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ABSTRACT OF THE Ph.D THESIS

A Study On The Spectrum Of Zero Divisor Graph On The Ring Of
Integers Modulo n

Graph Theory is an important branch of Discrete Mathematics, which is a key
tool to model network systems involved in major domains of real life. Graph
Theory extends its countless applications to various walks of science like Net-
work Theory, Operational Research, Chemistry, Quantum Physics, Biology, Eco-
nomics, Artificial Intelligence, Sociology and so on. Exploring algebraic struc-
tures through graph theory has become a captivating research field over the past
three decades. Researchers have extensively studied graphs associated with al-
gebraic structures such as groups and rings, viz Cayley graphs, power graphs,
zero-divisor graphs and co-maximal graphs, etc. Such study provides intercon-
nections between Algebra and Graph Theory. The zero divisor graph I'(R) of a
commutative ring R is the simple undirected graph with vertices non-zero zero-
divisors of R and two distinct vertices x,y are adjacent if xy = 0. This thesis
focuses on the study of different matrices associated with the zero divisor graph
on the ring of integers modulo n and explores its spectra.

Usually, the eigenvalues of a graph can be computed by finding the roots
of its characteristic polynomial. But there is no algebraic method to solve a
polynomial equation of degree greater than or equal to five. This makes the
computation of spectrum of graphs tedious. However, for a graph with large size
and complicated combinatorial structure, the determination of spectra is really
challenging. Sometimes, it becomes a convenient practice that the spectrum of
a fairly large graph can be described in terms of the spectra of smaller graphs
using some simple graph operations, like union, join, corona, edge corona etc.

The analysis of the adjacency matrix of the zero divisor graph on Z,, for
n = p?q¢%, p°q,p*, k > 1, where p, ¢ are distinct primes, leads to some intriguing
results about the graph parameters of these graphs as well as their characteristic
polynomials.

Analogous to the Laplacian and signless Laplacian matrix of a graph, the
definition of distance Laplacian and distance signless Laplacian matrix was in-
troduced and studied by M. Aouchiche and P. Hansen. In this thesis, the study
on the distance, distance Laplacian and distance signless Laplacian spectrum of
I'(Z,,) has been initiated. The eigenvalues of the distance and distance Lapla-
cian matrix of I'(Z,) for some values of n, are found along with multiplicities,
by direct computation using matrix tools. The distance Laplacian eigenvalues of



I'(Z,x), where p is any prime and k > 1 is any positive integer, are completely
explored with multiplicities. Also, a general method is proposed for finding the
characteristic polynomial of the distance and distance Laplacian matrix of I'(Z,)
for any n.

H.S. Ramane et al defined Seidel Laplacian and Seidel signless Laplacian
matrix of graphs. In this thesis, Seidel, Seidel Laplacian and Seidel signless
Laplacian spectrum of the generalised union of regular graphs is investigated and
extended these results to the zero divisor graph on the ring of integers modulo
n.
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Chapter 1

Introduction

Graph Theory is an important branch of Discrete Mathematics, which is a key
tool to model network systems involved in major domains of real life. Graph
Theory extends its countless applications to various walks of science like Net-
work Theory, Operational Research, Chemistry, Quantum Physics, Biology, Eco-
nomics, Artificial Intelligence, Sociology and so on. It marks its origin in 1735
with Leonard Euler’s solution [51] to the famous Konigsberg bridge problem and
now it has been evolved as a tool to analyse the structure of networks arising
from real world system and to study the impact of the structure on the dynamic

processes taking place in it.

Spectral Graph Theory, is an emerging and flourishing area in Graph Theory,
which studies the relation between graph properties and the spectrum of graph
theoretic matrices, like adjacency matrix and Laplacian matrix. The largest
(Perron Frobenius) eigenvalue of the network adjacency matrix has emerged as a
significant quantity for the analysis of various dynamical processes. The second

largest eigenvalue of a graph gives information regarding expansion and random-



ness properties. Moreover, many other spectral properties reflect the structural

properties of a graph.

It is a recent trend that graphs are crafted out of algebraic structures like
groups and rings. Cayley graphs, Annihilator graphs, Co-maximal graphs, An-
nihilating ideal graphs, Essential ideal graphs, Total graphs and Zero divisor
graphs, are good examples for graphs framed out from the algebraic properties
of a ring. In-depth research have been carried out in classifying the rings on the

structural properties of these algebraic graphs derived from these.

In this thesis, the focal objective is to investigate various spectra including
adjacency, distance, distance Laplacian, distance signless Laplacian, Seidel, Sei-
del Laplacian and Seidel signless Laplacian of the zero divisor graph on the ring

on integers modulo n.

The study of zero divisor graph on commutative rings has attracted the atten-
tion of many researchers since 1988. In [17], Ivan Beck introduced the concept of
zero divisor graph associated to a commutative ring R, in connection with some
colouring problems and was further studied by D.D. Anderson and M. Naseer in
[8]. In [7], D.F. Anderson and Livingston redefined this concept and the authors
studied the interplay between the ring-theoretic properties of a commutative ring
and the graph theoretic properties of its zero divisor graph, I'(R). This really
embarked on a new phase and attracted many ring theorists to graph theory
with a purpose of exploring the algebraic structure among the zero divisors of a
ring through the graph theoretic structure of its zero divisor graph. In [5], these

authors studied how the algebraic properties of a ring reflect on the size and



shape of its zero divisor graph and a complete characterization is established for

planar and toroidal zero divisor graphs.

The analysis of graph parameters associated with zero divisor graphs of com-
mutative rings can be found in [14, 54]. In [46], A. Haouaoui et al focus on the
properties of zero divisor graph of power series rings and in [13], M. Axtell et
al find the preservation of diameter and girth of the zero divisor graph under
extension to polynomial and power series rings. In [68], the authors study the
zero divisor graph for the ring of Gaussian integers modulo n. A wide and ex-
clusive survey on the study of distances in zero divisor graphs and total graphs
on commutative rings can be found in [81]. In [82], R.G. Tirop et. al analyse
the adjacency matrices of the zero-divisor graphs of Galois rings. We refer to
[69, 71, 1, 64] for a survey of results regarding the adjacency matrix of zero-divisor
graphs on various finite commutative rings. The main source of motivation for
this study, is the analysis of the adjacency matrix of zero divisor graph of the
ring of integers modulo n, initiated by M Young [85]. Pranjali et al [70] describe
results regarding the adjacency matrix of the zero-divisor graph over finite ring
of Gaussian integers. For more literature for the study of zero divisor graphs on
commutative rings, refer [78, 4, 3]. Later, zero divisor graphs were also defined
and investigated for non-commutative rings, near rings, modules, semi groups,
lattices, semi rings and posets. S. Chattopadhyay and P. Panigrahi [24] have
initiated the study of Laplacian spectrum of power graphs of finite cyclic and
dihedral groups and later Z. Mehranian et al [60] have continued the study of
spectra of power graphs of finite groups. Motivated by these works, we have ini-
tiated the investigation of spectra of the zero divisor graph on the ring of integers

modulo n.



Usually, the eigenvalues of a graph can be computed by finding the roots of its
characteristic polynomial. But there is no algebraic method to solve a polynomial
equation of degree greater than or equal to five. This makes the computation of
spectrum of graphs tedious. However, some typical graphs like complete graphs,
complete bi-partite graphs, cycles, paths etc. have some kind of symmetry that
allows the eigenvalues to be evaluated in smarter and less computational ways.
Kindly refer [31, 66, 38, 9, 76] for the extensive study on the spectra of graphs.
The eigenvalues of a simple connected graph are either rational integers or alge-
braic irrationals. Hence, in order to find the eigenvalues of matrices associated
to a graph, it is not much appropriate to resort to computer algorithms by which

the irrational eigenvalues are roughly approximated to rationals.

However, for a graph with large size and complicated combinatorial struc-
ture, the determination of spectra is really challenging. Sometimes, it becomes a
convenient practice that the spectrum of a fairly large graph can be described in
terms of the spectra of smaller graphs using some simple graph operations, like
union, join, corona, edge corona etc. See [59, 27, 53] and the references therein for
the study on different types of spectra (Laplacian, signless Laplacian) of graphs
obtained by means of operations like disjoint union, corona, edge corona etc.
In this thesis, the tools of matrix have been used to explore different kinds of
spectrum of the zero divisor graph on the ring of integers modulo n, in terms
of its induced subgraphs. Besides the adjacency spectrum, the distance, dis-
tance Laplacian, distance signless Laplacian, Seidel, Seidel Laplacian and Seidel

signless Laplacian spectrum of this graph are also investigated in this thesis.

The notion of distance and transmission of vertices finds applications in dif-



ferent domains including Design of Communication Networks and Graph Em-
bedding. The distance spectral radius has gained a keen focus by researchers in
Spectral Graph Theory. Though the distance matrix marks its origin in 1841 in
the very first paper of Cayley [23], extensive study was initiated in 1971, as Gra-
ham and Pollack [40] established a relationship between the number of negative
eigenvalues of the distance matrix and the addressing problem in data commu-
nication systems. They also established that the determinant of the distance
matrix of a tree is a function of the number of vertices only. Thereafter, many
researchers were interested in studying the spectral properties of the distance
matrix of a connected graph.

Some of the important domains of application of the distance matrix are the
Design of Communication Networks [34, 40], Network Flow Algorithms [30, 36],
Graph Embedding Theory [29, 33, 39] as well as Molecular Stability [47, 88].
Balaban, Ciubotariu and Medeleanu [15] proposed the use of the distance spec-
tral radius as a molecular descriptor. Gutman and Medeleanu [41] applied the
distance spectral radius to infer the extent of branching and model boiling points
of an alkane.

Analogous to the Laplacian and signless Laplacian matrix of a graph, the def-
inition of distance Laplacian and distance signless Laplacian matrix was intro-
duced and studied by M. Aouchiche and P. Hansen [11]. For more literature,
refer [12, 28] and the references therein. In this thesis, the study on the distance,
distance Laplacian and distance signless Laplacian spectrum of the zero divisor

graph on the ring Z,, has been initiated.

Seidel matrices originally appeared in [84] in connection with equiangular

lines in Euclidean spaces and was further studied in [83, 50]. The study on the



Seidel eigenvalues of graphs can be seen in [87, 52, 77]. The Seidel energy of
graphs was defined in [43] analogous to normal graph energy. H.S. Ramane et
al [72] defined Seidel Laplacian and Seidel signless Laplacian matrix of graphs.
The computation of the seidel Laplacian and Seidel signless Laplacian spectrum
of the disjoint union of regular graphs can be seen in [73]. In this thesis, these
spectrum of the generalised union of regular graphs and in particular, the zero

divisor graph on the ring of integers modulo n, has been studied.

In addition to the introductory chapter, the thesis is divided into seven other

chapters and chapters into sections.
Chapter 1 is the introduction.

Chapter 2 provides a brief description of the basic definitions of Graph
Theory and elementary tools of Matrix Theory and Linear Algebra to give a

better understanding of the upcoming chapters.

In Chapter 3, the straight forward computation of the characteristic poly-
nomial of I'(Z,,) for some values of n is given. Section 1 contains some basic
definitions and preliminaries. In Section 2, the analysis of the adjacency matrix
of the zero divisor graph I'(Z,) for n = p?q*, where p < ¢ are distinct primes
is done. Also, the girth, diameter, stability number and clique number of this
class of graphs are traced from the adjacency matrix. In Section 3, the char-
acteristic polynomial of this graph and the multiplicity of the two eigenvalues,
0 and 1, are found out by direct computation, using matrix tools. In Section
4, the adjacency matrix and eigenvalues of I'(Z,2,) for distinct primes p < ¢ are

investigated.

In Chapter 4, the attention is restricted to the prime-power values of n.



In Section 2 of this chapter, the characteristic polynomial and the spectrum
of I'(Z,) for n = p? p* where p is any prime are found. In Section 3, the
combinatorial structure of I'(Z,,) as a generalised join of its induced subgraphs,
is described for any n. Section 4 focuses on the structure of the adjacency
matrix of I'(Z,) for any k > 3. The fascinating structure of the adjacency
matrix of this class of graphs; for both even and odd values of k, leads to the
determination of its graph parameters like, stability number, clique number and
girth. This analysis also helps to evaluate the multiplicity of the eigenvalues 0
and 1. In Section 5, a general method to compute the eigenvalues of I'(Z,,)
for any n, is proposed, which involves the quotient matrix of equitable partition
of its vertex set and is illustrated with some examples. Also, as a special case,
the characteristic polynomial of I'(Z,:) for any k > 3 is found out and the

multiplicities of its two eigenvalues 0 and 1 are also computed.

Chapter 5 contains the direct computation of distance, distance Laplacian
and distance signless Laplacian spectrum of I'(Z,,) for some values of n. Section
1 of this chapter contains the definition of distance Laplacian and distance sign-
less Laplacian matrix of a connected matrix which is analogous to the Laplacian
and signless Laplacian matrix. In Section 2 ;| some tools of matrix theory are
applied to find the distance spectra of I'(Z,,) for n = pq, p*, where p < ¢ are dis-
tinct primes. Also, the distance spectral radius of the above mentioned graphs
are determined. In Section 3 , the distance Laplacian spectrum of I'(Z,,) and
I'(Z,3) are computed. In Section 4, the distance signless Laplacian spectra of
these graphs are found, using the same techniques. It is worth mentioning that
the matrix tools applied in this chapter seems inconvenient if n is the product of

powers of more primes.



Chapter 6 is an attempt to generalise the results of Chapter 5 to any
value of n. Some tools of Linear Algebra are applied for the same. The Fiedler’s
Lemma and its generalization is highlighted in Section 2. Section 3 details
the role of Fiedler’s Lemma in the computation of the distance spectrum of the
generalized join of regular graphs. Also, the distance between any two vertices in
the proper divisor graph of n as well as the partitioned structure of the distance
matrix of I'(Z,,) are found. The investigation of the distance spectrum of I'(Z,,)
for any n and in particular for n = p* for any prime p and k = 3, is described in
this section and illustrated with examples. Also, it is established that —1 and —2
are the distance eigenvalues of I'(Z,,), for n and their multiplicities are counted.
In the fourth section, the distance Laplacian eigenvalues of I'(Z,), for any n, are
computed and described with examples. Also, the distance Laplacian spectrum

of I'(Zyx), k = 3 is completely determined.

Chapter 7 is about the computation of the Seidel related spectrum of the
zero divisor graph I'(Z,). Section 1 outlines the definition of Seidel, Seidel
Laplacian and Seidel signless Laplacian matrix of a graph. The Section 2 is
begun with the computation of the Seidel spectrum of the join of two regular
graphs. The regularity allows the use of Coronal to make the method of finding
the Seidel characteristic polynomial of this graph, less computational. The result
is extended to the joined union of regular graphs, using Fiedler’s Lemma, as
described in the previous chapter and is illustrated with example. These results
are applied to compute the Seidel spectrum of I'(Z,,) for any n. Also, the Seidel
spectrum of I'(Z,) is evaluated for n = pq,p?, p?q, where p < ¢ are distinct
primes. The computation of the Seidel spectrum of I'(Z,) is described for k > 3.

In Section 3, the Seidel Laplacian spectrum of the join of two regular graphs



is investigated and then extended to the generalised join of regular graphs. This
section focuses on the computation of Seidel Laplacian spectrum of I'(Z,,) for
any n. It is also established that, 0 is a simple Seidel Laplacian eigenvalue of
I'(Z,) for any n. The Seidel Laplacian spectrum for particular values of n, say
n = pq,p,p* are found. Section 4 focuses on the computation of the Seidel
signless Laplacian spectrum of the generalised join of regular graphs and explores

these spectrum for I'(Z,,), for any n.

Chapter 8 provides conclusion and further scope of research.



Chapter 2

Preliminaries

This chapter provides a brief account of the preliminary definitions from Graph

Theory which are very useful for the upcoming chapters.

2.1 Basic Definitions

Definition 2.1.1. [19] A graph G is an ordered triple G = (V(G), E(G),¢¥(G))
consisting of a non-empty set V(G) of vertices, a set E(G) of edges and an inci-
dence function ¢(G) which associates with each element of E(G), an unordered

pair of vertices (not necessarily distinct) of G.

Definition 2.1.2. [19] Two vertices are said to be adjacent, if there is an edge
between them. Otherwise, they are non adjacent. If a vertex u is adjacent to a
vertex v in a graph G, we denote it as u ~ v. If two edges are incident with a

common vertex, then they are adjacent. Otherwise, non adjacent.

Definition 2.1.3. [19] An edge with identical end points is called a loop. Edges

10



2.1. Basic Definitions

joining the same pair of vertices are called multiple edges.

Definition 2.1.4. [19] A graph G is finite if both the vertex set V(G) and the

edge set E(G) are finite. Otherwise, the graph G is said to be infinite.

Definition 2.1.5. [19] The number of vertices in a graph G is known as the

order of the graph and it is denoted by O(G).

Definition 2.1.6. [19] A graph which has no loops and multiple edges is called
a simple graph. A graph is trivial if it has only one point.

Definition 2.1.7. [19] Two graphs G and H are said to be isomorphic if there
exists bijections 6 : V(G) - V(H) and ¢ : E(G) — E(H) such that ¢¥g(e) = wv

if and only if ¥y (¢(e)) = 6(u)f(v). If G and H are isomorphic, we write G = H.

Definition 2.1.8. [19] A graph G is complete if every pair of distinct vertices

are adjacent. A complete graph on n vertices is denoted by K.

Definition 2.1.9. [19] An empty graph (null graph) is a graph which has no

edges.

Definition 2.1.10. [19] A graph G is called bipartite if the vertex set V(G) can
be partitioned into two subsets X and Y such that each edge of G has one end

in X and the other end in Y. (X,Y) is called a partition of G.

Definition 2.1.11. [19] A graph G is said to be complete bipartite if G is simple,
bipartite with bipartition (X,Y’) and each vertex of X is joined to every vertex

of Y. If | X |=m,| Y |=n, then G is denoted by K,, .

Definition 2.1.12. [19] The complement of a simple graph G, denoted by G, is
a simple graph with vertex set V(G) and such that two vertices are adjacent in

G if and only if they are non adjacent in G.

11



2.1. Basic Definitions

Definition 2.1.13. [19] A graph H is asubgraph of G, if V(H) € V(G), E(H) <
E(G) and vy is the restriction of ¢¢ to E(H).

If H is a subgraph of G, then it is denoted by H € G. G is the super graph
of H. If H is a subgraph of G and H # G, then H is a proper subgraph of G
(H < G). H is a spanning subgraph of G if H is a subgraph and V(H) = V(G).
Let G be a graph. By deleting all loops and for every pair of adjacent vertices all
except one link joining them, we obtain a simple spanning subgraph of G called

the underlying simple graph of G.

Definition 2.1.14. [19] Let V! be a non-empty subset of the vertex set V of G.
The subgraph of G whose vertex set is V! and whose edge set is the set of those
edges of G that have both ends in V! is called the subgraph of G induced by V'*

and is denoted by G[V1]. We say G[V''] is the induced subgraph of G.

Definition 2.1.15. [19] If u € V(G), the open neighborhood of u; denoted by

N¢(u) is the set of vertices adjacent to u in G.

Definition 2.1.16. [19] Let G be a graph and v be it’s vertex. Then, the degree
of v is the number of edges of G incident with v, counting each loop as two
edges. The degree of v is denoted as deg(v). For a simple graph, deg(v) is the
cardinality of Ng(v). The vertex with zero degree is called an isolated vertex. A
vertex with degree one is called an end vertex or pendant vertex.

We denote by 0(G) and A(G), the minimum degree and the maximum degree of

vertices in G respectively.

Definition 2.1.17. [19] A graph G is k-regular if deg(v) = k for allv e V. A

regular graph is a graph which is k-regular for some &k > 0.

12



2.1. Basic Definitions

Definition 2.1.18. [19] A walk in a graph is a finite, non-null or non-empty
sequence w = Ve V1€V, ..., exU; Whose terms are alternatively vertices and
edges so that for 1 < ¢ < k, the ends of e; are v; | and v;. We say that w is a
walk from vy to vy or w is a (vg, vx) walk. vy is called the origin and vy is called
the terminus of w. vy, vs,...,vx_1 are called the internal vertices. The integer k

is called the length of w.
Definition 2.1.19. [19] A walk in which every edge is distinct is called a trail.

Definition 2.1.20. [19] A walk in which every vertex is distinct (hence edges

are distinct) is called a path.

Definition 2.1.21. [19] A cycle is a closed trail whose origin and internal vertices

are different. A cycle of length k is called a k-cycle and it is denoted by C}.

Definition 2.1.22. [19] Two vertices u and v of G are said to be connected if

there is a (u,v) path between them.

Definition 2.1.23. [19] The distance between two vertices u and v, denoted by
dc(u,v), is the length of a shortest path connecting them. Clearly dg(u,u) = 0

and dg(u,v) = oo, if there is no path connecting u and v.

Definition 2.1.24. [19] Diameter of a graph G is the maximum distance between

the vertices of G. That is, diam(G) = Max{d(x,y): x and y are vertices of G'}.

Definition 2.1.25. [19] In a connected graph G, the transmission degree of a

vertex v is defined as Tr(v) = X, ey (g da(u, v).

Definition 2.1.26. [19] Clique of a graph is a set of mutually adjacent vertices.
The maximum size of a clique of a graph G, called the clique number of G, is

denoted by w(G).

13



2.2. Matrix Theory

Definition 2.1.27. [19] For a graph G, a stable set is a set of vertices, no two
of which are adjacent. The maximum cardinality of a stable set in a graph G is

called the stability number, denoted by a(G).

Definition 2.1.28. [19] The girth of G, denoted by gr(G), is the length of a

shortest cycle in G. (gr(G) = o if G contains no cycles).

Definition 2.1.29. [75] A partition {V}, V4, ..., Vi} of the vertex set of V(G) is
said to be an equitable partition, if for any two vertices in V; have the same

number of neighbours in V; for 1 << j <k.

2.2 Matrix Theory

The study on graph spectra is impossible without a basic understanding of some
necessary facts in Matrix Theory. Refer [67, 37, 61, 16, 9] for basic definitions

and fundamental results in Matrix Theory.

Let A be an n x n matrix. The determinant det(A — A\I) is a polynomial in
the (complex) variable A of degree n and is called the characteristic polynomial
of A. The equation det(A — AI) = 0, is called the characteristic equation of A.
By the Fundamental Theorem of Algebra, the equation has n complex roots and
these roots are called the eigenvalues of A. The eigenvalues might not all be

distinct.

Definition 2.2.1. [16] The number of times an eigenvalue occurs as a root of

the characteristic equation is called the algebraic multiplicity of the eigenvalue.

Definition 2.2.2. [16] The spectrum of a square matrix A, denoted by o(A),

is the multi set of all the eigenvalues of A. If A, \o,..., ., are the distinct

14
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eigenvalues of A with respective algebraic multiplicities my, mo, ..., m,, then we

shall denote the spectrum of A, by o(A).

A A R W
O'(A) _ 1 2
myp Mo - m,

Definition 2.2.3. [9] The spectral radius of a matrix is the maximum of the

absolute values of its eigenvalues.

Definition 2.2.4. [66] The geometric multiplicity of the eigenvalue A of A is
defined to be the dimension of the null space of A—AI. The geometric multiplicity

of an eigenvalue does not exceed its algebraic multiplicity.

Definition 2.2.5. [66] An eigenvalue of a matrix is said to be simple, if its

algebraic multiplicity is 1.

If A\q,..., A, are the eigenvalues of A, then detA = A\ - - - \,,, while traceA =

AL+ A

Definition 2.2.6. [67] Let A be a matrix with real entries. A is said to be
positive semidefinite if, for any vector x with real components, the dot product
of Az and x is nonnegative. That is if, (Az, x) = 0. Note that the eigenvalues of

a positive semi definite matrix are nonnegative.

Definition 2.2.7. [67] A principal sub matrix of a square matrix is a sub matrix
formed by a set of rows and the corresponding set of columns. A principal minor
of A is the determinant of a principal sub matrix. A leading principal minor is

a principal minor involving rows and columns 1, ..., k for some k.

Definition 2.2.8. [67] A matrix A € M, is said to be reducible or decomposable

C
if there is a permutation matrix P € M,, such that PTAP =

On—r,r D
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and 1 <r<n—1.
A matrix is said to be irreducible if it is not reducible.

Definition 2.2.9. [9] (Equitable partitions)

Consider a real symmetric matrix

An A oo A
A= Ay Agp ... Ay
| Al ... A |

whose rows and columns are indexed by X = {1,...,n} and partitioned according
to a partition P = {X3,..., X;,} of X. The characteristic matrix S is the n x m
matrix whose j—th column is the characteristic vector of X, (j = 1,...,m). Let
@ be the m x m matrix whose entries are the average row sums of the blocks
A;j of A. The partition P is called equitable if each block A;; of A has constant
row (and column) sum and in such case the matrix @ is called the equitable
quotient matrix. Generally, the eigenvalues of () interlace the eigenvalues of A.

The following result is well-known and useful.

Lemma 2.2.10. [9] If, for an equitable partition, v is an eigenvector of @) for an
eigenvalue A\ , then Sv is an eigenvector of A for the same eigenvalue A\. That is, if
the rows and columns of a real symmetric matrix A is partitioned according to an

equitable partition, then each eigenvalue of its quotient matrix, is an eigenvalue

of A.

Definition 2.2.11. [67] A matrix [a;;] is strictly diagonally dominant if for every
row of the matrix, the magnitude of the diagonal entry is strictly larger than the
sum of the magnitudes of all other non-diagonal entries in that row, that is if,

|lai;| > Z#i |aij, for all i.

16
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Theorem 2.2.12. [67] (Levy- Desplanques Theorem ) A strictly diagonally

dominant matrix is non-singular.

Theorem 2.2.13. [9] (Perron Frobenius Theorem) If A is a non-negative matrix
with eigenvalues Ay = Ay = ... = A, then |Aj| = |A|, for £ = 1,2,...,n and the
eigenvalue \; has an eigenvector with all entries non-negative. If A is irreducible
(indecomposable), then the eigenvalue A; is simple and the eigenvector has all

entries positive.

2.3 Some matrices associated with simple graphs

Definition 2.3.1. [16] Let G be a simple graph with vertex set V(G) = {vq, vg, ..., v, }
and edge set E(G) = {e1, s, ..., e, }. The adjacency matrix, A(G) of Gisa 0—1
matrix [a; ;] of order nxn with entries @, ; such that a; ; = 1if v; ~ v; and a;; = 0

if v; and v; are nonadjacent. The (7,7)-th entry of A(G)is 0 fori=1,...,n.

Definition 2.3.2. [16] For a graph G, the Laplacian matrix is defined as L(G) =
Deg(G) — A(G), and signless Laplacian matrix of G is defined as Q(G) =
Deg(G) + A(G) where Deg(G) is the diagonal matrix of degree of vertices. Note

that L(G) and Q(G) are positive semi definite matrices (Recall Definition 2.2.6).

Definition 2.3.3. [16] The distance matrix of a simple connected graph G of

order n is a symmetric matrix D = [d, ] where d; ; denotes the distance

nxn’

between two distinct vertices v; and v;.

Definition 2.3.4. [11] Let T'r(G) be the diagonal matrix of transmission degree

of vertices of a connected graph G (Recall Definition 2.1.25). Then, the distance

17
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Laplacian matrix of G is defined as
DY(G) =Tr(G) - D(G),

where D(G) is the distance matrix. The distance signless Laplacian matrix of

any connected graph G is defined as
DO(G) = Tr(G) + D(G).

Definition 2.3.5. [84] The Seidel matrix of G is a (-1, 0, 1) adjacency matrix
given by, S(G) = [s; ;] where s; ; = —1 if the vertices v; and v; are adjacent and
s;; = 1 if the vertices v; and v; are non adjacent and s;; = 0 if ¢ = j. That is,
S(G) = J—1—-2A(G). Clearly, if G denotes the complement of a graph G, then
S(G) = -S(G).

Definition 2.3.6. [72] Let Ds(G) = diag(n—2d, —1,n—2dy—1,...,n—2d,, — 1)
be the diagonal matrix with diagonal entries n — 2d; — 1, where d; denotes the

degree of the i"" vertex. The Seidel Laplacian matrix of a graph G is defined as
SH(@) = Ds(G) - S(G)
and the Seidel signless Laplacian matrix of a graph G is defined as

S?(G) = Ds(G) + S(G).

2.4 Some graph operations

Definition 2.4.1. [45] Let G; = (V4, E1) and Gy = (Va, Ey) be two simple

graphs. Then, the graph G = (V, F), where V =V, UV, and F = E; U Ey, is

18



2.4. Some graph operations

called the union of graphs GG; and G4 and is denoted by G u Ga. If Vi 0V, = ¢,
then GG; U G5 is usually denoted by G + G, called the sum of the graphs G,

and G.

Definition 2.4.2. [45] Let Gy = (V4, E4) and Gy = (V4, E») be two simple graphs
with V; n Vo = ¢. Then the join, G sy G, of G and G, is the super graph of

GG1 + G5 in which each vertex of (7 is adjacent to every vertex of Gs.

Definition 2.4.3. [74] Let G be a finite graph with vertices labeled as 1,2, 3, ..., n
and let Hy, Ho, ..., H, be a family of vertex disjoint graphs. The generalized
join of Hy, Hs, ..., H, denoted by G [Hy, Ha, ..., H,] is obtained by replacing each
vertex ¢ of G by the graph H; and inserting all or none of the possible edges
between H,; and H; depending on whether or not ¢ and j are adjacent in G. ie,
G|H,y, Hs, ..., H,] is obtained by taking the union of Hy, Hs, ..., H, and joining

each vertex of H; to all vertices of H; if and only if ij € E(G).
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Chapter 3

Adjacency matrix and graph parameters of the

zero divisor graph

In this Chapter, the characteristic polynomial of I'(Zy,) is found for
some values of n. The first Section contains some basic definitions
and preliminaries. In Section 2, the adjacency matrix of the zero
divisor graph I'(Z,) is explored for n = p*q*, where p < q are dis-
tinct primes. Also, the girth, diameter, stability number and clique
number of this graph are traced. In Section 3, the characteristic
polynomial of this graph along with the multiplicity of two eigenval-
ues is found by direct computation using matriz tools. In Section 4,
the adjacency matriz and eigenvalues of I'(Z,2,) for distinct primes

p < q are investigated.

! This chapter has been published in Journal of Mathematical and Computational Science,

Volume 10, Issue 4, 2020, Pages 1285-1297.
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3.1. Introduction

3.1 Introduction

Associating various graphs to an algebraic structure to understand its properties,
is an exciting recent trend in the research of Algebraic Graph Theory. Also
the interplay of various graph parameters and the algebraic properties of these
structures can be investigated and it leads to a better understanding of its theory.
One among these graphs which can be associated to a commutative ring, is zero

divisor graph.

Definition 3.1.1. [7] Let R be a commutative ring with unity and Z*(R) be the
set of non-zero zero divisors of R. The zero divisor graph of R, denoted by I'(R),
15 a simple undirected graph with all non-zero zero divisors as vertices and two
distinct vertices x,y € Z*(R) are adjacent if and only if vy = 0. Thus I'(R) is

the null graph if and only if R is an integral domain.

The characteristic polynomial of the adjacency matrix of a graph G, denoted
by ®(G; ), is often referred to as the characteristic polynomial of G and the
eigenvalues of G are the roots of ®(G; A). The spectrum of a finite graph G is by
definition the spectrum of the adjacency matrix A(G) , that is, its set of eigenval-
ues together with their multiplicities. Clearly, A(G) is a real symmetric matrix
and hence its eigenvalues are all real numbers and the algebraic multiplicity of

each eigenvalue is same as its geometric multiplicity [66].
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3.2. Adjacency Matrix of I'(Z,2,2)

3.2 Adjacency Matrix of I'(Z,,)

The zero-divisor graph of Z,, the ring of integers modulo n, is a simple and
undirected graph. ie. even though, for an idempotent element z, x-x =0, x is
not adjacent with itself in its zero divisor graph. Thus the adjacency matrix of
I'(Z,,) is a symmetric matrix with entries 0 and 1, where all diagonal entries are
zeroes. In this section, the adjacency matrix of I'(Z,,) for n = p?q?, where p and
q, are distinct prime numbers with p < ¢, is investigated with an objective of
computing its characteristic polynomial. While indexing the rows and columns
of the adjacency matrix of I'(Z,), a special interest is taken on dividing its non-
zero zero divisors into an equitable partition and labeling accordingly, so that the
vertices of the least degree corresponds to the first row of blocks in its adjacency

matrix.

Recall that in any finite commutative ring, any non-zero element is either a
unit or a zero divisor. Using elementary number theory, it is easy to calculate

the order of I'(Z,,) for any n.

Proposition 3.2.1. The number of nonzero zero diwvisors of Z, isn— ¢(n) — 1.

Proof. Let m be a positive integer. Then m € Z*(7Z,) if and only if m and n
have at least one common prime factor. The co-totient function, n — ¢(n) counts
the number of positive integers less than or equal to n which have at least one
prime factor in common with n. Hence the number of nonzero zero divisors of n

isn—a¢(n)—1. O

Theorem 3.2.2. The adjacency matriz of I'(Z,) for n = p*q?, where p and q

are distinct primes, p < q, is given by
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3.2. Adjacency Matrix of I'(Z,2,2)

Al_O O O O O O J |
A, O O O O @) J )
A, O O O J O O J
As 1O O J O O J O
As O O O O J-1I J J
As O J O J J—1 J
A1 J O J O J J—1

where J is a matriz of all ones and I is an identity matriz. The order of A(I'(Zy,))

is pap+q—1)—1.

Proof. Let n = p?¢®, p < q. The divisors of n are p, q, pq, p?, ¢*, p*q, pg*>. By
proposition 3.2.1, the number of non-zero zero divisors of I'(Z,2,2) is pg(p+q—
1) — 1. We partition the non-zero zero divisors of I'(Z,2,2) into seven classes as
multiples of the divisors of p?q¢? as follows.

Ay ={kip:k =1,2,..p¢*> — 1,where p{ ky and ¢ k; }.

Ay = {koq: ko =1,2,...p°q — 1,where p 1 ky and q 1 ks }.

Az = {kspq : k3 = 1,2,...pq — 1,where p{ k3 and ¢ 1 k3 }.

Ay = {ksp® : ky = 1,2,...¢*> — 1,where g} ky }.

As = {ksq® : ks = 1,2,...p> — 1,where p{ k5 }.

Ag = {kep?q ke =1,2,..¢q— 1 }.

Ay ={kmpg®  kr =1,2,..p—11}.

Using elementary number theory, it can be easily seen that the cardinality of A;

18

23



3.2. Adjacency Matrix of I'(Z,2,2)

| 41| = g(p —1)(g — 1). Similarly,
[As] = p(p—1)(g = 1), [A3]| = (p— 1)(qg — 1), |[A4] = q(q — 1), |A5] = p(p — 1),

|Ag| = (¢ — 1), |A7| = (p — 1). We also observe that,

1.2y #0,Vre Ay and Vye AyuAdyuA3 U0 A, UA50 A and xy =
0,Vxe Ay and Vye Ar.

2. xy # 0,Vr e Ay and Vye AyuAyuAz3 U Ay A5 U A;, and Yy =
0,Vxre Ay and Vy e Ag.

3. xy #0,Vr e A3 and Vye AjuAdyuAsuA; and xy = 0,Vr € A;
and VYye Asu Agu Ar.

4. xy #0,Vre Ay and Vye AjuAdsUA3sUAL,UAs and zy =0,Vre Ay
and VYye As u As.

5. xy #0,Vr e Ay and Vye AjuAyUA3UA5UA; and xy = 0,Vx e As
and Yye Ay v Ag.

6. xy # 0,Vre Ag and Vye A; U Ay and
xy=0,Yre Ag and Vye Ay u Az u As U Ag U As.

7. xy #0,Vre A; and Vye A, u A; and
xy=0,Yre A; and Vye Ay uAsu Ay u Agu Ay

Also for any =, y € A;,;i =1,2,4,5, xy # 0.

These observations describe the adjacency of vertices in I'(Z,2p2). For ex-

ample, no vertex in A; is adjacent to vertices in Aj, Ay, A3, Ay, A5, or Ag and
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3.2. Adjacency Matrix of I'(Z,2,2)

correspondingly, it gives blocks of zeros in the adjacency matrix of I'(Z,2,2) .
Also, all vertices of A; are adjacent to every vertex of A; and correspondingly,
it gives a block of all ones and so on. Recall that the zero divisor graph of a
commutative ring is a simple, undirected graph. Since xy = 0,Vz,y € A;, for
i =3,6,7; A3 u Ag U A7 induces a complete subgraph , but self adjacency of
vertices are omitted. The non-zero zero divisors of Z,, are rearranged, such that
the elements of A; appear first and then Ay, A4, As, A3, Ag, and A;. Thus the
adjacency matrix of I'(Z,2,2) is a 7 x 7 block matrix consisting of 49 blocks of

zeros and ones in the following form,

| OO0 O 0 O @ J |
OO0 O 0 O J O
OO0 o0 J O O J
Al'Z))=10 0 J O O J 0) (3.1)
O 000 J-1 J J
oJ o J J J-1 J
J O J O J J J-=1
Thus the order of this mat;ix is X7 Al =pglp+q—1)—1. _
]

Theorem 3.2.3. Let G = I'(Z,), for n = p*q®, where p and q are distinct

primes, p < q. The clique number w(G) = pq — 1.

J—-1 J J
Proof. The principal sub matrix J  J—-I1 J of A(I'(Zy,)) corre-

J J J-=1

sponds to a complete subgraph of maximum order, induced by the vertices in
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3.2. Adjacency Matrix of I'(Z,2,2)

Az U Ag U A7. Hence the clique number of G is given by

w(G) = |As|+ |As| + | A7

= pg— 1

]

Theorem 3.2.4. Let G = I'(Z,), for n = p*q®, where p and q are distinct

primes, p < q. The stability number o(G) = p(q—1)(p+q—1).

Proof. Since, for any x,y € Ay u Ay U Ay, zy # 0; no two vertices of A;u Ay U Ay,
are adjacent. Thus A; U Ay U Ay is a maximum independent set. Hence the

stability number of G, a(G) = |A;| + |As| + |A4| = p(¢ = 1)(p + ¢ —1). O
Theorem 3.2.5. Let G = I'(Z,), for n = p?¢*, where p and q are distinct

primes, p < q. The girth, gr(G) = 3.

Proof. Since G has a clique of cardinality pg—1 > 3, it contains a cycle of length

3. Hence gr(G)=3. . O

It was shown in [81] that, for a commutative ring R, diamI'(R) < 3. In the

next theorem, it is seen that I'(Z,z2,2) attains this upper bound.

Theorem 3.2.6. Let G = I'(Z,), for n = p*q®, where p and q are distinct

primes, p < q. The diameter, diam(G) = 3.

Proof. For © € Aj,y € As, any shortest (x,y)-path contains an intermediate

vertex from A; and a vertex from Ag. Thus diamG = 3. O
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3.3 Eigenvalues of I'(Z)

Among the zero divisor graphs belonging to this class, I'(Z3s) is of minimum
order, ie for p = 2,¢q = 3 and the order of I'(Zsg) is 23. As the order increases,
the difficulty level of extracting eigenvalues of the graph increases. In this section,
two eigenvalues of I'(Z,2,2) for any p < ¢, are found with multiplicities. Also,
the polynomial of degree seven which gives the remaining eigenvalues is explored

through a long computation. The diction is made as precise as possible.

The circulant matrix of the form C,p ) plays a vital role in the following
computations. The following Lemmas are used to find the determinant and the
inverse of Cqpn). Using the properties of determinant of a square matrix, the

following Propositions are proved.

Definition 3.3.1. Let M, (F) denote the vector space of all square matrices of
size m X n with entries from a field F. A circulant matriz of size n x n, with

entries a and b, a,b € R, denoted by Ciup ) is of the form

a b ... ... b
b a b ... b
C(a,b,n): b b a ... b
b b b ... a

The complexity of computing the characteristic polynomial of a n x n block
matrix is often reduced to some extent by the application of the following Lem-

mas.
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3.3. Eigenvalues of I'(Z,2,2)

a b . b
b a b b

Proposition 3.3.2. Let Capy= | b b a ... b be a circulant ma-
b b b ... a

trix of size n x n; with entries a and b.

Then,  detCiaypn); denoted by 8, is given by § = (a + (n—1)b) (a — b)* .

Proposition 3.3.3. If C, ) is nonsingular, then its inverse is given by

611—1 A'rL—l cee An—l
_ 1 An—l 5n—1 ce An—l 1
C(a,lb,n) = 5 = SC<5n717 Anflan%
At o Suct |

where §,—1 - (a+(n—2)b)(a—b)"% and A,_y = —=b-(a —b)" 2

A matrix A € M, (F), where F is a field of numbers(real or complex); of the

form. )
Ay O ... O
O Ay ... O

A= in which A; € M,,(F),i = 1,2,..k, ¥F \n; = n,
o ... Apn |

and all blocks above and below the block diagonal are the zero blocks, is called
a block diagonal matrix.

Thus A=A;1®As.. DAL, = @le Ay, is the direct sum of matrices A1, Agg, ... Apy.

Lemma 3.3.4. [67] det(@le A”) = Hf:l det(A”)

In particular, if Ay € M, (F) and Ay € M,,(F), then,
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3.3. Eigenvalues of I'(Z,2,2)

Ay O
det = det(AH) . det(AQQ).
O Ay
Lemma 3.3.5. [67] If Ay € M, (F) and Agy € M, (F) are non singular,
-1
Ay O Al O
then, =
O Ay O Ay
Lemma 3.3.6. [31] Let M,N,P,Q be matrices and let M be invertible. Let
M N
P Q

then detS = detM. det(QQ — PM~'N).

(Q — PM~'N) is called the Schur complement of M in S.

Theorem 3.3.7. Let G = I'(Z,2,2) and let X be an eigenvalue of G. Then 0 and
—1 are eigenvalues of G with multiplicities pq(p+q—2)—4 and pg—4 respectively.
If X # 0, X # —1, then X satisfies \"—bg A0 +bs N’ + 0\  +b3 A3 —ba A2 +b1 A+ by = 0,
where,
bg = pg — 4
bs =p*(q—1) —q2p+ 1) +6— (p—1)(¢—)Bpg +p + 1),
by =pq(p—1)(¢ —1)Bpg —p—q—8) —pg +2,
bs = pa(p — 1)(q — 1) [pa(3pg — 4p —4q + 7) + p* + ¢ — 9],
b2 = [pa(p — 1)(q¢ — V)]’ [3pg — 3p — 3¢ — 2] +
pa(p —1)(q — 1) [pa(2p + 2 + 1) — 2(p + @)* + 4],
b =pa(p —1)*(a — 1) (pg +p +q—p°)+
[pa(p — (g = DI*[1 = plp = 1)(¢ = 1)* = plg = )] +
pa(p = 1)*(¢ = 1)*[pa — (0 + @)l [p(p — 2)(¢ = 1) — ala — 2)],

bo = p*¢*(p — 1)* (g — 1)* [pg — (p + 9)].
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3.3. Eigenvalues of I'(Z,2,2)

Proof. Let the adjacency matrix of G = I'(Z,2,2); given by equation 3.1 be de-

noted by M. Then the eigenvalues of G are given by |M — AI| = 0. Now,

Ciro) @) O O (@) O J
@) C-ao) O (@) J (@)
O 0 Cirp) 0 O J
M — X\ = O O J C(—A,O) O J O
O @) 0] O Cioa J J
@) J @] J J Cean J
J @) J @) J J Ci-ap
A
By Lemma 3.3.6, if A # 0,
det(M — \I) = detA - det(D — CA 'B) (3.2)
Ci-ap) @]
Since A = 9] Cioro) 19) is a scalar matrix of size
@) O Ci-ap)

p(¢g—1)(p+ q—1), using Lemma 3.3.4,
detA = (= )Pla—Dp+a=1)

( Note that size of A is sum of cardinalities of Ay, Ay and A4 which is equal to

p(q —1)(p+ q—1) ). Thus, equation (3.2)becomes
det(M — XI) = (=\)Pa= D@+ gey(D — CA™'B) (3.3)
—1
Also A7t = TI’ where I is the identity matrix of size p(¢ — 1)(p + ¢ — 1).
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3.3. Eigenvalues of I'(Z,2,2)

Let,
a=|A4l =qlqg—1)
b=|Ay] =pp—1)(g—1)
c= A =qlp—1)(g—1).
Then,

a a 0 0O 0 - 0 a a
a a 0 0O 0 - 0 a a
0 00 0 0 0 0 0
110 0 0 00 0 0 0
Ao 0 0 0 b b0 0
0 0 0 0 b b 0 0
a - a 0 - 00 -+ 0 a+c -+ a+c
a -~ a0 -- 00 0a+c -+ a+c
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3.3. Eigenvalues of I'(Z,2,2)

Hence D — CA~'B=

L U TS 2 0 0 1 1 g a
by A 5y : :
g L_X 0 0 1 1 a a
0 0 -2 1 1 1 1 1 1
1 = 1
0 0 1 -\ 1 1 1 1
1 1 1 1 2-x b4 2t 1 1
L :
1 1 1 1 b4 2o 1 1
% % 1 1 1 1 a.-)l\—c_/\ aic_i_l a-)l\—c+1
: a;—c + 1 ai—c _ )\
| ¢ e 1 1 1 1 ate 41 ate _ )
Thus, B .
le(p—l) Op(p—l)X(p—l)(q—l) Qp(p—l)X(q—l) Y;?(p—l)X(p—l)
D—CA1B — Op—1)(g-1)xp(p—1) X2(p_1)(q_1) Rp-1)(¢-1)x(a-1)  Sp-1)a-1)x(p-1)
T T
(@ Dxp-1) L 1)x@-1)-1) Xs(g-1) Utg-1yx(p-1)
T T T
| Y(p—l)xp(p—l) S(p—l)X(p—l)(q—l) U(p—l)X(q—l) X4 |
where Xi =Ca s o o))y X2 =Con 1, -0 X3 =Coy 54y 4)

X4 = C(”‘Tﬂf)‘r a

ICJrl, pfl)’

and @), R, S, U are matrices of all ones.

Y = $Jpp-1)x(p—1), Where J is a matrix of all ones

Let n, m be the size of X; and X, respectively. Hence n = p(p — 1) and

m = (p —1)(¢ — 1). While doing tedious computations hereafter, the following
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3.3. Eigenvalues of I'(Z,2,2)

substitutions are made.

fA) =na— N,

g(\) =m—1-\, and

h(A) = FN)gN) {plp — 1)(g = 1)* + Mg — 2) = N} = (g—=D){nNg(\) +mAf(N)}.

Using Proposition 3.3.2 and Proposition 3.3.3, it can be seen that,
detX) = (—1)" T (A)"2f(N) (3.4)

detXy = (—1)™ L (A + 1)™ Lg()) (3.5)

1 _ 1 — —1
X =g Gy 20w 0 X2 = e Conoaz, —1m) -
Using Lemma 3.3.4, Lemma 3.3.5 and Lemma 3.3.6, we see that

det (D — CA™'B) = detX; - detXo-
X3 U QT RT X' o QY
det ’ - ! (3.6)
Ul Xy yT st o X,! R S

Applying Lemma 3.3.6 again,

X3 U QT RT Xt o QY
det — gets surprisingly
uroXx, yT §T o X! R S

simplified to be the determinant of the circulant matrix C,_., w—-, p—1), Where
ANg—1)
2= {f(WNg\) = (nag(\) + mfA)} ——— "t
(FN90) — (nag() + mFONY 773 s
_ fNgN)(a + = N) —mAf(A) —na’g(\)
Af(N)g(N)
Also, applying Proposition 3.3.2,

and

detc’(v—z7 w—z, p—1) — (_1)p—2(/\ + 1)p—2 {(U - Z)(p - 1) + ()‘ + 1)(]9 - 2)}

Simplifying equation (3.6), using equations (3.4), and (3.5), and substituting in

(3.3), the characteristic equation of I'(Z,2,2) is
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3.3. Eigenvalues of I'(Z,2,2)

O(G; ) = (Apalrra=2=4 (N 4 1), $(\) = 0, where
B(A) = AT = bA® + b5 A + byA® + b3A® — byA? + by A + by, (3.7)
where,

be = pq — 4
bs=p°(q—1)—q(2p+1) +6—(p—1)(¢— 1)(3pg +p + 1),
by =pg(p—1)(qa—1)Bpg —p—q—8) —pg +2,
bs = pa(p —1)(¢ — 1) [pa(3pg — 4p —4q + 7) + p* + ¢ — 9],
b2 = [pa(p — 1)(g — 1)I* [3pg — 3p — 3¢ — 2] +
pa(p —1)(q —1) [pa(2p +2q + 1) = 2(p + q)* + 4] ,
b = pa(p — 1)*(q¢ = 1)*(pg +p + g — p*)+
[pa(p— (g — DI [1=plp—1)(g—1)* —plg— D]+
pa(p —1)%(q = 1)*[pg — (p + @)] [p(p — 2)(a — 1) — alg — 2)].
bo = p’¢*(p — 1)*(a—1)* [pa — (0 + 9)].

Clearly, if A # 0, —1, then ¢(\) = 0. ]

Remark 3.3.8. Performing elementary row transformations, it can be seen that
the number of zero rows in any row echelon form of M is | Ay |+|As|+|Ay|+| A5 —4.
Hence the nullity of M is pg(p+q—2)—4 and thus A = 0 is an eigenvalue of G with
the geometric multiplicity of A = 0 is pg(p+¢—2)—4 which is same as its algebraic
multiplicity. In a similar way, it can be seen that the algebraic multiplicity of
A = —1 is the nullity of M + I, which is equal to |A3| + |Ag| + |A7| —3 = pg — 4.
Since ¢(\) is a polynomial of degree 7, the total number of eigenvalues is

[pg(p + ¢ — 2) — 4] + (pq — 4) + 7, which is found to be the same as 31 | |A;].
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3.4. Adjacency Matrix and Eigenvalues of I'(Z,2,)

Remark 3.3.9. Since M is a symmetric matrix with all diagonal entries zero,
the sum of the eigenvalues is equal to the trace of M, which is zero . The non-zero
eigenvalues of M are precisely —1 and the zeros of ¢(\). Also, from equation
(3.7), the sum of the roots of ¢(A) = 0; is pg — 4. Hence it is convinced that sum

of the eigenvalues of M is (pq —4)(—1) + (pqg — 4) = 0.

The above Theorem gives the characteristic polynomial of a class of graphs,
namely ['(Z,2,2) where p < g are distinct primes. For example, the characteristic

polynomial of Zsg, Z100, Zo25 can be obtained using the above Theorem.

3.4 Adjacency Matrix and Eigenvalues of I'(Z,)

Let n = p?q where p and ¢ are prime integers with p < g and let G = I'(Z,2,). By
proposition 3.2.1, n has p(p+ ¢ — 1) — 1 non-zero zero divisors. The computation
of the spectrum of this graph is not as much difficult as in the previous section,
since the equitable partition of the set of non-zero zero divisors of Z,2, contains
only four disjoint sets as given below.

Ey={kip:k =1,2,..pqg — L,where pt k; and q 1 k; }.

Ey = {koq: ko =1,2,..p> — 1,where p{ ky }.

Es ={kspq:ks=1,2,..p—1}.

Ey={ksp* : ky =1,2,..q — 1}.

Clearly, [Er| = (p=1)(g = 1), [Eof =plp—1), [Es|=(p—1), [Euf=(¢-1).
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3.4. Adjacency Matrix and Eigenvalues of I'(Z,2,)

The adjacency matrix of G is given by ,

Op-1)(g-1)

Op(p—1)x(p—1)(g-1)

O(p—l)(q—l) xp(p—1)
Op(pfl)

Jp-1)a-1)x(-1)  Op-1)(g=1)x(g-1)

Op(p—1)x(p—1)

A (Zy2g)) =

p°q
Jp—1)x(p-1)(g-1)

O(g-1)x (p-1)(g—1)

O(pfl)xp(pfl)

J(q—l)Xp(p—l)

J =1 Jo-1)x(g-1)

Jig-1)x(p-1)

Remark 3.4.1. The stability number «(G) = |Ey| + |Eo| = (p— 1) (p+ g — 1).

Remark 3.4.2. The clique number w(G) = |E3| =p — 1.

Remark 3.4.3. Since Fj3 induces a complete subgraph of order p — 1, the girth

gr(G) =4if p=2and gr(G) =3, if p = 3.

Theorem 3.4.4. Let G = I'(Z,2,) and let X be an eigenvalue of G. Then A =0

and A = —1 are eigenvalues of G with multiplicities (p — 1)(p +q— 1) + (¢ — 4)

and p — 2 respectively. If X # 0, X # —1, then X\ satisfies,

M—(p=2)X3=2p(p—1)(g— )N +p(p—1)(p—2)(¢— )A+p(p—1)*(¢—1)* = 0.

Proof. Let M = A(I'(Z,2,)). The eigenvalues of G are given by

det(M — AI) = 0

M=)\ = ,

where A =

-2 0
0 =X
| 0
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3.4. Adjacency Matrix and Eigenvalues of I'(Z,2,)

1 eeenns 1 0 0
1 eeenns 10 --- 0
B = and
0 ««on-- 01 --- 1
0 ««vn-- 01 --- 1
- - (p—D(p+g—1)x(p+q—2)
-2 1 1 1 1
1 =) 1
1 -2 1 1
C fr—
1 1 =X 0 0
0 =X - 0
(T | (T |

- - p+q—2
If A # 0, then A is invertible and by Proposition 3.3.2 and Proposition 3.3.3

detA = (—=\)P~DE+a=D) (3.8)
-1
dA = —1I
an )\
_ p—1(qg—1)Jp_1| Orp—1)x(o—
Also BTA™'B = 71 ( ) Vot (p—D)x(a=) , where J denotes a

O-vxe-n | P(p = 1)Jga
matrix of all ones.

Now, the Schur complement of A in C' is given by

copratpo| |
AQI A22
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3.4. Adjacency Matrix and Eigenvalues of I'(Z,2,)

where All = C(—A+ (;;71);471)7 1+(p71)>\(qf1)7 p—l) R

A1z = Jp-1)x(a-1) »
Azt = Jig-1)x(p-1) and
Agy = C(—A+@, ZESY Thus by Lemma 3.3.6 and equation (3.8),
det(M — M) = detA. det(C — B'A™'B)
= (=\) P~V get(C — BTAT'B) .

Applying Lemma 3.3.6 once again ,
det(C’ — BTA_lB) = detAll. det(A22 — A21A1_11A12)

By Proposition 3.3.2 it can be seen that,

h(A
detAH = ¥(—)\ — 1)1)72

where h(\) = =X+ (p—2)A + (p — 1)*(¢ — 1).
Also by Proposition 3.3.3,

Al = ;O(/\Q—( —3)A=(p—1)(¢-D(p=2)), A+(p—1)(a—1), p—1)
ROV + 1) P p—1)(g=1)(p—2)), A+(p—1)(¢—1), p

Also,

Agy — At AT A1, = C (-1 _Ap-1) pp-1)_A@-1)
1 (A=A BB =S, a-1)

and

Nh(A) —h(MNplp—1)(g—1) + N(p—1)(¢— 1)

det(AQQ—A21A;11A12) = (_1)1]*1)\(172 )\h(/\)

Applying these in equations (3.8), and (3.9), the characteristic equation of I'(Z,2,)
is obtained as
(G \) = AP=DeFa=Dra=4 () 1 1)P=25()) = 0
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3.4. Adjacency Matrix and Eigenvalues of I'(Z,2,)

where ¢(A) = A — (p = 2)A° = 2p(p — 1)(¢ = )N + p(p — D(p — 2)(q¢ — DA +
plp—1)°(¢ —1)*

Hence A = 0 and A = —1 are eigenvalues of G with multiplicities (p — 1)(p + q —
1) 4+ (¢ —4) and p — 2 respectively. Also if A # 0, A # —1, then \ satisfies,

d(A) = M =(p=2)X*~2p(p—1)(¢— 1)\ +p(p—1)(p—2)(g—1)A+p(p—1)*(¢—1)* =

0 ]
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Chapter 4

The adjacency matrix and eigenvalues of I'(Z )

The spectrum of I'(Z,) for n = p3 p* where p is any prime, is
found in Section 2 of this Chapter. The adjacency matrixz and the
characteristic polynomial of I'(Z,y) for any k = 3, along with two
eigenvalues with their multiplicities, are explored in section 3. A
general method is proposed to compute the eigenvalues of I'(Zy,) for
any n, using the quotient matrixz of equitable partition of its vertex

set in Section 4.

4.1 Introduction

As it is seen in the previous Chapter, the difficulty level of finding the charac-
teristic polynomial of I'(Z,) increases as the number of classes in the equitable
partition of the zero divisors of Z,, increases or in other words, if the number of

proper divisors of n increases. In this chapter, the study is focused to the class

!This chapter has been published in Journal of mathematical and computational science,

Volume 10, Issue 5, 2020, Pages 1643-1666.
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4.2.  Adjacency matrix and the computation of the spectrum of I'(Z,s) and
I'(Zyy)

of zero divisor graphs of Z, where n is any finite power of an arbitrary prime p.

4.2 Adjacency matrix and the computation of

the spectrum of I'(Z,) and I'(Z)

Recall that Z, is an integral domain and it does not contain any non-zero zero
divisors. I'(Z,2) is a complete graph and hence it is trivial to find its spectrum.

Hence, the attempt is initiated with I'(Z,s) and I'(Z).

4.2.1 The adjacency matrix of I'(Z,)

Theorem 4.2.1. The adjacency matriz of T(Z,) for n = p3, where p is a prime
nteger, 1s
Ow2—p) J2—p)x(p-1)

J(p—l)X(pz—p) J - I(pfl)

where J is a matriz of all ones and I is an identity matriz. The order of this

AT (Z3)) =

matriz is  p* — 1.

Proof. Let n = p3. By Proposition 3.2.1, the number of non-zero zero divisors of

Z,s is p? — 1. These p? — 1 non-zero zero divisors are partitioned as follows.

P
P ={kip:k =1,2,..p° — 1,where pt k; }.
Py = {kop? 1 ko = 1,2, ...p — 1,where p { ky}.
Using elementary number theory, it can be easily seen that the cardinality of P;

is |P1| = p? — p. Similarly,

|Py| = p— 1. Tt is also observed that,
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4.2.  Adjacency matrix and the computation of the spectrum of I'(Z,s) and
I'(Zyy)

1. zy # 0,Vx,y € P;.
2. xy =0,Yre P, and Vye Ps.

3. xzy =0,Vx,y e Ps.

These simple observations give rise to the partitioned structure of the adjacency
matrix of I'(Z,3). The non-zero zero divisors of n are rearranged such that the
elements of P, appear first and then P,. Since no two vertices in P; are adjacent,
it is an independent set in I'(Z,s) and hence it corresponds to a block of zeroes
in the adjacency matrix. Also since all vertices of P, are adjacent to every vertex
of P,, it corresponds to a block of all ones and so on. Thus the adjacency of
vertices among P, corresponds to the block J — I. Thus the adjacency matrix
of I'(Z,3) is a 2 x 2 block matrix consisting of blocks of zeros and ones in the

following form,

O(pgfp) J (P%—p)x(p—1)
J - [(p—l)

A((Zyp)) =

Jo-1)x(p? )
The order of this matrix is |Py| + |Ps| = p* — 1. O

4.2.2 Spectrum of ['(Z,)

The order of the adjacency matrix of I'(Z,3) is p* — 1. To reduce the complexity
in the direct computation of the characteristic polynomial, some tools of Matrix

Theory are adopted, among which Schur complement and coronal play vital role.

Definition 4.2.2. [59] Let 1,, denote an all-one vector. The coronal of a matrix
A, denoted by T o(x), is defined as the sum of the entries of the matriz (xI—A)~!.

That is, T x(z) = (1,)T.(a] — A) 1.1,
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I'(Zyy)

Lemma 4.2.3. [27] Let G be a r-reqular graph on n vertices, with adjacency

matriz A. Then, T a(z) = n

r—r
Lemma 4.2.4. [53] Let A be an n x n matriz and J, v, denote an all one matriz.

Then, det(zl,—A—ad,xn) = (1—al'a(x)).det(xl,— A), where a is a real number.

Let G = I'(Z,3) and M = A(I'(Z,3)). The vertex set of G is partitioned into
P, and P,, where P; induces the null subgraph sz,p and P, induces a complete

subgraph K,_; both of which are regular of degree 0 and p — 2 respectively.

Theorem 4.2.5. Let G = I'(Z,3) and let X be an eigenvalue of G. Then A =0
and X = —1 are eigenvalues of G with multiplicities p?—p—1 and p—2 respectively.

If X #0, X # —1, then X satisfies \* — (p — 2)A — p(p — 1)*> = 0.

Proof. Let the adjacency matrix of G = I'(Z,3) be denoted by M. From equation

(4.1),
Op2— J (52— ) x (p— A A
M = (p*-p) (2—p)x (=) | _ A2
Jo-vxr—p) | J = Lp-1) Az Ay
Clearly A; and A, are the adjacency matrices of the induced subgraphs ?pz_p
2 _
and K, of G respectively. By Lemma 4.2.3, 'y, (\) = b 3 P and
p—1
Fa,(\) = ——.
() A—p+2

The eigenvalues of G are given by det(\ — M) = 0.

By Lemma 3.3.6 ,
det(\I — M) = det(A — Ay).det [(A] — Ay) — AsT.(AT — A1) 71 As] . (4.2)

where det(\] — A;) = X2 and det(\ — Ay) = (A —p +2).(A +1)7 2.
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I'(Zyy)

Also, using Lemma 4.2.3 and Lemma 4.2.4 and equation (4.2),

det [(AI — Ayg) — A" (M — Ay) 7" Ay | = det [(A — Ag) — Tay (N)-Tp—1xp1]

— det [()J - (& - p).Jplxpl]

A
(- 5htsty)

A=p+2).(A+1)P2

_ (1 _ (s p)FA4(>\)) det(N] — Ay)

Thus, the characteristic polynomial of G is given by,
(G N) = N PTL A+ )P (A2 — (p—2)A —p(p — 1)?)

Thus the spectrum of I'(Z,3) is

N . (p—2)+/4p3 = Tp>+4 (p—2) —/4p3 —Tp> + 4

2 2
pP—p—1 p—2 1 1

4.2.3 Adjacency matrix and eigenvalues of I'(Z)

Partitioning the non-zero zero divisors of Z,s into multiples of p, p?, p® and
labeling the vertices of the zero-divisor graph I'(Z,:) properly, the adjacency
matrix of I'(Z,) is obtained as,

Op2(p-1) Op2(p-1)xpp-1)  Jp2(p-1)x(p-1)

A(F(ZP4)) = Op(p—l)xp2(p—1) J = Ipp-1) Ip(p—1)x(p—1)

Jo-1xp20-1) | Jo-1)xpp-1) S =1
The characteristic polynomial can be computed as in Section 4.2.2.

Theorem 4.2.6. Let G = I'(Z,1) and let X be an eigenvalue of G. Then A =0

and X = —1 are eigenvalues of G with multiplicities p> — p?> — 1 and p* — 3
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4.3. The generalised join structure of I'(Z,,)

respectively. If X # 0, A # —1, then X\ satisfies ¢(\) = A3 — (p* — 3)\* — (p* —

20° +2p* = 2)A+p*(p—1)*)(p* —p—1) = 0.

4.3 The generalised join structure of I'(Z,)

It is observed that, for higher powers of p, the number of blocks in the adjacency
matrix of I'(Z,x) is not feasible for applying Lemma 4.2.3 and Lemma 4.2.4 to
extract the spectrum in full and this problem becomes severe when n has more
prime power factors. At this juncture, the structural properties of the graphs
I'(Z,) may be analyzed in terms of the induced subgraphs. S. Chattopadhyay et
al have thrown light into the generalised join structure of I'(Z,) by the subgraphs

induced by the vertices which forms an equitable partition of its vertex set.

By a proper divisor of n, we mean a positive divisor d such that d/n , 1 <d <
n. Let £(n) denote the number of proper divisors of n. Then, {(n) = oy(n) — 2,
where oi(n) is the sum of k powers of all divisors of n, including n and 1. It
is convenient to denote the proper divisors of n by di,ds, ..., d¢n). Consider
the canonical decomposition n = p{* - py? - - - pI'v, where py, pa, ..., p, are distinct

primes, and r,ny, no, ..., n, are positive integers. Then,

T

gm) = [tmi+1) —2

i=1
. Let A(d) = {k € Z, : ged(k,n) = d}. Then {A(d), A(ds), ..., A(de(n)) } is an
equitable partition for the vertex set of I'(Z,,) such that A(d;) nA(d;) = ¢, # j,

and any two vertices in A(d;) have the same number of neighbours in A(d;) for

all divisors d;, d; of n. Refer [25] for the following Lemma.

Lemma 4.3.1. [25] |A(d;)| = gb(g), for every i =1,2,..&(n).
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4.3. The generalised join structure of I'(Z,,)

Lemma 4.3.2. [25]

Kyny ifnfd;
['(A(dy)) = “
Koy ifn| d3

;

For example, in I'(Z,:), A(p) induces K1) and A(p?) induces K, 1. In
I'(Zy2,), Alp), Alq), A(p*) induce K, 1y(q-1), Kpp-1) Kq—1 respectively while
A(pq) induces K,_1; which is visible from the diagonal blocks 0, — I in the

adjacency matrices of respective graphs.

It is relevant to define the proper divisor graph of n which is closely associated

with I'(Z,) in describing its joined union structure.

Definition 4.3.3. [49] The proper divisor graph of n, denoted by Y, is a sim-
ple connected graph with vertices labeled as dy, da, ..., deny; i which two distinct

vertices d; and d; are adjacent if and only if n/d;d;.

The following Lemma is very crucial in finding the spectrum of I'(Z,,) for any
n; which states that the zero-divisor graph of I'(Z,) is a generalised join of its

subgraphs I'(A(d;)), for i = 1,2, ...,&(n).

Lemma 4.3.4. [25] [(Z,) = T, [[(A(d1)), T(A(d2)), ..., T (A(de(ny)) ]

For example, consider I'(Zsy). The proper divisors of 30 are 2,3, 5,6, 10, 15.
The vertices of I'(Z3) are partitioned into disjoint sets as follows.
A(2) = {2,4,8,14,16,22,26,28}, A(3) ={3,9,21,27}, A(5) = {5,25},
A(6) = {6,12,18,24}, A(10) = {10,20} and .A(15) = {15}. The zero-divisor

graph I'(Zs) and its proper divisor graph are given in Figure 4.1.
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4.4. Adjacency matrix of I'(Z,), k =3

(a) I'(Zs0)

Figure 4.1: The zero divisor graph on Zs, and the proper divisor graph T3

Example 4.3.5. For example, consider I'(Z3g). The number of proper divisors
of 36 is 7. They are precisely 2,3,4,6,9,12,18. The non-zero divisors of I'(Zsg)
is partitioned into 7 classes as follows. A(2) = {2, 10, 14, 22, 26, 34},

A(3) = {3,15,21, 33}, A(4) = {4,8,16,20,28,32}, A(6) = {6,30},

A9) ={9,27},  A(12) = {12,24},  A(18) = {18}.

The graphs I'(Z3s) and T3 are given in Figure 4.2 and Figure 4.3. Note that
['(A(6)), T'(A(12)) and T'(A(18))) are complete subgraphs, while the others are

null graphs.

4.4 Adjacency matrix of I'(Z), k>3

In this section, the adjacency matrix of I'(Z,),k = 3 is analysed. Also, we
note that the proper divisors of p* are p, p?, ..., p* ! and the number of non-zero
zero-divisors of Z,x is p"~' — 1, by Proposition 3.2.1.

The adjacency matrix of I'(Zy), I'(Z,5), I'(Zys), I'(Z,7), analysis of which led

to some interesting results, are given in Figure 4.4, Figure 4.5, Figure 4.6, and
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4.4. Adjacency matrix of I'(Z,), k =3

Figure 4.2: T34

Figure 4.3: I'(Zss)
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4.4. Adjacency matrix of I'(Z,), k =3

Figure 4.7

As illustrated in section 3.2, the adjacency matrix of I'(Z,+) contains blocks

) ; Ap) AP AP AP
Alp) A@p*) Ap’) -
Ap) | O 0 0 /
A(p) [ Y / ] 2
2 AP’ | O i’ !
APy | O | J=-1 3
: AW 0 =1
A@) | J S Il z
A" | T J foo I
Figure 4.4: A(I'(Zy)) Fi 4.5: A(I'(Zys))
igure 4.5: P°
A) AGY) ALY ALY AL " A(()p) Ag’) Ag)) Ag’) A(OP) A(j’)
p
A(i) o o | o 0 "a o o o | o ! ’
A(p3) 1) o o J J A(p?) o 19 o) J J J
.A(p4) o o |J-1 Tlae o o O I !
A(p5) 1) J J J—1 J .A(ps) o J J J J—-1 J
A(p) L J J J J-1 .A(p6) J J J J J J—1

Figure 4.6: A(I'(Zys))

of all zero matrices, all one matrices and identity matrices.

Figure 4.7: A(I'(Z,7))

If all vertices of

A(p') are adjacent to every vertex of A(p’), we write A(p') ~ A(p’). Clearly,

A(p') ~ A(p?) iff i + j = k. Also, A(p') ~ A(p'), indicates that every vertex

of A(p') is adjacent to every other vertex of A(p’) and clearly the equivalent

condition of adjacency of vertices among A(p’) is that; A(p’) ~ A(p’) iff i = [].

Thus, the adjacency matrix of I'(Z,) is obtained as in Figure 4.8 and Figure

4.9.
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4.4. Adjacency matrix of I'(Z,), k =3

Alp)  A@p?) A(plsty - A@pleT) A(pF)
Al(p) e O O 10, J
Ap?) O J
A | o 0 J J
A(p'al) J—1 J J
10 J o J—-1 J J
10 J . J : J

A | T J J J R .

Figure 4.8: A(I'(Z,x)); when k is even
4.4.1 Some graph parameters of I'(Z,)

The above analysis of the structure of I'(Z,+) leads to some results regarding the
stability number, clique number and girth of I'(Z,«). As the matrix narrates the
adjacency between A(p’) and A(p?), for 7,5 = 1,2,....k — 1 and the adjacency
among the vertices of each A(p?), i = 1,2, ...,k — 1, it is clear that, any principal

sub matrix of zero blocks corresponds to an independent set in I'(Z,x ).

Theorem 4.4.1. Let G = I'(Z,), k = 3. Then, a(G) = p*! — pla!

Proof. From the adjacency matrix of I'(Z,x), it is clear that, the maximum size

of a principal sub matrix of zero blocks is |A(p)| + JAP?)| + ... + [A(pz17Y).
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4.4. Adjacency matrix of I'(Z,), k =3

Alp) AP AP AR AP
Ap) | o 0 0 o J
A(p?) 0 J
J

Az | o J J J
A(plah) 0) J—1 J
J J J J-I J J

5(]916*1) | J J J J J R A

Figure 4.9: A(I'(Z,)); when k is odd

Thus, by Proposition 4.3.1,

k k k

p p p
a(G) = 9(0) 4 0(0) + ot 0l )
_ ¢(pkfl) +¢(pk72) + .. _i_(b(pk:f[g]ﬂ)
_ pk—l o png

Theorem 4.4.2. Let G = I'(Zyx), k = 3. Then,
pg —1; if kis even,
png; k is odd.
Proof. A clique of a graph G is a subset of V(G) which induces a complete

subgraph in G. Thus, the maximum size of a clique in I'(Z,) is AT +

AP + .+ |A(PF )| ; if k is even and one more than this number if k is
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4.4. Adjacency matrix of I'(Z,), k =3

odd.
. . . oF o
AP+ A + .+ AR = ¢(p[§1) + ot O(5)
= o(p) + ... + o(pl2)
pg —1; if kis even,
Thus, w(G) = O

plsl: if k is odd.
Theorem 4.4.3. Let G = I'(Zy:), k = 3 for any prime p. Then, gr(G) = 3

except that gr(I'(Zs)) = oo

Proof. Consider k > 3.

If k is even, from the above Theorem, we see that w(G) = 3, for any prime p.

If k is odd, w(G) = 3, for any prime p = 3. Thus, the length of the shortest cycle
is 3 in these cases. Also for p = 2 and k = 3, we see that the zero divisor graph

I'(Zsg) is K 2, which contains no cycle. O

4.4.2 The eigenvalues A =0 and A = —1 of I'(Z)

Matrix Theory is a mode of conveying very important information regarding both
structural and algebraic parameters of a graph. Here, from the point of view of

Linear Algebra, the multiplicities of the eigenvalues 0 and —1 are calculated.

Theorem 4.4.4. Let G = I'(Zyx),k = 3. Then A =0 and A = —1 are eigenval-

ues of G with multiplicities p"~! — pl3l — [£1+ 1 and plsl — |£] — 1 respectively.

Proof. The adjacency matrix of I'(Z,x) contains repeated rows. Hence the deter-

minant is zero. This indicates that A\ = 0 is an eigenvalue. Since the adjacency
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4.5. Computation of eigenvalues of I'(Z,,)

matrix of any simple graph is real and symmetric, it follows that the algebraic
multiplicity of A = 0 is the nullity of the adjacency matrix, which is exactly the
number of dependent rows in the adjacency matrix of I'(Z,). If M = A(I'(Z,)),

then in each of the first [g] — 1 blocks of M | all but one, are dependent rows.

Thus,
nullity(M) = |A(p)| + [AP*)] + .. + AR )] - ([g] - 1)
P p* p* k
= cb(;) + ¢(];) + ot czﬁ(p[g]_l) —(51=1

— Pt —plsl - [g] +1.
Thus, multiplicity of A = 0is  pr1 — pl3l — [5]+ 1.
Also, we can see that det(M + I) = 0. Hence A\ = —1 is an eigenvalue of M and
multiplicity of A = —1 is the nullity of M + I. In each of the last |£] blocks of

M + I, all but one, are dependent rows. Thus nullity of M + I is given by,

k
nullity(M + 1) = A+ JAGE)] 4+ A = 15
_ Ry
Thus multiplicity of the eigenvalue A = —1 is plz! — 1] - 1. O

The other eigenvalues of I'(Z,:) are computed in Section: 4.5.

4.5 Computation of eigenvalues of '(Z,)

It is very exciting to observe that the induced subgraphs T'(A(d;)); being com-
plete or null; are regular for ¢ = 1,2,3,...,&(n). The regularity of these induced
subgraphs of I'(Z,) and its joined union structure makes it easy to apply the

technique described by A.J. Schwenk [75] in finding the spectrum of I'(Z,).
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4.5. Computation of eigenvalues of I'(Z,,)

Definition 4.5.1. [75] Let V1, V5, ...V, be an equitable partition of a graph G,
with |[N(v) N V;| = t;;,1 < 4,5 <m, for allveV;. Then, T = [t;;] is called the

matriz associated with the partition.

Theorem 4.5.2. [75] Let G be a graph on p vertices. If H;,1 <1i < p are all r;-
reqular graphs, then Vi uVau ... UV}, is an equitable partition of G[Hy, Hs, ...H,|.
Let T denote the matrix associated with this partition. Then, the characteristic

polynomial of the generalised composition is

®(G[H,, Ho, ...Hp]; A) = O(T; \). ﬁ q{)(\]‘f;)\))

The above theorem leads to a very exciting way of computing the eigenvalues
of I'(Zy,).
First, we determine 7', the matrix associated with the partition A(d;) v A(d2) U
.. U A(dg(ny). of the graph I'(Z,). Let [N(v) n A(d;)| = ti;,1 <14,j < &(n), for
all v e A(d;). Note that A(d;) ~ A(d;) if and only if n/d;d; and A(d;) induces a
complete subgraph in G, if and only if n/d? and a null graph if and only if n { d2.

Thus, T' = [tij]e(n)xe(n) is defined as follows.

-

gb(dﬂj); ifn/ddj; i#j
tij = o(g)—1 ifn/ 2 i=j (4.3)
0; otherwise

\

This description completely determines 7" and subsequently ®(7; A\) and makes
it possible to explore the characteristic polynomial of I'(Z,,) in a very convenient

manner.

Theorem 4.5.3. Let G = ['(Z,),n # p,p*, for any prime p. Then the charac-
teristic polynomial of G is (G; ) = ®(T;N). [ | /dz()\+ 1) )1 ancﬁ )\qb(d%)ﬂ’
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4.5. Computation of eigenvalues of I'(Z,,)

where T = [t;;],
(T); ifn / didy; i #

bi= () =1 ifn/dy i=

&z

0; otherwise
\

Proof. Let n = pi*py*...pI", where py, pa, ..., p, are distinct primes, r, ny, ng, ..., n,
are positive integers and assume that n is neither a prime nor the square of a
prime (to avoid triviality). Let di,ds, ...dem) be the proper divisors of n. Let
m; denote the cardinality of A(d;),i = 1,2,...,§(n). Thus, m; = ¢(7),i =
1,2,...,&(n). It is already seen that I'(A(d;)); the subgraph induced by .A(d;) is
either K,,, or K,, which are regular of order m; — 1 or 0 respectively; accordingly
as n divides d? or not.

Thus, ®(T(A(d;)); ) = P(Kp; A) = A+ D)™ L (A—m; +1);ifn / d? and
D(L(A(d); N) = ©(K i A) = X7 ifnf di.

Thus, the conclusion follows from Lemma 4.3.4 and Theorem 4.5.2 .

O

Example 4.5.4. Consider n = p?q, where p and ¢ are distinct primes p < q.
The proper divisors of p?q are dy = p, dy = q, ds = p* and d4 = pq.

A(dy) ={kip ki =1,2,..pg — L;pt k1,q 1 k1}.

A(dy) = {koq : ke =1,2,..p° — 1;p 1 ka}.

A(ds) = {hsp? t ks = 1,2, ..q — 1.

A(dy) = {kapq : ks = 1,2,..p — 1}.

Clearly, [A(d)| = (p—1)(g — 1), [Ald)] = plg —1), |A(ds)] = ¢—1, and
|A(ds)| = p— 1.

(
(
(
(dy

These sets form an equitable partition for the vertex set of I'(Z,), as seen in
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4.5. Computation of eigenvalues of I'(Z,,)

Section 3.2.

Also, the matrix of partition,

0 0 0 p-1
0 0 g—1 0
T =
0 pp—1) 0 p-1
| (p—D(g—1) 0 g¢—1 p—2 |

The characteristic polynomial of this matrix is given by, ®(T; \) = det(T — \I).
Thus,

(T3 0) = X=(p=2)N°=2p(p—1)(¢—D)N*+p(p—1)(p—2)(¢—1)A+p(p—1)*(¢—1)*.
Let G; = I'(A(d;)),i = 1,2,3,4.. Note that G, G, G5 are null graphs of order
(p—1)(¢—1), p(p—1) and g— 1 respectively and G4 is a complete graph of order

p — 1 which is regular of degree p — 2. Thus,

O(Gy; \) = Ap~Dla—D)
®(Go; \) = APP7D

O(G3; ) = A1

(G \) = A+ 1P 2N —p+2).

Hence the characteristic polynomial of I'(Z,2,)

(I (Zyzg; A)) = (A + 1P 2 AP DEHDHED (T, ),
where ®(T5 ) = A — (p = 2)A° = 2p(p — 1) (¢ = DN +p(p —1)(p = 2)(¢ = DA +

p(p —1)%*(q = 1)%

Remark 4.5.5. In the above example, the order of the zero divisor graph I'(Z,2,)
is p? + pg—p — 1, by Proposition 3.2.1. Theorem 4.5.3 reduces the inconvenience

of handling a huge matrix of order p? + pg — p — 1 in finding the eigenvalues, by
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4.5. Computation of eigenvalues of I'(Z,,)

means of a 4 x 4 matrix of partition and thereby serves the purpose of bypassing

the tedious traffic of direct computation using matrix operations.

Corollary 4.5.6. The characteristic polynomial of I'(Zyr), k = 2 is given by

(k—i—1)

O(L(Zy); N) = S(T50). [ [ e TT (v e,

i<[X] i=[%]

where T = [ti;](k—1)x(k=1)
(p— Dpt=77Y fitj=hy i#]

iy = (p—-1p" 71 —1; ifi+ji=k i=j

0; otherwise
\

Proof. A(d;) induces a complete subgraph in I'(Z,) if and only if n/d?; and a
null graph otherwise. hence if n = p*; k = 2, A(p') induces a complete subgraph

of order p*~*"!(p — 1) if i = [£] or a null graph otherwise. O

Example 4.5.7. For G = I'(Z,), it can be seen from section 3.1 that the matrix

of partition of the vertex set of GG is given by,

Thus ®(T; \) is obtained as,

D(T; N) = N3 = (pP* =3)N — (p* —2p° + 2p* —=2)A+p*(p—1)*(p* —p—1). Applying

Corollary 4.5.6, we see that the characteristic polynomial of I'(Z) is,
O(I(Zys): N) = (A + VP3NP =L (T ),

where ®(T;A) = > — (p* = 3)A? — (p* = 2p> + 2p° = 2)A + p*(p — 1)’ (p* —p — 1)
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4.5. Computation of eigenvalues of I'(Z,,)

Thus Theorem 4.5.3 and Corollary 4.5.6 are the generalisation of results in

Section 4.2.2 and Section 4.2.3.
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Chapter 5

Direct computation of distance related

spectrum of I'(Z,) for some values of n

In this Chapter, the distance matriz, distance Laplacian matrixz and

distance signless Laplacian matrix and the spectra of these matrices

for the graphs I'(Zy,q) and I'(Z,3), for p < q, are found.

5.1 Introduction

The notion of distance and transmission of vertices in graph theory finds wide
applications in different realms of the physical world including the design of com-
munication networks, graph embedding and molecular stability. This Chapter is
devoted to the determination of distance, distance Laplacian and distance sign-
less Laplacian eigenvalues of I'(Z,,) for some values of n. Recall Definition 2.3.3
and Definition 2.3.4 of distance, distance Laplacian and distance signless Lapla-

cian matrix of a connected graph G.

!This chapter has been published in Journal of Mathematical and Computational Science,

Volume 11, Issue 1, 2021, Pages 365-379.
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5.2. Distance spectrum of I'(Z,,) and I'(Z,s) where p and ¢ are distinct
primes, p < ¢

Since the distance matrix of a connected graph is symmetric, its eigenvalues are
real and can be ordered as ¢; = 0y > ... = 0,,. Let ®p(G; \) denote the charac-
teristic polynomial of the distance matrix of G and Specp(G) denote its distance
spectrum. The largest distance eigenvalue of G is referred to as the distance
spectral radius. The distance energy of G is given by, Ep(G) = X7, |0;|. [48]
Specpr(G) and Specpe(G) denote the spectrum of G related to the distance
Laplacian and the distance signless Laplacian matrix of G respectively. Let us
denote det(A — DL(G)) and det(A — D?(Q)) by ®pe(G; \) and @ pe (G; \) re-
spectively. For a connected graph G on n vertices, 0F = ok > ... = 6% denote
the distance Laplacian eigenvalues and 0% > 6% > ... > 09 denote the distance

signless Laplacian eigenvalues.

5.2 Distance spectrum of I'(Z,,) and I'(Z,;) where

p and ¢ are distinct primes, p < g

This Section, illustrates the direct computation of the distance spectrum of
I'(Z,), where n = p3 pq, where p and ¢ are distinct primes, p < ¢. Recall
that I'(Z,) is a complete graph if and only if n is the square of a prime and a
complete bipartite graph if and only if n is the product of two distinct primes or

n = 8&.

Theorem 5.2.1. For any two distinct primes p and q, the distance spectrum of

I'(Zyy) is given by,

SpecD(F(qu)) :{ - y p+q_4+\/p2+(112—pq—(p+q)+1 p+q—4—\/p2+ql2—pq—(p+q)+1 }
p+a—
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5.2. Distance spectrum of I'(Z,,) and I'(Z,s) where p and ¢ are distinct
primes, p < ¢

Proof. Let G = I'(Z,,;). The only proper divisors of pg are p and ¢ and the
number of non-zero zero-divisors of Z,, is p + ¢ — 2. Labeling these p + ¢ — 2

vertices of GG properly, it can be seen that,
A(p) = {]ﬁp . kl = 1,2, e q — 1}7

Alq) =1{koqg: k—2=1,2,...,p—1}.

And these two subsets of vertices of G, from an equitable partition of V(G).
Then, clearly |A(p)| = ¢ — 1 and |A(q)| = p — 1. While labeling the vertices, let
those from A(p) be arranged first and then A(g). Also, A(p) and A(g) induce
null graphs of order ¢ — 1 and p — 1 respectively. Thus, G = I'(Z,,) is the Ks-
join of Fq,l and Fp,l.

That is,

I'(Zpg) = Kq-1 v Kp1.

Clearly, the distance between any two vertices of A(g) as well as A(p) in G, is
2. Also, the distance between a vertex in A(g) and a vertex in A(p) is 1 in G.

Thus, if J denotes an all-one matrix, the distance matrix of G is given by,

2(J = I)(g-1)x(g-1) Jig-1)x(p-1)

D(G) =
| Je-oxe-n | 200 = De-nxe-n
Al
JT| B

where A = 2(J — ])(q,l)x(q,l), B = Q(J — I)(pfl)x(pfl)‘

Using Lemma 3.3.6, it can be easily seen that,

p(G; A) = det(A\ — A).det [(M — B) — JT(M — A) " J]|
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5.2. Distance spectrum of I'(Z,,) and I'(Z,s) where p and ¢ are distinct
primes, p < ¢

Using Lemma: 4.2.4,
Op(G; N) =det(A — A) -det(A — B) - (1 —Ta(N).T'g(N)) (5.1)

Since A and B are symmetric matrices with constant row sums 2(¢ — 2) and

2(p — 2) respectively, it follows from Lemma 4.2.3 that,

qg—1
Pl =3~ 2(p—2)
and
p—1
P =35y

Since A = 2(J — I), where J and [ are all-one matrix of size ¢ — 1 and identity

matrix of size ¢ — 1 respectively, again by Lemma 4.2.4,
det(N — A) = det(MN —2J +21) = (A +2)72. (A —2(qg—2)).
Similarly, since B = 2(J — I) is of size p — 1,

det(\ — B) = det(A —2J +2I) = (A +2)P72. (A —2(p — 2)).

Thus, from equation (5.1), it follows that, ®p(G; \) = (A+2)72- (A+2)P2.Q(N),
where Q(\) = A2 —2X\(p+q —4) + 3pg — 7(p + ¢q) + 15. Thus,

Specp(I'(Zyg)) =

2 pta—4+PP+—pg—(p+ta)+1l prag—4—+p?+q> —ps—(p+aq) +1
pt+qg—4 1 1

Since the distance matrix of a connected graph is irreducile, non-negative and
symmetric, it follows from Perron Frobenius Theorem that, its largest eigenvalue
is simple . It is obvious that the number of distinct distance eigenvalues of I'(Z,,)

is 3 and thus immediately the next Corollary follows.
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5.2. Distance spectrum of I'(Z,,) and I'(Z,s) where p and ¢ are distinct
primes, p < ¢

Corollary 5.2.2. The distance spectral radius of I'(Z,,), when p and q are

distinct primes , p < q, isp+q—4++/pP*+@P—pg— (p+q) + L.

The following Corollary gives a lower bound for the distance energy of I'(Z,,).
Corollary 5.2.3. For any two distinct prime p,q, Ep(I'(Zyg)) = 2(p+ g —4).

Theorem 5.2.4. For any prime p # 2, the distance spectrum of I'(Z,3) is given

by,

Specn(I(Zp)) = {

pP—p—1 p—2 1 1

_9 1 20-p—d+/Apt-8pi+p2+ap  2p%—p—d-+/ipT-8pS+p2+ip }
2 2

Proof. Let G = I'(Z,3). As described in Theorem 4.2.1, it can be seen that the
number of non-zero zero divisors of Z,s is p? — 1. These p* — 1 vertices of G are
partitioned (equitable partition) as follows.

A(p) = {kip: ky =1,2,..p*> — 1,where pt k; }.

A(p?) = {kop?® : ko = 1,2,...p — 1,where p | ko}.

Clearly, A(p) induces a null graph of order p(p—1) and A(p?) induces a complete
graph on p — 1 vertices, as described in Section:4.2. Thus, I'(Z,3) = fp(p,l) v
K

»—1. Recall that the distance matrix of a complete graph is the same as its

adjacency matrix. Thus, the distance matrix of GG is given as follows.

2(J — ])p(p—l)xp(p—l) Ip(p—1)x(p—1)

D(G) =
| J(p—l)xp(p—l) (J_ I)(p—l)X(p—l)
Al J
JT ' B

where A = 2(J — I)pp-1)xpp-1)s B = (J = I)p-1)x(p-1)

Proceeding as in the previous theorem, we get,

9 1 2p2 —p—4++/4p* —8p3+p2+4p  2p%—p—4—+/4p* —8p3+p2+4p
_ 2 2
Specp(I'(Zy3)) = ,
pP—p—1 p—2 1 1
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5.3. Distance Laplacian spectrum for I'(Z,,), and I'(Z,s3), where p and ¢ are
distinct primes, p < q.

]

2_p— A/ —
Corollary 5.2.5. The distance spectral radius of I'(Z,3), is, 2 pmdt 454 Spt+pitap

Corollary 5.2.6. For any prime p, Ep(I'(Z,3)) = 3(p* —p — 6).

5.3 Distance Laplacian spectrum for I'(Z,,), and
I'(Z,3), where p and ¢ are distinct primes,

D <q.

In this Section, the Laplacian spectra of I'(Z,,), and I'(Z,s) are computed, where
p and ¢ are distinct primes, p < ¢q. Each row sum of DX(G) is zero and for a
connected graph G of order n, and 0 is a simple eigenvalue of D*(G) with 1,, as

the corresponding eigen vector [11].

Theorem 5.3.1. For any two distinct primes p and q, the distance Laplacian

spectrum of I'(Z,,) is given by,

0 p+qg—2 p+2¢q—3 2p+q—3
Specpr (I'(Zyy)) =

1 1 q—2 p—2

Proof. Let G = I'(Zy,). Then G = K, 1 v K, 1. Also, A(p) = {kip : k1 =

1,2,...,q — 1} and A(q) = {koq : k —2 = 1,2,....,p — 1} form an equitable
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5.3. Distance Laplacian spectrum for I'(Z,,), and I'(Z,s3), where p and ¢ are
distinct primes, p < q.

partition of V(G). Thus, for any vertex v € A(p),

Tr(v) = Z dg(u,v)

ueV(G)
= Z dg(U,U) + Z dG(U,U)
ue A(p) ueA(q)

=2(q—2)+(p—1)=p+2q—05.

Similarly, for any vertex w € A(q),

Tr(w) = Z de(u, w)

ueV(QG)
= Z dG(u7 w) + Z dG(u7w)
ueA(p) ueA(q)

=(@-1)+2(p—-2)=2p+q-5.

Thus, the transmission matrix 7r(G) is given by

(p + 29 —5)(g—1)x(g-1) Otg—1)x(p-1)

Tr(G) =

Op-1)x(a-1) 2+ =5 p-1)xp-1)

And the distance matrix of G is given by,

2(J = I)(g-1)x(g-1) Jig-1)x(p-1)

D(G) =

Jo-nx@n |20 = De-nxe-

Thus, the distance Laplacian matrix of G is given by

(p+2q—5)1 —2(J = I)g1)x(q-1) —J(g-1)x(p-1)

D (@) =

~Jo-nx- (2p +q=5)1 =2(J = Dp-1yxp-1)

where A = (p+2q — 3)I — 2J(g-1)x(q-1), B= (2p+q—3)I — 2J(p-1)x(p-1)>

Proceeding as in the previous Section,
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5.3. Distance Laplacian spectrum for I'(Z,,), and I'(Z,s3), where p and ¢ are
distinct primes, p < q.

0 p+qg—2 p+2¢q—3 2p+qg—3
Specpr (I'(Zyy)) =
1 1 q—2 p—2

]

Theorem 5.3.2. For any prime p # 2, the distance Laplacian spectrum of
I'(Z,3) 1is given by
Specps(I(Zy)) = 4 Pl el

1 p—1 p*P—p—1
Proof. Let G = I'(Z,3). A(p) = {kip: k1 = 1,2,..p°> — Lwhere pt ky },
A(p?) = {kop?® : ky = 1,2,...p — 1,where p { ky} form an equitable partition for
the vertex set V(G). Also, I'(Zy3) = K pp—1) v Kp—1. The transmission degree of
any vertex in A(p) in G, is 2p? —p— 3 and of any vertex in A(p?) is p> —2. Thus,

the transmission matrix and the distance matrix and of G are given as follows.

20> =2 =3) L 1yxpip-1) | Opo-1)x(p-1)

Tr(G) =

O(pfl)xp(pfl) (p2 - 2)[(17*1)%%1)

2(J - ])p(p—l)xp(p—l)

J(p—l)xp(p—l) (J_ ])(p—l)X(p—l)

Jp(p—l)X(p—l)

D(G) =

Thus, it can be easily seen, that the distance Laplacian matrix of G is

(20> —p — )T — 2Jp(p—1)xp(p—1) —Jp(p—1)x (p—1)

DH(G) =

~Jo-1xpo-1) (V" = DI = Jp1)x -1y

A similar computation shows that,

Op(GN) =[N =@ —p—D T A= 2= D] Q).
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5.4. Distance signless Laplacian spectrum for I'(Z,,), and I'(Z,s), where p and
q are distinct primes, p < q.

where Q(\) = A (A — (p* — 1)). Thus,

0 p*—1 2p*—p—1
Specpr (I'(Zys)) =

1 p—1 p*P—p-—1

5.4 Distance signless Laplacian spectrum for I'(Z,,),

and I'(Z,3), where p and ¢ are distinct primes,
P <q.

In this Section, the distance signless Laplacian spectra of I'(Z,,) and I'(Z,3),
where p and ¢ are distinct primes, p < ¢ are computed. Note that, if G is a con-
nected graph, D?(G) is a real, symmetric, nonnegative, irreducible and positive
semi definite matrix. Thus, all eigenvalues of D?(G) are real and nonnegative
and also by the Perron Frobenius Theorem, the largest eigenvalue of D?(G),
called the distance signless Laplacian spectral radius of G, denoted by 0%9(G), is

positive and simple.

Theorem 5.4.1. For any two distinct primes p and q, the distance signless

5(p+q)—18+4/9(p—q)+4(p—1)(g—1)
5 :

Laplacian eigenvalues of I'(Z,,) are

B(p+9) —18=/9p—q)’ +4p-1(g— 1)
2 )

multiplicities 1,1,q — 2 and p — 2 respectively.

p+29—7 and 2p + q — 7 with

Proof. let G = I'(Z,,). Then, as in the previous Section, counting the transmis-
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5.4. Distance signless Laplacian spectrum for I'(Z,,), and I'(Z,s), where p and
q are distinct primes, p < q.

sion degree of each vertex v € V(@) it can be seen that,

(P +2q —5)1(g-1)x(g-1) Otg-1)x(p-1)

Tr(G) =

O(pfl)X(qfl) (2p+q— 5)I(pfl)X(pfl)

And the distance matrix of G is given by,

2(J = I)(g-1)x(g-1) Jg-1)x(p-1)

D(G) =
Jo-nx@-n | 20 = De-1x-1)

Thus, the distance signless Laplacian matrix of G is given by

Jg-1)x(p-1)

(p+2q—5)1 +2(J = I)(g-1)x(q-1)

D?(G) =
Jip-1)x(a-1) (2p+q—5)1+2(J — I)(pfl)X(pfl)

AlJ
J' | B

where A = (p + 2q — 7)[ + 2J(q71)><(q71)7 B = (2p +q— 7)[ + 2J(p71)><(p71)-

Thus, computing the characteristic polynomial of D?(G),
Gpe(G;A) = (A= (p+20-7)"" (A= 2p+q-T7))"".QN),
where,

QA) = N=0p+5q—18)A+4[(p—1)(p—2) + (¢ — (¢ —2) + 4(p — 2)(¢ — 2)] ,

5(p+q) — 18 +/9(p—q)2 +4(p— 1)(g— 1)
2

which is a quadratic polynomial with zeroes

5(p+q) =18 —/9p—q)2 +4(p— 1)(g— 1)
2

and . Thus, the distance signless

5(p+q) —18+4/9(p—q)2 +4(p—1)(¢— 1)
2 b

Laplacian eigenvalues of I'(Z,,) are

5(p+¢) =18 =1/ -9 +4lp—-1(g -1
2 9

multiplicities 1,1,¢ — 2 and p — 2 respectively. O

p+2q—T7and 2p + g — 7 with
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5.4. Distance signless Laplacian spectrum for I'(Z,,), and I'(Z,s), where p and
q are distinct primes, p < q.

Corollary 5.4.2. Let G = I'(Z,,). Then, the distance signless Laplacian spectral
5(p+q) =18 +/9p - +4lp—D(g -1

radius, 0°(G) = 5 .

Theorem 5.4.3. For any prime p # 2, the distance signless Laplacian spectrum
of I'(Z3) is given by
Specpa(I'(Zy)) =

2 2

02 5 23 5p2 — 20— 9+ 4/9p* —20p3 +2p2 + 12p+ 1 5p2 —2p— 9 — +/9p% —20p3 +2p2 + 12p + 1
pT —P— b =
pP—p—1 p—2 1 1

Proof. Let G = I'(Zy3). I'(Zy) = Kpp-1y v Kp—1. The transmission degree of
any vertex in S(p) in G, is 2p* — p — 3 and of any vertex in S(p?) is p* — 2.
The transmission matrix and the distance matrix and of GG are described in the
previous Section. Thus, it can be easily seen that the distance signless Laplacian

matrix of G is

(2172 —p— 5)I + 2Jp(p—1)><p(p—1) Jp(p—l)X(p—l)

D®(G) =
Jp-1yxpo-1) (1 =3+ Jp-1yx 1)

A similar computation shows that,

Dpa(GiN) = [ = @2 —p-5)]" " A= (P -3 Q).

where Q(\) = A% — (5p% — 2p — 9\ + (4p* — 22p? + 6p + 20). Thus,
Specpa(l'(Zy)) =

2 2

0,2 5 23 5p2 —2p— 9+ /9p* —20p3 +2p2 + 12p+ 1 5p2 —2p— 9 — /9% —20p3 +2p2 + 12p + 1
pT —PpP— pT =
pP—p—1 p—2 1 1

Corollary 5.4.4. Let G = I'(Z,3). Then, the distance signless Laplacian spectral
5p% —2p — 9+ A/9p* — 20p3 + 2p2 + 12p + 1
5 )

radius, 0%(G) =
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Chapter 6

Computation of distance, distance Laplacian

spectrum of I'(Z,) for any n

The role of Fiedler’s Lemma and its generalization, to the com-
putation of the distance spectrum of the generalized join of reqular
graphs, is described in the Section 2. The investigation of the dis-
tance spectrum of I'(Zy,) for any n and in particular for n = p* for
any prime p and k = 3, using Fiedler’s Lemma, is described in the
Section 3. Also, it is shown that, —1 and —2 are the distance eigen-
values of I'(Zy,), for n and their multiplicities are counted. In the
Section 4, the computation of the distance Laplacian eigenvalues of
I'(Z,), for any n is described and the distance Laplacian spectrum

of I'(Zyk), k = 3 is completely determined.

!This chapter has been published in Advances Mathematics: Scientific Journal, Volume 9,
Issue 12, 2020, Pages 10591-10612.
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6.1. Introduction

6.1 Introduction

The method proposed by A.J. Schwenk which is described in Section: 4.5, is con-
fined to the adjacency spectrum. The distance matrix of I'(Z,), contains blocks
of entries other than 0 and 1. Also, the effort for the computation of distance
related spectrum described in the previous Chapter is seamless, especially when
n has more prime power factors. So some tools of Linear Algebra are used to ex-
plore the spectrum of such complicated structures. The combinatorial structure
of I'(Z,,) as the T,-join of the induced subgraphs, where T, is the proper divisor
graph of n, is well utilized while applying Fiedler’s Lemma and its generalisation

towards this end.

6.2 Fiedler’s Lemma and its its generalisa-

tion

Lemma 6.2.1. [35] Let A and B be symmetric matrices of orders m and n,
respectively, with corresponding eigen pairs (o, w;), i = 1,2,....m and (5;, v;),
i =1,2,...,n, respectively. Suppose that |ui|| =1 = |vi|. Then, for each arbi-

trary constant p, the matriz
A puvl
C = has eigenvalues a, ..., Qo Ba, s Brs V1, Yo, where y1,¥a,
pviul B

ap P

p B

are the eigenvalues of the matrix C =

The above Lemma, popularly known as Fiedler’s Lemma, has been extended
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6.2. Fiedler’'s Lemma and its its generalisation

by D.M. Cardoso et.al in [20, 21], to larger block diagonal symmetric matrices
and it was applied to the exploration of spectra of the generalised join of regular

graphs.

6.2.1 Generalization of Fiedler’s Lemma

For j € {1,2,...,k}, let M; be a m; x m; symmetric matrix, with corresponding
eigenpairs (a4, u,;), 1 < r < m;. Moreover, for g € {1,2,....k — 1} and

le{qg+1, ..k}, let p,; be arbitrary constants. Let & be the k— tuple
a= (Oéil,l; ey aik,k) (61)

where each oy, ; is chosen from the elements of {vy j, ..., oy, 5} With j € {1,2, ..., k}.

(k=1)
2

Then, considering an arbitrary b - tuple of reals

p= (/)1,2,p1,3, cees PLiky P2,35 03 P2,k -+ Pk—l,k)a (6.2)

consider the symmetric matrices

Ca(p) =
T T T
M,y P1,2Wip 115, o P1,3Wi; 15, 3 e P1EWi 1 U,
T T T
p1,2Wi5 2U; 4 M, p2,3Wi, 2, 3 e P2,k Wiy 2W; 1
T T T
P1,3Wi5 31;, 4 p2,3Wig 3U;, o M; e P3.kWig 3W;, 1
T T T
PLE—1Wi_; k15 1 P2k—1Wi,_y k-1, o . My—1 pr-15Q4_y k-1,
T T
| PraU R P2,k Wi e Wy, o e - M,
(6.3)
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6.3. Computation of the distance spectrum of I'(Z,,) for any n

Q1 P12 .- PrE-1 P1.k
P12 iy 2 - .. P2,k—1 P2,k
Ca@) =| Lo : - (6.4)
P1k—1 P2k—1 --- Oy k-1 Pk-1k
| Pk P2k -+ Pk-1k Oy k s

Theorem 6.2.2. [12] For j € {1,2,...,k}, let M; be an m; x m; symmetric

matriz, with eigen pairs (ouj, wy;),Vr € I; = {1,2,...,m;} and suppose that for

k(k—1)

each j, the system of eigenvectors {u.;,r € I;} is orthonormal. Consider a ==

tuple of scalars,

D= (D125 01,35 s PLiks P23 s P2k s Ph—1,k) and the k- tuple @ = (o, 1, ..., 04y k)
as defined in equation (6.1) and equation (6.2). Then, the matriz Cz(p) in
equation (6.3) has the multi set of eigenvalues

(U?Zl{al,j, - amjjj}\{ai”}) U {1, oo Vi), where Y1, 7o, ..., Yk are eigenvalues of
the matriz Cx(p) in equation (6.4).

6.3 Computation of the distance spectrum of

I'(Z,) for any n

Consider G [Hy, Hs, ..., H] where G is a connected graph with vertices labeled
as 1,2,...,k and H; is r;- regular and |V (H;)| = n;, for every j = 1,2,....k . Let
A(H;) denote the adjacency matrix of Hj;.

Take M; = 2(J —I),, — A(H;). Then, clearly a;; ; = 2(n; — 1) —r; is the Perron
eigenvalue for M; for every j = 1,2, ..., k with corresponding Perron eigenvector,

1,,,. ( Note that since Hj is r;- regular, 7; is the Perron eigenvalue of H; with 1,,,
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6.3. Computation of the distance spectrum of I'(Z,,) for any n

as the corresponding eigenvector, for j = 1,2,...,k ). Thus, since G is connected
and H; is regular, M;, j = 1,2,...,k correspond to the diagonal blocks in the
distance matrix of G [Hy, Ha, ..., H] .

As in equation (6.3), taking

1
Mj =2(J = D)o, — A(H;), (0,5, 15,5) = (2(7%‘ —1) =, 71@)
\VARY)

and the real numbers Prg=dig - /rung, forle{l,2,.. k—1},
qe{l+1,.. k}, where d;, = dy; = dg(l, q), is the distance between the vertices
[ and ¢ in the connected graph G, it can be seen that the distance matrix of

G [Hy, Hy, ..., Hi] is obtained as in the following Theorem,

Theorem 6.3.1. [22] Consider G [Hy, Hs, ..., Hy], where G is a connected graph
with vertices labeled as 1,2,....k and H; is r;- reqular and |V (H;)| = n;, for
every 7 = 1,2,....k, and let d;, denote the distance between the distinct vertices
l snd g in G forl € {1,2,...k =1}, g € {{ +1,...,k}. Let A(H;) denote the
adjacency matriz of H; and M; = 2(J —1I),;, — A(H;). Then, the distance matriz
of the generalized G-join of the graphs Hy, Ho, ..., Hy is given by,

D(G[Hy, Hs, ..., H])=

Ml dl,QJnl Xng d1,3‘]n1 Xng o dl,kJnl XN
T
dl,Z‘Jnl Xno M2 d2,3Jn2 Xn3 et d2,kJn2 XN
T T
d1,3Jn1 xXn3 d2,3Jn2><n3 M3 ce d3,kjn3 XN
T T
dip I e, Ao T My 1 di 1 dng o
T T
| A, do gL . . M, |

(6.5)

Also, applying Theorem 6.2.2, the distance spectrum of D(G [Hy, Ha, ..., H])
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6.3. Computation of the distance spectrum of I'(Z,,) for any n

is given by the following theorem,

Theorem 6.3.2. [22] Consider G |Hy, Ho, ..., Hy|, where G is a connected graph
with vertices labeled as 1,2,....k and H; is rj- regular and |V (H;)| = n;, for
every j = 1,2, ..., k. Let A(H;) denote the adjacency matriz of H; and

M; = 2(J —I),, — A(Hj). Then, the distance spectrum of G [Hy, Ha, ..., Hy] is

given by,

Specp(G [Hy, Ho, ..., Hi]) = ( Spec(M;)\{ 2(n; — 1) — rj}> U Spec(é’).

J

(6.6)
where
2(711 - 1) — T d1,2\/n1n2 d; Ey/ TN
5 _ dl 24/M 1Mo 2(”2 — 1) — T dQ kA/ Mok (67)

dl’]m/nlnk dQJm/TLQ’rLk c. 2(nk - 1) — Tk

When M; s belong to a class of graphs with known spectrum, the only re-
maining task is to find the spectrum of the matrix C' as evident from equation
(6.6). But the non-diagonal entries of C in equation (6.7) are not so appealing
to the computation of spectrum. Hence, a matrix similar to it is defined in the

following way.

Consider the graph G as a vertex weighted graph by assigning the weight

n; = |V(H;)| to the vertex j of G for j = 1,2,...,k and consider the diagonal

75



6.3. Computation of the distance spectrum of I'(Z,,) for any n

matrix of vertex weights,

nq 0 0
0 N9 0
W:
_O nk_

A combinatorial Laplacian matrix with vertex weights was defined by F.R.K
Chung et al in [26] as follows, to generalize the Matrix-Tree Theorem for count-
ing the number of rooted directed spanning trees. Let the vertex v has a weight

a,,. Consider the matrix with rows and columns labeled by vertices,

-

Yo, fu=wv
L(u,v) = < — ifu~w

0 otherwise.

Analogous to this, a combinatorial vertex weighted distance matrix of G, denoted

by Tp(G), can be defined as,

2(711 — 1) — T dl,gng Ce dl,knk
d1727’L1 2(77,2 — 1) — T ... dg,knk
Tp(G) =
| dl,lcnl d27k7’L2 Ce 2(n;€ — 1) — Tk ]

Note that the (i,j)-th entry of Th(G) is d;; times the vertex weight n; and the

(i,i)th entry is the sum of all other entries of the i-th row.

Remark 6.3.3. It is easy to show that, Tp(G) = W=2CWz. Hence, it follows
that C' and Tp(G) are similar. Thus o(C) = o(Tp(G)). Thus, the distance
spectrum of G [Hy, Ha, ..., Hi| is completely determined by the matrices M; for

j=1,2,....k and the combinatorial distance matriz Tp(G) associated to G.
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6.3. Computation of the distance spectrum of I'(Z,,) for any n

Thus, the next Corollary follows.

Corollary 6.3.4. For the graphs G, Tp(G) and H;s as defined above,

Specp(G [Hy, Ha, ..., Hy]) = <U Spec(M;)\{ 2(n; — 1) — rj}> U Spec(Tp(G)).

(6.8)

6.3.1 Distance matrix of I'(Z,)

As seen in Section 4.3, the zero divisor graph on the ring of integers modulo n

can be constructed as
I(Z,) = T[T (A@), AT((d2)), -, T(A(de)] (6.9)

where dy, dy, ..., d¢(ny are the proper divisors of n. To facilitate the study of spec-
trum of I'(Z,,), the proper divisor graph of n is to be understood and analysed
in a better way. Throughout this Chapter, d, ; denotes the distance between the
vertices d; and d; in Y,,. That is, d;; = dv,(d;,d;). The following Lemmas are

used in the main Theorem of this Section.

Lemma 6.3.5. For any two distinct vertices d; and d; in the proper divisor graph

T?’L}

-

&
&
I

12 ifnfdd;, gcd(d;,d;) # 1.

3  otherwise.

Proof. n = pi*-py*---pi, where py, pa, ..., p, are distinct primes, and r, ny, ng, ..., n,
are positive integers. Let dy, ds, ..., d¢(ny be the proper divisors of n.

Case(i) n/d;d; is trivial.
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6.3. Computation of the distance spectrum of I'(Z,,) for any n

Case(ii)  Let n | didj, and let ged(d;,d;) = g > 1. Clearly, n/(2)d; and
n/(2)d;. Thus, % ~ d; and ¢ ~ d;. Hence, % is a common neighbour of d; and

dj in Tn-

Conversely, let n / d;d; and d; and d; have a common neighbour in T,,. Let
dj, be the common neighbour of d; and d;. Then, n/d;d), and n/d;d, . Thus it
is obvious that (7-)/d; and (7-)/d;. Hence, 3- is a common divisor of d; and d;.
Thus, the ged(d;, d;) = - > 1.

Thus, n f d;d;, d; and d; have a common neighbour in Y, iff ged(d;, d;) > 1.
case(ili) Let n } d;d;, and gcd(d;,d;) = 1. Then, as proved in the above case,

d; and d; do not have a common neighbour. Now

n n
di ~—, dj ~—
Cod
Since n divides 7.7, it follows that =+ ~ 2. Thus, d; ~ + ~ & ~ d; is a shortest
7 j T J T J

path between d; and d;. Thus dy,(d;,d;) = 3, in this case. Thus, the result
immediately follows since for any finite commutative ring R, diam(I'(R)) < 3

81). 0

Lemma 6.3.6. Let n = p}* - py?---pl'", where py,pa,...,pr are distinct primes,
and r,ny,Ng, ...,n,. are positive integers. Then, the number of proper divisors d

of n such thatn y d® is  T[_, ([Z]+1) —2

Proof. The number of proper divisor of n is given by

T

&) =[Jo+1) -2

i=1
The number of proper divisors d of n such that n f d? is exactly the number of

nyon2 e
proper divisors of pg 2 -pg 71 -pL 1 which is [T ([&]+1) -2 O
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6.3. Computation of the distance spectrum of I'(Z,,) for any n

The following Lemma is the immediate consequence of Lemma 6.3.6
Lemma 6.3.7. The number of proper divisors d of n such that n divides d?, is
[Toi(i+ 1) — T (151 +1)

The next Theorem describes the distance matrix of I'(Z,) for any n.

Theorem 6.3.8. Let dy,ds, ..., dgpy be the proper divisors of n. Then, the dis-

tance matriz of I'(Zy,,) is given by

M,y d172<]¢(d%)><¢(%) oo dign) Jd)(%)xd)(dgr(zn))
d JT n n M . e d n J n n
D(F(Zn)) _ 1,2 PG xe(55) 2 2,¢(n) ¢(d.2)><¢(d£(n))
T T
| e Tsgotzesy RemTagixoza Me(ny |
where,

2(J = Dyzy ifn k2

d]
(J=Doczy i n/d;

and forle {1,2,...&6(n) —1} and g {l+ 1,....,&(n)}, | # q,

MA:

J

1 Zf n/dldq
dig=192 ifnfdd, ged(d,dy)+#1

3  otherwise.

Proof. Recall from equation (6.9) that, I'(Z,) is the T, - join of I'(A(dy)), I'(A(d2)), ...,

['(A(deny)). Also, the adjacency matrix of I'(A(d;)) is given by,

O¢(%) if n )( d?
A(T(A(d)))) = J ’
(J — _[)(z)(l_) if n/d?

;
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6.3. Computation of the distance spectrum of I'(Z,,) for any n

Thus, taking G = T,,, and H; = I'(A(d;)) and M; = 2(J 1) 4y —A(I'(A(d;))),

d.;

<

the conclusion is an immediate consequence of Theorem 6.3.1 and Lemma 6.3.5.

]

6.3.2 Distance eigenvalues of ['(Z,)

Consider the proper divisors dj, ...., d¢(,y, and the matrices,

~ 2
Vo 2(J — ])¢(d%) if n | dj

j
(J— [)qg(%) if n/d?

The distance spectrum of I'(Z,,) is completely determined by the matrices M},

for j =1,2,...,{(n) and the matrix Tp(Y,), as in equation (6.8). The spectrum

of M; as described above are, if n f d?,

Spec(M;) = (6.10)
s -1 1
and if n/d,
—1 o) —1
Spec(M;) = @) . (6.11)
HE)-1 1
Also, note that the subgraphs I'(A(d;)), for j = 1,2, ...{(n) are r;- regular, where

p(&)—1 if n/d?
0 ifn ) d2.

While taking the union of all eigenvalues of M; as described above in (6.10) and
(6.11), the multiplicity of —2 as the distance eigenvalues of I'(Z,,) is

apmnpaz(@(5) — 1), where the X runs over all divisors d of n such that d/n and
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6.3. Computation of the distance spectrum of I'(Z,,) for any n

n f d? . By Lemma 6.3.6, this count amounts to 2amnpaz )1 Tiza (%]1+1) +
2. Similarly, while taking the union of all eigen values of M;, the multiplicity of
—1 as the distance eigenvalues of I'(Z,) is ¥, /a2 (¢(§) — 1), which counts to
Dammgaz O =T To i+ 1)+ TTi-, (%] + 1), by Lemma 6.3.7. Thus, applying

Theorem 6.3.4, the next Theorem follows.

Theorem 6.3.9. For any n, the zero-divisor graph I'(Z,) has distance eigenval-
ues =2 and —1 with multiplicities 35, .12 #(5) — [ iz ([2]+1) +2 and

D 9G) — T lic (i + 1) + i ([%] + 1) respectively and the remaining
distance eigenvalues are the eigenvalues of the vertex weighted distance matrixz of

T,, as follows

131 dipp() - d1,5(n)¢(ﬁ)

dy 22 t o ey

Tp(Y,) = v '(dl) ? 24(m) '(dsw))
| diem@()  dogmyd () - teen)

where,
2o(3) =1 ifnkd
o) -1 ifn)d,

and forie {1,2,....6(n) —1},je{i+ 1,....&(n)}, i # 7,

tj =

dij =42 ifnfdd;, ged(ds,d;) # 1.

3  otherwise.
\

Hence, the distance eigenvalues of I'(Z,) are completely determined by the

vertex weighted distance matrix Tp(Y,,). Thus, the next Corollary follows.
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6.3. Computation of the distance spectrum of I'(Z,,) for any n

Corollary 6.3.10. ['(Z,) is distance integral if and only if Tp(Y,) is integral.

Example 6.3.11. Consider I'(Z,,), where p < ¢ are distinct primes. Counting
the number of non-zero zero divisors of Z,,, it can be easily seen that the zero-
divisor graph I'(Z,,), has p+¢—2 vertices. The proper divisors of pg are p and ¢
and the proper divisor graph T, = K5, with vertices labeled as p and ¢. Clearly

['(Zpg) = Fo[T(A(p)), T(A(q))], where T(A(p)) = K41 and T'(A(q)) = K1 -

Using Theorem 6.3.8, the distance matrix of I'(Z,,) is given by

2(J — I)(g-1)x(g-1) Jg-1)x(p-1)

D(F(ZPQ)) =
Jo-nxan |20 = Do-nxe-n

Note that n = pq has no proper divisor d such that n/d?. Also it is obvious that
a square matrix M has eigenvalue —1 if and only if the matrix M + I has nullity
at least one. Thus —1 is not an eigenvalue of I'(Z,,) fro any primes p < ¢. Thus
using Theorem 6.3.9, we see that —2 is an eigenvalue of I'(Z,,) with multiplicity
p + q — 4 and the other distance eigenvalues of I'(Z,,) are determined by its

vertex weighted distance matrix,

2(¢-2) p-1

qg—1 2(p-2)

TD(qu) =

Thus, the remaining two distance eigenvalues of this graph are determined by

the polynomial, Q(\) = \* — 2\ (p+ ¢ —4) + 3pqg — 7(p + q) + 15. Thus,

SpecD(I'(Zy,)) =
=2 pta—4+PP+ P —pg—(p+a)+1 pra—4—\pP?+a>—pa—(p+q)+1
pt+q—4 1 1

Remark 6.3.12. Note that for n = 8,pq, where p < q are distinct primes, —1

is not a distance-eigenvalue of I'(Z,). Also, for n = p?, —2 is not a distance
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6.3. Computation of the distance spectrum of I'(Z,,) for any n

eigenvalue of I'(Z,). For all other values of n, both —1 and —2 are distance

eigenvalues of I'(Zy,).

6.3.3 Distance spectrum of I'(Z,.), k>3

The proper divisors of p* are p, p?, ..., p*~! and {A(p), A(p?), ..., A(p*~1)} forms
an equitable partition for V(I"'(Z,)). The order of the graph I'(Z,) is p* ' — 1.
E k—j if j < [E]
, ¢(ph-7) T =13
['(A(p)) =
Koy ] = [g]
where Fd)(pk—j) is a null graph which is 0- regular and Kyr-;y is a complete
graph which is ¢(p*~7) — 1 - regular. In the proper divisor graph T, pt ~ pJ
for distinct ¢ and j, if and only if i + j > k. Also, the vertex pf~! is adjacent
to every other vertices of T,x. Thus, T« is a connected graph with diameter 2
[49]. Also, forie {1,2,....k—1},je{i+1,....k}, i # 7J,
1 ifi+75>2k
d@j =
2 otherwise.

The zero-divisor graph,
[(Zyr) = Ty [D(AP)), D(AP*), -, TAR)].
For j =1,2,...k — 1, as in Theorem 6.3.1, let

2(J — D ypr—sy if § < [%]
M= ) 2 (6.12)

J
(J = Dpray  ifj=[5]
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6.3. Computation of the distance spectrum of I'(Z,,) for any n

Then, it is obvious that, if j < [%]

Spec(M;) = ‘ N (6.13)
$(p*7) — 1 1

and if j > [£],

Spec(M;) = - o 1 : (6.14)

$(p*7) -1 1
Taking the union of the eigenvalues of M;, j = 1,2, ..k—1, from equations (6.12)

and (6.13), the number of times, —2 is counted as an eigenvalue, is

L (B — 1) =t = plil - [g]-

MES

Ej<[§] (¢(Pk_j) - 1) = 2%-

similarly from equations (6.12) and (6.14), the eigenvalue —1 is counted plz! —
[g] — 1 times while taking the union of M;,j = 1,2,...k — 1. Thus, applying
Theorem 6.3.2, the next Theorem follows.

Theorem 6.3.13. For k > 3, the zero-divisor graph I'(Z,) has distance eigen-
value —2 and —1 with multiplicities p*~* — plz — [£] and plal — |£] — 1 and the

remaining distance eigenvalues are the eigenvalues of the vertexr weighted distance

matriz,
i dip¢(p*?) ... dig10(p)
d120(p*) lo oo dyp19(p)
Tp(Ty) = ,
| digad(p) dap—20(@*?) .. te—1
1 ifi+j>k 2((0(*7) = 1) ifj <8
where, d; j = and t; =
2 otherwise d(pF7) —1 i=1%
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6.4. Distance Laplacian spectrum of I'(Z,)

Example 6.3.14. The number of non-zero zero divisors of Z,s is p* — 1. The
proper divisors of p* are p and p® and the compressed zero-divisor graph Y5 is

isomorphic to K. The distance matrix of I'(Z,s), for p # 2 is given by,

2(J - I)p(pfl)xp(pfl)

J(pfl)xp(pfl) (‘] - ])(pfl)X(pfl)

Ip(p-1)x(p-1)

DI (Z,3)) =

The distance eigenvalues of D(I'(Z,3)) are —2 and —1 with multiplicities
p? —p—1 and p — 2 respectively and the remaining two distance eigenvalues are
the eigenvalues of the vertex weighted distance matrix Tp(Y,s) given by ,

2 —p—1) p—1

p*—p p—2

Tp(T,0) =

Thus the distance spectrum of I'(Z,3) is given by,

_9 _1 2p2—p—4+4/4pt—8p3+p2+dp  2p>—p—a—+/4pT—8p3+p2+4p
SpecD(I'(Zy3)) = ? ? :
pP—p—1 p—2 1 1

6.4 Distance Laplacian spectrum of I'(Z,)

Let G = I'(Z,). Let dy,ds, ..., dj be the proper divisors of n such that T'(A(d;)),
I'(A(dy)), ..., (A(dy)) are null graphs and let I'(A(dk+1)), .., T'(A(dgn))) be com-
plete subgraphs of I'(Z,). Then, since I'(Z,) is a generalised join of its induced
subgraphs which are either null (corresponding to the divisors di,ds, ..., dy) or
complete  (corresponding to the divisors dji1, ..., dgm)); the distance between
any two distinct vertices of A(d;) for fixed j € {1,2,...,k} is 2 and the distance
between any two distinct vertices of A(d;), for fixed j € {k + 1,...,&(n)} is 1.

Let M; be the matrix as described in Section 6.3. Since M, is non-negative,
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6.4. Distance Laplacian spectrum of I'(Z,)

symmetric and irreducible, it has a Perron eigenvalue and let it be denoted by
M (M), for j =1,2,....&(n). It is easy to see that,

2pl3)—1) iy <k

o(g)—1 j=zk+1

Then, for any vertex vg, € A(dy), the transmission degree of vy, is given by

n

Tr(va) = Suev(@da(u va) = 29()~Dtdad( ) diad( ) ool

=\ (M) + 2j¢1d1,j¢(d_)-

J

)

Similar results hold for Tr(vg,), ..., Tr(vg,) and for any vertex v; € A(d;),

n. .
T?”('Udi) = /\1(MZ) + Ejiidi,j(b(z)ﬂ‘ = 1, 2, k.
J

Since, A(dj+1), ..., A(de(ny) induce complete subgraphs, the transmission degree

of any vertex vy, € A(d;),i = k+1,...,&(n) is given by

Tr(va) = ¢(2) = 1+ Sisdig0() = M(M:) + Tyuids j6(2),i = ki +1, o E).

d; 7N d;
Thus, the diagonal matrix of vertex transmission of G is given by,
(o ... 0 |
Tr(I(Z,)) = o T, ... O
| O O ... Tgny |

where the diagonal blocks T; are given by

T, = ()\1(MZ) + Ti) I(b(l)

d;
where 7; = Zﬁﬂdwd)(dﬂ) =1,2,...,&(n).

Clearly, A\1(M;) + 7; is the Perron eigenvalue of T} such that

Tilyzy = M(Mi) + 1) Loy, (6.15)

86



6.4. Distance Laplacian spectrum of I'(Z,)

Since the distance Laplacian matrix of any connected graph G is Tr(G) — D(G),

it follows that,

Ly —diadogyxogy o Tdiemdorg otz
—d J n L e —d nJ Ny
DL(F(Zn)) _ 1,2 X(f)(d—) 2 2,£(n) ¢(d2) ¢(d£(n))
T T
| e ooy Them Saxez) Le(n)

where the diagonal blocks L;s are given by,

Since T; and M; commute each other, for i = 1,2,...,£(n), it can be easily seen

from equation (6.16) that, each eigenvalue A(L;) is given by

Thus, from (6.15), 7; is an eigenvalue of L; for i = 1,2,...{(n), such that

Lilgcz) = 7ilg(z)-

(3

Thus applying Corollary 6.3.4, the next Theorem follows.

Theorem 6.4.1. The distance Laplacian spectrum of G = I'(Z,) is given by
Specpr (G U {Spec(Li)\7:} U Spec(B)

where B is the vertex weighted distance Laplacian matriz of the proper divisor

graph Y, given by

1 _d1,2¢(%) s —dy f(n)¢(d€(n))
E _ —d1’2¢(%) T2 ce dg E(n)(b(dg(n))
| —digm () —dogmo(F) - Te(n) |
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6.4. Distance Laplacian spectrum of I'(Z,)

For example, I'(Z,,) = T,[I'(A(p)),T'(A(q))], where T,, = K. In this case,
T1 = (p + 2q — 5)](]_1, M1 = Q(J — ])q—la T2 = (2p + q— 5)[1?—17 MQ = 2(J — ])p—l

and thus, the distance Laplacian matrix of I'(Z,,) is given by

(p +2q = 5)T —2(J = I)(g-1)x(a-1) —Ja-1x(-1)
DL(F(qu)) =
—Jp-1)x(¢-1) 2p+q =51 —2(J = I)p-1xp-1)
Here
L1 = (p + 2(] - S)Iq—i - 2Jq_1
LQ = (2p +q— 3)Ip—i — 2Jp_1
Clearly, 1 = M(L1) =p—1and 7o = A\ (L2) =¢— 1.
p—1 p+2¢—-3 g—1 2p+qg—3
Spec(Ly) = and Spec(Ls) =
1 q—2 1 p—2

Thus, it can be seen that p+2¢—3 and 2p+ ¢ —3 are distance Laplacian eigenval-
ues of I'(Z,,) with multiplicities ¢ — 2 and p — 2 respectively and the remaining
distance Laplacian eigenvalues are the eigenvalues of the vertex weighted matrix
of T, given by
p—1 —(p—-1)
—(¢—=1) q¢-1

The characteristic polynomial of the above matrix is A — (p + ¢ — 2)\ and has

Tg(qu) =

eigenvalues 0 and p+ ¢ — 2. Thus, the distance Laplacian spectrum of this graph

is obtained as

0 p+qg—2 p+2¢q—3 2p+q—3
SpecDL(F(qu)) =

1 1 q—2 p—2
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6.4. Distance Laplacian spectrum of I'(Z,)

6.4.1 Distance Laplacian spectrum of I'(Z, ),k > 3

For any connected graph G with n vertices, the distance Laplacian matrix D*(G)
is positive semi definite and the least distance Laplacain eigenvalue is 0 with
multiplicity 1. ie 0F > 9 > ... > 0L = 0 [12]. The distance Laplacian eigenvalues
of a graph of diameter at most 2 can be expressed in terms of its Laplacian

eigenvalues as in the following Theorem.

Theorem 6.4.2. 28] Let G be a connected graph on n vertices with diameter
d < 2. Let 1y (G) = pao(G) = ... = un(G) = 0, be the Laplacian eigenvalues of G.

Then, the distance Laplacian eigenvalues of G are

20 — fin_1(G) = 21 — pno(G) = ... = 2n — 11 (G) > 05 =0

The next Theorem explores the Laplacian spectrum of I'(Z,), k = 3

Theorem 6.4.3. [25] Consider I'(Z,x),k = 3. Then the following hold

(i) If k = 2m for some m = 2, then the Laplacian spectrum of I'(Z,x) is

given by
me—1_1 p2m—2_1 pm+1_1 P —1 pm—1_1 p—1 0
¢(p) o(*) o o™ ) o) =1 (™t - (™) 1

(ii) If k = 2m + 1 for some m > 1, then the Laplacian spectrum of I'(Z,)

s given by
p2m_1 p2m—1_1 pm+1_1 pm_l pm—l_l p—l 0
o) o) - ™) ™) -1 e(™*) - o) 1

Thus, the following Theorem can be easily proved.
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6.4. Distance Laplacian spectrum of I'(Z,)

Theorem 6.4.4. Let k > 3.

(i) If k = 2m for some m = 2, then the distance Laplacian eigenvalues of
F(Zpk) are 2p2m—1 —p— 1’ 2p2m—1 _p2 _ 1, e 2p2m—1 _pm—l _ 1’ 2p2m—1 o
2m—1

pm =1, 2p —pmtt 1, Pt — 1, and 0,  with multiplicities

¢(p2m71)’ ¢(p2m72)’ T

d(p™), o(p™) =1, (™), d(p), and 1 respectively.

(i) If k = 2m + 1 for some m = 1, then the distance Laplacian eigenval-

ues of [(Zy) are  2p°"—p—1, 2p*"—p?—1,--- 29" —p™ 11 2% —pr—

1, 2p*m—pmti_1, .- p*™—1, and 0, with multiplicities ¢(p*™), S(P*™ 1), --

o(p™*?), o(p™t) =1, (™), -, ¢(p), and 1 respectively.

Proof. The compressed zero divisor graph T« is a connected graph of diameter
2 for k > 4, since p" ' ~p/, Vj=1,2,..k—2. And for k=3, T, =K, and
hence it is of diameter 1. As described in Section 6.3, it follows that I'(Z,x) is
of diameter at most 2 for k£ > 3. The number of vertices in I'(Z,) is p*~! — 1.

Thus, the conclusion follows from the above two Theorems. O
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Chapter 7

Seidel spectrum of the zero divisor graph

In the Section 2 of this Chapter, the Seidel spectrum of the gen-
eralized join of reqular graphs is investigated. The Seidel spectrum
of the zero-divisor graph of Z,,, is thereby computed in terms of the
spectrum of the vertex weighted combinatorial matrix of the proper
divisor graph of n. In the third and fourth Sections, this investiga-
tion 1s repeated for Seidel Laplacian and Seidel signless Laplacian

spectrum respectively.

7.1 Introduction

Van Lint and Seidel [84] introduced the Seidel matrix of G, defined as S(G) =
[si;] where s;; = —1 if the vertices v; and v; are adjacent and s;; = 1 if the

vertices v; and v; are not adjacent and s; ; = 0 if i = j. Thus, S(G) isa (—1,0,1)

IThe second section of this chapter has been published in Advances and Applications in
Discrete Mathematics, Volume 28, Issue 1, 2021, Pages 145-167. The third and fourth sections
of this chapter has been published in Mathematics and Statistics, Volume 9, Issue 6, 2021,

Pages 917-926.
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7.2. Seidel spectrum of join of regular graphs

adjacency matrix of a graph G and S(G) = J — I —2A(G). Clearly, if G denotes
the complement of a graph G, then S(G) = —S(G). The collection of Seidel
eigenvalues of G, together with their multiplicities, is known as Seidel spectrum
of G, denoted by Specs(G). In [43], Haemers has defined the Seidel energy of G
as Eg(G)) = X, |0:], where 04,65, ...,0, are the Seidel eigenvalues of G. This

parameter finds various chemical applications.

For a complete graph K,

1—n 1
Specs(K,) =
1 n—1
For a null graph on n vertices, K,,,
- n—1 -1
Specs(K,) =
1 n—1

Recall Definition 2.3.6 for the Seidel Laplacian matrix and Seidel signless Lapla-
cian matrix of a graph GG. The Seidel Laplacian eigenvalues of a graph G of order
n sre denoted and 6% 0L ... 6L and the Seidel signless Laplacian eigenvalues by
09,09, ....69.

For a complete graph K,, S*(K,) = J, —nl, and SY(K,) = (2 —n)I,, — J,.
For a null graph on n vertices, K,, (the complement of a complete graph),

SE(K,) =nl, — J, and S9(K,,) = (n— 2)I,, + J,.

7.2 Seidel spectrum of join of regular graphs

The following result can also be seen in [44], which demands lengthy computation

using the method of equitable partitions is used.
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Theorem 7.2.1. Let G; be r;- reqular of order n;, fori =1,2. Then each of the
Seidel eigenvalues of G and Gy other than nqy — 2r; — 1,n9 — 21 — 1 s a Seidel
eigenvalue of G1 <y Go and the remaining Seidel eigenvalues of G <7 Gy are the
zeroes of the polynomial A2 — [ny + ny — 2ry — 2rg — 2JA + [(ny — 2r; — 1)(ny —

27’2 — 1) — anLQ].

Proof. Let S; and Sy denote the Seidel matrices of Gy and G5 respectively. Since
G1 and G5 are regular, it can be seen that, the row sums of S; and Sy are the
constants ny — 2r; — 1 and ny — 215 — 1 respectively and in fact, these two values
are the Seidel eigenvalues of G; and G5 with corresponding eigenvectors 1,,, and

1,, respectively. Also, the Seidel matrix of the join of the graphs G; and G is

given by
Sl _Jn1 X N9
S(Gl \V/ GQ) =
— I s Sy

Applying Lemma 4.2.4, and Lemma 3.3.6, it can be seen that

det(\] — S(G1 7 G)) = det(M — Sy) - det(M — S3) - (1 — T's, (MT's,(A)). (7.1)

ny
A—(n1—2r1—1)
Simplifying equation (7.1),

no

)\—(n2—27’2—1)'

where I'g, (A) =

and I'g,(\) =

det(M\ — S(Gy v G3)) = 8 _de(i(l)\i ;flz 1)) ' A\ _dii(:\f ;752_) 1))@()‘)7

where ®(\) = N2 —[n;+ny—2r; —2ry—2]A+[(n1—2r1—1)(ng—2ry—1)—nyny]. O

Example 7.2.2. Consider G = K557 Cy. The Seidel spectrum of K5 and Cy are
4 1 -1 3
given as follows. Specs(K5) = and Specg(Cy) =
1 4 3 1
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Thus, the Seidel eigenvalues of G are —1,1,3 with multiplicities 2,4 and 1 re-

spectively together with the zeroes of the polynomial \> + 5\ — 16. Thus
11 3 —5+v89 —5—+/89
Seidel spectrum of K57 Cy is 2 2
2 41 1 1

Since the Seidel matrix loses non negativity, the Perron- Frobeniuos Theorem
may not hold good for such matrices. However, it is of great relevance that, for
a r-regular connected graph on n vertices, n — 2r — 1 is a Seidel eigenvalue with
1, as the associated Seidel eigenvector. In the following section, Theorem 7.2.1
is extended to the genrealised join of regular graphs using Fiedler’s Lemma and
the Seidel spectrum of G [Hy, Hs, ..., Hy] is explored, where G; is r;-regular for
1 =1,2,..., k, using the adjacency spectrum of Hy, Hs, ..., H; and a combinatorial

vertex weighted Seidel matrix of G.

7.2.1 Seidel spectrum of the joined union of regular graphs

Consider G [Hy, Hs, ..., Hy], where G is a simple connected graph with vertices
labeled as 1,2, ...,k with the Seidel matrix S(G) = [s; ;| where s;; = —1 if the
vertices ¢ and j are adjacent and s; ; = 1 if the vertices ¢ and j are not adjacent
and s; ; = 0 for the diagonal entries. Let H; be r;-regular and |V (H;)| = n;, for
every j = 1,2,..., k. Let S; denote the Seidel matrix of H;,j = 1,2, ..., k.

It can be easily seen that, the Seidel matrix of the G- union of Hy, Ho, ..., Hy is

given by
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7.2. Seidel spectrum of join of regular graphs

S(G [HI; HQ, ,Hk]):

Sl 31,2Jn1 Xng SI,SJnl xXns o Sl,kJnlxnk
81,2Jg1 XN So 52,3Jn2 X3 cee 52,kl]ng><nk
51,3‘];1:1 xXn3 8273‘]7?2 xn3 SS < SS,kJngxnk

SLk—1d smny S2k=1 Xy e Sk=1 Sk=1kIny_1xns
| Sl,k']rr{lxnk SQ’kJZ;X”k Ce c. Sk ]

(7.2)
Since the each row of S; sums to the constant n; — 2r; — 1, for j = 1,2,...k,
one of the Seidel eigenvalues of S; is n; — 2r; — 1 with the associated Seidel
eigenvector 1, , for j =1,2,.. k.

Thus, as in equation (6.3), taking

M; =S, (qi u;) = (nj —2r;—1 \/%hﬂ.)
and the real numbers
Plg = St,gn/TuNg
for 1 € {1,2,...,k — 1}, ¢ € {{ + 1,...,k}, and applying Theorem 6.2.2, the

Theorem follows.

Theorem 7.2.3. Consider G[Hy, Ho, ..., H|, where G is a simple connected
graph with vertices labeled as 1,2, ...,k and H; is rj- reqular and |V (H;)| = n;,
for every j = 1,2,..., k. Let S; denote the Seidel adjacency matriz of H;. Then

the Seidel spectrum of the G-join of the graphs Hy, Ho, ..., H is given by,

Specs(G [Hy, Ha, ..., Hy]) = <U Spec(S;)\{n; — 2r; — 1}> U Spec(g),
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7.2. Seidel spectrum of join of regular graphs

where ) B
ny —2r; —1 P1,2 - P1,k
~ P12 ng—2r,—1 ... P2,k
S =
| P1,k P2,k coo M= 2rp— 1
and

—Jmung iflgeE(G)
Plg = Slg\/TUNg =
Vung  iflg¢ E(G)

forle{l,2,...k—1}, qe{l+1,.. k}.

Let Ts(G) be the combinatorial vertex weighted Seidel matrix of G, given by

ny — 27“1 -1 51,212 Ce S1,kTk
51,21 Ng — 27’2 -1 ... S2 kM
Ts(G) =
| 51,611 895N cooonp—2r,— 1 |

It is easy to verify that Ts(G) = W-2SWz, where W is a diagonal matrix of

vertex weights as defined in Section 6.3. Thus S and Ts(G) are similar and hence

Spec(S) = Spec(Ts(Q)).

Lemma 7.2.4. [9] Let G be k-reqular graph of order n. If k, X, ..., N, are the
adjacency eigenvalues and 64,0, ..., 0, are the Seidel eigenvalues of G, then

91 zn—Qk—l,Qg = —1—2)\2,93 = _1_2)\33---7911: —1—2>\n

As an immediate consequence of Theorem 7.2.3 and Lemma 7.2.4, the Seidel
spectrum of G [Hy, Ha, ..., Hy] is found in terms of the adjacency spectrum of

oy, Hy, ..., H.
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Corollary 7.2.5. If A\ij = 1), Agj, ..., An;; are the adjacency eigenvalues of H;

forj=1,2,...,k, then

k nj
Specs(G [Hy, Hy, ..., Hy]) = (U Jt-1- 2@}) U Spec(Ts(G)),
j=1i=2
where
ny — 27”1 —1 51,22 Ce S1,kTk
51,211 N9y — 27“2 -1 ... S2 kN
Ts(G) =
| S1,kM1 59, 5M2 oo N —2r,—1 |
Vg U7
Vs
Ug
U1 V4
V3 Vg

Figure 7.1: Pg[](g7 KQ, 04]

Example 7.2.6. Consider the graph G = P3[K3, K3, Cy], the Ps-union of the
complete graphs K3, Ky and the cycle Cy. Note that G = P3, Hy = K3,

Hy = Ky,H; =Cyand ny = 3,ny =2,n3 =4and r, = 2,79 = 1,r3 = 2. The
adjacency spectrum and the Seidel spectrum of the graphs K3, Ky and C} are

given below.

Spec(K3) = . Spec(K,) = . Spec(Cy) =
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7.2. Seidel spectrum of join of regular graphs

-2 1 -1 1 -1 3
Specs(K3) = . Specs(K3) = . Specs(Cy) =
1 2 1 1 3 1

Also, the Seidel matrix of the joining graph P; and the combinatorial vertex

weighted Seidel matrix of G are given by

0 -1 1 -2 =2 4
SPy=| -1 0 -1 |, Ts(G)=| -3 -1 —4
1 -1 0 3 —2 -1
3 1 —1
Using Corollary 7.2.5, the Seidel spectrum P3| K3, Ky, Cy] is , to-
1 3 2
-2 =2 4
gether with the spectrum of Tg(P3) = | —3 —1 —4 |, which is found to be
3 -2 -1
{5, %‘E} Thus, the Seidel spectrum of this graph is obtained as below.
8 1 1 5 14+ 465 1—4/65
Specs(Ps[ K3, Ky, C4]) = 2 2
1 3 2 1 1 1

7.2.2 Seidel matrix and Seidel spectrum of '(Z,)

The following Theorem completely determines the Seidel spectrum of I'(Z,) in
terms of the Seidel eigenvalues of its induced subgraphs and the proper divisor

graph of n.

Theorem 7.2.7. If dy,ds, ..., dg) are the proper divisors of n, then the Seidel

matriz of I'(Z,) is given by

98



7.2. Seidel spectrum of join of regular graphs

51 s12do(3)xa(2)
$12d0 n yu(n So
S(I'(Z)) = Aireots)
T T
| S1em ooz S2em o
where,

(J = Dgny ifnfd;
S, = )

(I=Doezy ifnld

and for i€ {1.,2,...,&(n) — 1} and j e {i +1,....,£(n)}, ¢ # 7,

81.£(n)Jo( 1) x o

82,6(n) (2 ) xo(

St(n)

n
e (n) )

de(n)

Proof. I'(Z,) is the T, - join of I'(A(dy)),T'(A(d2)), ..., A(dg¢(ny)). The induced

subgraphs I'(A(d;)) are either a complete graph or the complement of a complete

graph, by Lemma 4.3.2.

Hence, the Seidel matrix of the induced subgraphs I'(A(d;)), denoted by S; are

given by,
(J = Doy intd]

SJ: ! )
(I—J)¢( ) ifn ‘ dJQ

J

<

&s

and the spectrum of S; is known in each case. Also, any two vertices d; and d;

in the joining graph T, are adjacent if and only if n | d;d; and accordingly the

1j-th entry in the Seidel matrix of T, is —1 if n | d;d; and 1 if n f d;d;, and 0

on the diagonal. Thus the Theorem follows, taking G = T,, and H; = I'(A(d;)),

as in equation (7.2).
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7.2. Seidel spectrum of join of regular graphs

Theorem 7.2.8. Let dy,ds, ..., d¢(n) be the proper divisors of any positive integer
n. Then, the zero-divisor graph I'(Z,) has Seidel eigenvalues —1 and 1 with
multiplicities Y3, a2 (0(5) = 1) and X4, 102(0(5) — 1) respectively and
the remaining Seidel eigenvalues are the eigenvalues of the vertex weighted Seidel

matrix of T,,, given below.

131 s120() .- Sl,ﬁ(n)¢($)
O I T
S1em@(70)  S2.6mP () te(n) |

where,
o(F)—1 ifntd;
1—o(F) ifn|d

and fori € {1,2,...,&(n)—1},j € {i+1,....&(n)}, ¢ # 7, Sij =

Corollary 7.2.9. I'(Z,) is Seidel integral if and only if Ts((,,) is integral.

Corollary 7.2.10. For distinct primes p and q, p < q, I'(Zyq) has only two

distinct Seidel eigenvalues —1 and p + q¢ — 3.

Proof. Consider I'(Z,,), where p < ¢ are distinct primes. It can be easily seen

that the zero-divisor graph I'(Z,,), is the K; join of I'(A(p)) and I'(A(q)), where

['(A(p)) = K, 1 and T'(A(q)) = K, 1. Note that the proper divisor graph of pq
is qu = KQ.

That is I'(Z,,) = Kao[K, 1, K,_1]. Using Theorem 7.2.7, the Seidel matrix of
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7.2. Seidel spectrum of join of regular graphs

I'(Z,,) is given by

(J = Dg-1)x(g-1)

=DJe-1x@-1 | (/= Dep-nxe-1)

(_1)J(q—1)X(p—1)

S(F(qu)) =

And by Theorem 7.2.8, since both I'(A(p)) and I'(A(g)) are null graphs, —1 is a
Seidel eigenvalue of I'(Z,,) with multiplicity p + ¢ — 4 and the other two Seidel

eigenvalues are the eigenvalues of its vertex weighted Seidel matrix,

q—2 —(p—1)

—(¢—=1) p-2

TS(qu) =

Thus, the remaining two Seidel eigenvalues of this graph are —1 and p + ¢ — 3.

Thus
-1 p+qg—3
Specs(I'(Zyg)) =
pt+tqg—3 1
[
Corollary 7.2.11. For any prime p, —1 and 1 are the Seidel eigenvalues of

I'(Z,3) with multiplicities p* —p — 1 and p — 2 respectively and the remaining
(p—1)2 £ +/p* +4p3 — 14p2 + 4p + 9
5 .

Seidel eigenvalues are

Proof. The proper divisors of p® are p and p? and the proper divisor graph of p?
is Tps = Ky. Also, I'(Z3) = KQ[Kp(p_l), K,_1]. Thus, applying Theorem 7.2.8,
—1 and 1 are the Seidel eigenvalues of I'(Z,3) with multiplicities p* —p — 1 and

p — 2 respectively and the remaining two Seidel eigenvalues are the eigenvalues

of the vertex weighted Seidel matrix,

To(T0) pP-p-1 —(p-1)

-(*—-p) 2-p
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7.2. Seidel spectrum of join of regular graphs

Corollary 7.2.12. For distinct primes p < q, —1 and 1 are the Seidel eigenval-
ues of I'(Zy2,) with multiplicities p* + pqg — 2p — 3 and p — 2 respectively and the
remaining Seidel eigenvalues are the zeroes of the polynomial

A+ X3 (1 = p? + 3p — pq) + N2(5p? — 2p® — 2p%q + p + pq — 3) + A\(4plq — 4p* +
12p° +4p°q* — 20p°q — Tp* — 8p?¢* + 24p*q + p + 4pq® — Tpg —5) + (8p'q* — 12p*q +

4pt — 28p3q* + 44p3q — 18p® + 32p%¢® — 5dp?q + 27p* — 12pg® + 23pq — 13p — 2).

Proof. The proper divisors of p?q are p,q, p?, pq. and the proper divisor graph
of p?q is the path P, where p ~ pg ~ p* ~ q. Hence, it can be seen that, the

zero-divisor graph
F(ZPQQ) = P4[F(pfl)(qfl)wFp(pfl)vf(qfl)’ Kp—l]‘

Applying Theorem 7.2.8, —1 and 1 are the Seidel eigenvalues of I'(Z,2,) with
multiplicities p? + pg — 2p — 3 and p — 2 respectively and the remaining four

Seidel eigenvalues are the eigenvalues of the vertex weighted Seidel matrix,

(p—1D(g—-1)—1 p’—p q—1 —(p—1)
p—1@g-1) pP—-p—1 —(¢—1) p—1
(p—1(g—1) p—p? q—2 —(p—1)

—(p—1(g—1) p—p —(¢—1) 2—p

Ts(Tz):

p=q

7.2.3 Seidel spectrum of I'(Z,:), k>3

The proper divisors of p* are p, p?,...,p* ! and {A(p), A(p?), ..., A(p* 1)} forms

an equitable partition for V(I'(Z,x)). The proper divisor graph Y, is a simple
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7.2. Seidel spectrum of join of regular graphs

connected graph of diameter 2 in which the vertices are labeled as p, p?, .....pF~

and for distinct ¢ and j, p* ~ p? if and only if i + j = k. Also,

F(Zpk) = Tpk [K(b(pkfl), K¢(pk72), e K¢(pl§J+1)’ Kd)(plgj)’ e K¢(p)].
Using the properties of the Euler-totient function ¢, it can be seen that

» [41-1 _j

Xk (") = 1) =52 (6("7) — 1)
K k

= ptt —plel - [51+1,

and

Biaps (60"7) = 1) =P = 5] - 1.

Thus, on account of Theorem 7.2.8, the next Theorem follows.

Theorem 7.2.13. For k > 3, the zero-divisor graph I'(Z,x) has Seidel eigenvalue
—1 and 1 with multiplicities pk_l—plgj—[g]—i-l and png—[gj—l and the remaining

Seidel eigenvalues are the eigenvalues of the vertex weighted Seidel matriz,

C1 s1200" %) ... s1k—10(p)
rr - | S
| 317k_1q5(pk71) 32,k—1¢(pk72) s Q-1 |
1 ifi+j=k o) =1 ifj <[]
where, s; ; = and (= .
1 otherwise 1—g(pF7) j=[%]

Corollary 7.2.14. For any prime p, the zero-divisor graph I'(Z,) has Seidel
eigenvalue —1 and 1 with multiplicities p> — p* — 1 and p? — 3 respectively and
the remaining Seidel eigenvalues of I'(Z,) are the zeroes of the polynomial

A3 —=A\2(p3—2p% +2) = \(2p° —2p" —4p3 +4p? +1) — (4p°® — 14p° + 14p* — p3 —2p? — 2).
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7.3. Seidel Laplacian spectrum of the join of regular graphs

Proof. The divisors of p* are p, p?,p® and the proper divisor graph of p* is the

path P3, where p ~ p* ~ p%. It can be seen that

F(Zp“) = P3[Kp2(p—1)’ Kp(pflb Kpfl]-

Again using Theorem 7.2.8, it is found that —1 and 1 are the Seidel eigenvalues of
I'(Z,«) with multiplicities p* — p* — 1 and p? — 3 respectively and the remaining
Seidel eigenvalues of I'(Z,1) are the eigenvalues of the vertex weighted Seidel
matrix,
pP-p-1 p’-p —(p—1)
Ts(Tp) = | pP—p*  p—p'+1 —(p—1)

—(p*-p*)  p—p° 2—p

7.3 Seidel Laplacian spectrum of the join of reg-

ular graphs

In [73], H.S.Ramane et.al express the Seidel Laplacian polynomial of the join of
two regular graphs. In this Section, the same is found in a fairly shorter method,
by applying the well known Fiedler’s Lemma and the result is extended to the

join of more than two regular graphs.

Theorem 7.3.1. Let G; be r; reqular of order n;, for i = 1,2. Then the Seidel

Laplacian polynomial of Gy 7 G is given by

AN+ ny + no)

st (G vV G N) = o S T )

. (I)SL(Gl; A + ng) . (I)SL(GQ; A + nl).
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7.3. Seidel Laplacian spectrum of the join of regular graphs

Proof. Let S(G;) and S(G3) denote the Seidel adjacency matrices of G; and
G5 respectively. Then, the Seidel Laplacian matrices of (G; and G5 are given as

follows.

SL(Gl) = (n1 - 27"1 - ]-)Inl - S(Gl),
SL(GQ) = (TLQ — 27"2 — ].)In2 — S(GQ)

Since G is regular, by Lemma 7.2.4, ny — 2r; — 1 is an eigenvalue of S(G7) with
corresponding eigenvector 1,,. Also, 1 is an eigenvalue of I,,, with eigenvector
1,

.. Thus it can be seen that, 0 is an eigenvalue of SY(G;) with correspond-

ing eigenvector 1,,. Similarly, 0 is an eigenvalue of ST(G5) with corresponding

eigenvector 1,,. Clearly, S¥(G; 7 G2)

(n1 +ng —2(ry + ng) — VI, — 54 Ty xn
J?leng (Tll + ng — 2(7”2 + nl) — 1)In2 — SQ

SL(Gl) - n2[n1 Jn1 XNg
‘]Vzlﬂlmw SL(GQ) - ’I’L1]n2
Taking A = S"(G1) — noln,, B = SY(G2) — niln, cn = —np, Bi = —my,

\/%1711: uy = \/%1”2, p = 1/ning and applying Fiedler’s Lemma, it can be

seen that Specgr (G 7 G2)

u; =

= Spec (S*(G1) — nal,, ) \{—na} U Spec (S*(G2) — nily,) \{—n1} | SpecF, where

—-n A/nn R 0 —mn1—n
’ Ea Clearly, Spec(F) = b

Ving  —ng 1 1

the matrix [ =

Thus,

A+ ny + ng)
(A +n1) (A + n2)

(I)SL(G1VG2;)\) = -(I)SL(Gl;)\—i-TLQ)'(I)SL(GQ;A-FTM).
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7.3. Seidel Laplacian spectrum of the join of regular graphs

7.3.1 Seidel Laplacian spectrum of the joined union of

regular graphs

Consider G [Hy, Hs, ..., Hy], where G is a simple connected graph with vertices
labeled as 1,2, ...,k with the Seidel matrix S(G) = [s; ;| where s;; = —1 if the
vertices ¢ and j are adjacent and s; ; = 1 if the vertices ¢ and j are not adjacent
and s;; = 0 for the diagonal entries. Let H; be r;- regular and |V (H;)| = nj,
for every j = 1,2,....k. Let S; and S*(H;) denote the Seidel matrix and Seidel
Laplacian matrix of H;,7 = 1,2,...,k. The degree of each vertex of H;, in the
joined graph G[Hi, Hy, ..., Hy] is 7; + >, _;ni. Hence, if S¥ denotes the ;'
diagonal block in the Seidel Laplacian matrix of G |Hy, Hs, ..., Hy], then,

k
i=1

g

= (nj - 2T’j - 1)]71] - Sj + (Z n; — ZTL1> In]-

VX! g~

= SL(H]) + <i sijnz-> ]nj

i=1

= SL(H]) + Tj]nj.
where 7; = Zle s; ;n;. Thus, it can be easily seen that, the Seidel Laplacian

matrix of the G- union of Hy, Ho, ..., H}, is given by
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7.3. Seidel Laplacian spectrum of the join of regular graphs

SL(Hl) +T1[n1 _51,2Jn1><n2 o _Sl,kJTLank

—S51 2(]7,7; <M SL H2 +7—2In . _827k<]n xn

SY(G[Hy, H, ..., Hy]) = e (#2) ’ s
| —S51 k‘]nlxnk —S9 k’]ngxnk SL(Hk) +Tk[nk ]

(7.3)

k
where 7; = > | 8 1.

Remark 7.3.2. Let G be a k-regular graph of order n. Since, S*(G) = (n —
2k — 1)1, — S(G), from Lemma 7.2.4 it follows that, SL(G) has an eigenvalue

0 with multiplicity at least 1. For example, the Seidel Laplacian spectrum of the

0 —4
cycle Cy, which is 2-reqular is specgr(Cy) = . However, the Seidel

3 1

Laplacian matriz of complete graphs and null graphs (complement of complete

graphs) has an eigenvalue O with multiplicity 1.

Theorem 7.3.3. Consider G|Hy, Hs, ..., H,|, where G is a simple connected
graph with vertices labeled as 1,2, ...,k and and S = [s; j|kxi is the Seidel matriz
of G and Hj is rj- reqular and |V (H;)| = n;, for every j = 1,2,.... k. Let

{HL =0 GJLQ, i QjLnj} be the Seidel Laplacian eigenvalues of H;, for j = 1,2, ..., k.
Then, the Seidel Laplacian spectrum of the G-join of the graphs Hy, Hs, ..., Hy. is
given by,

Specgr (G [Hy, Hy, .. (U U L+ T > U Spec(Tse (G)),

j=1li=
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7.3. Seidel Laplacian spectrum of the join of regular graphs

k
where T; = >, S;;n; and

T —S12M2 ... —S1ENE
—S81,2M T2 cee TSN
TsL (G) -
| —S1kM1 —S2kM2 ... Tk ]

Proof. Since H; is regular, 0 is a Seidel Laplacian eigenvalue of H; with corre-
sponding eigenvector 1,,, for every j. Thus from equation (7.3), it is evident
that each of the diagonal blocks S*(H,) + 7;l,; is a symmetric matrix which has
7; as an eigenvalue with corresponding eigenvector 1,,, for j = 1,2,..., k. Thus,

as in (6.3), taking

1
M] = SL(H]) + Tj]nj7 (aijvj’uijvj) = <7-.7 ) 1nJ)

and the real numbers

Plig = —Sl,gn/TNq
for i € {1,2,...,k — 1}, ¢ € {{ + 1,...,k}, and applying Theorem 6.2.2, the

Seidel Laplacian spectrum of G'[Hy, Hs, ..., H] is obtained as,

Specgr (G [Hy, Hy, ..., Hi]) = <U Spec (S*(H;) + 7;1,,,) \{73}) U Spec((L)),

=1
(7.4)
T P12 .- PLk
~ T e P2k
k P12 2 ,
where 7; = Y7 | s;;n; and L =
| Pk P2k oo Tk

Jun if g eE(G)
Obviously, p1, = —58i144/Tung = ! for 1 e {1,2,...,k —

—ymung if lg ¢ E(G)
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7.3. Seidel Laplacian spectrum of the join of regular graphs

1}, g € {{l + 1,....k}. Let Tse(G) be the combinatorial vertex weighted Seidel

Laplacian matrix of GG, given by

1 —S51,2M2 —S1,kNk
—S81,2M T2 —S2 kN
TsL (G) ==
| —S1ET —S2kT02 Tk ]

It is easy to verify that, Tor (G) = W2 LWz, where W is given as in Section:6.3.
Thus, L and Tz (G) are similar and hence Spec(L) = Spec(Tsz(G)). Hence, from

equation(7.4),

Specgr (G [Hy, Ha, ..., Hy]) = ( (0% + T])> U Spec(Tse (Q)). (7.5)

O

7.3.2 Seidel Laplacian spectrum of I'(Z,)

Theorem 7.3.4. If dy,dy, ..., d¢ny are the proper divisors of m, then the Seidel

Laplacian matriz of I'(Z,) is given by,

SHI(Z))
_| ey Sy —526m) Jo( ) <l z2)
T T I
where,
gL _ ( (Z) + Zics Slﬂ¢(z)> Lozy = Jotgy) nitd;
J
J¢(d£j) + ( =1 Suﬁb(dﬂz) Qb(%)) ]¢(d£j) if n | d?




7.3. Seidel Laplacian spectrum of the join of regular graphs

and

Proof. In the proper divisor graph T,,, two vertices d; and d; are adjacent if and
only if n | d;d;. Thusif § = [Si,j]g(n)xg(n) denotes the Seidel adjacency matrix of
T,, then

-1 ifn | did;

Sij =

By Lemma 4.3.4, I'(Zy) is the T, - join of T'(A(d4)),I'(A(d2)), ..., I'(A(dg(w))),

where the induced subgraphs I'(A(d;)) are given by

Koy ifntd
D(A(dy)) = k )
K¢(d£j) if n | d?

by Lemma 4.3.2. Also, the Seidel Laplacian matrix of K, and K,, are given by

SH(K,) = Jp —nl,,

SH(K,) = nl, — J,.

Thus, if SjL denotes the j* diagonal block in the Seidel Laplacian matrix of
I'(Zy), which corresponds to the vertices of T'(A(d;)), then, S} = S*(I'(A(d;)))+

Tilyy  where, 7; = ng) sij¢(g)- Hence,

d.;

<

o O(a) o) = Jotgy T Tilogy Mk d

J
Totzy = O(G otz + miloryy i n/d;

J J

Thus the result follows equation (7.3), taking G = T, and H; = I'(A(d;)). O
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7.3. Seidel Laplacian spectrum of the join of regular graphs

Applying Theorem 7.3.3 and Theorem 7.3.4, the Seidel Laplacian spectrum

of I'(Z,) is determined in the following Corollary.

Corollary 7.3.5. Let dy,ds, ..., dew) be the proper divisors of n. Then, I'(Zy)

has Seidel Laplacian eigenvalues ¢( - )+Z£< si;@( ) with multiplicity ¢(7-) —1

n
d;

<5

corresponding to the divisors d; such that n f d3 and Z swczﬁ(ﬁ) —o(F ) with
multiplicity ¢(3-) — 1 corresponding to the divisors d; such that n | d? and the
J

remaining Seidel Laplacian eigenvalues are the eigenvalues of

m —81,2¢(%) e T8 5(n)¢(d£(n))
—S L cer —Sogm)®
ray= | U maetanh | g
| —sem@(F) —sard(E) - e(n) 1

where n; = ng? Si,j¢(dﬂi)aj =1,2, 75(”)

Theorem 7.3.6. 0 ia a simple Seidel Laplacian eigenvalue of I'(Z,,), for any n.

Proof. Tt is first shown that 0 is an eigenvalue of the matrix Tgz (G) of multiplicity
1. Arrange the proper divisors of n in the ascending order, d; < dy < ... < dg(p).
It is obvious that ¢(7-) > ¢(7),i = 2,3, ...,{(n). Note that, Ts.(G) is a square
matrix of size £(n). Since, 1; = Zg(n) $iiP(q);
ey sucb
i
Hence it follows from equation (7.6) that, the sum of each row of Tz (G) is zero.
The first column of Tsz(G) can be transformed to the zero column on adding
2nd 3rd - €(n)™ columns to it. Hence, Tz (G) is singular which implies that 0

is an eigenvalue of Ts (G). To prove that the multiplicity is 1, it suffices to prove
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7.3. Seidel Laplacian spectrum of the join of regular graphs

that the rank of Ts:(G) is {(n) — 1. For this, consider the matrix 7" obtained
from T4z (G) by deleting the first row and first column of Tsz(G). Since
n
sij =+l 6(5) > ¢( i=23,..80) = fnl > D lsigo()l.
dy = d;
XN REN

Thus, T is strictly diagonally dominant. For example, consider the first row of
T, say
[7)2, —S2 3¢( 3) —S52 4¢(d4) —S2 g(n)¢(

.+ SQ’E(n)¢( ) it follows that [n] > |s23¢ (3 )| + o+ S0P

)]. Since, no = s120(7-) +5230(5) +
)l

Hence by Levy— Desplanques Theorem, T is non-singular, and hence the rank of

Tse(G) is £(n) —

de(n)

de(n)

By Corollary 7.3.5, the remaining Seidel eigenvalues of I'(Z,) are ¢(F-) +

<5

Z o swqb(ﬁ) and Z - s”qﬁ(dﬁ) — ¢(4), neither of which is zero. This proves
the Theorem. O

Theorem 7.3.7. For distinct primes p and q, p < q, the Seidel Laplacian spec-

trum of I'(Zy,) is given by

0 —(p+q—2) p—q q—p
Specst (I'(Zyg)) =

1 1 p—2 q—2
Proof. The proper divisors of pg are p and ¢q. By Lemma 4.3.2 and Lemma
4.3.4, the zero-divisor graph I'(Z,,) is the join of I'(A(p)) and I'(A(q)), where

I'(A(p)) = K,_1 and I'(A(q)) = K,_;. That is

=K, 1V K,
_ q—1 0 p—1
Clearly Specgst(K,—1) = and Specgr(K,_1) =
1 qg— 1 p—2
And the result follows from Theorem 7.3.1. ]
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7.3. Seidel Laplacian spectrum of the join of regular graphs

Theorem 7.3.8. For any prime p,  the Seidel Laplacian spectrum of I'(Z,s) is

0 1—p% pP—2p+1
Specst(I'(Zys)) =

1 p—1 p*—p-1

Proof. The proper divisors of p* are p and p?. By lemma 4.3.2 it can be seen
that, the subgraphs of I'(Z,s), induced by A(p) and A(p?) are K -1y and K,_;

respectively. Also by Lemma 4.3.4,

I(Zy) = Kpp1) V Kp-1.

— 0 plp—1)
SPGCSL (Kp(p—l)) = s
1 p2 —p—1
0 1—p
Specst(Kp-1) =
1 p—2
Hence the result follows from Theorem 7.3.1. O]

Theorem 7.3.9. For any prime p, the Seidel Laplacian spectrum of the zero-

dwisor graph I'(Za) is

0 1—-p® PP—2°+1 p*P—2p+1
Specst (I'(Zy)) =

1L p—1 p—p—-1 p"—p°

Proof. The divisors of p* are p, p?, p®. The proper divisor graph of p* is the path
Ps, in which p ~ p* ~ p?®. The subgraph induced by A(p) is the null graph
K 2,1y, whereas the subgraphs induced by A(p®) and A(p?) are the complete

graphs K1) and K,_; respectively. It can be seen that,

I'(Zys) = Ps[K p2(p-1), Kpgp—1y, Kp—1].
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7.4. Seidel signless Laplacian spectrum of the join of regular graphs

Applying Corollary 7.3.5, p® — 2p + 1,p> — 2p* + 1,1 — p? are Seidel Laplacian
eigenvalues of I'(Z,) with multiplicities p*—p*—1, p*—p—1 and p—2 respectively.
And the remaining Seidel Laplacian eigenvalues of I'(Z,4) are the eigenvalues of

the matrix,

pP=2p+1 p—p° p—1
Tor(Tp) = | p2=p* PP —p*—p+1 p—1
p*=p’ p*—p p—p’
It can be seen that the above matrix has three eigen values, A\y = 0, Ay = 1 —

P A =p°—2p+ 1 -

7.4 Seidel signless Laplacian spectrum of the

join of regular graphs

Note that, each diagonal block in the Seidel signless Laplacian matrix of the join
of two regular graphs is a symmetric matrix which bears an eigenvalue with all-
one vector as the corresponding eigenvector, which facilitates the use of Fiedler’s
Lemma in the investigation of its spectrum. Since the main theorems of this
section are in the same frame work of Fiedlers Lemma, repetition of proofs is
avoided, except in Theorem 7.4.1, where the concepts of Coronal of a square

matrix and the Schur complement are incorporated.

Theorem 7.4.1. Let G; be r;-reqular graph of order n;, for i =1,2. The Seidel

signless Laplacian polynomial of Gy 7 G s

(A — Kk1)(A — K2) — ning

Dgo(G1 vV Ga3 A) = (A — K1) (A — K2)

Do (G A+ ng) - Pga(Ga; A + nq)
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7.4. Seidel signless Laplacian spectrum of the join of regular graphs

where, k1 = 2n1 — Ny — 4ry — 2 and kg = 2ny — ng — 4ry — 2.

Proof. Let S9(G1) and S?(G5) denote the Seidel signless Laplacian matrices of
G, and Gy respectively. Both S?(G4) and S?(Gs) are symmetric and it can be
seen that, their row sums are the constants 2(n; — 2r; — 1) and 2(ny — 2ry — 1)

respectively. Also,

SQ(GI) - n2In1 _Jnlxng
SQ(Gl VvV GQ) =
—J;{lan SQ(GQ) - n1]n2
S? _Jnlxng
_Jrjz;xng SZQ

where S¢ = SQ(G4) — nyl,, and SY = S9(G,) — nil,,. Both SY and S¥
are symmetric and it can be easily seen that their row sums are the constants

K1 = 2(ny —2ry — 1) — ny and Ky = 2(ng — 2ry — 1) — ny respectively. Thus, the

ny no

coronal of S? and S¥ are found to be ga (\) = and I'go(A) =

— R 2 A— Ko
respectively. Applying Lemma 4.2.4, and Lemma 3.3.6, it can be seen that

det(\—S2(G 7 Gy)) = det(\ —S9)-det(\[—SS)- (1 . FS?(A)FSQQ()\)) . (77)

n U]
here '(o(\) = ———— and "o (\) = ——.
where s?( ) ) an S;;)( ) = (7)
Simplifying equation (7.7), the result is obtained. O

Generalizing the above theorem to the join of regular graphs, G [Hy, Ha, ..., Hg],
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the next Theorem follows.

SQ(Hl) + Vljnl

S1 2]

n1 Xng

S9(G[Hy, Hy, ..., Hy]) =

T
81 kJnl XN

SQ

S].,QJTLl XN

(Hg) + V21n2

T
52 kJng XN

k
where v; = Y07, 5.

Theorem 7.4.2. Consider G |Hy, Ho, ...,
graph with vertices labeled as 1,2, ...,

G and Hj is r;- regular and |V (H,

2(n; — 2r; — ),9?2,.

*) ]’n,
forj =
the graphs Hq, Ho, ...,

Specge (G |[Hy, Ho, ...

where v; = Y% | s;n; and

| 2(ny —2r1— 1)+ 1y
Tya(G) = e

| S1,kM1

Proof. Since Hj is rj-regular, S9(

of H; with corresponding eigenvector 1,

2r; — 1) with corresponding eigenvector 1,,, for every j = 1,2,...,

H;) = (n;—2r;

is the Seidel matrix of H;. By lemma 7.2.4, n; — 2

k and S =

)| = nj, for every j =

Hy. is given by,

- (s

j=13

51,2M2

2(712 — 27’2 - ].) + 9

52 kN2

. Thus, S9(H
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52,kJn2 XNg

SQ(Hk) + Vk[nk
(7.8)

Hy], where G is a simple connected

[Sijlkxk is the Seidel matriz of

Lk Let{

} be the Seidel signless Laplacian eigenvalues of Hj,

. k. Then, the Seidel signless Laplacian spectrum of the G-join of

ity ) v Spec(Tsa(G))

S1,kMk

52 Tk

2(nk — 27”k — 1) + Vg

— 1)1, + (S(Hj;)), where S(H;)
r; — 1 is a Seidel eigenvalue

;) has eigenvalue 2(n;

k. Hence, as




7.4. Seidel signless Laplacian spectrum of the join of regular graphs

evident from equation (7.8), the j** diagonal block of the Seidel signless Laplacian
matrix of G [Hy, Hy, ..., Hy] is the symmetric matrix S¢(H;) + v;I,, which has

an eigenvalue 2(n; — 2r; — 1) + v; with eigenvector 1, for j = 1,2, ..., k. Thus,

1
)
V1

taking
M; = SO(H;) + vily,, (04, 0,) = (2(%‘ —2rj =1+,

and the real numbers

Plg = Si,g/Tulq

for 1 € {1,2,....k — 1}, ¢ € {{ + 1,...,k}, the result follows from Theorem

6.2.2. ]

Example 7.4.3. Consider the zero-divisor graph I'(Z,2,), where p < ¢ are dis-
tinct primes. The proper divisors of p*q are dy = p, dy =q, ds = p*, dy = pq.
The proper divisor graph of p?q is the path P;, where p ~ pg ~ p? ~ q. The sub-
graphs induced by A(p), A(q), A(p*), A(pq) are K -1)g-1): Kppp—1): K (4-1) and

K,_; respectively. Hence,

F(Zp2q) = P4[ (pfl)(qfl)vfp(pfl)vF(qflbKpfl]-

Applying Theorem 7.4.2, the Seidel signless Laplacian spectrum of I'(Z,,) is the

multi set
pPP+pg—3p—1 pP*+pg—p—29—1 pg—p*—p—1 p*—pg—p+3

pPg—p—gq pP—p—1 q—2 3—p

together with the spectrum of the matrix,
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TSQ(Tqu):

| 4 2pg—4p— g PP =p q—1 1—p |
(p—1(g—1) 2p*+pg—2p—2¢—1 1—gq p—1
(p—1(¢—1) p—7p? pqg—p* —p+q—2 1—p
—(p—1D(—1) p*=p 1—gq PP—pg—2p+4
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Chapter 8

Conclusion And Further Scope Of Research

8.1 Summary of the Thesis

The first Chapter is the introductory Chapter which includes the review of lit-
erature of recent works on this area.

In the second Chapter, the preliminaries from Graph Theory and Matrix Theory
are provided with due focus given to Spectral Graph Theory.

In the third Chapter, the characteristic polynomial of the zero divisor graph
I'(Z,) is found for n = p3q, p*¢*, where p and ¢ are distinct primes. In the
second Section, the adjacency matrix of I'(Z,2,2) is explored. Also, the girth,
diameter, stability number and clique number of this graph are traced. In Sec-
tion 3, the characteristic polynomial of this graph along with the multiplicities
of the eigenvalues 0 and —1 are found by direct computation using matrix tools.
In Section 4, the adjacency matrix and eigenvalues of I'(Z,2,) are investigated.
Chapter 4 focuses on the generalisation of the results in Chapter 3. The spec-

trum of I'(Z,,) for n = p3, p* where p is any prime, is found in the second Section
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8.1. Summary of the Thesis

of this Chapter. The third Section contains the analysis of the adjacency matrix
of I'(Z,x) for any k > 3 and the investigation of some graph parameters of this
graph. Also, the characteristic polynomial and two eigenvalues of the adjacency
matrix of this graph, namely 0 and —1 are explored with multiplicities. In Sec-
tion 4, a general method is proposed to compute the eigenvalues of I'(Z,,) for
any n, using the quotient matrix of equitable partition of its vertex set.

In Chapter 5, the distance matrix, distance Laplacian matrix and distance sign-
less Laplacian matrix of the zero divisor graphs I'(Z,,) and I'(Z,3), for p < ¢, are
found. Also the spectra of these matrices are found using the direct computation
method. Some results from Linear Algebra and Matrix Theory are made use for
this purpose.

Chapter 6 is the generalisation of the results of Chapter 5 from particular val-
ues of n to general. The role of Fiedler’s Lemma and its generalization, to the
computation of the distance spectrum of the generalized join of regular graphs
is described in the second Section. The third Section contains the investigation
of the distance spectrum of I'(Z,,) for any n and in particular for n = p* for any
prime p and k > 3 using Fiedler’s Lemma. Also, the distance eigenvalues —1 and
—2 are explored with multiplicities for the zero divisor graphs I'(Z,), for sny n.
In Section 4, the computation of the distance Laplacian eigenvalues of I'(Z,),
for any n is described and the distance Laplacian spectrum of I'(Z,x ),k = 3 is
completely determined.

Chapter 7 contains the computation of the Seidel spectrum of the zero divisor
graph I'(Z,) for any n. In Section 2, the Seidel spectrum of the generalized join
of regular graphs is investigated. The Seidel spectrum of the zero-divisor graph

I'(Z,), is thereby computed in terms of the spectrum of the vertex weighted
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8.2. Further Scope of Research

combinatorial matrix of the proper divisor graph of n. Sections 3 and 4 focuses
on the investigation of Seidel Laplacian and Seidel signless Laplacian spectrum

of I'(Z,,) respectively.

8.2 Further Scope of Research

The following are listed as the topics for further research.

1. Study the connection between the spectral properties and the graph pa-

rameters of the zero divisor graph I'(Z,,) for any n.

2. Explore the spectral radius and spectral gap of the zero divisor graph I'(Z,)

for any n.

3. Investigate the bound for the largest and smallest eigenvalues of the zero

divisor graph I'(Z,).

4. Study the relation between the spectra of I'(Z,) and the spectra of its

proper divisor graph for any n.

5. Investigate the spectrum of the zero divisor graph on other commutative

rings.

6. Extend the study of spectrum of zero divisor graph to non commutative

rings.

7. Characterise rings on the spectral properties of the zero divisor graph.
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