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ABSTRACT

Reliability and survival analysis are widely used in systems engineering and

clinical trial experiments. Innovations in reliability methods enhance the safety and

reliability of complex technological systems, like engineering systems and offshore

pipelines. Survival analysis is generally defined as a set of methods for analyzing

data where the outcome variable is the time until an event of interest occurs. It can

be a death, illness, failure, or completion of a mission. The time to event or survival

time can be measured in days, weeks, years, etc.

The notion of ageing plays a significant role in reliability theory. Ageing has a

direct impact on the failure rate function behavior. They can be used in maintenance

planning, replacement planning, resource allocation, etc. The increasing failure rate

(IFR), decreasing failure rate (DFR), and bathtub failure rate (BFR) distributions

are widely used in reliability engineering.

Birnbaum and Saunders (1969) proposed a failure time distribution for fatigue

failure caused by cyclic loading. It was also assumed that the failure was due to the

development and growth of a dominant crack. Univariate Birnbaum-Saunders (BS)

distribution has been used to analyze positively skewed lifetime data. It has received

a lot of attention in the last few years. One of the most widely used approaches to

reliability estimation is the well-known stress-strength (SS) model. Several physics

and engineering applications use this model, including strength failure and the

collapse of systems.

The step-stress model is a widely accepted accelerated life testing model. This

accelerated testing reduces the time to failure. The data collected from such an

accelerated test may then be extrapolated to estimate the underlying distribution of

failure times under normal conditions. The step-stress experiment is a special case

of accelerated testing that allows for different conditions at various intermediate

stages of the experiment.

The thesis entitled Some Contributions to Reliability Theory and Survival

Analysis has been arranged into 7 chapters. Chapter 1 introduces the basic concepts

and definitions to the reader. Also, an extensive review of related literature has
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been presented. The summaries of the investigation of study are stated below.

A New Generalization to the DUS Transformation and its Applications

Kumar et al. (2015) proposed a method called DUS transformation to obtain a

new parsimonious class of distributions that does not require additional parameters

but is found to be a better fit than the baseline distributions. Many of the engineering

systems are parallel in nature. If a parallel system has n components and each

of the components is well fitted as DUS transformation of any baseline lifetime

distribution, then we have to use power generalization. A new transformation

called the power generalized DUS transformation (PGDUS) is introduced and

proposed new distributions with exponential, Weibull, and Lomax distributions as

baseline distributions. Several mathematical properties are examined, including

moments, moment generating functions, characteristic functions, quantile functions,

order statistics, etc. The maximum likelihood approach to parameter estimation is

discussed. Based on several real data sets, the proposed distributions are compared

with some of the other failure rate lifetime distributions.

Exponential-Gamma (3, θ) Distribution: A Bathtub Shaped Failure Rate

Model

Mixture distributions are useful when dealing with lifetime data analysis. A

BFR distribution called the exponential-gamma (3, θ) distribution is examined in

detail. An investigation is conducted on the shapes of the probability density

function (pdf) and the failure rate. Various properties are discussed, including

moments, moment generating functions, characteristic functions, quantile functions,

and entropy. Distributions for the minimum and maximum are obtained. In order

to estimate the parameters of the distribution, the maximum likelihood method is

used. Through the use of a simulation study, biases and mean squared errors are

analyzed for maximum likelihood estimators (MLEs). A comparison between the

proposed lifetime distribution and other lifetime distributions is conducted using

real-world data sets.

Generalized ν-Birnbaum Saunders Distribution

Birnbaum-Saunders (BS) distribution is widely used in reliability literature. In
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order to analyse data and incorporate flexibility in the form of the distribution, we

need to consider the distribution with shape parameters. The generalization of the

BS distribution, called the ν-Birnbaum Saunders distribution, is discussed. A number

of intriguing and relevant characteristics are investigated in depth. The maximum

likelihood principle is employed to estimate the parameters of the univariate ν-BS

distribution. To obtain interval estimates, we use asymptotic confidence intervals.

Both estimation methodologies have been thoroughly explored in an extensive

simulation study. Based on these estimators, the probability coverage of confidence

intervals has been evaluated. Real-life applications are provided with three different

datasets and compared with the univariate BS distribution.

Inference for R = P[Y < X] based on the Exponential-Gamma (3, λ)

Distribution

When a manufacturer has knowledge of the mechanical reliability of the

design through the stress-strength model before production, they can significantly

reduce their production costs. A system’s longevity is determined by its inherent

strength and external stress. A discussion of the stress-strength reliability of the

exponential-gamma (3, θ) distribution is presented. An assessment of the reliability

estimation of the single-component model is provided. A simulation study is used

to demonstrate how well the MLEs perform. A data application is presented using

real data sets to demonstrate how the distribution performs in real-life situations.

A Simple Step-Stress Analysis of Type II Gumbel Distribution

Step-stress reliability analysis is useful in industrial engineering. A simple

step-stress accelerated life-testing analysis is provided, incorporating Type-II

censoring. Here, a flexible failure rate-based approach to Type II Gumbel distribution

for SSALT analysis is considered. The baseline distribution of experimental units at

each stress level follows the Type II Gumbel distribution. The MLEs for the model

parameters are derived.

Lastly, Chapter 7 presents the concluding remarks of the thesis and proposals

for future work.
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CHAPTER 1

Introduction and Review of Literature

1.1 Introduction

A large number of statistical applications have been seen in reliability theory and
survival analysis using various lifetime distributions. However, existing distributions
do have limitations when applied to certain data due to their inability to provide
a proper fit. To obtain precise probability results, it is necessary to use more
appropriate statistical lifetime distributions. Through the study of new statistical
distributions for existing data, a fresh perspective can be provided on reliability
theory and survival analysis by introducing more flexible models and an in-depth
analysis of their characteristics and properties. If a better distribution is available
than existing distributions, a researcher would have selected the better model.
Fitness for the given data is one of the criteria for selecting the better model. If a
distribution is more fitting to the given data, researchers have to leave the existing
distribution and use a new model.

In reliability and survival analysis, the general structure of the system could be
series or parallel. Therefore, it is essential to investigate the distributional properties
of series or parallel systems when components are distributed according to any
lifetime distribution available in the literature. The DUS transformation of a lifetime
distribution was introduced by Kumar et al. (2015). The name ’DUS’ is given

1



CHAPTER 1

according to the first letter of the author’s name: Kumar, D., Singh, U., and Singh,
S. K.; see Kumar et al. (2015). A DUS transformation provides a new distribution,
using some baseline lifetime distribution, without adding new parameters. As far
as inference is concerned, the DUS transformation is a good approach since it
does not add any new parameters. Increasing the number of parameters leads to
complexity in estimation and a lack of consistency. Suppose that the lifetimes of
the components are distributed as a DUS-transformed distribution. What would be
the distribution of a parallel system consisting of such components? This question
has to be answered through research. Several statistical distributions are available,
like exponential, Weibull, Lomax, Gamma, etc., for reliability and survival analysis.
Also, a large number of transformations are available in the literature, like the DUS
transformation, the Kavya-Manoharan (KM) transformation, etc. They are used in
reliability analysis. Their performance in engineering systems like series systems
and parallel systems is to be investigated in detail.

Mixture distributions are useful when dealing with lifetime data analysis. When
a new component switches on for the first time, it may fail at the same moment, or
it may fail while working due to overvoltage, jerking, or any such shocks, or it may
fail due to degradation. So failure due to random shocks or random failure can be
modelled using an exponential distribution. Since there is a chance of failure due to
the degradation of components, such failure time may be distributed as any other
lifetime distribution if it is fitted to the data. When both situations happen to a
group of components installed for a mission, the researcher should use a mixture
distribution. Investigation of certain mixtures is essential to knowing how they
behave in reliability and survival analysis. Moreover, the estimation of parameters
also has to be studied in detail.

Stress-strength reliability analysis using statistical distributions is very important
in the fields of engineering, quality control, and medicine. According to
stress-strength reliability, a network’s ability to withstand stress is the measure of
its reliability or safety. It is quite desirable to estimate stress-strength reliability
(R) using more appropriate models, especially mixture models. Investigation of the
statistical properties of reliability estimators is also imperative when dealing with
inferential procedures. This stress-strength parameter, R, measures the performance
of systems in the context of mechanical reliability. Apart from the inferential

2



Section 1.1

information, R provides the probability of system failure if the system fails while the
applied stress exceeds its strength. The field of reliability engineering places a great
deal of emphasis on accelerated life testing, in particular, step-stress accelerated life
testing. The inference of step stress models based on various statistical distributions
is useful for accelerated life testing.

Birnbaum-Saunders (BS) distribution is one of the important distributions
when dealing with fatigue failure. Several generalizations of the BS distribution are
available in the literature. The usefulness of its generalizations has to be explored
more. Due to the complexity of the model, the estimation of parameters becomes
more complicated. A detailed study on the estimation of parameters and the
estimation of the confidence interval is required for the generalized BS models.

In mathematical statistics, reliability theory and survival analysis examine
a specific class of time-to-event random variables. Methods for evaluating and
forecasting a product’s successful operation or performance are discussed in
reliability analysis. Due to rapid advances in technology, the development of
highly sophisticated products, intense global competition, and rising customer
expectations, manufacturers are under increased pressure to produce high-quality,
reliable products. Customers expect engineering products to be reliable and safe
when they purchase them. For a substantial time period, systems like vehicles,
machines, telecommunication devices, power generation systems, and so forth should
be capable of performing their intended functions under normal operating conditions.

In technical terms, reliability can be defined as a system’s ability to perform
its intended mission within a specified time under normal operating conditions.
Enhancing the reliability of products is one of the most important aspects of
improving the quality of products. Methods of reliability have been developed and
applied to enhance the safety and reliability of complex technological systems, such
as nuclear power systems, chemical plants, space systems, hazardous waste facilities,
and offshore installations. Survival analysis is generally defined as a set of methods
for analyzing data where the outcome variable is the time until an event of interest
occurs. It can be death, the onset of a disease, failure, or the completion of a mission.
The time to event or survival time may be measured in days, hours, weeks, years,
etc.

Reliability theory and survival analysis mainly focus on positive random variables,

3
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often called lifetimes. The distribution function provides a complete characterization
of a lifetime random variable. How effectively a lifetime is understood depends on
failure, death, or some other "end event".

By utilizing appropriate statistical distributions for modeling a lifetime,
reliability calculations can be simplified and made more accurate. By analyzing the
distribution of the lifetime of the system, reliability, maintenance, and replacement
measures can be planned accordingly. An analysis of reliability requires the
identification of the failure rate model to ascertain which distribution is suitable for
the available data. The distributions available in the literature are often insufficient
to explain the distributional characteristics and reliability analysis of the data given.
Thus, researchers are constantly forced to come up with more suitable distributions
for the data that they are provided with.

1.2 Basic Concepts

1.2.1 Reliability or Survival Function

When it comes to probability, an object’s reliability is defined as the probability that
it will carry out its intended function for a predetermined timeframe while working
under conventional environmental conditions. This probability is referred to as the
survival probability in survival analysis.

The probability that an object will survive to time t is defined by the reliability
function (or survival function) of the lifetime variable, T , indicated by R(t) (or S(t))
where,

R(t) = S(t) = P [T > t] =
∫ ∞

t
f(x)dx.

Furthermore, R(t) = 1 − F (t), where F (.) is the cumulative density function (CDF).
This feature is often used in reliability analysis.

1.2.2 Failure Rate or Hazard Rate Function

The failure rate function, or hazard rate function (HRF), denoted by h(t), can be
considered as the probability that an object will fail in the interval (t, t+ ∆t) for
small ∆t, assuming that it hasn’t already failed before t. It is referred to as the ratio
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of the probability density function (PDF) to the survival function and is given by

h(t) = lim
∆t→∞

P [t < T ≤ t+ ∆t|T > t]
∆t = f(t)

R(t) .

Most applications will result in a reduction in the lifetime of the system beyond
the specified age, which is a reasonable assumption. In other words, the survival
rate of a system decreases with age. When units exhibit this behavior, their life
distributions are considered positive ageing distributions.

Ageing is an important concept in understanding which real-life distributions
are suitable for reliability data analysis. An ageing concept largely describes how
a device ages with time. Though in most cases, ageing has an adverse effect on a
product, there are some other cases in which ageing is beneficial. Ageing has a direct
impact on the behavior of the HRF. They can be used in maintenance planning,
replacement planning, resource allocation, etc. Using the HRF, one can conveniently
define ageing.
The lifetime distributions can be classified into the following categories based on the
HRF.

• Constant Failure Rate (CFR)

A constant failure rate is observed during the midlife stage because failures
mostly occur as a result of external factors or random failures. In most cases,
this period is referred to as the "working life" of a system or component because
most systems spend the majority of their lifetimes in this stage.

• Increasing Failure Rate (IFR)

The concept of IFR is intuitively based on the deterioration of components. In
the context of failure rates, an IFR is one in which h(x) increases monotonically
over x or equivalently, when −logF (x) is convex.

• Decreasing Failure Rate (DFR)

A DFR refers to a process where the probability of an event occurring in the
future declines with time. When earlier failures are removed or corrected,
there is a DFR during the "infant mortality" period. This corresponds to a
situation where the HRF is descending. An improvement in DFR occurs as
the system ages. In the context of failure rates, an DFR is one in which h(x)
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decreases monotonically over x or equivalently, when −logF (x) is concave.

• Bathtub Shaped Failure Rate (BFR)

If the HRF of F decreases initially and then remains constant for a period,
and then increases over time, then corresponding distributions are called BFR
distributions. BFR refers to the early life, useful life, and wear-out phases of a
component or system.

In the case of humans, failures typically occur during the early life period as a
result of birth defects. Failures occurring during useful life can be referred to
as chance failures. As the unit ages, the more likely it is to fail in the wear-out
region.

Lifetime distributions with BFR are an important class of lifetime distributions
since the lifetime of electronic, electromechanical, and mechanical products is
often modeled using them. According to survival analysis, human life exhibits
this pattern.

• Upside-Down Bathtub Shaped Failure Rate (UBFR)

A UBFR distribution is characterized by a failure rate h(x), which increases
initially for x ∈ (0, x0), then becomes constant, and finally decreases for x > x0.

The characterization of distributions, whether IFR or DFR, or BFR reduces the
selection of the model in reliability analysis. The bathtub shape is characteristic
of the failure rate curve of many well-designed products and components including
the human body. Monotonic ageing concepts are found to be popular among many
reliability engineers. However, in many practical applications, the effect of age is
initially beneficial, but after a certain period, its age-adverse indication is positive.

1.2.3 Some Statistical Distributions

The lifetime distributions used in this thesis are given below.

Exponential Distribution

The exponential distribution is a continuous distribution related to the length of
time between events. The exponential distribution was the first to be widely used.
In addition to its simple representation of CDF, PDF, and HRF, as well as its
availability of simple statistical methods for data analysis, it is also an effective
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method for predicting the lifetime of many types of manufactured items. While
the constant hazard rate may be useful to some extent when considering the use
of this distribution, caution should be exercised when considering its use. This is
because inferential procedures may be sensitive to deviations from the exponential
distribution when utilizing it. Furthermore, this distribution has a lack of memory
property. It has the PDF

f(t|µ) = µe−µt, t > 0, µ > 0.

The corresponding CDF and HRF are given, respectively, by

F (t|µ) = 1 − e−µt, t > 0, µ > 0,

and
h(t|µ) = µ, µ > 0.
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Figure 1.1: Exponential hazard function plot

This distribution has a mean 1
µ

and a variance 1
µ2 . The standard exponential

distribution is defined as the distribution where µ equals 1.
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Gamma Distribution

The gamma distribution models the right-skewed data and is one of the most
commonly used continuous distributions. As a result of the fame of the exponential
distribution, it has become prevalent to use the gamma distribution as a model
for the sum of lifetimes with an exponential distribution. In addition to being
naturally derived from the convolution of exponential distributions, the gamma life
distribution has the disadvantage that it cannot be algebraically treated. It has the
PDF

f(t|λ, θ) = θλ

Γ(λ)t
θ−1e−θt, t > 0, λ > 0, θ > 0.

The CDF is given by
F (t|λ, θ) = γ(λ, θt)

Γ(λ) ,

where γ(λ, θt) is the incomplete gamma function. The mean and variance of gamma
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Figure 1.2: Gamma hazard function plot

distribution are λθ and λθ2, respectively. The skewness of the gamma distribution
only depends on its shape parameter, λ, and it is equal to 2/

√
λ. In the gamma

distribution, HRF is IFR for λ > 1, DFR for λ < 1, and CFR for λ = 1, see Figure
1.2.
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Weibull Distribution

Weibull distribution is perhaps the most widely used lifetime distribution. It is
convenient to describe different types of hazards using the Weibull distribution, as
it is flexible in describing them and mathematically manageable. As a result of its
flexibility, the tool is used in a wide range of settings, including quality control,
reliability analysis, medical research, and engineering applications. It’s PDF is given
by

f(t|κ, ν) = κ ν tκ−1 e−νtκ

, t > 0, κ > 0, ν > 0.

The corresponding CDF and HRF are given by

F (t|κ, ν) = 1 − e−νtκ

, t > 0,

and
h(t|κ, ν) = κ ν tκ−1, t > 0.
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Figure 1.3: Weibull hazard function plot

The mean and variance of this distribution is Γ(1+1/κ)
ν1/κ and 1

ν1/κ [Γ(1+2/κ)+Γ(1+1/κ)2].
It may be mentioned here that the Weibull distribution can be positively or negatively
skewed depending upon the value of the shape parameter κ. The Weibull distribution
demonstrates DFR for κ < 1, IFR for κ > 1, and CFR for κ = 1, see Figure 1.3.
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This distribution can be used quite conveniently for censored data as well.

Lomax Distribution

Based on business failure lifetime data, Lomax (1954) developed the Lomax
distribution, which has a heavily skewed distribution. Distributions such as this
one, a shifted Pareto distribution, are widely used in survival analysis and have
many applications in actuarial science, reliability theory, business, network analysis,
economics, operations research, medical science, and internet traffic modeling, among
others. The PDF of the Lomax distribution has the form

f(t|k, λ) = k

λ

(
1 + t

k

)−(λ+1)

, t > 0, k > 0, λ > 0,

and the CDF is given by

F (t|k, λ) = 1 −
(

1 + t

k

)−λ

, t > 0, k > 0, λ > 0.
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Figure 1.4: Lomax hazard function plot

The mean function is given by

E(T ) = k

λ− 1 for λ > 1,
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and the variance function is

V (T ) = λk2

(λ− 1)2(λ− 2) , for λ > 2.

The HRF always has a DFR property associated with it, see Figure 1.4.

Birnbaum Saunders Distribution

• Univariate Birnbaum Saunders Distribution

A random variable following the BS distribution is defined through a standard
normal random variable. Therefore the PDF and CDF of the BS model can be
expressed in terms of the PDF and CDF of the standard normal distribution.
The CDF of a two parameter BS random variable T for α > 0 and β > 0 can
be written as

FT (t|α, β) = Φ
[

1
α

((
t

β

) 1
2

−
(
β

t

) 1
2
)]
, t > 0, (1.2.1)

where Φ(.) is the standard normal CDF. The PDF of BS distribution is

fT (t|α, β) =



1
2αβ

√
2π

[(
β
t

) 1
2 +

(
β
t

) 3
2

]
e

[
− 1

2α2

(
t
β

+ β
t

−2
)]

if t > 0

0 otherwise

(1.2.2)

Here α > 0 and β > 0 are the shape and scale parameters respectively. The
BS distribution has DFR and UBFR for its HRF, see Figure 1.5.

• Bivariate Birnbaum Saunders Distribution

The bivariate Birnbaum-Saunders (BVBS) distribution was introduced by
Kundu et al. (2010). The bivariate random vector (T1, T2) is said to have a
BVBS distribution with parameters α1, β1, α2, β2, and ρ if the CDF of (T1, T2)
can be expressed as

F (t1, t2) = Φ2

[
1
α1

(√
t1
β1

−
√
β1

t1

)
,

1
α2

(√
t2
β2

−
√
β2

t2

)]
(1.2.3)
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Figure 1.5: Birnbaum Saunders hazard function plot

for t1 > 0, t2 > 0, α1 > 0, β1 > 0, α2, β2 > 0, and −1 < ρ < 1. Here Φ2(u, v; ρ)
is the CDF of standard bivariate normal vector (Z1, Z2) with correlation
coefficient ρ. The PDF corresponding to Eq.(1.2.3) is

f(t1, t2) = 1
8πα1α2β1β2

√
1 − ρ2

[(
β1

t1

) 1
2

+
(
β1

t1

) 3
2
][(

β2

t2

) 1
2

+
(
β2

t2

) 3
2
]

e
− 1

2(1−ρ2)

[
1

α2
1

(√
t1
β1

−
√

β1
t1

)2

+ 1
α2

2

(√
t2
β2

−
√

β2
t2

)2

− 2ρ
α1α2

(√
t1
β1

−
√

β1
t1

)(√
t1
β1

−
√

β1
t1

)]

for t1 > 0, t2 > 0, α1 > 0, β1 > 0, α2, β2 > 0, and −1 < ρ < 1.

• Multivariate Birnbaum Saunders Distribution

Kundu et al. (2013) introduced the multivariate BS distribution. Let α, β ∈ Rp,
where α = (α1, · · · , αp)T and β = (β1, · · · , βp)T , with αi > 0, βi > 0 for
i = 1, · · · , p. Let Γ be a p× p positive-definite correlation matrix. Then, the
random vector T = (T1, · · · , Tp)T is said to have a p-variate BS distribution
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with parameters (α, β,Γ) if it has the joint CDF as

P (T ≤ t) = P (T1 ≤ t1, · · · , Tp ≤ tp) (1.2.4)

= Φp

[
1
α1

(√
t1
β1

−
√
β1

t1

)
, · · · , 1

αp

(√
tp
βp

−

√√√√βp

tp

)
; Γ
]

(1.2.5)

for t1 > 0, · · · , tp > 0. Here, for u = (u1, · · · , up)T ,Φp(u; Γ) denotes the joint
CDF of a standard normal vector Z = (Z1, · · · , Zp)T with correlation matrix Γ.
The joint PDF of T = (T1, · · · , Tp)T can be obtained from the above equation
as

fT (t;α, β,Γ) = ϕp

(
1
α1

(√
t1
β1

−
√
β1

t1

)
, · · · , 1

αp

(√
tp
βp

−

√√√√βp

tp

)
; Γ
)

×
p∏

i=1

1
2αiβi

{(
βi

ti

) 1
2

+
(
βi

ti

) 3
2
}
,

for t1 > 0, · · · , tp > 0; here, for u = (u1, · · · , up)T ,

ϕp(u1, · · · , up; Γ) = 1
(2π) p

2 |Γ| 1
2
exp{−1

2u
T Γ−1u}

is the PDF of the standard normal vector with correlation matrix Γ.

Type-II Gumbel Distribution

Type II Gumbel distribution is one of the statistical distributions that are used to
model extreme values. The PDF of Type-II Gumbel distribution is

f(t|β, θ) = βθtβ−1e−θt−β

, t > 0, β > 0, θ > 0,

and the CDF is given by

F (t|β, θ) = e−θt−β

, t > 0, β > 0, θ > 0.

The Weibull distribution is produced when θ = µ−κ and β = −κ are substituted.
The mean and variance of Type-II Gumbel distribution are θ

1
β Γ(1− 1

β
) and θ

2
β (Γ(1−

1
β
) − Γ(1 − 1

β
)2), respectively. This is always an asymmetric distribution. The HRF

plot of this distribution shows both DFR and UBFR, see Figure 1.6.
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Figure 1.6: Type-II Gumbel hazard function plot

1.2.4 DUS Transformation

DUS (Dinesh-Umesh-Sanjay) transformation is a transformation method used to
generate new lifetime distributions proposed by Kumar et al. (2015). In terms
of computation and interpretation, this transformation produces a parsimonious
result since it does not include any new parameters other than those involved in the
baseline distribution.

In the case where F (x) is the CDF of the baseline distribution, then the CDF
of the new DUS transformed distribution is as follows:

G(x) = 1
e− 1[eF (x) − 1].

Then the PDF becomes
g(x) = 1

e− 1[eF (x)f(x)],

where f(x) is the PDF of the baseline distribution.
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1.2.5 Censoring

In reliability theory and survival analysis, censoring is a frequently used concept.
One scenario involving censored data would be if the study was terminated before
all sample items failed. As the investigation has already ended, it is unknown when
the remaining parts will fail. As a result, the sample has two sets of observations:
one with real failure times, known as complete data (uncensored), and the other
with mere constraints on failure times, known as incomplete data (censored data).

Type I Censoring

The most frequently used censoring method in reliability engineering is Type I
censoring. The experiment is terminated by Type-I censoring at a predefined time T .
For example, in life testing experiment, n items are placed on a test, but lifetimes
will be known only for the items that fail by time T . Therefore, according to this
scheme, the duration of the experiment is fixed, but the number of failures is random.
It has a major advantage that if there are very few failures, statistical analysis will
be inefficient.

Type II Censoring

Under the Type II censoring scheme, mth (m ≤ n) failure terminates the experiment.
In a life-testing experiment, n items are tested. Test termination occurs at the time
of the mth failure instead of waiting until all n observations have failed. There may
be instances in which it takes a long time for the test to fail all n items. A test of
this type can be cost-effective and time-saving. There is a fixed number of observed
failures in this censoring scheme, but the test duration is random.

1.2.6 Stress-Strength Reliability

A stress-strength (SS) model, which is largely used in reliability engineering but is
also utilized in economics, quality control, psychology, and medicine, compares the
strength and stresses of a system. Both stresses and strength are viewed as distinct
random variables in a SS model.

As a result of technological advancements, a variety of fields have become
increasingly concerned with the issue of enhancing network reliability in the modern
world. Despite receiving a certain amount of stress, some products can withstand
it due to their strength. Appliances, however, tend to malfunction if more stress
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than strength is given. Assume that Y represents the random stress placed on a
certain appliance and X represents the random strength needed to withstand the
force. The device will fail if and only if the applied stress ever exceeds its threshold
level. Therefore, R = P (X > Y ) gives the reliability of a system as a measure.

Component reliability in the SS environment is determined by the PDF g1(x)
of the strength of the unit or system, X, and the PDF g2(y) of the stress Y . At
any given moment, the system will fail if the applied stress exceeds its strength.
In the case where X and Y are independently distributed, the SS reliability of the
component can be calculated as follows:

R = P (X > Y ) =
∫ ∞

0

[ ∫ ∞

y
g1(x)dx

]
g2(y)dy.

1.2.7 Accelerated Life Testing

In an accelerated life test, failure rates are accelerated by subjecting the component
to more stress. It follows that the failure time is determined by the stress factor and
that higher levels of stress will result in a quicker failure time. At higher temperatures,
some components may fail more rapidly; however, at lower temperatures, they may
be more likely to last longer. The time required under low-stress conditions may
not be sufficient to determine system reliability, which will be tested in conditions
of increasing stress, resulting in a relatively short duration of the experiment. With
this technology, failures that, in normal circumstances, would take a long time to
appear can be seen sooner. In addition, the size of the data can be increased without
having to spend a lot of money or time. Reliability testing of this type is known as
accelerated life testing (ALT).

Step-Stress ALT

Several types of ALT exist in which stress is applied under accelerated conditions in
various ways, including constant stress ALT (CSALT), step-stress ALT (SSALT),
and progressive stress ALT (PSALT).

In CSALT, the stress applied to the test product is time-independent. The
testing units are subjected to a constant, higher-than-usual level of stress until either
all units fail or the test is terminated, resulting in censored test data. In PSALT,
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the stress applied to a test product continuously increases over time.

Step-stress tests are accelerated life tests in which the amount of stress applied
to each unit progressively increases over time. There may be more than one stress
change point in this case. According to the simple SSALT model, for example, a
random sample of n units is initially placed on the low-stress level x1 and is allowed
to run until the predetermined time T1 is reached. As soon as time T1 is up, the
stress is changed to x2 for the remaining unfailed units. Upon changing the stress
to x2, the test continues until all units fail or are censored. Accordingly, these tests
are commonly used to estimate the distribution parameters of failure times under
normal operating conditions based on observed orders of failure times.

Compared to other test methods, the SSALT model has the primary advantage
of reducing overall test duration. SSALT yields faster failures owing to increasing
levels of stress. In ALT data analysis, we need to determine the PDF of a test until
at design condition from ALT data instead of traditional life test data obtained
under normal conditions. To do that, we must have an appropriate life distribution
and a life-stress relationship.

1.2.8 Model Selection Criteria

The model selection criterions used in this dissertation are given below.

Kolmogorov-Smirnov Test

To determine whether or not a given sample reflects a population with a specific
distribution, Kolmogorov (1933) proposed the Kolmogorov-Smirnov (KS) test. The
KS test determines the difference between the estimated CDF of the distribution
and the sample’s empirical distribution function. In this case, the null hypothesis is
H0: The sample follows the particular distribution, and the alternative hypothesis
is H1: The sample doesn’t follow the particular distribution. It is pertinent to note
that when comparing more than one distribution, it is more appropriate to choose
the distribution with a smaller KS value.

Cramér-Von Mises Test

Based on the sum of squared differences between the empirical distribution function
and theoretical distribution function, Cramér-Von Mises (CVM) test statistic can
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be defined as follows:

CVM = 1
12n +

n∑
i=1

[
F (xi, θ) − 2i− 1

2n
]2

Whenever the value of the CVM test statistic exceeds the critical point, the null
hypothesis is rejected.

Akaike’s Information Criterion

The Akaike information criterion (AIC) measures the fit of a model to the data it was
derived from. The AIC can be used in statistics to determine the most appropriate
model for the data by comparing different possible models. It is considered best to
select the model with the lowest AIC. In order to calculate the AIC, the following
factors must be considered:

• the number of unknown parameters in the model.

• the MLE of the model.

Therefore, the AIC can be defined as

AIC = 2v − 2 logL,

where v is the number of unknown parameters in the model and L represents the
maximized likelihood value.

Bayesian Information Criterion

In statistics, the Bayesian Information Criterion (BIC) is a criterion for selecting
between two or more models. It is considered more appropriate to select the model
with the lowest BIC. It is defined as

BIC = v log(m) − 2 log(L),

where m is the sample size, v is the number of unknown parameters in the model,
and L represents the maximized likelihood value.

Corrected Akaike’s Information Criterion

For a small sample size, there’s a high probability that AIC will choose models
containing too many parameters, causing AIC to overfit. In order to mitigate such
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a risk of overfitting, AICc was introduced: corrected Akaike Information Criterion
(AICc) is basically the same as AIC but with a modification for small sample sizes.
The AICc is defined as

AICc = AIC + 2v(v + 1)
m− v − 1 ,

where m is the sample size and v is the number of unknown parameters in the model.

Consistent Akaike’s Information Criterion

The consistent Akaike’s Information Criterion (CAIC) is one of the information
criterion used for selecting different models and is defined as

CAIC = −2 log(L) + v[log(m) + 1],

where m is the sample size, v is the number of unknown parameters in the model,
and L represents the maximized likelihood value.

1.3 Review of Literature

In the modern world, reliability is well-known and is expanding rapidly. Its objective
is to increase the effectiveness of the system by developing new techniques. Therefore
it has gained much importance among manufacturers.

1.3.1 Failure Rates

The occurrence of IFR is of interest in a wide variety of real-world systems, Koutras
(2011) and Ross et al. (2005). The gamma distribution and the Weibull distribution
are the most popular distributions with IFR (both distributions also exhibit DFR and
CFR). Exponentiated exponential distribution and weighted exponential distribution
have been introduced in place of the gamma and Weibull distributions by Gupta and
Kundu (2001, 2009), respectively. Cancho et al. (2011) proposed an IFR lifetime
distribution called the Poisson-exponential (PE) distribution. Instead of the Weibull,
gamma, exponentiated exponential, weighted exponential, and PE distributions,
Bakouch et al. (2014) presented the binomial-exponential 2 (BE2) distribution, a
two-parameter lifetime distribution with IFR properties. When the sample size
has a zero-truncated binomial distribution, the BE2 distribution is created as a
distribution of a random sum of independent exponential random variables.

There have been many instances where the data show DFR function. According
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to Proschan (1963), air conditioning systems on aircraft follows DFR distribution.
Kus (2007) examined earthquakes that have occurred in the North Anatolia fault
zone during the last century and concluded that DFR distribution is quite accurate.
Adamidis and Loukas (1998) introduced a two-parameter DFR distribution. Alpha
power transformed Lindley distribution with DFR and BFR was introduced by Dey
et al. (2019) with application to earthquake data.

Among the classes of life distributions that have received considerable attention
is the one that exhibits bathtub-shaped failure rates. Detailed accounts of such
distributions have been provided by Rajarshi and Rajarshi (1988). F is said to
have BFR if its failure rate initially decreases, then remains constant for a duration,
and eventually increases over time. The class of lifetime distributions featuring a
BFR function is significant since the lifespans of electronic, electromechanical, and
mechanical products are typically represented with this feature, as noted in Barlow
and Proschan (1975). Moreover, in survival analysis, human lifetimes typically
exhibit this pattern.

Kao (1959), Glaser (1980), and Lawless (1982) offer a variety of illustrations
of BFR distributions. As a mixture of a group of IFR distributions for competing
risk models, Hjorth (1980) portrayed BFR distributions. The BFR distributions
were discussed by Lai et al. (2001), while Xie et al. (2002) investigated modified
Weibull extension models that have BFR functions helpful for cost analysis and
decision-making concerning reliability. Block et al. (2008) examined the continuous
mixture of entire families of distributions with BFR functions. The generalized
linear failure rate distribution and its characteristics were developed by Sarhan and
Kundu (2009).

Mudholkar and Srivastava (1993) and Xie and Lai (1996) proposed modifications
to Weibull distributions to make them suitable for BFR data. Additionally, Chen
(2000) developed a two-parameter BFR model for analyzing survival data. An
additive model for lifetime data with BFR was investigated by Wang (2000) based
on the Burr XII distribution. The generalized Rayleigh distribution, also known as
the two-parameter Burr Type X distribution, featured an IFR or BFR function and
was introduced by Surles and Padgett (2005). A new exponential-type distribution
with CFR, IFR, DFR, BFR, and UBFR functions was recently proposed by Lemonte
(2013a) and can be utilized to simulate survival data in reliability problems and
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fatigue life studies. The parameter estimation of a three-parameter Weibull-related
model with IFR, DFR, BFR, and UBFRs was studied by Zhang et al. (2013).
Weibull extension with BFR function was obtained by Wang et al. (2014) using
type-II censored samples.

Due to the ability of some generalized Gamma-type distributions to model
different BFR functions, Parsa et al. (2014) studied the differences between the
change points of failure rate and mean residual life functions. A novel finite interval
lifetime distribution model for fitting the BFR curve was discussed by Wang et al.
(2015). Shehla and Ali Khan (2016) used an exponential power model with the BFR
function to study reliability analysis. In order to model fuzzy lifetime data, Shafiq
and Viertl (2017) provided generalized estimators for the parameters and failure
rates of the BFR distributions. A new Lindley Weibull distribution that includes
unimodal and BFRs was introduced by Cordeiro et al. (2018). A generalized Weibull
uniform distribution that adds DFR or BFR features to the Weibull distribution was
proposed by Al-Abbasi et al. (2019). The reliability analysis of gas-turbine engines
with BFR distribution was examined by Ahsan et al. (2019). Based on adaptive
progressive type-II censored data, Chen and Gui (2020) studied the inferential
problem of two parameters of a lifetime distribution using BFR functions. According
to Deepthi and Chacko (2020a), an UBFR model can be constructed using DUS
Transformation of the Lomax Distribution. Shrahili and Kayid (2022) described a
generalized Pareto distribution characterized by a heavy right tail and UBFR. On
the basis of a new power function, Sindhu et al. (2023) proposed a bathtub-shaped
nonhomogeneous Poisson process software reliability model distribution.

1.3.2 Birnbaum-Saunders Distribution

As a result of the continuous vibration present in commercial aircraft and the
problems resulting from it, Birnbaum and Saunders (1968) developed an innovative
probabilistic model to describe material specimen lifetimes as a result of fatigue due
to cyclical stress and tension caused by exposure to fatigue. Birnbaum and Saunders
(1969b); Birnbaum and Saunders (1969a) formulated the fatigue-life distribution
that would later bear their names, defining it as a life distribution and establishing
an approach for estimating the parameters of this two-parameter distribution.

Unlike most other distributions, the Birnbaum-Saunders distribution is based
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on cumulative damage that causes fatigue in materials over time. Birnbaum and
Saunders (1969a) derived the fatigue-life distribution from a simulation model,
which showed that cumulative damage caused by the development and growth of
a dominant crack often exceeds a threshold value and results in the failure of the
specimen. Some of the assumptions made by Birnbaum and Saunders (1969a) were
relaxed by Desmond (1985), strengthening the rationale for using this distribution.

There have been several attempts to extend and generalize the BS distribution.
Volodin and Dzhungurova (2000) are credited with extending the BS distribution for
the first time. The generalized BS distribution was then introduced by Díaz-García
and Leiva (2005); see Leiva et al. (2008) and Sanhueza et al. (2008). A
three-parameter extension to the BS distribution was proposed by Owen (2006).
Based on skew-elliptical models, Vilca and Leiva (2006) developed a BS distribution.
Balakrishnan et al. (2009) used the expectation and maximization algorithm
in estimating the parameters of the BS distribution and extended it using a
scale-mixture of normal distributions. Based on the slash-elliptic model, Gómez et
al. (2009) extended the BS distribution. An extended length-biased version of the
BS distribution is provided by Leiva et al. (2009).

A truncated version of the BS distribution was examined by Ahmed et al. (2010).
Mixture models based on the BS distribution were presented by Kotz et al. (2010).
The epsilon-skew BS distribution has been developed by Vilca et al. (2010) and
Castillo et al. (2011). Kundu et al. (2010) introduced the bivariate BS distribution
and studied some of its properties and characteristics. The multivariate generalized
BS distribution has been introduced, replacing the normal kernel by an elliptically
symmetric kernel, by Kundu et al. (2013). The BS mixture distributions were
considered in Balakrishnan et al. (2011). The beta-BS distribution has been defined
by Cordeiro and Lemonte (2011). A shifted BS distribution was utilized by Leiva et
al. (2011) to model wind energy flux.

The Kumaraswamy BS distribution was described by Saulo et al. (2012). Based
on a non-homogeneous Poisson process, Fierro et al. (2013) generated the BS
distribution. The gamma BS distribution was first introduced by Cordeiro et al.
(2013). The Marshall–Olkin–BS distribution was studied by Lemonte (2013b). The
exponentiated generalized BS distribution was proposed by Cordeiro and Lemonte
(2014), whereas the zero-adjusted BS distribution was introduced by Leiva et al.
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(2016). A generalization of BS distribution is done by Chacko et al. (2015). An
exhaustive review of BS works can be seen in Balakrishnan and Kundu (2019).
Using the skew-Laplace BS distribution, Naderi et al. (2020) demonstrated the
modeling of finite mixtures. Benkhelifa (2021) introduced a new extension of the
BS distribution based on the Weibull-G family of distributions.

1.3.3 Stress-Strength Reliability

There has been a long history of SS reliability, beginning with the pioneering work of
Birnbaum (1956) and Birnbaum and McCarty (1958). Church and Harris (1970) are
credited with introducing the term SS reliability. Kotz and Pensky (2003) provided
an excellent overview of the various SS models up to 2001. Several authors have
published articles on SS models recently. From a reliability perspective, Gupta
and Brown (2001) investigated the skew-normal distribution and obtained the
strength-stress reliability. See Raqab and Kundu (2005), Kundu and Gupta (2005,
2006), Kundu and Raqab (2009), and Sharma et al. (2015) for further details.

Sometimes the actual SS reliability of the system cannot be evaluated. It is
easy to compute R, if the stress and strength are assumed to or fitted to have some
well-known statistical distribution. At the same time, if the more fitted probability
distributions have more parameters, then the problem becomes complicated. In
such situations, one has to estimate the SS reliability, if the values of parameters are
not available. SS reliability estimation is very important to investigate the level of
strength and level of stress for required reliability. The estimation of SS reliability is
more complicated for single-component and multi-component systems. A substantial
amount of literature exists regarding the problems associated with the estimation
of reliability for single-component SS models. SS reliability analysis using various
statistical distributions are available in the literature.

Researchers discuss in detail the estimation of R using various statistical
distributions. Using a bivariate Pareto model, Hanagal (1997) derived the maximum
likelihood estimator (MLE) of the SS parameter R. A finite mixture of inverse
Gaussian distributions was used by Akman et al. (1999) to study reliability
estimation. A finite mixture of lognormal components is used by AI-Hussaini
and Sultan (2001) to study the estimation of R = P (Y < X). The exponential
strength and stress random variables were taken into account by Krishnamoorthy
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et al. (2007). The estimation of R for the three-parameter generalized exponential
distribution was investigated by Raqaab et al. (2008). Lai and Balakrishnan (2009)
estimated R in models with correlated stress and strength. A study by Al-Mutairi
et al. (2013) examined R estimates based on Lindley distributions. The estimation
of reliability R = P (Y < X) where X and Y are independent random variables
that follow the Kumaraswamy distribution with varying parameters was discussed
by Nadar et al. (2014). Different estimators of the parameter R were produced by
Nadar and Kizilaslan (2014) in the context of the Kumaraswamy model with upper
record values. Ghitany et al. (2015) discussed the reliability of SS systems based
on power Lindley distributions. For a transmuted Rayleigh distribution, Dey et al.
(2017) calculated the SS reliability R.

Using progressive first-failure censoring, Krishna et al. (2019) obtain R

based on the inverse Weibull distribution. Rao et al. (2019) considered the
estimation of stress-strength reliability based on two independent exponential inverse
Rayleigh distributions that share a common scale parameter but have different
shape parameters. The SS reliability estimation of single and multi-component
systems has been studied by Jose et al. (2019) and Xavier and Jose (2021a)
based on generalizations of half logistic distributions. On the basis of discrete
phase-type distributions, Jose et al. (2022) estimated SS reliability for
single and multi-component systems. Deepthi and Chacko (2020b) discussed
single-component SS reliability and multi-component SS reliability estimation using
the three-parameter generalized Lindley distribution. Alamri et al. (2021) estimated
the SS reliability when stress and strength both follow the Rayleigh-half-normal
distribution. Assuming that the strength components are distributed independently
and identically as power-transformed half-logistic distributions subject to common
stress, which is assumed to be independent of either the Weibull distribution or
the PHL distribution, Xavier and Jose (2021b) investigated the reliability of the
multicomponent stress–strength model. Varghese and Chacko (2022) examined
SS reliability using the Akash distribution. Sonker et al. (2023) established
stress–strength reliability models for power-Muth distribution.
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1.3.4 Accelerated Life Testing

ALT was introduced by Chernoff (1962) and Bessler et al. (1962). A variety of
methods can be used for accelerated testing to shorten the life of products or
accelerate their degradation. During such tests, it is necessary to obtain data quickly
that can be modeled and analyzed. This will enable us to generate the desired
information about the product’s lifetime and performance under normal conditions.
Performing such tests saves a great deal of time and money. There are many ways
in which accelerated tests can apply stress loading. Stress loading can be a constant,
cyclic, step, or progressive. A discussion of these types of ALT is provided by Nelson
(1990).

During CSALT, each unit of the test is monitored until it fails, maintaining
constant levels of all stress factors. It has been found that accelerated test models
for constant stress are better developed and more reliable for certain materials and
products. There are several examples of constant stresses, including temperature,
voltage, and current. A comprehensive review of CSALT models can be found in
the works of Meeker and Escobar (1998), Escobar and Meeker (2006), Aly and
Bleed (2013), and Abdel-Ghaly et al. (2016a). The method proposed by Kim
and Bai (2002) for estimating the lifetime distribution for constant stress ALTs
uses a mixture of two distributions to describe failure modes. To determine the
lifetime of vacuum fluorescent displays, Zhang and Wang (2009) performed four
CSALTs with the cathode temperature increase and assumed that the lifetime
distribution was lognormal. While Bhattacharyya and Soejoeti (1981) applied the
least square method under CSALT to Weibull, exponential, and gamma distributions,
Bhattacharyya and Fries (1982) applied it to inverse Gaussian distributions. Using
an exponentiated distribution family, Abdel-Ghaly et al. (2016b) examined different
estimation methods for CSALT. For CSALT, different estimation methods under the
exponentiated power Lindley distribution were discussed by Kumar et al. (2022).

The PSALT procedure involves continuously increasing stress levels on a
specimen. In the study of metal fatigue, this test is used to determine the endurance
limit of metal. It is likely to be difficult to control the accuracy of the PSALT. It is
common for some products to undergo cyclic stress loading when they are in use.
As an example, insulation under AC voltage experiences sinusoidal stress. This type

25



CHAPTER 1

of product is subjected to cyclic stress testing by repeatedly subjecting it to the
same stress pattern at high levels of stress. Yin and Sheng (1987) examined the
MLE of exponential failure times under PSALT. Using the Weibull distribution,
Abdel-Hamid and Al-Hussaini (2011) described PSALT under progressive censoring.
Using type II progressively censored data from a half-logistic distribution under
PSALT, Al-Hussaini et al. (2015) calculated one-sample Bayesian prediction intervals.
For the extension of the exponential distribution, Mohie El-Din et al. (2017)
investigated both classical and Bayesian inference on progressively type-II censored
PSALT. An inference of PSALT was discussed by Kumar Mahto et al. (2020) for
the Logistic exponential distribution under progressive type-II censoring.

1.3.5 Step-Stress Accelerated Life Testing

In recent years, SSALT has become one of the most frequently discussed ALTs. This
is because the level of stress on each unit increases step by step at predetermined
intervals or upon a fixed number of failures. There has been extensive research on
SSALTs with exponential lifetime distributions under CEM. Balakrishnan (2009)
has written an excellent review article on this topic for the benefit of interested
readers. Many authors have examined the optimality of an SSALT in the presence
of exponential CEM, such as Miller and Nelson (1983), Bai et al.(1989), Wu et
al.(2008), and Kateri et al. (2011) for different censoring methods.

Xiong (1998) discusses the inferences that can be drawn from any sample size
considering an exponential lifetime distribution at constant stress and a CEM for the
two-step ALT. Weibull CE model properties were examined using SSALT data by
Komori (2006). When competing risk factors are independently and exponentially
distributed, Balakrishnan and Han (2008) and Han and Balakrishnan (2010)
investigated the SSALT under type-II and type-I censoring schemes respectively.
The Weibull PH model employed in SSALT was subjected to Bayesian analysis and
compared with Weibull CEM by Sha and Pan (2014). Hamada (2015) suggested
and explored a generic Bayesian approach to SSALT planning.

It has been proposed by Han and Kundu (2014) that the problem of estimating
point and interval estimates may be solved when the distributions of the different risk
factors are s-independent Generalized Exponential distributions. El-Din et al. (2016)
investigated parametric inference on SSALT for the extension of the exponential
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distribution with progressive type-II censoring. Chandra et al. (2017) have
investigated the optimal quadratic SSALT plan for Weibull distributions with
type I censoring. Hakamipour and Rezaei (2017) explored the optimization of simple
SSALT using type I censoring for Frechet data. Using a simple SSALT and type
II censoring, Basak and Balakrishnan (2018) predicted the censored exponential
lifetimes. For a simple SSALT CEM with censored exponential data, Zhu et al.
(2020) described exact likelihood-ratio tests. Under the CEM assumption, Samanta
et al. (2020) develop a step-stress model with exponential distribution and evaluates
the related conclusions based on Type II hybrid stress changing time. Kannan and
Kundu (2020) proposed a generalized cumulative risk model for simple SSALT and
developed this model on the premise that the underlying population comprised both
’cured’ individuals and susceptible individuals. Pal et al. (2021) introduced the
failure rate-based simple step-stress model for the Lehmann family of distributions.

Nonparametric methods do not assume the existence of a specific lifetime
distribution. By utilizing this distribution-free strategy, we can mitigate the
significant error in extrapolating SSALT results when there is a bias in the
evaluation of the potential lifetime models or when the models do not provide a
good representation of the failure mechanism. For determining the upper confidence
bounds of the cumulative failure probability of a product, Hu et al. (2012) suggested
a nonparametric PHM. Other research on this subject is found in [Schmoyer (1991)
and Pascual and Montepiedra (2003)].

In-depth research has been done on random effects in lifetime trials. When
the group impact is statistically significant, León et al. (2007) established a
Bayesian approach to conclude ALT data. They compare fixed and random
group effect models and demonstrate that the latter offers more precise predictions
and estimates. To account for the random group effect in SSALT, Seo and
Pan (2017) suggested a generalized linear mixed-effect model. The results from
two estimating techniques—adaptive Gaussian quadrature and integrated nested
Laplace Approximation—are analyzed. Wang (2020) took into account the Weibull
distribution-based data analysis of SSALT data with random group effects.
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1.4 Motivation of the present work

Reliability engineering and statistical modeling can benefit from introducing new
generalized distributions because they can provide customized solutions for specific
challenges, improve model accuracy, foster innovation, handle complex system
behaviors, deepen understanding of statistical theory, facilitate interdisciplinary
applications, and adapt to emerging data types. Even though existing generalized
distributions are valuable, new distributions must be developed to address changing
needs and technological advances. The fitness of distributions to the given data is
important to draw valid and accurate probability computations. This enables us to
accurately model a wide range of real-world situations and fosters cross-disciplinary
collaboration. A search for new distributions for modeling lifetime data is essential
in this context.

When one considers a parallel system where each of the components
has DUS-transformed distributions for its lifetime, we should investigate the
distributional properties. Moreover, we have to investigate the distributional
properties of the parallel system when components are distributed as DUS
transformations of baseline distributions like exponential, Weibull, and Lomax
distributions. There are several other distributions that can serve as baseline
distributions. After investigating the flexibility of the new distributions in terms
of simulation, fitness, estimation, etc. using exponential, Weibull, and Lomax
distributions, we can go for other distributions. Generalized exponential distribution
(Gupta and Kundu (1999)) was widely accepted by researchers since it was applicable
to parallel systems in which components are exponentially distributed. But using
an exponential distribution for the lifetime of a component is limited to the case of
random failures. But what would be the behavior if we use any other distribution with
a non-monotonic failure rate? Nowadays, distributions using the DUS transformation
receive high attention since this transformation does not add any more parameters but
shows better fitness than the baseline distribution. We have to investigate the power
generalization of distribution using the DUS transformation to describe effectiveness,
behavior, etc. An attempt towards the power generalization of DUS transformation
has to be explored more. A variety of generalizations of BS distributions are available
in the reliability literature. A detailed study, especially in the inference part, also
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has to be explored more.

Mixture distributions are useful when a new component switches on for the
first time. They may fail at the same instant of starting operation, or they may
fail due to overvoltage, jerking, or any such shocks, or they may fail due to the
degradation of the component. Failure due to random shocks is modelled using
an exponential distribution. Failure due to degradation can be modelled using
any other distribution with a non-monotonic failure rate. In statistical modeling
and analysis, for reliability and survival analysis studies, the introduction of a
mixture distribution based on exponential and gamma distributions can be seen as
extremely useful. In this way, complex data patterns can be captured that cannot be
adequately captured by a single distribution. The main purpose of mixture models is
to enhance the understanding and description of real-world phenomena by combining
several different distributions. A detailed study of mixture distributions has to be
carried out to examine failure rate behavior and its inference. The determination of
stress-strength reliability has to be addressed in mixture distributions. Estimation
of stress-strength reliability is also a research problem when using mixture models.
After investigating some mixture distributions and their usefulness in stress-strength
analysis, we can investigate the remaining mixtures as per need.

Step-stress accelerated life testing (SSALT) with Type II censoring is a method
for assessing the reliability and durability of a product or system while minimizing the
amount of testing time and resources required. Using Type II censoring, a product’s
life is estimated based on how many units fail, and the information gathered is
used to determine the product’s lifetime. Through SSALT, the units are subjected
to progressively higher levels of stress over time or usage, causing the products
to age more rapidly. Manufacturers can make informed decisions about product
design improvements, warranty policies, and maintenance schedules by designing
and analyzing SSALT experiments with Type II censoring to produce robust and
reliable products at an affordable cost.

1.5 Objectives of the Study

1. To study the increasing failure rate, decreasing failure rate, bathtub-shaped
failure rate, and upside-down bathtub-shaped failure rate distributions and
their properties and applications for modeling lifetime data.
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2. To study the role of bathtub-shaped failure rate distributions in system
engineering and other scientific area and propose new distributions.

3. To study existing step-stress accelerated life testing (SSALT) models, develop
an SSALT model, and estimate its model parameters.

4. To study the properties of Birnbaum-Saunders distributions and their
generalizations on reliability theory.

5. To study on the stress-strength reliability models and its inferential procedures.

1.6 Outline of the Present Study

A total of seven chapters are included in the thesis. A new generalization of the
DUS transformation, the PGDUS transformation, is presented with applications
to exponential, Weibull, and Lomax distributions. A new BFR distribution called
exponential-gamma (3, θ) is studied. Further, SS reliability is also calculated for this
distribution. Generalization of the BS distribution called ν-BS distribution is then
provided. A simple SSALT analysis of Type-II Gumbel distribution under Type-II
censoring is given.

The chapters of the thesis are arranged in the following manner. Chapter 1
provides an overview of the basic concepts and definitions used throughout this
thesis. Also, an extensive literature review is given. A comprehensive review study
of the IFR, DFR, BFR, UBFR, BS distribution, stress-strength reliability model
distributions, and SSALT analysis was conducted to achieve the results of this
research work.

Chapter 2 introduces a new transformation called the power generalized DUS
transformation and proposes new distributions with exponential, Weibull, and
Lomax distributions as baseline distributions. Several mathematical properties are
examined, including moments, MGFs, CFs, quantile functions, order statistics, etc.
The maximum likelihood approach to parameter estimation is discussed. Based on
several real data sets, the proposed distributions are compared with some of the
other failure rate lifetime distributions. It has been found that the new distributions
fit the data better than the well-known distributions.
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Chapter 3 examines in detail a new BFR distribution called the
exponential-gamma (3, θ) distribution. An investigation is conducted into the shapes
of the PDF and the failure rate. Various properties are discussed, including moments,
MGF, CF, the quantile function, and entropy. Distributions for the minimum and
maximum are discovered. In order to estimate the parameters of the distribution,
the maximum likelihood method is utilized. Through the use of a simulation study,
biases and mean squared errors are analyzed for maximum likelihood estimators
(MLEs). A comparison between the proposed lifetime distribution and other lifetime
distributions is conducted based on real data sets.

In Chapter 4 the generalization of the BS distribution, called the ν-Birnbaum
Saunders distribution, is discussed. A number of intriguing and relevant
characteristics are investigated in depth. The maximum likelihood principle is
employed to estimate the parameters of the univariate ν-BS distribution. To
obtain interval estimates, we use asymptotic confidence intervals. Both estimation
methodologies have been thoroughly explored in an extensive simulation study.
Based on these estimators, the probability coverage of confidence intervals has been
evaluated. Real-life applications are provided with three different datasets and
compared with the univariate BS distribution.

When a manufacturer has knowledge of the mechanical reliability of the
design through the stress-strength model before production, they can significantly
reduce their production costs. A system’s longevity is determined by its inherent
strength and external stresses. A discussion of the stress-strength reliability of the
exponential-gamma (3, θ) distribution is presented in Chapter 5. An assessment of
the reliability estimation of the single-component model is provided. A simulation
study is used to demonstrate how well the MLEs perform. A data application is
presented using real data sets to demonstrate how the distribution performs in
real-life situations.

In Chapter 6, a simple SSALT analysis is provided incorporating Type-II
censoring. Here, a flexible failure rate-based approach to Type II Gumbel distribution
for SSALT analysis is considered. The baseline distribution of experimental units at
each stress level follows the Type II Gumbel distribution. The MLE for the model
parameters is derived.
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In Chapter 7, a conclusion of the thesis is presented, as well as recommendations
for future research. A list of references is included at the end of the thesis.
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A New Generalization to the DUS
Transformation and its Applications

2.1 Introduction

Modeling and analysis of lifetime distributions have been extensively used in many
fields of science, like engineering, medicine, survival analysis, and biostatistics.
Fitting appropriate distributions is essential for proper data analysis. A search for
distributions with a better fit is quite essential for data analysis in statistics and
reliability engineering. With application to survival data analysis, Kumar et al.
(2015) proposed a method called DUS transformation, which has received attention
from many engineers and researchers in recent years. In terms of computation and
interpretation, this transformation produces a parsimonious result since it does not
include any new parameters other than those involved in the baseline distribution.

In the case where F (x) is the CDF of the baseline distribution, the CDF of the
DUS transformed distribution is as follows:

G(x) = 1
e− 1[eF (x) − 1].

Maurya et al. (2017a) introduced the DUS transformation of the Lindley
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distribution. Tripathi et al. (2019) studied the DUS transformation of an exponential
distribution and its inference based on the upper record values. Recent studies using
the DUS transformation can be seen in the works of Deepthi and Chacko (2020a),
Kavya and Manoharan (2020), Anakha and Chacko (2021), and Gauthami and
Chacko (2021).

In this chapter, a new class of distribution is introduced using an exponentiated
generalization of the DUS transformation, called the power generalized DUS
(PGDUS) transformation. When we consider a parallel system, we have to apply
power transformations to the distribution of components to get the system’s
distribution. Generalized exponential distribution was introduced by Gupta and
Kundu (1999) which is the distribution of a parallel system when components are
distributed exponentially. But when a researcher assumes an exponential distribution
for its lifetime, only jerking, overvoltage, or any such random shocks are the cause
of failure. It is a limitation. Why don’t we go for any other lifetime distribution if
the cause of failure is degradation? DUS transformation proved the advantage of
getting an accurate model for the given data using baseline distributions like Weibull,
Lomax, etc. Nevertheless, the question remains: how would the parallel system be
distributed when components are distributed based on the DUS transformation of
some baseline models? If we use exponential, Weibull, and Lomax distributions as
baselines, what would be their distributional properties? An attempt to investigate
the applicability of the exponentiated generalization of DUS transformation of some
baseline models is addressed in this chapter. The use of other distributions as
baseline distributions can be addressed by researchers.

This generalization improves the flexibility and accuracy of the model. The new
PGDUS transformed distribution can be obtained as follows: Let X be a random
variable with a baseline CDF F (x) and the corresponding PDF f(x). Then, the
CDF of the PGDUS distribution is defined as:

G(x) =
(
eF (x) − 1
e− 1

)θ

, θ > 0, x > 0. (2.1.1)

and the corresponding PDF is,

g(x) = θ

(e− 1)θ
(eF (x) − 1)θ−1eF (x)f(x), θ > 0, x > 0. (2.1.2)
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The associated survival function is,

S(x) = 1 −
(
eF (x) − 1
e− 1

)θ

, θ > 0, x > 0.

The corresponding HRF is,

h(x) = θf(x)eF (x)(eF (x) − 1)θ−1

(e− 1)θ − (eF (x) − 1)θ
, θ > 0, x > 0. (2.1.3)

The primary motivation for this research stems from the significance of Eq.
(2.1.1), as it is the distribution of failures in a parallel system with θ independent
components. When researchers deal with parallel systems with components
distributed as DUS-transformed lifetime distributions, the PGDUS transformation
proves to be an inevitable tool. So the investigation of the PGDUS transformation
of various lifetime distributions is relevant in the sense of the selection of appropriate
lifetime models for parallel systems. In other words, it assists researchers in
determining which distribution transformations best characterize the behavior of
individual components in a parallel system, which has consequences for developing
reliable systems and predicting their overall performance. As a result, this work
is motivated by the need to improve our understanding of how different lifetime
distributions can be effectively used in modeling and optimizing parallel systems,
resulting in improved decision-making and reliability in a variety of engineering and
scientific applications.

The remaining sections are arranged as follows. Section 2.2 introduces the
PGDUS transformation of the exponential distribution. Section 2.3 presents the
PGDUS transformation of the Weibull distribution, and Section 2.4 presents the
PGDUS transformation of the Lomax distribution. The summary is given in section
2.5.

2.2 PGDUS Exponential Distribution

Here, the PGDUS transformation to the exponential distribution is considered.
Consider the exponential distribution with parameter λ as the baseline distribution.
Invoking the PGDUS transformation given in Eq.(2.1.1), the CDF of the PGDUS
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transformation of an exponential (PGDUSE) distribution is obtained as

G(x) =
(
e1−e−λx − 1
e− 1

)θ

, λ > 0, θ > 0, x > 0. (2.2.1)

and the corresponding PDF is given by,

g(x) = θλe1−λx−e−λx(e1−e−λx − 1)θ−1

(e− 1)θ
, λ > 0, θ > 0, x > 0. (2.2.2)

Then, the associated HRF is,

h(x) = θλe1−λx−e−λx(e1−e−λx − 1)θ−1

(e− 1)θ − (e1−e−λx − 1)θ
, λ > 0, θ > 0, x > 0. (2.2.3)

A PGDUSE distribution with parameters λ and θ is denoted by PGDUSE(λ, θ).
Figure 2.1 shows that the density function of PGDUSE(λ, θ) distribution is likely
to be unimodal. The HRF plot for different parameter values is given in Figure 2.2.

Figure 2.1: Density plot for PGDUSE
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Figure 2.2: Failure rate plot for PGDUSE

2.2.1 Statistical Properties of PGDUSE Distribution

For a distribution, the statistical properties are inevitable. Here, a few statistical
properties like moments, moment generating function (MGF), characteristic function
(CF), cumulant generating function (CGF), quantile function (QF), order statistics,
and entropy of the PGDUSE(λ, θ) distribution are derived.

Moments

The rth raw moment of the PGDUSE(λ, θ) distribution is given by

µ′
r = E(Xr) = θλe

(e− 1)θ

∞∑
k=0

∞∑
m=0

(−1)k+m

m!

(
θ − 1
k

)
eθ−k−1(θ − k)m Γ(r + 1)

(λ+ λm)r+1 .

By putting r=1, 2, 3... the raw moments can be viewed.
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Moment Generating Function

The MGF of PGDUSE(λ, θ) distribution is given by

MX(t) = θλe

(e− 1)θ

∞∑
k=0

∞∑
m=0

(−1)k+m

m!

(
θ − 1
k

)
eθ−k−1 (θ − k)m

λ+ λm− t
.

Characteristic Function and Cumulant Generating Function

The characteristic function (CF) is given by

ϕX(t) = θλe

(e− 1)θ

∞∑
k=0

∞∑
m=0

(−1)k+m

m!

(
θ − 1
k

)
eθ−k−1 (θ − k)m

λ+ λm− it
,

and the cumulant generating function (CGF) is given by

KX(t) = log
(

θλe

(e− 1)θ

)
+ log

[ ∞∑
k=0

∞∑
m=0

(−1)k+m

m!

(
θ − 1
k

)
eθ−k−1 (θ − k)m

λ+ λm− it

]

where i =
√

−1 is the unit imaginary number.

Quantile Function

The qth quantile Q(q) is the solution of the equation G(Q(q)) = q. Hence,

Q(q) = −1
λ

log(1 − log(q 1
θ (e− 1) + 1)).

The median is obtained by setting q = 0.5 in the above equation. Thus,

Median = −1
λ

log(1 − log(0.5 1
θ (e− 1) + 1)).

Order Statistic

Let X(1), X(2), . . . , X(n) be the order statistics corresponding to the random sample
X1, X2, . . . , Xn of size n from the proposed PGDUSE(λ, θ) distribution. The PDF
and CDF of rth order statistics of the proposed PGDUSE(λ, θ) distribution are
given by

gr(x) = n!θλ
(r − 1)!(n− r)!

e1−λx−e−λx(e1−e−λx − 1)θr−1

(e− 1)2θ

1 −
(
e1−e−λx − 1
e− 1

)θ
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and

Gr(x) =
n∑

i=1

(
n

i

)(
e1−e−λx − 1
e− 1

)θi
1 −

(
e1−e−λx − 1
e− 1

)θ
n−i

.

Then, the PDF and CDF of X(1) and X(n) are obtained by substituting r = 1 and
r = n respectively in gr(x) and Gr(x). It is nothing but the distribution of minimum
and maximum in series and parallel reliability systems, respectively.

Entropy

Entropy quantifies the measure of information or uncertainty. An important measure
of entropy is Rényi entropy (1961). Rényi entropy is defined as

R(δ)ג = 1
1 − δ

log
(∫

gδ(x)dx
)
,

where δ > 0 and δ ̸= 1.

∫ ∞

0
gδ(x)dx = θδλδeδ

(e− 1)θδ

∞∑
k=0

∞∑
m=0

(−1)k+m

m!

(
δ(θ − 1)

k

)
(δθ − k)meδθ−δ−k 1

λ(δ +m)

The Rényi entropy takes the form

R(δ)ג = 1
1−δ

log
[
θδλδeδ

(e− 1)θδ

∞∑
k=0

∞∑
m=0

(−1)k+m

m!

(
δ(θ − 1)

k

)
(δθ − k)meδθ−δ−k 1

λ(δ +m)

]

= δ
1−δ

log
[

θλe

(e− 1)θ

]
+ 1

1−δ
log

[ ∞∑
k=0

∞∑
m=0

(−1)k+m

m!
(

δ(θ−1)
k

)
(δθ − k)m eδθ−δ−k

λ(δ +m)

]
.

2.2.2 Estimation of PGDUSE Distribution

The estimation of parameters by the method of maximum likelihood is discussed.
For this, consider a random sample of size n from PGDUSE(λ, θ) distribution. In
this case, the likelihood function is given by,

L(x) =
n∏

i=1
g(x) =

n∏
i=1

θλ

(e− 1)θ
e1−λxi−e−λxi (e1−e−λxi − 1)θ−1.
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Then the log-likelihood function becomes,

logL = n log θ+n log λ−θn log(e−1)−λ
n∑

i=1
xi+n−

n∑
i=1

e−λxi+(θ−1)
n∑

i=1
log(e1−e−λxi −1).

The maximum likelihood estimators (MLEs) are obtained by maximizing the
log-likelihood concerning the unknown parameters λ and θ.

∂ logL
∂λ

= n

λ
−

n∑
i=1

xi +
n∑

i=1
xie

−λxi + (θ − 1)
n∑

i=1

xie
1−λxi−e−λxi

e1−e−λxi − 1
.

∂ logL
∂θ

= n

θ
− n log(e− 1) +

n∑
i=1

log(e1−e−λxi − 1).

These non-linear equations can be numerically solved through statistical software
like R using arbitrary initial values. In the case of asymptotic normal MLEs, the
confidence interval(CI)s for λ and θ are calculated by computing the observed
information matrix given by

I =


∂2 log L

∂λ2
∂2 log L
∂λ∂θ

∂2 log L
∂θ∂λ

∂2 log L
∂θ2


where

∂2 logL
∂λ2 = − n

λ2 − λ
n∑

i=1
xie

−λxi − (θ − 1)λ
n∑

i=1

xie
−λxi((eλxi − 1)e1−(λxi)−e−λxi − 1)

(e1−e−λxi − 1)2 ,

∂2 logL
∂θ∂λ

= ∂2 logL
∂λ∂θ

=
n∑

i=1
xi

e1−λxi−e−λxi

(e1−e−λxi − 1)
,

and
∂2 logL
∂θ2 = − n

θ2 .

For λ and θ, the 100(1 − γ)% asymptotic CIs are as follows: λ̂ ± z1− γ
2

√
V11

and θ̂ ± z1− γ
2

√
V22, where Vij represents the (i, j)th element in the inverse of the

Fisher information matrix I. The computational efficiency of this interval estimation
method makes it particularly useful.
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2.2.3 Simulation Study

To illustrate the accuracy of the maximum likelihood estimation procedure for
PGDUSE distribution, a Monte Carlo simulation study is carried out using the
inversion method. Samples of sizes 50, 75, 100, 500, and 1000 for the parameter
combinations (0.5, 0.5), (0.5, 1.5), (1, 1.5), and (1.5, 2.5) corresponding to (λ, θ) are
generated. The performance of the estimation procedure is studied by calculating
the bias and mean square error (MSE) of the MLEs. It can be seen from Table
2.1, 2.2, 2.3, and 2.4 that, as the sample size increases, the bias and MSEs of the
estimates decrease.

Table 2.1: Estimate, Biases and MSEs for PGDUSE model at λ = 0.5 and
θ = 0.5

n Estimated value of Parameters Bias MSE

50 λ̂=0.5248 0.0248 0.0126
θ̂=0.5223 0.0223 0.0087

75 λ̂=0.5162 0.0162 0.0086
θ̂=0.5137 0.0137 0.0055

100 λ̂=0.5114 0.0114 0.0044
θ̂=0.5104 0.0104 0.0035

500 λ̂=0.5101 0.0101 0.0010
θ̂=0.5066 0.0066 0.0007

1000 λ̂=0.5019 0.0019 0.0004
θ̂=0.5042 0.0042 0.0003

2.2.4 Data Analysis

Real data analysis is given to assess how well the proposed distribution works have
been performed. The data given in Lawless (1982) that contains the number of
million revolutions before the failure of 23 ball bearings put on life test is considered.
See Table 2.5.

Further, the proposed distribution has been compared with the generalized
DUS exponential (GDUSE) by Maurya et al. (2017b), DUS exponential (DUSE),
exponential (ED), and Kavya-Manoharan exponential (KME) by Kavya and
Manoharan (2021) distributions. AIC, BIC, the value of KS statistic, p-value,
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Table 2.2: Estimate, Biases and MSEs for PGDUSE model at λ = 0.5 and
θ = 1.5

n Estimated value of Parameters Bias MSE

50 λ̂=0.5192 0.0192 0.0066
θ̂=1.6242 0.1242 0.1442

75 λ̂=0.5165 0.0165 0.0042
θ̂=1.5711 0.0790 0.0758

100 λ̂=0.5158 0.0158 0.0031
θ̂=1.5719 0.0719 0.0607

500 λ̂=0.5025 0.0025 0.0005
θ̂=1.5122 0.0122 0.0083

1000 λ̂=0.5009 0.0009 0.0003
θ̂=1.4709 -0.0291 0.0045

Table 2.3: Estimate, Biases and MSEs for PGDUSE model at λ = 1 and θ = 1.5

n Estimated value of Parameters Bias MSE

50 λ̂=1.0236 0.0236 0.0255
θ̂=1.5655 0.0655 0.1267

75 λ̂=1.0190 0.0190 0.0161
θ̂=1.5484 0.0484 0.0793

100 λ̂=1.0116 0.0116 0.0113
θ̂=1.5062 0.0062 0.0434

500 λ̂=1.0091 0.0091 0.0023
θ̂=1.5178 0.0178 0.0098

1000 λ̂=0.9889 -0.0111 0.0010
θ̂=1.4805 -0.0195 0.0039

and log-likelihood value have been used for model selection.

Table 2.6 elucidates that the proposed distribution gives the lowest AIC, BIC,
and KS values, the greatest log-likelihood, and the p-value. Thus, it can be concluded
that the PGDUSE(λ, θ) distribution provides a better fit for the given data set when
compared with other competing distributions. The empirical cumulative density
function (ECDF) plot is depicted in Figure 2.3.
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Table 2.4: Estimate, Biases and MSEs for PGDUSE model at λ = 1.5 and
θ = 2.5

n Estimated value of Parameters Bias MSE

50 λ̂=1.5536 0.0536 0.0453
θ̂=2.7200 0.2200 0.4536

75 λ̂=1.5363 0.0363 0.0290
θ̂=2.6169 0.1169 0.2836

100 λ̂=1.5229 0.0229 0.0210
θ̂=2.6154 0.1154 0.2005

500 λ̂=1.5052 0.0052 0.0040
θ̂=2.5271 0.0271 0.0314

1000 λ̂=1.4897 -0.0103 0.0020
θ̂=2.4774 -0.0226 0.0144

Table 2.5: Ball bearings dataset

17.88 28.92 33.00 41.52 42.12 45.60
48.80 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.40

Table 2.6: MLEs of the parameters, Log-likelihoods, AIC, BIC, KS Statistics
and p-values of the fitted models

Model MLEs log L AIC BIC KS p-value

PGDUSE
λ̂ = 0.0336

-113.0030 230.0060 232.2770 0.1103 0.9425
θ̂ = 3.8066

GDUSE
α̂ = 4.7391

-113.0466 230.0931 232.3641 0.1179 0.9064
β̂ = 0.0355

DUSE â = 0.0182 -127.4622 256.9244 261.1954 0.2774 0.0580

KME θ̂ = 0.0095 -123.1065 248.2129 252.4839 0.3110 0.0234

ED θ̂ = 0.0138 -121.4393 244.8786 246.0141 0.30673 0.0264
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Figure 2.3: The empirical CDFs of the models.

2.3 PGDUS Weibull Distribution

Weibull distribution is used as the baseline distribution for PGDUS transformation
and investigated the distributional properties. The CDF of Weibull distribution
with parameters α and β is

G(x) = 1 − e−(xβ)α

, α, β > 0, x > 0. (2.3.1)

and corresponding PDF is

g(x) = αβ(xβ)α−1e−(xβ)α

, α, β > 0, x > 0 (2.3.2)

Using Eq.(2.3.1) in Eq.(2.1.1), the CDF of PGDUS transformation of Weibull

44



Section 2.3

(PGDUSW) distribution is as follows:

F (x) =
(
e1−e−(xβ)α

− 1
e− 1

)θ

, α, β > 0, θ > 0, x > 0. (2.3.3)

and the corresponding PDF is

f(x) = θαβα

(e− 1)θ
xα−1(e1−e−(xβ)α

− 1)θ−1e1−(xβ)α−e−(xβ)α

, α, β, θ > 0, x > 0. (2.3.4)

In relation to Eq.(2.3.3) and Eq.(2.3.4), the HRF is,

h(x) = θαβαxα−1(e1−e−(xβ)α

− 1)θ−1e1−(xβ)α−e−(xβ)α

(e− 1)θ − (e1−e−(xβ)α − 1)θ
, α, β, θ > 0, x > 0. (2.3.5)

The distribution with CDF Eq.(2.3.3) and PDF Eq.(2.3.4) is referred to
as PGDUSW distribution with parameters α, β and θ and is denoted as
PGDUSW (α, β, θ). Figures 2.4 and 2.5 provide the graphical representation of the
pdf and HRF respectively for various parameter values.

Figure 2.4: Density plot for PGDUSW
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Figure 2.5: Failure rate plot for PGDUSW

2.3.1 Statistical Properties of PGDUSW Distribution

Moments, MGF, CF, CGF, QF, distribution of order statistics, and Rényi entropy
of the proposed PGDUSW (α, β, θ) distribution are derived.

Moments

The rth raw moment of the PGDUSW (α, β, θ) distribution is given by

µ′
r = θβ−re

(e− 1)θ

∞∑
k=0

∞∑
m=0

(−1)m+k

m! eθ−k−1
(
θ − 1
k

)
(θ − k)m Γ( r

α
+ 1)

(1 +m) r
α

+1 .

Moment Generating Function

The MGF of PGDUSW (α, β, θ) distribution is

MX(t) = θα

(e− 1)θ

∞∑
k=0

∞∑
m=0

∞∑
n=0

(−1)k+m+n

m!n!
(

θ−1
k

)
eθ−k(θ − k)m(1 +m)nβα+αn Γ(α + αn)

tα+αn
.
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Characteristic Function and Cumulant Generating Function

The CF of PGDUSW (α, β, θ) is given by

ϕX(t) = θα

(e− 1)θ

∞∑
k=0

∞∑
m=0

∞∑
n=0

(−1)k+m+n

m!n!
(

θ−1
k

)
eθ−k(θ−k)m(1+m)nβα+αn Γ(α + αn)

(it)α+αn
,

and the CGF of PGDUSW (α, β, θ) is given by

KX(t) = log ϕX(t)

= log
[

θα
(e−1)θ

∞∑
k=0

∞∑
m=0

∞∑
n=0

(−1)k+m+n

m!n!
(

θ−1
k

)
eθ−k(θ − k)m(1 +m)nβα+αn Γ(α+αn)

(it)α+αn

]

where i =
√

−1 is the unit imaginary number.

Quantile Function

The pth quantile Q(p) of the PGDUSW (α, β, θ) is the real solution of the following
equation

((e1−e−(βQ(p))α

− 1)/(e− 1))θ = p

where p ∼ Uniform(0, 1). Solving the above equation for Q(p), it is obtained that

Q(p) = −1
βα

log[1 − log (e− 1)p 1
θ + 1]

1
α

. (2.3.6)

Setting p = 0.5 in the Eq.(2.3.6) yields the median. Thus,

Median = −1
βα

log[1 − log (e− 1)0.5 1
θ + 1]

1
α

.

Similarly, the quartiles Q1 and Q3 are obtained respectively by setting p = 1
4 and

p = 3
4 in Eq.(2.3.6).

Distribution of Order Statistic

Let X1, X2, . . . , Xm be m independent random variables from the PGDUSW (α, β, θ)
distribution with CDF Eq.(2.3.3) and PDF Eq.(2.3.4). Then the PDF of rth order
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statistics X(r) of the PGDUSW (α, β, θ) distribution is given by

fX(r) = m!
(r − 1)!(m− r)!

θαβαxα−1

(e− 1)θm

(
e1−e−(xβ)α

− 1
)θr−1

e1−(xβ)α−e−(xβ)α

[
(e− 1)θ − (e1−e−(xβ)α

)θ
]m−r

, r = 1, 2, . . . ,m.
(2.3.7)

Then, the PDF of X(1) and X(m) are obtained by setting r = 1 and r = m respectively
in Eq.(2.3.7). This can be used in reliability analysis of series and parallel system.

Rényi Entropy

Rényi entropy introduced by Rényi (1961) is defined as

R(ν)ג = 1
1 − ν

log
(∫

f ν(x)dx
)

where ν > 0 and ν ̸= 1.

∫ ∞

0
f ν(x)dx = (θα)ν

(e− 1)θν

∞∑
k=0

∞∑
m=0

(−1)k+m

m!
(

νθ−ν
k

)
(νθ − k)meνθ−k Γ(ν − ν

α
+ 1)

(ν +m)ν− ν
α

+1βα−ν

Then the Rényi entropy of the PGDUSW (α, β, θ) becomes

R(ν)ג = 1
1−ν

log
[

(θα)ν

(e− 1)θν

∞∑
k=0

∞∑
m=0

(−1)k+m

m!
(

νθ−ν
k

)
(νθ − k)meνθ−k Γ(ν − ν

α
+ 1)

(ν +m)ν− ν
α

+1βα−ν

]

2.3.2 Estimation of PGDUSW Distribution

To estimate the unknown parameters of the PGDUSW (α, β, θ), the maximum
likelihood estimation method is utilized. For this, a random sample of size n from
the PGDUSW (α, β, θ) distribution was chosen. Therefore, the likelihood function
is given by,

L(x) =
n∏

i=1
f(x) =

n∏
i=1

θαβα

(e− 1)θ
xα−1e1−(xiβ)α−e−(xiβ)α

(e1−e−(xiβ)α

− 1)θ−1 (2.3.8)
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Applying the natural logarithm to Eq.(2.3.8), the log-likelihood function becomes

logL = n log(θ) + n log(α) + αn log(β) − θn log(e− 1) + n+
n∑

i=0
(α− 1) log(xi)

−
n∑

i=0
(xiβ)α −

n∑
i=0

e−(xiβ)α + (θ − 1)
n∑

i=0
log(e1−e−(xiβ)α

− 1).

Computing the first order partial derivatives,

∂ logL
∂α

= n

α
−

n∑
i=0

(xiβ)α log(xiβ) +
n∑

i=0
log(xi) +

n∑
i=0

(xiβ)αe−(xiβ)α log(xiβ)

+n log(β) + (θ − 1)(xiβ)α

(e1−e−(xiβ)α − 1)
log(xiβ)e1−(xiβ)α−e−(xiβ)α

,

(2.3.9)

∂ logL
∂β

= nα

β
−

n∑
i=0

α(xiβ)α

β
+

n∑
i=0

α(xiβ)α

β
e−(xiβ)α

+(θ − 1)α
β

n∑
i=0

(xiβ)α e
1−(xiβ)α−e−(xiβ)α

(e1−e−(xiβ)α − 1)
,

(2.3.10)

and

∂ logL
∂θ

= n

θ
− n log(e− 1) +

n∑
i=0

log(e1−e−(xiβ)α

− 1). (2.3.11)

Equations (2.3.9), (2.3.10) and (2.3.11) are not in closed form. The solution to
these explicit equations can be obtained analytically and can be solved numerically
using R software by taking arbitrary initial values. In the case of asymptotic normal
MLEs, the confidence interval(CI)s for α, β, and θ are calculated by computing the
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observed information matrix given by

I =



∂2 log L
∂α2

∂2 log L
∂α∂β

∂2 log L
∂α∂θ

∂2 log L
∂β∂α

∂2 log L
∂β2

∂2 log L
∂β∂θ

∂2 log L
∂θ∂α

∂2 log L
∂θ∂β

∂2 log L
∂θ2


where

∂2 logL
∂α2 = −n

α
−

n∑
i=1

log2(xiβ)(xiβ)α((xiβ)α − 1)e−(xiβ)α

+(θ − 1)∑n
i=1

(xiβ)α log2(xiβ)e1−(xiβ)α−e−(xiβ)α

((((xiβ)α−1)e1−e−(xiβ)α

−(xiβ)αe−(xiβ)α )+(1−(xiβ)α))
(e1−e−(xiβ)α

−1)2
,

∂2 logL
∂α∂β

= −
n∑

i=1
(xiβ)αe−(xiβ)α [α((xiβ)α − 1) ln(xiβ) − 1]

+ n

β
− (θ − 1)

n∑
i=1

(xiβ)α([α[(xiβ)α − 1]e(xiβ)α − α(xiβ)α]e1−(xiβ)α−e−(xiβ)α

β(e1−e−(xiβ)α − 1)2

−
n∑

i=1
xα

i β
α−1(α ln(xiβ) + 1) − (θ − 1)

n∑
i=1

α(1 − (xiβ)α) ln(xiβ) − e1−e1−(xiβ)α

+ 1)
β(e1−e−(xiβ)α − 1)2

,

∂2 logL
∂α∂θ

=
n∑

i=1

(xiβ)α log(xiβ)e1−(xiβ)α−e−(xiβ)α

(e1−e−(xiβ)α − 1)
,
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∂2 logL
∂β2 = −αn

β2 − α(α− 1)
β2

n∑
i=1

(xiβ)α − α

β2

n∑
i=1

(xiβ)α(α(xiβ)α − α + 1)e−(xiβ)α

+(θ − 1) α
β2
∑n

i=1(xiβ)α (((α(xiβ)α−α+1)e(xiβ)α −α(xiβ)α)e1−(xiβ)α−e−(xiβ)α

(−α(xiβ)α+α−1))
(e1−e−(xiβ)α

−1)2

∂2 logL
∂β∂θ

= α

β

n∑
i=1

(xiβ)αe1−(xiβ)α−e−(xiβ)α

(e1−e−(xiβ)α − 1)
,

and

∂2 logL
∂θ2 = − n

θ2 .

For α, β, and θ, the 100(1 − γ)% asymptotic CIs are as follows: α̂ ± z1− γ
2

√
V11,

β̂ ± z1− γ
2

√
V22, and θ̂ ± z1− γ

2

√
V33, where Vij represents the (i, j)th element in the

inverse of the Fisher information matrix I.

2.3.3 Simulation Study

To illustrate the performance of the maximum likelihood method for
PGDUSW (α, β, θ) distribution, the inverse transformation method is used. For
different values of α, β and θ, samples of sizes n = 100, 250, 500, 750 and 1000 are
generated from the proposed model. For 1000 repetitions, the bias and mean square
error (MSE) of the estimated parameters are computed. The selected parameter
values are α = 0.5, β = 0.5 and θ = 0.5, α = 0.5, β = 1 and θ = 0.5 and α = 1, β = 1
and θ = 0.5. From the Tables 2.7, 2.8 and 2.9, it is noted that bias and MSE
decrease for the selected parameter values as sample size increases.

2.3.4 Data Analysis

A real data analysis is carried out to determine the performance of the proposed
model. For this, the data on the number of million revolutions before the failure of
23 ball bearings put on test is considered (Lawless (1982)), see Table 2.5.
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Table 2.7: Estimate, Biases and MSEs for PGDUSW model at α = 0.5, β = 0.5
and θ = 0.5

n Estimated Parameter values Bias MSE

100

α̂=0.5668 0.0668 0.0473

β̂=0.7541 0.2541 1.0617

θ̂=0.5021 0.0031 0.0413

250

α̂=0.5251 0.0251 0.0118

β̂=0.5831 0.0831 0.1488

θ̂=0.5032 0.0022 0.0165

500

α̂=0.5297 0.0189 0.0057

β̂=0.4929 0.0177 0.0318

θ̂=0.4922 0.0007 0.0068

750

α̂=0.5188 0.0188 0.0034

β̂=0.4935 -0.0065 0.0223

θ̂=0.5026 0.0003 0.0050

1000

α̂=0.5165 0.0165 0.0025

β̂=0.4795 -0.0205 0.0159

θ̂=0.4922 -0.0078 0.0035

Different distributions namely, Inverse Weibull (IW) distribution, DUS
Exponential (DUSE) distribution by Kumar et al. (2015), and Kavya-Manoharan
Weibull (KMW) by Kavya and Manoharan (2021) distribution are used to compare
the performance with the proposed PGDUSW (α, β, θ) distribution.

To check the acceptability of the PGDUSW (α, β, θ) distribution for the given
data set AIC, Corrected Akaike Information Criterion (AICc), log-likelihood value,
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Table 2.8: Estimate, Biases and MSEs for PGDUSW model at α = 0.5, β = 1
and θ = 0.5

n Estimated Parameter values Bias MSE

100

α̂=0.5729 0.0729 0.0460

β̂=1.4827 0.4827 3.7354

θ̂=0.51341 0.0434 0.0485

250

α̂=0.5019 0.0019 0.0083

β̂=1.2852 0.2852 0.6372

θ̂=0.5333 0.0393 0.0169

500

α̂=0.4943 -0.0057 0.0041

β̂=1.2236 0.2236 0.2915

θ̂=0.5399 0.0339 0.0102

750

α̂=0.4886 -0.0109 0.0023

β̂=1.1045 0.1814 0.1353

θ̂=0.5244 0.0244 0.0050

1000

α̂=0.4822 -0.0178 0.0022

β̂=1.1814 0.1045 0.1195

θ̂=0.5207 0.0207 0.0042

and KS goodness of fit test statistic with the p-value are used and the computed
values are provided in Table 2.10. It is worth noting that in the goodness of fit
test, the purpose is to determine whether the sets of data with the distribution
function F (y) and the hypothesised distribution FP GDUSW (y) are compatible. This
problem can be formulated as H0 : F (y) = FP GDUSW (y) versus the alternative
H1 : F (y) ̸= FP GDUSW (y).
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Table 2.9: Estimate, Biases and MSEs for PGDUSW model at α = 1, β = 1
and θ = 0.5

n Estimated Parameter values Bias MSE

100

α̂=1.1273 0.1273 0.1628

β̂=1.1460 0.1460 0.8851

θ̂=0.5223 0.0223 0.0545

250

α̂=1.0184 0.0184 0.0449

β̂=1.0889 0.0889 0.1068

θ̂=0.5205 0.0205 0.0177

500

α̂=1.0109 0.0109 0.0185

β̂=1.0490 0.0490 0.0447

θ̂=0.5151 0.0151 0.0085

750

α̂=1.0056 0.0056 0.0107

β̂=1.0381 0.0381 0.0260

θ̂=0.5095 0.0095 0.0049

1000

α̂=0.9851 -0.0149 0.0074

β̂=1.0239 0.0239 0.0167

θ̂=1.0012 0.0012 0.0035

From Table 2.10, it is noted that the PGDUSW (α, β, θ) distribution fits well
for the given data set. To facilitate a better understanding of the results, the plot
of the ECDF is shown in the Figure 2.6 along with the plot of fitted densities in
the Figure 2.7 of the distributions for the ball bearings dataset. Furthermore, our
proposed distribution is found to fit better than those of the other distributions.
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Table 2.10: Findings for PGDUSW Distribution

Model MLEs log L AIC AICc KS p-value

IW
λ̂ = 1.8341

-115.7887 235.5774 236.1774 0.1328 0.8118
θ̂ = 0.0206

DUSE â = 0.0182 -127.4622 256.9244 257.1149 0.2774 0.0580

KMW
λ̂ = 2.3169

-113.4076 230.8152 231.4152 0.1421 0.7419
κ̂ = 0.0107

PGDUSW

α̂ = 0.9362

-113.0114 230.0228 230.6228 0.10921 0.9467β̂ = 0.0383

θ̂ = 4.4478
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Figure 2.6: ECDF plot for various distributions.
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2.4 PGDUS Lomax Distribution

Power Generalized DUS Lomax (PGDUSL) Distribution, denoted as
PGDUSL(α, β, θ), is obtained using PGDUS transformation with Lomax
distribution as baseline distribution. Then the CDF of the PGDUSL(α, β, θ)
distribution using Eq.(2.1.1) is given by

F (x) =
(
e1−(1+xβ)−α − 1

e− 1

)θ

, α, β > 0, θ > 0, x > 0. (2.4.1)

Then the PDF is

f(x) = θαβ

(e− 1)θ
(e1−(1+xβ)−α − 1)θ−1e1−(1+xβ)−α(1 + xβ)−(α+1). (2.4.2)

The HRF is

h(x) = θαβ(e1−(1+xβ)−α − 1)θ−1e1−(1+xβ)−α(1 + xβ)−(α+1)

(e− 1)θ − (e1−(1+xβ)−α − 1)θ
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Figure 2.8: PGDUSL distribution density plot for various parameter values.

2.4.1 Properties of PGDUSL Distribution

Here, a few properties of the PGDUSL distribution are explored.

Moments

The rth raw moments of PGDUSL(α, β, θ) is

µ′
r = θα

(e− 1)θ

∞∑
k=0

∞∑
m=0

∞∑
n=0

(−1)k+m+n

n!

(
α + k

k

)(
θ − 1
m

)
βk+1 eθ−m (θ −m)n

B(r + k + 1, αn− r − k − 1).

Moment Generating Function

The MGF of PGDUSL(α, β, θ) is

MX(t) = θα

(e− 1)θ

∞∑
m=0

∞∑
k=0

∞∑
n=0

∞∑
l=0

(−1)k+m+n

n! l! βl

(
α− k

k

)(
θ − 1
m

)
eθ−m (θ −m)n tl

B(k + l + 1, α n− k − l − 1).
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Figure 2.9: PGDUSL distribution HRF plot for various parameter values.

Characteristic Function and Cumulant Generating Function

The CF of the proposed distribution is given by

ϕX(t) = θα

(e− 1)θ

∞∑
m=0

∞∑
k=0

∞∑
n=0

∞∑
l=0

(−1)k+m+n

n! l! βl

(
α− k

k

)(
θ − 1
m

)
eθ−m (θ −m)n (it)l

B(k + l + 1, α n− k − l − 1).

The CGF of the proposed distribution is given by

KX(t) = log
{∑∞

m=0
∑∞

k=0
∑∞

n=0
∑∞

l=0
(−1)k+m+n

n! l! βl

(
α−k

k

)(
θ−1
m

)
eθ−m (θ −m)n (it)l

B(k + l + 1, α n− k − l − 1)
}

+ log
(

θα

(e− 1)θ

)
.
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Quantile Function

The pth quantile Q(p) of the PGDUSL(α, β, θ) is the real solution of the following
equation

((e1−1+(βQ(p))α − 1)/(e− 1))θ = p,

where p ∼ Uniform(0, 1). Solving the above equation for Q(p), it can be obtained
as

Q(p) = 1
β

{ [
1 − log

[
p

1
θ (e− 1) + 1

]]−1
α − 1

}
.

Setting p = 0.5 in the above equation yields median. Thus,

Median = 1
β

{ [
1 − log

[
0.5 1

θ (e− 1) + 1
]]−1

α − 1
}
.

2.4.2 Estimation of PGDUSL Distribution

Method of Maximum likelihood estimation is used to estimate the unknown
parameters of PGDUSL(α, β, θ). For this, a random sample of size n from
PGDUSL(α, β, θ) distribution was chosen. Then the likelihood function is given by,

L(x) =
n∏

i=1
f(x) = (θαβ)n

(e− 1)θn

n∏
i=1

(e1−(1+xiβ)−α −1)θ−1e1−(1+xiβ)−α(1+xiβ)−α+1 (2.4.3)

The log-likelihood function becomes

logL = n log(θ) + n log(α) + n log(β) − θn log(e− 1) + n−
n∑

i=1
(1 + xiβ)−α

− (α + 1)
n∑

i=1
log(1 + xiβ) + (θ − 1)

n∑
i=1

log(e1−(1+xiβ)−α − 1). (2.4.4)

Computing the first order partial derivatives of Eq.(2.4.4),

∂ logL
∂α

= n

α
+

n∑
i=1

log(1 + xiβ)(1 + xiβ)−α −
n∑

i=1
log(1 + xiβ)

+
n∑

i=1

(θ − 1) log(1 + xiβ)e1−(1+xiβ)−α(1 + xiβ)−α

(e1−(1+xiβ)−α − 1) .

(2.4.5)
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∂ logL
∂β

= n

β
−

n∑
i=1

αxi(1 + xiβ)−(α+1) − (α + 1)
n∑

i=1

xi

1 + xiβ

−
n∑

i=1

αxi(θ − 1)(1 + xiβ)−(α+1)

(e1−(1+xiβ)−α − 1) ,

(2.4.6)

and

∂ logL
∂θ

= n

θ
− n log(e− 1) +

n∑
i=1

log(e1−(1+xiβ)−α − 1). (2.4.7)

Equations (2.4.5), (2.4.6) and (2.4.7) are not in closed form. The solution of these
explicit equations can be obtained analytically and can be solved numerically using
R software by taking arbitrary initial values.

In the case of asymptotic normal MLEs, the confidence interval(CI)s for α, β,
and θ are calculated by computing the observed information matrix given by

I =



∂2 log L
∂α2

∂2 log L
∂α∂β

∂2 log L
∂α∂θ

∂2 log L
∂β∂α

∂2 log L
∂β2

∂2 log L
∂β∂θ

∂2 log L
∂θ∂α

∂2 log L
∂θ∂β

∂2 log L
∂θ2


where

∂2 logL
∂α2 = − n

α2 −
n∑

i=1
(1 + βxi)−α log2(1 + βxi)

+ (θ − 1)
n∑

i=1

log2(1 + xiβ)e1−(1+xiβ)−α(1 + xiβ)−α[1 − (1 + xiβ)−α − e1−(1+xiβ)−α ]
(e1−(1+xiβ)−α − 1)2 ,
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∂2 logL
∂α∂β

= −
n∑

i=1
xiA

−1 − (θ − 1)
n∑

i=1
A−(α+1)e1−A−α [xi(e1−A−α − 1 − αxiA

−(α+1))]
(e1−A−α − 1)2

+ (θ − 1)
n∑

i=1
A−(α+1)e1−A−α [α log(A)e1−A−α(A−α log(A) − 1 + e−(1−A−α) − A−αe−(1−A−α))]

(e1−A−α − 1)2

−
n∑

i=1
xiA

−(α+1)[α log(A) − 1]

where A = (1 + xiβ)

∂2 logL
∂α∂θ

= ∂2 logL
∂θ∂α

=
n∑

i=1

log(1 + βxi)e1−(1+βxi)−α(1 + βxi)−α

(e1−(1+βxi)−α − 1) ,

∂2 logL
∂β2 = − n

β2 −
n∑

i=1
α(α + 1)x2

i (1 + βxi)−(α+2) + (α + 1)
n∑

i=1
x2

i (1 + βxi)−2+

α(θ − 1)∑n
i=1 x

2
i

(α+1)(1+βxi)−(α+2)(e1−(1+βxi)−α −1)−α(1+βxi)−2(α+1)e1−(1+βxi)−α

(e1−(1+βxi)−α −1)2 ,

∂2 logL
∂β∂θ

= −
n∑

i=1

αxi(1 + βxi)−(α+1)

(e1−(1+βxi)−α − 1) ,

and

∂2 logL
∂θ2 = − n

θ2 .

For α, β, and θ, the 100(1 − γ)% asymptotic CIs are as follows: α̂ ± z1− γ
2

√
V11,

β̂ ± z1− γ
2

√
V22, and θ̂ ± z1− γ

2

√
V33, where Vij represents the (i, j)th element in the

inverse of the Fisher information matrix I.

2.4.3 Simulation Study

In order to demonstrate the performance of the maximum likelihood method for the
proposed PGDUSL(α, β, θ) distribution, the inverse transformation method is used.
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For different combinations of values of α, β, and θ, samples of sizes n = 250, 500,
750, and 1000 are generated from the PGDUSL(α, β, θ) model. The bias and mean
square error (MSE) of the estimated parameters are calculated for 1000 iterations.
The selected parameter values are α = 0.5, β = 0.5 and θ = 0.5, α = 1, β = 1.5
and θ = 0.5 and α = 1, β = 1.5 and θ = 1. From Tables 2.11, 2.12, and 2.13, it
is observed that bias and MSE decreases for the selected parameter values as the
sample size increases.

Table 2.11: Estimate, Biases and MSEs for PGDUSL model at α = 0.5, β = 0.5
and θ = 0.5

n Estimated value of Parameters Bias MSE

250

α̂=0.5100 0.0100 0.0031

β̂=0.5520 0.0720 0.0665

θ̂=0.5218 0.0218 0.0049

500

α̂=0.4921 -0.0039 0.0016

β̂=0.5926 0.0526 0.0422

θ̂=0.5197 0.0197 0.0023

750

α̂=0.4960 -0.0079 0.0010

β̂=0.5313 0.0343 0.0181

θ̂=0.5088 0.0088 0.0013

1000

α̂=0.4889 -0.0111 0.0008

β̂=0.5343 0.0313 0.0134

θ̂=0.5046 0.0046 0.0009

2.4.4 Real Data Application

Real data analysis is used to determine the applicability of the PGDUSL model.
The data set shown in Table 2.14 is uncensored. Among 128 patients with bladder
cancer in a random sample, it corresponds to the number of months they experienced
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Table 2.12: Estimate, Biases and MSEs for PGDUSL model at α = 1, β = 1.5
and θ = 0.5

n Estimated value of Parameters Bias MSE

250

α̂=1.0268 0.0268 0.0314

β̂=1.6452 0.1800 0.4484

θ̂=0.5217 0.0217 0.0037

500

α̂=1.0140 0.0140 0.0131

β̂=1.6800 0.1452 0.2215

θ̂=0.5187 0.0187 0.0017

750

α̂=0.9838 -0.0070 0.0080

β̂=1.6374 0.1374 0.1404

θ̂=0.5040 0.0050 0.0008

1000

α̂=0.9930 -0.0162 0.0059

β̂=1.6070 0.1070 0.0906

θ̂=0.5050 0.0040 0.0006

remission, as reported by Lee and Wang (2003). Different distributions, namely
the Lomax distribution (LD) by Lomax (1954), the DUSE distribution by Kumar
et al. (2015), and the DUS Lomax (DUSL) distribution by Deepthi and Chacko
(2020), are used to compare the performance with the proposed PGDUSL(α, β, θ)
distribution.

To check the acceptability of the PGDUSL(α, β, θ) distribution for the given
data set AIC, Corrected AIC (AICc), log-likelihood value, KS value and p-value
are used and the computed values are provided in Table 2.15. From Table 2.15,
it is clear that PGDUSL(α, β, θ) distribution fits well for the given data set. To
facilitate a better understanding of the results, the plot of the ECDF is shown in
the Figure 2.10 along with fitted density plot in the Figure 2.11 of the distributions
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Table 2.13: Estimate, Biases and MSEs for PGDUSL model at α = 1, β = 1.5
and θ = 1

n Estimated value of Parameters Bias MSE

250

α̂=1.0284 0.0284 0.0194

β̂=1.69386 0.19386 0.71071

θ̂=1.05298 0.05297 0.03426

500

α̂=1.0179 0.0179 0.0082

β̂=1.5999 0.0999 0.1999

θ̂=1.0472 0.0472 0.0144

750

α̂=0.9917 -0.0083 0.0049

β̂=1.5596 0.0596 0.1101

θ̂=1.0145 0.0145 0.0068

1000

α̂=0.9836 -0.0164 0.0033

β̂=1.5187 0.0187 0.0755

θ̂=0.9967 -0.0033 0.0051

for the blood cancer patients dataset. Furthermore, our proposed distribution is
found to fit better than those of the other distributions.

2.5 Summary

In this chapter, a new class of distribution generalizing the DUS transformation,
called the PGDUS transformation, is introduced. A new lifetime distribution
called the PGDUSE distribution with exponential as the baseline distribution is
proposed. The generalized form provides greater flexibility in modeling real datasets.
When a parallel system is considered, if the components are distributed as DUS
transformations of some baseline models, PGDUS transformation is the only solution.
Different statistical properties such as moments, MGF, CF, quantile function, CGF,
order statistic, and entropy of the PGDUSE distribution are derived. The parameter
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Table 2.14: Blood Cancer Patients Dataset

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23

0.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09

0.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24

0.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81

0.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32

0.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66

0.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01

0.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33

0.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36

0.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85

0.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02 2.02

0.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07

0.73 2.07 3.36 6.93 8.65 12.63 22.69 5.49

Table 2.15: Findings for PGDUSL distribution

Model MLEs log L AIC AICc KS p-value

LD
λ̂ = 15.2817

-414.98 833.960 834.056 0.094 0.208
θ̂ = 0.0074

DUSE µ̂ = 0.1342 -433.139 868.278 868.309 0.081 0.366

DUSL
λ̂ = 6.471

-413.077 830.153 830.249 0.075 0.463
θ̂ = 0.0253

PGDUSL

α̂ = 3.842

-411.019 828.039 828.2324 0.035 0.998β̂ = 0.0605

θ̂ = 1.3984

estimation has been done using the method of maximum likelihood. Monte Carlo
simulations are carried out. Real data analysis is performed to show that the
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Figure 2.10: ECDF plot of the models for blood cancer patients dataset.
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Figure 2.11: Estimated densities of the models for the blood cancer patients
dataset.

proposed generalization of the DUS transformation using exponential distributions
can be used effectively to provide better fits.

Similarly, the power generalized DUS transformations of Weibull and Lomax
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distributions have been proposed. Studies on fundamental properties like moments,
MGF, CF, CGF, quantile function, distribution of order statistics, and Rényi entropy
are also carried out. The parameter estimation has been given by the maximum
likelihood method. By using the simulation study, it is observed that the estimates
of the proposed distributions have a smaller bias and mean square error when the
sample size is large. Real data applications have been performed to determine the
applicability of the proposed model. Furthermore, a better fit is adjudged for the
proposed model when compared with a few existing models. When conducting
reliability analyses on a parallel system where each of the components has a specific
DUS-transformed lifetime distribution, the PGDUS approach is highly useful.
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Exponential-Gamma (3, θ) Distribution: A
Bathtub Shaped Failure Rate Model

3.1 Introduction

Modeling and analyzing lifetime data using mixture distribution is a prominent
practice in many applied sciences, such as medicine, engineering, and finance.
Mixture distributions are useful when dealing with lifetime data analysis. When a
new component switches on for the first time, it may fail at the same instant, or
it may fail due to overvoltage, jerking, or any such shocks. Failure due to random
shocks can be modeled using an exponential distribution, while failure due to the
degradation of components occurs. Failure time may be distributed as a Gamma
distribution, Weibull distribution, or any other lifetime distribution if it is fitted
to the data. When a group of lifetimes consists of lifetimes due to both types of
failures, such as random failures and failures due to degradation, one should use a
mixture.

A variety of distributions can be used to model lifetime data, though the failure
rate functions of the majority of them do not exhibit bathtub shapes. However,
many real-life systems demonstrate BFR functions. To address this discrepancy,
distributions like the exponentiated Weibull by Pal et al.(2006), exponentiated
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gamma by Nadarajah and Gupta (2007), generalized Lindley by Nadarajah et al.
(2011), and X-exponential by Chacko (2016) have been proposed to model lifetime
data with bathtub-shaped failure rate models.

Models with bathtub-shaped failure rate functions apply to reliability analysis,
particularly in reliability-related decision-making, cost analysis, and burn-in analysis.
It is necessary to use exponential distributions when dealing with random failures
and other lifetime distributions when dealing with failures due to ageing in such
situations. The purpose of this chapter is to examine a mixture of an exponential
distribution and a gamma distribution that has a BFR function. Real-world problems
can be accurately modeled by this distribution.

The introduction of a mixture distribution uses gamma and exponential
distributions in many different areas. This modeling strategy is useful when
working with populations, systems, or datasets that have intrinsic differences in their
properties. The exponential distribution is used to represent constant failure rates,
whereas the gamma distribution, with a shape value of 3, describes wear-out failure
mechanisms. The occurrence of various behaviors within a population or system can
be explained by using these two distributions as a mixture. The fact that we can
produce bathtub-shaped failure rate behavior for this combination distribution is a
major concern. This is beneficial in reliability analysis, health research, financial
modeling, quality control, and other fields.

This chapter is organized as follows. Section 3.2 considers the exponential-gamma
(3, θ) distribution. In section 3.3, various statistical properties of the
exponential-gamma (3, θ) distribution are derived. The estimation procedure is given
in section 3.4. Section 3.5 provides a comprehensive simulation study. Additionally,
section 3.6 provides data analysis. At the end of the chapter, a summary is given.

3.2 Exponential-Gamma (3, θ) Distribution

A mixture of exponential (θ) and gamma (3,θ) distributions are considered. It is
denoted as EGD(θ). The PDF of the mixture of the exponential (θ) and gamma
(3,θ) distribution is as follows:

f(x; θ) = p f1(x; θ) + (1 − p) f2(x; 3, θ),
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where p = θ
1+θ

, f1(x; θ) = θe−θx and f2(x; 3, θ) = θ3 x2

2 e
−θx.

Then,
f(x; θ) = θ2

1 + θ
(1 + θ

2x
2)e−θx, x > 0, θ > 0. (3.2.1)

The CDF corresponding to the EGD(θ) distribution is

F (x; θ) = 1 − (θ(x(θx+ 2) + 2) + 2)e−θx

2(1 + θ) ;x > 0, θ > 0. (3.2.2)

The Survival function associated with Eq.(3.2.2) is

F̄ (x; θ) = 1 − F (x; θ) = (θ(x(θx+ 2) + 2) + 2)e−θx

2(1 + θ) ;x > 0, θ > 0. (3.2.3)

The first derivative of the PDF is

f ′(x) = θ3e−θx

1 + θ

(
x− 1 − θx2

2

)
.

The second derivative of the PDF is

f ′′(x) = θ3e−θx

1 + θ

(
1 − 2θx+ θ + θ2x2

2

)
.

The mode of f(x) is the point x = x0 satisfying f ′(x0) = 0. Here f ′(x0) = 0 is at
the point x0 = 1±

√
1− θ

2
θ

, f ′′(x) < 0 for 0 < x < 1 and f ′′(x) > 0 for 1 ≤ x ≤ 2.

The shape of the PDF is given in figure 3.1 and 3.2.
From the above figures, it is apparent that the PDF can be decreasing or unimodal.
The HRF of EGD(θ) is given below.

h(x) = f(x, θ)
F̄ (x, θ)

=
2(1 + θ)θ2(1 + θx2

2 )
(θ(x(θx+ 2) + 2) + 2);x > 0, θ > 0. (3.2.4)

The first derivative of HRF is

h′(x) = 2(1 + θ)θ2 θx(θ(x(θx+ 2) + 2) + 2) − 2θ(θx+ 1)(1 + θx2

2 )
(θ(x(θx+ 2) + 2) + 2)2 .
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Figure 3.1: PDF plot for θ ≤ 1
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Figure 3.2: PDF plot for θ > 1

The second derivative of HRF is given by

h′′(x) = 4θ3(θx+ 1)(−θ2x2 + 6θ − 2θx+ 2)(1 + θ)
(θ(x(θx+ 2) + 2) + 2)3 .
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Figure 3.3: HRF plot of EGD(θ) for θ =4.95, 5, 5.15

The extremum of h(x) is the point x = x0 satisfying h′(x0) = 0, and these points
correspond to a maximum or a minimum or a point of inflection according to
h′′(x) < 0, h′′(x) > 0 and h′′(x) = 0 respectively. Here h′(x) = 0 at the point
x0 = −1+

√
1+2θ

θ
and h′′(x) > 0 for θ > 0. So h(x) must attain a unique minimum at

x = x0.
Initially, the plot of h(x) decreases monotonically and then increases, giving a
bathtub shape. Fig.3.3 provides the HRFs of EGD(θ) for different parameter values.

3.3 Statistical Properties of EGD(3, θ)

Here, the statistical measures for the EGD(θ) distribution, such as moments,
skewness, kurtosis, MGF, CF, quantile function, median, Rènyi entropy, Lorenz
curve, and Gini index are discussed.
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3.3.1 Moments

In the statistical literature, the concept of moments is of paramount importance.
We can measure the central tendency of a population by using moments. Moments
also help in measuring the scatteredness, asymmetry, and peakedness of a curve for
a particular distribution.

The rth raw moment (about the origin) of EGD(θ) is

µ′
r = p

r!
θr

+ (1 − p)Γ(r + 3)
2θr

= 2θr! + Γ(r + 3)
2(1 + θ)θr

.

Therefore, the mean and variance of EGD(θ) are respectively given by

µ = θ + 3
θ(1 + θ) ,

and
σ2 = θ2 + 8θ + 3

θ2(1 + θ)2 .

The skewness and kurtosis can be obtained using these raw moments as

Skewness = 2θ3 + 30θ2 − 63θ + 16
θ2 + 8θ + 3 ,

and
Kurtosis = 9θ4 + 192θ3 + 306θ2 + 216θ + 45

(θ2 + 8θ + 3)2 .

3.3.2 Moment Generating Function and Characteristic Function

Let X has EGD(θ) distribution, then the MGF of X, MX(t) = E(etX), is

MX(t) = θ2

1 + θ

(
− (t− θ)2 + θ

(t− θ)3

)
,

for t > 0. Similarly, the CF of X becomes ϕ(t) = MX(it),

ϕ(t) = θ2

1 + θ

(
− (it− θ)2 + θ

(it− θ)3

)
,

where i =
√

−1.
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3.3.3 Quantile Function and Median

Here, the quantile and median formulas of EGD(θ) distribution are determined.
The quantile xp of the EGD(θ) is given from

F (xp) = p, 0 < p < 1

The 100 pth percentile can be obtained as,

(θ(x(θx+ 2) + 2) + 2)e−θx = 2(1 − p)(1 + θ). (3.3.1)

Setting p = 0.5 in Eq. (3.3.1), the median of EGD(θ) is obtained as follows.

(θ(x(θx+ 2) + 2) + 2)e−θx = (1 + θ).

The x0.5 is the solution of the above monotone increasing function. Using different
statistical software, the quantiles or percentiles can be obtained.

3.3.4 Rènyi Entropy

An important entropy measure is Rènyi entropy (Rènyi (1980)). If X has the EGD(θ)
then Rènyi entropy is defined by

ℑR(ν) = 1
1 − ν

log
{ ∫

f ν(x)dx
}
,

where ν > 0 and ν ̸= 1. Then we can calculate, for EGD(θ),

∫
f ν(x)dx =

∫ ∞

0

{
θ2

1 + θ
e

−θx

(
1+ θx2

2

)}ν

dx

=
(

θ2

1 + θ

)ν ∫ ∞

0

(
1 + θx2

2

)ν

e−νθx

=
(

θ2

1 + θ

)ν ∞∑
k=0

(
ν

k

)
(−1)k

∫ ∞

0
x2ke−νθxdx

=
(

θ2

1 + θ

)ν ∞∑
k=0

(
ν

k

)
(−1)k Γ(2k + 1)

(νθ)2k+1 .
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Therefore, Rènyi entropy is given by

ℑR(ν) = 1
1 − ν

log
{(

θ2

1 + θ

)ν ∞∑
k=0

(
ν

k

)
(−1)k Γ(2k + 1)

(νθ)2k+1

}

= ν

1 − ν
log

(
θ2

1 + θ

)
+ 1

1 − ν
log

{ ∞∑
k=0

(
ν

k

)
(−1)k Γ(2k + 1)

(νθ)2k+1

}
.

3.3.5 Lorenz Curve and Gini Index

The Lorenz curve and the Gini index have applications not only in economics but
also in reliability.
The Lorenz curve is defined by

L(p) = 1
p

∫ q

0
xf(x)dx

or equivalently,
L(p) = 1

p

∫ q

0
xF−1(x)dx,

where p = E(X) and q = F−1(p).
The Gini index is given by

G = 1 − 2
∫ 1

0
L(p)dp.

If X has EGD(θ) then

L(p) = 1
p

[
θ + 3
θ(θ + 1) − (θ(q(θ(q(θq + 3) + 2) + 6) + 2) + 6)e−θq

2θ(1 + θ)

]
.

Gini Index is

G = 1 − 2
pθ(1 + θ)

[
θ + 3 − (θ(q(θ(q(θq + 3) + 2) + 6) + 2) + 6)e−θq

2

]
, θ > 0.

3.3.6 Distribution of Maximum and Minimum

Let X1, X2, . . . , Xn be a simple random sample from EGD(θ). Let
X(1), X(2), . . . , X(n) denote the order statistics obtained from this sample. The
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PDF of X(r) is given by,

fr:n(x) = 1
B(r, n− r + 1)[F (x; θ)]r−1[1 − F (x; θ)]n−rf(x; θ),

where F (x; θ), f(x; θ) are the CDF and PDF given by Eq. (3.2.2) and Eq. (3.2.1),
respectively. That is,

fr:n(x) = 1
B(r, n− r + 1)

[
1 − (θ(x(θx+2)+2)+2)e−θx

2(1+θ)

]r−1[
(θ(x(θx+2)+2)+2)e−θx

2(1+θ)

]n−r

θ2

1 + θ

(
1 + θ

2x
2
)
e−θx. (3.3.2)

Then the PDF of the smallest and largest order statistics, X(1) and X(n), respectively,
are

f1(x) = 1
B(1, n)

[
(θ(x(θx+ 2) + 2) + 2)

2(1 + θ)

]n−1
θ2

1 + θ

(
1 + θ

2x
2
)
e−θx

and

fn(x) = 1
B(n, 1)

[
1 − (θ(x(θx+ 2) + 2) + 2)

2(1 + θ)

]n−1
θ2

1 + θ

(
1 + θ

2x
2
)
e−θx.

The CDF of X(r) is

Fr:n(x) =
n∑

j=r

(
n

j

)[
1 − (θ(x(θx+ 2) + 2) + 2)

2(1 + θ)

]j[(θ(x(θx+ 2) + 2) + 2)
2(1 + θ)

]n−j

.

(3.3.3)

Then the CDF of the smallest and largest order statistics X(1) and X(n), respectively,
are

F1(x) = 1 −
[

(θ(x(θx+ 2) + 2) + 2)
2(1 + θ)

]n

, θ > 0
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and
Fn(x) =

[
1 − (θ(x(θx+ 2) + 2) + 2)

2(1 + θ)

]n

, θ > 0.

These distributions can be used in reliability operations.

3.4 Parametric Estimation

In this section, point estimation of the unknown parameter of the EGD(θ) is
described by using the method of maximum likelihood for complete sample data, as
given below.

3.4.1 Maximum Likelihood Estimation

The likelihood function of the EGD(θ) distribution is

L =
n∏

i=1
f(xi; θ) =

n∏
i=1

θ2(1 + θ
2x

2
i )e−θx

1 + θ

The log-likelihood function is,

logL(xi; θ) = 2n log θ − n log(1 + θ) +
n∑

i=1

[
log

(
1 + θx2

i

2

)
− θxi

]
.

The first partial derivatives of the log-likelihood function with respect to θ is

∂L

∂θ
= 2n

θ
− n

1 + θ
+

n∑
i=1

(
x2

i

2(1 + θx2
i

2 )
− xi

)
(3.4.1)

Setting the left side of the above equation to zero, the likelihood equation
as a system of nonlinear equations in θ is obtained. Solving this system in
θ gives the MLE of θ. It is easy to obtain numerically by using a statistical
software package like the nlm package in R programming with arbitrary initial values.

The Fisher information about θ, I(θ), is

I(θ) = E

{
− ∂2

∂θ2 log f(X; θ)
}

= E

(
2
θ2 − 1

(1 + θ)2 + x4

4
1

(1 + θx2

2 )2

)
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= 2
θ2 − 1

(1 + θ)2 + E

{
x4

4
1

(1 + θx2

2 )2

}
.

Then the asymptotic 100(1 − α)% confidence interval for θ is given by

θ̂ ± Zα/2
I−1/2(θ̂)√

n
.

3.5 Simulation Study

A simulation study is conducted to illustrate the performance of the accuracy of the
estimation method. The following scheme is used:

1. Specify the value of the parameter θ.

2. Specify the sample size n.

3. Generate a random sample with size n from EGD(θ).

4. Using the estimation method used in this chapter, calculate the point estimate
of the parameter θ.

5. Repeat steps 3-4, N=1000 times.

6. Calculate the bias and the MSE.

3.6 Applications

Data analysis is provided to see how the new model works. The data set is taken
from Klein and Berger (1997). It shows survival data on the death times of 26
psychiatric inpatients admitted to the University of Iowa hospital during the years
1935-1948.
Different distributions were used, such as ED, EED, and EGD(θ), to analyze the

data. The estimate(s) of the unknown parameter(s), corresponding KS test statistic,
and Log L values for three different models are given in table 3.3. The AIC (see
Akaike(1974)), BIC, and CAIC are presented in the following table 3.4.

Table 3.3 shows the parameter MLEs, KS test statistic value with p-value,
and log-likelihood values of the fitted distributions, and table 3.4 shows the values
of AIC, BIC, and CAIC. The values in tables 3.3 and 3.4 indicate that the EGD(θ)
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Table 3.1: Simulation study for θ = 1, 1.5, 1.85.

θ n Bias MSE

1

50 -0.0009 3.6485×10−05

100 0.0004 1.5573×10−05

500 1.311×10−05 8.599×10−08

1000 3.6889×10−05 1.491×10−09

1.5

50 -0.0007 2.637×10−05

100 -0.0006 3.393×10−05

500 -3.906×10−06 7.628×10−09

1000 -3.823×10−05 1.462×10−06

1.85

50 0.0017 0.0002

100 0.0009 8.593×10−05

500 0.0002 1.410×10−05

1000 3.296×10−05 1.086×10−06

Table 3.2: The survival data on the death times of Psychiatric inpatients

1 1 2 22 30 28 32 11 14 36 31 33 33

37 35 25 31 22 26 24 35 34 30 35 40 39

distribution is a strong competitor to other distributions used here for fitting the
dataset.

P-P plot for ED, EED and EGD(θ) are given in Figure 3.4 which shows that
EGD(θ) model is more plausible than ED and EED models.
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Table 3.3: The estimates, K-S test statistic and log-likelihood for the dataset

Model Estimates KS Log L p value

ED θ̂ =0.0378 0.3728 -111.1302 0.0015

EED â =1.79724674,b̂ =0.0525 0.3146 -108.9871 0.0116

EGD θ̂ =0.1050 0.2613 -104.5856 0.0574

Table 3.4: AIC, BIC, and CAIC of the models based on the dataset

Model AIC BIC CAIC

ED 224.2604 225.5185 226.5185

EED 221.9741 224.4903 226.4903

EGD 211.1713 212.4294 213.4294

3.7 Summary

A bathtub-shaped failure rate model, Exponential-Gamma(3, θ) distribution, is
discussed, and its properties are studied. Moments, skewness, kurtosis, MGF, CF,
Rènyi entropy, Lorenz curve, Gini index, and the distribution of maximum and
minimum order statistics are obtained. A simulation study is conducted to illustrate
the accuracy of the estimation method that has been obtained using maximum
likelihood estimators. The application of EGD(θ) to real data shows that the
new distribution is effective in providing a better fit than the exponential and
exponentiated exponential distributions.
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Figure 3.4: P-P Plots
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Generalized ν-Birnbaum Saunders
Distribution

4.1 Introduction

Motivated by problems with vibration in commercial aircraft causing fatigue in
the materials, the two-parameter BS distribution, also known as the fatigue life
distribution, was proposed by Birnbaum and Saunders (1969a). The model was
developed based on the impression that failure is due to the development and
growth of a dominant crack. The BS distribution is now a natural model in
many instances where the accumulation of a specific factor forces a quantifiable
characteristic to exceed a critical threshold. A few examples of instances in which
this distribution can be used are (i) heat-induced migration of metallic flaws in
nano-circuits; (ii) ingestion of toxic chemicals from industrial waste by humans;
(iii) pollution in the atmosphere as a result of an accumulation of pollutants over
time; (iv) accumulation of deleterious substances in the lungs from air pollution; (v)
events such as earthquakes and tsunamis occurring naturally, and so on. The BS
distribution has two parameters modifying its shape and scale: a failure rate with
an upside-down bathtub shape and a close relation to the normal distribution; see
Leiva (2015).
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The CDF of a two-parameter BS random variable T can be written as

FT (t;α, β) =


Φ

 1
α

((
t

β

)1
2 −

(
β

t

)1
2
) if t > 0

0 otherwise,

(4.1.1)

with α > 0 and β > 0 being respectively the shape and scale parameters and Φ(.)
is the standard normal CDF. The corresponding PDF of the BS model can be
expressed in terms of the PDF of the standard normal distribution and is given by

fT (t;α, β) =



1
2
√

2παβ


(
β

t

)1
2 +

(
β

t

)3
2

 e
−

1
2α2

(
t

β
+
β

t
−2

)
if t > 0

0 otherwise.

(4.1.2)

It is known that the density function of the BS distribution is unimodal, and
although the hazard rate is not an increasing function of t, the average hazard rate
is nearly a non-decreasing function of t (Mann et al., (1974)).

Often, it is very likely to observe a three-phase behavior of HF in the case
of studying the life cycle of an industrial product or the entire life cycle of a
biological entity. For example, non-monotone hazard rates involving a U-shaped
(bathtub-shaped) pattern are exhibited in the case of the age-specific death rate in
human life tables. The core motivation behind developing a more flexible distribution
is its capability to model the underlying monotonic and non-monotonic failure rate
behavior of the observed data.

In this chapter, a distribution called the ν-Birnbaum Saunders (BS) distribution
is discussed, which generalizes the BS model. It is noted here that the BS distribution
only has a decreasing or upside-down bathtub shape for its hazard function. It is
important to note that the shape of the distribution always depends on the power
of the random variable, thus facilitating the development of more flexible models.
Chacko et al. (2015) considered a generalization of the BS distribution, incorporating
a new shape parameter exhibiting both monotonic and non-monotonic failure rate
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behaviors, but statistical inference has not been given. Since the estimation of
parameters is essential for using any distribution, this chapter provides some
structural properties of the distribution and the method of estimation. A discussion
on maximum likelihood estimation of the parameters is given and derived the
observed information matrix. The use of the distribution is justified by three real-life
data sets: the industrial devices data set reported by Aarset (1987), exceedances of
flood peaks data given in Choulakian and Stephens (2001), and the insurance data
reported in Andrews and Herzberg (2012).

Several extensions and generalizations of the BS distribution are studied by
many researchers, including its bivariate and multivariate extensions. The rest of the
chapter is organized as follows: In Section 4.2, the ν−BS distribution, its structural
properties, moments, quantiles, and order statistics are given. Also, the estimation
procedure is given using the method of maximum likelihood. In addition to this,
an extensive simulation study is carried out along with two real-life applications.
Section 4.3 is devoted to the bivariate ν − BS distribution. In section 4.4, the
multivariate ν − BS distribution is defined. The summary is given in the final
section.

4.2 Univariate ν-Birnbaum Saunders Distribution

In this section, an extension of the BS distribution is considered, motivated by the
work of Chacko et al. (2015), who call this extended version of the BS distribution
ν-BS distribution. The study of ν-BS distribution is motivated by three real-life data
examples-industrial devices data set, exceedances of flood peaks data, and insurance
data. In order to investigate the fitness of the data to the ν-BS distribution, we have
to estimate the parameters. So estimation of the parameters of ν-BS distribution is
considered in this chapter.

4.2.1 Cumulative Distribution Function

The CDF of a ν −BS random variable T is given by

F (t;α, β, ν) =


Φ
( 1
α

{(
t

β

)ν

−
(
t

β

)−ν})
if t > 0, α, β, ν > 0,

0 otherwise,
(4.2.1)
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where Φ(.) is the standard normal CDF. Here, α > 0 and β > 0 are respectively,
the shape parameter and the scale parameter. Note that the parameters α and β in
Eq. (4.2.1) are governed by the proposed shape parameter ν > 0. One can obtain
the BS distribution in its particular case when ν = 1

2 .

4.2.2 Probability Density Function

For a random variable T with CDF defined in Eq.(4.2.1), the corresponding PDF is
given by

f(t;α, β, ν) =



ν

αβ
√

2π
e

−
1

2α2

[(
t

β

)2ν

+

(
t

β

)−2ν

−2

][(
t

β

)ν−1

+

(
t

β

)−(ν+1)]
if t > 0,

0 otherwise,

(4.2.2)

From now on, the notation T ∼ BS(α, β, ν) is used to denote a univariate ν−
BS random variable T with parameters α, β, and ν. The PDF in Figure 4.1 has
been plotted for different values of the parameters. From the plot, it can be seen
that the PDF is unimodal in nature.

4.2.3 Hazard Function

The following section discusses the shape characteristics of the HRF of a BS random
variable. With T ∼ BS(α, β, ν), the HRF of T is given by

hT (t;α, β, ν) = f(t;α, β, ν)
F̄T (t;α, β, ν)

It is possible to choose β = 1 without loss of generality since the HRF’s form
does not depend on the scale parameter β.

hT (t;α, 1, ν) =
1

α
√

2π
ϵ′ν(t) e− 1

2α2 ϵ2
ν(t)

Φ(−ϵν(t)
α )

(4.2.3)

where ϵν(t) = (t)ν−(t)−ν , ϵ′
ν(t) = ν

t

(
(t)ν−(t)−ν

)
and ϵ′′

ν(t) = ν
t2

(
(ν−1)tν−(ν+1)t−ν

)
.

Kundu et al. (2008) then showed that the HRF in Eq. (4.2.3) is always
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Figure 4.1: Probability density function plots

unimodal. The plots of the HF of BS(α, β, ν) in Eq.(4.2.3) for different values of α
and ν, are presented in Figure 4.2. Whenever 0 < ν < 1, from (4.2.3) it can shown
that ln(hT (t;α, 1, ν)) → 1/2α2 as t → ∞.

Moments

If T ∼ BS(α, β, ν) ( T has a ν-BS distribution with parameters α, β and ν), the
moments of the random variable T can be obtained by making the following
transformation:
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Z = 1
α

[(
T

β

)ν

−
(
T

β

)−ν]

or

T = β

21/ν

[
αZ +

√
4 + (αZ)2

]1/ν
= β

[
W

β

]1/2ν

(4.2.4)
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Figure 4.2: Failure rate function plots for different parameter values.
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or

T 2ν = β2ν−1W (4.2.5)

where W = β

4
[
αZ +

√
1 + (αZ)2

]2
∼ BS(α, β) and Z ∼ N(0, 1). Hence,

E(T r) = βrE

[(
W

β

) r
2ν
]

= βr− r
2νE

[
W

r
2ν

]

Now in case if r/2ν is an integer then

E(T r) = βr
r/ν∑
j=1

(
r/2ν
2j

) j∑
i=0

(r/ν − 2j + 2i)!
2r/2ν−j+i(r/2ν − j + i)!

(
α

2

)r/ν−2j+2i

(4.2.6)

(see Leiva et al. (2009) in this regard). Rieck (1999) also obtained E(T r), for
fractional values of r/2ν, in terms of the Bessel function, from the MGF of E(ln(W )).
For r = 2ν, then

E(T 2ν) = β2ν−1E(W ) = β2ν

2 (α2 + 2). (4.2.7)

If T ∼ BS(α, β, ν), then it can be easily shown that T−1 ∼ BS(α, β−1, ν−1) ( T has
a ν-BS distribution with parameters α, β−1 and ν−1). Therefore, for integer r, it
can be readily obtained from Eq. (4.2.6) that

E(T−r) = β−r
rν∑

j=1

(
rν/2
2j

) j∑
i=0

(rν − 2j + 2i)!
2rν/2−j+i(rν/2 − j + i)!

(
α

2

)rν−2j+2i

. (4.2.8)

For r = 2ν, then

E(T−2ν) = β−2ν+1E(W−1) = β−2ν

2 (α2 + 2). (4.2.9)
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Quantiles

Quantiles can be obtained as a solution to the equation FT (tq) = q, where tq is the
qth quantile. Hence,

Φ
 1
α


tq
β

ν

−
β
tq

ν
 = q.

Now, solving the above equation, the qth quantile (0 < q < 1) can be written as

tq = β

2 1
ν

(
αzq +

√
(αzq)2 + 4

) 1
ν

, (4.2.10)

where zq = Φ−1(q) is the qth quantile of a standard normal random variable.
Then, using the ν- BS quantile function, that is, the inverse transform method,
a generator of random numbers for the ν-BS distribution is summarized in the
following Algorithm 1.

Algorithm 1 : Generator of random numbers from ν −BS distribution.
1: Generate a random number z from Z ∼ N(0, 1).
2: Set values for α, β and ν of T ∼ BS(α, β, ν).
3: Compute a random number t from T ∼ BS(α, β, ν) by using Eq. (4.2.10)

conducting to

t = β

21/ν

[
αz +

√
4 + (αz)2

]1/ν
.

4: Repeat steps 1 to 3 until the required amount of random numbers to be
completed.

Order Statistics

Order statistics make their appearance in many areas of statistical theory and
practice. The density function fp:n(t) of the p-th order statistic Tp:n, for p = 1, . . . , n,
from independent identically distributed BS(α, β, ν) random variables T1, . . . , Tn is
given by

fp:n(t) = f(t)
B(p, n− p+ 1)F (t)p−1[1 − F (t)]n−p.
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For convenience, let us consider the Eq.(4.2.1) and Eq.(4.2.2) as

F (t) = Φ(µt) (4.2.11)

where µt = 1
α
ϵν( t

β
) and

f(t) = ϕ(µt)Mt (4.2.12)

where Mt = dµt/dt and ϕ(.) is the standard normal density function. As a result of
substituting Eq.(4.2.11) and Eq.(4.2.12) into the above expression,

fp:n(t) = ϕ(µt)Mt

B(p, n− p+ 1)[Φ(µt)]p−1[1 − Φ(µt)]n−p.

The above PDF can be expressed in terms of the binomial expansion as

fp:n(t) = ϕ(µt)Mt

B(p, n− p+ 1)

n−p∑
k=0

(−1)k

(
n− p

k

)
[Φ(µt)]p+k−1.

Thus, this PDF of the BS(α, β, ν) order statistics can be reduced to

fp:n(t) =
n−p∑
k=0

mkf(t), t > 0 (4.2.13)

where mi+1 = (−1)k(n−p
k )[Φ(µt)]p+k−1

B(p,n−p+1) and f(t) is in Eq.(4.2.12). As a result, the PDF
Eq.(4.2.13) of BS(α, β, ν) order statistics can be viewed as a linear combination of
the BS(α, β, ν) density functions. In this way, many mathematical properties of
BS(α, β, ν) order statistics, such as moments and the generating function, can be
determined from the BS(α, β, ν) distribution.

4.2.4 Estimation and Testing of Hypothesis

In this Section, the estimation methodologies for the unknown parameters in the
case of the ν-BS distribution are first discussed. The likelihood ratio (LR) test is
then discussed in this setup.

Point Estimation

The point estimation of the parameters of the ν-BS distribution by the method of
maximum likelihood is considered.
1. Complete data case: Let T = {T1,T2,...,Tn} be a random sample of size n
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and θ = (α, β, ν) be the unknown parameter vector. Based on the random sample,
θ̂, the MLE of θ, can be obtained by maximizing the log-likelihood function. The
associated likelihood and the log-likelihood function are respectively given by

L(θ|t) =
(

ν

αβ
√

2π

)n

e
− 1

2α2
∑n

i=1

[(
ti
β

)2ν

+
(

ti
β

)−2ν

−2
]

n∏
i=1

[(
ti
β

)ν−1

+
(
ti
β

)−(ν+1)]
,

(4.2.14)

and

l(θ|t) = n ln ν − n lnα− n ln β − n

2 ln(2π) − 1
2α2

n∑
i=1

[(
ti
β

)2ν

+
(
ti
β

)−2ν

− 2
]

+
n∑

i=1
log

[(
ti
β

)ν−1

+
(
ti
β

)−(ν+1)]
, (4.2.15)

where t = {t1, t2,...,tn} is the observed sample. The components of the score vector
U(θ) = (Uα, Uβ, Uν)T are

Uα = −n
α

+ 1
α3

n∑
i=1

[(
ti
β

)2ν

+
(
β

ti

)2ν

− 2
]

Uβ = n

β
+ ν

α2

n∑
i=1

[
β2ν−1

t2ν
i

− t2ν
i

β2ν+1

]
+ (ν + 1)

n∑
i=1

βν

tν+1
i

− tν−1
i

βν

( ti

β
)ν−1 + ( β

ti
)ν+1

Uν = n
ν

− 1
α2
∑n

i=1

[(
ti
β

)2ν

log

(
ti
β

)
+

(
β
ti

)2ν

log

(
β
ti

)]
+∑n

i=1
( ti

β
)ν−1 log( ti

β
)+( β

ti
)ν+1 log( β

ti
)

( ti
β

)ν−1+( β
ti

)ν+1

Setting these equations to zero, U(θ) = 0, and solving them simultaneously yields
θ̂ of the three parameters. From the score equation Uα = 0, it can be written as

α̂ = α̂(β, ν) =
 1
n

n∑
i=1

[(
ti
β

)2ν

+
(
β

ti

)2ν

− 2
]

1
2

. (4.2.16)

Plugging in α̂ replacing α in the log-likelihood function l(θ|t), the profile
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log-likelihood function of β and ν is obtained first and then maximized using some
numerical routine to obtain β̂ and ν̂. Finally, α̂ = α̂(β̂, ν̂) is obtained.
2. Multicensored data case: More often, censored data occur in lifetime data
analysis. Some basic mechanisms of censoring are well known in the literature
as, for example, Type-I and Type-II censoring. The survival function of the ν-BS
distribution has a simple convenient form and hence this distribution can be employed
in analyzing censored data. In this context, the general case of multicensored data is
considered. Suppose there are n = n0 + n1 + n2 units of which n0 are known to have
failed at the times t1, . . . , tn0 ; n1 are known to have failed in the interval [si−1, si]
for i = 1, . . . , n1; and n2 units have survived at least till a time ri (i = 1, ..., n2)
but not observed any longer. It is to note here that Type-I and Type-II censoring
are contained as particular cases of multicensoring. The log-likelihood function of
θ = (α, β, ν) for this multicensored data takes the following form:

l(θ|t) ∝ n0 ln ν − n0 ln(αβ) − 1
2α2

n0∑
i=1

[(
ti
β

)2ν

+
(
ti
β

)−2ν

− 2
]

+
n0∑
i=1

log
[(
ti
β

)ν−1

+
(
ti
β

)−(ν+1)]

+
n2∑
i=1

log
[
1 − Φ

( 1
α

{(
ri

β

)ν

−
(
ri

β

)−ν})]

+
n1∑
i=1

log
[
Φ
( 1
α

{(
si

β

)ν

−
(
si

β

)−ν})]
−

n1∑
i=1

log
[
Φ
( 1
α

{(
si−1

β

)ν

−
(
si−1

β

)−ν})]
.

(4.2.17)

The MLEs are obtained by maximizing the above log-likelihood function with respect
to unknown parameters. It is not possible to obtain any of the MLEs as a function
of one or others. One requires either carrying out a three-dimensional maximization
of the objective function l(θ|t) in Eq. (4.2.17) or obtaining the score vector and
solving them to obtain θ.
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Interval Estimation

Assuming the asymptotic normality of the MLEs, the CIs for θ are computed using

the observed information matrix I =
((

∂l(θ|t)
∂θi∂θj

))
, i, j = 1, 2, 3, where l(θ|t) is the

log-likelihood function as defined in Eq.(4.2.15). The 100(1 − γ)% asymptotic CIs
for θ are respectively given by α̂± z1− γ

2

√
V11, β̂ ± z1− γ

2

√
V22, ν̂ ± z1− γ

2

√
V33 where

Vij is the (i, j)−th element of the inverse of the observed Fisher information matrix
I. This interval estimation method is quite useful for its computational ease and
provides coverage probabilities close to the nominal value.

Testing of Hypothesis

In this context, it is worthwhile to mention that the LR statistic often turns out
to be useful for testing the goodness-of-fit of the ν-BS model and for comparing it
with the usual BS model. One can easily check if the fit using the ν-BS model is
statistically “superior” to a fit using the BS model for a given data set by computing

w = 2{l(α̂, β̂, ν̂|t) − l(α̃, β̃, 0.5|t)},

where α̂, β̂, ν̂ are the unrestricted MLEs and α̃, β̃ are the restricted estimates. Also,
the LR statistic is asymptotically distributed under the null model as χ2 distribution
with 1 degree of freedom. Further, the LR test rejects the null hypothesis if w > ηn,
where ηn denotes the upper 100η% point of the χ2 distribution with 1 degree of
freedom.

4.2.5 Simulation Study

In this section, a simulation study is performed with various sample sizes
and parameter values to assess the effectiveness of the proposed estimation
methodology. For illustration purposes, different sample sizes are considered
(n = 40, 60, 80, 100, 120) and the parameter values are taken as α = 2, β = 1, ν = 1.5.
Based on the likelihood principle, the average estimates (AEs), MSEs, and biases
for each unknown model parameter are computed. When it comes to the interval
estimation problem, it is noted that the exact distribution of the MLEs is not
possible to compute. Hence, interval estimates are computed in terms of asymptotic
CIs. All the results are based on 5000 replications and are available in Table 4.1.

Some of the observations are quite evident from the results obtained in Table
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4.1. As the sample size increases, the AEs approach the true values of the model
parameters in all cases, and the corresponding MSEs decrease. In the case of the
results associated with the interval estimates, the performance of asymptotic CIs
is quite satisfactory in terms of coverage probabilities (CPs). With the increase in
sample sizes, the average lengths (ALs) of all the model parameters decrease, which
is quite expected.

Table 4.1: MLEs, MSEs, Biases, CPs and ALs for ν − BS model with α =
2, β = 1 and ν = 1.5

n MLEs MSE Bias CP AL

40

α̂= 2.3355 2.0985 0.6355 0.9875 4.5109

β̂=1.0004 0.0053 0.0004 0.9154 0.2310

ν̂=1.7261 0.3938 0.2261 0.9028 1.9249

60

α̂=2.2167 1.1183 0.4167 0.9930 3.9053

β̂=1.0047 0.0039 0.0047 0.9321 0.2139

ν̂=1.6515 0.2552 0.1515 0.9261 1.7610

80

α̂=2.1666 0.7898 0.3666 0.9883 3.2447

β̂=1.0016 0.0026 0.0016 0.9201 0.1855

ν̂=1.6483 0.1769 0.1483 0.9298 1.4733

100

α̂=2.1259 0.5568 0.2259 0.9710 2.8059

β̂=1.0025 0.0019 0.0025 0.9171 0.1666

ν̂=1.5887 0.1248 0.0887 0.9411 1.3035

120

α̂= 2.1930 0.4671 0.1930 0.9710 2.4835

β̂=1.0015 0.0016 0.0015 0.9271 0.1537

ν̂=1.5749 0.1001 0.0749 0.9461 1.1789

95



CHAPTER 4

4.2.6 Real Life Applications

In the following, applications of the ν-BS distribution to real data are presented
for illustrative purposes. In order to show how well the ν-BS distribution can be
applied to real-life phenomena, three real-life data sets are used- industrial devices
data given by Aarset (1987), exceedances of flood peaks data given in Choulakian
and Stephens (2001), and insurance data reported in Andrews and Herzberg (2012).

Industrial devices data

At first, industrial devices’ real-life data set are considered (see Aarset (1987) in
this respect) which is given in Table 4.2. This data set represents the lifetimes
of 50 industrial devices put on life tests at time zero. In real data applications,
several authors studied this data set for different statistical models since it presents a
bathtub-shaped failure rate, see for example, Ahmed (2014) and Kayal et al. (2017).
A detailed summary of these data is provided in Table 4.3.

Table 4.2: Industrial devices data

0.1 0.2 1 1 1 1 1 2 3 6

7 11 12 18 18 18 18 18 21 32

36 40 45 46 47 50 55 60 63 63

67 67 67 67 72 75 79 82 82 83

84 84 84 85 85 85 85 85 86 86

The MLEs of all the model parameters are computed based on the principle of
maximum likelihood. Despite our inability to theoretically verify the unimodality
of the profile log-likelihood function of β and ν, the contour plot in Figure 4.3(a)
indicates that the function is indeed unimodal. The K-S distance is also reported
along with the p-value for the goodness of fit. It is observed that both the BS
distribution and ν−BS distribution fit the data well. However, based on the
Maximum log-likelihood (MLL) value, K-S distance, and AIC value, it can be seen
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Table 4.3: Descriptive statistics: Industrial devices data

Mean Median Variance Skewness Kurtosis Minimum Maximum

35.8800 34.0000 861.6100 -0.1400 1.4100 0.1000 83.0000

that the proposed ν−BS distribution outperforms the BS distribution. All the
associated results are listed in Table 4.4. The LR statistic to test the hypothesis
H0 : BS against H1 : ν−BS is 52.6200 (p-value < 0.01). Thus, using any usual
significance level, the null hypothesis is rejected in favor of the ν−BS distribution,
i.e., the ν−BS distribution is significantly better than the BS distribution.

Table 4.4: MLEs (standard errors in parentheses), K-S distance, p-values, MLL
values, and AIC values: industrial devices Aarset data set

Distribution Estimates K-S distance p-value MLL AIC

BS(α, β, ν) 31.9352 3.8157 1.2286 0.1543 0.8356 -227.1600 460.3200

(18.9847) (0.4530) (0.1769)

BS(α, β) 2.7455 7.1877 0.1783 0.7798 -253.4700 510.9400

(0.2982) (1.5499)

Exceedances of flood peaks data

For our second real-life illustration, a data set corresponding to the exceedances
of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon Territory,
Canada is considered. The data consist of 72 exceedances for the years 1958–1984,
rounded to one decimal place (see Choulakian and Stephens (2001) in this respect)
and are given in Table 4.5. Table 4.6 gives a descriptive summary of these data.

The MLEs of all the model parameters are computed based on the principle of
maximum likelihood. Despite our inability to theoretically verify the unimodality
of the profile log-likelihood function of β and ν, the contour plot in Figure 4.3(b)
indicates that the function is indeed unimodal. The K-S distance is also reported
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Table 4.5: Exceedances of flood peaks data

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0 12.0 9.3

1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 2.5 14.4 1.7 37.6

0.6 2.2 39.0 0.3 15.0 11.0 7.3 22.9 1.7 0.1 1.1 0.6

9.0 1.7 7.0 20.1 0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6

5.6 30.8 13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0

1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5 2.5 27.0

Table 4.6: Descriptive statistics: exceedances of flood peaks data

Mean Median Variance Skewness Kurtosis Minimum Maximum

12.2000 9.5000 151.2200 1.4700 5.8900 0.1000 64.0000

along with the p-value for the goodness of fit. It is observed that both the BS
distribution and ν− BS distribution fit the data well. However, based on the
MLL value, K-S distance, and AIC value, it can be seen that the proposed ν− BS
distribution outperforms the BS distribution. All the associated results are listed in
Table 4.10. The LR statistic to test the hypothesis H0 : BS against H1 : ν−BS is
50.3400 (p-value < 0.01). Thus, the null hypothesis is rejected in favor of the ν−BS
distribution using any usual significance level. Therefore, the ν−BS distribution is
significantly better than the BS distribution based on the LR statistic.

Insurance data

Finally, the data representing Swedish third-party motor insurance for 1977 for one
of several geographical zones are considered. The data were compiled by a Swedish
committee on the analysis of risk premiums in motor insurance. The data points
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Table 4.7: MLEs (standard errors in parentheses), K-S distance, p-values, MLL
values, and AIC values: exceedances of flood peaks data set

Distribution Estimates K-S distance p-value MLL AIC

BS(α, β, ν) 1.0897 5.1582 0.3481 0.1404 0.5996 -230.8600 467.7200

(0.9356) (1.4117) (0.2447)

BS(α, β) 1.7583 4.4179 0.1457 0.5470 -256.0300 516.2300

(0.1477) (0.6497)

are the aggregate payments by the insurer in thousand Skr (Swedish currency). The
data set was originally reported in Andrews and Herzberg (2012) and is as provided
in Table 4.8. Table 4.9 gives a descriptive summary of these data.

Table 4.8: Insurance data

5014 5855 6486 6540 6656 6656

7212 7541 7558 7797 8546 9345

11762 12478 13624 14451 14940 14963

15092 16203 16229 16730 18027 18343

19365 21782 24248 29069 34267 38993

Table 4.9: Descriptive statistics: Insurance data

Mean Median Variance Skewness Kurtosis Minimum Maximum

14525.7300 14037.5000 69927726 1.3016 1.6004 5014 38993

MLEs of all the model parameters are computed based on the principle of
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maximum likelihood. Despite our inability to theoretically verify the unimodality
of the profile log-likelihood function of β and ν, the contour plot in Figure 4.3(c)
indicates that the function is indeed unimodal. The K-S distance is also reported
along with the p-value for the goodness of fit. It is observed that both the BS
distribution and ν− BS distribution fit the data well. However, based on the
MLL value, K-S distance, and AIC value, it can be seen that the proposed ν− BS
distribution outperforms the BS distribution. All the associated results are listed
in Table 4.10. The LR statistic to test the hypothesis H0 : BS against H1 : ν−BS
is 7.1230 (p-value = 0.0076 < 0.01). Thus, the null hypothesis is rejected in favor
of the ν−BS distribution using any usual significance level. Therefore, the ν−BS
distribution is significantly better than the BS distribution based on the LR statistic.

Table 4.10: MLEs (standard errors in parentheses), K-S distance, p-values,
MLL values, and AIC values: insurance data set

Distribution Estimates K-S distance p-value MLL AIC

BS(α, β, ν) 2.4285 1.3219 1.6654 0.1305 0.7052 -16.7831 39.5662

(1.4121) (0.1069) (0.5985)

BS(α, β) 0.5595 1.2559 0.1385 0.6130 -20.3446 44.6892

(0.0722) (0.1233)

4.3 Bivariate ν- Birnbaum Saunders Distribution

In this section, a new generalized form of BVBS distribtion is proposed and call it a
ν-BVBS distribution.

4.3.1 CDF, PDF, and HRF of ν- BVBS Distribution

The joint CDF of a ν-BVBS random vector (T1, T2) with parameters
α1, β1, ν1, α2, β2, ν2, and ρ can be written as
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Figure 4.3: Contour plot of β and ν in (a)industrial devices data, (b)exceedances
of flood peaks data and (c)insurance data using ν− Birnbaum
Saunders distribution
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F (t1, t2) = Φ2

[
1
α1

((
t1
β1

)ν1

−
(
β1

t1

)ν1)
,

1
α2

((
t2
β2

)ν2

−
(
β2

t2

)ν2)
; ρ
]
; t1 > 0, t2 > 0

(4.3.1)

Here α1 > 0, β1 > 0, α2 > 0, β2 > 0,−1 < ρ < 1 and Φ2(.; ρ) is CDF of standard
BV normal vector (z1, z2) with correlation coefficient ρ. One can obtain the BVBS
distribution in its particular case when ν1 = ν2 = 1

2 . For a BV random vector (T1, T2)
with CDF as in Eq. (4.3.1), the corresponding joint PDF is given by

fT1,T2(t1, t2) = ν1ν2

2πα1α2β1β2
√

1 − ρ2

[(
t1
β1

)ν1−1

+
(
β1

t1

)ν1+1][(
t2
β2

)ν2−1

+
(
β2

t2

)ν2+1]

exp

{
−1

2(1 − ρ2)

[
1
α2

1

((
t1
β1

)ν

1
−
(
β1

t1

)ν

1

)2

+ 1
α2

2

((
t2
β2

)ν

2
−
(
β2

t2

)ν

2

)2

− 2ρ
α1α2

[(
t1
β1

)ν

1
−
(
β1

t1

)ν

1

][(
t2
β2

)ν

2
−
(
β2

t2

)ν

2

]]}

4.3.2 Properties of ν-BVBS Distribution

1. If (T1, T2) ∼ BVBS (α1, β1, ν1, α2, β2, ν2, ρ) then it can be easily shown that
its marginals, Ti, ∼ ν −BS(αi, βi, νi)

2. If (T1, T2) ∼ ν −BS(α1, β1, ν1, α2, β2, ν2, ρ) then

• (T−1
1 , T−1

2 ) ∼ ν −BS(α1,
1

β1
, ν1, α2,

1
β2
, ν2, ρ)

• (T−1
1 , T2) ∼ ν −BS(α1,

1
β1
, ν1, α2, β2, ν2, ρ)

• (T1, T
−1
2 ) ∼ ν −BS(α1, β1, ν1, α2,

1
β2
, ν2, ρ)

4.4 Multivariate ν- Birnbaum Saunders Distribution

Along the same lines as the univariate and bivariate ν−BS distribution, the
multivariate ν−BS distribution can be defined. First, let us recall the definition of
the multivariate BS distribution [see Eq. 1.2.4].
Then the multivariate ν−BS distribution is as follows:
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Definition 4.4.1. Let α, β ∈ Rm, where α = (α1, · · · , αm)T and β = (β1, · · · , βm)T ,
with α1 > 0, βi > 0 for i = 1, 2, · · · ,m. Let Γ be a m×m positive definite correlation
matrix. Then, the random vector T = (T1, · · · , Tm)T is said to have a m-variate BS
distribution with parameters (α, β,Γ, ν) if it has the joint CDF as

P (T ≤ t) = P (T1 ≤ t1, · · · , Tm ≤ tm)

= Φm

[
1
α1

((
t1
β1

)ν

−
(
β1

t1

)ν)
, · · · , 1

αm

((
tm
βm

)ν

−
(
βm

tm

)ν)
; Γ
]

for t1 > 0, · · · , tm > 0 and 0 < ν < 1. Here, for u = (u1, · · · , um)T ,Φm(u; Γ) denotes
the joint CDF of a standard normal vector Z = (Z1, · · · , Zm)T with correlation matrix
Γ.

4.5 Summary

This chapter considers the univariate, bivariate, and multivariate ν− Birnbaum
Saunders distributions and mainly focuses on the univariate case. Several interesting
and useful properties are studied in detail. The point estimates of the model
parameters of the univariate ν− Birnbaum Saunders distribution are obtained
by employing the maximum likelihood principle. In order to obtain interval
estimates, asymptotic CIs are computed using the observed information matrix.
In an extensive simulation study, both estimation methodologies were thoroughly
explored. Applications of the ν−BS distribution to three real data sets are given
to show that the ν− Birnbaum Saunders distribution provides consistently better
modeling than the BS distribution. This extension is intended to attract a broad
range of applications to the literature on fatigue life distributions.
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Inference for R = P[X > Y] based on the
Exponential-Gamma (3, λ) Distribution

5.1 Introducion

Stress-strength (SS) reliability analysis is an important area of reliability analysis.
Strength can be considered as a random variable. In light of the uncertainty in the
operating environment of the unit, the stress applied to it should also be considered
as a random variable. Let X represent a unit’s strength, and Y represent the random
stress that the operational environment imposes on the unit. R = P (X > Y ) is SS
reliability (R).

It is easy to compute R if the stress and strength are assumed to or fitted to have
some well-known statistical distribution. At the same time, if the fitted probability
distributions have more parameters, then the problem becomes complicated. In
such situations, one has to estimate SS reliability if the values of parameters are
not available. Estimating the reliability of SS models is essential to determining
strength and stress levels. The estimation of SS reliability is more complicated
for single-component and multi-component systems. The problem of estimating
reliability for single-component SS models is well documented in the literature.

A variety of censoring schemes have been employed in the literature to analyze
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SS reliability. Based on the Gumbel copula under the type-I progressively hybrid
censoring scheme, Bai et al. (2018) assessed the reliability of the multi-component
SS model. Abravesh et al. (2019) assessed SS reliability with classical and Bayesian
estimation methods based on type-II censored Pareto distributions. Byrnes et al.
(2019) used progressively first failure-censored samples to estimate R for the Burr
type XII distribution. Under progressive type II censoring, Zhang et al. (2019)
examined the reliability of the generalized Rayleigh distribution. The inference
of multicomponent SS reliability under progressive Type II censoring is presented
by Jha et al. (2020), in which stress and strength variables have common unit
Gompertz distributions. Karimi Ezmareh and Yari (2022) studied the inference of
SS reliability for the Gompertz distribution using a type II censoring scheme.

The exponential-gamma (3, λ) distribution studied in Chapter 3, which has
a bathtub-shaped failure rate function, is used to analyze SS reliability.In this
chapter, the exponential-gamma distribution (3, λ) is denoted by EGD(3, λ) or
simply EGD.Specifically, EGD(3, λ) has the PDF

f(x) = λ2

1 + λ

(
1 + λ

2x
2
)
e−λx, x > 0, λ > 0. (5.1.1)

It should be noted that EGD(3, λ) is a mixture of exponential distribution
with a scale parameter of λ and gamma distribution with a shape parameter of
3 and a scale parameter of λ with mixing proportion λ

1+λ
. It has been relatively

unexplored whether SS reliability can be estimated when stress and strength vary
independently following an EGD(3, λ) distribution. This motivates the estimation
of stress-strength reliability using EGD(3, λ).

Consider two independent random variables X and Y from the EGD(3, λ)
with different parameters λ1 and λ2. This chapter focuses on the estimation of the
parameter R = P (X > Y ) while stress and strength have EGD(3, λ) distribution
under type-II censoring. Typically, the problem of estimating R arises when dealing
with the reliability of a component of strength X subjected to a load or stress Y .
The component will fail if the stress exceeds its threshold level. As a result, R can
be viewed as a measure of reliability.

The type II censoring method is briefly explained. Suppose that x1, x2, . . . , xn

and y1, y2, . . . , ym are independent random samples drawn from X and Y random
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variables, respectively. Consider the ordered statistics of these samples to be
x(1), x(2), . . . , x(n) and y(1), y(2), . . . , y(m). The xi’s and yi’s are collected until failure
occurs at r1 and r2 (where r1 is less than or equal to n and r2 is less than or equal
to m).

Our goal in this chapter is to estimate the SS reliability when both stress and
strength follow EGD with different parameters λ1 and λ2 under the type II censoring
scheme. Section 5.2 considers the SS reliability of EGD(3, λ). In section 5.3, the
MLE of R using type-II censoring, the asymptotic distribution, and the CI for the
MLE of R are obtained. An extensive simulation study is presented in section 5.4.
Section 5.5 presents the results of the analysis of real data. In the final section, a
summary is given.

5.2 Stress-Strength Reliability of EGD(3, λ) Distribution

In this section, SS reliability is estimated using the EGD distribution. The general
mathematical expression of SS reliability for the independent random variables X
and Y is given by

R =
∫ ∞

−∞
fX(x) FY (x) dx,

where fX(x) and FY (x) are the marginal PDF of X and marginal CDF of Y ,
respectively.

Consider X and Y as independent random variables having the EGD distribution
with parameters λ1 and λ2, respectively. Suppose X ∼ EGD(3, λ1) and Y ∼
EGD(3, λ2). Then, SS reliability is

R =
∫ ∞

0

λ2
1

(1 + λ1)

(
1 + λ1

2 x
2
)
e−λ1x

[
1 − (λ2(x(λ2x+ 2) + 2) + 2)e−λ2x

2(1 + λ2)

]
dx

= λ2
1

2(1+λ1)(1+λ2)
∫∞

0

(
1 + λ1x2

2

)
e−λ1x[2(1 + λ2) − (λ2

2x
2 + 2xλ2 + 2λ2 + 2)e−λ2x]dx

= λ2
1

(1 + λ1)

∫ ∞

0

(
1 + λ1

2 x
2
)
e−λ1xdx

− λ2
1

2(1+λ1)(1+λ2)
∫∞

0

(
1 + λ1

2 x
2
)
e−(λ1+λ2)x(λ2

2x
2 + 2xλ2 + 2λ2 + 2)dx
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=1−
[

λ2
1(λ2

2 + λ1λ2 + λ1)
(1 + λ1)(1 + λ2)(λ1 + λ2)3 + λ2

1λ2

(1 + λ1)(1 + λ2)(λ1 + λ2)2 + λ2
1

(1 + λ1)(λ1 + λ2)

+ 6λ3
1λ

2
2

(1 + λ1)(1 + λ2)(λ1 + λ2)5 + 3λ3
1λ2

(1 + λ1)(1 + λ2)(λ1 + λ2)4

]

= λ2(10λ2
1λ

2
2 + 5λ1λ

3
2 + λ4

2 + 12λ2
1λ

3
2 + 6λ1λ

4
2)

(1 + λ1)(1 + λ2)(λ1 + λ2)5

+ λ2(3λ4
1λ2 + 10λ3

1λ
2
2 + λ5

2 + λ5
1λ2 + 4λ4

1λ
2
2 + 6λ3

1λ
3
2 + 4λ2

1λ
4
2 + λ1λ

5
2)

(1 + λ1)(1 + λ2)(λ1 + λ2)5 (5.2.1)

This expression evaluates if the values of parameters are available. But in practice, it
is not available. Hence, one has to estimate the parameters to determine reliability.

5.3 Maximum Likelihood Estimator of R

Let us suppose that X(1), X(2), . . . , X(r1) is a type II censored sample from EGD(3, λ1)
and Y(1), Y(2), . . . , Y(r2) is a type II censored sample from EGD(3, λ2). The two
samples are assumed to be independent. The joint likelihood function is

L = n! m!
(n−r1)!(m−r2)!

λ
2r1
1

(1+λ1)r1 e
−λ1

∑r1
k=1 x(k) λ

2r2
2

(1+λ2)r2 e
−λ2

∑r2
l=1 y(l)

(
1

2(1+λ1)

)n−r1 ( 1
2(1+λ2)

)m−r2

r2∏
l=1

(
1 + λ2

2 y
2
(l)

)[
(λ2(y(r2)(λ2y(r2) + 2) + 2) + 2)e−λ2y(r2)

]m−r2

r1∏
k=1

(
1 + λ1

2 x
2
(k)

)[
(λ1(x(r1)(λ1x(r1) + 2) + 2) + 2)e−λ1x(r1)

]n−r1
. (5.3.1)

The log-likelihood associated with the above equation is given by

logL = log(n!) + log(m!) − log((n− r1)!) − log((m− r2)!) + 2r1 log(λ1) + 2r2 log(λ2)

− r1 log(1 + λ1) − r2 log(1 + λ2) − λ2

r2∑
l=1

y(l) − (n− r1) log(2(1 + λ1))
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− (m− r2) log(2(1 + λ2)) +
r1∑

k=1
log

(
1 + λ1

2 x
2
(k)

)
+

r2∑
l=1

log
(

1 + λ2

2 y
2
(l)

)

− λ1

r1∑
k=1

x(k) + (n− r1) log(λ1(x(r1)(λ1x(r1) + 2) + 2) + 2) − (n− r1)λ1x(r1)

+ (m− r2) log(λ2(y(r2)(λ2y(r2) + 2) + 2) + 2) − (m− r2)λ2 y(r2)

The first derivative of the above log-likelihood equation with respect to the unknown
parameters λ1 and λ2 are respectively given by

∂ logL
∂λ1

= 2r1

λ1
− r1

1 + λ1
−

r1∑
k=1

x(k) − (n− r1)
1 + λ1

− (n− r1)x(r1) +
r1∑

k=1

x2
(k)

(2 + λ1x2
(k))

+ 2(n− r1)
(1 + x(r1) + λ1x

2
(r1))

(λ1(x(r1)(λ1x(r1) + 2) + 2) + 2)

∂ logL
∂λ2

= 2r2

λ2
− r2

1 + λ2
−

r2∑
l=1

y(l) − (m− r2)
(1 + λ2)

− (m− r2)y(r2) +
r2∑

l=1

y2
(l)

(2 + λ2y2
(l))

+ 2(m− r2)
(1 + y(r2) + λ2y

2
(r2))

(λ2(x(r2)(λ2y(r2) + 2) + 2) + 2) .

The second derivative of the above log-likelihood equation with respect to the
unknown parameters λ1 and λ2 are respectively given by

∂2 log L
∂λ2

1
= n

(1+λ1)2 − 2r1
λ2

1
−∑r1

k=1
x4

(k)
(2+λ1x2

(k))2 − 2(n− r1)
(x(r1)(λ1x(r1)+2)(λ1x2

(r1)+2)+2)
(λ1(x(r1)(λ1x(r1)+2)+2)+2)2 .
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∂2 log L
∂λ2

2
= m

(1+λ2)2 − 2r2
λ2

2
−∑r2

l=1
y4

(l)
(2+λ2y2

(l))2 − 2(m− r2)
(y(r2)(λ2y(r2)+2)(λ2y2

(r2)+2)+2)
(λ2(y(r2)(λ2y(r2)+2)+2)+2)2 .

Using Eq.(5.2.1), MLE of SS reliability, R̂ML, can be calculated as follows:

R̂ML = λ̂2(10λ̂2
1λ̂2

2+5λ̂1λ̂3
2+λ̂4

2+12λ̂2
1λ̂3

2+6λ̂1λ̂4
2+3λ̂4

1λ̂2+10λ̂3
1λ̂2

2+λ̂5
2+λ̂5

1λ̂2+4λ̂4
1λ̂2

2+6λ̂3
1λ̂3

2+4λ̂2
1λ̂4

2+λ̂1λ̂5
2)

(1+λ̂1)(1+λ̂2)(λ̂1+λ̂2)5 .

(5.3.2)

Asymptotic Distribution and Confidence Intervals

The asymptotic distribution and confidence interval (CI) for the MLE of R are
given in this section. Let us represent the Fisher information matrix of λ = (λ1, λ2)
as I(λ). In order to obtain the asymptotic variance of the MLE of R, R̂ML, use
I(λ) in Eq.(5.3.2), where

I(λ) = E



−∂2 log L
∂λ2

1
−∂2 log L

∂λ1∂λ2

−∂2 log L
∂λ2∂λ1

−∂2 log L
∂λ2

2


.

The asymptotic normality of R is obtained by using the following definition

d(λ) =
(
∂R

∂λ1
,
∂R

∂λ2

)′

= (d1, d2)′

where

∂R
∂λ1

= −λ1λ2
2(λ5

1+(4λ2+6)λ4
1+(+λ2

2+20λ2+3)λ3
1+(4λ3

2+24λ2
2+48λ2)λ2

1+(λ4
2+12λ3

2+21λ2
2+30λ2)λ1+2λ4

2+6λ3
2)

(1+λ1)2(1+λ2)(λ1+λ2)6

and

∂R
∂λ2

= λ2
1λ2(λ5

2+2(2λ1+3)λ4
2+(6λ2

1+20λ1)λ3
2+4λ1(λ2

1+6λ1+12)λ2
2+λ1(λ3

1+12λ2
1+21λ1+30)λ2+2λ4

1+6λ3
1

(1+λ1)2(1+λ2)(λ1+λ2)6
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As a result, the asymptotic distribution of R̂ML can be represented as

√
n+m(R̂ML −R) →d N(0, d′(λ) I−1(λ) d(λ)).

We obtain the asymptotic variance of R̂ML as follows:

AV (R̂ML) = 1
n+m

d′(λ) I−1(λ) d(λ)

= V (λ̂1)d2
1 + V (λ̂1)d2

2 + 2d1d2(λ̂1λ̂1).

Asymptotic 100(1 − ω)% CI for R can be obtained as

R̂ML ± Zω/2

√
AV (R̂ML)

where Zω/2 is the upper ω/2 quantile of the standard normal distribution. To assess
the efficiency of the estimators, a simulation study is carried out and given in next
section.

5.4 Simulation Study

This section presents some results related to the performance of estimators of R
using the Newton-Raphson method. For this purpose, 1000 samples are generated
using independent EGD(3, λ1) and EGD(3, λ2) distributions for various sample
sizes under type II censoring scheme. The parameter values, (λ1, λ2), used in this
study were (0.5, 1.5), (1, 1.5), and (1.5, 0.5). Corresponding to these parameter
values, R values are 0.8391, 0.6405, and 0.1609, respectively.

Tables 5.1- 5.3 provided estimates of R based on the MLE method along with
average biases, mean square errors (MSEs), and 95% CIs. From these simulation
results, biases and MSEs decrease with increasing sample size (n,m).
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Table 5.1: MLE, average(Avg) bias, and MSEs of different estimators of R when
λ1 = 0.5 and λ2 = 1.5.

(n,m) (r1, r2) Avg Bias MSEs 95% CI Estimates

(15,15) (15,15) 0.0124 0.0080 (0.7361, 0.9523) λ̂1=0.5124

0.0878 0.1124 λ̂2=1.5878

(14,14) 0.0193 0.0091 (0.6832, 0.9927) λ̂1=0.5193

0.0589 0.1044 λ̂2=1.5589

(12,12) 0.0215 0.0105 (0.7259, 0.9563) λ̂1=0.5215

0.0940 0.1412 λ̂2=1.5940

(25,25) (25,25) 0.0113 0.0046 (0.7499, 0.9290) λ̂1=0.5113

0.0430 0.0557 λ̂2=1.5430

(23,23) 0.0114 0.0046 (0.7648, 0.9185) λ̂1=0.5114

0.0621 0.0643 λ̂2=1.5621

(21,21) 0.0135 0.0057 (0.7713, 0.9072) λ̂1=0.5135

0.0493 0.0642 λ̂2=1.5493

(30,30) (30,30) 0.0088 0.0040 (0.7615, 0.9197) λ̂1=0.5089

0.0440 0.0454 λ̂2=1.5440

(28,28) 0.0089 0.0041 (0.7638, 0.9123) λ̂1=0.5099

0.0231 0.0442 λ̂2=1.5231

(25,25) 0.0087 0.0048 (0.7584, 0.9201) λ̂1=0.5087

0.0324 0.0511 λ̂2=1.5324
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Table 5.2: MLE, Avg bias, and MSEs of different estimators of R when λ1 = 1
and λ2 = 1.5.

(n,m) (r1, r2) Avg Bias MSEs 95% CI Estimates

(15,15) (15,15) 0.0322 0.0382 (0.4666, 0.8290) λ̂1=1.0322

0.0878 0.1124 λ̂2=1.5878

(14,14) 0.0477 0.0447 (0.3602, 0.9138) λ̂1=1.0477

0.0589 0.1044 λ̂2=1.5589

(12,12) 0.0479 0.0481 (0.4690, 0.8167) λ̂1=1.0479

0.0885 0.1253 λ̂2=1.5885

(25,25) (25,25) 0.0281 0.0218 (0.4877, 0.7925) λ̂1=1.0281

0.0430 0.0557 λ̂2=1.5430

(23,23) 0.0280 0.0222 (0.5142, 0.7738) λ̂1=1.0280

0.0621 0.0643 λ̂2=1.5621

(21,21) 0.0332 0.0279 (0.5269, 0.7526) λ̂1=1.0332

0.0493 0.0642 λ̂2=1.5493

(30,30) (30,30) 0.0208 0.0173 (0.5233, 0.7624) λ̂1=1.0208

0.0447 0.0470 λ̂2=1.5447

(28,28) 0.0242 0.0202 (0.5100, 0.7700) λ̂1=1.0242

0.0362 0.0463 λ̂2=1.5380

(25,25) 0.0254 0.0209 (0.5195, 0.7626) λ̂1=1.0254

0.0434 0.0535 λ̂2=1.5434
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Table 5.3: MLE, Avg bias, and MSEs of different estimators of R when λ1 = 1.5
and λ2 = 0.5.

(n,m) (r1, r2) Avg Bias MSEs 95% CI Estimates

(15,15) (15,15) 0.0618 0.0913 (0.0564, 0.2635) λ̂1=1.5618

0.0151 0.0080 λ̂2=0.5151

(14,14) 0.0682 0.1229 (0.0472, 0.2696) λ̂1=1.5682

0.0132 0.0078 λ̂2=0.5132

(12,12) 0.0826 0.1231 (0.0369, 0.2811) λ̂1=1.5826

0.0186 0.0099 λ̂2=0.5186

(25,25) (25,25) 0.0406 0.0516 (0.0820, 0.2431) λ̂1=1.5369

0.0141 0.0048 λ̂2=0.5141

(23,23) 0.0387 0.0620 (0.0881, 0.2340) λ̂1=1.5381

0.0111 0.0050 λ̂2=0.5111

(21,21) 0.0464 0.0659 (0.0700, 0.2506) λ̂1=1.5464

0.0117 0.0056 λ̂2=0.5117

(30,30) (30,30) 0.0369 0.0463 (0.0923, 0.2264) λ̂1=1.5406

0.0078 0.0035 λ̂2=0.5078

(28,28) 0.0381 0.0478 (0.0873, 0.2304) λ̂1=1.5387

0.0060 0.0040 λ̂2=0.5060

(25,25) 0.0312 0.0525 (0.0989, 0.2245) λ̂1=1.5312

0.0107 0.0042 λ̂2=0.5107
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5.5 Applications

To check the applicability of the model we considered the dataset used by Sonker et
al. (2023) which is extracted from the dataset available in Andrews and Herzberg
(2012) and contains information on Kevlar pressure vessels’ stress rupture life under
constant pressure. With r1 = r2 = 19, Type II right censoring is performed on the
complete dataset.The data are presented as follows.

X : 6121, 11604, 9711, 9106, 11026, 17568, 1921, 4921, 10861, 11214, 11608,
5956, 1337, 10205, 11745, 2322, 16179, 14110, 7501, 8666.

Y : 1942, 17568, 3629, 11362, 4006, 14496, 6068, 7886, 5905, 6473, 11895,
4012, 13670, 10396, 17092, 8108, 1051, 5445, 5817, 5620.

When the EGD model is fitted to the data, it can be seen that the model fits
the data quite well. Similarly, the following data is fitted with the Lindley (LD)
model, and it can be observed that the EGD model provides a better fit to the data
than the LD model. Since, the EGD model has minimum CVM and KS values, and
maximum p-values.

The MLE for parameters λ1 and λ2, Cramer-Von Mises (CVM) and the
Kolmogorov-Smirnov (K-S) tests are given in Table 5.4 and 5.5. As a result, the
MLE of R of EGD model is R̂ = 0.5002, and the 95% CI for R is (0.2805,0.7199).

Table 5.4: MLE, CVM, and KS goodness of fit tests for X data

Data Estimates CVM (p-value) KS (p-value)

LD 0.0002 0.1883 (0.2929) 0.1836 (0.4873)

EGD 0.0003 0.1297 (0.4614) 0.1683 (0.5967)
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Table 5.5: MLE, CVM, and KS goodness of fit tests for Y data

Data Estimates CVM (p-value) KS (p-value)

LD 0.0002 0.1883 (0.2929) 0.1836 (0.4872)

EGD 0.0003 0.1299 (0.4607) 0.1680 (0.5989)

5.6 Summary

There have been several well-developed estimation techniques for SS models with
single components that follow well-known lifetime distributions. The EGD model is
found to be a better model than some existing models. In this chapter, the problem
of estimating SS reliability with an EGD distribution in a single-component SS
model for independent stress and strength random variables under type-II censoring
is discussed in detail. The MLE of SS reliability, R̂ML, is obtained. The extensive
simulation revealed that the MSE and average biases caused by estimates approach
zero when sample sizes are increased. The analysis is conducted on real-life datasets
and compares the EGD model with the Lindley model. The EGD model is found to
be a good fit, and it can be used for SS reliability analysis.
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A Simple Step-Stress Analysis of Type II
Gumbel Distribution

6.1 Introduction

Technology in the modern world evolves faster than ever before. As it gets better,
every industry gains. Ultimately, we gain from their results because they lead to
better products and services. Since its inception, the market has been and always
will be competitive. As a result, producers compete to offer their clients the highest
quality products possible. Failure time within a specific timeframe under normal
operating conditions cannot be estimated because product quality is constantly
advancing. Early failures using ALT methodologies are encouraged in this instance.
Using this method, we put more stress than usual on promoting early failures. It
lowers the price and enhances the quality of the product.

A type of ALT called step-stress life testing allows the experimenter to gradually
increase the stress levels at predetermined intervals throughout the test. ’n’ identical
units are placed on a life-testing experiment at a starting stress level in a set-up for
a multiple-step stress model. The stress level then continued to rise at pre-defined
intervals. If there are only two degrees of stress, the model is known as the simple
step-stress model.
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A model that links the distributions under various stress levels is needed
to analyze failure time data from any SSALT experiment. The cumulative
exposure model (Sedyakin (1966)), its generalizations (Bagdonavičius (1978)), the
proportional hazard model (Cox (1992)), tampered random variable model (Goel
(1972)), tampered failure rate model (Bhattacharyya and Soejoeti (1989)), and
Khamis-Higgins model (Khamis and Higgins (1998)) are the most frequently used
models in the literature.

Here, a failure rate-based model with pre-fixed but arbitrarily chosen failure
rates at various stress levels is used (see Kateri and Kamps (2015, 2017)). It is
assumed that the HRF of the distribution for the step stress approach is as follows,
where S1 and S2 denote the stress levels and T denotes the time at which the stress
changes.

h(x) =


h1(x) if 0 < x ≤ T

h2(x) if T < x < ∞ .

(6.1.1)

The corresponding CDF is,

F (x) =


F1(x) if 0 < x ≤ T

1 − 1 − F1(T )
1 − F2(T )(1 − F2(x)) if T < x < ∞ .

(6.1.2)

SSALT setups with type II Gumbel lifetime distributions are rarely examined
with regard to inference procedures. Dutta et al. (2023) used Gumbel type II
distribution for the simple step-stress life test based on a tampered random variable
model under type-II censoring.
This chapter discusses the estimation problem for the Type-II Gumbel distribution
utilizing Type-II censoring in the failure rate-based SSALT model. The SSALT
model with Type II Gumbel distribution under Type II censoring has been developed
to comprehensively assess the reliability and failure characteristics of products or
systems exposed to stress testing, which is seldom explored. A type II Gumbel
distribution is selected as it is capable of modeling rare but catastrophic failures.
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In addition to exploring how increasing stress levels affect the failure rate of a
product, the step-stress approach also assists in understanding how the product
performs under various environmental conditions. The use of type II censoring, with
its periodic inspections and data collection, is an effective and efficient way to conduct
long-term tests. As a result of this combination of techniques, organizations can make
informed decisions regarding product design, warranty policies, and maintenance
strategies by gaining insight into how stress and aging can affect failure behavior
and the life expectancy of products.
The baseline lifetime X is distributed according to the Type II Gumbel distribution,
whose PDF and CDF are, respectively,

f ∗
i (x; β, θ) =


βiθix

−(βi+1)e−(θix
−βi ) if x > 0, β > 0, θ > 0

0 otherwise ,

(6.1.3)

and

F ∗
i (x; β, θ) =


e−(θix

−βi ) if x > 0, β > 0, θ > 0

0 otherwise ,

(6.1.4)

where β, θ are the shape and scale parameters, respectively. The HRF is given by

h∗
i (x; β, θ) =



βiθix
−(βi+1)e−(θix

−βi )

1 − e−(θix(−βi))
if x > 0, β > 0, θ > 0

0 otherwise .

(6.1.5)

Depending on the parameter values, the Type-II Gumbel distribution’s HRF
decreases or takes the shape of a UBFR. The Type-II Gumbel distribution is highly
adaptable to represent meteorological occurrences, reliability analysis, and life testing,
as well as in medical and epidemiological applications because of these shapes of
HRF.
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6.2 Model Description

Under a Type-II censoring scheme, a simple SSALT model with two stress levels,
S1, and S2, is analyzed. In the life testing experiment, n identical units are first
placed at the stress level S1. At the pre-determined time T (0 < T < ∞), the stress
level is increased to a higher level S2, and the experiment ends when the rth failure
occurs (r is a pre-determined integer ≤ n).

Let ni be the number of units that fail at Si(i = 1, 2). The following
ordered failure time data given below are observed using this notation.

ℑ = {x1:n < ... < xn1:n < T < xn1+1:n < ... < xr:n}, (6.2.1)

where r = n1 + n2.

Assume that the lifetime distributions of the experimental units at stress levels
S1 and S2 are Type-II Gumbel distributions, with differences in both the shape and
scale parameters. To relate the CDFs of lifetime distributions at two successive
stress levels to the CDFs of the lifetime under the used conditions, the assumptions
from the SSALT model based on failure rate are used.

To peruse the failure time data, the HRF h(t), the CDF G(t), and the
associated PDF g(t) of the lifetime of an experimental unit under the assumption of
the failure rate-based SSALT model are respectively given by

h(x) =



β1θ1x
−(β1+1)e−(θ1x−β1 )

1 − e−(θ1x(−β1))
if 0 < x ≤ T

β2θ2x
−(β2+1)e−(θ2x−β2 )

1 − e−(θ2x(−β2))
if T < x < ∞,

(6.2.2)

G(x) =


e−(θ1x−β1 ) if 0 < x ≤ T

1 − e−θ1T −β1

e−θ2T −β2
e−(θ2x−β2 ) if T < x < ∞,

(6.2.3)
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g(x) =


β1θ1x

−(β1+1)e−(θ1x−β1 ) if 0 < x ≤ T

β2θ2e
−θ1T −β1

e−θ2T −β2
x−(β2+1)e−(θ2x−β2 ) if T < x < ∞.

(6.2.4)

6.3 Maximum Likelihood Estimation

The MLEs of the unknown parameters β1, θ1, β2, and θ2 are determined here using
the likelihood function based on the observed type-II censored data in Eq.(6.2.1).

If X1:n < · · · < Xr:n denotes the ordered Type-II censored sample from any
continuous CDF F ∗(.), PDF f ∗(.), then the likelihood function of this censored
sample can be stated as follows:

L(θ) = n!
(n− r)!

{
n∏

k=1
fX(xk:n)

}
{1 − FX(xr:n)}n−r, 0 < x1:n < ... < xr:n < ∞,

where θ is the vector representing model’s parameters.
Let θ = (β1, θ1, β2, θ2) denotes the set of unknown parameters. Using the type-II

censored data in Eq.(6.2.1) of failure time from the Type II Gumbel distribution
with differences in the shape and scale parameters at each of the two stress levels
and assuming a failure rate based simple SSALT model, the likelihood function is
obtained as

L(θ|ℑ) = n!
(n− r)!β

n1
1 θn1

1 βn2
2 θn2

2

n1∏
k=1

x
−(β1+1)
k:n

r∏
k=n1+1

x
−(β2+1)
k:n

n1∏
k=1

e−θ1x
−β1
k:n

r∏
k=n1+1

e−θ2x
−β2
k:n

(
eθ1T −β1

e−θ2T −β2

)n−n1

(e−θ1x
−β2
r:n )n−r. (6.3.1)

The associated log-likelihood function ℓ(θ) of the observed data is given by

ℓ(θ) = ψ1(β1, θ1) + ψ2(β2, θ2), (6.3.2)

where
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ψ1(β1, θ1) = lnn! + ln(n− r)! + n1 ln β1 + n1 ln θ1 − (β1 + 1)
n1∑

k=1
ln xk:n

− θ1

n1∑
k=1

x−β1
k:n + (n− n1) ln[1 − e−θ1T −β1 ], (6.3.3)

and

ψ2(β2, θ2) = n2 ln β2 + n2 ln θ2 − (β2 + 1)
r∑

k=n1+1
ln x− θ2

r∑
k=n1+1

x−β2
k:n

− (n− n1) ln[1 − e−θ2T −β2 ] + (n− r) ln[1 − e−θ2x
−β2
r:n ]. (6.3.4)

Hence, θ̂ can be obtained by maximizing the log-likelihood function Eq.(6.3.2)
over the region Θ. The Eq.(6.3.2) can be written as the sum of two equations
Eq.(6.3.3) and Eq.(6.3.4). Differentiating Eq.(6.3.2) with respect to β1, θ1, β2, θ2

respectively and equating them to zero, the normal equations are obtained as

∂ℓ

∂β1
= n1

β1
−

n1∑
k=1

ln xk:n + θ1

n1∑
k=1

x−β1
k:n ln xk:n + (n− n1)

θ1T
−β1 lnTe−θ1T −β1

1 − e−θ1T −β1
, (6.3.5)

∂ℓ

∂θ1
= n1

θ1
−

n1∑
k=1

x−β1
k:n + (n− n1)

T−β1e−θ1T −β

1 − e−θ1T −β1
, (6.3.6)

∂ℓ

∂β2
= n2

β2
−

r∑
k=n1+1

ln xk:n − θ2Σr
k=n1+1x

−β2
k:n ln xk:n − (n− n1)

θ2 lnTe−θ2T −β2

1 − e−θ2T −β2

+ (n− r)θ2 ln xr:ne
−θ2x

−β2
r:n

1 − e−θ2x
−β2
r:n

, (6.3.7)

and

∂ℓ

∂θ2
= n2

θ2
−

r∑
k=n1+1

x−β2
k:n − (n − n1)

T−β2e−θ2T −β2

1 − e−θ2T −β2
+ (n − r)x

−β2
r:n e

−θ2x
−β2
r:n

1 − e−θ2x
−β2
r:n

. (6.3.8)
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Multiplying Eq.(6.3.6) with θ1 lnT , we get

n1 lnT − n1 lnT
n1∑

k=1
x−β1

k:n + (n− n1)
θ1 lnT T−β1e−θ1T −β

1 − e−θ1T −β1
= 0 (6.3.9)

Substracting Eq.(6.3.9) from Eq.(6.3.5) and simplifying, we get

θ1 =
n1
β1

− n1 lnT + n1 lnT ∑n1
k=1 x

−β1
k:n −∑n1

k=1 ln xk:n∑n1
k=1 x

−β1
k:n ln xk:n

(6.3.10)

6.4 Interval Estimation

In this section, a method for constructing CIs for the unknown parameters β1, θ1, β2,

and θ2 are presented. The exact CIs of the unknown parameters cannot be obtained
because the closed forms of the MLEs do not exist. The asymptotic CIs are provided,
assuming the MLEs are asymptotically normal.

6.4.1 Asymptotic Confidence Intervals

Using the observed Fisher information matrix, a method is presented that assumes
asymptotic normality of the MLEs to obtain the CIs for β1, θ1, β2, and θ2. For large
sample sizes, this method is useful due to its simplicity in computation.

To begin with, we need to obtain explicit expressions for the elements of the
Fisher information matrix I(θ). The elements of I(θ) are

∂2ℓ

∂β2
1

= −n1

β2
1

− θ1

n1∑
k=1

x−β1
k:n (ln xk:n)2 − (n− n1)θ1(lnT )2T−β1 [(1 − θ1T

−β1)eθ1T −β1 − 1]
(eθ1T −β1 − 1)2

∂2ℓ

∂θ1∂β1
=

n1∑
k=1

x−β1
k:n ln xk:n − (n− n1) lnT T−β1 [(θ1T

−β1 − 1)eθ1T −β1 + 1]
(eθ1T −β1 − 1)2

∂2ℓ

∂θ2
1

= −n1

θ2
1

− (n− n1)T−2β1
eθ1T −β1

(eθ1T −β1 − 1)2

∂2ℓ

∂β1∂θ1
= −

n1∑
k=1

x−β1
k:n ln xk:n + (n− n1) lnT T

−β1 [(1 − θ1T
−β1)eθ1T −β1 − 1]

(eθ1T −β1 − 1)2
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∂2ℓ

∂β2
2

= −n2

β2
2

+ θ2

r∑
k=n1+1

x−β2
k:n (ln xk:n)2 − (n− n1) θ2

2 (lnT )2 T−β2eθ2T −β2

(eθ2T −β2 − 1)2

+ (n− r)θ2
2 (ln xr:n)2 eθ2x

−β2
r:n

xβ2
r:n(eθ2x

−β2
r:n − 1)2

∂2ℓ

∂θ2∂β2
= −

r∑
k=n1+1

x−β2
k:n ln xk:n + (n− n1) lnT [(θ2T

−β2 − 1)eθ2T −β2 + 1]
(eθ2T −β2 − 1)2

− (n− r) ln xr:n [(θ2x
−β2
r:n − 1)eθ2x

−β2
r:n + 1]

(eθ2x
−β2
r:n − 1)2

∂2ℓ

∂θ2
2

= −n2

θ2
2

+ (n − n1)
T−2β2eθ2T −β2

(eθ2T −β2 − 1)2 − (n − r) x
−2β2
r:n eθ2x

−β2
r:n

(eθ2x
−β2
r:n − 1)2

∂2ℓ

∂β2∂θ2
=

r∑
k=n1+1

x−β2
k:n ln xk:n − (n− n1)θ2

2
(lnT )2 T−β2eθ2T −β2

(eθ2T −β2 − 1)2

+ (n− r)θ2
2
(ln xr:n)2 x−β2

r:n e
θ2x

−β2
r:n

(eθ2x
−β2
r:n − 1)2

.

Then, the 100(1 − α)% asymptotic CIs for β1, θ1, β2, and θ2 are, respectively
(β̂1 ± z1− α

2

√
V11), (θ̂1 ± z1− α

2

√
V22), (β̂2 ± z1− α

2

√
V33), and (θ̂2 ± z1− α

2

√
V44),

where Vij represents the (i, j)th element in the inverse of the Fisher information
matrix I and zp is the p-th upper percentile of a standard normal distribution.

6.5 Summary

This study introduces a simple step stress life testing model with type-II Gumbel
lifetime distribution. A flexible failure-rate based SSALT model is considered based
on type-II censoring. The point estimate of parameters using the maximum likelihood
method is described under the notion of a failure rate-based model.
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Conclusion and Future Directions

7.1 Conclusion

A number of methods are available in the statistical literature to propose new
distributions based on baseline distributions. In statistical distribution theory,
adding a parameter to a family of distribution functions is a very common practice.
In the context of data analysis, adding a parameter can greatly enhance the
flexibility of a class of distribution functions. The DUS transformation to any
of the lifetime distributions proved to be an alternative approach to getting more
flexible models without adding new parameters. As in the generalized exponential
distribution, we can find the distribution of the parallel system in which we can use
the DUS transformed distribution instead of the simple exponential distribution.
A generalization is made by taking power to the DUS transformation, which
is quite desirable since the DUS transformation of any non-monotonic failure
rate model leads to new better models without increasing parameters. Three
new distributions are introduced based on this generalized transformation, the
PGDUS transformation, using the baseline distributions, exponential, Weibull,
and Lomax. PGDUS distribution is a distribution of max(X1, X2, . . . , Xn), where
(X1, X2, . . . , Xn) follows DUS-transformed distributions. The PGDUS approach
is highly useful when performing reliability analyses on a parallel system whose
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components have DUS-transformed lifetime distributions. The new distributions are
studied in detail and investigated for their properties.

The use of statistical distributions plays a significant role in solving a variety of
real-life problems. The use of mixture distributions is unavoidable since, in many
real-life situations, instead of using a particular model, we have to use mixture
models. The importance of mixture statistical distributions in reliability analysis
led us to study a statistical distribution with a bathtub-shaped failure rate function
called the exponential-gamma (3, θ) distribution. The distribution is studied in
detail and has several properties.

Birnbaum-Saunders distributions can be applied in a variety of contexts when
fatigue failure occurs. In particular, BS distributions have been applied to failure
models in random environments characterized by stationary Gaussian processes. In
addition, the BS fatigue life distribution can be used to efficiently model wear-out
and cumulative damage situations. The genesis of this model makes it evident
that fatigue processes are best modeled by this distribution. Many different fields
have used BS distributions. As an example, in the earth sciences, particularly
rain precipitation; in acceptance sampling and quality control; in warranty claim
prediction; and in medicine. Additionally, the BS distribution is closely related to
the inverse Gaussian distribution, which makes it an ideal distribution for use in
actuarial science, demography, agriculture, economics, finance, toxicology, hydrology,
environmental sciences, and wind energy. Further generalizations to the univariate
BS distribution are considered. ν-BS distribution is one of the generalizations of
BS distribution. But the estimation procedures for the ν-BS distribution were
not available in the literature. In order to examine the usefulness of the ν-BS
distribution, a detailed study is required.

Among the univariate, bivariate, and multivariate cases of the ν-BS distribution,
the univariate case is discussed in detail. An in-depth study is conducted on some of
their properties. By applying the maximum likelihood principle, point estimates for
the univariate ν-BS distribution are obtained. Asymptotic CIs are calculated using
the observed information matrix to obtain interval estimates. A comprehensive
simulation study was conducted to examine the validity of the model. A comparison
of the ν−BS distribution using three real data sets is presented to demonstrate that
the ν-BS distribution consistently provides better modeling than the BS distribution.
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Statistical analysis of the SS reliability of a component consists of analyzing how
the strength of the component and the stresses placed upon it interact.It is pertinent
to consider the stress conditions of the environment in which it operates when
determining an item’s dependability or feasibility. Therefore, uncertainty regarding
the actual level of environmental stress should be considered random. Stress and
strength are both treated as random variables in the stress-strength model. Based on
the simple stress-strength model, X represents the stress the operating environment
places on the unit, and Y represents the unit’s strength. The strength of a unit is
greater than the stress, so it can perform the intended function. A unit’s reliability
can be defined as the probability that it will be able to withstand a specified level
of stress. In reliability engineering and survival analysis, this model has been found
to be of increasing use.

In the development of SS reliability models with single components that follow
well-known lifetime distributions, several well-developed estimation techniques have
appeared in literature. The EGD is a novel model, a mixture of exponential and
gamma distributions. The SS reliability for independent stress and strength random
variables that follow the EGD distribution under type-II censoring is discussed in
detail in a single-component SS model. The MLE of SS reliability is obtained, and
simulations have been done extensively. A comparison is made between the EGD
model and the Lindley model based on real-life datasets. A good fit was found for
the EGD model, and it can be used when analyzing SS reliability.

For high-reliability products or materials, a prolonged testing period is usually
required. The use of ALTs can expedite the testing process. In ALT testing, products
are subjected to harsher conditions than they would be under normal use conditions,
which reduces their life expectancy. For a variety of reasons, including operational
failures, device malfunctions, expense, and time constraints, ALTs may contain
censored data.

A simple step stress life testing model with type-II Gumbel lifetime distribution
is introduced. A flexible failure rate-based SSALT model is considered based on
type-II censoring in this model. Under the concept of a failure rate-based model,
point estimates of parameters are described by using the maximum likelihood method.
The interval estimation is also derived.
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All the research outputs would have given new insights to the reliability and
survival analysis researchers.

7.2 Future Directions

Some of the research works that can be addressed in future is given below:

• New distributions using PGDUS transformation can be introduced based on
other existing distributions as baseline distributions like inverse Kumaraswamy,
inverse Weibull, KM transformation distributions etc.

• Stress-strength reliability estimation of the proposed PGDUS transformed
distributions can be addressed.

• Bivariate and multivariate extensions to the proposed BS distribution can be
explored in detail.

• Regression models and diagnostics can be developed based on the
ν-Birnbaum-Saunders distribution in both uncensored and censored data.

• Bayesian approach to the stress-strength model given can be studied.

• The SSALT models can be designed that utilize type-II Gumbel distributions
under censoring schemes such as type-I censoring, hybrid censoring, progressive
censoring, etc., using different models such as cumulative exposure model,
proportional hazard model, Khamis-Higgins model, etc.

• Inference for the SSALT model in the presence of competing risk model can
be introduced.
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