii) mapping (refer Figure 3.3).

Data Object (DO) is a structural pattern that enables us to separate the ap-

plication / business layer from the persistence layer. Usually, DOs are defined as

66 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

a class or user defined data type, with data members and member functions corre-

sponding to each tag in the corresponding LXML document. The member functions

available in DOs are setter and getter methods for each data member. A sample

XML document with its LXML alternative and data binding class is shown in Figure

3.7.

Table 3.7: An XML message, its LXML equivalent and Data Object

XML Format LXML Format Data Binding

<product>

<name>television</name>

<manufa>sonis</manufa>

<price>100</price>

</product>

product

<00>television

<00>sonis

<00>1000

Class Product {

String name

String manufa

int price

}

A single LXML document may map to multiple DOs depending on the business

needs and document structure. A sample LXML document and its data binding class

are shown in Figure 3.8.

The terms mapping or binding refer to the process of assigning LXML tag

values to corresponding data models utilizing the set of binding rules defined earlier.

Since the binding rules are defined much earlier, a static data binding approach is

used. The tag values are assigned to the data members of the DOs corresponding to

the specification given in the LXML Schema. The mapping rules given in the LXML

Schema is the basis for data extraction as shown in Figure 3.3. The splitting of the

document is done based on level numbers. LXML data with same level numbers

can be split and dynamically assigned to the DO easily. An LXML document with

repeating groups will generate an array of DOs. The DOs later can be readily stored

to a relational database or presented to the user interface as required.

3.9. Performance Evaluation 67

Table 3.8: Data binding of a sample LXML document

XML Format LXML Format Data Binding

<invoice>

<brand>

<name>ABC Corp</name>

<model>Series A</model>

<addr>Delhi</addr>

</brand>

<products>

<product>

<name>A01</name>

<price>1400</price>

<units>15</units>

</product>

<product>

<name>A02</name>

<price>1450</price>

<units>10</units>

</product>

</products>

</invoice>

Invoice

<00>

<01>ABC Corp

<01>Series A

<01>Delhi

<00>

<01>

<02>A01

<02>1400

<02>15

<01>

<02>A02

<02>1450

<02>10

Class Brand{

String mname;

String model;

String address;

}

Class Product{

String pname;

float price;

int units;

}

3.9 Performance Evaluation

In resource constrained networks such as mobile messaging environments, an en-

hanced messaging format is primarily required to boost data transmission efficiency

[152]. Such an enhanced, lightweight data interchange format provides many bene-

fits:

(a) Reduced data size: An efficient data interchange format reduces the amount

of data transmitted between the communicating devices. A reduction in data

68 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

size reduces the demand for resources such as bandwidth, memory and energy

which are very critical in resource constrained environments.

(b) Fast processing: A lightweight, less resource intensive format can be processed

more quickly than its heavy weight alternative.

(c) Improved reliability: The likelihood of error and corruption during transmis-

sion will be less in an efficient data interchange format. This enhances the

data integrity and reliability.

(d) Higher compatibility: An efficient data interchange format can be designed

to be compatible with a wider range of devices and systems, which is highly

appreciated in environments where interoperability is crucial.

This section discusses the results of the experiments carried out to demonstrate

the performance of the proposed format. The performance of the LXML format is

evaluated using the following performance parameters: verbosity, content density,

parsing time, serialization & deserialization time, marshalling & unmarshalling time,

and transmission time [153][154]. The values obtained are compared with that of

XML and JSON, the most prominent data interchange formats, to emphasize the

potential of the proposed format.

To consider different aspects in experimentation XML, JSON and LXML doc-

uments of varying sizes and object counts are considered. The documents are clas-

sified into four categories depending on the size as shown in Table 3.9, based on the

discussion in [75].

Table 3.9: Dataset for experiments

Dataset File Size No. of Records

Very small in KBs 1 - 20

Small Less than 0.5 MB 100 - 1000

Medium 0.5 MB to 1 MB 1000 - 20000

Large Above 1 MB 100000 - 150000

3.9. Performance Evaluation 69

Table 3.10: Verbosity of XML, JSON and LXML documents for varying file sizes

Format Very small

(Size in KB)

Small(Size in

KB)

Medium (Size

in KB)

Large (Size in

KB)

XML 4.57 376 603 2190

JSON 3.90 314 689 2307

LXML 2.52 209 309 1342

3.9.1 Experimental Setup

The environment to test the proposed format is configured using a laptop (with core

i3 processor, 4GB RAM, and Microsoft Windows 10 as operating system) and a

mobile phone (Android version 9). The laptop has JDK version 1.8 installed. JABX

toolkit and Jackson API [155] are used for marshalling and unmarshalling XML and

JSON objects. SoapUI tool is used for simulating servers. The experiment is carried

out with sample files of varying sizes (Table 3.10). Each experiment is repeated at

least three times and average values are considered to ensure the accuracy and the

reliability of the simulation.

Verbosity

Verbosity refers to the level of detail or amount of information present in the doc-

ument. It is always a factor of document size. When the verbosity increases, the

transmission overhead increases proportionally. So, a less verbose format is suitable

for data exchange especially in resource constrained environments.

The verbosity of XML, JSON, and LXML documents for various categories of

dataset are displayed in Table 3.10. The result is plotted as a graph by taking file

sizes on the Y axis and the X axis representing XML, JSON, and LXML formats as

shown in Figures 3.4, 3.5 and 3.6, for small, medium and large file sizes respectively.

It is clear that LXML is the least verbose representation and XML is the most

verbose among the three formats. JSON reported an advantage over XML in small

files; as and when the file size increases, the performance of JSON is more or less

70 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

Figure 3.4: Verbosity comparison (Y axis) of XML, JSON, and LXML (X axis) for
small category files

3.9. Performance Evaluation 71

Figure 3.5: Verbosity comparison (Y axis) of XML, JSON, and LXML (X axis) for
medium category files

72 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

Figure 3.6: Verbosity comparison (Y axis) of XML, JSON, and LXML (X axis) for
large category files

3.9. Performance Evaluation 73

equal to that of XML.

While discussing the document verbosity, another factor to be considered is

the size of the schema. As the schema defines the structure and organization of the

document, its size also matters. JSON does not support any schema. All the datasets

mentioned in Table 3.9 have the same LXML Schema. Verbosity of XML Schema

and LXML Schema is tabulated in Table 3.11. As the schema is independent of the

number of objects present in the document, its size remains the same for all samples.

It can be inferred that the LXML Schema is less verbose than XML Schema.

Table 3.11: Verbosity comparison of XML and LXML Schema

Format Verbosity

XML Schema 1.34 KB

LXML Schema 246 Bytes

Content Density

Content density is the ratio of total amount of data available in the document to the

total size of the document [153][156]. Content density of any data interchange format

designed to transmit data in a resource constrained environment is critical due to

many reasons. A format with higher content density allows transmitting more data

in a short period of time reducing resource required for data exchange. Content

density is also considered as important in storage and retrieval of data especially

while dealing with bulk amounts of data. In short, a data interchange format with

a high content density can improve the speed, efficiency, and performance of data

exchange and processing; it also reduces the storage requirements and costs.

A format with content density 1 is considered as more efficient. Adding more

metadata pushes the content density towards 0, making it a verbose format. Table

3.12 displays the content density values of XML, JSON and LXML formats for all

categories of dataset. A graphical representation of the content densities for various

data interchange formats are displayed in Figure 3.7.

74 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

Figure 3.7: Comparison of content densities (Y axis) of XML, JSON, and LXML (X
axis) documents with varying sizes

3.9. Performance Evaluation 75

Table 3.12: Comparison of content density for XML, JSON, and LXML documents

Dataset XML JSON LXML

Very small 0.406 0.521 0.814

Small 0.423 0.534 0.815

Medium 0.337 0.438 0.767

Large 0.464 0.585 0.859

It is clear that the content density values of LXML is close to 1 for all the data

sets. XML is the most non-compact format and JSON has a slight advantage over

XML. It can be inferred that data content in an XML document is much less than

50% of the total document size, whereas in the case of LXML, it is above 80%.

Parsing Time

Parsing refers to the process of extracting relevant data from a document. In addition

to data extraction, parsing is required for validating and transforming the document

to a different format as well. Processing speed is more important in a wireless

environment as mobile devices have less processing power compared to static devices

[55][157].

XML uses different technologies to parse the document. Commonly used pars-

ing approaches in XML include DOM, SAX, XPath and Pull parsers [74][158]. The

DOM parser converts the XML document to an in - memory object tree represen-

tation and keeps the entire tree in the memory for processing. SAX parsers are

event based parsing techniques that processes the XML document sequentially; the

document is converted into a series of identified events. Though SAX parsing is fast

and memory efficient, it requires more coding effort than DOM parsing. XPath is a

query language that allows selection of specific elements in an XML document.

Performance of parsing the XML and JSON depends on the technology used.

Parsing an XML document using JavaScript is more efficient than JSON; but in

the case of querying, JSON has an edge over XML [154]. In this experiment, DOM

76 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

parsers are used for XML parsing due to its simplicity and intuitive nature. DOM

- like and SAX - like parsing approaches are available for parsing JSON documents.

For this experiment, Java API JsonParser [79] is used to parse JSON. As LXML

uses object based mapping techniques for parsing documents, a standalone Java

program is written to parse LXML documents. The average time consumed (in ms)

in parsing XML, JSON and LXML documents consisting of different record count

is as shown in Table 3.13.

Table 3.13: Parsing time for XML, JSON, and LXML documents of varying number
of records

Average time consumed (in ms)

No of Records XML JSON LXML

1000 129 90 79

5000 534 326 261

10000 1320 779 731

The results are graphically presented in Figure 3.8 (Parsing time in the Y axis).

It can be inferred that LXML parsing technique consumes less time compared to

that of XML and JSON. This is due to the fact that LXML does not have processing

overhead in terms of processor time and memory.

Serialization and Deserialization Time

Serialization is the process of converting an object to a format that can be easily

transmitted over the network. Usually this process converts the object into a stream

of bytes. Deserialization is the process of converting the serialized data back into an

object. This is performed at the receiving end where the stream of bytes is converted

back to objects.

Serialization and deserialization are important concepts in networking as it

specifies how easily the data is transmitted or stored in standard format [159][160].

Serialization and deserialization operations performed on data interchange formats

such as XML and JSON objects. The execution speed in serializing and deserializing

3.9. Performance Evaluation 77

Figure 3.8: Comparison of parsing time (Y axis) for XML, JSON, and LXML (X
axis) documents of varying number of records

78 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

objects is an important performance criterion in data interchange formats [40]. This

performance evaluation is carried out using XStream [161] and JSON libraries [162],

for XML and JSON, respectively. The time required to serialize the objects at the

serving side is positively correlated to the number of objects [81].

Table 3.14: Serialization and deserialization time (in ms) for XML, JSON and LXML

Average time elapsed (in ms)

Process Format Small Medium Large

XML 2.860 3465 7214

Serialization (average time

consumed in ms)

JSON 3.146 5356 10812

LXML 2.421 2954 5824

XML 5.320 4654 9405

Deserialization (average

time consumed in ms)

JSON 4.405 9476 18423

LXML 4.224 4320 8640

The average time consumed (in ms) for serializing and deserializing XML, JSON

and LXML documents for varying record sizes are tabulated in Table 3.14. It can be

observed that the proposed LXML format has an advantage over XML and JSON

in terms of time required for serializing and deserializing for documents in the small

category (Figure 3.9). In medium and large files, LXML has reported a narrow edge

over XML in deserialization (Figure 3.10 and 3.11). But it has a clear performance

advantage over JSON. As the serialization and deserialization process directly impact

the transmission of the document, clearly LXML has an edge over other formats.

Marshalling and Unmarshalling Time

Marshalling and unmarshalling are important processes applied in data exchange

between heterogeneous systems or programs. Marshalling is the process of convert-

ing an object to a format acceptable for communication such as XML or JSON.

3.9. Performance Evaluation 79

Figure 3.9: Serialization and deserialization time in ms (Y axis) for XML, JSON,
and LXML (X axis) documents of small category

80 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

Figure 3.10: Serialization and deserialization time in ms (Y axis) for XML, JSON,
and LXML (X axis) documents of medium category

3.9. Performance Evaluation 81

Figure 3.11: Serialization and deserialization time in ms (Y axis) for XML, JSON,
and LXML (X axis) documents of large category

82 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

This process involves taking an object and generating a document out of it. Un-

marshalling is the reverse operation where the object is recreated. This involves

extracting the data from the document and creating the structured objects.

The time and memory consumed for marshalling and unmarshalling is consid-

ered as a performance criterion in data transfer [163]. High marshalling throughput

with less latency and compact memory usage is highly appreciated for achieving

higher overall performance.

The XML and JSON objects are serialized before performing marshalling. The

JABX toolkit and Jackson API are used for marshalling and unmarshalling these

objects [155][164]. Marshalling and unmarshalling LXML DOs are necessary while

processing and transmitting documents. In LXML the marshalling latency is the

sum of the time consumed for LXML serialization and DO mapping. Memory foot-

prints and execution time required for marshalling and unmarshalling various data

formats for small dataset is tabulated in Table 3.15 and the results are plotted in

Figure 3.12 and 3.13.

Table 3.15: Marshalling and unmarshalling time of XML, JSON and LXML

XML JSON LXML

File Size in KB (small) 8 3.9 2.52

Memory in KB (marshal) 533 91.57 73.24

Memory in KB (Unmarshal) 143 121.38 96.34

Execution Time in millisec (marshal) 0.024 0.0108 0.0102

Execution Time in millisec (Unmarshal) 0.044 0.0141 0.0143

It can be observed that the memory footprints and execution time for mar-

shalling and unmarshalling of LXML has a narrow edge over JSON and the perfor-

mance is far better than XML.

3.9. Performance Evaluation 83

Figure 3.12: Memory footprints (Y axis) for marshalling and unmarshalling for
XML, JSON, and LXML (X axis) documents of small category

84 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

Figure 3.13: Execution time (Y axis) for marshalling and unmarshalling for XML,
JSON, and LXML (X axis) documents of small category

3.10. Applications 85

Transmission Time

The transmission time is the time taken for a node to send a document to another

node. The transmission time depends on several factors such as the size of the docu-

ment, the transmission power, the distance between the nodes, and the modulation

technique used. Minimizing the transmission time can reduce energy consumption

and improve the network efficiency. Transmission time in Wireless networks can be

calculated using the following formula [165].

Transmission Time = Size/K + D/C (3.1)

K is calculated using the equation 3.2.

K = (2 * Size) / R (3.2)

Size is the packet size in bits, R is bit rate (in bps), and D is the distance

between nodes in metres, and C is the velocity of light for wireless communication

(in m/s).

The transmission time for various messaging formats is calculated by simulating

a network with two nodes 100 KMs apart. Data of different sizes is being sent

assuming the speed of signal as 1, 00, 000 KM per sec. The transmission time is

tabulated assuming there is no propagation delay and the rate of data transfer is 1

Mbps.

Time for transmission of XML, JSON and LXML documents using datasets

of small and medium categories, respectively, are tabulated in Table 3.16 and is

graphically presented in Figure 3.14. It is evident that LXML consumes the least

time compared to XML and JSON.

3.10 Applications

The proposed LXML data interchange format can be utilized in diverse fields and

applications. Few of them are listed below.

86 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

Figure 3.14: Transmission time (Y axis) for XML, JSON and LXML (X axis) doc-
uments of small and medium categories

3.10. Applications 87

Table 3.16: Transmission time (in ms) for XML, JSON and LXML documents of
small and medium categories

Format No. of Records Transmission Time (ms)

1000 (Small) 0.233

XML 5000 (Medium) 0.837

10000 (Medium) 1.690

1000 (Small) 0.128

JSON 5000 (Medium) 0.492

10000 (Medium) 1.231

1000 (Small) 0.0109

LXML 5000 (Medium) 0.32

10000 (Medium) 0.764

(i) LXML is a versatile solution for facilitating seamless data interchange across

diverse systems, applications, and platforms, effectively structuring and ar-

ranging data for seamless sharing and accessibility.

(ii) LXML can be used for efficiently transferring and presenting extensive prod-

uct information in dynamic websites and web APIs, enabling seamless data

transmission and dynamic filtering based on user interactions.

(iii) LXML is the correct choice for facilitating data exchange and communication

within mobile applications due to the inherent constraints of wireless mobile

platforms and the need to handle substantial volumes of data across various

industries such as healthcare, ecommerce, and finance.

(iv) LXML format can be preferred over conventional verbose formats for managing

and transmitting massive datasets in big data and analytics due to its superior

performance and efficiency.

(v) LXML format holds a distinct advantage over traditional data interchange

88 Chapter 3. LXML - The Proposed Lightweight Data Interchange Format

formats in IoT environments due to its efficiency and ability to facilitate com-

munication and operation within resource constraints.

3.11 Summary

XML and JSON are the two prominent data interchange formats that are human

readable. Despite their advantages, they have several performance overheads in

transmission and processing, especially in resource constrained wireless mobile net-

works. These overheads accelerate the energy consumption and drain the mobile

battery as well. An alternative data interchange format called LXML is proposed

which is lightweight, human readable, platform neutral, schema aware, language

neutral and extensible. The performance of the model is compared with XML and

JSON using six performance parameters. It is found that the proposed format has

an advantage in verbosity (40 - 48% and 30 - 40%, when compared with XML

and JSON, respectively). The LXML Schema is 4.6 times less verbose than XML

Schema. The content density of LXML averages to 80 - 85% of the document size,

which is far better than XML and JSON. LXML also has a considerable advantage

in parsing time, serialization & deserialization, marshalling & unmarshalling time,

and transmission time over XML and JSON (refer Table 3.17). Thus the new model

has the potential to be considered as an alternative data interchange format over

others, especially in resource constrained networks.

Table 3.17: LXML: Objectives Vs Accomplishments

Criterion XML JSON LXML

Verbose High Medium Low (40 - 48% and 30 - 40% ad-

vantage for LXML over XML and

JSON, respectively)

Schema aware Yes No Yes, with less verbosity (80 - 90%

advantage for LXML over XML)

3.11. Summary 89

Content density Low Medium Very high (85 - 120%, 48 - 75% ad-

vantage for LXML over XML and

JSON, respectively)

Parsing time High Medium Low (38 - 51% and 6 - 20% ad-

vantage of LXML over XML and

JSON, respectively)

Serialization &

deserialization

time

High High Low (Serialization: LXML has an

advantage of 14 - 24% over XML

and 23 - 46% over JSON. Deserial-

ization: LXML has an advantage

of 7 - 20% over XML and 10 - 55%

over JSON)

Marshalling &

unmarshalling

time

High Low Low (56 - 68% and 2 - 6% ad-

vantage for LXML over XML and

JSON)

Transmission

time

High Medium Low (51 - 61% and 15 - 40% ad-

vantage for LXML over XML and

JSON, respectively)

Chapter 4

Layered Architecture for the

Proposed Transaction Model

4.1 Introduction

Wireless mobile environment is distributed in nature with multiple interconnected

components processing tasks to achieve higher data availability, parallelism and

scalability. The components may share and exchange data and coordinate various

tasks. So, communication between the components and accessing data independent

of their location is crucial. In such an environment, an application running on a

handheld device needs to access data available in a CRM, server or any other shared

system.

For the reliable communication of data between applications, a transaction

model is inevitable. A transaction model in a distributed environment describes

the way communication is organized and managed between the participating com-

ponents within the system. Such a model helps to exchange information without

focusing on the inherent complexities of data communication.

Designing a messaging system for a distributed environment involving mobile

devices is a challenging task due to the heterogeneous and inconsistent nature of

the environment. Mobile applications make use of web services for exchange of in-

formation. In such cases, the devices act as mobile client systems. Though XML

90

4.2. Proposed Architecture 91

and JSON are the most widely used and universally accepted formats for struc-

tured data transmissions, these formats have been forcibly received by the mobile

community in spite of their verbose nature and considerably heavy processing re-

quirements. These requirements adversely affect the performance in the constrained

mobile wireless environment, due to the factors such as limited computing, storage

and energy capacities of mobile devices, and the slow and expensive nature of the

wireless network connections.

The proposed transaction model architecture is designed to overcome the limi-

tations of the existing messaging models in wireless mobile environments. Analysing

the existing models, it is clear that there is ample scope for performance improve-

ments in the areas such as processing interfaces, serialization, message size and

transfer protocols. Existing transaction models can also be enhanced with more

precise data representation formats like LXML. Since the processing interfaces, se-

rialization and protocols depend on the device configurations and capabilities, the

most promising solution is to reduce the bulkiness of data transportation. This step

will ensure a reverberating effect on all phases concerned with message exchange.

4.2 Proposed Architecture

The proposed model is a distributed multi - tier system based on the prominent

XML / HTML based agent communication model. This agent based model support

distributed, client - server based message exchange using XML. The proposed model

opts for the concise LXML format over verbose XML, streamlining data exchange.

The model is a three layered architecture as shown in the Figure 4.1. The layers

of the proposed model are: (i) client agent (Layer 1), (ii) middleware component

(Layer 2), and (iii) host server (Layer 3).

4.2.1 Client Agent

The client agent resides in the portable mobile unit and deals with client side activ-

ities. The client agent is responsible for communicating with the gateway interface.

92 Chapter 4. Layered Architecture for the Proposed Transaction Model

Server/CRM

DB

Interface Gateway

MsgQueue

Client Agent

Device Queue

Web Services Carrier / LXML

Middleware Component Client Side

Host Server

Figure 4.1: Block diagram of the proposed transaction model

It updates the connectivity status to the device through registration packets. Once

connectivity is established, it is responsible for generating and transmitting LXML

messages out of user interactions in the application user interface. Each message is

stored in its internal queuing system until it gets confirmation from the gateway. On

the other hand, the client system accepts the messages received from the gateway

interface and acknowledges its receipt. Later the LXML messages are parsed and

extracted.

4.2.2 Middleware Component

The data transfer between the handheld devices and the server is directed through

a middleware gateway interface system based on the Service Oriented Architecture.

The component acts as an intermediary and is responsible for resolving the differ-

ences between the devices and host layer. Usually, the middleware is hosted in a

powerful dedicated machine or as in-house in the host server.

The middleware component is composed of two subcomponents: the gateway

and the message queue. The gateway interface is the component responsible for

device registration and status tracking; it establishes communication with the hand-

held devices. It accepts message packets containing LXML messages from the devices

and converts it to a format acceptable to the host servers. Similarly, the messages

from the host server are received by the gateway interface and converted to LXML

messages before transmitting to the devices. To ensure the reliability, the gateway

4.2. Proposed Architecture 93

interface acknowledges the receipts of messages from both host and devices. Since

the messages can be sent and received as packets, the proposed model supports

pagination - a message or data item of considerably large size can be conveniently

segmented into packets of lesser size and transmitted.

In case a device is not available for data transmission, the message is stored

in the message queue available in the middleware system. Such messages are trans-

mitted and the queue is cleared once network connectivity is regained. Hence the

measures for disconnectedness is also incorporated in the proposed model.

4.2.3 The Host Server

The host server constitutes the backend data layer that is responsible for storing and

managing data in a centralized manner. It handles data storage, satisfies retrieval

and manipulation of data based on the requests received from the client system

through the middleware layer. It handles such requests ensuring data integrity,

consistency and security.

Data can be stored in databases or any other data storage systems. Business

applications make use of vital data repositories such as Enterprise Resource Planning

(ERP) and Customer Relationship Management (CRM) to run and manage their

business. While CRM software is responsible for managing the customer interactions

with the business, ERP acts as the central database for financial and operational

systems. In a distributed environment, these repositories are responsible for storing

and providing data to the client machines. Usually, such systems are hosted in high

end powerful systems or mainframes and expose web services for handling requests

– both query and updates from the devices. The functionalities of the host layer can

be summarized as follows:

(a) Centralized data storage and management: The host server system acts as

a central repository for storing and managing bulk amount of data. This

centralized approach ensures that data is consistent, easily accessible, and

can be efficiently managed and updated in a collaborative environment. It

94 Chapter 4. Layered Architecture for the Proposed Transaction Model

simplifies and abstracts the complexities of data management as well.

(b) Security and access control: Hosting data storage on a server enables to im-

plement robust security measures such as access control, authentication, and

authorization mechanisms at the server level. This ensures that the sensitive

data is protected and users or client applications can only access information

for which they have the appropriate access rights and permissions. Also, it is

easier to monitor and manage security measures implemented in such server

systems.

(c) Scalability and performance optimization: The host server system can be opti-

mized for performance and scalability through concurrent operations and effi-

cient workload distribution. Load balancing techniques can be implemented to

ensure that the system can handle increased traffic and user demands, making

it more scalable and responsive.

The middleware layer can be hosted either in the host layer or in a dedicated

system depending on the application and other security needs. While dealing with

sensitive data, the middleware is preferred to be hosted in inhouse servers. A detailed

discussion on the client agent and the middleware component and their interactions

is provided in Chapters 5 and 6, respectively.

4.3 Characteristics of the Proposed Model

The proposed transaction model is designed to transmit data in a wireless mobile

environment that faces many inherent issues related to connectivity, security, per-

formance and resource scarcity. Wide spread use of mobile Internet facilities has

transformed the way people interact, communicate, access information, and use dig-

ital services. This demands a better service quality and user experience in the field

of communication. The major characteristics of the proposed model are [148]:

(a) Compactness: The proposed model makes use of the lightweight LXML as the

format for data interchange. The LXML format is expected to be considered

4.3. Characteristics of the Proposed Model 95

as an alternative to conventional data interchange formats due to its concise

nature and other relevant performance advantages as discussed in the Chapter

3.

(b) Paginated: The amount of data communicated between the enterprise servers

and device may vary with applications and users. Both the communication

protocols and the device characteristics impose size restrictions on the amount

of data communicated in a packet. A data transmission beyond the actual

limit should be split into multiple transactions at the source and this process

is known as pagination. Such transactions are rejoined later before parsing

and extraction at the destination.

(c) Reliability: In an enterprise business model that has users with mobile hand-

held devices on the client side, data delivery is very crucial due to the following

factors: The mobile devices may join and disconnect from the network at any

time. It may use different options for connectivity ranging from short range

communication to Wi-Fi. It is to be noted that even when the communication

is based on TCP / IP protocols, there are many issues such as addressing

mobility issues due to inefficiency of network layer protocol and inefficiency

of application and transport layers [166][167]. Hence mechanisms to ensure

reliable data transmission are to be done at the application layer. In the pro-

posed model, a handshaking mechanism is used to ensure the reliability of the

data transfer. After transmitting a set of packets, it waits for its acknowl-

edgement. Acknowledgement contains sequence numbers that are successfully

delivered or not delivered properly. It can be either a ACK (all packets in

the set are properly received) or NAK (atleast one packet in the set is not

received). A negative or no acknowledgement results in retransmission of the

specific packets.

(d) Disconnectedness: One of the significant advantages of mobile computing is

data availability and the support for anywhere computing. The mobile client

device can access data from anywhere having the coverage. Also client de-

96 Chapter 4. Layered Architecture for the Proposed Transaction Model

vices may join or leave the connectivity at any time. The connectivity of a

device can be lost due to many reasons such as losing proximity from a Wi-Fi

router or node, power failures, lack of battery backups, and other kinds of hin-

drances. The data availability is a crucial factor in a multi - user distributed

environment. Relying on database replication techniques is not advised due

to resource constraints in the handheld device [168]. To address the issue due

to the “disconnectedness”, a message queuing system called disc queue and a

poll service is included in the proposed model. Messages transmitted during

disconnected state will be kept in the queue. Poll service is responsible for

checking and updating the device network status. Once the network connec-

tivity is restored, the transactions pending in the queue will be handled.

(e) Distributed: The proposed model supports and handles distributed processing

in the sense that the client component resides in the handheld device and

the middleware component is installed in another powerful machine. The

middleware software can be resident on the in-house server or a dedicated

system. Data is stored in a central repository to which all queries and updates

are directed to. This arrangement also offloads high computing tasks from

the mobile handheld device to the servers, paving a way for light load on the

mobile handheld device.

4.4 Summary

The three layered architecture for the proposed Lightweight, Reliable, Paginated,

Distributed, and Disconnected Transaction Model is designed to provide a robust

and flexible framework for managing transactions in a distributed and disconnected

environment. This architecture is particularly well suited for applications that re-

quire reliable data exchange and transactional support across multiple heterogeneous

nodes or devices. The key components and layers of this architecture include the

client agent, the middleware, and the host server. The model offers a comprehen-

sive framework for managing transactions in complex and dynamic environments. It

4.4. Summary 97

balances the need for lightweight operations with the critical requirements of data

reliability and consistency in distributed and disconnected scenarios, making it a

suitable choice for a wide range of applications in distributed environments.

Chapter 5

Design and Implementation of the

Client Agent Layer

5.1 Introduction

This chapter discusses in detail about the design and implementation of the first

layer of the proposed transaction model - the client agent layer.

5.2 The Client Agent

The client side of the proposed transaction model is resident on the handheld device

and coordinates the activities in the handheld device. This is the section where the

user directly interacts with the system. The client side interacts with the gateway

interface for the proper communication of user data. The functional block diagram

of the client system is shown in Figure 5.1.

In the proposed system, the client side handles three types of message transac-

tions as part of the communication between the device and the host server:

(a) Device initiated server updates: Applications use these types of message trans-

actions to insert, update or delete the data to the host server. These types

of messages originate from the handheld device and the size of such messages

depends on the amount of data to be updated. Server updates are intended

98

5.2. The Client Agent 99

Message

LXML Generation

Segmentation

and Reassembly

Queue Delivery and Ack

Connection

Management

LXML Message

Queue
Delivery and

Ack

Reassembly

LXML Parsing

Message

Outbound Message Inbound Message

Figure 5.1: Functional block diagram of the client agent

100 Chapter 5. Design and Implementation of the Client Agent Layer

to upload the device changes to the server so that other devices and users

get the latest updates. Such server updates are important to maintain data

consistency and integrity. These types of transactions are identified using a

character ‘U’ in the message type field in the header.

(b) Device initiated request / response messages: This transaction is used to query

and fetch data from the server to the device. The client device requests the

desired data specifying its filter conditions. Server, in turn, responds by pro-

viding the required data matching to the given filter. The amount of data

fetched depends on the filter condition and the application type. These types

of message transactions are used to update the devices with latest data from

the server upon the request from the user of the device. A character ‘Q’ in

message type is used to identify the request transaction and ‘R’ is used to

identify response transaction in the message header.

(c) Host initiated device updates: These types of messages originate from the

gateway / server without the request from the device. Gateway / server in-

tentionally pushes such data to the device. The data in the host server may

change due to some events in the server or due to the updates made by other

devices in a collaborated multi - client environment. In such a collaborative

environment, the latest updates should be pushed to all collaborating devices

to maintain consistency. Ignoring such updates leads to data inconsistency.

To identify such host initiated push messages, a message type ‘H’ is used in

the header.

The client agent has a different set of roles while dealing with messages received

from the gateway interface and the device generated server intented messages. The

major activities carried out in the client side are (i) connection management, (ii)

message transmission, (iii) message expiration management, (iv) message retrans-

mission, (v) disconnectedness, (vi) pagination (segmentation and reassembly), (vii)

delivery and acknowledgement, and (viii) message parsing and processing.

5.2. The Client Agent 101

5.2.1 Connection Management

A connection should be established between the client and middleware system before

transmitting messages. Whenever the application is running in the handheld device,

it will attempt to establish and maintain a constant connection with the middleware

interface. Various communication protocols such as HTTP, TCP/IP, WCTP or

any mobile device specific protocols are supported by the middleware interface.

The Android system uses HTTP protocol for connection establishment. When a

connection is established, the first packet will be sent as a dummy packet. The

dummy packet will always be sent from the device to the middleware. This dummy

packet will serve as a medium for device registration. Usually dummy packets will

not be acknowledged by the middleware. The interface will never send a registration

packet to the device. The registration packet contains following information:

- Packet Type: A packet type “dev-reg” is used to indicate that the incoming

packet is a registration packet

- Packet Length: The size of the packet

- Device Name/Address: Name of the handheld device. This name is used for

transmitting messages from the interface.

- Name/Value Pairs: Additional information if any, in the form of name value

pairs.

A sample device registration request is as shown below.

TYPE DEV-REG

ADDR <DEVICE ADDRESS>

NET IPH

STATUS DEV ACTIVE

Len : 4

Once the connection is successfully established the messages will be transmitted

and the interface can properly trace out whether the data is successfully delivered

102 Chapter 5. Design and Implementation of the Client Agent Layer

or not. A connection can be disrupted due to many reasons such as network failure,

and coverage issues. Once such issues are resolved, the system tries to re-establish

connection. If the connection cannot be established or fails, instead of discarding

the message and forcing the users for a repeat attempt, arrangements are made to

preserve the message and to resend it automatically when the connection is regained

by the client device.

5.2.2 Message Transmission

The client agent residing in the handheld device is capable of handling different

types of messages generated in the device or received from the host system. On

the device side, the application generates text messages and the text messages are

converted to LXML format for transmission to the middleware. This LXML message

is generated in accordance with the LXML Schema for that transaction. A sample

device generated request message for data synch is as shown below:

String msg = reqTransId + "|1" + userId + "|2" + pwd +

"|2" + transactionName +"|2" + "" + "|2" + "data";

Business applications send a text message in the above format to the messaging

API for transmission. The API handles serialization, segmentation and transmis-

sion of the LXML messages. Larger LXML messages are fragmented into multiple

segments depending on the size of incoming message (pagination). Each segment

will have a part of the actual message to be transported. The size of the segment

can be configured in the device depending on the client device characteristics. The

default size is set to 1400 bytes, the typical Internet packet size which avoids packet

fragmentation downstream [169]. An LXML message with multiple segments will

be sequentially numbered and transported in a serial manner after attaching the

header information. A typical packet format is as shown below.

Packet [<Header><Segment>]

The segment header consists of the following details:

5.2. The Client Agent 103

(a) Message type: A single character message type field is used to identify the

message type. A character “U” indicates that the message is used for updat-

ing the host server that are initiated from the device, “Q” indicates that the

message is a query request generated from device to the server so as to make

the device consistent with the server, character “R” indicates that the response

message generated from the server, and “H” indicates that the message is an

unsolicited message that is pushed by the server onto the device without any

request from device side.

(b) Sequence number: Every segment is sequentially numbered for identification.

A hexadecimal numbering system is used as sequence numbers. This unique

reference number associated with each segment helps in retransmission of lost

or damaged segments. The client must maintain an association between the

sequence number and the message content. The sequence number of the re-

quest transaction is copied to all the response messages corresponding to that

particular request. This helps in message / transaction tracking activities,

debugging and clearing the message queues.

(c) Total number of segments: This field indicates the total number of segments

generated for a particular user message. This count is obtained before trans-

mission and attached to each segment. This helps to identify the last segment

and end of a particular transaction.

(d) Device identifier: In a collaborative working environment, there will be multi-

ple devices attached to a single middleware system and communicating with

the same host. So there should be a way to identify the device. A device iden-

tifier is used to uniquely identify the client device. Device address is normally

used for identifying the device and is configured in the middleware system.

Middleware uses this identifier to correctly dispatch response messages to de-

vices. This field is different from the destination address. Device initiated

server updates and requests use middleware IP address as destination address.

(e) Checksum: A CRC checksum is calculated for the message and inserted in the

104 Chapter 5. Design and Implementation of the Client Agent Layer

header in order to identify any corruption or noise that is added intentionally

or unintentionally to the message during its transmission. Upon receiving the

packet, the CRC of each segment is recalculated and compared with the value

available in the header to identify the corruption. Any mismatch leads to the

rejection of the corresponding segment and needs retransmission.

(f) Acknowledgement: Acknowledgement is an optional piece of information at-

tached in the packet to inform the counterpart whether the previous packet

is properly received or not. This field contains the reference number of the

previous packet successfully received on the other end. This option provides

a piggyback mechanism rather than sending a separate message for acknowl-

edgement. This field may not always be utilized, but plays an important role

in server updates to maintain consistency.

A sample server update message is as shown below.

U01010021A0000020220531T12:18:13+05:30

DRET<01>adminuser<01>Test<01>EMP-DETAILS

Decoding of the above host update message is as shown in Table 5.1.

Header of a HTTP request and response received is as displayed in Table 5.2.

After a transmitting a packet, the sender waits for another transmission until

the first of the following events occurs:

1. An acknowledgement is received on the device

2. The connection is lost or disturbed

3. A timeout period of 60 seconds elapses without an acknowledgement for the

previous packet

5.2.3 Message Expiration Management

There is an expiry for every message transmitted over the network. Message ex-

piration occurs when all the individual segments of the message expire. Expired

5.2. The Client Agent 105

Table 5.1: Decoding a transaction

Component Meaning

U Host update message

01 Message segment number

01 Total number of segments

0 Host number

02 Length of device generated message

1A Device generated reference number

00 Check sum

00 Reference number acknowledged (piggyback)

20220531T12:18:13+05:30 Date and time

DRET Transaction name followed by data fields

Table 5.2: Header of a request and response received using HTTP

POST <DEVICE ADDRESS> HTTP/1.1 200 OK

HTTP/1.1 Content-Type: text/plain

Content-Type:application /x-www-form-

urlencoded

Date: Fri, 20 May 2022 11:12:23 GMT

Connection:close Content-Length:256

Via: ANDR-GTWAY..Accept:*/* < MESSAGE>

Host:127.0.0.1:8080

Content-Length:1024

Chksum:AA

SEQNO:01

<MESSAGE>

messages automatically generate a negative acknowledgement to the client appli-

cation. Expiration occurs in three scenarios: (i) acknowledgement timeouts, (ii)

106 Chapter 5. Design and Implementation of the Client Agent Layer

transmission timeouts, and (iii) message download timeouts.

(i) Acknowledgement timeout: It is the amount of time the client system waits

for an acknowledgement. Once this pre-set interval elapses, the message is

considered as expired and the system attempts for retransmission.

(ii) Transmission timeout: It is the number of attempts the client device should at-

tempt for message transmission when the first attempt fails. The transmission

timeout occurs mainly due to connectivity issues and are informed to users via

some alerts.

(iii) Message download timeout: This timeout occurs while downloading messages

to the client system. It is the amount of time the client should wait for message

segments. Message download timeout occurs when at least one segment in a

multi segment message fails to download.

5.2.4 Message Retransmission

On the client side, a segment or a message should be retransmitted if it does not

receive any acknowledgement for a pre-set timeout interval or the message segment

expires. When a message expires, all the constituent segments are considered as

expired. Status of such expired messages will be updated in the message queue.

When a message expires, the entire message should be retransmitted.

5.2.5 Measures to Ensure Disconnectedness

The most important characteristic of a distributed wireless environment is relocation

(mobility). The device may move from one point to another point according to its

mobility pattern. During this movement the chances for disconnection is higher.

Disconnectedness in a mobile environment refers to the state where the device loses

the network connectivity and is unable to send and receive data or signals. This

disconnection may be temporary or persistent according to the situation. A mobile

device can be disconnected due to many reasons such as:

5.2. The Client Agent 107

(a) Physical obstruction: Network signals can be obstructed by many physical

structures like buildings. This can cause disconnectedness or reduced signal

strength.

(b) Lack of coverage: There are many locations especially remote and rural areas

which are out of coverage. When the device enters such locations the device

experiences disconnectedness.

(c) Congestion: During peak hours, the network may experience congestion. This

congestion may lead to dropping of packets while handling large volumes of

data.

(d) Device or SIM card issue: Reasons such as device hardware or software mal-

functions, outdated operating system, firmware and other software, and issues

with the SIM card may cause interruption in the network.

(e) Operator related issue: Technical or infrastructure related issues from the

operator side can lead to outages and disconnection.

(f) Lack of plan or validity: Lack of appropriate plan and validity can lead to

disconnection.

(g) Roaming related issues: Device that moves from the home network may ex-

perience disconnection due to reasons such as inappropriate roaming plan,

incompatible technologies, and lack of roaming agreement with the operator.

A disconnection will adversely affect the ongoing transaction. To address this

issue the following facilities are proposed in the client: (i) a message queue called

disc queue, and (ii) poll service.

Disc Queue

The client agent residing in the mobile device and gateway interface maintains a

buffer to hold the messages that are failed to transmit. This buffer system main-

tained internally is called disc queue. When the device gets disconnected, the mes-

sages are pushed to this internal queue. When the user attempts to send a message

108 Chapter 5. Design and Implementation of the Client Agent Layer

in a disconnected state, the message is temporarily stored in the queue and the user

gets notified. Once the connectivity is regained, the messages are transmitted to

the intended recipients automatically without user intervention and queues will be

cleared.

Poll Service

The poll service is a component responsible for monitoring the network status in

the device and updating other components in the system. The poll service gets

activated when the device goes offline. This thread is periodically run to check the

device state. When the device regains connectivity, it sends a poll packet to the

middleware for updating its current status. Later the message queue is checked

for messages that are not transmitted due to disconnection. The transmission unit

attempts to transmit the queued messages one by one. The activities performed by

the poll service is outlined in Algorithm 2.

The poll interval can be configured according to the application need. Config-

uring a shorter poll interval makes the device busy and consumes more CPU time

whereas a wide polling interval results in a huge lag in transmission which is not

advisable in critical applications. So it is recommended to choose the polling interval

as a trade - off between performance and delay. If the interval is not configured,

the system automatically chooses the gap in an exponential manner. A sample poll

request is as given in below.

POST /<DEVICE ADDRESS> HTTP/1.1

Content-Type : application /x-www-form-urlencoded

Connection : close

Via : ANDR-GTWAY..Accept:*/*

Host : 127.0.0.1:8080

Content-Length : 0

<DEVICE-INFO>

The system makes use of Android system calls to implement the poll service.

5.2. The Client Agent 109

Algorithm 2: Polling mechanism

Data: Polling intervel as set by the user and device addresses

Result: Connectivity status of each device

When the device wakes up or regains connectivity, it sends a poll packet

to the middleware component

The middleware identifies the device, updates the status of the device and

checks the queue for any messages that are not due to the unavailability

of the device

if there is atleast one message in the queue then

if the previous segment is the last segment then
complete the transaction

end

if acknowledgement is received then
send the next segment from the queue

end

else if a poll request is received then
resend the previous segment

end

else

send the message (packets) from the queue

end

Upon receiving the segment successfully in the device, the device

processes the segment and sends an acknowledgement back to the

middleware. Otherwise, the poll request is repeated.

end

110 Chapter 5. Design and Implementation of the Client Agent Layer

Gateway Client 1 Client 2 Client N

Update Status for Client 1

Poll request for Client 1

Update Status for Client 2

Poll request for Client 2

Update Status for Client N

Poll request for Client N

Repeat after Interval

Figure 5.2: Protocol diagram for polling service

The time required for polling related activities is negligible and depends on the device

capacity as well. Hence the polling service does not incur additional overhead to the

client and the gateway interface. The entire polling mechanism can be represented

using the protocol diagram given in Figure 5.2.

5.2.6 Pagination (Segmentation / Reassembly)

There is always a limit for the amount of data being transmitted between devices

and the middleware in a single stretch. The limit depends on the protocol and

the network carrier used at the time of transmission. For the smooth handling of

messages, the limit is set to 1400 bytes in this model.

Pagination is referred to as the mechanism to divide a large message into chunks

called segments, so that it is easier to transmit and process in the device and mid-

dleware. When the size of the message to be transmitted is higher than the limit,

pagination of the message is carried out. So a large message reaches the receiver end

in chunks. These message chunks should be rejoined before parsing and process-

ing. This rejoining of message chunks to original message is termed as reassembly.

Pagination and reassembly are required on both ends (device and middleware) to

support transmission of large messages.

5.2. The Client Agent 111

Reassembly of segments in handheld devices occurs when the device receives

a response message or unsolicited push from the server through the middleware.

Segment reassembly is carried out after all the segments are received in proper

manner with correct checksum. After reassembly the LXML data will be parsed,

stored in the device data store, and the message queues are cleared. In middleware,

reassembly of messages is carried out after the device uploads bulk data to the server.

Every message segment has a unique sequence number to support the rejoining

at the receiver side. A two byte hexadecimal sequence numbering is implemented in

the proposed model and is kept in the header. Segments are rejoined in the order

of sequence number and it is very easy to identify missed or lost segments. There

can be situations where segments are partially received or few segments are not at

all received. This situation is identified upon the receipt of an unrelated segment.

To address such situations, the last segment of a message is always tracked. Upon

the receipt of the last segment if there are still a few more segments pending to be

received, a request is sent to retransmit the lost segments. If the missing segments

are not received even after the retransmission request then the entire message is

discarded.

Pagination is a mechanism to handle bulk messages. In addition to this, it

helps in retransmission of lost messages. When a message is partially lost during

transmission, only the lost segments need to be retransmitted instead of the entire

message. This arrangement reduces the bandwidth and transmission costs to a great

extent, especially in unreliable and untrustworthy wireless environments.

On a receiving a segment, the activities that are performed by the receiver can

be summarized as in Algorithm 3.

If a recipient receives the message partially (in the sense that few segments

arrived and few segments lost during transmission), followed by a set of unrelated

segments, the recipient should discard the partially received segments. Segment

acknowledgement mechanism can be expressed as shown in the Figure 5.3.

112 Chapter 5. Design and Implementation of the Client Agent Layer

Algorithm 3: Segment acknowledgement mechanism

Data: A segment received in the device

Result: A positive (ACK) or negative (NAK) acknowledgement

The recipient of a segment calculates the checksum of the segment

Receiver calculates the header checksum of the data packet

if the header checksum of the segment matches with the calculated

checksum then
Extract the sequence number and verify it is not duplicate

Ignore the duplicate segments

Forward the segment to the upper-level for processing

end

else
Ignore the newly received segment

Request for retransmission

end

if the received segment is the last segment then

Send back an (positive) acknowledgement

end

5.2. The Client Agent 113

Receive the Segment and calculate its checksum-

Checksum Matches?

Extract Seq No

Ignore segment

Duplicate Seq No?

Request retransmission

Forward segment to upper layer

Ignore segment

Is last segment? Send ACKFetch next segment

Yes

No

No

Yes

YesNo

Figure 5.3: Protocol diagram for segment acknowledgement mechanism

114 Chapter 5. Design and Implementation of the Client Agent Layer

5.2.7 Delivery and Acknowledgement (Mechanisms to Ensure Re-

liability)

A reliable and successful communication between the device and the middleware

should ensure that the message is reached in the recipient in proper format. Some-

times the protocol used for data communication such as HTTP is not reliable and

does not guarantee the message is correctly received. A reliable data transmission

is very critical in case of sensitive or business data; any failures related to reliability

can adversely affect the overall reliability of the system. Acknowledgement mecha-

nism is used to ensure the message segments are properly received on the other end.

Hence this mechanism is important to ensure the reliability of data transmission,

even in the absence of reliable transport protocol mechanisms.

If the segment transmitted from the sender is received at the destination end,

the first step is to verify whether the message chunk is received without any loss or

corruption. CRC checksum method is used to detect errors that may occur during

transmission. The sender computes the checksum for a segment and is attached in

the header. At the receiver, the CRC checksum is recalculated and any mismatch

in checksum indicates an error or corruption during transmission. In such cases, a

negative acknowledgement (NAK) with corresponding segment number is sent to the

source for resending the particular segment. In case multiple segments fail in CRC

checks, a single negative acknowledgement is generated having all segment numbers

that require retransmission. If the checksum matches, then a positive acknowledge-

ment (ACK) is sent to the source; subsequently the source can also clear the message

chunk from the queue. There can be scenarios where the acknowledgement (either

ACK or NAK) itself can be lost during transmission. In such cases the source never

receives any updates and waits for a predefined timeout interval. When the timeout

occurs the segment will be resend.

The acknowledgement can be attached along with the outgoing segment sent

back to the sender. This method reduces the network overhead leading to less

network congestion and improved efficiency.

5.2. The Client Agent 115

The delivery and acknowledgement mechanisms implemented in the system

(which is performed by the receiver) can be summarized in Algorithm 4.

Algorithm 4: Packet delivery and acknowledgement mechanism

Data: A packet received from the gateway/device

Result: Positive acknowledgement (ACK) or negative acknowledgement

(NAK) with failed sequence numbers

Repeat the following steps, when the receiver gets a packet.

Calculate the CRC checksum of the incoming packet

if the calculated checksum is same as that of the stored CRC available for

the packet then
Send a ACK to the source

Forward the entire data packet to the next level for processing

end

else
Ignore the newly received faulty packet if previous segment is also

failed then
Add the sequence number to the list of failed sequence numbers

if last segment received then
Send a NAK to the source with all failed sequence numbers

end

end

else
Send a NAK to the source with sequence number

end

end

The above given delivery mechanism can be represented using the protocol

diagram given in Figure 5.4.

116 Chapter 5. Design and Implementation of the Client Agent Layer

Sender Receiver

Send Segment Receive Segment

Send Acknowledgement

Timeout/Error

Resend Segment

Segment

Acknowledgement

Figure 5.4: Protocol diagram representing packet delivery and acknowledgement
mechanism

5.2.8 Message Parsing and Processing

The data communicated between the device and the middleware system is in LXML

format. A message received either in the middleware or in the client device should

be parsed before extracting the data. The LXML messages are parsed and validated

using the LXML Schema. Any mismatch during the validation process generates

negative acknowledgement and requires retransmission of the message.

On the device side, the valid LXML message can be extracted with the help

of database objects (DAOs). The DAOs thus generated out of LXML messages can

be loaded to the database directly. In the middleware side, the extracted data is

converted to a format acceptable by the host server. A detailed discussion on LXML

parsing and extraction is discussed in Chapter 3.

5.3 Implementation

The client side of the messaging model is implemented as a messaging API. This

API is a lightweight collection of packages that supports reliable communication

between Android mobile devices and the middleware interface. The messaging API

is a highly scalable component that can be added as a plugin to applications that

5.3. Implementation 117

need to transfer messages. This API is based on HTTP/HTTPS protocol and pro-

vides support to segments. It consists of the following components / packages: (i)

messaging service, (ii) poll service, (iii) database connection, (iv) listener and DAOs,

(v) message queue, (vi) helper and utility classes, and (vii) configurations.

5.3.1 Messaging Service

Messaging service is responsible for handling the request and response transactions.

This is implemented as an asynchronous service. For every request, a separate

thread is created and is destroyed upon when the response is handled or the request

is timed out. The messaging service obtains the configuration information from

the configuration database table or from the config file. Only one instance of the

messaging service class is created at a time.

This module makes use of two main classes: LXMLMessage, and LXMLMes-

sageHelper. The LXMLMessageHelper class is responsible for activities such as

pagination, sending requests, generating hexadecimal sequence numbers, formatting

LXML messages, extracting message and status information from host response.

This class provides methods for invoking a response handler for each host response.

A sample LXML message created is as shown below.

String msg = reqTransId + "|1" + userId + "|2" + pwd + "|2" +

transactionName + "|2" + "" + "|2" + "data";

5.3.2 Poll Service

This service is responsible for handling the poll service described earlier. This is

implemented as an asynchronous service. The polling interval is configurable by the

end user and can be provided in the configuration file.

The polling service is handled by two classes: PollerService and PollerHelper.

The PollerService class implements the AsyncTask threading service. This service

initiates the polling operation; the operation is repeatedly executed until there are

no messages with status as SENT. This includes all messages that failed to be sent

118 Chapter 5. Design and Implementation of the Client Agent Layer

due to network coverage problems. This class is also responsible for monitoring the

connectivity status of the device.

PollerHelper class provides methods to invoke appropriate listeners once the

response is received from the host. It also sends the LXML message to the host and

receives all the chunks of responses back and creates a response message out of it.

It generates and sends ACK messages when response chunks are received back from

the host.

5.3.3 Database Connection

API is flexible enough to retain the configuration information and details of the

messages transmitted from the client mobile device. A separate database is used to

store LXML messages and configuration information, independent of the application

database.

MsgDBConnection is the child class of SQLiteOpenHelper class that manages

the database connection. This singleton class takes care that only one instance of

the database object is active at a time to avoid data integrity issues. It provides the

methods for inserting, retrieving records based on query criteria.

5.3.4 Listener and DAOs

The API provides a listener interface and a default listener. The application devel-

oper has to register his/her own listener and can implement this listener class as

and when required. If no listener is associated with a particular response, the de-

fault listener is invoked. Application developer has to create DAO based on his/her

database designs and it can be incorporated with the client.

There will be a separate listener interface for each response to be handled in

the device end. A listener class should always implement ILXMLResponseListener

interface. The default LXMLResponseListener class handles the response messages

received from the gateway. This method will be invoked by the messaging API once

it receives the LXML message from gateway.

5.3. Implementation 119

LXMLMessageDAO is the database object that represents the LXML message.

This class helps to readily store and update the LXML messages. It also sets the

message status so that messages can be easily filtered out.

5.3.5 Message Queue

The messaging API is based on the store and forward concept. The API checks

for network connectivity before sending a message to host. If no connectivity is

available, the API stores the message in its internal database, updates the status

and later when the mobile regains the network coverage, the message is transmitted.

Application developers can conveniently configure the message timeouts.

This queuing service is implemented using two main classes: ConnectivitySer-

vice, and MessageQueueService. The ConnectivityService class checks the availabil-

ity of network coverage and returns the status. The MessageQueueService class is a

child class of Android Service class and overrides the onBind() method. This service

implements ConnectivityListener interface to listen to the changes in the network

and retry pending messages that are yet to be sent.

5.3.6 Helper and Utility Classes

These are a set of commonly used methods such as creating reference numbers,

formatting dates, string manipulations, defining messaging and database constants.

The HttpHelper class available in the utility package is responsible for dealing with

the HTTP protocol oriented request and response. It creates LXMLMessage objects

compatible for TCP/IP networks. The HttpHelper class provides a static member

to read the response data from the input stream.

Other classes available in this package include classes for manipulating timers,

formatting dates, handling time zones and related activities.

120 Chapter 5. Design and Implementation of the Client Agent Layer

5.3.7 Configurations

Configuration information consists of server address, device name, device address,

server port, and polling intervals. Configuration is stored in the internal database

and this is read prior to the loading of information from the configuration file.

Initially the configuration is loaded from the file to the database by the messaging

service.

MessageConfig is a serialized bean object for storing configuration details such

as user id, server address, server port, device name, device address, host no, and

polling interval. LXMLMessage is another serialized bean object that represents

the LXML object. It store the LXML message id, transaction name, userid, device

address, protocol, sequence number, message type, header type, host number, host

id, server address, reference no, reference length, status, message content, message

header, message, direction, created date, modified date, and message chunks.

5.4 Summary

The client agent layer of the architecture for the proposed Lightweight, Reliable,

Paginated, Distributed, and Disconnected Transaction Model plays a pivotal role

in managing various aspects of communication between the user’s device and the

middleware system. A summary of the major activities and responsibilities carried

out by the client side is presented in Table 5.3.

The client side of this architecture plays an important role in managing the

communication between the handheld device and the middleware system, ensuring

reliability, efficiency in message handling, and transmission. This comprehensive

set of functionalities contributes to the overall robustness and effectiveness of the

transaction model in distributed and disconnected environments. The performance

evaluation of the client agent is discussed along with the middleware layer in Chapter

7.

5.4. Summary 121

Table 5.3: Summary of the functions performed by the client agent tier

Component Roles

Connection management Deals with establishing, maintaining, and mon-

itoring the connection with the middleware sys-

tem or gateway interface

Message transmission Deals the transmission of LXML messages from

the user’s device to the middleware system

Message expiration management Deals with message expiry and timeouts

Message retransmission Deals with retransmission of undelivered and

unacknowledged messages

Disconnectedness Deals with offline communications when the de-

vices loses connectivity

Pagination Deals with transmission of messages of large

size

Delivery and acknowledgement Deals with tracking the delivery status of mes-

sages and acknowledgements

Message parsing and processing Deals with validating and extracting data

Chapter 6

Design and Implementation of the

Middleware Layer

6.1 Introduction

This chapter outlines the design and implementation of the middleware layer of the

proposed transaction model. Middleware refers to a software component or service

placed between software systems or applications. It is an intermediary component

that enables integration, communication and data transfer between heterogeneous

components. Middleware plays an important role in providing interoperability and

boosting the overall functionality of the system in a distributed environment. It

clearly abstracts the inherent complexity in integrating different platforms or tech-

nologies.

6.2 Need of Middleware

Middleware enables seamless collaboration between different application components

and allows them to work in a flexible and efficient manner. Following are the major

functionalities and services provided by a middleware component.

1. Component integration: Middleware enables integration of diverse components

facilitating the smooth interaction and data sharing between different appli-

122

6.2. Need of Middleware 123

cations. It supports and handles data transformation, data mapping and redi-

rection between different data formats or standards depending on the environ-

ment.

2. Communication: Middleware enables seamless communication and data trans-

fer between applications. It may use diverse techniques to support this inter-

action.

3. Computational offloading: Middleware shifts the processing and other compu-

tations to a location where it is actually needed. This leverages the processing

in mobile devices to a great extent.

4. Load balancing: Load balancing is an important functionality of middleware

systems especially in wireless mobile environments, where the client layer is

resource constrained and comparatively less powerful. The middleware can

shift the processing from client to more powerful component. This ensures

better processing speed and scalability.

5. Transaction management and monitoring: Middleware supports distributed

processing and transaction management ensuring the operation is carried out

by maintaining data consistency. It can monitor the client devices and manage

the availability, performance of client components.

6. Data caching: Middleware is the apt place for cache location to improve the

responsiveness of applications by storing frequently used data. This ensures

improved system performance and better user experience.

7. Security: Middleware components can be used to enforce security mechanisms

such as authentication, authorization, and encryption to protect the data and

support reliable communication.

There are different types of middleware discussed in the literature. The mid-

dleware in this model belongs to the category of service oriented middleware system

as it supports distributed transaction management, asynchronous mode of commu-

nication and other monitoring services.

124 Chapter 6. Design and Implementation of the Middleware Layer

6.3 The Middleware Component

The middleware component is the second layer in the proposed architecture that acts

as an intermediary between the client side and the host server. The major design

goals of the middleware system are primarily to bridge the technological differences

between the server and the mobile device. In addition to this, the middleware

component reduces the processing load of the comparatively less powerful handheld

devices.

The middleware component is usually installed in a powerful dedicated machine

or on the host server. It contains mainly two subcomponents: (i) gateway interface,

and (ii) measures to ensure disconnectedness.

6.3.1 Gateway Interface

The gateway interface is the component responsible for establishing the communica-

tion with handheld devices, accepting the packets from the client devices, acknowl-

edging the packets and extracting the LXML according to the LXML Schema stored

in the interface. It then communicates the data to the server according to the format

required by the server. On the other side, the middleware accepts the data received

from the server and converts to the LXML messages and transmits to the mobile

device concerned. The functional block diagram of the middleware component is

shown in Figure 6.1.

The main functionalities of each subcomponent of the gateway interface are

discussed below.

Device and Connection Management

This component is responsible for managing the connectivity with the device and

the server. Every client device should be registered with the gateway interface

for smooth communication. Client devices use device addresses and other device

details for their registrations. A sample registration request is given in Table 6.1.

The gateway interface will communicate only with the registered device and this

6.3. The Middleware Component 125

Web Services
Connection

Management

Data Extraction

LXML Generation

Delivery and Ack

M

I

D

D

L

E

W

A

R

E

Segmentation

and Reassembly

Delivery and

Ack

Connection

Management

LXML Parsing

Web Services

Host Server From Device

Figure 6.1: Functional block diagram of the middleware layer

serves as a security mechanism to ensure the authenticity of the devices used for

communication.

Table 6.1: (a) Header of a device registration request, and (b) a sample status
message of unauthenticated device

TYPE DEV-REG TYPE STAT-REQ

ADDR <DEVICE ADDRESS> ADDR<DEVICE ADDRESS>

NET IPH NET IPH

STATUS DEV ACTIVE STATUS DEV INACTIVE

TRANSIENT 192.168.0.1

(a) (b)

Once the device is successfully registered, the gateway interface periodically

monitors the connectivity status of each device and keeps a device registry for up-

dating the status. Mobile devices can lose connectivity at any time and the devices

may join or leave the network at any time. Once the device loses its connectivity,

the gateway sends a poll packet to collect the connectivity status.

On the other side, this sub component also establishes connection with the host

server.

126 Chapter 6. Design and Implementation of the Middleware Layer

Message Handling

The gateway interface accepts data from the server. In most cases, the server exposes

web services to the middleware for transferring data. Once the data is successfully

received from the server, the middleware acknowledges the receipt.

The data available from the server is extracted and converted to LXML format

before transmitting to the client device. When the size of LXML is far beyond the

preset limit, the LXML message is split into separate packets. It attaches necessary

headers to each packet and transmits to the designated client device.

When the client device is not available during the transmission, the gateway

stores the message in the message queue and transfers the data once the device is

available for communication. On successful receipt of the message at the client side,

the queue is cleared. If the data is not reached the destination successfully, the

gateway interface tries for the retransmission of the message.

When the gateway receives a LXML message from the client device, it parses

the message. If the message is valid, it acknowledges the client. Later the LXML

message is extracted using the LXML Schema and is converted to a format accept-

able to the server and gets transmitted.

Sometimes the LXML message received from the client will be paginated - split

into multiple transactions due to its bulkiness. In such scenarios, the individual

packets are rejoined in the gateway before parsing.

Usually, a server – client communication involves many transactions. So, to

handle each transaction there will be one specific function in the gateway interface. A

detailed discussion on how the LXML messages are parsed and extracted is provided

in Chapter 3.

Delivery and Acknowledgement

As a measure for ensuring reliability in message transmission, the middleware ac-

knowledges the messages received from both server and client devices. This is nec-

essary in case an unreliable protocol is used for transmission.

The message transmitted from the client device will have checksum and encryp-

6.3. The Middleware Component 127

tion techniques for ensuring security. If the gateway receives the message, it verifies

the header checksum. If the message is received in proper order, a positive acknowl-

edgement is passed back to the device. A negative acknowledgement is given to the

device if the message is somehow corrupted. Sending a negative acknowledgement

can reduce the waiting time. To improve the efficiency, acknowledgement can be

piggybacked with other responses to the devices.

6.3.2 Measures to Support Disconnectedness

The middleware component supports disconnected operations by using the message

queue and polling service as mentioned in Chapter 5. In addition to these techniques,

the middleware maintains device registry - a data structure to keep the status of

each handheld device along with their device address.

Message Queue

Every LXML message generated in the middleware system for transmitting to the de-

vices is stored in the message queue. Each transaction has one entry in the queue and

contains the information such as LXML message, device address, sequence number,

message type, date and time. LXML messages are stored as objects (LXMLMes-

sageDAO). The messages stored in the queue are used for retransmissions in case of

device disconnection or message corruption during transmission. The entries in the

message queue are cleared immediately once the message is successfully delivered to

the addressed device and corresponding positive acknowledgement is received in the

middleware.

Polling Service

The middleware component periodically monitors the connectivity status of their

collaborating devices by sending poll packets and updates the device registry. The

polling interval can be configured at the gateway interface and is chosen as a trade

- off between performance and delay.

128 Chapter 6. Design and Implementation of the Middleware Layer

6.4 Implementation

The middleware component is developed in Java. A web interface is used for tracking

the participating devices of the messaging model are implemented in Java as an API

and it is composed of following components/packages:

6.4.1 Device Registry

This service is responsible for handling the device registration request from the

client. Once the device is successfully registered with this service, the component

periodically checks the status of each device and updates the status accordingly.

6.4.2 Push Service

This service is responsible for handling the unsolicited push from the host. This is

also implemented as an asynchronous service.

6.4.3 Request Response Handler and DAOs

The package provides a listener interface for handling the request from the device and

will be directing these requests to the host server in the required format. It provides

handlers for receiving responses back from the server, creates LXML messages and

sends to the designated client device. There will be a specific listener for each

request and response. If no listener is associated with a particular response, the

default listener is invoked. Application developer has to create DAO based on their

database designs and it can be incorporated.

6.4.4 Message Queue

The package is meant to store the messages sent to server or client devices. It checks

for network connectivity before sending any message to the host. If no connectivity

is available, the API stores the message in its internal database, updates the status

6.5. Summary 129

and later when the mobile device regains the network coverage, the message is

transmitted.

6.4.5 Helper and Utility Classes

These are a set of commonly used methods such as creating reference numbers,

formatting dates, string handling, and defining constants.

6.5 Summary

The middleware component of the architecture plays a pivotal role in managing the

communication between the mobile device and the host server. It acts as an inter-

mediary layer that facilitates seamless communication and coordination between the

client-side and the server-side of the system. The activities of the middleware layer

is summarized in Table 6.2.

The middleware component abstracts the underlying complexities and makes

it easier for the parties to communicate effectively and thereby ensures that trans-

actions are managed seamlessly in a distributed and disconnected environment.

130 Chapter 6. Design and Implementation of the Middleware Layer

Table 6.2: Summary of the middleware layer activities

Component Roles

Connection management Deals with establishing, maintaining, and mon-

itoring the connection with the devices and the

host (server) system

Message transmission Acts as an intermediary for exchanging data

between client and server

Message retransmission Deals with retransmission of undelivered and

unacknowledged messages

Disconnectedness Deals with offline communications when the de-

vice loses connectivity

Pagination Deals with the transmission of large messages

Delivery and acknowledgement Deals with tracking the delivery status of mes-

sages and acknowledgements

Message parsing and processing Receives LXML message from the client device

and converts to a form acceptable by the server.

Also accepts messages from the server and con-

verts to LXML and transmits to the device con-

cerned. Responsible for validating and extract-

ing data before transmitting to the other end

Chapter 7

Performance Evaluation of the

Proposed Transaction Model

7.1 Introduction

Performance evaluation is necessary to validate the effectiveness and reliability of a

transaction model that is expected to be used in a wireless mobile environment that

has many inherent limitations such as higher possibility of connection issues, lower

bandwidth, and lesser battery power.

Performance evaluation with appropriate parameters helps to provide insights

into the strengths and weaknesses of the transaction model. The criteria used to

evaluate the performance of the proposed model includes: (i) turnaround time, (ii)

content density, (iii) processing overhead in client and middleware, (iv) page wise

transmission time, and (v) parsing overhead [153][154]. Performance evaluation and

analysis based on verbosity of messages is extensively covered in Chapter 3.

7.2 Turnaround Time

It is defined as the time duration required for transmitting a message to the receiver

and for receiving the response back to the sender. The turnaround time is an efficient

measure of system efficiency. A shorter turnaround time results in faster response

131

132 Chapter 7. Performance Evaluation of the Proposed Transaction Model

and is desirable for fast exchange of messages.

In business communication, messages are generated either in the handheld de-

vice or in the server. The messages thus generated are converted to LXML format

before transmission. On the device side, the LXML messages are created before

sending a request to the middleware. The messages received from the server are

converted to LXML at the middleware. On receiving the LXML message, it should

be parsed to extract the data contained within the message. Thus LXML creation

and parsing is performed in both the client side and in the middleware. Parsing of

LXML messages is performed when a response is handled on the client side. But in

the middleware, LXML parsing occurs when the client sends a server request and

LXML creation occurs when the host server sends data to the device.

In the proposed model, the turnaround time is calculated as the sum of the

time taken for LXML message creation / parsing, transmission through the wireless

/ wired medium, middleware processing overhead and processing at the server. The

performance evaluation regarding the creation and processing of the LXML messages

is already discussed in Chapter 3.

The server side is usually hosted on a high end system such as CRM. Hence the

processing time to perform request at the host server varies according to the host

system. This processing cost is not considered for performance analysis.

Transmission time refers to the amount of time needed / required to transfer

the messages from the device to the host server through the middleware. Since the

middleware can be hosted in the server itself, the transmission time between the

middleware and the host can be neglected. So transmission cost is the cost incurred

during the transmission of messages between client and the middleware. Let P be

the processing time of LXML messages, n1 is the size of request, n2 is the size

of response, b1 is the upload bandwidth and b2 is the download bandwidth. The

transmission cost is calculated using the formula 7.1 and 7.2, as shown below.

n1/b1 + P (7.1)

n2/b2 + P (7.2)

7.2. Turnaround Time 133

Adding 7.1 and 7.2, the total transmission cost is given by

C = n1/b1 + n2/b2 + 2 ∗ P (7.3)

A business transaction usually requires bulk amount of data to be transmitted.

In such cases, data is communicated in pages, depending on the amount of data to be

transferred. So the total transmission cost is calculated as the sum of transmission

cost of each page. The transmission cost is calculated for a varying number of pages

using the formula (7.3). For experiment purposes, a document having 1000 LXML

objects is considered as a page. Each object contains up to 12 attributes [170].

The upload and download bandwidth is 4.8 Mbps and 5.1 Mbps, respectively. The

results obtained are tabulated in Table 7.1.

Table 7.1: Processing time for uploads and downloads Vs page sizes

No. of Pages Time Taken for

Uploads (ms)

Time Taken for

Downloads (ms)

Total Time

(ms)

1 0.634 0.603 1.237

2 6.974 6.577 13.551

3 13.198 12.440 25.638

4 19.854 18.712 3.567

5 26.476 24.950 51.427

6 33.316 31.395 64.711

7 40.788 38.433 79.221

8 44.912 42.328 87.249

9 53.835 50.726 104.561

10 63.044 59.399 122.443

Table 8.1 shows the transmission time required for various numbers of pages

for data upload and download. Figure 7.1 and 7.2 represents the time relationship

for upload and download operations against varying sizes of pages, respectively. The

combined result is presented in Figure 7.3.

134 Chapter 7. Performance Evaluation of the Proposed Transaction Model

Figure 7.1: Upload time in ms (along Y axis) Vs the number of pages (along X axis)

7.2. Turnaround Time 135

Figure 7.2: Download time in ms (along Y axis) Vs the number of pages (along X
axis)

136 Chapter 7. Performance Evaluation of the Proposed Transaction Model

Figure 7.3: Upload and download time in ms (along Y axis) Vs the page size (given
in X axis)

7.3. Content Density 137

From Figures 7.1, 7.2 and 7.3, it can be inferred that when the document size

increases, the document needs to be split to multiple pages prior to the transaction.

So increase in document size makes transmission more expensive. In such a scenario,

to increase the transmission efficiency, either bandwidth needs to be increased or the

overall document size should be reduced.

The above result is calculated while transmitting data using the proposed

lightweight data interchange format LXML discussed in Chapter 3. Verbosity ad-

vantages for LXML over XML and JSON reported in [148], are discussed in this

Chapter. Since LXML is a compact format, it reduces the number of pages re-

quired, and hence the suitability of the transaction model based on LXML in terms

of transmission time is also established.

7.3 Content Density

Improvement on content density for LXML over XML and JSON is already discussed

in Chapter 3. The reduced message size and higher content density generously help

to reduce the transmission requirements when the system has to send multiple pack-

ets in a stretch. This is a much needed requirement in enterprise CRM client - server

transactions where bulk amounts of data is exchanged. This reduces the number of

transaction iterations which in turn saves both bandwidth and transmission time.

For the ease of evaluation, documents are classified into four categories depending

on the size, based on the discussion in [65][171]. The average content density for

various numbers of objects is shown in Table 7.2. Table 7.2 demonstrates a clear

advantage for LXML, over XML and JSON.

7.4 Parsing Time in Client and Middleware

It is a matter of concern whether LXML creation and parsing in client and mid-

dleware add any additional overhead in the overall processing of message. The

processing of LXML is a straightforward method using database objects (DAOs) for

138 Chapter 7. Performance Evaluation of the Proposed Transaction Model

Table 7.2: Content density comparison for XML, JSON and LXML

No. of Objects XML JSON LXML

10 0.406 0.521 0.814

500 0.423 0.534 0.815

5000 0.337 0.438 0.767

10000 0.464 0.585 0.859

each repeating block in the response. The advantage of LXML in parsing time is

already discussed in Chapter 3.

7.5 Transmission Time

To test advantages in transmission aspects, XML, JSON and LXML files of varying

sizes [65][172] are considered. JSON and XML objects are transmitted by estab-

lishing connection using the HttpURLConnection class (Refer Chapter 3). LXML is

tested using the new custom API developed.

In this experiment, the number of objects and the number of attributes in each

object are kept the same for a given test. This experiment is conducted taking the

packet size as 1400 bytes.

Table 7.3: Comparison of transmission time required (in ms) for XML, JSON and
LXML

No. of Objects XML (in s) JSON (in s) LXML (in s)

1000 2.231 1.251 0.634

2000 4.465 2.485 0 .634

3000 6.974 2.485 0.634

5000 12.197 5.031 1.276

10000 25.476 9.742 2.712

The transmission time taken for objects of varying size for XML, JSON and

7.5. Transmission Time 139

Figure 7.4: Comparison of transmission time (Y axis) for XML, JSON and LXML
Vs the number of objects (X axis)

140 Chapter 7. Performance Evaluation of the Proposed Transaction Model

LXML is as shown in Table 7.3 and is graphically presented in Figure 7.4. It can be

inferred that the LXML format takes the least transmission time among the three

formats. When the number of objects increases, the time difference also increases.

XML and JSON based web services are the most commonly used approaches

used for business communication where bulk amount of data is to be transferred.

Since the verbosity of messages is having a direct impact on the size of the messages

being transmitted, the LXML is the most suited format in such cases. It can be

concluded that the LXML based transaction model has a clear advantage over other

models in this regard.

7.6 Processing Overhead in Client and Middleware

Since LXML is directly created on the client side, there is no XML to LXML con-

version on the client side while sending requests or server uploads. Similarly, LXML

responses can be directly parsed and processed. So using LXML on the client side

does not add any processing overhead in the client device. But there will be ad-

ditional overhead for converting LXML to web service and back in the middleware

system. The LXML messages should be converted to web services or to a format

acceptable by the server during device to server communication. XML to LXML

conversion is needed in server to device data transmission. Since this processing is

done in the middleware system which is installed in the server, the processing power

and resources needed is offloaded to the middleware from the handheld mobile wire-

less device used at the client node. Considering the capability of the system on

which the middleware is maintained, this overhead is negligible on the middleware

side too.

7.7 Summary

Performance evaluation is essential for ensuring efficiency and effectiveness of any

model. The proposed model is evaluated based on five critical parameters (turnaround

7.7. Summary 141

time, content density, parsing time, transmission time, and processing overhead).

Table 7.4: The proposed transaction model: Objectives Vs Accomplishments

Criterion XML/SOAP based LXML/SOA based (Pro-

posed)

Lightweight No Yes

Reliable Yes Yes

Suited for distributed en-

vironments

Yes Yes

Pagination Not available Available

Support for disconnected-

ness

No, require additional

mechanisms

Yes

Verbosity High Low (LXML have 40 - 48%,

35 - 55% advantage over

XML and JSON, respec-

tively)

Verbosity of schema High Low (LXML Schema have 80

- 90% advantage over XML

Schema)

Offloading of middleware

from mobile device to

server

Yes, but not dynamic Yes

Transmission time High Low (LXML has 51 - 61%

advantage over XML and 15

- 40% advantage over JSON)

Processing and parsing

overhead

High Low

The performance evaluation of the transaction model reveals its robust capa-

bilities in handling data efficiently. It excels in parsing data swiftly, maintaining

142 Chapter 7. Performance Evaluation of the Proposed Transaction Model

low processing overhead, and expediting data transmission (see Table 7.4). The

evaluation underlines the suitability of the model in business communication. These

performance advantages are mainly because of the use of compact LXML as the

data interchange format in the proposed transaction model.

Chapter 8

Mechanisms to Ensure Secure

Transaction of LXML Data

8.1 Introduction

Security in data transmission is always a major concern due to many reasons such

as:

(a) To protect sensitive and confidential data, ensure its privacy and prevent unau-

thorized access that can lead to data theft and misuse

(b) To prevent intentional or unintentional data corruption and modifications by

unauthorized users during transmission

(c) To avoid financial loss and reputational damage due to data breach during

transmission

(d) To maintain business confidentiality

8.2 Possible Attacks on XML / SOAP Messages

XML and SOAP messages are the most commonly used standards for data exchange

between applications using web services. Web services are widely used for applica-

tion integration and play an important role in B2B communications by providing a

143

144 Chapter 8. Mechanisms to Ensure Secure Transaction of LXML Data

standardized, platform independent way of data exchange. It supports communica-

tion and seamless data exchange among applications running on different platforms

and using different technologies.

Web services are not immune to a wide variety of threats and attacks during

transmission in the network. In this chapter, proposals to check rewriting attacks

are discussed, with a view to strengthen the transaction model proposed in Chapter

5.

A tolerant and reliable scheme is essential for maintaining integrity and confi-

dentiality during data exchange. Though, it is practically impossible to safeguard

data from intentional attacks, proper data validation, sanitization, parsing, using se-

curity standards like encryption and signature can mitigate threats associated with

XML and SOAP messages [130][132][173].

8.3 Rewriting Attacks

Rewriting attacks are a collection of security vulnerabilities that target applica-

tions using XML based data interchange format. They are intentional or deliberate

injection of irrelevant and malicious data elements to the XML structure without

affecting the signature.

Since the LXML format is derived from the XML, they are also vulnerable to

rewriting attacks. This chapter proposes a layered mechanism to isolate rewriting

attacks in LXML messages.

8.4 The Proposed Security Model

The proposed solution for detecting and isolating rewriting attacks in LXML mes-

saging can be subdivided into three layers: (i) LXML Schema creation, (ii) LXML

message generation, and (iii) message encryption.

8.4. The Proposed Security Model 145

8.4.1 LXML Schema Creation

A LXML Schema is created for each and every transaction carried out between the

server and the client devices [148]. A system dealing with multiple transactions

will have multiple LXML Schemas and each LXML Schema is a mutual agreement

between communicating parties on the structure and organization of the data ex-

change. So every LXML message is created and transmitted according to the format

underlined by its LXML Schema. Any incoming or outgoing transactions not con-

firming to the LXML Schema creates issues during validation and parsing phase and

leads to rejection of the message.

As LXML Schemas are the blueprint for generating LXML messages, the root

tag name used in the LXML Schema should be exactly the same as in the LXML

document root tag. This is to identify each transaction in a system that handles

multiple transactions. There should be one to one correspondence between the tags

and blocks in the document being transacted and the corresponding LXML Schema.

LXML Schema does not contain any data and repetitions of blocks.

The LXML Schema is mainly used to define the mapping rules related to a

LXML document. It provides the details such as root tag name, inner tags names,

details of nested tags, count of child nodes, details of child tags and their order,

attributes defined for each tag. A sample LXML message and its corresponding

LXML Schema are shown in Table 8.1.

The LXML Schema defined for an LXML transaction is independent of the

document size, and count or number of records contained in the document. It is not

altered in normal cases and needs changes only in situations where the transaction

is modified to include or delete tags. As every transaction should strictly adhere

to its LXML Schema, unauthorized inclusions and deletions of tags can be easily

identified by comparing with the LXML Schema.

146 Chapter 8. Mechanisms to Ensure Secure Transaction of LXML Data

Table 8.1: An example of LXML document (a) and its corresponding LXML Schema
(b)

LXML Message LXML Schema

invoice

<00>

<01>ABC Corp

<01>Series A

<01>Delhi

<00 childCount=100>

<01>

<02>A01

<02>1400

<02>15

<01>

<02>A02

<02>1450

<02>10

<invoice>

<manufacturer>

<name></name>

<brand></brand>

<address></ address>

</manufacturer>

<products childCount=100>

<product>

<name></name>

<price></price>

<units></units>

</product>

</products>

</invoice>

8.4.2 Message Creation

Every LXML message has two sections namely Message Header (also known as the

header) and Message Body (also known as the message). The overall structure of

the LXML message is as shown in Figure 8.1.

The header contains vital information required from transmitting the message

to the destination such as destination address, source address to identify the sender,

and sequence number. In addition to the above fields, three more fields are included

to ensure secure transmission between the devices: (i) checksum, (ii) timestamp in

the header, designated as TH, and (iii) digital signature

8.4. The Proposed Security Model 147

Header:
Checksum
Timestamp
Sign

Message:
Encryption
Timestamp

Figure 8.1: Format of LXML message

The checksum holds the CRC checksum computed for the header. The message

body is not considered for calculating the header checksum. The EPOCH timestamp

of message generation is kept in the timestamp field. A timestamp field is intention-

ally kept in the message body and holds the same value as in the message header.

This value is kept to identify message alterations. Any change or mismatch in the

EPOCH timestamp indicates alterations in the header. The timestamp kept in the

header is to minimize the probability of false hits during signature creation / vali-

dation in the later stage. The last field in the message header is the signature field

that holds the 64 bit digital signature.

The message body has included a timestamp field and a childcount attribute to

guard the message from attacks during transmission. The message body is created

in accordance with the LXML Schema. LXML Schema holds the details of tags,

attributes and nested container blocks available in the LXML message. Even if

the message has a digital signature, an intruder can make modifications that are

undetected [134][145], as mentioned in Section 2.6.

To guard from such attacks, there has to be a mechanism to record the number

of children within a container tag. To serve this purpose, a childcount attribute is

added to each parent tag where nesting appears. Each container tag holds a child-

count attribute that specifies the number of children for that tag and is populated

during message creation. This will remove the possibility of “undetected” modifica-

148 Chapter 8. Mechanisms to Ensure Secure Transaction of LXML Data

LXML Schema

LXML Message

Key Generator LXML Header

Sign(LXML) + Receiver

Key

Figure 8.2: Representation of encryption process at the sender

tions, as any mismatch in the actual number of child tags and the childcount will

expose the occurance of attacks.

The LXML Schema generated for an LXML transaction defines the mapping

rules and has a virtual role in parsing and extracting the document. Before pars-

ing, the LXML document is validated against the LXML Schema. Any inclusions,

deletions, alterations of tags or mismatches can easily be detected. In addition to

message content, an EPOCH timestamp field is included. This timestamp field auto

populates the time of the last content updation and that value is shared with the

message header as well.

8.4.3 Message Encryption

The main focus of this layer is to prevent unauthorized modifications of contents in

the LXML message. This layer utilizes standard encryption and decryption tech-

niques. Each transaction is encrypted at the source end and decrypted at the des-

tination end using AES encryption / decryption algorithm with a shared key. One

peculiarity is in the way the key is chosen. The key is computed for each transaction

as a function of corresponding LXML Schema. This ensures that the key will be

different for different transactions.

Unauthorized alteration of LXML messages can be detected using signature

validation after message decryption. The block diagram representing the key gener-

ation and signing is shown in Figure 8.2.

To protect the LXML messages from the rewriting attacks, following actions

are performed at the sending and receiving ends.

At the sender’s end:

8.5. Case Studies 149

– Construct LXML message

– Insert the EPOCH timestamp T to the message

– Generate LXML signature of the message and keep in the header

– Encrypt the entire message using AES encryption algorithm with a shared

key K. The key is different for each transaction and is computed based on the

LXML Schema of the LXML message

Encrypted Message = AES (Sign (LXML+T) + K)

– Send the encrypted message to the destination

At the receiver’s end:

– Receive the message from the source in encrypted form

– Decrypt the message using the shared key K (the same key used for encryption)

Decrypted Message = AES (Sig (LXML+T) + K)

– Extract the timestamp and recalculate the LXML signature to ensure that no

unauthorized modifications occurred to the message.

LXML + T = Sign (Decrypted Message)

– Check whether there is a mismatch of T and TH (time stamp in the header). If

yes, there is an unauthorized editing of the message; the message gets rejected.

In case the device is a resource constrained device, it can choose any combina-

tion of these layers at the sending and receiving ends.

8.5 Case Studies

The proposed model enforces security in different layers and each layer contributes

to the overall system security. This section examines how the system handles major

types of rewriting attacks.

150 Chapter 8. Mechanisms to Ensure Secure Transaction of LXML Data

8.5.1 Scenario 1: Prevention of Redirection Attacks

In redirection attacks, the attackers intentionally direct the request to some other

malicious locations or pages. This is a common attack in financial transactions where

the user is directed to some fraud locations with an intention to detain personal

information like password. URL redirection attacks constitute about 17% of the

total cyber infections [173][174].

This intentional URL redirection attacks can be resisted using the header check-

sum and timestamp fields associated with the LXML message. A checksum is com-

puted for the header part of the message including the timestamp and excluding

the data contents. Same timestamp is kept in the content as well. The whole mes-

sage is digitally signed and transmitted to the destination. At the destination end,

the checksum is recalculated and the time stamp values are extracted. Any change

in the checksum or mismatch in the EPOCH timestamp reflects alterations in the

header. A sample header message is displayed in Table 8.2.

The timestamp is kept in the header in order to minimize the probability of

false hits during signature creation / validation in the later stages. Since the same

time stamp is used in both header and message, any attacker changing the header

will be forced to tamper the message content to achieve his objective. But any such

attempt to modify the content is checked with the help of encryption techniques

used in the next level.

8.5.2 Scenario 2: Prevention of Adding / Removing tags in LXML

Adding / removing tags in LXML messages is another type of rewriting attack.

Usually, such types of attacks occur due to the lack of validation or sanitization of

input data. Attackers may inject or remove elements to gain unauthorized access to

sensitive data.

The use of LXML Schema can withstand these types of vulnerabilities. The

LXML messages are created in accordance with the LXML Schema in which the

structure, organization and mapping rules of the LXML message are defined. The

8.5. Case Studies 151

Table 8.2: Sample header of an LXML message for request and response

Request Response

POST /<DEVICE ADDRESS>HTTP/1.1

Content-Type:application /x-www-

form-urlencoded

Connection:close

Via: ANDR_GTWAY..Accept:*/*

Host:127.0.0.1:8080

Content-Length:1024

Chksum: 0x01FF

TS:1672322475

SEQNO:01

SIGN:mJCK/y5DTBauu7EFqKCPgUylIzY8hSHph

UIGfphEEl5KfLcXTTEQ4apebrf5Cu5Pujzcwp4

D4an4pje+ZtHt6hIY3rFSAKoidhWGyW+734A=

<MESSAGE>

HTTP/1.1 200 OK

Content-Type: text/plain

Date: Thus, 29 Dec 2022

19:29:04 GMT+05:30

Content-Length:256

<MESSAGE>

LXML message maintains exact tag names, attribute names, and their count as given

in the corresponding LXML Schema. LXML Schema is an aid for validating, parsing,

extracting and processing the data contained within the document. Adherence to

the corresponding LXML Schema is strictly maintained while creating the message.

Upon receiving the LXML message at the destination, the message is validated

using the same LXML Schema that was used to generate the message. Any violation

observed during the validation process indicates a security breach and leads to the

rejection of the message.

Table 8.3 illustrates a LXML message for an invoice transaction and its corre-

sponding LXML Schema. From the LXML Schema, it can be inferred that (a) all

incoming invoice LXML message has two nested tags at level 0: manufacturer and

152 Chapter 8. Mechanisms to Ensure Secure Transaction of LXML Data

Table 8.3: XML message, its LXML equivalent and LXML Schema

XML Format LXML Format Data Binding

<invoice>

<manufacturer>

<name>ABC Corp</name>

<brand>series A</brand>

<addr>Delhi</addr>

</manufacturer>

<products>

<product>

<name>A01</name>

<price>1400</price>

<units>15</units>

</product>

<product>

<name>A02</name>

<price>1450</price>

<units>10</units>

</product>

</products>

</invoice>

invoice

<00>

<01>ABC Corp

<01>Series A

<01>Delhi

<00 childCount=2>

<01>

<02>A01

<02>1400

<02>15

<01>

<02>A02

<02>1450

<02>10

<invoice>

<manufacturer>

<name></name>

<brand></brand>

<addr></ addr>

</manufacturer>

<products childCount=2>

<product>

<name></name>

<price></price>

<units></units>

</product>

</products>

</invoice>

products, (b) the manufacture tag is a simple container tag with three fields – name,

brand and address, (c) the products tag is a repeating block having 3 simple tags –

name, price and units, and (d) the message may contain zero or more products as

specified in the childcount attribute.

Any incoming invoice transaction not satisfying the above structure is consid-

ered as malicious and rejected during validation. To elude the validation process, all

8.5. Case Studies 153

<invoice>

<manufacturer>

<name></name>

<brand></brand>

<addr></ addr>

</manufacturer>

<products>

<product>

<name></name>

<price></price>

<units></units>

</product>

</products>

</invoice>

invoice

<00>

<01>ABC Corp

<01>series A

<01>St No 1

<00>

<01>

<02>A01

<02>1400

<02>15

<02>X1 <-- injected

<01>

<02>A02

<02>1450

<02>10

<02>X2 <-- injected

Figure 8.3: (a) Untampered LXML Schema (b) LXML message with additional tag
injected

attempts to add or delete tags – whether of simple or nested tags, the intruder needs

to make corresponding changes in the LXML Schema as well. Since the sender and

receiver have a mutual agreement about the LXML Schema, such a change is not

possible. Any such attempts can be easily detected and isolated at the destination

end. A sample altered LXML message and the untampered XML Schema is depicted

in Figure 8.3.

The structural and document organizational validation in LXML documents

can be easily detected using the LXML Schema. But addition or removal of a whole

block in a repeated container block cannot be traced by comparing the tampered

message with the LXML Schema.

154 Chapter 8. Mechanisms to Ensure Secure Transaction of LXML Data

invoice

Manufacturer

name brand address

Products
childCount=3

Product

name price units

Product

name price units

Product

name price units

Figure 8.4: LXML Message representation displaying childcount attribute

8.5.3 Scenario 3: Prevention of Injecting an Additional Block in a

Nested Tags

Intruders can inject their records to the system by populating a block in nested tags.

In the invoice transaction given above, a fake product can be inserted to the system

by adding a product block to the invoice. Similarly, they can remove particular

records by deleting a block in the nested hierarchy. Both these block insertions

and deletions will be unnoticed and pass through the validation process easily as it

strictly adheres to the LXML Schema.

To counter such attacks, a childcount attribute is placed in each parent tag

where nesting appears. Any mismatch in the actual number of child tags and the

childcount can expose such fake insertion and deletion of blocks. Messages with

count mismatch will be discarded during LXML processing itself and retransmission

requests are generated by sending negative acknowledgements (Figure 8.4).

8.5.4 Scenario 4: Prevention of Altering / Modifying the Data

without Affecting Tags

In this scenario, the attackers modify the data contained in the document without

altering the header information and the document structure. These changes do

not alter the LXML elements or their organization and it will be unnoticed during

the validation process. Such attacks are performed by both in-house and foreign

attackers with the intention to include false information to the system.

This content alteration can be carried out in two ways: (i) altering or modi-

fying the message by inserting false, corrupt or unexpected values to certain tags,

8.6. Performance Evaluation 155

and (ii) relocating a tag or a group of tags to another location in the same transac-

tion. Changing the contents of LXML elements can damage the data integrity and

reliability. Relocating data elements may affect the semantics of the message and

adversely affect the parsing and processing of the message.

All these kinds of content alteration can be detected using signature validation

after decryption. A mismatch in computed and available content signature implies

such attacks. Any content relocation can be identified by comparing the message

with LXML Schema before parsing and processing of the transaction.

The actions performed to identify and isolate rewriting attacks in LXML mes-

sages can be summarized as follows:

(i) The header of the messages contains a checksum to avoid header rewriting and

redirection attacks.

(ii) The LXML Schema represents the structure and organization of the messages

and helps to identify inclusion of additional tags, reordering and relocation of

LXML messages.

(iii) The childcount attribute is included in the parent tags of all nested repeating

blocks. This count can identify inclusion and removal of additional blocks in

nesting.

(iv) The whole LXML body is encrypted instead of sending an open LXML message

to prevent unauthorized access.

8.6 Performance Evaluation

This section discusses the performance evaluation of the security measures to prevent

rewriting attacks in LXML messages. A discussion on the additional processing,

and storage requirements incurred to utilize the model is done. Lastly, whether the

inclusion of additional mechanisms in the LXML Schema and LXML messages will

hinder the performance advantage of LXML is also checked.

156 Chapter 8. Mechanisms to Ensure Secure Transaction of LXML Data

Implementing the security measures to prevent the rewriting attacks invite

two types of additional overheads: (i) additional processing and time required for

encryption and decryption, and (ii) storage space requirements. The proposed model

is evaluated based on these criteria.

8.6.1 Overhead for Encryption and Decryption

The time requirements for secured transmission of LXML messages can be subdi-

vided into three parts: (i) time required to encrypt and sign the LXML message

before sending, (ii) the time required for decrypting a LXML message received, and

(iii) validating the signature at the receiver. Hence, the total time requirement at

the source end will be the sum of the time taken for LXML message creation, sig-

nature generation, and encryption. Similarly, the time taken at the destination end

will be the sum of the time taken for decryption, signature validation and parsing

the message.

A test bed consisting of a laptop (core i3 processor with 4GB RAM, Microsoft

Windows 10 Operating System) and an Android mobile phone (Android Version 9)

is used to evaluate the proposed model. The laptop has been configured with JDK

version 1.8 to support the development. Java Cryptography Architecture (JCA)

API, and Advanced Encryption Standard (AES) with a key size of 128 bits is used

for encryption.

The time taken for encrypting and decrypting LXML messages with varying

number of tags [175][176] is computed. The observed values are graphically presented

in Figure 8.5. The time consumed (in milliseconds) for encryption and decryption is

plotted on Y axis and the number of tags are shown in X axis. From Figure 9.8, it

is observed that the time required to encrypt the LXML message with 10 tags and

20 tags is 102ms, and 114ms, respectively. The time required to decrypt the LXML

message with 10 tags and 20 tags is 124ms and 138ms, respectively. The experiment

is repeated up to 50 tags. It can be inferred that irrespective of the increase in

size in double for tags, the corresponding change in the time taken for encryption

and decryption is, in the range of 7 to 11% and 8 to 11%, respectively. The time

8.6. Performance Evaluation 157

Figure 8.5: Time consumed for encrypting and decrypting LXML (along Y axis) Vs
number of tags (along X axis)

requirement for encryption - decryption is dependent on the algorithm chosen and

the processing capacity of the system [175].

It can be inferred that the additional overhead incurred due to encryption

and decryption of LXML message is, hence negligible. Also the time required for

encrypting and decrypting SOAP messages are evaluated for comparison. It is found

that the time consumed for encryption and decryption of LXML is comparatively

lesser than that of SOAP messages with the same number of tags as illustrated in

Figure 8.6 and 8.7. It can be seen that the performance gap between LXML and

SOAP messages is widening with the increase in the number of tags. This advantage

is clearly due to the compact nature of LXML messages.

158 Chapter 8. Mechanisms to Ensure Secure Transaction of LXML Data

Figure 8.6: Encrypting time of SOAP and LXML messages (along Y axis) Vs number
of tags (along X axis)

8.6. Performance Evaluation 159

Figure 8.7: Decrypting time of SOAP and LXML messages (along Y axis) Vs number
of tags (along X axis)

160 Chapter 8. Mechanisms to Ensure Secure Transaction of LXML Data

Figure 8.8: Size comparison of XML and LXML for various number of objects

8.6.2 Storage Space

LXML Schema and LXML message will contain few additional tags to prevent all

kinds of rewriting attacks. It is a concern whether the additional tags and informa-

tion included for ensuring security in transmission increases the size of the message

being transmitted. To analyse the storage requirements, the size of the LXML mes-

sage is compared with that of the XML (SOAP) message after adding the signature

and other security patching.

For this evaluation, sample XML and LXML messages with varying numbers of

objects (ranging from 100 to 9000 objects) are considered. The results obtained are

plotted in Figure 8.8. The sizes of the XML and LXML schema are also compared

as illustrated in Figure 8.9. It can be inferred from Figure 8.8 and 8.9 that LXML

has a clear advantage over XML in terms of sizes of message and schema. It can

also be inferred that the inclusion of security tags does not sacrifice the performance

advantages of LXML as a messaging format.

8.7. Summary 161

Figure 8.9: Size comparison of XML and LXML Schema

8.7 Summary

This chapter outlines the security mechanisms employed to prevent rewriting at-

tacks on LXML messages while in transit. It can be concluded that the layered

approach with creation of LXML Schema, creation of message with four additional

fields (checksum, timestamp in the header, childcount and digital signature) and en-

cryption of the message can successfully counter rewriting attacks in LXML message

transactions. Also, it is experimentally proved that the mechanisms implemented to

ensure security measures to check rewriting attacks does not affect the overall effi-

ciency of the LXML messages (see Table 8.4). Hence the proposed work strengthens

the foundations for LXML as an alternative data interchange format, and the pro-

posed transaction model based on LXML.

162 Chapter 8. Mechanisms to Ensure Secure Transaction of LXML Data

Table 8.4: Measures to check rewriting attacks: Objectives Vs Accomplishments

Criterion XML LXML

Mechanisms to prevent

rewriting attacks

Yes Yes

Security holes reported in

literature

Yes No (all reported holes

about rewriting attacks

are patched)

Detects all kinds of rewriting

attacks in the literature

No Yes

Verbosity of structures to

prevent rewriting attacks

High Low

Verbosity of schema High Low

Processing overhead for en-

cryption and decryption

18 - 29% for encryption

and 9 - 18% for decryp-

tion

7 - 11% for encryption

and 8 - 11% for decryp-

tion

Offloading of middleware

from mobile device to server

Yes (but not dynamic) Yes

Additional storage space re-

quirements

Verbose Negligible

Chapter 9

Conclusions

The rapid penetration of mobile devices has created numerous opportunities

and challenges for users, developers, researchers, and infrastructure designers. Af-

fordable Internet access has spurred the widespread use of wireless networks across

various sectors, making mobile devices integral for resource-intensive applications

such as ERP and CRM.

Anywhere computing with wireless mobile devices is characterized by resource

constraints, relocation, and mobility. A transaction model in mobile computing is

necessary to maintain the consistency and integrity of data in the wireless mobile

environment. To maintain data consistency and integrity, a reliable, secure, pagi-

nated, disconnected, and distributed transaction model using the lightweight LXML

format is proposed; the format is experimentally evaluated, proving its relevance in

the current scenario.

Although mobile devices are increasingly resource-rich, conserving resources re-

mains crucial. XML and JSON, while popular, are verbose and resource-intensive.

This thesis proposes a lightweight data interchange format, LXML, which retains

XML’s features (extensibility, readability, schema awareness, and platform neutral-

ity) but with less verbosity. Performance analysis shows LXML reduces message size

by 40 - 48% compared to XML and 35 - 55% compared to JSON. LXML Schema also

achieves an 80 - 90% size reduction compared to XML Schema. Similar advantages

are reported in favour of LXML in content density, parsing, serialization/deserial-

ization, marshalling/unmarshalling, and transmission times.

163

164 Chapter 9. Conclusions

The proposed transaction model, based on LXML, is lightweight, reliable, pag-

inated, and supports transactions in disconnected and distributed wireless mobile

environments. A transaction model is proposed by integrating LXML with SOA.

The model comprises three layers: client agent, middleware, and host. Reliability

is ensured through packet delivery with acknowledgment and sequencing, while dis-

connectedness is managed by resuming message delivery post-network unavailability.

Lightweightedness is achieved using LXML and offloading resource-intensive tasks

to a server. Pagination allows large messages to be segmented and reassembled.

Performance evaluation shows advantages in upload/download transmission time,

LXML-Web service conversion overhead, and content density.

LXML is vulnerable to rewriting attacks, which can cause unauthorized mes-

sage modifications. To prevent these, a layered architecture is proposed, ensuring

secure message transmission with minimal processing and memory overhead. Case

studies show that this approach effectively counters various rewriting attacks, mak-

ing the transaction model suitable for secure transmission of data.

The proposed model poses the following demerits:

(i) Processing overhead due to middleware: The model utilizes a middleware layer

to perform data conversions as the LXML format is not compatible with exist-

ing servers. There is a processing overhead for such conversion in the middle-

ware, though it is negligible. This overhead can be completely avoided when

the server becomes LXML friendly and exposes LXML as part of their services

instead of XML or JSON.

9.1 Future Research Directions

The proposed transaction model, based on the less verbose LXML format, enhances

XML with reduced document size and improved transmission efficiency, making

it ideal for the shift of business models to mobile platforms. Integrating LXML

with transaction models can significantly improve data transmission and processing

efficiency.

9.2. Further Enhancements 165

The fundamental objective of any data interchange format is to improve trans-

mission efficiency without sacrificing data integrity or interoperability. The proposed

format and its usage face many challenges.

9.1.1 Standardization and Compatibility

LXML is not yet a standard data interchange format and lacks support from CRMs

and other servers. The challenge is to establish LXML as a standard by defining clear

specifications, developing supporting libraries and tools, providing implementation

guidelines, and addressing versioning and compatibility issues to facilitate smooth

data exchange.

9.1.2 Interoperability and Integration

Another challenge is to enhance LXML with semantic interoperability; this will en-

able systems to understand and interpret data meaningfully. This could be achieved

by incorporating ontologies, semantic annotations, and knowledge graphs into the

format.

9.2 Further Enhancements

(a) Improving efficiency: Though LXML is expected to be considered as the most

promising approach for data interchange, there exists scope for further im-

provement.

(b) Streamlined serialization and deserialization: Improving serialization and de-

serialization efficiency is crucial for data transmission. Developing new al-

gorithms and mechanisms for optimized serialization and deserialization can

significantly enhance processing speed, reduce parsing time, and minimize re-

source requirements during transmission.

(c) Integration with emerging technologies: Researching the integration of LXML

format with emerging technologies like IoT, smart home/office systems, and

166 Chapter 9. Conclusions

Artificial Intelligence is another important area. This involves exploring how

LXML can support efficient data transmission in decentralized, heterogeneous,

and unreliable systems, as well as how it can be seamlessly integrated into AI-

driven data processing workflows.

(d) Security and privacy: Research in security continues to advance, particularly

in encryption, data anonymization, and access controls, which are critical for

safeguarding data. Incorporating these advancements into the LXML format

is essential to address emerging threats and potential security vulnerabilities,

emphasizing the ongoing need for research in this area.

Chapter 10

Recommendations

The work entitled “A Lightweight, Reliable, Secure, Paginated, Distributed,

and Disconnected Message Transaction Model for Wireless Mobile Environment” is

centred on a novel data interchange format known as LXML. The format is a less

verbose extension of XML format. The proposed model has significant implications

across diverse fields and applications.

1. Efficiency in data transfer: Factors like reduced bandwidth usage and faster

data transfer improves the efficiency and is crucial for applications where real-

time data updates are essential, such as financial applications, and IoT sys-

tems.

2. Resource optimization: The compactness and reduced verbosity bring down

the amount of data that needs to be transmitted, resulting in reduced band-

width usage and storage requirements.

3. Improved performance: Efficiency in serialization and deserialization can lead

to faster data parsing and processing leading to improved system performance.

4. Energy efficiency: Faster processing and data transfer conserves the battery

power, which is very critical in resource constrained environments.

5. Security and reliability: The model incorporates diverse mechanisms to avoid

data breaches and other security threats and to enhance data integrity and

confidentiality.

167

168 Chapter 10. Recommendations

6. Scalability and extensibility: The proposed model is capable of handling bulk

volume of data with less resource requirements. The model is extensible and

ensures greater flexibility and adaptability.

7. Enhanced user experience: Enhancement in parsing, processing and data

transfer reduces user waiting time and latency. Applications adopting this

model provide better user experience.

The LXML data interchange format has the potential to enhance the efficiency,

cost - effectiveness, and performance of data - driven applications and systems across

a wide range of industries. It has the capacity to transform how data is transmitted,

processed, and utilized, ultimately contributing to improved user experiences and

resource optimization.

Based on the current findings, the model should be implemented in diverse

applications areas including business data exchanges, data integrations, data stor-

age, web services and web APIs, big data analytics, IoT and multimedia streaming.

In this transaction model, the data is precisely represented, efficiently transmit-

ted, properly interpreted and thereby supports seamless communication between

the sender and the receiver. The LXML format has the potential to excel in a

diverse field of communication due to its inherent characteristics.

References

[1] S.K. Madria and B. Bhargava. A transaction model for mobile computing. In Proceed-

ings. IDEAS’98. International Database Engineering and Applications Symposium (Cat.

No.98EX156), volume 1, pages 92–102, 1998.

[2] G.H. Forman and J. Zahorjan. The challenges of mobile computing. Computer, 27(4):38–47,

1994.

[3] A. Zaslavsky and Z. Tari. Mobile computing: overview and current status. Journal of

Research and Practice in Information Technology, 30(2):42–52, 1998.

[4] Tomasz Imielinski and B. R. Badrinath. Mobile wireless computing: Challenges in data

management. Commun. ACM, 37(10):18–28, 1994.

[5] X D Zhou, Arkady Zaslavsky, Rosanne Price, and Ammir Rasheed. Efficient object-oriented

query optimisation in mobile computing environment. Australian Computer Journal, pages

65 – 75, 1998.

[6] Fred Douglis, Ramon Caceres, M. Kaashoek, P. Krishnan, Kai Li, Brian Marsh, and Joshua

Tauber. Storage Alternatives for Mobile Computers, volume 353, pages 473–505. Springer,

Boston, MA, 2007.

[7] B. Badrinath, Arup Acharya, and Tomasz Imielinski. Impact of mobility on distributed

computations. ACM Operating Systems Review, 27:15–20, 03 1993.

[8] M. Satyanarayanan, James J. Kistler, Lily B. Mummert, Maria R. Ebling, Puneet Kumar,

and Qi Lu. Experience with Disconnected Operation in a Mobile Computing Environment,

pages 537–570. Springer US, Boston, MA, 1996.

[9] Mohamed Sarwat, Jie Bao, Chi-Yin Chow, Justin Levandoski, Amr Magdy, and Mohamed F.

Mokbel. Context Awareness in Mobile Systems, pages 257–287. Springer International Pub-

lishing, Cham, 2015.

169

170 References

[10] Oystein Sigholt, Besmir Tola, and Yuming Jiang. Keeping connected when the mobile social

network goes offline. In 2019 International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob), pages 59–64, 2019.

[11] Amreen Ayesha and Augustian Isaac. Secure offline/online device to device communication.

International Journal of Control Theory and Applications, 9(02):1267–1272, 2016.

[12] Gu GQ and Lu J-Z. Some issues of computer networks: architecture and key technologies.

J Comput Sci Technol, 21(5):708–722, 2008.

[13] Martin Michael. Energy awareness for mobile devices. 01 2005. In: Research seminar on

energy awareness. University of Helsinki.

[14] Kangasharju J. Xml messaging for mobile devices. page 255, 2008. Available at

http://ethesis.helsinki.fi/ (Accessed on 21 April 2023).

[15] Jaakko Kangasharju, Tancred Lindholm, and Sasu Tarkoma. Xml messaging for mobile

devices: From requirements to implementation. Computer Networks, 51:4634–4654, 11 2007.

[16] J.A. Paradiso and T. Starner. Energy scavenging for mobile and wireless electronics. IEEE

Pervasive Computing, 4(1):18–27, 2005.

[17] Tomasz Imielinski and Henry F. Korth. Introduction to Mobile Computing, volume 353,

pages 1–43. Springer US, Boston, MA, 1996.

[18] Brahim Ghribi and Luigi Logrippo. Understanding gprs: the gsm packet radio service.

Computer Networks, 34(5):763–779, 2000.

[19] M. C. Bale. Voice and internet multimedia in umts networks. BT Technology Journal,

19(1):48–67, 2001.

[20] Ramraj Dangi, Praveen Lalwani, Gaurav Choudhary, Ilsun You, and Giovanni Pau. Study

and investigation on 5g technology: A systematic review. Sensors, 22(1), 2022.

[21] Anusha Rahul, Gokul Krishnan, Unni H, and Sethuraman Rao. Near field communication

(nfc) technology: A survey. International Journal on Cybernetics & Informatics, 4(1):133–

144, 2015.

[22] IEEE. Ieee standard for information technology–telecommunications and information ex-

change between systems - local and metropolitan area networks–specific requirements - part

11: Wireless lan medium access control (mac) and physical layer (phy) specifications. IEEE

Std 802.11-2020 (Revision of IEEE Std 802.11-2016), pages 1–4379, 2021.

References 171

[23] Mohaiminul Islam and Shangzhu Jin. An overview research on wireless communication

network. Advances in Wireless Communications and Networks, 5(1):19–28, 2019.

[24] C. E. Perkins. Ad Hoc Networking, pages 1–385. Addison-Wesley, Boston, Massachusetts,

USA, 2001.

[25] David Remondo. Wireless Ad Hoc Networks: An Overview, pages 746–766. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2011.

[26] Daniel Benevides da Costa and Hong-Chuan Yang. Grand challenges in wireless communi-

cations. Frontiers in Communications and Networks, 1, 2020.

[27] Pengcheng Zhu, Jiamin Li, Dongming Wang, and You Xiaohu. Machine-learning-based

opportunistic spectrum access in cognitive radio networks. IEEE Wireless Communications,

27:38–44, 02 2020.

[28] Yu Jin, Jiayi Zhang, and bo ai. Channel estimation for cell-free mmwave massive mimo

through deep learning. IEEE Transactions on Vehicular Technology, 68:10325–10329, 08

2019.

[29] Kai Yang, Nan Yang, Neng Ye, Min Jia, Zhen Gao, and Rongfei Fan. Non-orthogonal

multiple access: Achieving sustainable future radio access. IEEE Communications Magazine,

57(2):116–121, 2019.

[30] Boubakr Nour, Kashif Sharif, Fan Li, and Yu Wang. Security and privacy challenges in

information-centric wireless internet of things networks. IEEE Security & Privacy, 18(2):35–

45, 2020.

[31] B. Aiken, J. Strassner, B. Carpenter, I. Foster, C. Lynch, J. Mambretti, R. Moore, and

B. Teitelbaum. Rfc2768: Network policy and services: A report of a workshop on middleware.

USA, 2000. RFC Editor.

[32] Amirhossein Farahzadi, Pooyan Shams, Javad Rezazadeh, and Reza Farahbakhsh. Mid-

dleware technologies for cloud of things: a survey. Digital Communications and Networks,

4(3):176–188, 2018.

[33] J. Al-Jaroodi, N. Mohamed, and Hong Jiang. Distributed systems middleware architecture

from a software engineering perspective. In Proceedings of the Fifth IEEE Workshop on

Mobile Computing Systems and Applications, pages 572–579, 2003.

[34] Upkar Varshney and Ron Vetter. Emerging mobile and wireless networks. Commun. ACM,

43(6):73–81, 2000.

172 References

[35] A. Holzinger, A. Nischelwitzer, and M. Meisenberger. Mobile phones as a challenge for m-

learning: examples for mobile interactive learning objects (milos). In Proceedings of the Third

IEEE International Conference on Pervasive Computing and Communications Workshops,

volume 1, pages 307–311, 2005.

[36] Maniar Nipan, Bennett Emily, Steve Hand, and Allan George. The effect of mobile phone

screen size on video based learning. Journal of Software, 3:51–61, 04 2008.

[37] Sirapat Boonkrong and Dinh Pham Cao. The comparison of impacts to android phone bat-

tery between polling data and pushing data. In Proceedings of the International Conference

on Computer Networks and Information Technology (ICCNIT 2013), pages 84–89, 06 2013.

[38] Hongyao Luo, Zhichuan Huang, and Ting Zhu. A survey on spectrum utilization in wireless

sensor networks. Journal of Sensors, 2015:1–13, 2015.

[39] hembelihle Dlamini and Sifiso Vilakati. Remote and rural connectivity: Infrastructure and

resource sharing principles. Wireless Communications and Mobile Computing, 2021:1–12,

2021.

[40] Mohamed Shameer M C and Abdul Haleem P P. A study on the requirements of a transaction

model in mobile environment. International Journal of Computer Science and Information

Technologies, 13(05):103–109, 2022.

[41] E. Pitoura and B. Bhargava. Dealing with mobility: Issues and research challenges. pages

1–18, 1993. Technical report CSD-TR-93-070.

[42] Amer O. Abu Salem and Ahmad H. Al-Qeerm. Classification of transaction models in mobile

database system. In 2015 2nd World Symposium on Web Applications and Networking

(WSWAN), pages 1–6, 2015.

[43] Ayse Yasemin Seydim. An overview of transaction models in mobile environments. page 12,

2001. Available at https://api.semanticscholar.org/CorpusID:13861597 (Accessed on 23

April 2021).

[44] Abdelsalam Helal, Santosh Balakrishnan, Margaret Dunham, and Ramez Elmasri. A

survey of mobile transaction models. 1996. Technical report Paper 1259. Available at

https://docs.lib.purdue.edu/cstech/1259 (Accessed on 23 April 2023).

[45] Rahul B. Mannade and Amol B. Bhande. Challenges of mobile computing: An overview.

International Journal of Advanced Research in Computer and Communication Engineering,

2(1):13109–3114, 2013.

References 173

[46] Aleksandar S. What percentage of internet traffic is mobile in 2021?, 2021. Available at

https://techjury.net/blog/what-percentage-of-internet-traffic-is-mobile. (Accessed on 10 Nov

2021).

[47] Ericsson Inc. Mobile data traffic outlook, 2023. Available at

https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/mobile-

traffic-forecast. (Accessed on 20 Dec 2023).

[48] Newstalk. Mobile devices have overtaken the human population, 2018. Available

at https://www.newstalk.com/news/mobile-devices-have-overtaken-the-human-population-

499358. (Accessed on March, 2021).

[49] DATAREPORTAL. Digital around the world, 2021. Available at

https://datareportal.com/global-digital-overview. (Accessed on 03 March 2021).

[50] Deyan Georgiev. Smartphone statistics, 2021. Available at

https://review42.com/resources/smartphone-statistics/. (Accessed on 15 June 2021).

[51] Ambrin Javed, Muhammad Alyas Shahid, Muhammad Sharif, and Mussarat Yasmin. Energy

consumption in mobile phones. International Journal of Computer Network and Information

Security(IJCNIS), 9(12):18–28, 2017.

[52] Xin Zheng, Yu Nan, Fangsu Wang, Ruiqing Song, Gang Zheng, Gaocai Wang, Yuting Lu, and

Qifei Zhao. A data transmission strategy with energy minimization based on optimal stopping

theory in mobile cloud computing. Wireless Communications and Mobile Computing, 2019:1–

11, 2019.

[53] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer. Survey on energy consumption entities

on the smartphone platform. In 2011 IEEE 73rd Vehicular Technology Conference (VTC

Spring), pages 1–6, 2011.

[54] Jameel Ali and Majid Altamimi. Energy consumption model for data transfer in smartphone.

Computer Communications, 182:13–21, 2022.

[55] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun Venkataramani. Energy

consumption in mobile phones: A measurement study and implications for network appli-

cations. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement,

page 280–293, New York, NY, USA, 2009. Association for Computing Machinery.

[56] Greg Charest. Data exchange mechanisms and considerations, 2022. (Accessed on 31 May

2023).

174 References

[57] W3C Recommendation. Extensible markup language (xml) 1.0 (fifth edition), 2008. Available

at https://www.w3.org/TR/xml/. (Accessed on 09 May 2023).

[58] Yinglin Li, Lianhe Yang, and Yingzhong Li. Research on apparel cad pattern data in-

terchange format based on xml. In 2009 WRI World Congress on Software Engineering,

volume 3, pages 90–94, 2009.

[59] J. Clark. Xsl transformations (xslt) version 1.0, 1999. World Wide Web Consortium Available

at http://www.w3.org/TR/xslt/. (Accessed on 01 May 2023).

[60] J. Clark and S. DeRose. Xml path language (xpath) version 1.0., 1999. World Wide Web Con-

sortium (W3C). Available athttp://www.w3.org/TR/xpath/. (Accessed on 01 May 2023).

[61] D. C. Fallside and P. Walmsley. Xml schema part 0: Primer second edition, 2004. World Wide

Web Consortium (W3C). Available at http://www.w3.org/TR/xmlschema-0/. (Accessed on

01 May 2023).

[62] Elliotte Rusty Harold and W. Scott Means. XML in a nutshell. O’ReillyVerlag, 2011.

[63] Andrew Fairbanks, James Gribbons, Erik Nybo, David Pean, and Joseph Wright. Research

in xml (extensible markup language). J. Comput. Sci. Coll., 17(6):253–254, 2002.

[64] Dan Suciu. Semistructured Data and XML, pages 9–30. Springer US, Boston, MA, 2000.

[65] Saurabh Zunke and Veronica D’Souza. Json vs xml: A comparative performance anal-

ysis of data exchange formats. International Journal of Computer Science and Network,

3(4):257–261, 2014.

[66] P. P. Abdul Haleem and M. P. Sebastian. An energy-conserving approach for data format-

ting and trusted document exchange in resource-constrained networks. Knowl. Inf. Syst,

32(3):559–587, 2012.

[67] Maja Pusnik Bostjan Sumak, Marjan Hericko. Evaluation of xml schema support in knowl-

edge management. Frontiers in Artificial Intelligence and Applications, 333:150–160, 2020.

[68] Sang-Kyun Kim, Myungcheol Lee, and Kyu-Chul Lee. Validation of xml document updates

based on xml schema in xml databases. In Database and Expert Systems Applications, pages

98–108, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[69] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Concepts, Architectures

and Applications, pages 1–354. Springer Berlin, Berlin, Heidelberg, 2004.

References 175

[70] Kangasharju J. Mobile xml messaging. page 255, 2008. Technical Report, Available at

www.cs.helsinki.fi/u/jkangash/xml-mess.pdf. (Accessed on 16 June 2022).

[71] Nidhi Arora, Savita Kolhe, and Sanjay Tanwani. A comprehensive model to enhance per-

formance of ws-security processing. International Journal of Computer Science and Mobile

Computing, 5(1):265–270, 2016.

[72] Sarra Abidi, Mehrez Essafi, Chirine Ghedira Guegan, Myriam Fakhri, Hamad Witti, and

Henda Hjjami Ben Ghezalai. A web service security governance approach based on dedicated

micro-services. Procedia Computer Science, 159(1):372–386, 2019.

[73] DaYong Wu, Kien Tsong Chau, JingYi Wang, and ChuTing Pan. A comparative study on

performance of xml parser apis (dom and sax) in parsing efficiency. In Proceedings of the 3rd

International Conference on Cryptography, Security and Privacy, pages 88–92, New York,

NY, USA, 2019. Association for Computing Machinery.

[74] Chengkai Li. XML Parsing, SAX/DOM, pages 3598–3601. Springer US, Boston, MA, 2009.

[75] Matthias Nicola and Jasmi John. Xml parsing: A threat to database performance. In

Proceedings of the Twelfth International Conference on Information and Knowledge Man-

agement, CIKM ’03, page 175–178, New York, NY, USA, 2003. Association for Computing

Machinery.

[76] N. Singh and K. Tyagi. A literature review of the reliability of composite web service in service

oriented architecture. JACM SIGSOFT Software Engineering Notes, 40(1):1–8, 2015.

[77] Yanlei Diao and Michael Franklin. Query processing for high-volume xml message broker-

ing. In Proceedings 2003 VLDB Conference, pages 261–272, San Francisco, 2003. Morgan

Kaufmann.

[78] Alain Tamayo, Carlos Granell, and Joaqúın Huerta. Dealing with large schema sets in mobile

sos-based applications. In Proceedings of the 2nd International Conference on Computing for

Geospatial Research & Applications, COM.Geo ’11, New York, NY, USA, 2011. Association

for Computing Machinery.

[79] JSON. Introducing json, 1999. Available at http://www.json.org/. (Accessed on 01 May

2023).

[80] Bader Alghamdi, Leigh Ellen Potter, and Steve Drew. Identifying best practices in organ-

isational soa governance adoption: Case study of saudi arabia’s e-government programme.

In Proceedings of the 20th Pacific Asia Conference on Information Systems, PACIS 2016,

pages 1–14, Chiayi, Taiwan, 2016.

176 References

[81] Muzafer H. Saracevic, Emrus Azizovic, and Munir Sabanovic. Comparative analysis of amf,

json and xml technologies for data transfer between the server and the client. Periodicals of

Engineering and Natural Sciences (PEN), 4(2):76–83, 2016.

[82] Hsun-Ming Lee and Mayur R. Mehta. Defense against rest-based web service attacks for

enterprise systems. Communications of the IIMA, 13(1):57–68, 2013.

[83] Bakken E. Jorstad I. and Anders Johansen T. Performance evaluation of json and xml for

data exchange in mobile services. In Proceedings of the International Conference on Wireless

Information Networks and Systems, pages 237–240. SciTePres, 2008.

[84] Teng Lv, Ping Yan, and Weimin He. On massive json data model and schema. Journal of

Physics: Conference Series, 1302(2):22–31, 2019.

[85] Ben Kiki O. Yaml ain’t markup language (yaml) version 1.2., 1999. Available at

https://yaml.org/spec/1.2/spec.html (Accessed on 01 March 2021).

[86] P P Abdul Haleem and M P Sebastian. An alternative approach for xml messaging. Inter-

national Journal of Advanced Research, 2(1):251–294, 2014.

[87] Yang Yahui. Impact data-exchange based on xml. In 2012 7th International Conference on

Computer Science & Education (ICCSE), pages 1147–1149, 2012.

[88] P. Greenfield, M. Droettboom, and E. Bray. Asdf: A new data format for astronomy.

Astronomy and Computing, 12(1):240–251, 2015.

[89] Ahmed K. Elmagarmid. Database Transaction Models for Advanced Applications, page 610.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[90] G.D. Walborn and P.K. Chrysanthis. Supporting semantics-based transaction processing

in mobile database applications. In Proceedings. 14th Symposium on Reliable Distributed

Systems, pages 31–40, 1995.

[91] Calton Pu, Gail E. Kaiser, and Norman C. Hutchinson. Split-transactions for open-ended

activities. In Proceedings of the 14th International Conference on Very Large Data Bases,

VLDB ’88, page 26–37, San Francisco, CA, USA, 1988. Morgan Kaufmann Publishers Inc.

[92] Prasanta Kumar Panda, Sujata Swain, and P. K. Pattnaik. Review of some transaction

models used in mobile databases. International Journal of Computer and Communication

Technology, 4(1):311–321, 2013.

References 177

[93] Krithi Ramamritham and Panos K. Chrysanthis. Executive Briefing: Advances in Con-

currency Control and Transaction Processing, page 113. IEEE Computer Society Press,

Washington, DC, USA, 1996.

[94] Malasowe Bridget and S. A Idowu. Current state of the art in mobile transaction models:

A survey. International Journal of Advanced Studies in Computer Science and Engineering,

3(1):22–27, 2014.

[95] Ouri Wolfson. Mobile Database, pages 1751–1751. Springer US, Boston, MA, 2009.

[96] Gary D. Walborn and Panos K. Chrysanthis. Transaction processing in pro-motion. In

Proceedings of the 1999 ACM Symposium on Applied Computing, SAC ’99, page 389–398,

New York, NY, USA, 1999. Association for Computing Machinery.

[97] Jari Veijalainen, Vagan Terziyan, and Henry Tirri. Transaction management for m-commerce

at a mobile terminal. Electronic Commerce Research and Applications, 5(3):229–245, 2006.

Mobile technology and services.

[98] Bo Chen, David D. Linz, and Harry H. Cheng. Xml-based agent communication, migration

and computation in mobile agent systems. Journal of Systems and Software, 81(8):1364–

1376, 2008.

[99] Kyong-I Ku and Yoo-Sung Kim. Moflex transaction model for mobile heterogeneous multi-

database systems. In Proceedings Tenth International Workshop on Research Issues in Data

Engineering. RIDE 2000, pages 39–45, 2000.

[100] Yousef J. Al-Houmaily and Panos K. Chrysanthis. 1-2pc: The one-two phase atomic commit

protocol. In Proceedings of the 2004 ACM Symposium on Applied Computing, SAC ’04, page

684–691, New York, NY, USA, 2004. Association for Computing Machinery.

[101] Holliday J., Agrawal D. A., and Abbadi E. Disconnection modes for mobile databases.

Wireless Networks, 8(1):391–402, 2002.

[102] D. Grigoras. Challenges to the design of mobile middleware systems. In International Sym-

posium on Parallel Computing in Electrical Engineering (PARELEC’06), pages 14–19, 2006.

[103] Agustinus Borgy Waluyo, David Taniar, Wenny Rahayu, and Bala Srinivasan. Mobile ser-

vice oriented architectures for nn-queries. Journal of Network and Computer Applications,

32(2):434 –447, 2009.

178 References

[104] A. Schill. Service-oriented architectures: potential and challenges. In Proceedings of the 15th

International Crimean Conference Microwave & Telecommunication Technology, volume 1,

pages 16–18, Sevastopol, Ukraine, 2005.

[105] Gurpreet Kaur and Mohammad Muztaba Fuad. An evaluation of protocol buffer. In Pro-

ceedings of the IEEE SoutheastCon 2010 (SoutheastCon), pages 459–462, 2010.

[106] Zhou S, Jadoon W, and Khan IA. Computing offloading strategy in mobile edge computing

environment: A comparison between adopted frameworks, challenges, and future directions.

Electronics, 12(11):24–52, 2023.

[107] Chuan Feng, Pengchao Han, Xu Zhang, Bowen Yang, Yejun Liu, and Lei Guo. Computation

offloading in mobile edge computing networks: A survey. Journal of Network and Computer

Applications, 202(1):103–366, 2022.

[108] Minhaj Ahmad Khan. A survey of computation offloading strategies for performance im-

provement of applications running on mobile devices. Journal of Network and Computer

Applications, 56(1):28–40, 2015.

[109] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented computing:

State of the art and research challenges. Computer, 40(11):38 – 45, 2007.

[110] M. Alodib and B. Bordbar. A model driven architecture approach to fault tolerance in

service oriented architectures, a performance study. In Proceedings of the 12th Enterprise

Distributed Object Computing Conference Workshops, volume 1, pages 293–300, Munich,

Germany, 2008.

[111] S. Dagtas, Y. Natchetoi, H. Wu, and L. Hamdi. An integrated lightweight software archi-

tecture for mobile business applications. In Proceedings of the Seventh Working IEEE/IFIP

Conference on Software Architecture (WICSA 2008), pages 41–50, Vancouver, BC, Canada,

2008.

[112] Renne Tergujeff, Jyrki Haajanen, Juha Leppanen, and Santtu Toivonen. Mobile soa: Service

orientation on lightweight mobile devices. In IEEE International Conference on Web Services

(ICWS 2007), pages 1224–1225, 2007.

[113] Agustinus Borgy Waluyo, David Taniar, Wenny Rahayu, and Bala Srinivasan. Trustworthy

data delivery in mobile p2p network. Journal of Computer and System Sciences, 86(1):33 –

48, 2017.

References 179

[114] A. Aikebaier and M. Takizawa. A protocol for reliably, flexibly, and efficiently making

agreement among peers. Int. J. Web Grid Serv., 5(4):356–371, 2009.

[115] P. Sharma, Z. Xu, S. Banerjee, and S. Lee. Estimating network proximity and latency. ACM

SIGCOMM Comput. Commun. Rev., 36(3):35–50, 2006.

[116] A. Qayyum, L. Viennot, and A. Laouiti. Multipoint relaying for flooding broadcast mes-

sages in mobile wireless networks. In Proceedings of the 35th Annual Hawaii International

Conference on System Sciences, pages 3866–3875, 2002.

[117] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente Izurieta. Compar-

ison of json and xml data interchange formats: A case study. In Proceedings of the 22nd

International Conference on Computer Applications in Industry and Engineering, CAINE

2009, pages 157–162, California, USA, 2009. Montana State University.

[118] Peggy Gravitz, Jack Sheehan, and Thom Mclean. Common activities in data interchange

format (dif) development. pages 1–2. Report. McLeod Institute of Simulation Sciences, 03

1999. Available at http://www.ecst.csuchico.edu/hla/LectureNotes/99S 177SIWPaper.pdf

(Accessed on 30 April 2023).

[119] Jan Mendling. A survey on design criteria for interchange formats. Vienna, Austria,

2004. Department of Information Systems, Vienna University of Economics and Busi-ness

Administration. Technical Report JM-2004-06-02. Available at http://wi.wu-wien.ac.at/

mendling/publications/TR04-Interchange.pdf (Accessed on 30 April 2023).

[120] James J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file system.

ACM Trans. Comput. Syst., 10(1):3–25, 1992.

[121] J.H. Abawajy and M. Mat deris. Supporting disconnected operations in mobile computing.

In IEEE International Conference on Computer Systems and Applications, 2006., pages

911–918, 2006.

[122] Sara Bouchenak and Noël de Palma. Message Queuing Systems, pages 1716–1717. Springer

US, Boston, MA, 2009.

[123] IBM MQ. Introduction to message queuing, 2023. Available at

https://www.ibm.com/docs/en/ibm-mq/9.3?topic=overview-introduction-message-queuing

(Accessed on 07 Nov 2023).

[124] Guo Fu, Yanfeng Zhang, and Ge Yu. A fair comparison of message queuing systems. IEEE

Access, PP:1–1, 12 2020.

180 References

[125] Amazon Web Services. Benefits of message queues, 2023. Available at

https://aws.amazon.com/message-queue/benefits/. (Accessed on 30 September 2023).

[126] D.M. Huizinga and K.A. Heflinger. Experience with connected and disconnected operation

of portable notebook computers in distributed systems. In Proceedings of the 1994 First

Workshop on Mobile Computing Systems and Applications, pages 119 –123, 1994.

[127] D.M. Huizinga and K.A. Heflinger. Two-level client caching and disconnected operation of

notebook computers in distributed systems. In Proceedings of the 1995 ACM Symposium

on Applied Computing, volume 21, pages 390 – 395. Association for Computing Machinery,

1995.

[128] ShivajiKant. Exploring distributed systems: Pull vs. push strategies, 2023.

Available at https://medium.com/@shivajiofficial5088/exploring-distributed-systems-pull-

vs-push-strategies-c7a31cd47f79 (Accessed on 07 Nov 2023).

[129] Yang Zhao. A Model of Computation with Push and Pull Processing. Number

UCB/ERL M03/51. Department of Electrical Engineering and Computer Sciences, Uni-

versity of California at Berkeley, 12 2003. Research Project Report, Available at

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/4192.html (Accessed on 07 Nov 2023).

[130] Navya Sidharth and Jigang Liu. A framework for enhancing web services security. In 31st

Annual International Computer Software and Applications Conference (COMPSAC 2007),

volume 1, pages 23–30, 2007.

[131] Irfan siddavatam and Jayant Gadge. Comprehensive test mechanism to detect attack on web

services. In In Proceedings of the 16th IEEE International Conference on Networks, pages

1–6, 2008.

[132] R.L. Costello. Xml risks and mitigations, 2013. Available at https://www.mitre.org/

sites/default/files/pdf/13 2445.pdf. (Accessed on 25 May 2023).

[133] A. Nasridinov and Y.H. Byun, J.Y.and Park. A study on detection techniques of xml rewrit-

ing attacks in web services. International Journal of Control and Automation, 7(1):391–400,

2014.

[134] Michael McIntosh and Paula Austel. Xml signature element wrapping attacks and coun-

termeasures. In Proceedings of the 2005 Workshop on Secure Web Services, SWS ’05, page

20–27, New York, NY, USA, 2005. Association for Computing Machinery.

References 181

[135] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Greg O’Shea. An advisor

for web services security policies. In Proceedings of the 2005 Workshop on Secure Web Ser-

vices, SWS ’05, page 1–9, New York, NY, USA, 2005. Association for Computing Machinery.

[136] P.P. Abdul Haleem and M.P. Sebastian. A layered architecture for checking rewriting attacks

in resource constrained networks. In 2010 International Conference on Data Storage and

Data Engineering, pages 270–274, 2010.

[137] P.P. Hung, A. Nasridinov, L. Qing, and J.Y. Byun. A solution for injection and rewriting

attacks on soap messages in web services security. Journal of KIISE: Computing Practices

and Letters, 18(3):244–248, 2012.

[138] Karthikeyan Bhargavan, Cédric Fournet, and Andrew D. Gordon. Verifying policy-based

security for web services. In Proceedings of the 11th ACM Conference on Computer and

Communications Security, CCS ’04, page 268–277, New York, NY, USA, 2004. Association

for Computing Machinery.

[139] A. Benameur, F.A. Kadir, and S. Fenet. Xml rewriting attacks: Existing solutions and their

limitations. In Proceedings of the IADIS International Conference on Applied Computing,

pages 94–102, Algarve, Portugal, 2008. IADIS Press.

[140] Mohammad Ashiqur Rahaman, Maarten Rits, and Andreas Schaad. An inline approach for

secure soap requests and early validation. In Paper presented at European Conference on

Open Web Application Security Project (OWASP ’06), pages 1–115, Leuven, Belgium, 2006.

[141] Sebastian Gajek, Lijun Liao, and Jörg Schwenk. Breaking and fixing the inline approach.

In Proceedings of the 2007 ACM Workshop on Secure Web Services, SWS ’07, page 37–43,

New York, NY, USA, 2007. Association for Computing Machinery.

[142] F.A. Kadir. RewritingHealer: An Approach for Securing Web Service Communication,

page 89. Master Thesis, KTH Royal Institute of Technology, Sweden, 2008.

[143] A. Nasridinov, P.P. Hung, L. Qing, and J.Y. Byun. Xat-soap: Xml-based attacks tolerant

soap messages. Journal of KIISE (Korea Institute of Information Scientists and Engineer-

ing): Computing Practices and Letters, 18(6):489–493, 2012.

[144] Smriti Kumar Sinha and Azzedine Benameur. A formal solution to rewriting attacks on soap

messages. In Proceedings of the 2008 ACM Workshop on Secure Web Services, SWS ’08,

page 53–60, New York, NY, USA, 2008. Association for Computing Machinery.

182 References

[145] A. Nasridinov, Y.-S. Jeong, J.-Y. Byun, and Y.H. Park. A histogram-based method for

efficient detection of rewriting attacks in simple object access protocol messages. Sec. and

Commun. Netw., 9(6):492–499, 2016.

[146] Cristian I. Pinzon, Javier Bajo, Juan F. De Paz, and Juan M. Corchado. S-mas: An adaptive

hierarchical distributed multi-agent architecture for blocking malicious soap messages within

web services environments. Expert Systems with Applications, 38(5):5486–5499, 2011.

[147] C.L. Fang, D. Liang, F. Lin, and C.C. Lin. Fault-tolerant web services. Journal of System

Architecture, 53(1):23–38, 2007.

[148] M.C. Mohammed Shameer, P.P. Abdul Haleem, and Y.K. Puthenpediyakkal. A lightweight

data exchange format for mobile transactions. International Journal of Computer Network

and Information Security(IJCNIS), 15(3):47–64, 2023.

[149] A. Ekelhart, S. Fenz, M. Goluch, G.and Steinkellner, and E. Weippl. Xml security - a

comparative literature review. Journal of Systems and Software, 81(10):1715–1724, 2008.

[150] Vincent C. Emeakaroha, Philip Healy, Kaniz Fatema, and John P. Morrison. Analysis of data

interchange formats for interoperable and efficient data communication in clouds. In 2013

IEEE/ACM 6th International Conference on Utility and Cloud Computing, pages 393–398,

2013.

[151] Hwang Ho Kim, Moon Kyung Kim, Jin Young Choi, and Gi-Nam Wang. Design and appli-

cation of data interchange formats (difs) for improving interoperability in sba. In Proceedings

of the Winter Simulation Conference, WSC ’12, Berlin, Germany, 2012. Winter Simulation

Conference.

[152] Kazuaki Maeda. Performance evaluation of object serialization libraries in xml, json and

binary formats. In 2012 Second International Conference on Digital Information and Com-

munication Technology and it’s Applications (DICTAP), pages 177–182, Bangkok, Thailand,

2012. IEEE.

[153] White G, Kangasharju J, Brutzman D, and Williams S. Efficient xml interchange measure-

ments note, 2007. Available at http://www.w3.org/TR/exi-measurements. (Accessed on 20

May 2020).

[154] Jan Stenberg. Xml can give the same performance as json. Available at

https://www.infoq.com/news/2013/08/xml-json-performance/. (Accessed on 16 March

2021).

References 183

[155] Jackson. Jackson json processor. Available at http://jackson.codehaus.org. (Accessed on 9

May 2020).

[156] Suchit A. Sapate. Effective xml compressor: Xmill with lzma data compression. International

Journal of Education and Management Engineering (IJEME), 9(4):1–10, 2019.

[157] IBM. Mobile computing. Available at https://www.ibm.com/topics/mobile-technology. (Ac-

cessed on 9 May 2020).

[158] Li Jiang. Application research of xml parsing technology based on android. Journal of

Physics: Conference Series, 1314:12–15, 10 2019.

[159] JSON. Json serialization usage. Available at http://flexjson.sourceforge.net/. (Accessed on

28 May 2020).

[160] Guanhua Wang. Improving data transmission in web applications via the translation between

xml and json. In 2011 Third International Conference on Communications and Mobile Com-

puting, pages 182–185, Qingdao, China, 2011. IEEE.

[161] XStream. Xstream. Available at http://xstream.codehaus.org/. (Accessed on 17 May 2020).

[162] Google. google gson - a java library to convert json to java objects and vice-versa. Available

at http://code.google.com/p/google-gson/. (Accessed on 15 May 2020).

[163] Tommi Aihkisalo and Tuomas Paaso. A performance comparison of web service object

marshalling and unmarshalling solutions. In 2011 IEEE World Congress on Services, pages

122–129, Washington, DC, USA, 2011. IEEE.

[164] Java. The java tutorials, lesson:introduction to jaxb, 2023. Available at

https://docs.oracle.com/javase/tutorial/jaxb/intro/. (Accessed on 17 May 2023).

[165] Sobhan Esmaeili. Re:how can i find a transmission time formula for wsn?

https://www.researchgate.net/post/How can I find a transmission time formula for WSN

/5e3c8d933d48b73dc26ac563/citation/download. (Accessed on 4 May 2021).

[166] Jozef Wozniak. Mobility management solutions for current ip and future networks. Telecom-

munication Systems, 61(2):257–275, 2016.

[167] Bromberg Yerom, Valerie Issarny, and Pierre-Guillaume Raverdy. Interoperability of service

discovery protocols: Transparent versus explicit approaches. In Proceedings of the 15th IST

Mobile & Wireless Communications Summit, pages 1–5, Mykonos, 2006.

184 References

[168] Martin Peters, Christopher Brink, Martin Hirsch, and Sabine Sachweh. A client centric

replication model for mobile environments based on restful resources. In Proceedings of the

Workshop on Posters and Demos Track PDT ’11, New York, NY, USA, 2011. Association

for Computing Machinery.

[169] B. Zhang, Y. Li, and Y. Liang. Impact of packet size on performance of tcp traffic with small

router buffers. In Proceedings of the 2017 International Conference on Electronic Information

Technology and Computer Engineering (EITCE 2017). EDP Sciences, 2017.

[170] Anca-Raluca Breje, Robert Gyorodi, Cornelia Gyorodi, Doina Zmaranda, and George

Pecherle. Comparative study of data sending methods for xml and json models. Inter-

national Journal of Advanced Computer Science and Applications, 9(12):257–275, 2018.

[171] Kamir Yusof and Man Mustafa. Efficiency of json approach for data extraction and query

retrieval. Indonesian Journal of Electrical Engineering and Computer Science, 4(1):203–214,

2016.

[172] Wolf-Tilo Balke and Jorg Diederich. A quality- and cost-based selection model for multime-

dia service composition in mobile environments. In Proceedings of the IEEE International

Conference on Web Services, pages 621—-628, USA, 2006. IEEE Computer Society.

[173] Surya Nepal Julian Jang-Jaccard. A survey of emerging threats in cyber security. Journal

of Computer and System Sciences, 80(5):973–993, 2014.

[174] SiteLock. 3 ways to prevent a url redirect attack, 2023. Available at

https://www.sitelock.com/blog/prevent-url-redirect-attacks/(Accessed on 30 June 2023).

[175] R. Mohana. A proposed soap model in ws-security to avoid rewriting attacks and ensuring

secure conversation. International Journal of Information Security and Privacy (IJISP),

12(1):74–88, 2008.

[176] Mushtaq Ali, Mohamad Fadli Zolkipli, Jasni Mohamad Zain, and Shahid Anwar. Mobile

cloud computing with soap and rest web services. In Proceedings of the 1st International

Conference on Big Data and Cloud Computing (ICoBiC), pages 10–18, Kuching, Sarawak,

Malaysia, 2017. Journal of Physics: Conference Series.

Publications out of Thesis

International Journals

1. M. C. Mohammed Shameer, P. P. Abdul Haleem and Yazik K. Puthen-

pediyakkal, A lightweight Data Exchange Format for Mobile Transactions,

International Journal of Computer Network and Information Security (IJC-

NIS), Vol.15 No 3, pp.47-64, 2023, DOI:10.5815/ijcnis.2023.03.04 (Scopus).

Chapters Concerned : Chapter 2 and 3.

2. Mohamed Shameer M C and Abdul Haleem P. P., A study on the require-

ments of a transaction model in mobile environment, International Journal

of Computer Science and Information Technologies, Vol. 13 (5), pp.103-109,

2022 (DOAJ, Google Scholar). Chapters Concerned : Chapter 2.

Journals Communicated

1. M. C. Mohammed Shameer, P. P. Abdul Haleem, A Lightweight, Reliable, Dis-

connected and Distributed Message Transaction Model using LXML Format

in Mobile Environment, Communicated to Sadhana - Academy Proceedings in

Engineering Sciences (Scopus). Chapters Concerned : Chapter 2, 4, 5, 6 and

7.

2. Mohammed Shameer M C, Abdul Haleem P. P., A Layered Approach for

Checking and Isolating Rewriting Attacks in LXML Messages, Communi-

cated to Indonesian Journal of Electrical Engineering and Informatics (Sco-

pus). Chapters Concerned : Chapter 2 and 8.

185

186 Publications

Conference Papers Presented

1. Data Exchange Formats in Mobile Transactions: A Comparative Analysis,

National Conference on Computational Intelligence Practices and Technology

(ConCIPT 2020), Farook College (Autonomous), Sponsored by UGC, January

2020. Chapters Concerned : Chapter 2 and 3.

2. Demonstration and Study on E2EE using Firebase and AES algorithm, First

National Conference on Computational Intelligence and Data Analytics (CIDA

19), February 2019, Dept. of Computer Science, University of Calicut. Chap-

ters Concerned : Chapter 8.

3. PhenoTypic Data Analysis: Issues and Challenges, National Conference on

Advances in Computing, Communication and Applications 16, Sullamussalam

Science College Areacode, March 2016.

Appendix

ACK Acknowledgement (a confirmation for successful receipt of data).

AES Advanced Encryption Standard (AES) is a widely used symmet-

ric encryption algorithm.

Binary Format A method of encoding and representing data in a binary (ma-

chine readable) form.

Checksum A value generated from the data that is used to detect errors

that may be introduced during transmission or storage. It is

primarily used to verify the integrity of data and to ensure that

data is not corrupted.

Content Density The amount of meaningful data or information contained within

the document against the total size of the document expressed

in percentage.

CRM Customer relationship management (CRM) is a technology for

managing organizational relationships and interactions with cus-

tomers and potential customers.

Data Interchange Data interchange refers to the exchange or transfer of data be-

tween different systems, applications, or devices with an inten-

tion of sharing information or enabling communication, integra-

tion and interoperability among the communicating parties.

Data Interchange

Formats

Data interchange formats are standardized ways of representing

and encoding data to facilitate data exchange, integration and

interoperability between heterogeneous systems, applications, or

platforms.

187

188 Appendix

Data Object (DO) Data Object (DO) is a class or a user defined data type with a

number of data members corresponding to the number of distinct

tags in the LXML document or block.

Deserialization Deserialization is the process of reconstructing data or objects

from the sequence of serialized byte streams.

Digital Signature A cryptographic technique used to authenticate a digital docu-

ment or message and to verify the authenticity and integrity of

it.

Disconnectedness The mode of operation in which the system or application or

device may continue to operate even when it is not actively con-

nected to the network or to the central system.

Distributed The term is used to describe systems, processes, services or re-

sources that are spread out or decentralized across multiple loca-

tions or nodes rather than concentrating at a single centralized

location or node.

DAO Data Access Object. They are patterns that provide data oper-

ations without exposing database details.

EPOCH EPOCH is a reference for measuring time that represents the

number of seconds elapsed since 00:00:00 UTC (January 1,

1970).

ERP Enterprise resource planning (ERP) is a software suite used by

an organization to automate and manage key core business pro-

cesses including accounting, resource management etc.

Extensibility A feature that allows users to define custom, user defined, self

descriptive elements and data structures.

HTTP Hypertext Transfer Protocol. It is an application layer protocol

for transmitting hypermedia on the world wide web.

HTTPS HTTP Secure.

Interface Gateway A component in the middleware system responsible for LXML

message handling.

Appendix 189

JSON JSON (JavaScript Object Notation) is a lightweight, human

readable data interchange format.

Lightweight Lightweight is characterized by its simplicity, conciseness and

efficiency resulting in minimum complexity and processing over-

head making it suitable for environments where performance,

speed and reduced resource utilization are essential.

LXML Lightweight XML, A less verbose and lightweight data inter-

change format derived from XML.

Mapping Rules Set of rules or protocols that govern the mapping process.

Mapping/Binding The process of assigning each LXML value to a data member in

the DO.

Marshalling The process of converting an object to a stream of data.

Middleware The software component that acts as an intermediary between

different applications, services, or components within a dis-

tributed computing environment for facilitating communication,

data exchange, and interaction between these components at the

same time abstracting the complexities of network communica-

tion and platform differences.

NAK Negative Acknowledgement - indicates a failure in transmission.

Overhead Overhead refers to the additional amount of resources, time, or

data required by a system or communication process beyond the

core task, introduced due to the workaround or change carried

out.

Pagination (Seg-

mentation)

Breaking down the LXML message into smaller units for trans-

mission.

Parsing Parsing is the process of reading a document and extracting its

content.

Reassembly Regenerating the original message after segmentation.

190 Appendix

Reliable The ability of a system to deliver data accurately and consis-

tently at the destination end and ensuring data is received prop-

erly without any errors.

Resource Con-

strained Networks

(RCNs)

Communication networks with devices that suffer significant

limitations in availability of resources such as bandwidth, pro-

cessing power, memory, battery power and energy.

REST REST stands for Representational State Transfer. It is an ar-

chitectural style for designing networked applications and web

services.

Rewriting Attacks Intentional insertion of fake or irrelevant data elements to the

XML structure without changing the signature.

Schema A formal specification that defines the structure, data types,

constraints, and other rules for validating a document.

Schema aware Conforms and satisfies the schema rules and constraints.

Serialization The process of converting an object or data into a stream of

bytes so that they can be easily stored and transmitted.

SOA Service Oriented Architecture is a design approach for building

software systems using loosely coupled and reusable components

or services.

SOAP Simple Object Access Protocol. It is a XML based protocol for

accessing web services over HTTP.

Symmetric Encryp-

tion

An encryption standard that uses same secret key for both en-

cryption and decryption.

Transaction A sequence of one or more operations such as data retrieval,

updates, or other tasks carried out by wireless devices or nodes

that are treated as a single, atomic unit of work.

Transaction Model To manage and coordinate transactions and other data ex-

changes among devices or nodes.

Transmission The process of sending data or information from a device or

location to another through a communication medium.

Appendix 191

Unmarshalling Reverse process of marshalling. Unmarshalling refers to the pro-

cess of converting a stream of data back to objects.

Verbosity The excessive use of descriptive elements, tags, attributes or

other formatting information than actually necessary leading to

larger file size and complexity.

Web Services A collection of open protocols and standards used for XML based

information exchange between diverse systems and applications.

X.509 A standard format for public key certificates that enables secure

communication and transaction between two parties.

XML A markup language based on Standard Generalized Markup

Language (SGML) used as a file format for storing and trans-

mitting data between heterogeneous systems.

YAML YAML Ain’t Markup Language is a human readable, concise

data serialization language.

	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Mobile Computing
	Mobility
	Wireless Connectivity
	Resource Limitations
	Frequent Disconnections and Network Issues
	Context Awareness
	Multi Mode Operations
	Security and Privacy Issues

	Device and Network Characteristics
	Wireless Network and Communications
	Middleware System in Mobility
	Resource Constrained Networks (RCN)
	Device Limitations
	Network Issues
	Coverage and Infrastructure Issues

	Transaction Models
	Open Issues in Mobile Transaction Models
	Research Motivations
	Research Methodology
	Contributions
	Organization of the Thesis

	Literature Review
	Introduction
	Data Interchange Formats
	XML
	JSON
	YAML

	Transaction Models
	The Middleware Components
	Ensuring Disconnectedness
	Disconnectedness using Caching of Data and Shared File System
	Disconnectedness using Message Queues
	Disconnectedness using Middleware Systems

	Security: Possible Attacks and Solutions
	Summary
	Research Gaps Identified

	LXML - The Proposed Lightweight Data Interchange Format
	Introduction
	Characteristics of a Data Interchange Formats
	Lightweight XML (LXML) Format
	Handling Tag Attributes
	LXML Schema
	LXML Document Handling
	LXML Generation
	LXML Parsing
	Performance Evaluation
	Experimental Setup

	Applications
	Summary

	Layered Architecture for the Proposed Transaction Model
	Introduction
	Proposed Architecture
	Client Agent
	Middleware Component
	The Host Server

	Characteristics of the Proposed Model
	Summary

	Design and Implementation of the Client Agent Layer
	Introduction
	The Client Agent
	Connection Management
	Message Transmission
	Message Expiration Management
	Message Retransmission
	Measures to Ensure Disconnectedness
	Pagination (Segmentation / Reassembly)
	Delivery and Acknowledgement (Mechanisms to Ensure Reliability)
	Message Parsing and Processing

	Implementation
	Messaging Service
	Poll Service
	Database Connection
	Listener and DAOs
	Message Queue
	Helper and Utility Classes
	Configurations

	Summary

	Design and Implementation of the Middleware Layer
	Introduction
	Need of Middleware
	The Middleware Component
	Gateway Interface
	Measures to Support Disconnectedness

	Implementation
	Device Registry
	Push Service
	Request Response Handler and DAOs
	Message Queue
	Helper and Utility Classes

	Summary

	Performance Evaluation of the Proposed Transaction Model
	Introduction
	Turnaround Time
	Content Density
	Parsing Time in Client and Middleware
	Transmission Time
	Processing Overhead in Client and Middleware
	Summary

	Mechanisms to Ensure Secure Transaction of LXML Data
	Introduction
	Possible Attacks on XML / SOAP Messages
	Rewriting Attacks
	The Proposed Security Model
	LXML Schema Creation
	Message Creation
	Message Encryption

	Case Studies
	Scenario 1: Prevention of Redirection Attacks
	Scenario 2: Prevention of Adding / Removing tags in LXML
	Scenario 3: Prevention of Injecting an Additional Block in a Nested Tags
	Scenario 4: Prevention of Altering / Modifying the Data without Affecting Tags

	Performance Evaluation
	Overhead for Encryption and Decryption
	Storage Space

	Summary

	Conclusions
	Future Research Directions
	Standardization and Compatibility
	Interoperability and Integration

	Further Enhancements

	Recommendations
	References
	Publications out of Thesis Work

