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1
Introduction

Ideal topological space has been a topic of study since 1960 through

the paper by Vaidyanathaswamy. Kuratowski and Vaidyanathaswamy [39]

studied the concept of ideals in topological spaces. Later in 1990 the contri-

butions of Hamlett and Jankovic [6] in ideal topological spaces initiated the

generalization of some important properties in general topology via topo-

logical ideals.

By a space (X, τ), we mean a topological space with a topology τ de-

fined on X on which no separation axioms are assumed unless otherwise

explicitly stated. For a given point x in a space (X, τ), the system of open

neighborhoods of x is denoted by N(x) = {U ∈ τ : x ∈ U}. For a given

subset A of a space (X, τ), Cl(A) and Int(A) are used to denote the closure

of A and interior of A respectively, with respect to the topology.

A non-empty collection of subsets of a set X is said to be an ideal

I on X, if it satisfies the following two conditions: (i) If A ∈ I and

B ⊂ A, then B ∈ I; (ii) If A ∈ I and B ∈ I, then A ∪ B ∈ I.

An ideal topological space (or ideal space) (X, τ, I) means a topological

space (X, τ) with an ideal I defined on X. Let (X, τ) be a topologi-

cal space with an ideal I defined on X. Then for any subset A of X,

A∗(I, τ) = {x ∈ X/A ∩ U /∈ Ifor every U ∈ N(x)} is called the local

function of A with respect to I and τ . We say that a set A ⊂ X has the

4



5

property I locally at a point x, if there exists a neighborhood Ux of x, such

that Ux ∩ A ∈ I. The set of points at which A does not have the property

I locally is denoted by A∗(I). Thus x ∈ A∗(I) means that for every neigh-

borhood Ux of x, Ux ∩A does not have the property I or briefly is not in I

[6, 37].

Let P (X) be the class of all subsets of X. If ()c : P (X)→ P (X) is a func-

tion satisfying (1) φc = φ, (2) A ∈ P (X) → A ⊂ Ac, (3) A ∈ P (X), B ∈

P (X) → (A ∪ B)c = Ac ∪ Bc, and (4) A ∈ P (X) → (Ac)c = Ac then

()c is called a Kuratowski closure operator and {A ∈ P (X) : A = Ac} is

a collection of closed sets for a topology on X. Also if d : P (X) → P (X)

is a function satisfying (1) d(φ) = φ, (2) d(A ∪ B) = d(A) ∪ d(B), and

(3) d(d(A)) ⊂ d(A), then ()c : P (X) → P (X) defined by Ac = A ∪ d(A)

is a Kuratowski closure operator on P (X). Since ()∗ : P (X) → P (X) is

a function satisfies all the required conditions for the function d, we have

that Cl∗(A) = A ∪ A∗ is a Kuratowski closure operator [6]. The topology

generated by Cl∗ is denoted by τ ∗ where τ is the original topology on X,

i.e, τ ∗ = {U ⊂ X : Cl∗(X − U) = X − U}. For every ideal topological

space (X, τ, I), there exists a topology τ ∗(I) finer than τ , generated by

β(I, τ) = {U − I : U ∈ τ and I ∈ I}, but in general β(I, τ) is not always

a topology [6]. Further investigations in this field are done by (Arenas,

Dontchev et al.2000; Jankovic and Hamlett 1990, 1992; Mukherjee et al.

2007; Nasef and Mahmoud 1992) [5, 6, 10, 27, 31, 45]

From ideal topological point of view, many generalizations in operators and

open sets are currently in research. Within this framework certain concepts

in ideal topological space are discussed here.

The idea of regular open sets was introduced by M. H. Stone in 1937 and

is defned as Int(Cl(A)) = A. Similarly, regular closed sets as Cl(Int(A)) =

A. Velicko (1968) also studied the same and is called as δ-open sets. The
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term δ-cluster point (resp. δ-interior) of A was defined by Velicko (1968)

denoted as Cl
δ
(A) (resp. Int

δ
(A)). Also it is proved that the collection of

δ-open sets forms a topology denoted as τ δ.

A subset A of an ideal topological space (X, τ, I) is said to be R−I−open

if Int(Cl∗(A)) = A. We call a subset A of (X, τ, I) is R − I−closed if its

complement is R− I−open [42].

Separation axioms always render a vital part in general topology. Many

authors had defined different types of open sets and set forth several separa-

tion axioms with regard to those open sets. In literature, pre−T
i
(i = 0, 1, 2)

axioms, semi−T
i
(i = 0, 1, 2) axioms were some of them. Separation axioms

are also developed in ideal topological spaces.

The notion of R0 topological space came to light in 1943 by Shanin [33].

Later in 1961, Davis [3] studied this weak separation axiom and some of

its properties and also introduced the notion of R1 topological space. This

space is independent of T0 and T1 spaces. Also, it is weaker than T2 space.

S.A. Naimpally [40] in 1967 and Hall, Murphy and Rozycki [8] in 1971 also

carried out further studies on R0 topological spaces. K.K. Dube [22, 23] in

1974 and 1982 further studied the R0 and R1 spaces and obtained several

characterisations.

The separation axioms weaker than R0 was introduced by Jingcheng

Tong [20] in 1983 and later by Guiseppe Di Maio [14] in 1985. They defined

independently the separation axioms which were strictly weaker than R0

axiom. D.N. Mishra and K.K. Dube [7] studied certain separation axioms

weaker than R0 axiom in 1973 but were not weaker than those defined by

Jingcheng Tong.

A. S. Mashhour [4] in 1983 introduced supra open sets and studied supra

topological space and the continuous maps in supra topological space. Later,

many topologists introduced different kinds of supra open sets and contin-
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uous functions like supra b-open sets and supra b-continuity [35].

Another class of open (as well closed) sets which is a topic of interest is

minimal open (as well minimal closed) sets and maximal (as well maximal

closed) sets. This was introduced by F. Nakaoka and N. Oda [11, 12, 13] in

2001 and 2003 and had given many characterisations. Later, minimal and

maximal continuous functions were under discussion.

Many topologists have introduced and several generalizations of contin-

uous functions in general topology and as well in ideal topological space.

In 1971, Gentry and Hoyle [25] introduced somewhat continuous functions.

N. Levine [34] in 1961 introduced the decomposition of continuity in topo-

logical spaces. Many weaker form of continuous functions are in literature.

J. Dontchev [15] in 1996 introduced and investigated a concept of non-

continuity called contra-continuous functions. Contra-continuous functions

are extended in terms of several open sets by researchers. This notion is

also extended in ideal topological space.

The concept of continuity has been extended to define multifunctions

and later many generalizations have been made in terms of weak forms of

open sets. V. Popa [50, 48, 49, 47] has investigated many layers of multi-

function.

The objectives of this work are:

• To study certain topological concepts in terms of R− I−open sets.

• To study R − I − T
i
(i = 0, 1, 2) and R − I − R

i
(i = 0, 1) spaces and

spaces weaker than R− I −R
i
(i = 0, 1) spaces.

• To extend the notion of R − I−open sets to introduce supra R −

I−open sets and minimal (maximal) R− I−open sets.

• To extend the notion of R − I−open sets to introduce somewhat

R − I− continuous functions, contra R − I− continuous functions,
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almost contra R−I− continuous functions, R−I− continuous mul-

tifunctions, almost R − I− continuous multifunctions and weakly

R− I− continuous multifunctions.

Organisation of Thesis

The whole work is divided into eleven chapters. This chapter, the first one,

includes the introduction and the historical growth.

The second chapter contains the literature reviews.

In chapter 3, the idea of R−I−open sets is widened to advance a general-

ization of separation axioms. In this chapter we developed the separation

axioms R − I − T
i
i = 0, 1, 2, R − I−regular, R − I−normal, completely

R − I−normal spaces and studied some properties of these axioms. Also

the hereditary nature of those axioms are discussed. Moreover we initiated

the concept of compactness in this context.

In chapter 4, we extended the notion of R − I−open sets to develop weak

separation axioms R − I − R0 axiom and R − I − R1 axiom. We studied

certain characterisations of these axioms and analysed the relationship

between them. Further, relations with the separation axioms discussed in

chapter 3 are examined.

In chapter 5, we have discussed the weak separation axioms R−I−R0 and

R − I − R1 . In this chapter, we concentrate on separation axioms which

are weaker than R− I −R0 . At first we will define R− I−cluster point of

a set and studied some of its properties. Also, the relation connecting the

R − I−cluster point and R − I−regular space as well as the R − I − R1

space is examined. Afterwards, we will switch to the main purpose of the

chapter: separation axioms namely R−I −R
S

, R−I −R
D

, R−I −R
T
,

weakly R− I −R0 and weakly R− I − C0 .

In chapter 6, we present a new class of sets and functions in a supra ideal

topological space. We have brought in via ideal, supra R−I−open sets. We
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have introduced and studied certain properties of supra R− I−continuous

functions, supra∗ R − I−continuous functions, supra R − I−irresolute

functions, supra R − I−open maps, supra R − I−closed maps, supra

R−I−homeomorphism. Separation axioms in terms of supra R−I−open

sets are also looked into.

Till now, we have explored mainly on separation axioms in various modes

and also on supra space. From this chapter onwards we will pertain to

R− I−open sets and R− I−continuous functions and its generalizations.

In chapter 7, we intend to propose a new class of sets and a new class

of continuous functions in ideal topological space incorporating the idea

of minimal open sets and R − I−open sets. We brought in minimal

R − I−open set in the section 2. Further, we surveyed R − I − T
min

and

R − I − Tmax spaces, in the section 3. In the section 4, we move on to

the continuous functions namely minimal R − I−continuous function and

maximal R − I−continuous function. The relation between the above

defined continuous functions with certain other continuous functions is also

investigated.

In chapter 8, we put forward the notions of somewhat R − I−continuous

functions and somewhat R−I−open functions. In section 2, we will study

about somewhat R − I−continuous functions and its relationship with

other classes of functions. Also some of its characterizations and properties

are obtained besides giving examples and counter examples. In section 6,

we will study about somewhat R−I−open functions and get results which

go parallel with the results of somewhat R − I−continuous functions. In

other sections new definitions related with somewhat R − I−continuous

functions are introduced and certain properties are analysed.

In chapter 9, we aim to set forth a class of functions using the concepts

in ideal topological space called the contra R − I−continuous functions.
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We also introduce almost contra R − I−continuous functions and inves-

tigate certain properties and several characterisations of such concepts.

Further, we will deal with contra R−I−closed graphs and strongly contra

R − I−closed graphs. In the section 2., using the notion of R − I−open

sets, the contra R − I−continuous functions are presented and studied.

In section 3., almost contra R − I−continuous functions are investigated.

Section 4. handles with R − I−closed, contra R − I−closed and strongly

contra R− I−closed graphs.

In chapter 10, we widen the concept of continuity to set multifunctions

in ideal topological space by extending the class of R − I−open sets. We

introduce a class of continuous multifunctions namely upper and lower

R− I−continuous multifunctions and explored several characterisations of

the same. This is done in section 2. We also present and examined two

weaker forms of the upper and lower R− I−continuous multifunctions. In

section 3., the weaker form of R − I−continuous multifunction, namely

almost R − I−continuous multifunction is developed. In section 4.,

another weaker form of R − I−continuous multifunction, namely weakly

R− I−continuous multifunction is studied.

In the final chapter, chapter 11, the conclusion of the work is stated. This

chapter also put forward certain proposals for further research.



2
Background

2.1 Preamble

We recollect concepts and results which are relevant in this study and

which we have to do with in the succeeding chapters. As mentioned earlier,

(X, τ, I) denotes a topological space (X, τ) with an ideal I defined on X

where no separation axioms are assumed unless otherwise explicitly stated.

Our area of discussion is mainly on R− I−space. For our convenience, we

mean (X, τ, I) as a R− I−space.

2.2 Ideal Topogical space

Definition 2.2.1. [24, 6] A non-empty collection of subsets of a set X is

said to be an ideal I on X, if it satisfies the following two conditions:

(i) If A ∈ I and B ⊂ A, then B ∈ I

(ii) If A ∈ I and B ∈ I, then A ∪B ∈ I.

Definition 2.2.2. [24, 6]

(1) The minimal ideal I is the empty set φ in any topological space (X, τ).

(2) The maximal ideal I = P (X) is the power set of X in any topological

space (X, τ).

Definition 2.2.3. [24, 6] For any subset A of X,

11
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A∗(I, τ) = {x ∈ X/A ∩ U /∈ I for every U ∈ N(x)} is called the local

function of A with respect to I and τ . If there is no ambiguity, we will write

A∗(I) or simply A∗ for A∗(I, τ).

Definition 2.2.4. [24, 6] Given a topological space (X, τ) and an ideal I

on X, I is said to be compatible with τ , (I ∼ τ), if the following condition

is satisfied for each A ⊂ X: if for every a ∈ A there exists a neighborhood

U of a such that U ∩ A ∈ I, then A ∈ I.

Definition 2.2.5. For any subset A of X, Cl∗(A) = A ∪ A∗ defines a

Kuratowski closure operator. The topology generated by Cl∗ is denoted by

τ ∗(I) or simply τ ∗ which is finer than τ , the original topology on X.

If A ∈ I and U ∩A ∈ I for any U ∈ τ , then A∗ = φ. When I = φ, then

A∗ = Cl(A). Hence in this case Cl∗(A) = Cl(A) and τ = τ ∗. If I = P (X),

then A∗ = φ for every A ⊂ X and hence τ ∗(I) is the discrete topology.

Lemma 2.2.1. [24, 6] For any two sets A and B,

Cl∗(A ∪B) = Cl∗(A) ∪ Cl∗(B).

Lemma 2.2.2. [6] Let (X, τ) be a topological space, I and J be ideals on

X, and let A and B be subsets of X. Then

(1) A ⊂ B ⇒ A∗ ⊂ B∗.

(2) If I ⊂ J , then A∗(I) ⊃ A∗(J ).

(3) A∗ = Cl(A∗) ⊂ Cl(A) (i.e, A∗ is a closed subset of Cl(A)).

(4) If A ⊂ A∗, then A∗ = Cl(A∗) = Cl(A) = Cl∗(A).

(5) (A∗)∗ ⊂ A∗.

(6) (A ∪B)∗ = A∗ ∪B∗.

(7) If U ∈ τ , then U ∩ A∗ ⊂ (U ∩ A)∗.

Lemma 2.2.3. [6] Let (X, τ) be a topological space with an ideal I on X,

and A and B be subsets of X. Then
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(1) A∗ −B∗ = ((A−B)∗ −B∗) ⊂ (A−B)∗.

(2) If I ∈ I, then (A ∪ I)∗ = A∗ = (A− I)∗.

Remark 2.2.1. [24] For any subset U of X, Cl∗(U) ⊂ Cl(U) since τ ⊂ τ ∗.

Remark 2.2.2. [24] τ ∗(I) = τ if and only if I ∈ I is closed in (X, τ) for

every I ∈ I.

2.3 R− I−open sets

Definition 2.3.1. [42] A subset A of an ideal topological space (X, τ, I) is

said to be R− I−open if Int(Cl∗(A)) = A. We call a subset A of (X, τ, I)

is R− I− closed if its complement is R− I−open.

Definition 2.3.2. A R−I−space is an ideal topological space if it satisfies

the following axioms:

(i) Finite intersection of R− I−closed sets is R− I−closed.

(ii) Arbitrary union of R− I−open sets is R− I−open.

Definition 2.3.3. The intersection of all R−I−closed sets containing the

set A is called the R−I−closure of A and is denoted by R−I−Cl(A). The

R−I−interior of A is defined as the union of all R−I−open sets contained

in A and is denoted by R−I−Int(A). The family of all R−I−open (resp.

R − I−closed) sets of (X, τ, I) containing a point x ∈ X is denoted by

RIO(X, x) (resp. RIC(X, x)).

Lemma 2.3.1. [42] Let A and B be subsets of an ideal topological space

(X, τ, I). Then the following properties hold:

(1) Int(Cl∗(A)) is R− I−open.

(2) If A and B are R− I−open, then A ∩B is R− I−open.

(3) If A is regular open, then it is R− I−open.
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Proof. (1) Let A be a subset of X and V = Int(Cl∗(A)). Then, we

have Int(Cl∗(V )) = Int(Cl∗(Int(Cl∗(A)))) ⊂ Int(Cl∗(Cl∗(A))) =

Int(Cl∗(A)) = V and also V = Int(V ) ⊂ Int(Cl∗(V )). Hence, we obtain

Int(Cl∗(V )) = V .

(2) Let A and B be R − I−open. Then, we have A ∩ B =

Int(Cl∗(A)) ∩ Int(Cl∗(B)) = Int(Cl∗(A) ∩ Cl∗(B)) ⊃ Int(Cl∗(A ∩ B)) ⊃

Int(A∩B) = A∩B. Therefore, we obtain A∩B = Int(Cl∗(A∩B)). This

shows that A ∩B is R− I−open.

(3) Let A be regular open. Since τ ∗ ⊃ τ , we have A = Int(A) ⊂

Int(Cl∗(A)) ⊂ Int(Cl(A)) = A and hence A = Int(Cl∗(A)). Therefore, A

is R− I−open.

2.4 Different forms of continuity

Definition 2.4.1. [24] A function f : (X, τ, I) → (Y, σ) is said to be

somewhat continuous if for U ∈ σ and f−1(U) 6= φ, there exists an open

set V in X such that V 6= φ and V ⊂ f−1(U).

Definition 2.4.2. [32] A function f : (X, τ, I) → (Y, σ) is said to be

somewhat r-continuous if for U ∈ σ and f−1(U) 6= φ, there exists a

regular open set V in X such that V 6= φ and V ⊂ f−1(U).

Definition 2.4.3. [18] A function f : X → Y is said to be completely

continuous if f−1(V ) is a regular open set in X, for every open set V in

Y .

Definition 2.4.4. [18] A function f : X → Y is said to be almost com-

pletely continuous if f−1(V ) is a regular open set in X for every regular

open set V in Y .

Definition 2.4.5. [17] A function f : X → Y is said to be perfectly

continuous if f−1(V ) is clopen in X for every open set V in Y .



15

Definition 2.4.6. [17] A function f : X → Y is said to be almost per-

fectly continuous if f−1(V ) is clopen for every regular open set V in

Y .

Definition 2.4.7. [17] A function f : X → Y is said to be

cl−supercontinuous if for each open set V containing f(x) there is

a clopen set U containing x such that f(U) ⊂ V .

Definition 2.4.8. [17] A function f : X → Y is said to be almost

cl−supercontinuous if for each x ∈ X and each regular open set V con-

taining f(x) there is a clopen set U containing x such that f(U) ⊂ V .

Definition 2.4.9. [2] A function f : (X, τ, I) → (Y, σ) is said to be R −

I−continuous if for each x ∈ X and for any open set V ∈ σ containing

f(x), there exists a R−I−open set U ⊂ X containing x such that f(U) ⊂ V .



3
Separation axioms in terms of R− I−open

sets

3.1 Introduction

The idea of R − I−open sets is widened to advance a generalization of

separation axioms. What we developed in this chapter are the separation

axioms R − I − T
i
i = 0, 1, 2, R − I−regular, R − I−normal, completely

R − I−normal spaces. We study some properties of the above men-

tioned separation axioms. Also the hereditary nature of those axioms are

discussed. Moreover we initiated the concept of compactness in this context.

Certain definitions are to be get acquainted with in prior to the main topic.

Definition 3.1.1. A subset A of (X, τ, I) is called a R−I−neighbourhood

(R − I−nbd) of x ∈ X if there exists a R − I−open set U such that x ∈

U ⊂ A.

Theorem 3.1.1. Let x ∈ X and V ⊂ X. Then , if for any R − I−open

nbd U of x, U ∩V 6= φ, then x ∈ R−I −Cl(V ). The converse is also true.

Definition 3.1.2. A function f : (X, τ, I) → (Y, σ,J ) is R − I−open if

the image of every R− I−open set is R− J−open.

16
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Definition 3.1.3. A function f : (X, τ, I) → (Y, σ,J ) is R∗ −

I−continuous if the inverse image of every open set is R− I−open.

Definition 3.1.4. A function f : (X, τ, I)→ (Y, σ,J ) is R∗−I−irresolute

if the inverse image of every R− J−open set is R− I−open.

Definition 3.1.5. A function f : (X, τ, I) → (Y, σ,J ) is almost R −

I−continuous if f−1(V ) is R − I−open in X for every regular open set

V in Y .

3.2 R− I separation axioms

Definition 3.2.1. A topological space (X, τ, I) is said to be:

(i) R−I−T0 if for each pair of distinct points x and y in X, there exists

a R− I−open set containing x but not y.

(ii) R − I − T1 if for each pair of distinct points x and y in X, there

exist R − I−open sets U and V in X such that x ∈ U, y /∈ U and

y ∈ V, x /∈ V .

(iii) R − I − T2 if for each pair of distinct points x and y in X, there ex-

ist disjoint R−I−open sets U and V in X such that x ∈ U and y ∈ V .

Definition 3.2.2. An ideal topological space X is R−I−regular at a point

x ∈ X if for each pair consisting of a point x ∈ X and a R − I−closed set

B not containing x, there exist disjoint R − I−open sets containing x and

B respectively.

Definition 3.2.3. An ideal topological space X is R−I−normal if for each

pair A,B of disjoint R−I−closed sets of X, there exist disjoint R−I−open

sets containing A and B respectively.
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Definition 3.2.4. An ideal topological space X is R − I−Urysohn if for

any two distinct points x and y, there exist R−I−open sets U and V such

that x ∈ U, y ∈ V and Cl∗(U) ∩ Cl∗(V ) = φ.

Definition 3.2.5. An ideal topological space X is completely R−I−normal

or hereditarily R − I−normal if for any two sets A and B of X such that

Cl∗(A) ∩B = φ = A ∩Cl∗(B), there exist disjoint R− I−open sets U and

V such that A ⊂ U and B ⊂ V .

Definition 3.2.6. A R−I−homeomorphism from a space X to a space Y

is a bijection f : (X, τ, I)→ (Y, σ,J ) such that f is R∗ − I−irresolute and

R− I−open.

Theorem 3.2.1. An ideal topological space (X, τ, I) is R − I−regular if

and only if for any x ∈ X and any R − I−open set G containing x there

exists a R− I−open set U with x ∈ U and R− I − Cl(U) ⊂ G.

Proof. One part of the theorem is trivial from the definition ofR−I−regular

space.

Now assume that X is R−I−regular. Let x ∈ X and G be a R−I−open set

containing x. Then by the regularity of X, there exists disjoint R−I−open

sets U and V such that x ∈ U and (X \ G) ⊂ V . Then R − I − Cl(U) ⊂

(X \ V ). But (X \ V ) ⊂ G gives R− I − Cl(U) ⊂ G.

Theorem 3.2.2. An ideal topological space (X, τ, I) is R−I−normal if and

only if for any R−I−closed set C and any R−I−open set G containing C

there exists a R−I−open set U such that C ⊂ U and R−I −Cl(U) ⊂ G.

Proof. We are omitting the proof as it can be proved by the similar argue-

ment as in the above theorem.

Theorem 3.2.3. Let Y be a R−I −T2 space. If f : (X, τ, I)→ (Y, σ) and

g : (X, τ, I) → (Y, σ) are R − I−continuous functions, then S = {x ∈ X :

f(x) = g(x)} is R− I−closed in X.
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Proof. Let x /∈ S. That is x ∈ (X \ S) and so f(x) 6= g(x). Since Y is

R−I −T2 , there exist R−I−open sets U and V of Y containing f(x) and

g(x) respectively such that U∩V = φ. Since f and g are R−I−continuous,

f−1(U) and g−1(V ) are R−I−open inX. Also, x ∈ f−1(U) and x ∈ g−1(V ).

Name f−1(U) = P and g−1(V ) = Q and let R = P ∩ Q. Then R is a

R − I−open set in X containing x. Now, f(R) ∩ g(R) = f(P ∩ Q) ∩

g(P ∩ Q) ⊂ f(P ) ∩ g(Q) = U ∩ V = φ. Hence S ∩ R = φ which implies

S ⊂ (X \ R). Thus R − I − Cl(S) ⊂ (X \ R) and so x /∈ R − I − Cl(S).

Thus S = {x ∈ X : f(x) = g(x)} is R− I−closed in X.

Theorem 3.2.4. An ideal topological space (X, τ, I) is R − I − T0 if and

only if R−I −Cl({x}) 6= R−I −Cl({y}) for every distinct x and y in X.

Proof. Let X be R−I −T0 and x 6= y ∈ X. Then there exists R−I−open

set U containing x but not y. Then X−U is a R−I−closed set containing

y but not x. Hence R− I − Cl({x}) 6= R− I − Cl({y}).

Conversely suppose R−I−Cl({x}) 6= R−I−Cl({y}) for x 6= y ∈ X. If X

is not R−I−T0 , then every R−I−closed set containing x always contains

y. But then R−I −Cl({x}) = R−I −Cl({y}). This contradiction proves

that X is R− I − T0 .

Theorem 3.2.5. An ideal topological space (X, τ, I) is R − I − T1 if and

only if every singleton is R− I−closed.

Proof. Let X be R−I−T1 and let x ∈ X. For any y ∈ X with y 6= x, there

exists a R − I−open set V such that y ∈ V and x /∈ V . Then {x} ⊂ V c.

So for any y 6= x ∈ X, y /∈ R− I − Cl({x}). Thus R− I − Cl({x}) = {x}

which is R− I−closed.

Conversely, let x, y ∈ X and let {x}, {y} be R − I−closed sets. Then

X − {x} and X − {y} are R− I−open sets. Hence X is R− I − T1 .
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Theorem 3.2.6. An ideal topological space (X, τ, I) is R − I − T2 if and

only if for each x ∈ X, {x} =
⋂
{F

i
: F

i
is a R−I−closed nbd of x}.

Proof. Let X be R − I − T2 . For x 6= y ∈ X, there exist two disjoint

R − I−open sets Ux and Vy such that x ∈ Ux and y ∈ Vy . Then Ux ⊂

X − Vy and so R−I −Cl(Ux) ⊂ X − Vy . Denoting R−I −Cl(Ux) by Fx ,

{x} =
⋂
{Fx : Fx is a R− I − closed nbd of x}.

For x ∈ X, assume the converse. Then for x 6= y, there exists a R−I−closed

nbd F such that x ∈ F and y /∈ F . Hence there exist disjoint R− I−open

sets U and V where x ∈ U ⊂ F and y ∈ V = F c which will make X, a

R− I − T2 space.

Theorem 3.2.7. If X is R − I − T1, then for each x ∈ X,

{x} =
⋂
{U

i
: U

i
is a R− I − open nbd of x}.

Proof. Let X be R−I − T1 . Fix x ∈ X. Then for each y
i
∈ X, there exist

R − I−open sets U
i

and V
i

such that x ∈ U
i
, y /∈ U

i
and y ∈ V

i
, x /∈ V

i
.

Then {x} =
⋂
{U

i
: U

i
is a R− I − open nbd of x}.

Theorem 3.2.8. If for each x ∈ X, {x} is R − I−closed, then {x} =⋂
{X − {y} for each y 6= x ∈ X}.

Proof. Fix x ∈ X. Then for y 6= x ∈ X, X − {y} is a R − I−open nbd of

x. Hence the statement.

Remark 3.2.1. None of the above defined separation axioms are hereditary

and not even weakly hereditary as a subset A of an ideal topological space

(X, τ, I) which is R − I−open in X need not be R − I−open with respect

to the subspace topology (Y, τ
Y
, I

Y
).

Example 3.2.1. Let X = {a, b, c, d}, τ = {φ,X, {c}, {d}, {c, d}, {a, c}, {a, c, d}},

I = {φ, {b}}. The R− I−open sets are {d}, {a, c} and X. Let Y = {a, b}.

Then τ
Y

= {φ, Y, {a}} and I
Y

= {φ, {b}}. Then {a} = Y ∩ {a, c} is not

R− I−open in (Y, τ
Y
, I

Y
).
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Remark 3.2.2. In an ideal topological space (X, τ, I), R− I−normal and

completely R−I−normal are not comparable and the reason is as described

as above.

Remark 3.2.3. R−I−normal⇒ R−I−regular⇒ R−I−T2 ⇒ R−I−T1

⇒ R− I − T0

3.3 R− I compactness

Definition 3.3.1. For a subset A of an ideal topological space X, a collec-

tion of R − I−open sets {Aα : Aα ⊂ X} is a R − I−open cover of A if

A ⊂ ∪Aα.

Definition 3.3.2. An ideal topological space is said to be R − I−compact

(R − I−Lindeloff) if every R − I−open cover admits a finite (countable)

subcover.

Definition 3.3.3. A subset A of an ideal topological X is called

R − I−compact relative to X if every collection {Aα} of R − I−open sets

of X such that A ⊂ ∪Aα, has a finite subcover.

Theorem 3.3.1. Let V be a R−I−closed subset of a R−I−compact space

X. Then V is R− I−compact relative to X.

Proof. Consider a covering A of V by R−I−open sets in X. By construct-

ing a R−I−open covering B of X by B = A∪{X−V }, clearly some finite

subcover of B will cover X. To obtain a subcover of V , discard X −V from

the subcover of B of X. Thus, V is R− I−compact relative to X.

Theorem 3.3.2. The image of a R − I−compact space under an onto

R∗ − I−irresolute function is R− I−compact.
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Proof. Let f : (X, τ, I)→ (Y, σ,J ) be an onto R∗ − I−irresolute function

and let X be a R − I−compact space. Let A be a covering of f(X) by

R−I−open sets in Y . Consider B = {f−1(A) : A ∈ A}. This is a collection

of R−I−open sets inX which coversX, since f is R∗−I−irresolute. Hence,

finitely many members of B, say, f−1(A1), f
−1(A2), . . . , f

−1(An) cover X.

But then A1 , A2 , . . . , An will cover f(X) since f is onto.

Theorem 3.3.3. The image of a R − I−compact space under an onto

R∗ − I−continuous function is compact.

Proof. Let f : (X, τ, I) → (Y, σ) be an onto R∗ − I−continuous function

and let X be a R − I−compact space. Let A be a covering of f(X) by

open sets in Y . Consider B = {f−1(A) : A ∈ A}. This is a collection of

R−I−open sets in X which covers X, since f is R∗−I−continuous. Hence,

finitely many members of B, say, f−1(A1), f
−1(A2), . . . , f

−1(An) cover X.

But then A1 , A2 , . . . , An will cover f(X) since f is onto.

Theorem 3.3.4. The image of a compact space under an onto almost R−

I−continuous function is R− I−compact.

Proof. We are omitting the proof as it can be proved by the similar argue-

ment as in the above theorem.



4
Weak separation axioms

4.1 Introduction

We extended the notion of R − I−open sets to develop weak separation

axioms R − I − R0 and R − I − R1 . We studied certain characterisations

of these axioms and analysed the relationship between them. Further,

relations with the separation axioms discussed in chapter 3 are examined.

First let us memorise the definitions of R0 and R1 spaces.

Definition 4.1.1. [3] A topological space (X, τ) is said to be R0 if every

open set contains the closure of each of its singletons.

[3] A topological space (X, τ) is said to be R1 if for x, y ∈ X with

Cl({x}) 6= Cl({y}), there exist disjoint open sets U, V such that

Cl({x}) ⊂ U and Cl({y}) ⊂ V .

4.2 R− I −R0 spaces

Definition 4.2.1. Let (X, τ, I) be an ideal topological space and A ⊂ X.

The R−I−kernel of A is denoted by I
R
Ker(A) and is defined to be the set

I
R
Ker(A) = ∩{G ∈ RIO(X) : A ⊂ G}.

23



24

Lemma 4.2.1. For subsets A,B of an ideal topological space (X, τ, I), the

following properties hold:

1. A ⊂ I
R
Ker(A)

2. If A ⊂ B, then I
R
Ker(A) ⊂ I

R
Ker(B)

3. If A is R− I−open, then I
R
Ker(A) = A

4. x ∈ I
R
Ker(A) if and only if A ∩D 6= φ for any R − I−closed set D

of X such that x ∈ D.

Proof. The proof follows directly from the definition of R− I−kernel of A

for A ⊂ X.

Theorem 4.2.1. Let (X, τ, I) be an ideal topological space and x, y ∈ X.

Then y ∈ I
R
Ker({x}) if and only if x ∈ R− I − Cl({y}).

Proof. Let x, y ∈ X. Suppose y /∈ I
R
Ker({x}). Then there exists U ∈

RIO(X, x) such that y /∈ U . So X − U is a R− I−closed set containing y

but not x. Therefore x /∈ R − I − Cl({y}). Conversely suppose x /∈ R −

I −Cl({y}). Then there exists V ∈ RIC(X, y) such that x /∈ V . So X−V

is a R− I−open set containing x but not y. Hence y /∈ I
R
Ker({x}).

Theorem 4.2.2. Let (X, τ, I) be an ideal topological space and S be a subset

of X. Then I
R
Ker(S) = {x ∈ X : R− I − Cl({x}) ∩ S 6= φ}.

Proof. Let S ⊂ X and let x ∈ I
R
Ker(S). Suppose S∩R−I−Cl({x}) = φ.

We have X − (R−I −Cl({x})) is a R−I−open set not containing x. But

S ⊂ X − (R − I − Cl({x})). This implies x /∈ I
R
Ker(S), which is a

contradiction. Hence S ∩R− I − Cl({x}) 6= φ.

Now suppose x ∈ X and S ∩ (R − I − Cl({x})) 6= φ and suppose that

x /∈ I
R
Ker(S). Then there exists a R − I−open set U such that S ⊂ U

and x /∈ U . Let y ∈ S ∩ (R − I − Cl({x})). Then y ∈ S ⊂ U and also
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y ∈ R − I − Cl({x}) ⊂ X − U . This will make a contradiction and hence

the proof.

Definition 4.2.2. An ideal topological space (X, τ, I) is called a R−I−R0

space if every R − I−open set contains the R − I−closure of each of its

singletons.

Theorem 4.2.3. Let (X, τ, I) be an ideal topological space. Then X is

R− I − T1 if and only if it is R− I − T0 and R− I −R0.

Proof. Let X be a R−I − T1 space. Then clearly X is a R−I − T0 space

and also X is a R− I −R0 space.

Conversely, let X be both R−I − T0 and R−I −R0 . Let x, y be any two

distinct points of X . Since X is R−I −T0 , there exists a R−I−open set

U such that x ∈ U and y /∈ U or there exists a R−I−open set V such that

y ∈ V and x /∈ V . Since X is R−I−R0 , then R−I−Cl({x}) ⊂ U for x ∈ U .

Since y /∈ U, y /∈ R−I −Cl({x}). So y ∈ X − (R−I −Cl({x})) = W, say.

Thus U and W are R− I−open sets containing x and y respectively. Also

x /∈ W and y /∈ U . Hence X is R− I − T1 .

Remark 4.2.1. Every R−I −T1 space is R−I −R0, since in R−I −T1

every singletons are R− I−closed. The converse is not true in general.

Example 4.2.1. Let X = {a, b, c}, τ = {φ,X, {a, b}, {c}}, I =

{φ, {a, b}, {a}, {b}}. Then (X, τ, I) is R− I −R0, but not R− I − T1.

Example 4.2.2. Let X = {a, b, c}, τ = {φ,X, {a, b}}, I = {φ, {a, b}}.

Then (X, τ, I) is not R− I −R0 and not R− I − T0.

Remark 4.2.2. From the above two examples it is clear that R − I − T0

and R− I −R0 are independent.

Theorem 4.2.4. Let (X, τ, I) be an ideal topological space. Then for x, y

in X, I
R
Ker({x}) 6= I

R
Ker({y})⇐⇒ R−I−Cl({x}) 6= R−I−Cl({y}).
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Proof. Let I
R
Ker({x}) 6= I

R
Ker({y}). Then there exists z ∈ X such that

z ∈ I
R
Ker({x}) and z /∈ I

R
Ker({y}). Also by theorem 4.2.1, y /∈ R− I −

Cl({z}) and x ∈ R− I −Cl({z}). So R− I −Cl({x}) ⊂ R− I −Cl({z})

and so y /∈ R− I − Cl({x}). Hence R− I − Cl({x}) 6= R− I − Cl({y}).

Conversely, let R − I − Cl({x}) 6= R − I − Cl({y}). Then there exists

z ∈ X such that z ∈ R − I − Cl({x}) and z /∈ R − I − Cl({y}). This

implies that there exists a R − I−open set containing z and x but not y.

So y /∈ I
R
Ker({x}). Hence I

R
Ker({x}) 6= I

R
Ker({y}).

Theorem 4.2.5. Let (X, τ, I) be an ideal topological space. Then the fol-

lowing are equivalent.

(i) (X, τ, I) is a R− I −R0 space.

(ii) For any P ∈ RIC(X), x /∈ P implies P ⊂ U and x /∈ U for some

U ∈ RIO(X).

(iii) For any P ∈ RIC(X), x /∈ P implies P ∩ (R− I − Cl({x})) = φ.

(iv) For any two distinct points x and y of X, R−I −Cl({x}) = R−I −

Cl({y}) or (R− I − Cl({x})) ∩ (R− I − Cl({y})) = φ.

Proof. (i) ⇒ (ii)

Let P be a R − I−closed set of X and x /∈ P . Since X is R − I − R0 ,

R − I − Cl({x}) ⊂ X − P . Denote U = X − (R − I − Cl({x})). Then U

is a R− I−open set and P ⊂ U and x /∈ U .

(ii) ⇒ (iii)

Let P ∈ RIC(X) and x /∈ P . Then U = X − (R − I − Cl(x)) ∈ RIO(X)

such that P ⊂ U and x /∈ U . Hence P ∩ (R− I − Cl({x})) = φ.

(iii) ⇒ (iv)

Suppose R − I − Cl({x}) 6= R − I − Cl({y}) for x 6= y ∈ X. Then there

exists z ∈ X with z ∈ R−I−Cl({x}) and z /∈ R−I−Cl({y}). So we get,
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x /∈ R − I − Cl({y}). Hence (R − I − Cl({x})) ∩ (R − I − Cl({y})) = φ,

by (iii) and taking P = R− I − Cl({y}).

(iv) ⇒ (i)

Let V be a R−I−open set in X and let x ∈ V . Then for each y /∈ V , x 6= y

and x /∈ R−I−Cl({y}). So by (iv), (R−I−Cl({x}))∩(R−I−Cl({y})) = φ

for each y /∈ V . Hence (R− I − Cl({x})) ∩ (∪
y∈X−VR− I − Cl({y})) = φ.

Since V is R− I−open and y ∈ X − V, R− I − Cl({y}) ⊂ X − V and so

X−V = ∪
y∈X−VR−I−Cl({y}). Therefore (X−V )∩R−I−Cl({x}) = φ

or R− I − Cl({x}) ⊂ V . Hence (X, τ, I) is a R− I −R0 space.

Corollary 4.2.1. An ideal topological space (X, τ, I) is R− I −R0 if and

only if for any two points x, y ∈ X, R − I − Cl({x}) 6= R − I − Cl({y})

implies (R− I − Cl({x})) ∩ (R− I − Cl({y})) = φ.

Proof. Let (X, τ, I) be R− I − R0 . Then by theorem 4.2.5, the statement

holds.

Conversely, let U be a R − I−open set of X containing x. We claim R −

I − Cl({x}) ⊂ U . For that let y ∈ X − U . So x /∈ R − I − Cl({y}). This

implies R − I − Cl({x}) 6= R − I − Cl({y}). By assumption, (R − I −

Cl({x})) ∩ (R − I − Cl({y})) = φ. Thus y /∈ R − I − Cl({x}) and hence

the claim.

Theorem 4.2.6. An ideal topological space (X, τ, I) is R − I − R0 if and

only if for any two points x, y ∈ X, I
R
Ker({x}) 6= I

R
Ker({y}) implies

I
R
Ker({x}) ∩ I

R
Ker({y}) = φ.

Proof. Let (X, τ, I) be R − I − R0 . By theorem 4.2.4, for any two

points x, y ∈ X, if I
R
Ker({x}) 6= I

R
Ker({y}), then R − I − Cl({x}) 6=

R− I − Cl({y}). Contrary suppose z ∈ I
R
Ker({x}) ∩ I

R
Ker({y}). Since

z ∈ I
R
Ker({x}), x ∈ R−I −Cl({z}). Also x ∈ R−I −Cl({x}). Then by

theorem 4.2.5(iv), R− I − Cl({x}) = R− I − Cl({z}). Thus, in a similar
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way, we get R−I−Cl({x}) = R−I−Cl({z}) = R−I−Cl({y}), which is

not true. From this contradiction, we have I
R
Ker({x})∩I

R
Ker({y}) = φ.

Now assume the converse. By theorem 4.2.4, if R − I − Cl({x}) 6=

R − I − Cl({y}), then I
R
Ker({x}) 6= I

R
Ker({y}). So by assumption,

I
R
Ker({x}) ∩ I

R
Ker({y}) = φ. Now let z ∈ R − I − Cl({x}) and this

implies x ∈ I
R
Ker({z}). Therefore I

R
Ker({x}) ∩ I

R
Ker({z}) 6= φ. Then

by hypothesis, I
R
Ker({x}) = I

R
Ker({z}). So if z ∈ R − I − Cl({x}) ∩

R − I − Cl({y}), then I
R
Ker({x}) = I

R
Ker({z}) = I

R
Ker({y}), which

is a contradiction. Hence we get R − I − Cl({x}) ∩ R − I − Cl({y}) = φ.

Thus by corollary, (X, τ, I) is a R− I −R0 space.

Theorem 4.2.7. Let (X, τ, I) be a R − I − R0 space. Then x ∈ R − I −

Cl({y}) if and only if y ∈ R−I−Cl({x}) for any x, y ∈ X. The converse

is also true.

Proof. Let (X, τ, I) be R − I − R0 . Let x ∈ R − I − Cl({y}) and let U

be a R− I−open set of X containing y. Then R− I − Cl({y}) ⊂ U since

X is R − I − R0 . So, x ∈ R − I − Cl({y}) implies x ∈ U . That means,

every R−I−open set containing y contains x. Hence y ∈ R−I −Cl({x}).

Assume the converse. Let U be a R − I−open set in X containing x. If

y /∈ U , then x /∈ R − I − Cl({y}) and hence y /∈ R − I − Cl({x}). This

means R− I − Cl({x}) ⊂ U . Then (X, τ, I) is R− I −R0 .

Theorem 4.2.8. Let (X, τ, I) be an ideal topological space. Then the fol-

lowing are equivalent:

(i) (X, τ, I) is a R− I −R0 space.

(ii) For any φ 6= P ∈ X and U ∈ RIO(X) with P ∩ U 6= φ, there exists

V ∈ RIC(X) such that P ∩ V 6= φ and V ⊂ U .

(iii) For any U ∈ RIO(X), U = ∪{V ∈ RIC(X) : V ⊂ U}.
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(iv) For any V ∈ RIC(X), V = ∩{U ∈ RIO(X) : V ⊂ U}.

(v) For any x ∈ X, R− I − Cl({x}) ⊂ I
R
Ker({x}).

Proof. (i) ⇒ (ii)

Let φ 6= P ∈ X and U be an R − I−open set with P ∩ U 6= φ. Let

x ∈ P ∩ U . Since x ∈ U and X is R − I − R0 , R − I − Cl({x}) ⊂ U . Let

V = R− I − Cl({x}). Then V ∈ RIC(X) and V ⊂ U and P ∩ V 6= φ.

(ii) ⇒ (iii)

Let U ∈ RIO(X). Then clearly ∪{V ∈ RIC(X) : V ⊂ U} ⊂ U . Now let

x ∈ U . Then there exists V ∈ RIC(X) such that x ∈ V ⊂ U as in (ii).

Thus x ∈ V ⊂ ∪{V ∈ RIC(X) : V ⊂ U}. Hence U = ∪{V ∈ RIC(X) :

V ⊂ U}.

(iii) ⇒ (iv)

It directly follows from (iii).

(iv) ⇒ (v)

Let x ∈ X and let y /∈ I
R
Ker({x}). Then there exists G ∈ RIO(X) such

that x ∈ G and y /∈ G. So R − I − Cl({y}) ∩ G = φ. Then by (iv),

(∩{U ∈ RIO(X) : R − I − Cl({y}) ⊂ U}) ∩ G = φ. So there exists an

R − I−open set U such that x /∈ U and R − I − Cl({y}) ⊂ U . Hence

R−I−Cl({x})∩U = φ and y /∈ R−I−Cl({x}). Thus R−I−Cl({x}) ⊂

I
R
Ker({x}).

(v) ⇒ (i)

Let U be an R− I−open set in X and x ∈ U . Let y ∈ I
R
Ker({x}). Then

y ∈ U . Then I
R
Ker({x}) ⊂ U . Thus x ∈ R−I−Cl({x}) ⊂ I

R
Ker({x}) ⊂

U . Hence X is a R− I −R0 space.

Theorem 4.2.9. Let (X, τ, I) be an ideal topological space. Then the fol-

lowing are equivalent:

(i) (X, τ, I) is a R− I −R0 space.
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(ii) If V is a R− I−closed subset of X, then V = I
R
Ker(V ).

(iii) If V is a R−I−closed subset of X and x ∈ V , then I
R
Ker({x}) ⊂ V .

(iv) If x ∈ X, then I
R
Ker({x}) ⊂ R− I − Cl({x}).

Proof. (i) ⇒ (ii)

Let V be a R − I−closed subset of X and let x ∈ X − V . Since X is a

R − I − R0 space and X − V ∈ RIO(X, x), R − I − Cl({x}) ⊂ X − V .

Then I
R
Ker(V ) ⊂ X − (R − I − Cl({x})). Also x /∈ I

R
Ker(V ). Thus

I
R
Ker(V ) = V .

(ii) ⇒ (iii)

Since U ⊂ V implies I
R
Ker(U) ⊂ I

R
Ker(V ), it follows that I

R
Ker({x}) ⊂

I
R
Ker(V ) for x ∈ V . Therefore I

R
Ker({x}) ⊂ V from (ii).

(iii) ⇒ (iv)

Clearly x ∈ R− I − Cl({x}). From (iii) I
R
Ker({x}) ⊂ R− I − Cl({x}).

(iv) ⇒ (i)

Let x ∈ R−I−Cl({y}). Then by theorem 4.2.1, y ∈ I
R
Ker({x}). Thus we

get y ∈ I
R
Ker({x}) ⊂ R−I−Cl({x}) by (iv). Hence x ∈ R−I−Cl({y})

implies y ∈ R − I − Cl({x}). Clearly the reverse implication holds. Thus

by theorem 4.2.8, X is a R− I −R0 space.

Corollary 4.2.2. Let (X, τ, I) be an ideal topological space. If (X, τ, I) is

R − I − R0, then I
R
Ker({x}) = R − I − Cl({x}) for all x ∈ X. The

converse is also true.

Proof. Suppose (X, τ, I) is a R − I − R0 space. By theorem 4.2.9(v) and

theorem 4.2.10(iv) the statement is obvious. The converse is trivial by

theorem 4.2.10.
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4.3 R− I −R1 spaces

Definition 4.3.1. An ideal topological space (X, τ, I) is called a R−I−R1

space if for x, y ∈ X with R − I − Cl({x}) 6= R − I − Cl({y}) there

exist disjoint R − I−open sets U, V such that R − I − Cl({x}) ⊂ U and

R− I − Cl({y}) ⊂ V .

Theorem 4.3.1. Every R− I −R1 space is R− I −R0.

Proof. Let (X, τ, I) be a R − I − R1 space and x, y ∈ X. Let U be a

R−I−open set containing x but not y. So x /∈ R−I −Cl({y}). Then we

have R−I −Cl({x}) 6= R−I −Cl({y}). By hypothesis, then there exists

R−I−open set V such that R−I −Cl({y}) ⊂ V and also x /∈ V and this

implies y /∈ R− I − Cl({x}). Thus R− I − Cl({x}) ⊂ U . Hence (X, τ, I)

is R− I −R0 .

Remark 4.3.1. The converse of the above theorem is not true in general.

Example 4.3.1. Let X = {a, b, c}, τ = {φ,X, {a}, {b}, {a, b}, {b, c}}, I =

{φ, {a}}. The R − I−open sets are {a}, {b, c}, X. Then (X, τ, I) is R −

I −R0 but not R− I −R1.

Remark 4.3.2. R0 implies R− I −R0 but the converse is not true.

Example 4.3.2. Consider the same example written above (Example 4.3.1).

(X, τ, I) is R− I −R0 but not R0.

Remark 4.3.3. R1 implies R− I −R1 but the converse is not true.

Example 4.3.3. Let X = {a, b, c}, τ = {φ,X, {a}, {c}, {a, c}, {b, c}}, I =

{φ, {a}}. The R − I−open sets are {a}, {b, c}, X. Then (X, τ, I) is R −

I −R1 but not R1.

Theorem 4.3.2. An ideal topological space (X, τ, I) is R − I − R1 if and

only if for any two points x, y ∈ X, I
R
Ker({x}) 6= I

R
Ker({y}) implies



32

there exists disjoint R− I−open sets U, V such that R− I − Cl({x}) ⊂ U

and R− I − Cl({y}) ⊂ V .

Proof. By theorem 4.2.4, theorem directly follows.

Theorem 4.3.3. Let (X, τ, I) be a R − I − R1 space. Then for x, y ∈ X

with R − I − Cl({x}) 6= R − I − Cl({y}), there exists R − I−closed sets

K1 and K2 such that x ∈ K1 , y ∈ K2 , y /∈ K1 , x /∈ K2 and K1 ∪K2 = X.

Proof. Let (X, τ, I) be R − I − R1 . Suppose x, y ∈ X with

R−I−Cl({x}) 6= R−I−Cl({y}). Then there exists disjoint R−I−open

sets U, V such that R − I − Cl({x}) ⊂ U and R − I − Cl({y}) ⊂ V . Let

K1 = X − V and K2 = X − U . Then K1 and K2 are R − I−closed sets

such that x ∈ K1 , y ∈ K2 , y /∈ K1 , x /∈ K2 and K1 ∪K2 = X.

Assume the converse. To Show X is R − I − R1 , we first prove X

is R − I − R0 . For that suppose U be a R − I−open set containing x and

suppose R−I−Cl({x}) is not a subset of U . So R−I−Cl({x})∩U c 6= φ.

Let y ∈ R− I − Cl({x}) ∩ U c. Then R− I − Cl({x}) 6= R− I − Cl({y}).

Then by hypothesis there exists R − I−closed sets K1 and K2 such

that x ∈ K1 , y ∈ K2 , y /∈ K1 , x /∈ K2 and K1 ∪ K2 = X. Thus there

exists a R − I−closed set containing x but not y, which is a contradic-

tion. Hence (X, τ, I) is R − I − R0 . Now assume that u, v ∈ X with

R − I − Cl({u}) 6= R − I − Cl({v}). Then as earlier there exists

R − I−closed sets L1 and L2 such that x ∈ L1 , y ∈ L2 , y /∈ L1 , x /∈ L2

and L1∪L2 = X. Thus u ∈ L1−L2 and v ∈ L2−L1. But L1−L2 = X−L2

and L2−L1 = X−L1 and both are R−I−open. Since X is R−I−R0,

R − I − Cl({u}) ⊂ L1 − L2 and R − I − Cl({v}) ⊂ L2 − L1. Therefore

(X, τ, I) is R− I −R1 .

Theorem 4.3.4. The following statements are equivalent:
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(i) (X, τ, I) is a R− I −R1 space.

(ii) For each x, y ∈ X either one of the following holds.

(a) if U is R− I−open, then x ∈ U if and only if y ∈ U .

(b) there exist disjoint R−I−open sets U and V such that x ∈ U and

y ∈ V .

(iii) If x, y ∈ X with R − I − Cl({x}) 6= R − I − Cl({y}), there exists

R−I−closed sets K1 and K2 such that x ∈ K1 , x /∈ K2 , y /∈ K1 , y ∈ K2

and K1 ∪K2 = X.

Proof. (i) ⇒ (ii)

Let x, y ∈ X. Case 1: R− I − Cl({x}) = R− I − Cl({y}).

Let U be an R−I−open set. Then if x ∈ U we have y ∈ R−I−Cl({x}) ⊂ U

and if y ∈ U then we have x ∈ R − I − Cl({y}) ⊂ U . Thus x ∈ U if and

only if y ∈ U .

Case 2: R− I − Cl({x}) 6= R− I − Cl({y}).

Then there exists disjoint R−I−open sets U and V such that x ∈ R−I −

Cl({x}) ⊂ U and y ∈ R− I − Cl({y}) ⊂ V .

(ii) ⇒ (iii)

Let x, y ∈ X such that R − I − Cl({x}) 6= R − I − Cl({y}). Then either

x /∈ R−I−Cl({y}) or y /∈ R−I−Cl({x}). Suppose x /∈ R−I−Cl({y}).

Then there exists a R − I−open set S such that x ∈ S and y /∈ S. So by

(ii) there exists disjoint R − I−open sets U and V such that x ∈ U and

y ∈ V . Let K1 = V c and K2 = U c. Then K1 and K2 are R−I−closed sets

such that x ∈ K1 , y ∈ K2 , y /∈ K1 , x /∈ K2 and K1 ∪K2 = X.

(iii) ⇒ (i)

This is the statement of theorem 4.3.3.

Theorem 4.3.5. An ideal topological space is R − I − R1 if and only if
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x /∈ R−I −Cl({y}) implies that x and y have disjoint R−I−open neigh-

bourhoods.

Proof. Let (X, τ, I) be R − I − R1 and let x /∈ R − I − Cl({y}). Then

R−I−Cl({x}) 6= R−I−Cl({y}). Then x and y have disjoint R−I−open

neighbourhoods.

Assume the converse. First, we prove that (X, τ, I) is R−I−R0 . Let U be a

R−I−open set containing x. Suppose y /∈ U . Then R−I−Cl({y})∩U = φ.

Also x /∈ R−I−Cl({y}). Then there exists disjoint R−I−open sets V1 and

V2 such that x ∈ V1 and y ∈ V2 . Then R − I − Cl({x}) ⊂ R − I − Cl(V1)

and (R − I − Cl({x})) ∩ V2 ⊂ (R − I − Cl(V1)) ∩ V2 = φ. Thus y /∈

R−I −Cl({x}). Hence R−I −Cl({x}) ⊂ U and (X, τ, I) is R−I −R0 .

Now suppose R − I − Cl({x}) 6= R − I − Cl({y}). Then there exists an

element w ∈ R − I − Cl({x}) and w /∈ R − I − Cl({y}). By assumption

there exists disjoint R − I−open sets W1 and W2 such that w ∈ W1 and

y ∈ W2 . Since w ∈ R − I − Cl({x}), x ∈ W1 for otherwise if x /∈ W1 , then

w ∈ R−I −Cl({x}) ⊂ W1

c, a contradiction. Since (X, τ, I) is R−I −R0 ,

R − I − Cl({x}) ⊂ W1 and R − I − Cl({y}) ⊂ W2 . Thus (X, τ, I) is

R− I −R1 .
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Separation axioms weaker than R− I −R0

5.1 Introduction

We have discussed the weak separation axioms R−I −R0 and R−I −R1 .

In this chapter, we concentrate on separation axioms which are weaker than

R−I −R0 . At first we will define R−I−cluster point of a set and studied

some of its properties. Also, the relation connecting the R−I−cluster point

and R− I−regular space as well as the R− I −R1 space is examined.

Afterwards, we will switch to the main purpose of the chapter: separation

axioms namely R− I −R
S

, R− I −R
D

, R− I −R
T
, weakly R− I −R0

and weakly R− I − C0 .

5.2 R− I−cluster point

A point x of X is called a R−I−cluster point of A if R−I−Cl(U)∩A 6= φ

for every U ∈ RIO(X, x). The set of all R−I−cluster points of A is called

the R− I − θ-closure of A and is denoted by R− I − θCl(A). A subset A

is said to be R − I − θ-closed if A = R − I − θCl(A). The complement of

a R− I − θ-closed set is said to be R− I − θ-open.

Note 5.2.1. For any subset A of an ideal topological space (X, τ, I),

R− I − Cl(A) ⊂ R− I − θCl(A).

35
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Theorem 5.2.1. For an ideal topological space (X, τ, I), the following prop-

erties are equivalent.

(i) (X, τ, I) is R− I−regular.

(ii) R− I − θCl(A) = R− I − Cl(A) for every subset A of X.

(iii) R− I − θCl(A) = A for every R− I−closed subset A of X.

Proof. (i) ⇒ (ii)

It is enough to show that R− I − θCl(A) ⊂ R− I − Cl(A).

Assume x /∈ R−I−Cl(A). Then by the R−I−regularity of (X, τ, I), there

exists disjointR−I−open sets U and V such that x ∈ U andR−I−Cl(A) ⊂

V . Hence A ∩ R − I − Cl(U) ⊂ (R − I − Cl(A)) ∩ (R − I − Cl(U)) ⊂

V ∩ (R− I − Cl(U)) = φ. Hence x /∈ R− I − θCl(A) and so (ii) holds.

(ii) ⇒ (iii)

Let A be a R − I−closed subset of X. Then R − I − Cl(A) = A and by

(ii) R− I − θCl(A) = A.

(iii) ⇒ (i)

Let x ∈ X and A be a R − I−closed set not containing x. By (iii) R −

I − θCl(A) = A. Then there exists a R− I−open set U containing x such

that (R− I −Cl(U)) ∩A = φ. Thus A ⊂ X − (R− I −Cl(U)). Hence (i)

holds.

Theorem 5.2.2. An ideal topological space (X, τ, I) is R − I − R1 if and

only if R− I − θCl({x}) = R− I − Cl({x}) for each x ∈ X.

Proof. Let (X, τ, I) be R − I − R1 and let x ∈ X. Suppose y /∈ R − I −

Cl({x}). Then by theorem 4.3.5, x and y belongs to disjointR−I−open sets

U and V respectively. So {x}∩ (R−I−Cl(V )) ⊂ U ∩ (R−I−Cl(V )) = φ

and y /∈ R − I − θCl({x}). Hence R − I − θCl({x}) ⊂ R − I − Cl({x})

and so R− I − θCl({x}) = R− I − Cl({x}).
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Conversely, let x 6= y and y /∈ R−I−Cl({x}). Then y /∈ R−I−θCl({x}).

So there exists a R − I−open set V containing y and (R − I − Cl(V )) ∩

{x} = φ. Thus x ∈ X − (R − I − Cl(V )) = U(say). Thus U and V are

disjoint R − I−open sets containing x and y respectively. Hence (X, τ, I)

is R− I −R1 by theorem 4.3.5.

Remark 5.2.1. Every R− I−regular space is R− I −R1.

5.3 Weaker than R− I −R0 spaces

Definition 5.3.1. An ideal topological space (X, τ, I) is R−I −R
S

if and

only if for any points x, y ∈ X, R−I−Cl({x}) 6= R−I−Cl({y}) implies

(R− I − Cl({x})) ∩ (R− I − Cl({y})) = φ or {x} or {y}.

Definition 5.3.2. An ideal topological space (X, τ, I) is R−I −R
D

if and

only if for x ∈ X, (R − I − Cl({x})) ∩ (I
R
Ker({x})) = {x} implies that

(R− I − Cl({x}) \ {x}) is R− I−closed.

Definition 5.3.3. An ideal topological space (X, τ, I) is R − I − R
T

if

and only if for each x ∈ X, both I
R
Ker({x}) \ (R − I − Cl({x})) and

(R− I − Cl({x})) \ I
R
Ker({x}) are degenerate.

Definition 5.3.4. An ideal topological space (X, τ, I) is weakly-R−I −R0

if
⋂

x∈X
R− I − Cl({x}) = φ.

Definition 5.3.5. An ideal topological space (X, τ, I) is weakly-R−I −C0

if
⋂

x∈X
I
R
Ker({x}) = φ.

Remark 5.3.1. Every R− I −R0 space is weakly-R− I −R0.

Remark 5.3.2. Every R− I −R0 space is R− I −R
T

.

Example 5.3.1. The converses of the above remarks are not true.

Let X = {a, b, c}, τ = {φ,X, {b}, {c}, {b, c}, {a, b}}, I = {φ, {c}}. The R −
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I−open sets are {b}, {c}, {a, b}, X. Then (X, τ, I) is not R − I − R0, but

weakly R− I −R0 and R− I −R
T

.

Theorem 5.3.1. If (X, τ, I) is R− I −R
T

, then it is R− I −R
D

.

Proof. Let X be R − I − R
T

and denote (x) = (R − I − Cl({x})) ∩ (R −

I −Ker({x})). Then R−I −Cl({x}) = (x)∪D and R−I −Ker({x}) =

(x) ∪ E, where D and E be degenerate sets such that D is not a subset of

R− I −Ker({x} and E is not a subset of R− I − Cl({x}). If (x) = {x},

then R− I − Cl({x}) = {x} ∪D and R− I −Ker({x}) = {x} ∪ E.

Let U be a R − I−open set containing R − I − Ker({x}). Then X − U

is a R − I−closed set and (X − U) ∩ (R − I − Cl({x})) = φ or D. If

(X −U)∩ (R−I −Cl({x})) = D, then D is a R−I−closed set, being the

intersection of twoR−I−closed sets. If (X−U)∩(R−I−Cl({x})) = φ, then

R−I −Cl({x}) ⊂ U,D ⊂ U . Since D is not a subset of R−I −Ker({x},

there exists a R − I−open set V such that x ∈ V and D is not a subset

of V . Then (R − I − Cl({x})) ∩ (X − V ) = D is a R − I−closed set.

Hence (R−I −Cl({x})−{x}) is R−I−closed whenever (x) = {x}. Thus

(X, τ, I) is R− I −R
D

.

Theorem 5.3.2. If (X, τ, I) is R− I −R
T

, then it is R− I −R
S
.

Proof. Let X be R − I − R
T

and let x, y ∈ X. If R − I − Cl({x}) 6=

R−I −Cl({y}) and there is an element s ∈ X such that s 6= x, s 6= y but

s ∈ (R− I −Cl({x}))∩ (R− I −Cl({y})), then s ∈ R− I −Cl({x}) and

s ∈ R − I − Cl({y}). Hence x ∈ I
R
Ker({s}) and y ∈ I

R
Ker({s}). But

I
R
Ker({s}) = (s)∪E where E is a degenerate set and E is not a subset of

R− I − Cl({s}).

Now four cases are possible as follows:

(i) x ∈ (s) and y ∈ (s).

Then x ∈ R−I−Cl({s}) and y ∈ R−I−Cl({s}). But s ∈ R−I−Cl({x})
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and s ∈ R − I − Cl({y}). Hence R − I − Cl({x}) = R − I − Cl({y}) =

R− I − Cl({s}), which is impossible.

(ii) {x} = E, y ∈ (s).

Then x /∈ R−I−Cl({s}) and y ∈ R−I−Cl({s}). Since s ∈ R−I−Cl({y}),

R − I − Cl({y}) = R − I − Cl({s}). Now either y ∈ R − I − Cl({x}) or

y /∈ R−I−Cl({x}). Let y ∈ R−I−Cl({x}). Since x /∈ R−I−Cl({s}), x ∈

X − (R−I −Cl({s})), which is R−I−open, I
R
Ker({x}) ⊂ X − (R−I −

Cl({s})). Hence (R−I−Cl({s})) ⊂ (R−I−Cl({x}))−I
R
Ker({x}). But

{s, y} ⊂ R−I −Cl({s}). Hence (R−I −Cl({x}))− I
R
Ker({x}) is not a

degenerate set, a contradiction to the fact that X is R − I − R
T
. Now let

y /∈ R−I −Cl({x}). Since y ∈ R−I −Cl({s}) and s ∈ R−I −Cl({x}),

we have y ∈ R− I − Cl({x}), a contradiction.

(iii) x ∈ (s) and {y} = E.

The proof is similar to that of the above case.

(iv) {x} = {y} = E.

Then R− I − Cl({x}) = R− I − Cl({y}), which is not possible.

Thus if R−I −Cl({x}) 6= R−I −Cl({y}), then (R−I −Cl({x}))∩ (R−

I − Cl({y})) is either φ or {x} or {y}. Hence X is R− I −R
S
.

The above discussed spaces hold the following relation:

R− I−R
1
⇒ R− I −R

0
⇒ weakly-R− I −R

0

⇓
R− I −R

D
⇒ R− I −R

T
⇒ R− I −R

S

Theorem 5.3.3. An ideal topological space (X, τ, I) is weakly-R− I − R0

if and only if for each x ∈ X, R− I −Ker({x}) 6= X.
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Proof. Assume that X is weakly-R − I − R0 . If there exists an element

u which does not belong to any proper R − I−open set, then u belongs

to R − I − Cl({x}) for all x ∈ X. Hence u ∈
⋂

x∈X
R − I − Cl({x}), a

contradiction.

Conversely, assume R − I −Ker({x}) 6= X for each x ∈ X, which means

for each x ∈ X, there exists a proper R − I−open set U such that x ∈ U .

If X is not weakly-R − I − R0 , then there exists at least an element u ∈⋂
x∈X

R − I − Cl({x}). Then X is the only R − I−open set containing u.

This contradiction proves that X is weakly-R− I −R0 .

In a similar manner, we will have the following theorem.

Theorem 5.3.4. An ideal topological space (X, τ, I) is weakly-R − I − C0

if and only if for each x ∈ X, R− I − Cl({x}) 6= X.
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Supra ideal topological space via R− I−open

sets

6.1 Introduction

In this chapter, we present a new class of sets and functions in a supra ideal

topological space. We have brought in via ideal, supra R−I−open sets. We

have introduced and studied certain properties of supra R− I−continuous

functions, supra∗ R − I−continuous functions, supra R − I−irresolute

functions, supra R − I−open maps, supra R − I−closed maps and supra

R−I−homeomorphism. Separation axioms in terms of supra R−I−open

sets are also looked into.

[4] First let us recall what a supra topology is.

A subfamily µ of the power set P (X) of a non-empty set X is called a

supra topology on X if µ satisfies the following conditions:

1. µ contains φ and X.

2. µ is closed under the arbitrary union.

The pair (X,µ) is called a supra topological space. If (X, τ) is a topological

space and τ ⊂ µ, then µ is known as supra topology associated with τ .

The members of µ are called supra open sets in (X,µ). The complement

of a supra open set is called a supra closed set.

[4] Let (X,µ) be a supra topological space and A ⊂ X. Then supra

41
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interior and supra closure of A in (X,µ) are defined as ∪{U : U ⊂ A,U ∈ µ}

and ∩{F : A ⊂ F,X − F ∈ µ} respectively. The supra interior and supra

closure of A in (X,µ) are denoted as Intµ(A) and Clµ(A) respectively.

From definition, Intµ(A) is a supra open set and Clµ(A) is a supra closed set.

Definition 6.1.1. [43] A supra topological space (X,µ) with an ideal I on

X is called an ideal supra topological space and is denoted as (X,µ, I).

Definition 6.1.2. [43] Let (X,µ, I) be an ideal supra topological space.

A set operator ()∗µ : P (X) → P (X), called the µ-local function of I on

X with respect to µ, is defined as (A)∗µ(I, µ) = {x ∈ X : U ∩ A /∈

I, for every U ∈ N(x)}, where N(x) = {U ∈ µ : x ∈ U}.

This is simply called µ-local function and denoted as A∗µ.

6.2 Supra R− I−open sets

Definition 6.2.1. Let (X,µ, I) be an ideal supra topological space. A set

A is called supra R − I−open if A = Intµ(Cl∗(A)) and the complement of

a supra R− I−open set is called a supra R− I−closed set.

Example 6.2.1. Consider (X,µ, I) where X = {a, b, c},

µ = {φ,X, {a}, {b}, {a, b}}, I = {φ, {a}}.

Then {a} and {b} are supra R− I−open sets.

Remark 6.2.1. Every R− I−open set is supra R− I−open.

Remark 6.2.2. Every regular open set is supra R− I−open.

Theorem 6.2.1. Every supra R− I−open set is supra open.

Proof. Since every R−I−open set is open, every supra R−I−open set is

supra open.
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Remark 6.2.3. Converse of the above theorem need not be true.

For example, in the example 6.2.1, {a, b} is supra open but not supra R −

I−open.

Theorem 6.2.2. If supra topology equals the discrete topology, then every

supra open set is supra R− I−open.

Proof. In the discrete topology, every open set is R − I−open and hence

the result.

Definition 6.2.2. The supra R − I−closure of a set A, denoted by supra

R−I −Cl(A) is the intersection of all supra R−I−closed sets containing

A.

Definition 6.2.3. The supra R − I−interior of a set A, denoted by supra

R− I − Int(A) is the union of all supra R− I−open sets contained in A.

Example 6.2.2. Consider (X,µ, I) where X = {a, b, c},

µ = {φ,X, {a}, {a, c}, {b, c}}, I = {φ, {b}}.

Then supra R− I − Cl({b}) = {b, c} and supra R− I − Int({b}) = φ.

6.3 Supra R− I−continuous functions

Definition 6.3.1. Let (X, τ, I) be a R−I− space and (Y, σ) be a topolog-

ical space and let µ be an associated supra topology with τ .

A function f : (X,µ, I)→ (Y, σ) is called a supra R− I−continuous func-

tion if the inverse image of each open set in Y is supra R − I−open in

X.

Example 6.3.1. Let X = {a, b, c}, τ = {φ,X, {a}},

µ = {φ,X, {a}, {a, c}, {b, c}}, I = {φ, {b}}, Y = {a, b, c},

σ = {φ,X, {a}, {b}, {a, b}}.
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Define f : (X,µ, I)→ (Y, σ) by f(a) = a, f(b) = b, f(c) = b.

Then f is supra R− I−continuous.

Definition 6.3.2. A function f : (X, τ, I)→ (Y, σ) is said to be completely

I−continuous if f−1(U) is a R−I−open set in X for every open set U ⊂ Y .

Definition 6.3.3. A function f : (X, τ, I)→ (Y, σ,J ) is said to be almost

completely I−continuous if f−1(U) is a R − I−open set in X for every

R− J−open set U ⊂ Y .

Definition 6.3.4. A function f : (X, τ) → (Y, σ,J ) is said to be almost

perfectly I−continuous if f−1(V ) is clopen for every R−J−open set V in

Y .

Theorem 6.3.1. Every completely I−continuous function is supra

R− I−continuous.

Remark 6.3.1. Converse of the above theorem need not be true.

Example 6.3.2. Let X = {a, b, c}, τ = {φ,X, {a}}, µ = {φ,X, {a}, {b}, {a, b}},

I = {φ, {b}}, σ = {φ,X, {a}, {b}, {a, b}}. Define f : (X,µ, I) → (X, σ) by

f(a) = a, f(b) = b, f(c) = b. Then f is supra R − I−continuous but not

completely I−continuous.

Theorem 6.3.2. Let Y be a discrete space. If f : (X,µ, I) → (Y, σ) is

completely I−continuous, then f is supra R− I−continuous.

Theorem 6.3.3. Every almost perfectly I−continuous function into a dis-

crete space is supra R− I−continuous.

Theorem 6.3.4. Every almost completely I−continuous function into a

discrete space is supra R− I−continuous.
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Let (X, τ, I), (Y, σ,J ) be R − I− spaces and (Z, ρ) be a topological

space. Let µ and ν be the associated supra topologies with τ and σ respec-

tively.

Theorem 6.3.5. If f : (X,µ, I) → (Y, σ,J ) is supra R − I−continuous

and g : (Y, σ,J ) → (Z, ρ) is continuous, then g ◦ f : (X,µ, I) → (Z, ρ) is

supra R− I−continuous.

Proof. Let V be open in ρ. Since g is continuous g−1(V ) is open in σ.

Since f is supra R − I−continuous, f−1(g−1(V )) = (g ◦ f)−1(V ) is supra

R − I−open in X. Thus for any open set V ∈ ρ, (g ◦ f)−1(V ) is supra

R− I−open in µ.

Theorem 6.3.6. Let (X, τ, I) be an ideal topological space and (Y, σ) be

a topological space and let µ be the associated supra topology with τ . Let

f : (X,µ, I)→ (Y, σ) be a bijective map. Then the following are equivalent:

(i) f is supra R− I−continuous.

(ii) inverse image of a closed set in Y is supra R− I−closed in X.

(iii) supra R− I−Cl(f−1(V )) ⊂ f−1(Cl(V )) for every V ⊂ Y .

(iv) f(supra R− I−Cl(U)) ⊂ Cl(f(U)) for every U ⊂ X.

(v) f−1(Int(B)) ⊂ supra R− I−Int(f−1(B)) for every B ⊂ Y .

Proof. (i) ⇒ (ii)

Let V be a closed set in Y . Then Y − V is open. Since f is supra

R − I−continuous, f−1(Y − V ) is supra R − I−open in X. That is,

X − f−1(V ) is supra R − I−open in X. That is, f−1(V ) is supra

R− I−closed in X.

(ii) ⇒ (iii)

Let V ⊂ Y . Then Cl(V ) is closed in Y . So by (ii) f−1(Cl(V )) is supra

R−I−closed in X. So supra R−I−Cl(f−1Cl(V )) = f−1(Cl(V )). There-

fore f−1(Cl(V )) = supra R−I−Cl(f−1Cl(V )) ⊃ supra R−I−Cl(f−1(V )).
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(iii) ⇒ (iv)

Let U ⊂ X and f(U) = V ⊂ Y . By (iii) supra R − I−Cl(f−1(f(U)) ⊂

f−1(Cl(f(U))). That is, supra R − I−Cl(U) ⊂ f−1(Cl(f(U))). That is,

f(supra R− I−Cl(U)) ⊂ Cl(f(U)).

(iv) ⇒ (ii)

Let W ⊂ Y be a closed set and U = f−1(W ) ⊂ X. By (iv)

f(supra R − I−Cl(U)) ⊂ Cl(f(U)) = Cl(f(f−1(W ))) ⊂ Cl(W ) = W . So

supra R−I−Cl(U) ⊂ f−1(W ) = U . Thus U is supra R−I−closed in X.

(ii) ⇒ (i)

If U ⊂ Y is an open set, then Y − U is closed. By (ii) f−1(Y − U) =

X−f−1(U) is supra R−I−closed in X. Hence f−1(U) is supra R−I−open

in X.

(i) ⇒ (v)

Let B ⊂ Y . Then Int(B) is open in Y and so f−1(Int(B)) is supra

R−I−open in X. Hence f−1(Int(B)) = supra R−I−Int(f−1(Int(B))) ⊂

supra R− I−Int(f−1(B)).

(v) ⇒ (i)

Let U ⊂ X be open. Then by (v) f−1(Int(U)) ⊂ supra R −

I−Int(f−1(U)) and so f−1(U) ⊂ supra R − I−Int(f−1(U)). But supra

R−I−Int(f−1(U)) ⊂ f−1(U). Hence supra R−I−Int(f−1(U)) = f−1(U).

Thus f−1(U) is supra R− I−open in X.

Theorem 6.3.7. Let (X, τ, I) and (Y, σ,J ) be ideal topological spaces

and µ and ν be the associated supra topologies with τ and σ respectively.

Then f : (X,µ, I) → (Y, σ) is supra R − I−continuous if f−1(Int(B)) ⊂

R− I−Int(f−1(B)) for every B ⊂ Y .
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Definition 6.3.5. Let (X, τ, I) and (Y, σ,J ) be ideal topological spaces and

µ and ν be the associated supra topologies with τ and σ respectively. A

function f : (X,µ, I) → (Y, ν,J ) is called supra∗ R − I−continuous if the

inverse image of each supra open subset of Y is supra R− I−open in X.

Definition 6.3.6. Let (X, τ, I) and (Y, σ,J ) be ideal topological spaces and

µ and ν be the associated supra topologies with τ and σ respectively. A

function f : (X,µ, I) → (Y, ν,J ) is called supra R − I−irresolute if the

inverse image of each supra R− I−open subset of Y is supra R− I−open

in X.

Theorem 6.3.8. Every supra∗ R− I−continuous function is supra

R− I−continuous.

Remark 6.3.2. Converse of the above theorem need not be true.

Example 6.3.3. Let X = {a, b, c}, τ = {φ,X, {a}},

µ = {φ,X, {a}, {a, c}, {b, c}}, I = {φ, {b}}, Y = {a, b, c},

σ = {φ,X, {a}, {b}}, ν = {φ,X, {a}, {b}, {a, b}}.

Define f : (X,µ, I) → (Y, σ) by f(a) = b, f(b) = a, f(c) = b. Then f is

supra R− I−continuous but not supra ∗ R− I−continuous since

f−1(b) = {a, c} which is not supra R− I−open in X.

Theorem 6.3.9. Every supra∗ R− I−continuous function is supra

R− I−irresolute.

Remark 6.3.3. Converse of the above theorem need not be true.

Example 6.3.4. Let X = {a, b, c}, τ = {φ,X, {a}},

µ = {φ,X, {a}, {a, c}, {b, c}}, I = {φ, {b}}, Y = {a, b, c},

σ = {φ,X, {a}, {b}}, ν = {φ,X, {a}, {b}, {a, b}}.

Define f : (X,µ, I) → (Y, σ) by f(a) = b, f(b) = a, f(c) = b. Then f is

supra R− I−irresolute but not supra ∗ R− I−continuous since

f−1(b) = {a, c} which is not supra R− I−open in X.
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Remark 6.3.4. supra R − I−continuous ⇐ supra∗ R − I−continuous ⇒

supra R− I−irresolute.

Theorem 6.3.10. If f : (X,µ, I)→ (Y, ν,J ) is supra∗ R− I−continuous

and g : (Y, ν,J )→ (Z, ρ) is supra R− I−continuous, then

g ◦ f : (X,µ, I)→ (Z, ρ) is supra R− I−continuous.

Theorem 6.3.11. If f : (X,µ, I) → (Y, ν,J ) is supra R − I−irresolute

and g : (Y, ν,J )→ (Z, ρ) is supra R− I−continuous, then

g ◦ f : (X,µ, I)→ (Z, ρ) is supra R− I−continuous.

Theorem 6.3.12. Let (X, τ, I) and (Y, σ,J ) be ideal topological spaces

and let µ and γ be the corresponding associated supra topologies with τ and

σ respectively. Let f : (X,µ, I) → (Y, σ) be a bijective map. Then the

following are equivalent:

(i) f is supra∗ R− I−continuous.

(ii) inverse image of a closed set in Y is supra R− I−closed in X.

(iii) supra R− I−Cl(f−1(V )) ⊂ f−1(Cl(V )) for every V ⊂ Y .

(iv) f(supra R− I−Cl(U)) ⊂ Cl(f(U)) for every U ⊂ X.

(v) f−1(Int(B)) ⊂ supra R− I−Int(f−1(B)) for every B ⊂ Y .

Theorem 6.3.13. Let (X, τ, I) and (Y, σ,J ) be ideal topological spaces

and µ and γ be the corresponding associated supra topologies with τ and σ.

Let f : (X,µ, I) → (Y, σ,J ) be a bijective map. Then the following are

equivalent:

(i) f is supra R− I−irresolute.

(ii) inverse image of a closed set in Y is supra R− I−closed in X.

(iii) supra R− I−Cl(f−1(V )) ⊂ f−1(Cl(V )) for every V ⊂ Y .

(iv) f(supra R− I−Cl(U)) ⊂ Cl(f(U)) for every U ⊂ X.

(v) f−1(Int(B)) ⊂ supra R− I−Int(f−1(B)) for every B ⊂ Y .
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Theorem 6.3.14. Let (X, τ, I) and (Y, σ,J ) be ideal topological spaces

and µ and γ be the corresponding associated supra topologies with τ and σ

respectively. Then f : (X,µ, I) → (Y, σ,J ) be supra R − I−irresolute if

f−1(Int(B)) ⊂ R− I−Int(f−1(B)) for every B ⊂ Y .

Theorem 6.3.15. Let (X, τ, I) be an ideal topological space and (Y, σ) be a

topological space and µ be the corresponding associated supra topology with τ .

Then f : (X,µ, I)→ (Y, σ) be supra∗ R − I−continuous if f−1(Int(B)) ⊂

R− I−Int(f−1(B)) for every B ⊂ Y .

6.4 Supra R− I−open maps and supra

R− I−closed maps

Let (X, τ, I) and (Y, σ,J ) be R−I− spaces and (X,µ, I) and (Y, ν,J ) be

the associated supra ideal topological spaces.

Definition 6.4.1. A map f : (X, τ, I) → (Y, ν,J ) is supra R − I−open

(resp. supra R − I−closed) if the image of each open (resp. closed) set in

X is supra R− I−open (resp. supra R− I−closed) in Y .

Example 6.4.1. Let X = {a, b, c}, τ = {φ,X, {a}}, I = {φ, {a}},

µ = {φ,X, {a}, {b}, {a, b}}. Define f : (X,µ, I)→ (X,µ, I) by

f(a) = a, f(b) = b, f(c) = c. Then f is supra R− I−open.

Theorem 6.4.1. A map f : (X, τ, I) → (Y, ν,J ) is supra R − I−open if

and only if f(Int(A)) ⊂ supra R− I−Int(f(A)) for each A ⊂ X.

Proof. Suppose f is supraR−I−open. Since f(IntA) is a supraR−I−open

set contained in f(A), f(IntA) ⊂ supra R−I−Int(f(A)) for each A ⊂ X.

Conversely, suppose that A is open in X. Then f(A) = f(IntA) ⊂ supra

R− I−Int(f(A)). Therefore f(A) = supra R− I−Int(f(A)). Thus f is a

supra R− I−open map.
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Theorem 6.4.2. A map f : (X, τ, I)→ (Y, ν,J ) is supra R− I−closed if

and only if supra R− I−Cl(f(A)) ⊂ f(Cl(A)) for each A ⊂ X.

Proof. Suppose f is supra R− I−closed. Since f(Cl(A)) is a supra

R− I−closed set containing f(A), supra R− I−Cl(f(A)) ⊂ f(Cl(A)) for

each A ⊂ X.

Converse is obvious.

Theorem 6.4.3. Let (X, τ, I), (Y, σ,J ) and (Z, ρ,K) be ideal topological

spaces. Let µ, ν and ξ be the associated supra topologies of τ, σ and ρ re-

spectively. Then

(i) if g ◦ f : (X, τ, I)→ (Z, ξ,K) is supra R− I−open and f : (X, τ, I)→

(Y, σ,J ) is a continuous surjection, then g : (Y, σ,J )→ (Z, ξ,K) is a supra

R− I−open map.

(ii) if g ◦ f : (X, τ, I)→ (Z, ρ,K) is open and g : (Y, ν,J )→ (Z, ξ,K) is a

supra R−I−continuous injection, then f : (X, τ, I)→ (Y, ν,J ) is a supra

R− I−open map.

(iii) if g ◦ f : (X, τ, I)→ (Z, ξ,K) is supra R−I−open and g : (Y, ν,J )→

(Z, ξ,K) is supra R− I−irresolute injection, then f : (X, τ, I)→ (Y, ν,J )

is a supra R− I−open map.

Proof. Let V be open in Y . Then f−1(V ) is open in X. So (g ◦ f)(f−1(V ))

is supra R − I−open in (Z, ρ,K). Since f is onto, (g ◦ f)(f−1(V )) =

g(f(f−1(V ))) = g(V ). Hence (i).

Let U be open in X. Then (g◦f)(U) is open in Z. So g−1((g◦f)(U)) is supra

R− I−open in Y . Since g is one-one, g−1((g ◦ f)(U)) = (g−1 ◦ g)(f(U)) =

f(U). Hence (ii).

Let U be open in X. Then (g ◦ f)(U) is supra R−I−open in Z. Since g is

supra R − I−irresolute, g−1((g ◦ f)(U)) is supra R − I−open in Y . Since

g is one-one, g−1((g ◦ f)(U)) = (g−1 ◦ g)(f(U)) = f(U). Hence (iii)
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Theorem 6.4.4. Let (X, τ, I) and (Y, σ,J ) be ideal topological spaces and

ν be the associated supra topology with σ. Let f : (X, τ, I)→ (Y, ν,J ) be a

bijective map. Then the following are equivalent:

(i) f is supra R− I−open.

(ii) f is supra R− I−closed.

(iii) f−1 is supra R− I−continuous.

Proof. (i) ⇒ (ii)

Suppose that V is a closed subset of X. Then V c is open in X and f(V c)

is supra R − I−open in Y . Since f is bijective, then f(V c) = Y − f(V ).

So f(V ) is supra R− I−closed in Y . Thus f is supra R− I−closed.

(ii) ⇒ (iii)

Suppose f is a supra R−I−closed map and V is a closed subset of X. Then

f(V ) is supra R− I−closed in Y . Since f is bijective, (f−1)−1(V ) = f(V ).

Therefore f−1 is supra R− I−continuous.

(iii) ⇒ (i)

Suppose that U is an open subset of X. Since f−1 is a supra

R− I−continuous map, (f−1)−1(U) is supra R− I−open in Y . Since f is

bijective, f(U) = (f−1)−1(U). Thus f is supra R− I−open.

6.5 Supra R− I−homeomorphism

Let (X, τ, I) and (Y, σ,J ) be ideal topological spaces and (X,µ, I) and

(Y, ν,J ) be the associated supra ideal topological spaces.

Definition 6.5.1. A map f : (X, τ, I)→ (Y, σ,J ) is said to be supra

R− I−homeomorphism if f is supra R− I−continuous and supra

R− I−open.



52

Theorem 6.5.1. Let (X, τ, I) and (Y, σ,J ) be ideal topological spaces and

(X,µ, I) and (Y, ν,J ) be the associated supra ideal topological spaces. Let

f : (X, τ, I) → (Y, σ,J ) be a bijective and supra R − I−continuous map.

Then the following are equivalent:

(i) f is supra R− I−homeomorphism.

(ii) f−1 is supra R− I−continuous.

(iii) f is supra R− I−closed.

Proof. (i) ⇒ (ii)

Assume (i). Then f is a supra R − I−open map. So for any open set

U ∈ τ , f(U) is supra R − I−open in ν. Since f is bijective, (f−1)−1(U) =

f(U). Now consider, f−1 : (Y, ν,J ) → (X, τ, I). So for any open set

U ∈ τ , (f−1)−1(U) is supra R − I−open in (Y, ν,J ). Hence f−1 is supra

R− I−continuous.

(ii) ⇒ (iii)

Let f−1 : (Y, ν,J ) → (X, τ, I) be supra R − I−continuous. Then for any

open set U ∈ τ , (f−1)−1(U) is supra R− I−open in Y . Let V be closed in

X. Then X−V is open in X. So (f−1)−1(X−V ) = f(X−V ) = Y − f(V )

is supra R− I−open in Y . So f(V ) is supra R− I−closed in Y . Thus for

any closed set V in X, f(V ) is supra R− I−closed in Y .

Hence f : (X, τ, I)→ (Y, ν,J ) is a supra R− I−closed map.

(iii) ⇒ (i)

Let f : (X, τ, I) → (Y, ν,J ) be supra R − I−closed and U be open in τ .

Then f(X−U) is supra R−I−closed in Y . Since f is a bijection, Y −f(U)

is supra R− I−closed in Y and so f(U) is supra R− I−open in Y . Since

f is supra R− I−continuous, f is a supra R− I−homeomorphism.
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6.6 Separation axioms

Definition 6.6.1. Let (X, τ, I) be an ideal topological space and (X,µ, I)

be the associated supra ideal topological space. Then (X,µ, I) is called

(i) supra R − I − T0 if for every two distinct points of X, there exists a

supra R− I−open set which contains one, but not the other.

(ii) supra R − I − T1 if for every two distinct points x and y of X, there

exists supra R − I−open sets U and V such that x ∈ U, y /∈ U and

x /∈ V, y ∈ V .

(iii) supra R − I − T2 if for every two distinct points x and y of X, there

exists supra R − I−open sets U and V such that x ∈ U, y ∈ V and

U ∩ V = φ.

Definition 6.6.2. A subset U of (X,µ, I) is called a supra R−I−nbd of a

point x ∈ X if there exists a supra R−I−open set V such that x ∈ V ⊂ U .

Theorem 6.6.1. Let (X,µ, I) be a supra ideal topological space. Then X is

supra R−I−T0 if and only if supra R−I−Cl({x}) 6= supra R−I−Cl({y})

for every distinct x and y in X.

Proof. Suppose X is supra R − I − T0 . Let x 6= y ∈ X. Then there exists

a supra R − I−open set U containing x but not y. So X − U is a supra

R − I−closed set such that x /∈ X − U and y ∈ X − U . Thus supra

R− I − Cl({x}) 6= supra R− I − Cl({y}) .

Conversely, suppose that supra R− I − Cl({x}) 6= supra R− I − Cl({y})

for any x 6= y ∈ X. Assume X is not supra R − I − T0 . Then every

supra R − I−closed set containing x always contains y. But then supra

R−I −Cl({x}) = supra R−I −Cl({y}) which is a contradiction. Hence

there should exist at least one supra R− I−open set containing x but not

y. So X is supra R− I − T0 .
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Theorem 6.6.2. Let (X,µ, I) be a supra ideal topological space. Then X

is supra R− I − T1 if and only if every singleton is supra R− I−closed.

Proof. Let X be supra R − I − T1 and x ∈ X. For any y ∈ X, x 6= y,

there exists a supra R − I−open set V such that y ∈ V and x /∈ V . Then

{x} ⊂ V c. So for any y 6= x ∈ X, y /∈ supra R − I − Cl({x}). Therefore

supra R− I − Cl({x}) = {x}. Thus {x} is supra R− I−closed.

Conversely, let x, y ∈ X. Then {x}, {y} are supra R − I−closed sets and

so X − {x} and X − {y} are supra R − I−open sets. Then X is supra

R− I − T1 .

Theorem 6.6.3. Let (X,µ, I) be a supra ideal topological space. Then X

is supra R− I − T2 if and only if for each x ∈ X,

{x} = ∩{N : N is a supra R− I − closed nbd of x}.

Proof. Let X be supra R − I − T2 . Then for x 6= y ∈ X, there exists two

disjoint supra R − I−open sets U and V such that x ∈ U and y ∈ V and

U ∩ V = φ. Then U ⊂ V c. So supra R− I − Cl(U) ⊂ V c. Let N = supra

R−I−Cl(U). Hence {x} = ∩{N : N is a supra R−I− closed nbd of x}.

Conversely, for x ∈ X, {x} = ∩{N : N is a supra R−I− closed nbd of x}.

Then for x 6= y, there exists supra R−I−closed nbd F such that x ∈ F and

y /∈ F . So there exist supra R−I−open sets U and V such that x ∈ U ⊂ F

and y ∈ V = F c. Also U ∩ V = φ. Thus X is supra R− I − T2 .

Theorem 6.6.4. Let (X,µ, I) be a supra ideal topological space. If X is

supra R− I − T1, then for each x ∈ X, {x} = ∩{U : U is a supra R− I −

open nbd of x}.

Proof. Suppose X is supra R − I − T1 . Fix x ∈ X. Then for each y ∈ X,

there exists supra R − I−open sets U and V such that x ∈ U, y /∈ U and

y ∈ V, x /∈ V . Clearly each U is a supra R − I−open nbd of x. Hence

{x} = ∩{U : U is a supra R− I − open nbd of x}.
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Theorem 6.6.5. Let (X,µ, I) be a supra ideal topological space. If single-

tons are supra R− I−closed, then for each x ∈ X,

{x} = ∩{X − {y} : for each y 6= x ∈ X}.

Proof. Suppose singletons are supra R − I−closed. Fix x ∈ X. Then for

any y 6= x ∈ X, X − {y} is a supra R − I−open nbd of x. Hence clearly

{x} = ∩{X − {y} : for each y 6= x ∈ X}.

Theorem 6.6.6. Every supra R− I − T
i
, (i = 0, 1, 2) is a supra T

i
,

(i = 0, 1, 2) space.

Proof. Since every supra R−I−open set is supra open, the theorem follows.

Remark 6.6.1. Converse of the above theorem need not be true.

For example, let X = {a, b, c}, µ = {φ,X, {a, b}, {a, c}, {b, c}},

I = {φ, {a}}. Then (X,µ, I) is supra T1 but not supra R− I − T1.

Note 6.6.1. The axioms supra R−I−T0, supra R−I−T1, supra R−I−T2

form a hierarchy of progressively stronger conditions.

Remark 6.6.2. None of the implications in the above theorem is re-

versible.

For example, let X = {a, b, c}, µ = {φ,X, {a, b}, {a, c}, {b, c}}, I =

{φ, {a}, {b}, {c}}. Then (X,µ, I) is a supra R − I − T1 space but is not a

supra R− I − T2 space.

Remark 6.6.3. Every finite supra R− I − T1 space is not discrete.

For example, let X = {a, b, c}, µ = {φ,X, {a}, {b}, {a, b}, {a, c}, {b, c}},

I = {φ, {a}}. Then (X,µ, I) is a supra R−I−T1 space but is not discrete.

Theorem 6.6.7. Let (X, τ, I) and (Y, σ,J ) be ideal topological spaces and

(X,µ, I) and (Y, ν,J ) be the associated supra ideal topological spaces. Let
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f : (X, τ, I) → (Y, σ,J ) be a bijective and supra R − I−open map. If

(X,µ, I) is a supra R− I − T0 space, then (Y, ν,J ) is a supra R− I − T0

space.

Proof. Suppose (X,µ, I) is a supra R − I − T0 space. Let y1 , y2 ∈ Y with

y1 6= y2 . Since f is bijective there exists x1 6= x2 ∈ X such that f(x1) = y1

and f(x2) = y2 . Since (X,µ, I) is supra R − I − T0 , there exists a supra

R − I−open set U ⊂ X such that x1 ∈ U and x2 /∈ U . Since f is supra

R − I−open, f(U) ⊂ Y is a supra R − I−open set. Also y1 ∈ f(U) and

y2 /∈ f(U). Thus (Y, ν,J ) is a supra R− I − T0 space.

Theorem 6.6.8. Let (X, τ, I) and (Y, σ,J ) be ideal topological spaces and

(X,µ, I) and (Y, ν,J ) be the associated supra ideal topological spaces. Let

f : (X, τ, I)→ (Y, σ,J ) be a bijective and supra R−I−continuous map. If

(Y, ν,J ) is a supra R− I − T0 space, then (X,µ, I) is a supra R− I − T0

space.

Proof. Suppose (Y, ν,J ) is a supra R − I − T0 space. Let x1 , x2 ∈ X with

x1 6= x2 . Since f is bijective, there exists y1 6= y2 ∈ X such that f(x1) = y1

and f(x2) = y2 . Since (Y, ν,J ) is supra R − I − T0 , there exists a supra

R − I−open set V ⊂ Y such that y1 ∈ V and y2 /∈ V . Since f is supra

R−I−continuous, f−1 is supra R−I−open and so f−1(V ) ⊂ X is a supra

R − I−open set. Also x1 ∈ f−1(V ) and x2 /∈ f−1(V ). Thus (X,µ, I) is a

supra R− I − T0 space.

Remark 6.6.4. The above two theorems are also true for supra R−I −T
i

spaces for i = 1, 2.

Remark 6.6.5. The theorem 6.6.8 is also true for the cases:

(i) the bijective function f is supra ∗ R− I−continuous.

(ii) the bijective function f is supra R− I−irresolute.



7
Minimal R− I−open sets

7.1 Introduction

Till now, we have explored mainly on separation axioms in various

modes and also on supra space. From this chapter onwards we will pertain

to R−I−open sets and R−I−continuous functions and its generalizations.

We intend to propose in this chapter, a new class of sets and a new class

of continuous functions in ideal topological space incorporating the idea of

minimal open sets and R−I−open sets. We bring in minimal R−I−open

set in section 2. Further, we surveyed R − I − T
min

and R − I − Tmax

spaces, in section 3. In section 4. we move on to the continuous functions

namely minimal R−I−continuous function and maximal R−I−continuous

function. The relation between the above defined continuous functions with

certain other continuous functions is also investigated.

7.2 Minimal R− I−open sets

Definition 7.2.1. A non-empty proper R−I−open subset M of X is called

minimal R− I−open if and only if any R− I−open set contained in M is

either φ or M .
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Definition 7.2.2. A non-empty proper R−I−open subset M of X is called

maximal R − I−open if and only if any R − I−open set that contains M

is either X or M .

Definition 7.2.3. A non-empty proper R−I−closed subset P of X is called

minimal R− I−closed if and only if any R− I−closed set contained in P

is either φ or P .

Definition 7.2.4. A non-empty proper R−I−closed subset P of X is called

maximal R−I−closed if and only if any R−I−closed set that contains P

is either X or P .

Example 7.2.1. Let X = {a, b, c}, τ = {φ, {a}, {a, b}, X}, I = {φ, {a}}.

The proper R−I−open sets are {a} and {a, b}. So the proper R−I−closed

sets {b, c} and {c}.

Now {a} is minimal R−I−open and {a, b} is maximal R−I−open. Also

{c} is minimal R− I−closed and {b, c} is maximal R− I−closed.

Theorem 7.2.1. Let R ⊂ X.

• R is minimal R−I−closed if and only if X\R is maximal R−I−open.

• R is maximal R−I−closed if and only if X\R is minimal R−I−open.

Proof. We have X \ R is a R − I−open set. Let S 6= X be a R − I−open

set containing X \R. Then X \ S ⊂ R which contradicts the minimality of

the R− I−closed set R. Hence X \R is maximal R− I−open.

In a similar manner the converse can be proved.

For the second statement, let φ 6= S be a R−I−open set contained in X\R.

Then R ⊂ X \S which contradicts the maximality of the R−I−closed set

R. Hence X \R is minimal R− I−open.

In a similar manner the converse can be proved.
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Lemma 7.2.1. (i) Let M be a minimal R − I−open set and U be any

R− I−open set of X. Then M ∩ U = φ or M ⊂ U .

(ii) If M and N are minimal R− I−open sets of X, then M ∩N = φ or

M = N .

Proof. (i) Let U be a R − I−open set of X with M ∩ U 6= φ. M being

minimal R−I−open and M ∩U ⊂M , we get M ∩U = M . Thus M ⊂ U .

(ii) If M ∩N 6= φ, then as in (i), M ⊂ N and N ⊂M so that M = N .

Lemma 7.2.2. Let M be a maximal R − I−open set and U be any R −

I−open set of X such that M ∩ U 6= φ. Then U ⊂M .

Proof. Let U be a R−I−open set of X with M ∩U 6= φ. M being maximal

R− I−open, M ∪ U = M . Thus U ⊂M .

Remark 7.2.1. The union of every pair of different maximal R− I−open

sets need not be the whole space X.

Example 7.2.2. Consider the ideal topological space (X, τ, I) where

X = {a, b, c, d}, τ = {φ, {a, c}, {d}, {a, c, d}, X}, I = {φ, {d}}.

The proper R−I−open sets are {a, c} and {d} and both of them are maximal

R− I−open. But their union is not equal to X.

Lemma 7.2.3. (i) Let P be a minimal R − I−closed set and U be any

R− I−closed set of X. Then P ∩ U = φ or P ⊂ U .

(ii) If P and Q are minimal R − I−closed sets of X, then P ∩Q = φ or

P = Q.

Proof. The proof follows in a similar fashion as in lemma 7.2.1.

Lemma 7.2.4. Let P be a maximal R − I−closed set and U be any R −

I−closed set of X such that P ∩ U 6= φ. Then U ⊂ P .
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Proof. The proof follows in a similar fashion as in lemma 7.2.2.

Theorem 7.2.2. Let M be a minimal R − I−open set and x ∈ M . Then

for any R− I−open nbd U of x, M ⊂ U .

Proof. Let x ∈ M ⊂ X. Suppose U be a R − I−open nbd of x such that

M is not a subset of U . Clearly M ∩ U , a R − I−open set, is such that

M ∩U (M and M ∩U 6= φ. This contradicts the fact that M is a minimal

R− I−open set. Hence the proof.

Theorem 7.2.3. Let M be a maximal R − I−open set and x ∈ M . Then

for any R− I−open nbd U of x, U ⊂M .

Proof. The proof is a consequence of lemma 7.2.2.

Theorem 7.2.4. Let M be a minimal R − I−open set. Then for x ∈ M ,

M = ∩{U : U is a R− I − open nbd of x}.

Proof. Clearly ∩{U : U is a R−I−open nbd of x} is a R−I−open nbd of x.

Since M is minimal R−I−open, M ⊂ ∩{U : U is a R−I−open nbd of x}.

But since M itself is a R − I−open nbd of x, ∩{U : U is a R − I −

open nbd of x} ⊂M . Thus M = ∩{U : U is a R−I−open nbd of x}.

Theorem 7.2.5. Let M be a maximal R − I−open set. Then for x ∈ M ,

M = ∪{U : U is a R− I − open nbd of x}.

Proof. Let U = ∪{U : U is a R−I−open nbd of x}. M being a R−I−open

nbd of x, M ⊂ U . Since M is maximal R − I−open, U ⊂ M for each R −

I−open nbd U of x. Hence M = ∪{U : U is a R−I − open nbd of x}.

Theorem 7.2.6. Let M be a proper non-empty R − I−open subset of X.

Then the following are equivalent:

(i) M is minimal R− I−open.
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(ii) M ⊂ R− I − Cl(V ) for any non-empty subset V of M .

(iii) R− I − Cl(M) = R− I − Cl(V ) for any non-empty subset V of M .

Proof. (i) ⇒ (ii)

Let V be a non-empty subset of M . Now for any x ∈M and any R−I−open

nbd U of x, by theorem 7.2.2., M ⊂ U . So V = V ∩M ⊂ V ∩ U . That is

V ∩ U 6= φ and thus x ∈ R − I − Cl(V ). Hence M ⊂ R − I − Cl(V ) for

any non-empty subset V of M .

(ii) ⇒ (iii)

Let V be a non-empty subset ofM . Then (R−I−Cl(V )) ⊂ (R−I−Cl(M)).

But we have M ⊂ (R−I−Cl(V )). Then (R−I−Cl(M)) ⊂ (R−I−Cl(V )).

Thus R− I − Cl(M) = R− I − Cl(V ) for any non-empty subset V of M .

(iii) ⇒ (i)

Assume that M is not minimal R − I−open. Then there exists a non-

empty R − I−open set S ⊂ M such that S 6= M . So there is at least

one element m ∈ M such that m /∈ S. Then m ∈ X \ S and hence

R−I−Cl({m}) ⊂ X\S. This impliesR−I−Cl({m}) 6= R−I−Cl(M).

Theorem 7.2.7. Let M be a minimal R − I−open subset of X and let

x /∈ M . Then for any R − I−open nbd U of x, either M ∩ U = φ or

M ⊂ U .

Proof. We have x ∈ X \M and U is a R − I−open nbd of x. Then U

is a R − I−open set in X. Then by lemma 7.2.1., either M ∩ U = φ or

M ⊂ U .

Corollary 7.2.1. Let M be a minimal R − I−open subset of X and x ∈

X \M . Let Mx = ∩{U : U is a R−I−open nbd of x}. Then Mx ∩M = φ

or M ⊂Mx.

Proof. If M ⊂ U for any R − I−open nbd U of x, then M ⊂ Mx . If not,
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there exists a R − I−open set U of x such that M ∩ U = φ. This implies

Mx ∩M = φ.

Theorem 7.2.8. Let M be maximal R−I−open subset of X and let x /∈M .

Then for any R− I−open nbd U of x, U ⊂ X \M .

Proof. We have x ∈ X \M . Then for any R − I−open nbd U of x, U ∩

M = φ, otherwise by lemma 7.2.2., U ⊂ M , which is not true. Thus

U ⊂ X \M .

7.3 R− I − T
min

space and R− I − Tmax space

Definition 7.3.1. A topological space (X, τ, I) is called a R−I−T
min

space

if every proper non-empty R−I−open subset of X is a minimal R−I−open

set.

Definition 7.3.2. A topological space (X, τ, I) is called a R−I−Tmax space

if every proper non-empty R−I−open subset of X is a maximal R−I−open

set.

Example 7.3.1. Let X = {a, b, c, d}, τ = {φ, {a, c}, {d}, {a, c, d}, X},

I = {φ, {d}}.

Then proper R − I−open sets are {a, c} and {d}. Both of these sets are

minimal R−I−open and maximal R−I−open. Hence this ideal topological

space is a R− I − T
min

space as well a R− I − Tmax space.

Theorem 7.3.1. A topological space (X, τ, I) is a R−I−T
min

space (resp.

R − I − Tmax space) if and only if every non-empty proper R − I−closed

subset of X is a maximal R − I−closed (resp. minimal R − I−closed) set

in X.

Proof. The proof directly follows from the definition and theorem 7.2.1.
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Remark 7.3.1. The R − I − T
min

(resp. R − I − Tmax) and R − I − T0

(resp. R− I − T1, R− I − T2) spaces are independent of each other.

Example 7.3.2. Let X = {a, b, c}, τ = {φ,X, {a}, {c}, {a, c}, {b, c}},

I = {φ, {a}}. Then proper R − I−open sets are {a}, {b, c} and both are

minimal R−I−open and maximal R−I−open. Hence X is a R−I−T
min

space as well a R − I − Tmax space. But X is not a R − I − T0 (resp.

R− I − T1, R− I − T2) space.

Example 7.3.3. Let X = {a, b, c}, τ = P(X), I = {{a}}. Here not

all R − I−open sets are minimal R − I−open and as well not maximal

R− I−open. But (X, τ, I) is R− I − T0, R− I − T1 and R− I − T2.

Definition 7.3.3. An ideal topological space (X, τ, I) is called a R−I−door

space if every subset of X is either R− I−open or R− I−closed.

Definition 7.3.4. A subset A of an ideal topological space (X, τ, I) is said

to be R− I−dense in X if R− I − Cl(A) = X.

Definition 7.3.5. An ideal topological space (X, τ, I) is called a sub maxi-

mal R− I−space if every R− I−dense subset of X is R− I−open.

Remark 7.3.2. The R − I − T
min

(resp. R − I − Tmax) and R − I−door

spaces are independent of each other.

Example 7.3.4. Let X = {a, b, c}, τ = {φ,X, {a}, {c}, {a, c}, {b, c}},

I = {φ, {a}}. Then proper R − I−open sets are {a}, {b, c} and both are

minimal R−I−open and maximal R−I−open. Hence X is a R−I−T
min

space as well a R− I − Tmax space. But X is not a R− I−door space.

Example 7.3.5. Let X = {a, b, c}, τ = P(X), I = {{a}}. Here not all

R− I−open sets are minimal R− I−open but maximal R− I−open. But

(X, τ, I) is a R− I−door space.
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Remark 7.3.3. The R − I − T
min

space (resp. R − I − Tmax) and sub

maximal R− I−space are independent of each other.

Example 7.3.6. Let X = {a, b, c, d}, τ = {φ, {a, c}, {d}, {a, c, d}, X},

I = {φ, {d}}.

Then proper R − I−open sets are {a, c} and {d}. Also X is R − I − T
min

and R− I − Tmax space.

But the R−I−dense subset {b} is not R−I−open and hence X is not sub

maximal R− I−space.

Example 7.3.7. Let X = {a, b, c}, τ = P(X), I = {{a}}. Then (X, τ, I)

is not a R− I − T
min

space. But it is a sub maximal R− I−space.

7.4 Minimal R− I−continuous and

maximal R− I−continuous functions

Let (X, τ, I) and (Y, σ,J ) be ideal topological spaces and f : (X, τ, I) →

(Y, σ, J) be a continuous function.

Then:

Definition 7.4.1. f is minimal R−I−continuous, if f−1(M) is R−I−open

in X for every minimal R− J−open set M in Y .

Definition 7.4.2. f is maximal R − I−continuous, if f−1(M) is R −

I−open in X for every maximal R− J−open set M in Y .

Definition 7.4.3. f is minimal R − I−irresolute, if f−1(M) is minimal

R− I−open in X for every minimal R− J−open set M in Y .

Definition 7.4.4. f is maximal R − I−irresolute, if f−1(M) is maximal

R− I−open in X for every maximal R− J−open set M in Y .
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Definition 7.4.5. f is minimal–maximal R − I−continuous if f−1(M) is

maximal R− I−open in X for every minimal R− J−open set M in Y .

Definition 7.4.6. f is maximal–minimal R − I−continuous if f−1(M) is

minimal R− I−open in X for every maximal R− J−open set M in Y .

Now relation between the above defined continuous functions and some

continuous functions which are already defined are studied as follows. All

the proofs directly follow from the definitions and the basic concepts of

R− I−open sets.

Theorem 7.4.1. Every R∗ − I−irresolute function is minimal

R− I−continuous.

Remark 7.4.1. The converse of the above theorem need not be true.

Example 7.4.1. Consider X = Y = {a, b, c}, τ = {φ,X, {a}, {c}, {a, c}, {b, c}},

σ = {φ,X, {a}, {a, b}}, I = {φ, {a}}, J = {φ, {a}}. Let

f : (X, τ, I) → (Y, σ,J ) be such that f(a) = a, f(b) = c, f(c) = b.

Then f is minimal R− I−continuous, but not R∗ − I−irresolute.

Theorem 7.4.2. If Y is a R−J − T
min

space and f : X → Y is minimal

R− I−continuous surjective function, then f is R∗ − I−irresolute.

Theorem 7.4.3. Every R∗ − I−irresolute function is maximal

R− I−continuous.

Remark 7.4.2. The converse of the above theorem need not be true.

Example 7.4.2. Consider X = Y = {a, b, c}, τ = {φ,X, {a}, {c}, {a, c}, {b, c}},

σ = {φ,X, {a}, {a, b}}, I = {φ, {a}}, J = {φ, {a}}. Let

f : (X, τ, I) → (Y, σ,J ) be such that f(a) = c, f(b) = b, f(c) = a.

Then f is maximal R− I−continuous, but not R∗ − I−irresolute.
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Theorem 7.4.4. If Y is a R−J − Tmax space and f : X → Y is maximal

R− I−continuous surjective function, then f is R∗ − I−irresolute.

Theorem 7.4.5. Every totally I−continuous function is minimal

R− I−continuous.

Remark 7.4.3. The converse of the above theorem need not be true.

For example, consider the example 7.4.1. which is minimal

R− I−continuous but not totally I−continuous.

Definition 7.4.7. A topological space is said to be locally indiscrete if every

open set is closed.

Theorem 7.4.6. Let X and Y be locally indiscrete spaces. If f : X → Y

is minimal R − I−continuous where Y is a R − J − T
min

space, then f is

totally I−continuous.

Theorem 7.4.7. Every totally I−continuous function is maximal

R− I−continuous.

Remark 7.4.4. The converse of the above theorem need not be true.

For example, consider the example 7.4.2. which is maximal

R− I−continuous but not totally I−continuous.

Theorem 7.4.8. Let X and Y be locally indiscrete spaces. If f : X → Y

is maximal R− I−continuous where Y is is a R−J − Tmax space, then f

is totally I−continuous.

Theorem 7.4.9. If f : X → Y is minimal R − I−continuous where Y is

a R− J − T
min

space, then f is almost R− I−continuous.

Theorem 7.4.10. If f : X → Y is maximal R−I−continuous where Y is

is a R− J − Tmax space, then f is almost R− I−continuous.
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Theorem 7.4.11. Let Y be a locally indiscrete space. If f : X → Y is

almost R− I−continuous, then f is minimal R− I−continuous as well as

maximal R− I−continuous.

Theorem 7.4.12. Every R∗ − I−continuous function is minimal

R− I−continuous.

Remark 7.4.5. The converse of the above theorem need not be true.

For example, consider the example 7.4.1 which is minimal

R− I−continuous but not R∗ − I−continuous.

Theorem 7.4.13. Let Y be a locally indiscrete R− J − T
min

space. Then

every minimal R−I−continuous surjective function is R∗−I−continuous.

Theorem 7.4.14. Every R∗ − I−continuous function is maximal

R− I−continuous.

Remark 7.4.6. The converse of the above theorem need not be true.

For example, consider the example 7.4.2. which is maximal

R− I−continuous but not R∗ − I−continuous.

Theorem 7.4.15. Let Y be a locally indiscrete R−J − Tmax space. Then

every maximal R−I−continuous surjective function is R∗−I−continuous.

Theorem 7.4.16. Every almost perfectly I−continuous function is mini-

mal R− I−continuous.

Remark 7.4.7. The converse of the above theorem need not be true.

For example, consider the example 7.4.1. which is minimal

R− I−continuous but not almost perfectly I−continuous.

Theorem 7.4.17. Every almost perfectly I−continuous function is maxi-

mal R− I−continuous.
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Remark 7.4.8. The converse of the above theorem need not be true.

For example, consider the example 7.4.2. which is maximal

R− I−continuous but not almost perfectly I−continuous.

Theorem 7.4.18. Let X be a locally indiscrete space and Y be a R−J −

T
min

space. If f : X → Y is minimal R − I−continuous, then f is almost

perfectly I−continuous.

Theorem 7.4.19. Let X be a locally indiscrete space and Y be a R−J −

Tmax space. If f : X → Y is maximal R − I−continuous, then f is almost

perfectly I−continuous.

Remark 7.4.9. Minimal R−I−continuous and maximal R−I−continuous

functions are independent of each other.

Example 7.4.3. Let X = Y = {a, b, c}, τ = {φ,X, {a}, {c}, {a, c}, {b, c}},

σ = {φ,X, {a}, {a, b}}, I = {φ, {a}}, J = {φ, {a}}.

Let f : (X, τ, I)→ (Y, σ,J ) be such that f(a) = a, f(b) = c, f(c) = b. Then

f is minimal R− I−continuous but not maximal R− I−continuous.

If f is defined as f(a) = c, f(b) = b, f(c) = a, then f : (X, τ, I)→ (Y, σ,J )

is maximal R− I−continuous but not minimal R− I−continuous.

Theorem 7.4.20. Every minimal R − I−irresolute map is minimal R −

I−continuous.

Remark 7.4.10. The converse of the above theorem need not be true.

Example 7.4.4. Consider X = Y = {a, b, c}, τ = {φ,X, {c}, {b, c}},

σ = {φ,X, {a}, {a, b}}, I = {φ, {c}}, J = {φ, {a}}.

Let f : (X, τ, I)→ (Y, σ,J ) be such that f(a) = c, f(b) = a, f(c) = a. Then

f is minimal R− I−continuous but not minimal R− I−irresolute.

Theorem 7.4.21. Every maximal R − I−irresolute map is maximal R −

I−continuous.
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Remark 7.4.11. The converse of the above theorem need not be true.

Example 7.4.5. Consider X = Y = {a, b, c}, τ = {φ,X, {c}, {b, c}},

σ = {φ,X, {a}, {a, b}}, I = {φ, {c}}, J = {φ, {a}}.

Let f : (X, τ, I)→ (Y, σ,J ) be such that f(a) = c, f(b) = c, f(c) = a. Then

f is maximal R− I−continuous but not maximal R− I−irresolute.

Theorem 7.4.22. If f : X → Y is minimal R−I−continuous where X is

a R− I − T
min

space, then f is minimal R− I−irresolute.

Theorem 7.4.23. If f : X → Y is maximal R−I−continuous where X is

a R− I − Tmax space, then f is maximal R− I−irresolute.

Theorem 7.4.24. If f : X → Y is a minimal R − I−irresolute surjective

function where Y is R− J − T
min

, then f is R∗ − I−irresolute.

Theorem 7.4.25. If f : X → Y is a maximal R− I−irresolute surjective

function where Y is R− J − Tmax, then f is R∗ − I−irresolute.

Theorem 7.4.26. If X is R− I − T
min

space, then every

R∗ − I−irresolute function is minimal R− I−irresolute.

Theorem 7.4.27. If X is R− I − Tmax space, then every

R∗ − I−irresolute function is maximal R− I−irresolute.

Theorem 7.4.28. Every minimal–maximal R − I−continuous function is

minimal R− I−continuous.

Theorem 7.4.29. Every minimal R− I−continuous function from a

R− I − Tmax space is minimal-maximal R− I−continuous.

Theorem 7.4.30. Every maximal–minimal R − I−continuous function is

maximal R− I−continuous.

Theorem 7.4.31. Every maximal R− I−continuous function from a

R− I − T
min

space is maximal-minimal R− I−continuous.
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Theorem 7.4.32. A continuous surjective function f : X → Y is minimal

R− I−continuous if and only if the inverse image of each maximal

R− J−closed set in Y is a R− I−closed set in X.

Theorem 7.4.33. A continuous surjective function f : X → Y is maximal

R− I−continuous if and only if the inverse image of each minimal

R− J−closed set in Y is a R− I−closed set in X.

Theorem 7.4.34. A continuous surjective function f : X → Y is minimal

R− I−irresolute if and only if the inverse image of each maximal

R− J−closed set in Y is a maximal R− I−closed set in X.

Theorem 7.4.35. A continuous surjective function f : X → Y is maximal

R− I−irresolute if and only if the inverse image of each minimal

R− J−closed set in Y is a minimal R− I−closed set in X.

Theorem 7.4.36. A continuous surjective function f : X → Y is max-

imal–minimal R − I−continuous if and only if the inverse image of each

minimal R− J−closed set in Y is a maximal R− I−closed set in X.

Theorem 7.4.37. A continuous surjective function f : X → Y is mini-

mal–maximal R − I−continuous if and only if the inverse image of each

maximal R− J−closed set in Y is a minimal R− I−closed set in X.

Remark 7.4.12. Composition of minimal R−I−continuous functions need

not be minimal R− I−continuous.

Example 7.4.6. Let X = Y = Z = {a, b, c}, τ = {φ,X, {a}, {c}, {a, c}, {b, c}},

σ = {φ,X, {a}, {a, b}}, η = {φ,X, {b, c}} I = {φ, {a}},

J = {φ, {a}}, K = {φ, {a}}.

Let f : (X, τ, I) → (Y, σ,J ) be such that f(a) = a, f(b) = c, f(c) = b and

g : (Y, σ,J ) → (Z, η,K) be such that g(a) = b, g(b) = c, g(c) = a. Then

g ◦ f : X → Z is not minimal R−I−continuous even though f is minimal
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R− I−continuous and g is minimal R− J−continuous.

Here (g ◦ f)−1({b, c}) = f−1(g−1({b, c})) = f−1({a, b}) = {a, c} which is

not R− I−open in X.

Remark 7.4.13. Composition of maximal R−I−continuous functions need

not be maximal R− I−continuous.

Example 7.4.7. Let X = Y = Z = {a, b, c}, τ = {φ,X, {a}, {c}, {a, c}, {b, c}},

σ = {φ,X, {a}, {a, b}}, η = {φ,X, {a}} I = {φ, {a}},

J = {φ, {a}}, K = {φ, {a}}.

Let f : (X, τ, I) → (Y, σ,J ) be such that f(a) = c, f(b) = b, f(c) = a and

g : (Y, σ,J ) → (Z, η,K) be such that g(a) = a, g(b) = b, g(c) = c. Then

g ◦ f : X → Z is not maximal R−I−continuous even though f is maximal

R− I−continuous and g is maximal R− J−continuous.

Here (g ◦ f)−1({a}) = f−1(g−1({a})) = f−1({a}) = {c} which is not

R− I−open in X.

Let (X, τ, I), (Y, σ,J ) and (Z, η,K) be ideal topological spaces.

Theorem 7.4.38. If f : X → Y is R∗ − I−irresolute and g : Y →

Z is minimal R − J−continuous, then g ◦ f : X → Z is minimal R −

I−continuous.

Theorem 7.4.39. If f : X → Y is R∗ − I−irresolute and g : Y →

Z is maximal R − J−continuous, then g ◦ f : X → Z is maximal R −

I−continuous.

Theorem 7.4.40. If f : X → Y is minimal R − I−irresolute continuous

function and g : Y → Z is minimal R−J−irresolute continuous function,

then g ◦ f : X → Z is minimal R− I−irresolute.
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Theorem 7.4.41. If f : X → Y is maximal R − I−irresolute continuous

function and g : Y → Z is maximal R−J−irresolute continuous function,

then g ◦ f : X → Z is maximal R− I−irresolute.

Remark 7.4.14. Composition of minimal maximal R−I−continuous func-

tions need not be minimal maximal R− I−continuous.

Example 7.4.8. Consider X = Y = {a, b, c}, τ = {φ, {a}, {a, b}, X},

σ = {φ, {b}, Y }, I = {φ, {a}}, J = {φ, {b}}.

Then f : (X, τ, I) → (Y, σ,J ) defined as f(a) = b, f(b) = a, f(c) = c is

minimal maximal R − I−continuous. But f ◦ f is not minimal maximal

R− I−continuous.

Remark 7.4.15. Composition of maximal minimal R−I−continuous func-

tions need not be maximal minimal R− I−continuous.

Example 7.4.9. Consider X = Y = {a, b, c}, τ = {φ, {a}, {b}, {a, b}, {a, c}X},

σ = {φ, {b}, {b, c}Y }, I = {φ, {a}}, J = {φ, {b}}.

Then f : (X, τ, I) → (Y, σ,J ) defined as f(a) = b, f(b) = a, f(c) = b is

maximal minimal R − I−continuous. But f ◦ f is not maximal minimal

R− I−continuous.

Theorem 7.4.42. If f : X → Y is minimal maximal R−I−continuous and

g : Y → Z is minimal R−J−continuous function where Y is a R−J −T
min

space, then g ◦ f : X → Z is minimal maximal R− I−continuous.

Theorem 7.4.43. If f : X → Y is maximal minimal R − I−continuous

function and g : Y → Z is maximal R − J−continuous function where

Y is a R − J − Tmax space, then g ◦ f : X → Z is maximal minimal

R− I−continuous.

Theorem 7.4.44. If f : X → Y is maximal R−I−irresolute and g : Y →

Z is minimal maximal R − J−continuous, then g ◦ f : X → Z is minimal

maximal R− I−continuous.
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Theorem 7.4.45. If f : X → Y is maximal R − I−continuous and g :

Y → Z is minimal maximal R − J−continuous, then g ◦ f : X → Z is

minimal R− I−continuous.

Theorem 7.4.46. If f : X → Y is minimal R−I−irresolute and g : Y →

Z is maximal minimal R − I−continuous, then g ◦ f : X → Z is maximal

minimal R− I−continuous.

Theorem 7.4.47. If f : X → Y is minimal R − I−continuous and g :

Y → Z is maximal minimal R − I−continuous, then g ◦ f : X → Z is

maximal R− I−continuous.



8
Somewhat R− I−continuous and Somewhat

R− I−open Functions

8.1 Introduction

Now, we put forward the notions of somewhat R−I−continuous functions

and somewhat R − I−open functions. In section 2, we will study about

somewhatR−I−continuous functions and its relationship with other classes

of functions. Also some of its characterizations and properties are obtained

besides giving examples and counter examples. In section 4, we will study

about somewhat R − I−open functions and get results which go parallel

with the results of somewhat R− I−continuous functions.

Some definitions which are related in this topic:

Definition 8.1.1. [25] A function f : (X, τ) → (Y, σ) is said to be some-

what continuous if for U ∈ σ and f−1(U) 6= φ, there exists an open set V

in X such that V 6= φ and V ⊂ f−1(U).

Definition 8.1.2. [32] A function f : (X, τ) → (Y, σ) is said to be some-

what r-continuous, if U ∈ σ and f−1(U) 6= φ, then there exists a regular

open set V in X such that V 6= φ and V ⊂ f−1(U).

Definition 8.1.3. [2] A function f : (X, τ, I) → (Y, σ) is said to be R −

I−continuous if for each x ∈ X and for open set V ∈ σ containing f(x),
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there exists a R− I−open set U ⊂ X containing x such that f(U) ⊂ V .

Definition 8.1.4. [18] A function f : X → Y is said to be completely

continuous if f−1(V ) is a regular open set in X, for every open set V in Y .

Definition 8.1.5. [29] A function f : X → Y is said to be almost

completely continuous if f−1(V ) is a regular open set in X for every regular

open set V in Y .

Definition 8.1.6. [17] A function f : X → Y is said to be perfectly

continuous if f−1(V ) is clopen in X for every open set V in Y .

Definition 8.1.7. [17] A function f : X → Y is said to be almost perfectly

continuous if f−1(V ) is clopen for every regular open set V in Y .

Definition 8.1.8. [1] A function f : X → Y is said to be almost

cl-supercontinuous if for each x ∈ X and each regular open set V containing

f(x) there is a clopen set U containing x such that f(U) ⊂ V .

Definition 8.1.9. [1] A function f : X → Y is said to be

cl-supercontinuous, if for each x ∈ X and for each open set V containing

f(x), there exists a clopen set U containing x such that f(U) ⊂ V .

8.2 Somewhat R− I−continuous function

Definition 8.2.1. A function f : (X, τ, I)→ (Y, σ) is said to be completely

I−continuous if f−1(U) is a R−I−open set in X for every open set U ⊂ Y .

Definition 8.2.2. A function f : (X, τ, I)→ (Y, σ,J ) is said to be almost

completely I−continuous if f−1(U) is a R − I−open set in X for every

R− J−open set U ⊂ Y .

Definition 8.2.3. A function f : X → Y is said to be almost perfectly

I−continuous if f−1(V ) is R − I− clopen for every R − I−open set V in

Y .
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Definition 8.2.4. A function f : (X, τ, I)→ (Y, σ,J ) is said to be almost

I − cl−supercontinuous if for each x ∈ X and each R − J−open set V

containing f(x) there is a clopen set U containing x such that f(U) ⊂ V .

Definition 8.2.5. Let (X, τ, I) be an ideal topological space and (Y, σ) be

any topological space. A function f : (X, τ, I)→ (Y, σ) is said to be

somewhat R − I−continuous if for any U ∈ σ such that f−1(U) 6= φ there

exists a R− I−open set V in X such that V 6= φ and V ⊂ f−1(U).

Example 8.2.1. Let X = Y = {a, b, c}, τ = {φ,X, {a}, {b, c}},

I = {φ, {a}}, σ = {φ,X, {b, c}}.

Define f : (X, τ, I)→ (X, σ) by f(a) = a, f(b) = c, f(c) = b.

Then f is somewhat R − I−continuous and the R − I−open sets are

{a}, {b, c} and X.

Theorem 8.2.1. Every somewhat R−I−continuous function is somewhat

continuous.

The converse does not hold.

Example 8.2.2. Let X = {a, b, c, d}, Y = {e, f, g},

τ = {φ,X, {c}, {d}, {a, c}, {c, d}, {a, c, d}}, σ = {φ, Y, {f}, {g}, {f, g}},

I = {φ, {b}}. Define f : (X, τ, I) → (Y, σ) by f(a) = e, f(d) =

e, f(c) = g, f(b) = g. Then f is somewhat continuous, but not somewhat

R− I−continuous.

Theorem 8.2.2. Every R − I−continuous function is somewhat

R− I−continuous.

The converse does not hold.

Example 8.2.3. Let X = {a, b, c}, τ = {φ,X, {a}, {b, c}},

I = {φ, {b, c}}, σ = {φ,X, {a, b}}.
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Let f : (X, τ, I)→ (X, σ) be the identity function.

Then f is somewhat R− I−continuous, but not R− I−continuous.

Theorem 8.2.3. If f : (X, τ, I) → (Y, σ) is somewhat r−continuous then

f is somewhat R− I−continuous.

Theorem 8.2.4. Every cl−supercontinuous function is somewhat

R− I−continuous.

The converse does not hold.

Example 8.2.4 (2, Example 2.5). Let X = {a, b, c, d},

τ = {φ,X, {a, c}, {d}, {a, c, d}}, σ = {φ,X, {a, c}, {d}, {a, c, d}},

I = {φ, {d}}. Let f : (X, τ, I)→ (X, σ) be the identity function.

The clopen sets of X are φ and X only. The R − I−open sets are

{a, c}, {d} and X. Clearly f is somewhat R − I−continuous, but is not

cl−supercontinuous.

Theorem 8.2.5. Every almost I − cl−supercontinuous function is some-

what R− I−continuous.

The converse does not hold.

Example 8.2.5. Let X = {a, b, c, d}, τ = {φ,X, {a, c}, {d}, {a, c, d}},

σ = {φ,X, {a, c}, {d}, {a, c, d}}, I = {φ, {d}}.

Let f : (X, τ, I)→ (X, σ) be the identity function.

The clopen sets of X are φ and X only. The R−I−open sets are {a, c}, {d}

and X. Clearly f is somewhat R − I−continuous, but is not almost I −

cl−supercontinuous.

Theorem 8.2.6. Every completely I−continuous function is somewhat

R− I−continuous.

The converse does not hold.
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Example 8.2.6. Let X = {a, b, c}, τ = {φ,X, {a}, {b, c}}, I = {φ, {b, c}},

σ = {φ,X, {a, b}}.

Let f : (X, τ, I) → (X, σ) be the identity function. Clearly f is somewhat

R− I−continuous, but is not completely I−continuous.

Theorem 8.2.7. Every almost perfectly I−continuous function is almost

I − cl−supercontinuous.

Theorem 8.2.8. If f : (X, τ, I) → (Y, σ) is somewhat continuous and X

is locally indiscrete, then f is somewhat R− I−continuous.

Proof. Since clopen sets are R− I−open, the result follows.

Theorem 8.2.9. If f : (X, τ, I) → (Y, σ) is somewhat R − I−continuous

and X is locally indiscrete, then f is cl−supercontinuous and hence almost

I − cl−supercontinuous.

Proof. Given f is somewhat R−I−continuous. So for any U ∈ σ such that

f−1(U) 6= φ, there exists a R − I−open set V in X such that V 6= φ and

V ⊂ f−1(U). Clearly V ∈ τ and since X is locally indiscrete, V is clopen.

So f is cl−supercontinuous. Hence f is almost I−cl−supercontinuous.

Theorem 8.2.10. If f : (X, τ, I) → (Y, σ,J ) is almost completely

I−continuous and X is locally indiscrete, then f is almost perfectly

I−continuous.

Proof. Since f : (X, τ, I) → (Y, σ,J ) is almost completely I−continuous,

f−1(U) is a R−I−open set in X for every R−J−open set U ⊂ Y . Clearly

f−1(U) is open and since X is locally indiscrete, f−1(U) is clopen. Hence

f is almost perfectly I−continuous.

Theorem 8.2.11. If X is discrete and f : (X, τ, I) → (Y, σ) is somewhat

R − I−continuous, then f is completely I−continuous and hence almost

completely I−continuous.
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Proof. Since X is discrete, every subset is clopen. Thus every subset of X

is R − I−open. Since f is somewhat R − I−continuous, for any U ∈ σ

such that f−1(U) 6= φ there exists a R − I−open set V in X such that

V 6= φ and V ⊂ f−1(U). Then clearly f−1(U) is R − I−open for every

U ∈ σ. Thus f is completely I−continuous and hence almost completely

I−continuous.

Corollary 8.2.1. If X is finite and T1 and f : (X, τ, I)→ (Y, σ) is some-

what R − I−continuous, then f is completely I−continuous and hence al-

most completely I−continuous.

Theorem 8.2.12. If f : (X, τ, I) → (Y, σ,J ) is almost com-

pletely I−continuous and Y is locally indiscrete, then f is somewhat

R− I−continuous.

Proof. Let V ∈ σ. Since Y is locally indiscrete, V is clopen and hence V

is R − J−open. Since f is almost completely I−continuous, f−1(V ) is

R−I−open. Let U = f−1(V ). Then for each V ∈ σ such that f−1(V ) 6= φ

there exists a R − I−open set U in X such that U 6= φ and U ⊂ f−1(V ).

Thus f is somewhat R− I−continuous.

Theorem 8.2.13. If f : (X, τ, I) → (Y, σ,J ) is somewhat R −

I−continuous and g : (Y, σ,J ) → (Z, η) is continuous, then g ◦ f is

somewhat R− I−continuous.

Proof. Let U ∈ η and g−1(U) 6= φ. Since g is continuous, g−1(U) ∈ σ.

Suppose that f−1(g−1(U)) 6= φ. Since f is somewhat R−I−continuous, for

g−1(U) ∈ σ there exists a R−I−open set V in X such that V 6= φ and V ⊂

f−1(g−1(U)) = (g◦f)−1(U). Hence g◦f is somewhat R−I−continuous.

Theorem 8.2.14. If f : (X, τ, I) → (Y, σ,J ) is somewhat R −

I−continuous surjection and g : (Y, σ,J ) → (Z, η) is somewhat continu-

ous, then g ◦ f is somewhat R− I−continuous.



80

Proof. Let U ∈ η and (g ◦ f)−1(U) 6= φ. Then g−1(U) 6= φ. Since g is

somewhat continuous, there exists an open set V in Y such that V 6= φ

and V ⊂ g−1(U). Then φ 6= f−1(V ) ⊂ f−1(g−1(U)) = (g ◦ f)−1(U). Since

f is somewhat R − I−continuous, there exists a R − I−open set W ∈ τ

such that φ 6= W ⊂ f−1(V ) ⊂ (g ◦ f)−1(U). Hence g ◦ f is somewhat

R− I−continuous.

Theorem 8.2.15. If f : (X, τ, I) → (Y, σ,J ) is somewhat r−continuous

and g : (Y, σ,J ) → (Z, η) is continuous, then g ◦ f is somewhat R −

I−continuous.

Proof. Let U ∈ η and g−1(U) 6= φ. Since g is continuous, g−1(U) ∈ σ.

Suppose that f−1(g−1(U)) 6= φ. Since f is somewhat r−continuous, for

g−1(U) ∈ σ there exists a regular open set V in X such that V 6= φ and

V ⊂ f−1(g−1(U)) = (g◦f)−1(U). Since V is regular open, V is R−I−open.

Hence g ◦ f is somewhat R− I−continuous.

Theorem 8.2.16. If f : (X, τ, I) → (Y, σ,J ) and g : (Y, σ,J ) → (Z, η)

are somewhat R − I−continuous functions, then g ◦ f is somewhat R −

I−continuous.

Proof. Let U ∈ η and (g ◦ f)−1(U) 6= φ. Then g−1(U) 6= φ. Since g

is somewhat R − J−continuous, there exists a R − J−open set V in Y

such that V 6= φ and V ⊂ g−1(U). Then φ 6= f−1(V ) ⊂ f−1(g−1(U)) = (g ◦

f)−1(U). Since f is somewhat R−I−continuous, there exists a R−I−open

set W ∈ τ such that φ 6= W ⊂ f−1(V ) ⊂ (g ◦ f)−1(U). Hence g ◦ f is

somewhat R− I−continuous.

Remark 8.2.1. If f is continuous and g is somewhat R − I−continuous,

then it is not necessarily true that g ◦ f is somewhat R− I−continuous.

Example 8.2.7. Let X = Y = Z = {a, b, c}, τ = {φ,X, {a}, {a, c}}, σ =

{φ,X, {a, b}}, η = {φ,X, {a, b}}, I = {φ, {c}},J = {φ, {a, b}}.
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Define f : (X, τ, I) → (Y, σ,J ) by f(a) = a, f(b) = c, f(c) = a and g :

(Y, σ,J )→ (Z, η) by g(a) = a, g(b) = b, g(c) = c.

Here f is continuous and g is somewhat R−I−continuous, but g ◦ f is not

somewhat R− I−continuous.

Definition 8.2.6. Let M be a subset of an ideal topological space (X, τ, I).

Then M is said to be R−I−dense in X if there is no proper R−I−closed

set C in X such that M ⊂ C ⊂ X.

Example 8.2.8. Let X = {a, b, c, d}, τ = {φ,X, {a, c}, {d}, {a, c, d}},

I = {φ, {d}}. The R − I−open sets are {a, c}, {d} and X. Then {b} is

R−I−dense in X since there exists no R−I−closed set C in X such that

{b} ⊂ C ⊂ X.

Theorem 8.2.17. Let f : (X, τ, I) → (Y, σ) be a surjection. Then the

following are equivalent:

(i) f is somewhat R− I−continuous.

(ii) If C is a closed subset of Y such that f−1(C) 6= X, then there is a

proper R− I−closed subset D of X such that D ⊃ f−1(C).

(iii) If M is a R − I−dense subset of X, then f(M) is a dense subset of

Y .

Proof. (i) ⇒ (ii)

Let C be a closed subset of Y such that f−1(C) 6= X. Then Y − C is

open in Y such that f−1(Y − C) = X − f−1(C) 6= φ. Since f is somewhat

R−I−continuous, there exists a R−I−open set V 6= φ in X such that V ⊂

f−1(Y −C) = X−f−1(C). Thus f−1(C) ⊂ X−V . Since V is R−I−open,

X − V = D is R − I−closed. That is, there exists a R − I−closed set D

such that D ⊃ f−1(C).

(ii) ⇒ (iii)
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Let M be R − I−dense in X. Suppose f(M) is not dense in Y . Then

there exists a proper closed set C in Y such that f(M) ⊂ C ⊂ Y . Clearly

f−1(C) 6= X. Hence by (ii), there exists a proper R − I−closed set D of

X such that D ⊃ f−1(C). That is, M ⊂ f−1(C) ⊂ D ⊂ X. This is a

contradiction to the fact that M is R − I−dense in X. So f(M) is dense

in Y .

(iii) ⇒ (ii)

Suppose (ii) is not true. This means that there exists a closed set C in Y

such that f−1(C) 6= X, but there is no proper R − I−closed set D in X

such that f−1(C) ⊂ D. This implies f−1(C) is R− I−dense in X. But by

(iii), f(f−1(C)) = C must be dense in Y , a contradiction to the choice of

C. So (ii) is true.

(ii) ⇒ (i)

Let U ∈ σ and f−1(U) 6= φ. Then Y − U is closed in Y and f−1(Y − U) =

X−f−1(U) 6= X. So by (ii), there exists a proper R−I−closed subset D of

X such that D ⊃ f−1(Y −U) = X−f−1(U). That is, φ 6= X−D ⊂ f−1(U)

and X−D is a R−I−open subset. So f is somewhat R−I−continuous.

Theorem 8.2.18. Let (X, τ, I) and (Y, σ,J ) be any two ideal topological

spaces. Let A be a R − I−open subset of X and f : (A, τ/A) → (Y, σ)

be somewhat R − I−continuous such that f(A) is dense in Y . Then any

extension F of f is somewhat R− I−continuous.

Proof. Let U be any open set in Y such that F−1(U) 6= φ. Since f(A) ⊂ Y

is dense in Y , U ∩f(A) 6= φ. So F−1(U)∩A 6= φ. So f−1(U)∩A 6= φ. Since

f is somewhat R−I−continuous, by hypothesis there exists a R−I−open

set V such that V ⊂ f−1(U). Since V is a R − I−open subset of A and A

is a R−I−open subset of X, V is a R−I−open subset of X. Hence V ⊂

F−1(U). Thus corresponding to the open set U in Y such that F−1(U) 6= φ,

there exists a R−I−open set V such that V ⊂ F−1(U). So F is somewhat
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R− I−continuous.

Theorem 8.2.19. Let (X, τ, I) and (Y, σ,J ) be any two ideal topological

spaces. Let X = A ∪ B where A and B are R − I−open subsets of X. Let

f : (X, τ, I)→ (Y, σ,J ) be a function such that f/A and f/B are somewhat

R− I−continuous. Then f is somewhat R− I−continuous.

Proof. Let U be any open set in Y such that f−1(U) 6= φ. Then ei-

ther (f/A)−1(U) 6= φ or (f/B)−1(U) 6= φ or both (f/A)−1(U) and

(f/B)−1(U) 6= φ.

Case(1): (f/A)−1(U) 6= φ.

Since f/A is somewhat R − I−continuous, there exists a R − I−open set

V in A such that V 6= φ and V ⊂ (f/A)−1(U) ⊂ f−1(U). Since V is

R − I−open in A and A is R − I−open in X, V is R − I−open in X. So

f is somewhat R− I−continuous.

Case(2): (f/B)−1(U) 6= φ.

This can be proved by using the same argument as in case(1).

Case(3): (f/A)−1(U) and (f/B)−1(U) 6= φ.

The proof follows from the proof of the cases(1) and (2).

Definition 8.2.7. Let (X, τ) and (X, σ) be topological spaces with same

ideal I. Then τ and σ are said to be R − I−weakly equivalent if both the

conditions below hold:

(i) if for every non empty open set U ∈ τ there is a non empty R−I−open

set V in (X, σ, I) such that V ⊂ U .

(ii) if for every non empty open set U ∈ σ there is a non empty R−I−open

set V in (X, τ, I) such that V ⊂ U .

Example 8.2.9. Let X = {a, b, c}, I = {φ, {a}}, τ = {φ,X, {a}, {a, b}},

σ = {φ,X, {a}, {a, c}}. Then τ is R− I−weakly equivalent to σ.
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Theorem 8.2.20. Let f : (X, τ)→ (Y, σ) be a somewhat continuous func-

tion and let τ ∗ be a topology for X which is R− I−weakly equivalent to τ .

Then the function f : (X, τ ∗, I)→ (Y, σ) is somewhat R− I−continuous.

Proof. Since τ ∗ is R − I−weakly equivalent to τ , i : (X, τ ∗, I) → (X, τ, I)

is somewhat R − I−continuous. Then by theorem 8.2.14, f = f ◦ i :

(X, τ ∗, I)→ (Y, σ) is somewhat R− I−continuous.

Theorem 8.2.21. Let f : (X, τ, I) → (Y, σ, I) be a somewhat

R − I−continuous surjective function and let σ∗ be a topology for Y

which is R − I−weakly equivalent to σ. Then f : (X, τ, I) → (Y, σ∗) is

somewhat R− I−continuous.

Proof. Since σ∗ is R − I−weakly equivalent to σ, i : (Y, σ, I) → (Y, σ∗, I)

is somewhat R − I−continuous. Then by theorem 8.2.16, f = f ◦ i :

(X, τ, I)→ (Y, σ∗) is somewhat R− I−continuous.

8.3 Somewhat R− I−open functions

Definition 8.3.1. [25] A function f : (X, τ) → (Y, σ) is said to be some-

what open if for each non empty open set U ∈ τ there exists a non empty

open set V in σ such that V ⊂ f(U).

Definition 8.3.2. A function f : (X, τ)→ (Y, σ, I) is said to be somewhat

R−I−open if for each non empty open set U ∈ τ there exists a non empty

R− I−open set V in σ such that V ⊂ f(U).

Example 8.3.1. Let X = {a, b, c}, I = {φ, {a}}, τ = {φ,X, {b, c}},

σ = {φ,X, {a}, {b, c}}. The R − I−open sets in (X, σ) are X, {a}, {b, c}.

Let f : (X, τ)→ (Y, σ, I) is defined by f(a) = a, f(b) = c, f(c) = b. Then f

is somewhat R− I−open.
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Definition 8.3.3. [25] A function f : (X, τ) → (Y, σ) is said to be some-

what clopen provided for U ∈ τ there exists clopen set V in Y such that

V ⊂ f(U).

Theorem 8.3.1. Every somewhat clopen function is somewhat R−I−open.

Remark 8.3.1. The converse does not hold.

Example 8.3.2. Let X = {a, b, c}, I = {φ, {b}}, τ = {X,φ, {a}},

σ = {Y, φ, {b}, {c}, {b, c}}. Define a function f : (X, τ) → (X, σ, I) by

f(a) = b, f(b) = c, f(c) = a.

Then f is not somewhat clopen.

Theorem 8.3.2. Every somewhat r-open function is somewhat R−I−open.

Theorem 8.3.3. If f : (X, τ) → (Y, σ, I) is somewhat R − I−open, then

f is somewhat open.

Remark 8.3.2. The converse does not hold.

Example 8.3.3. Let X = {a, b, c}, I = {φ, {c}}, τ = {φ,X, {a}, {a, b}},

σ = {φ,X, {c}, {b, c}}. Define a function f : (X, τ)→ (X, σ, I) by

f(a) = b, f(b) = c, f(c) = a. Then f is somewhat open but not somewhat

R− I−open.

Theorem 8.3.4. If f : (X, τ)→ (Y, σ) is somewhat open and g : (Y, σ)→

(Z, η, I) is somewhat R−I−open, then g◦f : (X, τ)→ (Z, η, I) is somewhat

R− I−open.

Proof. Let U 6= φ ∈ τ . Since f is somewhat open, there exists a non empty

open set W ∈ σ such that W ⊂ f(U). Since g is somewhat R−I−open, for

W ∈ σ there exists a non empty R−I−open set V ∈ η such that V ⊂ g(W ).

Then, V ⊂ g(f(U)) = (g ◦ f)(U). So g ◦ f is somewhat R− I−open.
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Theorem 8.3.5. If f : (X, τ) → (Y, σ, I) is somewhat R − I−open and

g : (Y, σ, I) → (Z, η,J ) is somewhat R − J−open, then g ◦ f : (X, τ) →

(Z, η,J ) is somewhat R− J−open.

Proof. Let U 6= φ ∈ τ . Since f is somewhat R − I−open, there exists a

R − I−open set V 6= φ ∈ σ such that V ⊂ f(U). Since g is somewhat

R − J−open, for V 6= φ ∈ σ there exists a non empty R − J−open set

W ∈ η such that W ⊂ g(V ). Then, φ 6= W ⊂ g(V ) ⊂ g(f(U)) = (g ◦f)(U).

So g ◦ f is somewhat R− J−open.

Theorem 8.3.6. If f : (X, τ)→ (Y, σ, I) is a bijection, then the following

are equivalent.

(i) f is somewhat R− I−open.

(ii) If C is a closed subset of X such that f(C) 6= Y , then there is a

R− I−closed subset D of Y such that D 6= Y and D ⊃ f(C).

Proof. (i) ⇒ (ii)

Let C be a closed subset of X such that f(C) 6= Y . Then X − C is open

in X and X − C 6= φ. Since f is somewhat R − I−open, there exists

a non empty R − I−open set V in Y such that V ⊂ f(X − C). Put

D = Y − V . Then clearly D is R − I−closed in Y . Also D 6= Y , for

if D = Y , then V = φ, a contradiction. Since V ⊂ f(X − C) and f is

bijective, D = Y − V ⊃ Y − f(X − C) = f(C).

(ii) ⇒ (i)

Let U be a non empty open set in X. Put C = X −U . Then C is a proper

closed subset of X and f(C) = f(X − U) = Y − f(U). Then f(C) 6= Y .

So by (ii), there exists a R−I−closed subset D of Y such that D 6= Y and

D ⊃ f(C). Let V = Y −D. Then V is R − I−open in Y and non empty.

Further V = Y −D ⊂ Y −f(C) = f(U). So f is somewhat R−I−open.
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Theorem 8.3.7. Let f : (X, τ)→ (Y, σ, I) be somewhat R−I−open and A

be any open subset of X. Then f/A : (A, τ/A)→ (Y, σ, I) is also somewhat

R− I−open.

Proof. Let U ∈ τ/A and U 6= φ. Since U is open in A and A is open

in (X, τ), U is open in (X, τ). By hypothesis, f : (X, τ) → (Y, σ, I) is

somewhat R − I−open and so there exists a non empty R − I−open set

V in Y such that V ⊂ f(U). Thus for any non empty open set U in

(A, τ/A) with U , there exists a non empty R − I−open set V in Y such

that V ⊂ (f/A)(U). So f/A is somewhat R− I−open.

Theorem 8.3.8. Let (X, τ) and (Y, σ) be any two topological spaces and

X = A∪B where A and B are open subsets of X. Let f : (X, τ)→ (Y, σ, I)

be a function such that f/A and f/B are somewhat R − I−open. Then f

is somewhat R− I−open.

Proof. Let U be any non empty open subset of (X, τ). Since X = A ∪ B,

there are three cases.

(1) A ∩ U 6= φ (2) B ∩ U 6= φ (3) both A ∩ U 6= φ and B ∩ U 6= φ.

Case(1): Since A∩U ∈ τ/A and f/A is somewhat R−I−open, there exists

a non empty R−I−open set V ∈ σ such that V ⊂ ((f/A)(U)) ⊂ f(U). So

f is somewhat R− I−open.

By a similar argument, the other cases can be proved.



9
Contra R− I−continuous functions

9.1 Introduction

The aim of this chapter is to set forth a class of functions using the concepts

in ideal topological space called the contra R−I−continuous functions. We

also introduce almost contra R − I−continuous functions and investigate

certain properties and several characterisations of such concepts. Further,

we will deal with contra R − I−closed graphs and strongly contra R −

I−closed graphs. In section 2., using the notion of R − I−open sets, the

contra R − I−continuous functions are presented and studied. In section

3., almost contra R − I−continuous functions are investigated. Section

4. handles with R − I−closed, contra R − I−closed and strongly contra

R− I−closed graphs.

Definition 9.1.1. [30] Let A be a subset of a topological space (X, τ). Then

the set ∩{U ∈ τ : A ⊂ U} is called the kernel of A and is denoted by

Ker(A).

Definition 9.1.2. [15] A function f : (X, τ) → (Y, σ) is called a contra

continuous function if f−1(V ) is closed in X for every open set V in Y .

Lemma 9.1.1. [41] Let A be a subset of a topological space (X, τ). Then,
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1. x ∈ Ker(A) if and only if A ∩ F 6= φ for any closed subset F of X

containing x.

2. A ⊂ Ker(A) and A = Ker(A) if A is open in X.

3. if A ⊂ B, then Ker(A) ⊂ Ker(B).

Lemma 9.1.2. The following properties hold for a subset A of an ideal

topological space (X, τ, I).

1. R− I − Int(A) = X \R− I − Cl(X − A).

2. x ∈ R−I −Cl(A) if and only if A∩U 6= φ for each U ∈ RIO(X, x).

Recollect the definitions of R − I−open function (3.1.2), R∗ −

I−irresolute function (3.1.4), R − I − T1 space (3.2.1), R − I − T2

space(3.2.1), R−I−normal space (3.2.3) and R−I−compact space (3.3.2)

from the chapter 3.

9.2 Contra R− I−continuous functions

Definition 9.2.1. A function f : (X, τ, I)→ (Y, σ) is called contra

R− I−continuous if f−1(V ) is R− I−closed in X for every open set

V in Y .

Example 9.2.1. Let X = {a, b, c}, τ = {φ,X, {a}, {c}, {a, c}, {b, c}},

σ = {φ,X, {a}, {a, b}}, I = {φ, {a}}. Let f : (X, τ, I) → (X, σ) be such

that f(a) = c, f(b) = a, f(c) = a. Then f is contra R− I−continuous.

Example 9.2.2. Let X = {a, b, c}, τ = {φ,X, {a}, {c}, {a, c}, {b, c}},

σ = {φ,X, {a}, {a, b}}, I = {φ, {a}}. Let g : (X, τ, I) → (X, σ) be such

that g(a) = a, g(b) = b, g(c) = c. Then g is contra continuous, but not

contra R− I−continuous.
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Theorem 9.2.1. For a function f : (X, τ, I)→ (Y, σ) the following condi-

tions are equivalent:

1. f is contra R− I−continuous.

2. for each x ∈ X and each closed set F in Y containing f(x) there exist

a R− I−open set U containing x such that f(U) ⊂ F .

3. for each x ∈ X and each closed set F in Y containing f(x), f−1(F )

is R− I−open in X.

4. f(R− I − Cl(A)) ⊂ Ker(f(A)) for every A ⊂ X.

5. R− I − Cl(f−1(B)) ⊂ f−1(Ker(B)) for every B ⊂ Y .

Proof. 1. ⇒ 2.

Let x ∈ X and F be any closed subset in Y containing f(x). Then by the

contra R − I−continuity of f , f−1(Y \ F ) = X \ f−1(F ) is R − I−closed

in X. Hence by taking U = f−1(F ), we get there exists a R − I−open set

U containing x such that f(U) ⊂ F .

2. ⇒ 3.

Let F be any closed subset in Y and let x ∈ f−1(F ). Then f(x) ∈ F and

for each x ∈ f−1(F ) there exists a R − I−open set Ux containing x such

that f(Ux) ⊂ F . Hence f−1(F ) = ∪{Ux : x ∈ f−1(F )}. So f−1(F ) is

R− I−open in X.

We use Lemma 9.1.1. in all the following implications.

3. ⇒ 4.

Let A ⊂ X and assume that y /∈ Ker(f(A)). Then there exists a closed set

F in Y with y ∈ F such that f(A) ∩ F = φ. This implies A ∩ f−1(F ) = φ

and so R− I − Cl(A) ⊂ X \ f−1(F ). Thus (R− I − Cl(A)) ∩ f−1(F ) = φ

and we obtain f(R−I −Cl(A))∩F = φ. So y /∈ f(R−I −Cl(A)). Hence

f(R− I − Cl(A)) ⊂ Ker(f(A)) for every A ⊂ X.
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4. ⇒ 5.

Let B ⊂ Y . Then f(R − I − Cl(f−1(B))) ⊂ Ker(f(f−1(B))) ⊂ Ker(B).

Thus R− I − Cl(f−1(B)) ⊂ f−1(Ker(B)) for every B ⊂ Y .

5. ⇒ 1.

Let V be a open set in Y . Then R − I − Cl(f−1(V )) ⊂ f−1(Ker(V )) =

f−1(V ) and so R−I−Cl(f−1(V )) = f−1(V ). Thus f−1(V ) is R−I−closed

in X and hence f is contra R− I−continuous.

Theorem 9.2.2. Let f : (X, τ, I) → (Y, σ) be a function which is contra

R−I−continuous where Y is a regular space, then f is R−I−continuous.

Proof. Let x ∈ X and V be an open set in Y with f(x) ∈ V . By the

regularity of Y , there exists an open set H in Y containing f(x) such that

Cl(H) ⊂ V . Also, by theorem 9.2.1(2), there exists a R−I−open set U in X

containing x such that f(U) ⊂ Cl(H), since f is contra R−I−continuous.

Thus, f(U) ⊂ V and hence f is R− I−continuous.

Definition 9.2.2. An ideal topological space (X, τ, I) is said to be

R − I−connected if X cannot be written as the union of two non-empty

disjoint R− I−open subsets of X.

Definition 9.2.3. A function f : (X, τ, I) → (Y, σ,J ) is called almost-

R−I−continuous if for each x ∈ X and for each open set V in Y containing

f(x), there exist a R− I−open set U in X containing x such that

f(U) ⊂ R− J − Int(Cl(V )).

Definition 9.2.4. A function f : (X, τ, I) → (Y, σ) is called almost

weakly−R − I−continuous if for each x ∈ X and for each open set V ⊂ Y

containing f(x), there exist a R − I−open set U ⊂ X containing x such

that f(U) ⊂ Cl(V ).

Theorem 9.2.3. Let X be a R− I−connected space and the function
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f : (X, τ, I)→ (Y, σ) be contra R−I−continuous, then Y is not a discrete

space.

Proof. On the contrary, assume that Y is discrete. Let S be a proper non-

empty clopen set in Y . Since f is contra R−I−continuous, from definition

and theorem 9.2.1(3), we get f−1(S) is a proper non-empty R − I−clopen

set in X. This contradicts the fact that X is R − I−connected, since X

can be written as the union of f−1(S) and X − f−1(S).

Theorem 9.2.4. Let X be a R− I−connected space. If the function

f : (X, τ, I)→ (Y, σ) is contra R−I−continuous and surjective, then Y is

connected.

Proof. Assume that Y is not connected. Then, Y = A ∪ B, where A

and B are disjoint non-empty open subsets of Y . Since f is contra R −

I−continuous, f−1(A) and f−1(B) are non-empty R − I−closed sets in

X. Also, f−1(A) ∪ f−1(B) = f−1(A ∪ B) = X and f−1(A) ∩ f−1(B) =

f−1(A∩B) = φ. This contradicts the fact that X is R−I−connected and

hence Y is connected.

Theorem 9.2.5. If f : (X, τ, I) → (Y, σ,J ) is R − I−open and contra-

R− I−continuous, then f is almost-R− I−continuous.

Proof. Let x ∈ X and V ⊂ Y be an open set containing f(x). Since f is

contra R− I−continuous, by theorem 9.2.1(3), there exists a R− I−open

set U ⊂ X containing x such that f(U) ⊂ Cl(V ). Since f is R − I−open,

f(U) is R− J−open in Y . So f(U) = R− J − Int(f(U)). Hence f(U) ⊂

R− J − Int(Cl(V )) and f is almost-R− I−continuous.

Theorem 9.2.6. If f : (X, τ, I)→ (Y, σ) is contra R−I−continuous, then

f is almost weakly−R− I−continuous.
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Proof. Let x ∈ X and V ⊂ Y be an open set containing f(x). Since f

is contra R − I−continuous, f−1(Cl(V )) is R − I−open in X by theorem

9.2.1(3). Take U = f−1(Cl(V )). Then f(U) ⊂ Cl(V ). Thus f is almost

weakly-R− I−continuous.

Theorem 9.2.7. Let f : (X, τ, I)→ (Y, σ,J ) be a contra R−I−continuous

function and g : (Y, σ,J )→ (Z, η) be a continuous function.

Then g ◦ f : (X, τ, I)→ (Z, η) is contra R− I−continuous.

Proof. Let x ∈ X and W be a closed set in Z containing (g ◦ f)(x). Then

V = g−1(W ) is closed in Y by the continuity of g. Also, since f is contra

R−I−continuous, there exists a R−I−open set U ⊂ X containing x such

that f(U) ⊂ V = g−1(W ). Thus (g ◦ f)(U) ⊂ W . Hence

g ◦ f : (X, τ, I)→ (Z, η) is contra R− I−continuous.

Theorem 9.2.8. Let f : (X, τ, I) → (Y, σ,J ) be a R∗ − I−irresolute

function and g : (Y, σ,J )→ (Z, η) be a contra R−I−continuous function.

Then g ◦ f : (X, τ, I)→ (Z, η) is contra R− I−continuous.

Proof. Let x ∈ X and W be a closed set in Z containing (g◦f)(x). Since g is

contra R−I−continuous, there exists a R−J−open set V in Y containing

f(x) such that g(V ) ⊂ W . Also, since f is R∗ − I−irresolute, f−1(V ) is

R − I−open in X containing x. Take U = f−1(V ). Thus (g ◦ f)(U) ⊂ W .

Hence g ◦ f : (X, τ, I)→ (Z, η) is contra R− I−continuous.

Theorem 9.2.9. Let f : (X, τ, I) → (Y, σ,J ) be a surjective

R∗ − I−irresolute and R − I−open function and g : (Y, σ,J ) → (Z, η) be

any function. Then g ◦ f : (X, τ, I) → (Z, η) is contra R − I−continuous

if and only if g is contra R− I−continuous.

Proof. If g is contra R−I−continuous, then the proof follows from theorem

9.2.8. Now assume g ◦ f is contra R − I−continuous. Let W be closed in
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Z. Then (g ◦ f)−1(W ) is R − I−open in X. But f is R − I−open and so

f(f−1(g−1(W ))) is R−J−open in Y . Hence g−1(W ) is R−J−open in Y

and so g is contra R− I−continuous.

Definition 9.2.5. [38] A space (X, τ) is said to be ultra normal if each pair

of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Definition 9.2.6. [38] A topological space (X, τ) is ultra Hausdorff if for

each pair of distinct points x and y of X there exist closed sets U and V

such that x ∈ U, y ∈ V and U ∩ V = φ.

Definition 9.2.7. [46] A topological space (X, τ) is said to be weakly Haus-

dorff if each element of X is the intersection of regular closed sets of X.

Definition 9.2.8. [28] A topological space (X, τ) is called Urysohn if, for

each x, y ∈ X with x 6= y, there exist open sets U and V of X

containing x and y respectively such that Cl(U) ∩ Cl(V ) = φ.

Theorem 9.2.10. Let (X, τ, I) be a R − I−connected space and (Y, σ) a

T1 space. If f : (X, τ, I) → (Y, σ) is contra R − I−continuous, then f is

constant.

Proof. Let X be a R − I−connected space and Y be a T1 space. Then

P = {f−1(y) : y ∈ Y } is a disjoint collection of R − I−open sets which

partitions X. If |P| ≥ 2, then X is the union of two disjoint non-empty

R− I−open sets. This implies |P| = 1 and hence f is constant.

Theorem 9.2.11. Let f : (X, τ, I)→ (Y, σ) be a contra R−I−continuous

and one-one function. If Y is a Urysohn space, then X is R− I − T2.

Proof. Let x 6= y ∈ X. Then f(x) 6= f(y). Since Y is a Urysohn space,

there exist open sets P, Q in Y such that f(x) ∈ P, f(y) ∈ Q

and Cl(P ) ∩ Cl(Q) = φ. Since f is contra R − I−continuous, by theorem
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9.2.1(2), there exist R−I−open sets U, V in X such that x ∈ U, y ∈ V

and f(U) ⊂ Cl(P ), f(V ) ⊂ Cl(Q). Thus U∩V = φ, since f(U)∩f(V ) = φ.

Hence X is R− I − T2 .

Theorem 9.2.12. If f : (X, τ, I) → (Y, σ,J ) be a contra R −

I−continuous, closed and one-one function where Y is ultra normal,

then X is R− I−normal.

Proof. Let A, B be disjoint closed subsets in X. Since f is closed and

one-one, f(A) and f(B) are disjoint closed subsets in Y . Since Y is ultra

normal, f(A) and f(B) are separated by disjoint clopen sets, U and V .

Since f is contra R− I−continuous, f−1(U) and f−1(V ) are R− I−open.

Also, A ⊂ f−1(U), B ⊂ f−1(V ) and f−1(U) ∩ f−1(V ) = φ. So X is

R− I−normal.

Theorem 9.2.13. If the function f : (X, τ, I) → (Y, σ,J ) is contra R −

I−continuous and one-one where Y is ultra Hausdorff, then X is R−I−T2.

Proof. Let x 6= y ∈ X. Then f(x) 6= f(y). Since Y is ultra Hausdorff,

there exists closed sets U and V in Y such that f(x) ∈ U, f(y) ∈ V and

U ∩ V = φ. Since f is contra R − I−continuous, f−1(U) and f−1(V ) are

R−I−open in X containing x and y respectively. Also, f−1(U)∩f−1(V ) =

φ. Hence X is R− I − T2 .

9.3 Almost Contra R− I−continuous

functions

Definition 9.3.1. A function f : (X, τ, I)→ (Y, σ) is called almost contra

R− I−continuous if f−1(V ) is R− I−closed in (X, τ, I) for every regular

open set V in (Y, σ).
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Definition 9.3.2. An ideal topological space is said to be countably R −

I−compact if every countable R− I−open cover admits a finite subcover.

Definition 9.3.3. An ideal topological space is said to be R − I−closed

compact (R − I−closed Lindeloff) if every R − I−closed cover admits a

finite (countable) subcover.

Definition 9.3.4. An ideal topological space is said to be countably R −

I−closed compact if every countable R − I−closed cover admits a finite

subcover.

Definition 9.3.5. A topological space X is called S-closed [16] (resp. count-

ably S-closed [21], S-Lindeloff [9] if every regular closed (resp. countably reg-

ular closed, regular closed) cover of X has a finite (resp. finite, countable)

subcover.

Definition 9.3.6. [28] A topological space X is said to be nearly compact

(resp. nearly countably compact, nearly Lindeloff) if every regular open

(resp. countable regular open, regular open) cover of X has a finite (resp.

finite, countable) subcover.

Theorem 9.3.1. For a function f : (X, τ, I)→ (Y, σ) the following

statements are equivalent:

1. f is almost contra R− I−continuous.

2. f−1(F ) is R− I−open in X for each regular closed set F in Y .

3. for each x ∈ X and each regular closed set F in Y containing f(x),

there exist a R−I−open set U in X containing x such that f(U) ⊂ F .

4. for each x ∈ X and each regular open set V in Y not containing f(x),

there exist a R − I−closed set C in X not containing x such that

f−1(V ) ⊂ C.
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Proof. 1. ⇔ 2.

Let F be a regular closed set in Y . Then f−1(Y \ F ) = X \ f−1(F ) is

R− I−closed in X. Hence f−1(F ) is R− I−open in X.

In a similar manner, the converse part can be proved.

2. ⇔ 3.

Let x ∈ X and F be a regular closed set in Y containing f(x). Then

f−1(F ) is R− I−open in X and contains x. Take U = f−1(F ). Then U is

a R− I−open set in X containing x such that f(U) ⊂ F .

Conversely, let F be a regular closed set in Y and let x ∈ f−1(F ). Then

there exists a R−I−open set Ux containing x such that f(Ux) ⊂ F . Hence

f−1(F ) = ∪{Ux : x ∈ f−1(F )}. So f−1(F ) is R− I−open in X.

3. ⇔ 4.

Let x ∈ X and V be a regular open set not containing f(x). Then Y \ V

is a regular closed set containing f(x). So there exist a R− I−open set U

in X containing x such that f(U) ⊂ (Y \ V ). Hence U ⊂ f−1(Y \ V ) ⊂

X \ f−1(V ). So f−1(V ) ⊂ X \ U . Taking C = X \ U gives a R− I−closed

set in X not containing x such that f−1(V ) ⊂ C.

The converse can be proved in a similar manner.

Theorem 9.3.2. If a function f : (X, τ, I)→ (Y, σ) is almost contra

R− I−continuous, then f is almost weakly−R− I−continuous.

Proof. Let x ∈ X and V be an open set in Y containing f(x). Obviously

Cl(V ) is regular closed in Y containing f(x). Then, since f is almost contra

R−I−continuous, there exist a R−I−open set U in X containing x such

that f(U) ⊂ Cl(V ) by theorem 9.3.1(3). Hence f is almost weakly−R −

I−continuous.

Lemma 9.3.1. A function f : (X, τ, I) → (Y, σ,J ) is almost

R − I−continuous if and only if for each x ∈ X and for each regu-
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lar open set V of Y containing f(x), there exists a R−I−open set U ⊂ X

containing x such that f(U) ⊂ V .

Proof. The ‘if part’ is trivial. The ‘only if part’ can be proved by taking

V as an open set in Y and hence R−J − Int(Cl(V )) will be regular open.

Remark 9.3.1. A topological space (X, τ) is said to be extremally discon-

nected if the closure of every open set in X is open in X.

Theorem 9.3.3. Let f : (X, τ, I) → (Y, σ,J ) be a function where Y is

extremally disconnected. Then f is almost contra R−I−continuous if and

only if f is almost R− I−continuous.

Proof. Let x ∈ X and V be a regular open set containing f(x) ∈ Y . Since

Y is extremally disconnected, Cl(V ) is open which implies Int(Cl(V )) = V

and so Cl(V ) = V . Thus, V is regular closed. Since f is almost contra

R−I−continuous, there exist a R−I−open set U in X containing x such

that f(U) ⊂ V by theorem 9.3.1.(3). Then by the lemma 9.3.1, f is almost

R− I−continuous.

Conversely, assume f is almost R − I−continuous. Let x ∈ X and V be

a regular closed set containing f(x) ∈ Y . This implies Cl(Int(V )) = V .

Since Y is extremally disconnected, we get V is open in Y and thus is regular

open in Y . Since f is almost R− I−continuous, there exist a R− I−open

set U ⊂ X containing x such that f(U) ⊂ V by lemma 9.3.1. Thus f is

almost contra R− I−continuous by theorem 9.3.1.(3).

Theorem 9.3.4. If f : (X, τ, I) → (Y, σ) is an almost contra

R−I−continuous and one-one function where Y is weakly Hausdorff, then

X is R− I − T1.

Proof. Let x 6= y ∈ X. Since f is one-one, f(x) 6= f(y) in Y . Since Y

is weakly Hausdorff, there exist disjoint regular closed sets C and D such
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that f(x) ∈ C, f(y) /∈ C and f(y) ∈ D, f(x) /∈ D. But f is almost

contra R − I−continuous. So f−1(U) and f−1(V ) are R − I−open sets

in X containing x and y respectively. Also x /∈ f−1(V ) and y /∈ f−1(U).

Hence X is R− I − T1 .

Corollary 9.3.1. If f : (X, τ, I) → (Y, σ) is a contra R − I−continuous

and one-one function where Y is weakly Hausdorff, then X is R− I − T1.

Proof. Since every contra R−I−continuous function is almost contra R−

I−continuous, the proof follows.

Theorem 9.3.5. If f : (X, τ, I) → (Y, σ) is an almost contra

R − I−continuous and onto function where X is R − I−connected,

then Y is connected.

Proof. On the contrary assume that Y is disconnected. Then Y = A ∪ B,

where A and B are disjoint non-empty clopen subsets of Y . Then A and

B are regular open in Y since they are clopen. Since f is almost contra

R − I−continuous, f−1(A) and f−1(B) are R − I−open in X. Since f is

onto, f−1(A) ∪ f−1(B) = f−1(A ∪ B) = X and f−1(A) ∩ f−1(B) =

f−1(A ∩B) = φ which contradicts to the fact that X is R− I−connected.

Hence Y is connected.

Theorem 9.3.6. Let f : (X, τ, I) → (Y, σ) be a surjective almost contra-

R− I−continuous function. Then the following statements are true:

1. X is R− I−compact implies Y is S-closed

2. X is R− I−Lindeloff implies Y is S-Lindeloff

3. X is countably R− I−compact implies Y is countably S-closed

Proof. 1. Let {V
j

: j ∈ J} be a regular closed cover of Y . Then {f−1(V
j
) :

j ∈ J} is a R−I−open cover ofX since f is almost contra-R−I−continuous



100

and surjective. But X is R−I−compact. Hence there exists a finite subset

Jκ of J such that X = ∪
j∈Jκ
{(f−1(V

j
))}. So Y = ∪{V

j
: j ∈ Jκ} and thus

Y is S-closed.

2. and 3. can be proved in a similar fashion.

Theorem 9.3.7. Let f : (X, τ, I) → (Y, σ) be a surjective almost contra-

R− I−continuous function. Then the following statements are true:

1. X is R− I− closed compact implies Y is nearly compact

2. X is R− I−closed Lindeloff implies Y is nearly Lindeloff

3. X is countably R − I−closed compact implies Y is nearly countably

compact

Proof. 1. Let {V
j

: j ∈ J} be an regular open cover of Y . Then

{f−1(V
j
) : j ∈ J} is a R − I−closed cover of X since f is almost

contra-R−I−continuous and surjective. But X is R−I−closed compact.

Hence there exists a finite subset Jκ of J such that X = ∪
j∈Jκ
{(f−1(V

j
))}.

So Y = ∪{V
j

: j ∈ Jκ} and thus Y is nearly compact.

2. and 3. can be proved in a similar fashion.

9.4 Graphs

Definition 9.4.1. [36] For a function f : X → Y , the subset {(x, f(x)) :

x ∈ X} ⊂ X × Y is called the graph of f and is denoted by G(f).

Definition 9.4.2. The graph G(f) of a function f : (X, τ, I) → (Y, σ) is

said to be R − I−closed (resp. contra R − I−closed) if for each (x, y) ∈

X × Y \ G(f), there exist a R − I−open set U in X containing x and an

open (resp. a closed) set V in Y containing y such that (U×V )∩G(f) = φ.
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Definition 9.4.3. The graph G(f) of a function f : (X, τ, I) → (Y, σ) is

said to be strongly contra R − I−closed if for each (x, y) ∈ X × Y \ G(f),

there exist a R− I−open set U in X containing x and a regular closed set

V in Y containing y such that (U × V ) ∩G(f) = φ.

Lemma 9.4.1. The graph G(f) of a function f : (X, τ, I) → (Y, σ) is

R − I−closed (resp. contra R − I−closed) if and only if for each (x, y) ∈

X × Y \ G(f), there exist a R − I−open set U in X containing x and an

open (resp. a closed) set V in Y containing y such that f(U) ∩ V = φ.

Proof. Suppose that (U × V ) ∩ G(f) 6= φ. Then there exists at least one

(x, y) ∈ X × Y such that (x, y) ∈ U × V and (x, y) ∈ G(f). That means,

x ∈ U, y ∈ V and f(x) ∈ f(U). Hence f(U) ∩ V 6= φ. The other part of

the proof is clear from the definition.

Lemma 9.4.2. The graph G(f) of a function f : (X, τ, I) → (Y, σ) is

strongly contra R−I−closed if and only if for each (x, y) ∈ X × Y \G(f),

there exist a R− I−open set U in X containing x and a regular closed set

V in Y containing y such that f(U) ∩ V = φ.

Proof. The proof follows as in the similar manner as above.

Theorem 9.4.1. If a function f : (X, τ, I) → (Y, σ) is contra

R−I−continuous and Y is Urysohn, then G(f) is contra R−I−closed in

X × Y .

Proof. Let (x, y) ∈ X × Y \ G(f). So f(x) 6= y. Y is Urysohn implies

that there exist open sets P and Q of Y containing f(x) and y respectively

such that Cl(P ) ∩ Cl(Q) = φ. Since Cl(P ) is a closed set containing f(x)

and since f is contra R − I−continuous, there exist a R − I−open set U

in X containing x such that f(U) ⊂ Cl(P ) by theorem 9.2.1(2). Hence

f(U)∩Cl(Q) = φ and so G(f) is contra R−I−closed in X × Y by lemma

9.4.1.
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Theorem 9.4.2. If a function f : (X, τ, I)→ (Y, σ) is R − I−continuous

and Y is T1, then G(f) is contra R− I−closed in X × Y .

Proof. Let (x, y) ∈ X×Y \G(f). So f(x) 6= y. Since Y is T1 , there exists an

open set V in Y such that f(x) ∈ V, y /∈ V . Since f is R− I−continuous,

there exists an R − I−open set U in X containing x such that f(U) ⊂ V .

Then f(U)∩ (Y \V ) = φ. But Y \V is a closed set in Y containing y. Thus

G(f) is contra R− I−closed in X × Y by lemma 9.4.1.

Theorem 9.4.3. Let Y be a Urysohn space. If f : (X, τ, I) → (Y, σ)

and g : (X, τ, I) → (Y, σ) are contra R − I−continuous functions, then

S = {x ∈ X : f(x) = g(x)} is R− I−closed in X.

Proof. Let x /∈ S. Then f(x) 6= g(x). Since Y is Urysohn, there ex-

ists open sets P and Q of Y containing f(x) and g(x) respectively such

that Cl(P ) ∩ Cl(Q) = φ. Since f and g are contra R − I−continuous,

f−1(Cl(P )) and g−1(Cl(Q)) are R − I−open in X containing x. Name

f−1(Cl(P )) = A and f−1(Cl(Q)) = B and let R = A ∩ B. Then R is a

R−I−open set in X containing x. Also, f(R) ∩ g(R) = f(A∩B) ∩ g(A∩

B) ⊂ f(A) ∩ g(B) = Cl(P ) ∩ Cl(Q) = φ. Hence S ∩ R = φ ⇒ S ⊂

(X \ R) ⇒ R − I − Cl(S) ⊂ (X \ R) ⇒ x /∈ R − I − Cl(S). Thus

R−I −Cl(S) ⊂ S and so S = R−I −Cl(S). Hence S = {x ∈ X : f(x) =

g(x)} is R− I−closed in X.

Theorem 9.4.4. Let Y be a Urysohn space. If f : (X, τ, I)→ (Y, σ) almost

weakly R − I−continuous, then G(f) is strongly contra R − I−closed in

X × Y .

Proof. Let (x, y) ∈ X × Y \ G(f). So f(x) 6= y. Y is Urysohn implies

that there exist open sets P and Q of Y containing f(x) and y respectively

such that Cl(P )∩Cl(Q) = φ. Since f is almost weakly R−I−continuous,

there exist a R−I−open set U ⊂ X containing x such that f(U) ⊂ Cl(P ).
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Hence f(U) ∩ Cl(Q) = φ ⇒ f(U) ∩ Cl(Int(Q)) = φ. Since Cl(Int(Q))

is regular closed in Y , G(f) is strongly contra R − I−closed in X × Y by

lemma 9.4.2.

Theorem 9.4.5. If a function f : (X, τ, I) → (Y, σ) is almost

R−I−continuous and Y is rT2, then G(f) is strongly contra R−I−closed

in X × Y .

Proof. Let (x, y) ∈ X × Y \G(f). So f(x) 6= y. Since Y is rT2 , there exists

disjoint regular open sets A and B containing f(x) and y respectively. Since

f is almost R−I−continuous, by lemma 9.3.1., there exists a R−I−open

set U ⊂ X containing x such that f(U) ⊂ A. Hence f(U)∩Cl(B) = φ and

thus G(f) is strongly contra R− I−closed in X × Y by lemma 9.4.2.

Theorem 9.4.6. Let Y be a Urysohn space and D ⊂ X be a R−I−dense

set. Let f, g : (X, τ, I) → (Y, σ) be any two contra R − I−continuous

functions. If f = g on D, then f = g on X.

Proof. By theorem 9.4.3., S = {x ∈ X : f(x) = g(x)} is R − I−closed in

X. Clearly D ⊂ S. Since D is R − I−dense, R − I − Cl(D) = X. Thus

X = R− I − Cl(D) ⊂ R− I − Cl(S) = S. Hence f = g on X.
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R− I−continuous multifunctions

10.1 Introduction

We now widen the concept of continuity to set multifunctions in ideal

topological space by extending the class of R − I−open sets. We in-

troduce a class of continuous multifunctions namely upper and lower

R− I−continuous multifunctions and explored several characterisations of

the same. This is done in section 2. We also present and examined two

weaker forms of the upper and lower R− I−continuous multifunctions. In

section 3., the weaker form of R − I−continuous multifunction, namely

almost R − I−continuous multifunction is developed. In section 4.,

another weaker form of R − I−continuous multifunction, namely weakly

R− I−continuous multifunction is studied.

[26] By a multifunction F : X → Y , we mean a correspondence from

each point x ∈ X to a non-empty set F (x) of Y . For a multifunction

F : X → Y , the upper and lower inverse of any subset B of Y are denoted

by F+(B) and F−(B) respectively, where F+(B) = {x ∈ X : F (x) ⊂ B}

and F−(B) = {x ∈ X : F (x) ∩B 6= φ}.

In particular, F−(y) = {x ∈ X : y ∈ F (x)} for each point y ∈ Y . A

multifunction F : X → Y is called a surjection if F (X) = Y .

A multifunction F : X → Y is called upper semi-continuous (rename upper

104
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continuous) (resp. lower semi-continuous (rename lower continuous) if

F+(V ) (resp. F−(V )) is open in X for every open set V of Y . [26]

10.2 R− I−continuous multifunctions

Definition 10.2.1. A multifunction F : (X, τ, I)→ (Y, σ,J ) is said to be:

1. upper R−I−continuous at a point x ∈ X if for each R−J−open set

V of Y such that F (x) ⊂ V , there exists U ∈ RIO(X, x) such that

F (U) ⊂ V .

2. lower R − I−continuous at a point x ∈ X if for each R − J−open

set V of Y such that F (x)∩ V 6= φ, there exists U ∈ RIO(X, x) such

that F (u) ∩ V 6= φ for each u ∈ U .

3. upper/lower R− I−continuous if F is both upper R− I−continuous

and lower R− I−continuous at each point x of X.

Theorem 10.2.1. For a multifunction F : (X, τ, I) → (Y, σ,J ), the fol-

lowing statements are equivalent:

1. F is upper R− I−continuous.

2. F+(V ) ∈ RIO(X, τ) for every R− J−open set V of Y .

3. F−(H) ∈ RIC(X, τ) for every R− J−closed set H of Y .

4. R− I − Cl(F−(B)) ⊂ F−(R− J − Cl(B)) for every B ⊂ Y .

5. For each point x ∈ X and each R − J−nbd V of F (x), F+(V ) is a

R− I−nbd of x.

6. For each point x ∈ X and each R − J−nbd V of F (x), there is a

R− I−nbd U of x such that F (U) ⊂ V .
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Proof. 1. ⇒ 2.

Let V be R−J−open in Y and let x ∈ F+(V ). Then F (x) ⊂ V . Also there

exists a R−I−open set U containing x such that F (U) ⊂ V . Thus x ∈ U ⊂

F+(V ) ⇒ x ∈ R − I − Int(F+(V )) ⇒ F+(V ) ⊂ R − I − Int(F+(V )).

Hence F+(V ) ∈ RIO(X, τ).

2. ⇒ 3.

Let x ∈ F+(Y − A) ⇐⇒ F (x) ⊂ Y − A ⇐⇒ F (x) ∩ A = φ ⇐⇒ x /∈

F−(A)⇐⇒ x ∈ X − F−(A). Thus, F+(Y − A) = X − F−(A).

Similarly, F−(Y − A) = X − F+(A).

3. ⇒ 4.

Let B ⊂ Y . Then F−(R − J − Cl(B)) is R − I−closed. Hence R − I −

Cl(F−(B)) ⊂ F−(R− J − Cl(B)).

4. ⇒ 3.

Let H be R − J−closed in Y . Then R − I − Cl(F−(H)) ⊂ F−(R − J −

Cl(H)) = F−(H). This shows that F−(H) is R− I−closed in X.

2. ⇒ 5.

Let x ∈ X and V be a R−J−nbd of F (x). Then there exists a R−J−open

set W of Y such that F (x) ⊂ W ⊂ V . Thus x ∈ F+(W ) ⊂ F+(V ). Since W

is R−J−open, F+(W ) is R−I−open in X. Hence F+(V ) is a R−I−nbd

of x.

5. ⇒ 6.

Let x ∈ X and V be a R− J−nbd of F (x). Then F+(V ) is a R− I−nbd

of x. Set U = F+(V ). Hence U is a R− I−nbd of x such that F (U) ⊂ V .

6. ⇒ 1.

Let x ∈ X and V be any R−J−open set of Y such that F (x) ⊂ V . Then

V is a R − J−nbd of F (x). Then there is a R − I−nbd N of x such that

F (N) ⊂ V . Therefore, there exists a R − I−open set U of (X, τ, I) such

that x ∈ U ⊂ N . Hence F (U) ⊂ V .
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Theorem 10.2.2. For a multifunction F : (X, τ, I) → (Y, σ,J ), the fol-

lowing statements are equivalent:

1. F is lower R− I−continuous.

2. F−(V ) ∈ RIO(X, τ) for every R− J−open set V of Y .

3. F+(H) ∈ RIC(X, τ) for every R− J−closed set H of Y .

4. R− I − Cl(F+(B)) ⊂ F+(R− J − Cl(B)) for every B ⊂ Y .

5. F (R− I − Cl(A)) ⊂ R− J − Cl(F (A)) for every A ⊂ X.

Proof. 4. ⇒ 5.

Let A ⊂ X. Then, we get R− I − Cl(A) ⊂ R− I − Cl(F+(F (A)))

⊂ F+(R−J −Cl(F (A))). Thus F (R− I −Cl(A)) ⊂ R−J −Cl(F (A)).

The proofs of other implications are similar to those of Theorem

10.2.1.

Theorem 10.2.3. Let F : (X, τ, I) → (Y, σ,J ) and G : (Y, σ,J ) →

(Z, η,K) be multifunctions. If F : (X, τ, I) → (Y, σ,J ) is upper(lower)

R − I−continuous and G : (Y, σ,J ) → (Z, η,K) is upper(lower) R −

J−continuous, then G ◦ F : X → Z is upper(lower) R− I−continuous.

Proof. Let V be a R−K−open subset of Z. From the definition of G ◦ F ,

we get (G ◦ F )+(V ) = F+(G+(V )) and (G ◦ F )−(V ) = F−(G−(V )).

(G+(V )) (G−(V )) is a R − J−open set since G is upper(lower)

R − J−continuous. F+(G+(V ))/F−(G−(V )) is R − I−open since F

is upper(lower) R − I−continuous. Hence G ◦ F : X → Z is an up-

per(lower) R− I−continuous multifunction.
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[36] For a multifunction F : (X, τ) → (Y, σ), the graph multifunction

denoted as G
F

, G
F

: X → X × Y is defined as follows: G
F

(x) = (x, F (x))

for every x ∈ X.

Lemma 10.2.1. [44] For a multifunction F : (X, τ, I) → (Y, σ), the

following hold: G+
F

(A×B) = A∩F+(B) and G−
F

(A×B) = A∩F−(B) for

any subsets A ⊂ X and B ⊂ Y .

Theorem 10.2.4. Let F : (X, τ, I) → (Y, σ,J ) be a multifunction such

that F (x) is R − J−compact for each x ∈ X. Then if F is upper R −

I−continuous, then G
F

: X → X × Y is upper R− I−continuous.

Proof. Suppose that F : (X, τ, I) → (Y, σ,J ) is upper R − I−continuous.

Let x ∈ X and B be any R − J−open set of X × Y containing G
F

(x).

For each y ∈ F (x), there exist R − I−open set Uy ⊂ X and R − J−open

set Vy ⊂ Y such that (x, y) ∈ Uy × Vy ⊂ B. The family {Vy : y ∈ F (x)}

is an R − J−open cover of F (x). Since F (x) is R − J−compact, there

exist, y1 , y2 , . . . , yn in F (x) such that F (x) ⊂ ∪{Vyi : 1 ≤ i ≤ n}. Set

U = ∩{Uyi : 1 ≤ i ≤ n} and V = R − J − Int(R − J − Cl(∪{Vyi :

1 ≤ i ≤ n})). Then U is R − I−open in X and V is R − J−open in Y

and (x, F (x)) ⊂ U × V ⊂ B. Since F is upper R − I−continuous, there

exists a R − I−open set W containing x such that F (W ) ⊂ V . Clearly

U ∩ W is R − I−open in X containing x. By Lemma 10.2.1., we have

U ∩W ⊂ U ∩ F+(V ) = G+
F

(U × V ) ⊂ G+
F

(B). Hence G
F

(U ∩W ) ⊂ B.

Thus G
F

is upper R− I−continuous.

Theorem 10.2.5. If a multifunction F : (X, τ, I)→ (Y, σ,J ) is lower

R− I−continuous, then G
F

: X → X × Y is lower R− I−continuous.
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Proof. Suppose that F : (X, τ, I) → (Y, σ,J ) is lower R − I−continuous.

Let x ∈ X and B be any R− J−open set of X × Y such that (x, F (x)) ∈

G−
F

(B). Since B ∩ (x, F (x)) 6= φ, there exists y ∈ F (x) such that (x, y) ∈ B

and so (x, y) ∈ U×V ⊂ B where U is R−I−open inX and V is R−J−open

in Y . Since F (x) ∩ V 6= φ, there exists a R − I−open set W containing

x such that F (W ) ∩ V 6= φ or W ⊂ F−(V ) by the definition of lower

R − I−continuous multifunction. U ∩W ⊂ U ∩ F−(V ) = G−
F

(U × V ) ⊂

G−
F

(B) by Lemma 10.2.1.. Also U ∩W is a R − I−open set containing x.

Hence G
F

is lower R− I−continuous.

Theorem 10.2.6. Let (X, τ, I) be R − I−compact. If F : (X, τ, I) →

(Y, σ,J ) be an upper R − I−continuous multifunction which is onto and

such that F (x) is R − J−compact for each x ∈ X, then (Y, σ,J ) is R −

J−compact.

Proof. Let {V
j

: j ∈ J} be an R − J−open cover of Y . Since F (x) is

R − J−compact for each x ∈ X, there exist a finite subset Jx of J such

that F (x) ⊂ ∪{V
j

: j ∈ Jx}. Let Vx = ∪{V
j

: j ∈ Jx}. Then there

exists a R − I−open set Ux containing x such that F (Ux) ⊂ Vx , since F

is upper R − I−continuous. Since (X, τ, I) is R − I−compact and since

{Ux : x ∈ X} is a R − I−open cover of X, there exist x1 , x2 , . . . , xn in X

such that X ⊂ ∪{Uxi : 1 ≤ i ≤ n}. Hence Y = F (X) ⊂ F (∪n
i=1
Uxi ) =

∪n
i=1
F (Uxi ) ⊂ ∪

n
i=1
Vxi = ∪n

i=1
∪
j∈Jxi

V
j
. Thus Y is R− J−compact.

Theorem 10.2.7. Let (X, τ, I) be a R − I−connected space. If

F : (X, τ, I) → (Y, σ,J ) is an upper R − I−continuous multifunction

which is onto and such that F (x) is R − J−connected for each x ∈ X,

then Y is R− J−connected.

Proof. Suppose that Y is not R− J−connected. Then there exist disjoint

non-empty R − J−open sets U, V of Y such that U ∪ V = Y . Since F (x)
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is R − J−connected for each x ∈ X, either F (x) ⊂ U or F (x) ⊂ V . If

x ∈ F+(U∪V ), then F (x) ⊂ U∪V and hence x ∈ F+(U)∪F+(V ). Since F

is onto, there exist x and y in X with F (x) ⊂ U and F (y) ⊂ V . Hence x ∈

F+(U) and y ∈ F+(V ). Thus we obtain F+(U)∪F+(V ) = F+(U∪V ) = X,

F+(U) ∩ F+(V ) = F+(U ∩ V ) = φ and F+(U) 6= φ, F+(V ) 6= φ.

If F : (X, τ, I) → (Y, σ) is an upper R − I−continuous multifunction,

then F+(U) and F+(V ) are R − I−open in X by theorem 10.2.1. This

imply (X, τ, I) is not R − I−connected. This contradiction proves Y is

R− J−connected.

Theorem 10.2.8. Let F : (X, τ, I) → (Y, σ,J ) be a multifunction. If

F+(I
R
Ker(B)) ⊂ R− I − Int(F+(B)) for B ⊂ Y , then F is upper

R− I−continuous.

Proof. Let V be a R − J−open subset of Y . Then we have, F+(V ) =

F+(I
R
Ker(V )) ⊂ R−I−Int(F+(V )). This implies R−I−Int(F+(V )) =

F+(V ). Hence F is upper R− I−continuous.

Theorem 10.2.9. Let F : (X, τ, I) → (Y, σ,J ) be a multifunction. If

F−(I
R
Ker(B)) ⊂ R − I − Int(F−(B)) for B ⊂ Y , then F is lower R −

I−continuous.

Proof. The proof is as similar to the proof of theorem 10.2.8

10.3 Almost R− I−continuous

Multifunctions

Definition 10.3.1. A multifunction F : (X, τ, I)→ (Y, σ,J ) is said to be:

1. upper almost R− I−continuous at a point x ∈ X, if for each

R − J−open set V of Y such that F (x) ⊂ V , there exists U ∈

RIO(X, x) such that F (U) ⊂ Int(R− J − Cl(V )).
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2. lower almost R− I−continuous at a point x ∈ X, if for each

R − J−open set V of Y such that F (x) ∩ V 6= φ, there exists U ∈

RIO(X, x) such that F (w)∩Int(R−J −Cl(V )) 6= φ for each w ∈ U .

3. almost R− I−continuous at x ∈ X, if it is both upper almost

R− I−continuous and lower almost R− I−continuous at x.

4. almost R−I−continuous, if F is both upper almost R−I−continuous

and lower almost R− I−continuous at each point x of X.

Theorem 10.3.1. For a multifunction F : (X, τ, I) → (Y, σ,J ), the fol-

lowing statements are equivalent:

1. F is upper almost R− I−continuous at x ∈ X.

2. For every R − J−open set V of Y with F (x) ⊂ V , x ∈ R − I −

Int(F+(Int(R− J − Cl(V )))) holds.

3. For every R − J−open set V of Y with F (x) ⊂ V , x ∈ R − I −

Int(F+(V )) holds.

4. For every R − J−open set V of Y with F (x) ⊂ V , there exists a

R− I−open set U containing x such that F (U) ⊂ V .

Proof. 1. ⇒ 2.

Let V ⊂ Y be a R − J−open set with F (x) ⊂ V . Then there exists

U ∈ RIO(X, x) such that F (U) ⊂ Int(R − J − Cl(V )). This implies

x ∈ U ⊂ F+(Int(R − J − Cl(V ))). Thus x ∈ R − I − Int(F+(Int(R −

J − Cl(V )))).

2. ⇒ 3.

The proof is trivial.

3. ⇒ 4.

Let V ⊂ Y be a R − J−open set with F (x) ⊂ V . Then x ∈ R − I −
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Int(F+(V )). Let U = R − I − Int(F+(V )), a R − I−open set containing

x. So x ∈ U ⊂ F+(V ) and thus F (U) ⊂ V .

4. ⇒ 1.

Let V ⊂ Y be a R−J−open set with F (x) ⊂ V . Since V ⊂ Int(R−J −

Cl(V )), there exists a R − I−open set U containing x such that F (U) ⊂

Int(R − J − Cl(V )). Hence F is upper almost R − I−continuous at x ∈

X.

Theorem 10.3.2. For a multifunction F : (X, τ, I) → (Y, σ,J ), the fol-

lowing statements are equivalent:

1. F is upper almost R− I−continuous.

2. For every R−J−open set V of Y , F+(V ) ⊂ R−I−Int(F+(Int(R−

J − Cl(V )))).

3. For every R− J−open set V of Y , F+(V ) is R− I−open in X.

4. For every R− J−closed set C of Y , F−(C) is R− I−closed in X.

Proof. 1. ⇒ 2.

Let V be R − J−open in Y and let x ∈ F+(V ). So F (x) ⊂ V and by

theorem 10.3.1.(2), x ∈ R − I − Int(F+(Int(R − J − Cl(V )))). Thus

F+(V ) ⊂ R− I − Int(F+(Int(R− J − Cl(V )))).

2. ⇒ 3.

Let V be R−J−open in Y . Then we know that F+(Int(R−J −Cl(V ))) ⊂

F+(V ). But using 2., we have F+(V ) ⊂ R − I − Int(F+(Int(R − J −

Cl(V )))). Hence F+(V ) is R− I−open in X.

3. ⇒ 4.

We know that for any A ⊂ Y , F+(Y \A) = X \F−(A). From this fact, the

proof follows.

4. ⇒ 1.
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Let x ∈ X and V be any R−J−open set of Y with F (x) ⊂ V . Then Y \V

is R − J−closed in Y . Then X \ F+(V ) = F−(Y \ V ) is R − I−closed

in X. This means F+(V ) is R − I−open in X. Set U = F+(V ). Then

U ∈ RIO(X, x) such that F (U) ⊂ V . Hence F is upper almost R −

I−continuous by theorem 10.3.1.

Theorem 10.3.3. For a multifunction F : (X, τ, I) → (Y, σ,J ), the fol-

lowing statements are equivalent:

1. F is lower almost R− I−continuous at x ∈ X.

2. For every R − J−open set V of Y with F (x) ∩ V 6= φ, x ∈ R − I −

Int(F−(Int(R− J − Cl(V )))) holds.

3. For every R − J−open set V of Y with F (x) ∩ V 6= φ, x ∈ R − I −

Int(F−(V )) holds.

4. For every R− J−open set V of Y with F (x) ∩ V 6= φ, there exists a

R− I−open set U containing x such that F (U) ⊂ V .

Proof. As in theorem 10.3.1., it can be proved in a similar manner.

Theorem 10.3.4. For a multifunction F : (X, τ, I) → (Y, σ,J ), the fol-

lowing statements are equivalent:

1. F is lower almost R− I−continuous.

2. For every R−J−open set V of Y , F−(V ) ⊂ R−I−Int(F−(Int(R−

J − Cl(V )))).

3. For every R− J−open set V of Y , F−(V ) is R− I−open in X.

4. For every R− J−closed set C of Y , F+(C) is R− I−closed in X.

Proof. As in theorem 10.3.2., it can be proved in a similar manner.
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Remark 10.3.1. Let F : (X, τ, I) → (Y, σ,J ) be a multifunction. Then

always upper R− I−continuous implies upper almost R− I−continuous.

10.4 Weakly R− I−continuous

Multifunctions

Definition 10.4.1. A multifunction F : (X, τ, I)→ (Y, σ,J ) is said to be:

1. upper weakly R− I−continuous at a point x ∈ X if for each

R−J−open set V of Y with F (x) ⊂ V , there exists U ∈ RIO(X, x)

such that F (U) ⊂ R− J − Cl(V ).

2. lower weakly R− I−continuous at a point x ∈ X if for each

R − J−open set V of Y with F (x) ∩ V 6= φ, there exists U ∈

RIO(X, x) such that F (w) ∩R− J − Cl(V ) 6= φ for each w ∈ U .

3. weakly R− I−continuous at x ∈ X if it is both upper weakly

R− I−continuous and lower weakly R− I−continuous at x.

4. weakly R−I−continuous if F has this property at each point x of X.

Theorem 10.4.1. For a multifunction F : (X, τ, I)→ (Y, σ,J ), the

following statements are equivalent:

1. F is upper weakly R− I−continuous.

2. For every R − J−open set V of Y , F+(V ) ⊂ R − I − Int(F+(R −

J − Cl(V ))).

3. For every R−J−closed set C of Y , R−I−Cl(F−(R−J−Int(C))) ⊂

F−(C).
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4. For B ⊂ Y , R − I − Cl(F−(R − J − Int(R − J − Cl(B)))) ⊂

F−(R− J − Cl(B)).

5. For B ⊂ Y , F+(R−J − Int(B)) ⊂ R−I − Int(F+(R−J −Cl(R−

J − Int(B)))).

Proof. 1. ⇒ 2.

Let V be a R − J−open subset of Y and let x ∈ F+(V ). So F (x) ⊂ V

and there exists U ∈ RIO(X, x) such that F (U) ⊂ R − J − Cl(V ). Then

x ∈ U ⊂ F+(R−J −Cl(V )). Thus x ∈ R−I − Int(F+(R−J −Cl(V ))).

Hence F+(V ) ⊂ R− I − Int(F+(R− J − Cl(V ))).

2. ⇒ 3.

Let C be a R − J−closed subset of Y . Then Y \ C is R − J−open in Y .

Also, X \ F−(C) = F+(Y \ C) ⊂ R− I − Int(F+(R−J − Cl(Y \ C))) =

R−I−Int(F+(Y \R−J−Int(C))) = R−I−Int(X\F−(R−J−Int(C))) =

X \R− I − Cl(F−(R− J − Int(C))). Hence 3.

3. ⇒ 4.

Let B ⊂ Y . Since R−J − Cl(B) is a R−J−closed subset of Y , from 3.,

we get R−I−Cl(F−(R−J −Int(R−J −Cl(B)))) ⊂ F−(R−J −Cl(B)).

4. ⇒ 5.

Let B ⊂ Y . Then, X \R− I − Int(F+(R−J −Cl(R−J − Int(B)))) =

R−I−Cl(X\F+(R−J−Cl(R−J−Int(B)))) = R−J−Cl(F−(Y \R−J−

Cl(R−J −Int(B)))) = R−J −Cl(F−(R−J −Int(R−J −Cl(Y \B)))) ⊂

F−(R− J − Cl(Y \B)) = X \ F+(R− J − Int(B)). Hence 5.

5. ⇒ 1.

Let x ∈ X and V ⊂ Y be R − J−open with F (x) ⊂ V . So x ∈ F+(V ).

Also F+(V ) ⊂ R − I − Int(F+(R − J − Cl(V ))). Then there exists a

R− I−open set U ∈ X containing x with U ⊂ F+(R−J −Cl(V )). Thus

F (U) ⊂ R−J −Cl(V ) and hence F is upper weakly R−I−continuous.
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Theorem 10.4.2. For a multifunction F : (X, τ, I)→ (Y, σ,J ), the

following statements are equivalent:

1. F is lower weakly R− I−continuous.

2. For every R − J−open set V of Y , F−(V ) ⊂ R − I − Int(F−(R −

J − Cl(V ))).

3. For every R−J−closed set C of Y , R−I−Cl(F+(R−J−Int(C))) ⊂

F+(C).

4. For B ⊂ Y , R − I − Cl(F+(R − J − Int(R − J − Cl(B)))) ⊂

F+(R− J − Cl(B)).

5. For B ⊂ Y , F−(R−J − Int(B)) ⊂ R−I − Int(F−(R−J −Cl(R−

J − Int(B)))).

Proof. The proof is as similar as in the theorem 10.4.1.

Remark 10.4.1. Let F : (X, τ, I) → (Y, σ,J ) be a multifunction.

Then always upper almost R − I−continuous implies upper weakly

R− I−continuous.

upper R− I−continuous ⇒ upper almost R− I−continuous

⇒ upper weakly R− I−continuous

lower R− I−continuous ⇒ lower almost R− I−continuous

⇒ lower weakly R− I−continuous
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Conclusions

In this chapter the conclusions figured out in this study is outlined. Finally,

we sketch certain proposals for further research related to this area.

In this thesis, we study ideal topological space in terms of a class of

sets called R−I−open sets and hence defined the R−I−space. We render

certain characterisations and properties of this space.

The main outcomes are given below:

1. We expanded a generalization of separation axioms in R − I−space

and defined R − I − T
i
i = 0, 1, 2, R − I−regular, R − I−normal,

completely R − I−normal spaces. We initiated the concept of com-

pactness in this space. Certain characterisations in this context are

obtained. Moreover, none of the above defined separation axioms

are hereditary and not even weakly hereditary because a subset A

of a R − I−space (X, τ, I) which is R − I−open in X need not be

R−I−open with respect to the subspace topology (Y, τ
Y
, I

Y
). The hi-

erarchy R−I−normal⇒ R−I−regular⇒ R−I−T2 ⇒ R−I−T1 ⇒

R−I−T0 preserves, but completely R−I−normal and R−I−normal

are not comparable.

117
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2. In R − I−space we defined weak separation axioms R − I − R0 and

R − I − R1 . We studied some characterisations and analysed the

relationship between them. We concluded that every R−I−T1 space

is R − I − R0 and R − I − T0 and R − I − R0 are independent.

Also, every R− I −R1 space is R− I −R0 , but not the converse.

3. Later, we concentrate on separation axioms R−I −R
S

, R−I −R
D

,

R−I −R
T
, weakly R−I −R0 , weakly R−I −C0 which are weaker

than R − I − R0 . We also obtained that every R − I−regular space

is R− I −R1 . We attain the following relation:

R− I−R1 ⇒ R− I −R0 ⇒ weakly-R− I −R0

⇓

R− I −R
D
⇒ R− I −R

T
⇒ R− I −R

S

4. We moved to supra ideal topological space and have brought in supra

R − I−open sets. Henceforth, introduced supra R − I−continuous

functions, supra∗ R−I−continuous functions, supra R−I−irresolute

functions, supra R−I−open maps, supra R−I−closed maps, supra

R−I−homeomorphism and their characterizations. The relation be-

tween these continuous functions are discussed.

5. We proposed a class of sets and continuous functions in R−I−space

called minimal R−I−open sets and minimal R−I−continuous func-

tions. A small discussion on maximal R− I−open sets and maximal

R−I−continuous functions is given. The relation between these con-

tinuous functions and some continuous functions which are defined

in previous chapters is studied. Also, we surveyed R − I − T
min

and

R−I−Tmax spaces and obtained that R−I−T
min

(resp. R−I−Tmax)

and R− I − T
i
i = 0, 1, 2 spaces are independent of each other. Sim-
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ilarly, R− I − T
min

(resp. R− I − Tmax) and R− I−door spaces are

independent of each other.

6. We introduced and studied weak notions of functions namely some-

what R − I−continuous functions and somewhat R − I−open func-

tions. Some of their characterizations and properties are analysed.

7. We introduced and studied strong notions of functions namely con-

tra R−I−continuous functions and almost contra R−I−continuous

functions and investigated some of their characterizations and prop-

erties. Also, we dealt with contra R− I−closed graphs.

8. We expand the concept of continuity to set multifunctions in R −

I−space. We developed upper and lower R − I−continuous multi-

functions and examined two of their weaker forms namely almost and

weakly R− I−continuous multifunctions and obtained the relation:

upper R− I−continuous ⇒ upper almost R− I−continuous ⇒

upper weakly R− I−continuous

lower R− I−continuous ⇒ lower almost R− I−continuous

⇒ lower weakly R− I−continuous
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Further work

• Using the idea of simple extension topology and R−I−space in ideal

topology, one can try to define a class of open sets in this simple

ideal extension topological space and can generalise this concept and

investigate the properties.

• One can incorporate the class of continuous functions called faint con-

tinuous functions inR−I−space. Also, to find out the basic properties

of this continuous function and its relationship with other functions.

• The concept of paraopen sets and some of their properties are already

studied. One can try to extend this concept in R − I−space in ideal

topology.

• One can extend the notion of open sets and continuous functions dis-

cussed in this work to bitopological spaces. The main question is how

to define the local function in bitopological spaces.

• One can study operators and its applications in ideal topological

group.
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