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ABSTRACT

This thesis deals with the following main themes: plus subspaces associated with mod-
ular forms of half-integer weight, a generalisation of the Saito-Kurokawa lift which
connects elliptic modular forms and Siegel modular forms, and kernel functions func-
tions for L-values of half-integral weight Hecke eigenforms. Specifically, we focus on

the following problems:

1. To develop the theory of newforms on the space of cusp forms of weight &k — 1/2
for ['o(M) and character y, = (M) X where k > 2, M > 1 are integers
with 32| M and x modulo M, x* modulo M /2 are primitive Dirichlet characters.

We denote this space by Si_1/2(M, xo).

2. With the same assumptions on k, M, x as above, we next develop the theory
of newforms for the space of Jacobi forms J;'/(M, x) and the for the Maass
spezialschar S;(T'3(M), x) when k is even. Then, we obtain the required iso-
morphisms between the spaces of newforms regarding the Saito-Kurokawa cor-

respondence.

3. Final problem in this thesis is to obtain a non-cusp form of half-integral weight
k+1/2 (k > 2 even) for I'y(4) in the Kohnen plus space whose Petersson scalar
product against a cuspidal Hecke eigenform g is equal to a constant multiple (the
constant is explicit) the L value L(g, k — 1/2), and then derive certain arithmeti-

cal information related with the special values of L-function.
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Chapter 1

Introduction

We focus on the following main problems in this thesis:

1. To develop the theory of newforms on the space of cusp forms of weight &k — 1/2
for ['o(M) and character y, = <M> X where k > 2, M > 1 are integers
with 32| M and x modulo M, x* modulo M /2 are primitive Dirichlet characters.

We denote this space by Si_1/2(M, xo).

2. With the same assumptions on k, M, x as above, we next develop the theory
of newforms for the space of Jacobi forms J; /(M x) and the for the Maass
spezialschar S;(T2(M), x) when k is even. Then, we obtain the required iso-
morphisms between the spaces of newforms regarding the Saito-Kurokawa cor-

respondence.

3. Final problem in this thesis is to obtain a non-cusp form of half-integral weight

k+1/2 (k > 2even) for ['((4) in the Kohnen plus space whose Petersson scalar
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product against a cuspidal Hecke eigenform g is equal to a constant multiple(the
constant is explicit) the L value L(g, k — 1/2), and then derive certain arithmeti-

cal information related with the special values of L-function.

Let us explain each of the above in detail. Before that, we give a brief summary of

the existing works in this direction.

1.1 Survey of literature

Saito-Kurokawa lift for level 1:

Let f be a modular form of weight 2k — 2 (k > 3) for SLy(Z), and let f be a Hecke
eigenform. Then after normalizing f by letting as(1) = 1, we get that the eigen-
values are the Fourier coefficients ay(n). Using certain explicit eigenvalues through
numerical computations, N. Kurokawa [|16]], and H. Saito independently observed the
existence of certain eigenvectors [ in the space of Siegel modular form of weight k
and degree 2 for the full group Sp,(Z) having a relation with the set of eigenvalues.
This correspondence connecting f and F' is known as the Saito-Kurokawa correspon-
dence. In this connection, Maass introduced a subspace in Siegel modular form of
degree two, known as Maass spezialchar. The Maass spezialchar is the space of all

Siegel modular forms F' as described above. The Fourier coefficients of F' are indexed

n r/2

by a set of binary quadratic forms 7" = <T 2 m

) where n, m are positive integers and
r € Z such that r* < 4mn. The Hecke operators on Siegel modular forms introduced
by Andrianov preserve the Maass space and moreover, the forms F' and f connected

under the Saito-Kurokawa correspondence. But, the determination of F' uniquely up

2
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to scalar for each of the normalized Hecke eigenform f of weight 2k — 2 for I'y(NV)
with character x is an unknown problem. it is proved that the answer is affirmative
when N = 1 by D. Zagier [32], and then by M. Manickam, B. Ramakrishnan and T.
C. Vasudevan [25] when NV is odd and square-free. However in the general case where
N is arbitrary and y is arbitrary, the Saito-Kurokawa correspondence has been studied

in 8], [7]. We explain this connection when N = 1.

Let 2|k, k > 4 be an integer. Let Sox_2(SLo(Z)) denote the space of cusp forms of
weight 2k — 2 for SLy(Z) and M (Sp,(Z)) denote the space of Siegel modular forms
of weight k, degree two for Sp,(Z). H. Maass introduced and studied a canonical sub-
space inside M,(Sp,(Z)), called the Maass ‘Spezialschar’ M (Sp,(Z)) which satisfy
a certain condition on the Fourier coefficients: let ' € M} (Sp,(Z)), and A(n,r,1)

denote the Fourier coefficients of F'. Then, we have

A(n,rl) = Z d" 1A <Z—2l, 2, 1) )

dlng(n7T7l)

The above relations are called Maass relations.

Let f € Sor—2(SL2(Z)) be a Hecke eigenform. Then the works of Andrianov,
Maass and Zagier proved the existence of a unique (up to a constant) Siegel Hecke
eigenform F' € M} (Sp,(Z)) corresponding to f via the Saito-Kurokawa correspon-

dence given by

L(F,s)=C((s—k+2)((s—k+1)L(f,s), (1.1)

where ((s) is the Ramanujan zeta function and L(F) s) and L(f, s) are the L-functions
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associated with F' and f, respectively.

The above connection relating Hecke eigenforms in Moy, _o(SLo(Z)) and M (Sp,(Z))
was first realized by D. Zagier through a set of isomorphisms. Let Mj,_;/5(4) denote
the space of modular forms of weight & — 1/2 for I'y(4). W. Kohnen [|11]] identified
a special subspace M," | P (4), called the plus space in Mj_1/2(4) and proved that the
spaces May_o(SLo(Z)) and M," | /o(4) are Hecke equivariantly isomorphic. Let 2|k
and k > 2. Let J;; denote the space of Jacobi forms of weight k& and index 1 for the
full Jacobi group. The Eichler-Zagier map which sends a Jacobi form to a half-integral
weight modular form in the plus space, gives an isomorphism between the spaces Jj, 1

and M

o1 /2(4). Now, let V,,, for m > 1 denote the index shifting operator which sends

forms in Jj ; to Jy .. If m = 0, the operator V} is the one defined by Eichler and Zagier

in [|6]] (page 43). The Maass lift ¥/, defined on ¢ € J; ; by

B = G| Viu(r, 2)e™

m>0

acts as an isomorphism between J;; and Mj(Sp,(Z)). We refer to the following

diagram from [6]:
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Maass ‘Spezialschar’ C M (Sp,(Z))

i

~

Jacobi forms of weight £ and index 1
2

Kohnen’s ‘plus’ space C Mj,_1,2(4)

2

~

Moy (éLQ (7))

The composition of the maps as explained above gives an isomorphism between the
spaces Mog_o(SLo(Z)) and M;(Sp,(Z)) (when k is even). This is called the Saito-
Kurokawa lift (for level 1), which preserves the Hecke eigenforms connected via equa-
tion (I.T)) in the respective spaces. We refer to [[6]] for a comprehensive theory on the

topic.

Extension of Saito-Kurokawa lift:

It is natural to expect certain theory of Saito-Kurokawa correspondence when one re-
places SLo(Z) by its congruence subgroups. Specifically, let f be a Hecke eigenform of
weight 2k — 2 for the congruence subgroup I'o(/V). Does there exists a corresponding
Siegel Hecke eigenform F of weight & for the congruence subgroup T'3(N) such that
an equation of the type [I.1/holds true? Also, corresponding to a normalized newform
f € My, 5(N), how many linearly independent forms F are there in My (T2(N))?
These questions were answered for the space Say._o (V) where N is an odd and square-
free integer in [25]], and later generalised to arbitrary odd level in [22]. Let us explain

this in detail.

The Saito-Kurokawa isomorphism in the case of level 1 was realised through a se-
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ries of isomorphisms. To set up such an isomorpshim for higher levels, one requires
the theory of newforms in the respective spaces. In the case of modular forms of inte-
gral weight, the newform theory was developed by Atkin-Lehner in [3]] by identifying a
certain subspace inside Saj,_2(/N) called the space of newforms, denoted by S5¢™, (V).
They also proved that the multiplicity one theorem holds true on S5, (N). Later,

Kohnen set up a parallel theory of newforms inside the plus space S ];t (4N) where

1/2
N is odd and square-free [12]]. He proved that the spaces S3£%, (V) and S,j_’qe/;”(élN )
are Hecke equivariantly isomorphic with each other. Now, let .J;;""(N) denote the
space of Jacobi cusp forms of weight &, index 1 and level N. Also, let S;(T'3(N))

denote the space of Maass spezialschar inside the space of Siegel cusp forms of weight

k, genus two for the congruence subgroup I'(N). Using the theory of newforms in

S+,new

w172 (IV), the authors in [25] set up a parallel theory of newforms inside J;";" (V)

and S;(T2(N)). They also proved that the spaces S;ﬁe/g(]\f ) and J.7P"Y(N) are
isomorphic with each other under a generalised version of the Eichler-Zagier map, and
the spaces J'7""“(N) and S (T'3(V)) are isomorphic with each other under the
Maass lift. Combining the above three isomorphisms, we get the generalized version
of the Saito-Kurokawa isomorphism for odd and square-free level. Specifically, we

have :

Theorem 1.1.1 (Theorem 8, [25]]). Let N be an odd and square-free integer. Then,
there is a one-one correspondence between the spaces Sy (N) and S, (T3(N)).

For anormalized Hecke eigenform f € S3¢*,(N) and a Hecke eigenform F € S, (T'3(N)),
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the correspondence is given by
Zp(s) =C(s —k+1)((s —k+2)L(s)
where Zp(s) is the Andrianov zeta function corresponding to F (as in [1|]) and

Zi(s) = [T =941 = p2) Zi(s)

p|N

Later, such a correspondence was obtained for arbitrary level N with trivial char-

acter in [[22]].

Question: What happens if one replaces the congruence subgroup I'o(V) with T'; (N)?

1.2 Statement and results

As a natural extension to the above problem mentioned in the previous subsection, we
try to derive similar results in the case of modular forms for the congruence subgroup
[’y (N) for an integer N > 1. Note that we have the following direct sum decomposi-
tion:

Sar-2(T1(N)) = @D Sar—2(N, ¥), (12)
P

where So,_o(I'1(IV)) denote the space of cusp forms for the subgroup I'; (V) and the

direct sum varies over all Dirichlet characters modulo N.
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Hence, it is enough to study the problem on each of the individual spaces Sor_2( N, ),

where ¢ is a Dirichlet character modulo V.

1.2.1 Newforms and Saito-Kurokawa lifts

The aim is to derive the Saito-Kurokawa correspondence on newforms inside the Maass
subspace S;(T'3(M), x) under the assumptions that 32| M and the involved characters
are primitive, and prove that a newform f € Sy,_o(M/2, x?) is lifted into two linearly
independent Maass forms under the Saito-Kurokawa correspondence. For this, we
first set up the theory of newforms on the spaces S, , /2(M ,Xo) and S, | /2(4M . X0)-

Then, using the Eichler-Zagier map Z; and the Maass lift we develop the theory

LM,X ?

of newforms on the spaces J;'7* (M, x) and S;(T'§(M), x) respectively. Finally as a

consequence we get the required Saito-Kurokawa isomorphism.

More precisely, we make the following assumptions. Let k& > 2, M = 292N
(2 t N, @ > 6) be integers. Let x modulo M be a Dirichlet character with ¢ =
X(—1) such that x, = (g) X is an even character modulo M. Let cond(y) = M
and cond(x*) = M/2. Let Sy_1/2(M, xo) denote the space of cusp forms of weight

k —1/2 for I'y(M) and character y,. We denote the Petersson scalar product by

1 1 edxd
(frg) = / F( gy,
UM JTo(M))\H Y

where 7 = x + iy, y > 0, iy, denotes the index of I'g(M) in SLy(Z) and f,g €

Sk—1/2(M, xo). Let S}, /2(M, xo) denote the Kohnen plus space which consists of the
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cusp forms in Si_1 /2(M, xo) whose n-th Fourier coefficients vanish unless e(—1)¥~!n

0,1 (mod 4).

We state the following dimension equality (see Lemma|3.2.7): If & > 2, cond(x) =

M and cond(x?) = M /2, then
dim Sy_1/2(M, xo) = dim Sa—2(M /2, X?). (1.3)

If D = 1(4) is a fundamental discriminant with ¢(—1)*~1D > 0, we consider the D-th

Shimura-Kohnen lift Sp which is the same as the D-th Shimura lift, given by

g|Sp = Z Zx(d) (%) d*2a, (g#) e*minz.
n>1 \ dn

where g € Si_1/2(M, xo). In order to set up the Shimura lifts Sp on S;ﬁl/Q(M, X0)s
we consider the image of m-th Poincaré series in the plus space S, /2(M , Xo) under
Sp and derive its explicit image as a period function in Sa,_o(M /2, x?). By varying
the integers m > 1 with e(—1)*"'m = 0,1 (mod 4), we get that all the Poincaré

series P,

/2.0 oom SPAD the space S, /2(]\/[ , Xo). Hence, the Shimura-Kohnen lifts

Sp maps S, | ,(M, xo) into Syy,_5(M/2, x*) and the adjoint Shintani lifts S}, maps

Sgk_Q(M/2, X2) into S+

n12(M,x0). If f € So—o(M/2,x?) is a normalised Hecke

eigenform, it is known that there exists a fundamental discriminant D (e(—1)*"*D >
0, (D, M) = 1) such that the special value L(f, X (£),k — 1) # 0 (see the remark
after Theorem 1.1 in Chapter 6, [28]]). Therefore, using the condition cond(y) = M

and following the computations as in ( [[15],p. 137), we derive that the | D|-th Fourier
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coefficient of f|S7, is non-zero. Since this is valid for each of the normalised Hecke
eigenform f € So._o(M/2,x?) and by using the dimension equality as given by the
equation (I.3)), we observe that the space 5111 /2(M , Xo) coincides with the full space

Sk—12(M, xo). We state the theory of newforms for the space S,/ /2(1\/[ , X0):

Theorem 1.2.1. Let k > 2, 32| M, cond(x) = M and cond(x?*) = M/2. Then,

5111/2(M7 Xo) = Sk71/2<M7 Xo)-

There exists a finite linear combination of Shimura lifts 1 which defines an isomor-
phism from SZ_I/Q(M, Xo) into Sop_o(M/2,%x?). In particular, we have the strong

multiplicity one theorem on S,j_l/Q(M, Xo)-

Next, we consider the spaces S, , /2(4M, o) and Soy,_o(M, x?). The condition
cond(x?) = M/2 along with the dimension formula and the theory of newforms
for Sor_o(M, x?) gives S5 (M, x*) = {0}. To get the same for the plus space
Si_1/2(4M, o), we derive that the Shimura lifts Sp (D = 0, 1 (mod 4), ¢(—=1)*'D >
0, (D, M) = 1)ymap S, , ,(4M, xo) into Sy.—2(M, x*). Then we find the relation be-

tween the spaces S, ,(M, xo) and S}, ,(4M, xo). We state the following main

theorem for modular forms of half-integral weight (see §3.2.2)):

Theorem 1.2.2.

S (AM, xo) = {0} and  S5,(M,x?) = {0},

10



1.2. STATEMENT AND RESULTS

52_1/2(4M7 Xo) = S}j_l/g(Ma Xo) @ S/—:_l/Q(Mv Xo)|B1,

Sok—2(M, x*) = Sar—2(M/2,x?) @ Sor-2(M/2,X?) |B2-

Moreover, the isomorphism Vi maps 5:71/2(4M7 Xo) into Sap_o(M, x?).

In order to get the Maass lift and theory of newforms for the Maass space, we let
k > 2, e = (—1)* and we first develop the theory of newforms for the space of Jacobi
cusp forms ./’ (M, x). This can be done by deriving the Eichler-Zagier canonical
map (see preliminaries for definition)

Zy sy H(M x) — S;_1/2(4M, X0)-

This is an isomorphism preserving the Hecke eigenforms and the scalar product struc-
tures (see Proposition[d.2.2]and Lemma.2.3)). Using the Theorem|I.2.2]as above and
the existence of Eichler-Zagier canonical isomorphism we get the following. There ex-
ists a non-zero cusp form ¢ € J;™"(M, x) such that ¢| B,;(4) belongs to J;'7 (M, x)
and ¢|Z; € S;ﬁl/Q(M, Xo). We call the inverse image of the space S,jﬂ/z(M, Xo) as
the space of newforms in .J;'™ (M, x). Let Py 1 ar,x,:0,r denote the (D, r)-th Poincare
series in J;'1 (M, x); let U;(4) and B(4) be operators on J' (M, x) (see prelimi-
naries for definitions). Let J;';""*“" (M, x) denote the linear span over complex num-
bers of the set { P, 1.a1,x:0,-|Us(4) : D}, where D varies over all the discriminants with
4/D and D/4 = 0,1 (mod 4). We call the elements of an orthogonal basis consisting
of simultaneous eigenforms under all the Hecke operators T;;(n) in J/""" (M, )

as Jacobi newforms of weight k, index 1, level M and character y. We have (see, the

11



1.2. STATEMENT AND RESULTS

Lemma [4.2.7):
JESI (M )2y = SE (M, o).

We now state the following main theorem for the theory of newforms of Jacobi cusp

forms:

Theorem 1.2.3.
qusp<M X) qusp inew M X @ qusp new M, X)‘BJ(ZL)

The space J,/ 77" (M, x) is isomorphic to the space Say,_o(M /2, X*) under a certain
linear combination of Shimura lifts. Hence, The multiplicity one result holds good on

Jg’ulsp,new (M7 X)_

Let Sp(T2(M), x) denote the space of degree two Siegel cusp forms of level M
and character x, where  is primitive Dirichlet character modulo M as above. Let

¢ € J.7P(M, x). Let v, denote the Maass embedding (as in [{8])) defined by

o
Oty (T, 2, W) Z Ol1 Viny ) (T, 2)e2™ ™

m=1

where V;,,  is the index shifting operator on J;* (M, x) (defined in . Then by
Theorem 3.2 of [8], the map ¢, is an embedding from J;'7 (M, x) to S(T5(M), x).

Denote the image of J;"7” (M, x) under this embedding by S;(I'3(M), x). We define

12



1.2. STATEMENT AND RESULTS

the space of Maass newforms by

Sy (T3 (M), x) = TR (M, Y|,

Finally, combining the above results we get the relevant Saito-Kurokawa lifting
for level M and a primitive character Y modulo M. For a comprehensive theory on
Saito-Kurokawa correspondence we refer to [6,/8]. Let f € Sor_o(M/2,x?) be a
normalised newform. Let F' € S, (T'4(M), x) be the associated unique (up to a
scalar) newform. The corresponding Andrianov zeta function Z(s) (see §4.3.2)) has

an Euler product expansion

ZF(S) H 11— :upp HQp _S )

p|M

where

Qp(p™*) =1 —wp~* + (pw, + (P* + 1)x(*)p**°)p~*

2k—3—3s + 4k—6—4s'

— wpyx(P*)p x(ph)p

Now, using the isomorphisms v, 21, ¢, , and the Theorems [T.2.1} [T.2.2} [1.2.3] we

derive the following:

Theorem 1.2.4.

StIH(M), x) = S (L5 (M), x) D 8™ (Fa(M), x)| Bs (4).

13



1.2. STATEMENT AND RESULTS

The multiplicity one theorem is valid on S; " (T3(M), x). Also, 8" (T3(M), x)
is in one to one correspondence with Sop_o(M /2, x*) under the Saito-Kurokawa iso-
morphism. A given normalised Hecke eigenform f € Sa,_o(M/2,x?) is lifted into
two equivalent Hecke eigenforms F, F|Bg(4), where F' € S8;"“(T3(M), x) is the

newform satisfying

Zp(s)=L(s—k+1,x)L(s —k+2,x)L(f,s).

1.2.2 Kernel function for L-values of half-integral weight Hecke

eigenforms

Let D be a positive fundamental discriminant and £ > 2 be an even integer. W.
Kohnen and D. Zagier [|14]] considered a modular form QDGMD]TT?;D Pr of weight
k + 1/2 for 'y(4) in the Kohnen plus space. They proved that its image under D'
Shimura-Kohnen lift equals a known constant times the square of an Eisenstein series
of weight 2k, level 1 (see proposition 3 of [[14]). We consider a similar modular form
@DEk,4D,(2) |TriP Pr of weight k + 1/2 (k > 2, even) for ['y(4) in the Kohnen plus
space. We first sum up its cusp parts over all positive fundamental discriminants D
and get a cusp form of weight k& + 1/2 for I'y(4) in the plus space, and characterize the
resulting cusp form (see theorem[5.2.1]in section 3). Finally, we characterize the above
modular form 0p £, , D,(2) |Tr4P Pr, for each positive fundamental discriminant D,

and get the following algebraic information.

14



1.3. ORGANISATION OF THE THESIS

The results of G. Shimura and Y. Manin ( [[26]], [[31]) show that the values of L-
functions associated with a normalized newform of integral weight belongs to a number
field. More precisely, if f € S5¥(N) and L(f,s) = >, 5, ap(n)n™ (Re(s) >> 1)
is the associated L-series, and if QQ; denotes the number field generated by all the

eigenvalues of f over Q, then they proved the existence of a real number w such that

L(f,n)

"W

€ Qf, wherel <n <2k —1.

Let 2|k and consider a normalized Hecke eigenform f of weight 2k, level 1 and the
associated unique non-zero Hecke eigenform g of weight k + 1/2 for I'y(4). Both of
them are cusp forms with g|Sp = a,4(D)F for all positive fundamental discriminants

D, where Sp denotes the D™ Shimura-Kohnen lift (see [[11]). We prove that

a,(D)L(f,2k—1)
(g, Y L(D, k)

To get this result, we use the fact that the Fourier coefficients of Op E,_, (2) | TriP Pr.,
are rational numbers.

1.3 Organisation of the thesis

This thesis is organised in the following way. In Chapter [2] we gather the necessary

definitions and preliminary results which will be used throughout the thesis. In Chapter
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1.3. ORGANISATION OF THE THESIS

we consider both plus spaces of the same weight £ — 1/2 and character y, for the
groups I'g(M),T'o(4M), respectively. We derive the Shimura-Kohnen lifts on each of
the spaces and develop the respective theory of newforms for both the spaces. Next, in
Chapter ] we derive the Eichler-Zagier canonical map and get the theory of newforms
for the space of Jacobi forms. Using this, we develop the theory of newforms for the
Maass space, and obtain the necessary Saito-Kurokawa isomorphism. Chapter[5|deals
with a certain kernel function associated with the L-values of a half-integral weight
Hecke eigenform. Finally, Chapter [6] concludes the thesis where we also mention few

problems for future work.
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Chapter 2

Preliminaries

This chapter gives the necessary definitions and properties regarding modular forms
of integral and half integral weight, Jacobi forms and Siegel modular forms of genus

two. We start with few notations.

Let (a, b) denote the gcd of given integers a, b. For complex numbers z and y with
y # 0, define e, () := €2™#/Y, For a real number r, let |7 | denote the greatest integer
less than or equal to . For integers a and n, let (%) denote the Kronecker symbol.

Let Ms.2(R) denote the collection of all 2 x 2 matrices with real entries. For a

matrix A, let det(A) denote the determinant of A. We have the following subgroups

of MQXQ(R>Z

* GLy(R) := {A € Msyo(R) : det(A) # 0}.

* GL] (R) := {A € Msy»(R) : det(A) > 0}.

17



* SLy(R) := {A € GLy(R) : det(A) = 1}.

Let GL,(Z) denote the collection of invertible 2 x 2 matrices with integer entries. Let

GLJ (Z)(= SL»(Z)) denote the subgroup of GL,(Z) with determinant 1.

For an integer IV, let 'y (/V') denote the congruence subgroup (of level N) of SLy(Z),
defined by

[o(N) = ’ € SLy(Z) : N|c

Note that when N = 1, I'g(1) = SLy(Z). For integers M, N with M|N we denote

[Co(M) : To(N)] to be the index of T'y(N) in I'g(M). Also, let

iy = [SLa(Z) : To(M)].

Let H denote the upper half plane. i.e.,
H:={:=2z+41iy:z€ Candy > 0}.
The group GL (R) acts on H by

a b at + b
T):
d cT +d

where (2%) € GLj (R) and 7 € H.

18



2.1. MODULAR FORMS OF INTEGRAL WEIGHT

Dirichlet character

Let N > 1 be an integer. A complex valued arithmetical function x : Z — Cis

called a Dirichlet character y modulo N if it satisfies the following properties:

i) periodic with period V:

x(n+ N) = x(n) foralln € Z,

ii) completely multiplicative:

x(mn) = x(m)x(n) forall m,n € Z,

iii) and

x(n) =0if (n, N) > 1.

2.1 Modular forms of integral weight

Stroke operator:
Let f : HH — C be a holomorphic function. Let £ > 1 be an integer and (‘C‘ Z) S

GLJ (Q). Then, the stroke operator

. is defined by

flp (85) (2) = (ad = be)*(cz + d) ™" f (Zjiz) '

19



2.1. MODULAR FORMS OF INTEGRAL WEIGHT

When there is no ambiguity, we usually omit the subscript £.

Definition 2.1.1. (Modular form of integral weight): Let k > 1, N > 1 be integers
and x be a Dirichlet character modulo N. A holomorphic function f : H — C is

called a modular form of weight k for U'y(N) with character x modulo N if it satisfies
i) automorphic property:
(f], A)(z) = x(d) f(2)
forall A= (2%) € To(N),

ii) and it is holomorphic at all the cusps of T'o(N).

* The vector space of modular forms of weight & for I'q(N) with character x is

denoted by M (N, x).

* Aform f € My(N,x) is called a cusp form if if vanishes at all its cusps. The

vector space of all cusp forms in M (N, x) is denoted by Si(V, x).

When Y is the trivial character, the space M (N, x) (resp. Si(XN, x)) is denoted
by My(N) (resp. Si(N)). Moreover, when N = 1, the space My(1) (resp. Sk(1)) is
denoted by M}, (resp. S).

Definition 2.1.2. (Petersson inner product): For f1, fo € My (N, x) with at least one

of them in Si(N, x), we define the Petersson inner product of fi and fs by

= L 2) fo(2)y* 2 da
(o 8) = (T TS oy I il
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2.2. MODULAR FORMS OF HALF-INTEGRAL WEIGHT

Definition 2.1.3. (Hecke operators): For an integer m > 1, define the m-th Hecke

operator T,,, on My (N, x) by :

a b
To(f) :=m"* " x(a) Y f
(3%721 bmodd) '\ (0 d
a>0

Certain shift operators:
Let f = >, 5gas(n)e’™ be a formal power series where a(n) denotes the n-th
coefficient of f. Let m > 1 be an integer. The operator B5,,, is defined on formal series
by

B, : Z ag(n)e’™ —s Z a,(n)e*™"mT

n>0 n>0

and the operator U,, is defined on formal series by

U, : Z ay(n)e’™" —s Zag(mn)e%“".

n>0 n>0

2.2 Modular forms of half-integral weight

Let G denote the collection of all ordered pairs (A, ¢(7)), where A = (24) € GL] (R)

and ¢(7) is a holomorphic function on H such that

9 o, cT+d
o°(1) = t—det(A)’ te{+1}.
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2.2. MODULAR FORMS OF HALF-INTEGRAL WEIGHT

G forms a group under the group law:

(A, ¢(1)(B, (7)) == (AB, p(BT)(7))-

For congruence subgroups I'o(4M ) we take the embedding I'g(4M ) — G
A2
‘ . & — ? 1
Lo(4M) = {(o, j(o, 7)) v = (24) € To(dM), j(a, 7) = <—) (—) (cT+d)?

Stroke operator:
For a complex valued function g defined on the upper half plane H and (A, ¢(7)) € G,

we define the stroke operator by

9y 1 (A 0(T)(7) = (7)1 g(A7).

Definition 2.2.1. (Modular form of half-integral weight): Letk > 1, N > 1 be integers
and x be a Dirichlet character modulo 4N. A holomorphic function g : HH — C is
called a modular form of weight k + 1/2 for T'o(4N') with character x modulo 4N if it

satisfies

i) automorphic property:

(9]441,247)(2) = x(d)g(2),

forall A= (24%) € Ty(4N),
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2.2. MODULAR FORMS OF HALF-INTEGRAL WEIGHT

ii) and it is holomorphic at all the cusps of T'o(4N).

* The vector space of modular forms of weight k + 1/2 for I'g(4 V) with character

x is denoted by Mj11/2(4N, x).
o Aform f € Mj.1/2(4N, x) is called a cusp form if if vanishes at all its cusps.

The vector space of all cusp forms in My, ;1 /2(4N, x) is denoted by Sj1/2(4N, X).

When Y is the trivial character, the space Mj.1/2(4N, x) (resp. Sky1/2(4N, X)) is

denoted by Mj,1/2(4N) (resp. Sk11/2(4N)).
Definition 2.2.2. (Petersson inner product): For g1, go € Sk41/2(4N, X), we define the

Petersson inner product of g, and gs by

! (g k—3/2
[Lo(N) : To(4N)] AO(4N)\H91(2)92(2)y 2 dz dy.

<91, 92) =

Definition 2.2.3. (Hecke operators): Let g = 3 - as;(n)e*™ € My1/2(4N, x).
Let p t 4N be a prime. Then, the p-th Hecke operator T, is given by its action on the

Fourier coefficients in the following way: let

9|12 = Z b(n)e™ .

n>0

Then,




2.3. JACOBI FORMS

where ay,(n/p*) = 0ifp* [n.

2.3 Jacobi forms

Let H(Q) denote the Heisenberg group and G’(Q) denote the Jacobi group over Q,
defined by

G’(Q) := GL{(Q) x H(Q).

For a congruence subgroup I'g(/N), consider

To(N) = {(M, (A 10),7) € G(Q) : M € To(N), A\, j1,y € Z} .

Let y be a complex number and ¢ be a non-negative integer. We use the following
notations:
2y

e(y) =e and  e'(y) = e(ly) = >,

Stroke operators:
Let ¢ : H x C — C be a holomorphic function. Let & > 1. For M € GLJ (R) with

det(M) = g and (A, u,y) € HQ), let

cT +d ct +d

cz? ar +b
(gb‘k,g[M])(Tv z) = (cT + d)_keeg <_ > ¢ ( ha ) )

(@], 1A\ 1), 7]) = " (N7 + 20z + A+ 7) &(T + 2 + AT + p).

We usually omit the subscripts ‘k, m’ when there is no ambiguity.
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2.3. JACOBI FORMS

Definition 2.3.1. (Jacobi form): Let k,{, N > 1 be integers and x be a Dirichlet
character modulo N. A holomorphic function ¢ : H x C — C is said to be a Jacobi

form of weight k, index ( for Uo(N )’ with character x if it satisfies

i) automorphic properties:

a) forany M = (¢4) € To(N),
8, [M] = x(@)6,

b) and for any \, i € Z,

¢|g[(/\v :u)] = ¢;

ii) forany M € SLy(Z), gf)}k E[M] has a Fourier expansion of the form

¢|k,£[M](T’Z): Z co(n,r)e(nt +rz).

n,rexZ,
r2<4nt

* The vector space of Jacobi forms of weight k, index ¢ for I'y(N)” with character

x modulo N is denoted by J o(V, x).

 Aform ¢ € Jy (N, x) is called a Jacobi cusp form if c4(n,r) = 0 unless r? <

4nl. The vector space of all cusp forms in J;, «(N, x) is denoted by J;';”” (N, x).

Note: Let n,r,n',r’ € Z with r* < 4nl,r* < 4n'l. Then we have cy(n,r) =

co(n/ 1) if 2 — 4dn’l = r* — 4nl and v’ = r (mod 2¢). Thus, we write the Fourier
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2.3. JACOBI FORMS

expansion of ¢ as

o(1,2) = Z co(D,r)e (T 4_5D7'+7”z> .

D<0,rez,
D=r? (mod 4n¥)

Definition 2.3.2. (Petersson inner product): For ¢1,¢s € J.7(N, x), we define the

Petersson inner product of ¢, and ¢, by

1
[SLo(Z) : Ty(N)]

(p1, pa) = / 61(7, 2), Ga (7, 2) 034 Az dy du do,
I'J\HxC

where T = u +iv,v > 0, 2 = x + iy and T'o(N)”’ is the Jacobi group of level N.

Definition 2.3.3. (Hecke operators): Let

$(r,2) == > cy(n,r)e(nt +1z) € Joa(N, x).
iy

We define the Hecke operators T;(p) (p [N) and U;(p) (p|IN) by their action on the

Fourier coefficients of ¢ in the following way:

_ D _
ot = oD pr) + P 2x(p) (;) eo(D. 1) + P (p)2eo(D /3%, DJp)

and

Colu, ) = Co(D°D, pr).
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2.4. SIEGEL MODULAR FORMS

For a comprehensive theory of Jacobi forms, we refer to [6,8]].

2.4 Siegel modular forms

For a matrix Z € May»(C), let Z* denote the transpose of Z. If Z is positive definite,
we denote it by Z > 0. A matrix 7'is called a half integral matrix if the diagonal entries
of T" are integers and off-diagonal entries are half-integers. We have the following

definitions:

* Siegel upper half space (of genus 2) :

H, = {Z € MQXQ((C) 4 = Zt,Im(Z) > 0}

 Siegel modular group :

0, I
Spa(Z) == M e QGLu(Z): MIM =M, J=| =
I, 0,

» Congruence subgroup
A B
[3(N):= M = € Spy(Z) : C' =0 (mod N)
¢ D

Definition 2.4.1. (Siegel modular form): Let k, N > 1 be integers, and x be a Dirichlet

character modulo N. A holomorphic function F : Hy — C is called a Siegel modular
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2.4. SIEGEL MODULAR FORMS

form of weight k for T3(N) with character x if it satisfies:
FI(23)(Z) = x(det(A))(det(CZ + D)) *F((AZ + B)(CZ + D)) = F(Z)

forall (4 8) € T3(N).

» The vector space of Siegel modular forms of weight & for T'3(N) with character

x is denoted by M (T2(N), x).

* To define a cusp form, we embed an SLy(Z) element into Sp,(Z) by

* Forany F' € M (T3(N), x) and for the above embedding of an ST.;(Z) element

in Sp,(Z), we have the following Fourier expansion of the form

FI(AB)(2)= Y. A,

ob
T=T'>0
T half integral

) (T)€27riTr(TZ)_

Now, F'is a cusp form if and only if AF~<A B) (') = 0 for all T > 0 with
\CcD

det(T") = 0 in the above Fourier expansion.

Hecke operators: Let

GSp; (R) = {g € Ma,2(R) : g*Jg = n(g)J,n(g) > 0}.
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2.4. SIEGEL MODULAR FORMS

Let g € GSp; (Q) N Mayo(Z) with gJg' = n(g)J. Consider the following double

coset decomposition:

v v

A
T =T3(N)gT5(N) = [JT5()

v v

We assume that each det(A,) is co prime to N. Then, for any F' € M (T3(N), x),

we consider the action of 7' by

FlenT = n(g)®™ > " x(det(A,)) det(C,Z + D,) *F((A,Z + B,)(C,Z + D,)™").

Whenp { N, for any diagonal matrix diag(p®, p, p¢, p?) with a + ¢ = b + d and
p1 N, let
p* 0 0 O
0 p> 0 0

Ts(p”,p", p°,p*) = T3(N) I5(N).
0 0 p° 0

0 0 0 p

Let us define the following (Hecke operators):

TS(p) - TS(17 17p7p)7
TS<p2) = TS(17p7p27p> + TS(L 17p27p2) + TS(pvpupup)7

Ts(p) = Ts(p)® — Ts(p?).
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2.4. SIEGEL MODULAR FORMS

Note that,

T4(p) = pTs(1,p,p*,p) + p(1 + p + p*)Ts(p, p, p, p)-

Moreover, when p| N we have

Us(p) = T§(N)diag(1,1,p, p)T5(N).

For the details we refer to [8]].
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Chapter 3

Newforms of half-integral weight

In this chapter, we develop the theory of newforms for the spaces .S 1?—1 /2(M , Xo) and

S+

A /2(4M ,Xo), where k > 2,32|M and Y is a primitive character modulo A such

that x? is a primitive character modulo M /2.

3.1 Preliminaries

Throughout this chapter, we let k > 2, N > 1 to be integers such that 32| N. Let x be a
primitive Dirichlet character modulo M such that x? is a primitive Dirichlet character

modulo M/2. Let xo = x <M>

Let Mj_1/2(M, xo) denote the space of modular forms of weight k—1/2 for I'y (M)

with character . Let Sj_1/2 (M, xo) denote the space of cusp forms in Mj,_; 12(M, X0)-
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3.1. PRELIMINARIES

For g € Mj_1/2(M, xo), we write its Fourier expansion at the cusp oo as

9(z) =) ag(n)e’ .

n>0

If m > 1 is an integer, the operator B,,, is defined on formal series by

B,, : Z ag(n>627rinz N Z ag(n)e%rinmz‘

n>0 n>0

Projection operator and plus space:

Let

4 1 , 4 -1 .
f — ,61/267”/4 and fl _ ’671/2€f7m/4

0 4 0 4
Then, formal computations show that both g|£ and g|¢’ belong to Mj_2(M, xo) for
all g € Mj,_1/2(M, xo). Also, if g is a cusp form, g|¢ and g|¢’ are cusp forms. The

projection operator is defined on Mj,_1/2(M, xo) by

8 1 1

and we let g| Pr,. for its image, where g € Mj._1/2(M, Xo). For this we refer to [21]].
Define

MJ—1/2(M7 X0) = Mjy_1/2(M, xo)|Prs, and

8;71/2(]\/[7 XO) = Sk—1/2(M7 XO) N M];lll/Q(Ma XO)
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3.1. PRELIMINARIES

Then, formal computations give

g|Pry = Z a,(n)e’™",

n>0
e(—=1)*1n=0,1 (mod 4)

where g = 37 . ag(n)e*™"*. For an integer n > 1, (n, M) = 1, let T,,> denote n-th
Hecke operator on M}, 2(4M, xo). It preserves the space of cusp forms Sy, /2(4M, xo).
A non-zero form g € S}, /2(4M , Xo) is called a Hecke eigenform if it is a simultane-

ous eigenform for all the Hecke operators 7,2, (n, M) = 1.

Let Sor_2(M /2, x?) denote the space of cusp forms of weight 2k — 2, level M /2
and character x2. Let T}, ((n, M) = 1) and U,,(n|M) denote the Hecke operators, and
Wy (paprime, p*| M /2 and p®** ¢ M /2) denote the W operator on Say,_o( M /2, x?) as
in [3/17]]. By anormalised newform f € So;,_o(M /2, x?) we mean an eigenform for all
the operators T,,((n, M) = 1), U,(n|M) and Wy (p a prime, p®|M /2 and p*** M /2)

with as(1) = 1.

Shimura-Kohnen lift: If D = 1(4) is a fundamental discriminant with ¢(—1)*"*D >
0, we consider the D-th Shimura-Kohnen lift S which is the same as the D-th Shimura

lift, given by

D - DTL2 Tinz
9|Sp = Z Zx(d) (E) d*?a, <| d’2 ) eming

n>1 \ djn

where g € Si,_1/2(M, x0).
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3.2 Newforms for thespaces S, | ,(M, xo) and S, | ,(4M, x0)

In this section, we develop the theory of newforms for both the spaces S,j_l /2(M , X0)

and S,

i 1/2(4M, X0), where k > 2 and x (mod M) is primitive.

3.2.1 Theory of newforms of S, | /2(M , X0)

Poincaré series:
Letn > 1beaninteger. Let P,_; /2 ar,yo:n denote the n-th Poincare series in Sj,_; /2(]\/[ . X0)
( [24], page 238) characterized by
_I'(k—3/2
< 9, Poc1jo,Myoim >= @MléﬁTk_/g/Z)ag(n) for all g € Si_1/2(M, X0).
Let

+ _
Pk—l/Z,M,Xo;n - Pk_l/QvMO(O;n PT+'

Then using proposition 2 of [24]], we have the Fourier expansion of P’ | /2. M xomn D the

following lemma.

Lemma 3.2.1. Let n be a positive integer such that ¢(—1)*"'n = 0,1 (mod 4). We

have

P ot (T) = >, RN () R )
m>1
e(—1)*=1m=0,1 (mod 4)
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where

95 1o vt (M) = Gm + TV2(=1) 2 (1 = (=1)F714) (m /) />~

(mm)

X Z HMC,X<mJ n)Jk—3/2

c>1

Me

On,m is the Kronecker delta, Jy,_s)-(.) is the Bessel function and

aerlm ) =< 3 Xofo) <%> <%4)H/2 enre(md +n5 ™)

c
4 (mod Mc)*
with 601 € Z and 66=' = 1 (mod Mc) is a Kloosterman type sum.
We state the following which we will use later.

Lemma 3.2.2. With notations as above,
9;71/2,M,X0;n(m> = (m/n)k_3/2g;ll/27M%;m(n), (32)

A certain period function F5;_5 y1/2\2.p|a2m, D x¢

We first let £ > 2 and derive the results. If £ = 2, we mention appropriate changes
later in order to get the results (see the paragraph before lemma[3.2.7). Letm > 1 be an
integer with ¢(—1)*'m = 0,1 (mod 4). Let D be an odd fundamental discriminant
with e(—=1)*"1D > 0. Let Q2 /a,\D|M2m e the set of all integral binary quadratic

forms Q(x,y) := ax? + bry + cy? having discriminant b> — 4ac = |D|M?m and
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a = 0(mod M?/4). If Q@ = Q(z,y) € Quzja|p|m2m, define the genus character
Xp (see, [13]) by xp(Q) = (%) or 0 according as (a,b, ¢, D) = 1 or not, where @)

represents r. Define a period function in Sy _o(M /2, x?) by

Buanipepinemps(2) = 3 XX (@Q(5 )7,
Q=la,b,c],

QGQM2/4,\D\M?m

Similar function has been considered by Kohnen in [[13]] for trivial character and for
odd M and for a generic case where the conductor of y depends on the even part of
the level, similar functions have been constructed in [24]] in connection with Shimura

correspondence. Note that
For—o my2 2 p|v2m,px € Son—2(M/2, xX°).

For f € Sop_o(M/2,x?), let

Tok—2.0/2,x2 (f; |D|M?*m, D, x) = E x()xp(Q) f(2)dquz
Q (mod To(M/2)), Co
|Q|=|D|M>m,
4a=0 (mod M?2)

where Cj, is the image in I'g(M/2)\H of the semicircle az? +bRe(z) + ¢ = 0 oriented
from (—b— +/|D|M?m)/2a to (—b+ +/|D|M?m)/2a, if a # 0 or of the vertical line
bRe(z) + ¢ = 0 oriented from —c/b to icc if b > 0 and from oo to —c¢/b, if a = 0,

and dg .z = (az? — bz + ¢)*2dz. Then, we have
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Proposition 3.2.3 (see: [[13]], proposition 7 and [24]], proposition 4). For f € Sop_o(M/2,x?),

27+ (Qkk—_;)

<f(z)7 FQk*Z,M/Q,X2;|D|M2m,D,Y(_Z>> = Z-M/2<|D|M2m)k_3/2 7/.2]672,M/2,X2<f; ‘D’M2m7 D7 X)

We state the Fourier expansion of Fby._ nr/2.42:pja2m,px in the following:

Proposition 3.2.4 (see: [24], proposition 1).

2 271
oo ptjzoeipivzm,0x(2) = D Cor—antjzocpivezm,px (05 | DIMPm)e*™, (3.3)
n>1

where

CQk—z,M/Q,XQ;|D|M2m,D,y(n; \D’MQW)

- g <n2/m|D\><k2)/2{(—n“f/%x(nwm/wr)

D
X Rep| ————d(n//m —1/2
Ry (n/ m/\m) (n/y/m/ID)|D

+7T\/§(n2/m]D])1/4

\/|D|M?
xS 028, 5 (|DIM?m, n) Jy g0 (M) }

a
a>1,
M?|4a

Ry p is the Gauss sum given by

Fo= o) (A2 5 50 (2) enintr

r (mod M|D|)

37



3.2. NEWFORMS FOR THE SPACES S;

k—1 2(M7 XO) AND S]:;l 2(4M> XO)

Sax(|DIM?*m,n) is the finite exponential sum given by

b® — | D|M?*m b® — | D|M?*m
Sax(IDIMPm,m) = Y7 X (H> XD (a,lx r- DM

4a 4a

b (mod 2a),
b2=|D|M?*m (mod 4a)

and

lifx e Z,
i(z) =

0 otherwise.

Action of Shimura map on Poincare series

To get

Spk-1/2.Mx0 * i1 /2 (M Xo) — Sar—2(M/2, x*),
we derive the image of Poincaré series under Shimura lifts.

Proposition 3.2.5.

+ _
B o Mo SDik—1/2,Mx0 = A0, x Fork—2,01/2,52 DIM2m,D 5

where

-1
2(—2m)kt
Ak, DM = (ﬁ(M\DD—k%M(_l)Lk/2JRX,D> .

Proof. Let

+ _ 2minz
Pk—l/Q,M,XO;m|SD;I<:—1/27M,XO = E b(n)e )

n>1

) e2a(nb)7

(3.4)
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Using the equations (3.1)) and (3.2) we get

= o) () Dl )

dln

X (6|Dd|2nzm +av2(-1)lel(1 - (_1)k—1i)(m/w)k/2_3/4

- (%xw (7) d—k+1<|D|n2/m>k—3/25%m)
+ (m/ﬁ<—1)t’éi(1 — (=1)F 1)
< So(@) () a2l a2y O o

din
D|n? 4mn/m|D
3t 2 )

Med

= n/\/m D
(xto/ v/ ( / TD)
x (n/+/m/|D])""(|D|n® /m)**5(n/+/ m/|D|)>

+ (Wﬁ(—l)l-gj(l — (=)L)
X ZX ( )dk’ 2(|D| 2/d2 )k 3/2(m/%)k/2—3/4

dn
D|n? 4mn/m|D
S o 2 (S|

Mecd

(3.5)

39
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Substituting (3.3) and (3.3) into left- and right-hand sides of equation (3.4)) respectively,

it is enough to prove that,

( (n)/m]|D]) ( / m) <n/\/m/|D\>’f“(\mn?/m)k3/25<n/\/m/|Dr>)

<M (D - (C1ky

D|n?
XZX < )dk 2(|D| 2/d2 )k 3/2( /‘ | )k/2 3/4
dln
Di|n? dmn\/m|D
x> Huex(m | ‘ —o)Jk-3)2 (Mcd|>>
c>1

2(—2
= <)\k,D,Mx ((k: _7r)2) MRF3/2(n2 Jm| D] E2)/2

x (=)™ Ry p x(n//m/ID]) < >5(n/vm/\D!)\D!1/2>

n/y/m/|D]
2(—2m)k—1

+ ()\kyDvMyx((lf_Q)!M_k+3/2 (n2/m|D|)(k—2)/2

D|M?2
x wV/2(n? fm| D)4 3" a2, 1 (IDIM?m,n) Jy g (””"’") )

a
a>1,
M?|4a

(3.6)

The first terms on both sides of equation (3.6) vanishes if m/| D] is not a square of an

integer and if n # \/m/|D|. Suppose this happens and if n = \/m/|D|,

first terms are equal in the above equation. Now, we compare the second terms on both

sides of (3.6). Substituting cd = a on the left-hand side of (3.6), it is enough to prove
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that

k

mvV2(-1)ll (1 = (1))
X Z X ( )dkz 2(\D|n2/d2 )k 3/2( /|D|n )k/2 3/4

d|(a,n)

D|n? Arn+/m|D
X ZHMa/dx(ma D] )Jk—3/2 <—H>

d? Ma
a>1

— Nt 22 k3122 | DY) D 23 ] D)
= DM o] o

4mn+/m|D
X Z((M/2>2a)71/28a(M/2)2,y(M2’D‘m,n),]k_3/2 <—||> .

Ma
a>1

ie.,
7T\/§( 1)L J( Z x(d ( ) 1/2’D|k/2 3/4,,k=3/2,, —k/2+3/4
d|(a,n)
|D|n? d7n/m|D|
XZHMa/d&( 2 )Jk 3/2 M—a
a>1

_ ((_1)L%JRxD)—l’D|k/2—3/4nk—3/2m—k/2+3/47r\/§

4drn~/m|D
X > ((M/2)%a)™2Soajnp 5 (M| D, n) Jx 32 <—||> ,

Ma
a>1

which follows from the proposition stated below and whose proof needs a standard set
of arguments. Hence we omit the details; for a proof, we refer to ( [[13|], proposition

5; [24]], proposition 3).
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Proposition 3.2.6. For all a,m,n € N, we have

SaM2/4,y(M2|D\m,n) = RY,D\/WQ ~(—1)F L)

D\ Dln?
X Z X(d) (E) d 1/2HMa/d,X(m> %)

d|(a,n)
]

Let D,e(—1)*1D > 0 be a fundamental discriminant. The adjoint of Shimura

map Sp.i—1/2,M,y, 1S given by
B;2k—2,M/2,X2 : S2k—2(M/27 XQ) — S;;tl/g(M? Xo)-

We now let £ = 2. All the stated results in the above subsection are still valid. We
define the required period function when £ = 2, by using the standard ‘Hecke trick’
as in [13]. We leave the details, since we need to proceed along the same lines of
arguments of the quoted paper by Kohnen. We make the following observation. Let
k = 2 and N be an arbitrary odd integer. The proof of Theorem 2 of [13]] shows that the
Shintani map S}, maps the first Poincaré series P y.; € S2(N) into |D|-th Poincaré

series P??;z, anip| € 53372(4N ). These results are also valid in our case.

We now compare the dimensions of the certain spaces under the stated assumptions.

‘We have
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Lemma 3.2.7.
. . 1.
dim Sy_1/2(M, xo) = dim Sa_o(M/2, X?) = 3 dim Sor_o(M, x?).

Proof. Let k > 2. Using the notations as in [29]], we have

_ ~ (k—3/2)227%N 3 C(k —1/2,2°2N, x0)
dim Se—12(M. xo) = o3 10+1/p) > 12

p|N p|N

= (2k = 3)2* N [J(1 + 1/p) — 2™

pIN
i 2k —3)2°7°N 3 A(ra, 89,2
dim Spy—o(M/2, x*) - 1)2 ST +1/p) _%HQ
PIN pIN

= (2k —3)2° °N [ [(1 + 1/p) — 2°™),

p|N

where v(/N)= number of distinct primes dividing N. Hence, dim Si_1/2(M, xo) =

dim So_»(M /2, x?). In a similar manner we can verify
. 2 ]- . 2
dim Sor_o(M /2, x%) = 3 dim Sor_o(M, x7).

This completes the proof of the lemma for the case £ > 2. The proof for £ = 2 follows
using the same computations combined with the following facts. Since cond(x) = M
the space M; /2(M, xo) becomes trivial, which follows from the work of Serre-Stark
(see the Theorem A in [30]). Similarly, since y is not the trivial character, we also

observe that both the spaces My(M /2, x?) and My(M, x?) are trivial (see, for example,

43



3.2. NEWFORMS FOR THE SPACES S;

k—1 2(M7 XO) AND S]:;l 2(4M> XO)

the Theorem 7.4.1 of [5]]). ]

We now state the theorem regarding newforms for the space 5,:,1 /2(M ,X0)"

Theorem 3.2.8. Let k > 2, 32| M, cond(x) = M and cond(x*) = M/2. Then,

S]j_l/g(Ma Xo) = Sk71/2(M7 Xo0)-

There exists a finite linear combination of Shimura lifts 1 which defines an isomor-
phism from S;ﬁl/Q(M, Xo) into Sop_o(M/2,%x?). In particular, we have the strong

multiplicity one theorem on S,:’_l/Q(M, X0)-

Proof. (Theorem [3.2.8) Let d = dim So;_o(M/2,x*) = dim Sk_1,2(M, xo) and
{f1, f2,- ., fa} be the orthogonal basis of normalised Hecke eigenforms of Sa;,_o(M /2, x?).
For each i, 1 < i < d select a normalised Hecke eigenform f(= f;) and then a funda-
mental discriminant D(= D;) with e(—1)*"'D > 0, (D, M) = land L(f, X () , k—
1) # 0. Since | D|-th Fourier coefficient of f[S}.5; 5 s, is equal to a non-zero con-
stant multiple of L(f,% (£) , k — 1), by using the arguments which give the Theorem
4.1 of [[15]], we derive that the d cusp forms f;|S7, o), o s, constructed as above forms

an orthogonal set in S, , ,, (M. xo).

Thus we select an orthogonal set of cusp forms {g; : 1 <7 <d}in S, | /2(M , X0)
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such that

fi *
D|)fi and —‘SD;%—Z,M/ZXQICL%(

< fi, fi >

gi
D —*—
i, 9i >

9il Spik—1/2,Mx0 = g, (

hold good.

Now S,j_l/Q(M, Xo) is a subspace of Sj_1/2(M, o) having d = dim Sy,_12(M xo)

linearly independent cusp forms, and hence we conclude that
S];tl/Q(Ma Xo) = Skf1/2(M7 Xo)-

This completes the proof of Theorem [3.2.§] O

3.2.2 Theory of newforms of 5, , ,(4M, x0)

Let n > 1 be an integer and let Py_; /2 4pr,y,;n denote the n-th Poincare series in

Sk—1/2(4M, xo) characterized by

. '(k—3/2
< g, Pro1/24M x0m >= Z4J\I/IWGQ(”) forall g € Sy_1/2(4M, x0)-

Let

+ _
Pk71/2,4M,Xo;n - Pk*1/2a4M,XO§n Pry.
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Let k > 2 and Fb;,_9 ar,2; p|ar2m, D5 denote the function defined by

FQka,M,XQ;\D\MQm,DX(Z) = Z X ()X, (Q)Q(z, 1>7(k71)-
Q:[a’b’c]v

QEQ 2 |pjMm2m

Note that F2k72,M,X2;|D|M2m,D,X € SQk_Q(M, XQ).

If k = 2, then we define Poincaré series and the period functions in Sy(M, x?) as

defined by Kohnen in [13]] and the stated results in this subsection are valid.

We have the following result, when k£ > 2 and with other conditions assumed on M,

x and 2. The proof follows using similar arguments as in the proof of the Proposition

3.2.5]
Proposition 3.2.9.
+ _
P o ant oS Dik—1/2.4M,x0 = Ak, D0ty For—2, 0,52 DI M2m,D 5
where

-1
2(—2m)kt
Ne.DMx = (ﬁ(M\DDH?’/Q(—l)Lk/QJ RX,D> .

Hence, image of P,j_ 1/2,4Mx0:m under the map Sp,i—1/2,41,y, 1S @ constant multiple
of the period function F2k’—2,M,x2;\D|M2m7D,Y' Since FQk—Q,M7X2;|D\M2m,DX € Sgk,Q (M, Xz),
and all the Poincaré series Pk*_ 1/2,4Mxo;m SPAN the space S,j_l /2(4M , Xo) we conclude

that

SD;k71/2,4M,X0 : S;,1/2(4M7 Xo) — S2k—2(M, XQ)-
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We now observe the following.

Lemma 3.2.10. S5¢, (M, x?) = {0}.

Proof. Since cond(x?) = M/2, the theory of newforms developed by W. Li in [17]

gives

Son—a(M, X*) = (San—2(M/2,X*) & San—a(M/2,X*)| Ba) D S5y (M, X*).

Now B, is an injective linear map and since dim Sor_5(M, x?) = 2dim Sop_o(M/2, x?),

we get
bea (M, x*) = {0}.
0
We define
S;ri[)ll72<4Mv Xo) = S;—1/2(Ma Xo) © S]:r_l/Q(Ma Xo0)|Ba
and S,j_’qe/gj(élM , Xo) as the orthogonal complement of S;r_’(’ll72(4]\/[ , Xo) With respect to

the Petersson scalar product. We have

Lemma 3.2.11. 5,97 (4M, x0) = {0}.
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Proof. We first observe the direct sum decomposition

Sk 1/2(4M XO) Slj—l/z(Mv XO) @Sk 1/2(M X0 |B4@Sk+q€/12u 4M7 XO)

and

So—o(M,x?) = Sap_o(M/2,X*) @ Sar_2(M /2, x*)|Bs.

Proposition [3.2.5] and Proposition[3.2.9| give
SD Sk 1/2(4]\/[ Xo) — S2k 2<M X )

and

Sp S ;o (M, x0) — San-a(M/2,X%),

where we use Sp = Sp.—1/2,Mx0 OF SD = Spk—1/2,4M,x0- Let g € S;_I/Q(M, Xo)-

Since Sp commutes with B4 and B, as
9|B4Sp = g|SpBo,
each of the Shimura map Sp maps

S]j—l/Q(Ma XO) S SJ:__1/2(M, XO)|B4
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into the space

Sor—2(M/2,Xx%) ® Sor—2(M/2,X?)| Bs.

+

n_1/2(4M, xo) into Sap_o(M, x?) and the Shimura correspondence

Since Sp maps S
preserves eigenclasses with respect to Hecke operators T),2, (n, M) = 1,if g € S,j_qe/;’ (4M, xo)
then g|Sp belongs to Sy, (M, x?), and hence g|Sp = 0 for all such fundamental
discriminants D). This proves g = 0, if not there exists a fundamental discriminant

D, (D, M) = 1 with a,(|D]) # 0 so that g|Sp # 0, which is not true. Now the result

follows. L

We now state the theorem regarding newforms for the space S,j_l /2 (4M, o), whose

proof is obtained by combining the above results.

Theorem 3.2.12. Let k > 2, 32| M, cond(x) = M and cond(x?*) = M /2. Then,

SEPU UM vo) = {0} and  SEEv, (M, v2) = {0},

k—1/2

5:71/2(4M> Xo) = 5211/2(M> Xo) @ ngl/z(Mv Xo)|Bu,
Sor—2(M, Xz) = Sop-2(M/2, X2) @ Sar-2(M/2, X2)|B2-

Moreover, the isomorphism 1 maps S;_I/Q(Zl]\/[, Xo) into Sop_o(M, x?).
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Chapter I

Saito-Kurokawa lifts

This chapter aims at deriving the Saito-Kurokawa isomorphism on the space of new-
forms for MaaB spezialschar inside Sy, (T'%(M ), x) where 32| M, x is a primitive char-
acter Y modulo M with x(—1) = (—1)* and x? is primitive modulo M /2. For this,
we first develop the corresponding theory of newforms for respective spaces of Jacobi
forms and then for Maass forms. This is achieved using the theory of newforms for
the spaces of cusp forms of half-integral weight in the previous chapter. Finally as a

consequence we get the Saito-Kurokawa isomorphism.

4.1 Preliminaries

Let ¢ > 1 be an integer. Let J; (M, x) denote the space of Jacobi forms of weight &,
index ¢ and character y, and its sub space of cusp forms is denoted by J;',” (M, x).

We refer to [6] for the development of the theory of Jacobi forms. A Jacobi form
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¢ € Jiy (M, x) has a Fourier expansion of the form

o(r,2) = Z co(n,r)e(nt +rz).

n,rez,
r2<4nt

Let n,r,n',7" € Z with r* < 4nl,r"* < 4n'l. Then we have cs(n,r) = cg(n/,1’) if
r"? —4n'l = r? — 4nl and r’ = r (mod 2(). Thus, we write the Fourier expansion of

¢ as

o(t,2) = Z co(D,r)e (T 4_D7'+rz> )

D<0,reZz,
D=r? (mod 4nt)

We note that when the index is 1, J7"(M, x) = {0} unless x(—1) = (=1)*. So

whenever we consider the space Jy 1 (M, x), we let x(—1) = (=1)F.

The operators U;(4) and B,(4) on J; """ (M, x) are defined on formal series by

r? — 22
Z c¢(D,r)e< 1 DT+TZ> Uj4) = Z c¢(4D,2r)e< 1 D7-+rz)

D<0,reZ, D<0,rez,
D=r? (mod 4) D=r2 (mod 4)

and

- D D r r — D
T+7’Z>‘B](4): Z c¢<4,2>e< 1 T+7’Z>.

D<0,rez,
D=r? (mod 4) D=r? (mod 16)

Eichler-Zagier map:
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If ¢ € J."(M, x), the Eichler-Zagier map Z, on ¢ is given by

Z co(D,r)e (TZ ; DT + 7‘2) — Z co(D,r)e(|D|7).

D<0,r¢Z, D<0,
D=r? (mod 4) D=r? (mod 4)
Poincaré series:

Let D < 0 be a discriminant and r (mod 2¢) with r* = D (mod 4/). Then, we denote

cusp

the (D, r)-th Poincaré series in .J;,;” (M, x) by P .40, and it is characterized by
the relation

<<Z5a Pk,é,M,X;D,r> = ak,e,D,MO¢(D7 7‘)

forall ¢ € J.; (M, x), where

T(k —3/2)

_ k—2| | —k+3/2
Mk t,DM =~ 3 — " 2| D| /2,
™ Tm

4.2 Theory of newforms of .J ,jf‘fp (M, x)

4.2.1 Eichler-Zagier map Z,

Let k > 2 be an integer. € = (—1)*. Let Z; denote the Eichler-Zagier map defined in

the previous section. We prove the following.

Z J,:fp(]\/[, X) — S;_1/2(4M, Xo)-
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Let D < 0 be adiscriminant and 7 (mod 2) with 7? = D (mod 4). Let Py 1 v1y0.0.
denote the (D, r)-th Poincare series in J.\ (M, x). Let P,", /2,40 xo:|p| D€ the [ D[-th

Poincaré series in S+

n_1/2(4M, xo) as defined in

Fourier expansion of P}, 1 a/,y,.p.r*
The Fourier expansion of P 1 a1v,:p,» i given by (which can be obtained using stan-

dard arguments):

r2—D
Py M xo;n,r (T, 2) Z ngxo,Dr ,m)e ( 1 7'—1—7"/2) , 4.1)

'r' e,
D’<0

where g,f,L Moxo:Dr(D's7") is symmetrized or antisymmetrized with respect to 1, i.e.,

gkj‘ilvMQ(O;D,'I‘(D/? T/) = gk,l,M,Xo;D,T<D/7 T/) + X(_l)(_1)kgk,1,M,X0;Dﬂ"<D/7 _T/)

with D' = "2 —4n/, D = r? — 4n, and

i xoipa (D' 1) = 6(D,ri D' 1') + (m/éz"“(D’/D)k/mm

, ™ D'D
X ZHMC,X<D7T;D 7T/)Jk—3/2 (—> );

Mc
c>1

where

o 1if D' = D,r" = r(mod 2)
D,r;D',r") =

0 otherwise,
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4.2. THEORY OF NEWFORMS OF J,'* (M, x)

Ji—3/2(.) is the Bessel function and

1
Hey (D, r; D', r') = > X(O)e T N FrA+n) + 16 — 1/ Nege(—rr).

o 3/2
A0 (mod c),
§=16=1(modc)

. : + .
Fourier expansion of P," , , ,,, 1

. . + . .
The Fourier expansion of P," /2.4M o D| 18 glVen by

P;_1/274M7X0§‘D| (r) = Z gl:—l/2,4M,X0;|D| (m)ezmm77 4.2)

m>1,
e(—=1)*=1m=0,1 (mod 4)

where

k Iy 3
912401l (M) = Opjn + TV2(=1)1 (1 = (=1)* i) (m/| D273/

(=)

X ZH4MC,X(m7 |D’>Jk_3/2 4Me

c>1

On,m is the Kronecker delta, Ji,_3/5(.) is the Bessel function and

1 4Mec 4\ 12
H4Mc,x(m>n) = . Z YO((S) ( S ) (T) e4Mc(m(5—|—n(5_l).

4Mc
6 (mod 4Mec),
§~16=1 (mod 4Mc)

We have the following standard identity:

54



4.2. THEORY OF NEWFORMS OF J,'* (M, x)

¢, (¢,d) = 1. Then

> ew=arve(S) (F)

A (mod ¢)

In the following proposition, we prove that the Eichler-Zagier map sends Jacobi

Poincaré series into the plus space Poincaré series.

Proposition 4.2.2.

P Mxoipr| 21 = 2Pk 1/2,4M ,x0;|D|"

Proof. To prove the above equation, we compare the | D’|-th coefficients on both sides.

We need to show that

Z gliM,XO;D,T(D/’r,) - 29;—1/2,4M,xo;|D\(’D/|>' (4.3)

r’ (mod 2),
D'=r"? (mod 4)

Comparing the first terms on both sides of the above equation, using @.1)) and {.2)) we

have
(D, r; D' 1) +X(—1)(—1)k5(D,7"; D', —r"y=0(D,r; D', r")+ 6(D,r; D', ")
2:D =D
0:D + D'
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4.2. THEORY OF NEWFORMS OF J,'* (M, x)

= 20|p|,|p/|-

Hence, the first terms on both sides of equation (#.3)) are equal. Now, we compare the

second terms on both sides. Second term in the LHS of equation (#.3) is given by

V2 H (D' /DY XN " Hygen (D, 7 D' 1) Jies

c>1

T D'D
()

7V2i (D' /D) XN " Hagon (D13 D', —1) Ju—s o

c>1

v D'D
Me

= 2.7V2i *(D'/D)*PTN " Hypeo (D, 75 D 1) Ty o

c>1

v D'D
Mc '

Second term in the RHS of equation (@.3) is given by

E 1. _: 4dm+\/|D'||D
28VE(-1) (1= (1R (D/IDD S Hiaten (1D D)y (VJMCH '>.
c>1

Note that (—1)#/2)(1 — (=1)%=1§) = 7=*(1 + 7). Hence,

kaMC,X(D, r; D' r')

—k
- ]\; 3/2 Z X()erre(6 A2+ r X +n) +0/6 — ' Neanse(—r1).
( C) A6 (mod Me),

§~16=1 (mod Mc)
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4.2. THEORY OF NEWFORMS OF J,'* (M, x)

Using A\ — 0\ the above equals

—k
(]\;W Z Y((S)@Mc(5>\2 + rA + néfl + n’5 — 7”(5)\)62]\/[6(—7'7’/)
A0 (mod Me),
§716=1 (mod Mc)
—k
1 _ /
S0 ED SR Ol (D DERAU SR

d (mod Mec) A (mod Mc)

X enre(nd~! +n'd)eapse(—rr’)

:(Mi_w Gl 5<A+$>

4 (mod Mec), A (mod Mc)
§~16=1 (mod Mc)

X eqnre( =126+ 2rr" — r"28)eqnre(4nd T + 4n')eqnse(—2r7")
i" _ =4\ Y2 M
§ (mod Mec),
§716=1 (mod Mc)
X eanre(|D|01 +|D'|8)  (using lemma[-2.1)

g xR

0 (mod Mec),
§716=1 (mod Mc)

X €4MC(|D|5_1 + |D/’(5)

e e

0 (mod 4Mc),
§716=1 (mod 4Mc)

X €4MC(|D|5_1 + |D/’(5)

= (D"~ (1)) Haven (ID'], D).
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So, the second terms on both sides of equation (4.3)) are also equal. This completes the

proof. 0

We now state a result which relates the Petersson scalar products in J; (M, x)

and S

K—1/2 (4M, x) whose proof follows by using the same argument of the Proposition

5.11in [[15]]. So we omit the details.

Lemma 4.2.3. We have

(6|21,9]21) = c(0,v)

Jorall ¢, € JTP (M, x) with

iy

CZQZW—S/Z

Hence, Z, is a canonical isomorphism which preserves the Hecke eigenforms and the

Petersson scalar product structures.

4.2.2 Decomposition of the space of Jacobi forms

We start with the following lemma.

Lemma 4.2.4. Suppose 4|D. Let D/4 = 0,1( (mod 4)). Then,

+ = pt U
k—1/2,M,x0; 2L k*1/2:4M,xO;\DI| 4

58



4.2. THEORY OF NEWFORMS OF J,'* (M, x)

Proof. 1t is enough to show that m-th Fourier coefficients are equal for all integers

m > 1. They are respectively given by

9, by (M) = (5|4£|7m + 7T\/§(—1)L§J (1-— (—1)k_1i)(4m/‘D|)k/2_3/4

k—1/2,M,x0; 7
47n/m|%
X > Hase(m, |D|/4)Je—3/2 e

c>1

and

E ey B
glj—l/2,4M,X0;\D|(4m) = 0|p|,am + mV2(=1) (1 = (=1)*%) (4m/| D|)*/*3/4

4m+/4dm|D
X > Hipgon (4m, | D)) Ji—s /2 (—H> :

4Mc
c>1

Since 4| D, we have

01211 = Ol

and hence the first terms are equal. The second terms are also equal since
Hazex(m, |D|/4) = Hinrex(4m, | DI),

which follows by using their definitions. [

Lemma 4.2.5. Let 4|D, D/4 = 0,1(4). Then,

_opt
Prantxoins|Us(4) 21 = 2Pk—1/2,M,xo;‘4ﬂ
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4.2. THEORY OF NEWFORMS OF J,'* (M, x)

Proof. Follows from Proposition[d.2.2]and Lemma[4.2.4] O

Lemma 4.2.6. S,

o /2(M ,Xo) is spanned by all the Poincaré series P

k—1/2,M,x0; 2’

where D varies over all the discriminants with 4||D| and D/4 = 0,1 (mod 4).

Proof. Let f € Sf_| /2(]\/[ , Xo) such that it is in the orthogonal complement of the sub

space of S, ,(M, xo)spanned by the Poincaré series P "

o » Where D varies
k71/27M’X07T

over all the discriminants with 4||D| and D/4 = 0,1 (mod 4). Then,

<f>P+ ,|D|>:07

k—1/2,M,x0; 7

for all 4||D| with D/4 = 0,1 (mod 4). This implies that

a @ =0
f 4 )

forall D = 0,1 (mod 4), or equivalently
ag s, (|D]) =0,

for all D = 0,1 (mod 4). Therefore, f|B, = 0 (or) f = 0. Hence, the result follows.

]

Newforms in ./, (M, x):
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We now define the space of newforms in ./, (M, x) by
Jea (M, x) = the linear span of the set{ Py 1 ar,x:0.-|Us(4)},

where D varies over all the discriminants with 4||D|and D/4 = 0,1 (mod 4). A Hecke
eigenform which is a simultaneous eigenform for Hecke operators 7';(n), (n, M) =
in JE TP (M, x) is called a newform. We have the image of Jacobi newforms under

the Eichler-Zagier isomorphism:

Lemma 4.2.7. J.77" (M, x)| 2, = S, 1/2(M Xo)-

Proof. Follows from Lemma4.2.5]and Lemma[4.2.6] O

We now state the following main theorem for the theory of newforms of Jacobi

cusp forms:

Theorem 4.2.8.

qusp(M X) qusp ;new M Y @ qusp new ]\47 X)‘BJ (4)

The space J\"7"" (M, x) is isomorphic to the space Sa_o(M /2, x*) under a certain
linear combination of Shimura lifts. Hence, The multiplicity one result holds good on

Jg?zlsp;new (M, X)
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Proof. (Theorem#.2.8) From Theorem [3.2.12] we have the decomposition

S a0 X0) = Sy (M. xo) D) Sy o (M. o)1 B

Also, we have

¢|Bs(4) 21 = ¢|Z1Bu,

where ¢ € J;'7"(M, x). Using these we get

Jigﬁsp(M’ X)[Z21 = k 1/2(4]\/[ Xo)
= 5;71/2(]\/[’ XO) @ 5221/2<M7 X0)|B4
= JEP (M, x)| 20 @D TiT N (M, x) | B (4)| 24

= (e (M) @ JEP (M| B (4) ) | 2.

Thus, by using Z; defines an isomorphism from .J;'1* (M, x) into S, 12(4M, x0), we

have

qusp(M X) qusp inew M X @ qusp new M, X)‘BJ (4)

The multiplicity one result holds on J""""“* (M, x), which follows from the Theorem

[3.2.8]and the isomorphism Z;.
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SAITO-KUROKAWA ISOMORPHISM

4.3 Theory of newforms of S;(T3(M), x) and

Saito-Kurokawa isomorphism

Let S (T2(M), x) be the space of Siegel cusp forms of weight k, level M, genus 2 and

character x. Let V,, , be the index shifting operator

Vit o " (M, x) = TP (M, x)

k,m

(as per [8]]). If

o(1,2) = Z c¢(D,r)e (TQ 1 DT + T’Z) € Ju (M, x),

then

¢’Vm,x<7, Z) = Z Z mdk—lc (%7 C%) . <T24;nDT i rz)

D<0,rez, d|(r,m), (d,M)=1,
D=r? (mod 4m) \ D=r2 (mod 4md)

Maass spezialschar in S;.(T2(M), x):

For ¢ € J;'"(M, x), we define the Maass embedding ¢,, as follows (see [8]):

Bt = D (DlkaVino) (7, 2)e™™ ™

m>1
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Denote the image of J;;™ (M, x) under this embedding by S;:(I'5(M), x). Then we

have the following result:

Proposition 4.3.1 ([8], Theorem 3.2). The map ,,  gives an embedding of J;," (M, x)

into S (I3(M), x) -

In ( [[7], corollary 4.2) it was proved that the Fourier coefficients of the forms in
S;(T3(M), x) also satisfies certain relations analogous to the classical Maass relation.
The converse part was also proved; i.e., if the coefficients of F' € Sy(T'2(M), x) sat-
isfies the said relations, then F' € S;(T'3(M), x). Hence, let S; (T'3(M), x) denote the
Maass space in Sy.(I'3(M), x), defined as the image of J;" (M, x) under the embed-
ding ¢,, . Note that ¢, ~gives an isomorphism between the spaces ./, (M, x) and

S (T3(M), x).

4.3.1 Newforms in S;(T3(M), x)

For F € S;(T'3(M), x), define the operator Bg(4) by
F(1,2,7")|Bs(4) = F(4r,4z,47").

For ¢ € Jlsﬁsp;new(Mv X)’ we have ¢’[’]\/I,X |BS(4) = ¢|BJ(4) |L]W,X'

Let

S (IG(M), x) = Ty (M, X))

LM,X'

Thus, ¢,, acts anisomorphism between the spaces .J,';""“ (M, x) and §;”"““(I'5 (M), x).
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Now, using the thoery of newforms for the space J;;;""“" (M, ) as in Theorem

we obtain the following:

Theorem 4.3.2. Let k > 2,M > 1 be integers such that 32| M. Let x be a Dirichlet
character modulo M such that cond(x) = M and cond(x?) = M /2. Also let x(—1) =

(—1)*. Then,

SiLFM), x) = S (L5 (M), x) D ;" (LF(M), x) | Bs(4).

Also, the multiplicity one theorem is valid on S, (T3(M), x).

4.3.2 Saito-Kurokawa lift

Let N be an odd integer and M = 2°72N, where o > 6. Let y be a primitive
Dirichlet character modulo M. Let Ts(p), TS(p) (for prime p 1 M) and Us(p) (for
prime p|M) denote standard Hecke operators in Sy(I'3(M), x) (see §4 of [8]). An
eigenform in S;(T'2(M), x) under the above operators is called a Hecke eigenform.
A non-zero Hecke eigenform which belongs to S, (T'3(M), x) is called a newform

*

in the Maass space. For a newform F' € ;" (I'3(M), x), let 7,,w, and yu, denote
the corresponding eigenvalues with respect to Ts(p), T6(p), Us(p) respectively. Sim-
ilarly, let 7';(p) (for prime p 1 M) and U;(p) (for prime p|M) denote standard Hecke

operators in ./’ (M, x), and let a;(p) denote the corresponding eigenvalues for the

newform ¢ € J;7""“ (M, x) which corresponds to the normalised Hecke eigenform
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f € So—a(M/2,x*). Let F = ¢|t,,  (asin . Then, theorem 4.1 of [8] gives

W =as;(p) +x(p)P 2+, ptM
wp = x(0)P* 2+ 0" Nayp) + x(0*) (20 + ), ptM (4.4)

pp = as(p), p|M.

For a Hecke eigenform F' € §;"““(T'3(M), x), the Andrianov zeta function Z(s)

has the Euler product expansion (see [8]])

Zp(s) = [ [(1 = mpp™)" HQp =)

p|M

where

Qp(P™®) =1 —p~° + (pw, + (P* + 1)x(p*)p* °)p~**

2k—3—3s 4 4k7674s.

— X (P)p x(p*)p

This, combined with @.4) give

Zp(s)=L(s—k+1,x)L(s—k+2,x)

x [ [ = ape)p™) " [T = as()p™ + x@*)p™*72) 7!

p|M plM

=L(s—k+1,x)L(s—k+2,x)L(f,s),
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where L(f, s) is the L-function of f given by

L(f,s)= Z ag(n)n™>.

n>1

Now, using the isomorphisms v, 21, v, , and the Theorems[3.2.8, 3.2.12, #.2.8]

we get the following:

Theorem 4.3.3. The space S;"“(T'2(M), x) is in one to one correspondence with
Sok_o(M /2, x?) under the Saito-Kurokawa isomorphism. A given normalised Hecke
eigenform f € Sop_o(M /2, x?) is lifted into two equivalent Hecke eigenforms F', F'| Bs(4),

where F € 8" (T3(M), x) is the newform satisfying

Zp(s)=L(s—k+1,x)L(s —k+2,x)L(f,s).

Finally, we make the following observation:

Remark 4.3.4. The map Z, is a canonical isomorphism from J """ (M, x) into the

space S;_, /2 (4M, xo), which has the decomposition:

S}j_l/z(élMa XO) = S]:r_l/z(Ma XO) D S]:r_l/2<M7 XO)’B‘l

Hence, we have the corresponding decomposition for Jacobi forms as

Jeat (M, x) = Jey ™" (M, x) @ Ty (M x) By (4).
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This gives, if g € J.""" " (M, x), then we have $| 2, € S;_I/Q(M, Xo) and ¢|By(4)Z, =
¢lZ2:By € JP(M,x). Now by using the space S,':_UQ(M, Xo) is isomorphic to
the space Sop_o(M/2,x?) as module over Hecke algebra and using the embedding
of Je1 ' (M, x) in the Maass space, we realise that a normalised Hecke eigenform
[ € Sop_2(M/2,x?) is lifted into two linearly independent Hecke eigenforms F' and
F|Bs(4), where F € 8" (T3(M), x). We call the form F € 8" (T3(M),x) a

newform of weight k, level M, character x in the Maass space.
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Chapter

A certain kernel function for L-values of

half-integral weight Hecke eigenforms

In this chapter, we derive a non-cusp form of weight k +1/2 (k > 2, even) for I'y(4) in
the Kohnen plus space whose Petersson scalar product with a cuspidal Hecke eigenform
g is equal to a constant times the L value L(g, k — 1/2). As a corollary, we obtain that

for such a form ¢ and the associated form f under the D' Shimura-Kohnen lift the

ag(D)L(f,2k—1)

quantity =T (g o L(DF)

is algebraic.

5.1 Preliminaries

Letk > 2be an eveninteger. For N odd and square free integer, let M," (4N ) denote

k+1/2

the Kohnen ‘plus’ space containing the forms g in M1 /2(4N) whose Fourier coeffi-
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cients ay(n) are O unless (—1)*n = 0,1 (mod 4). We let S,

k+1/2(4N) =M/

k1 (4N)N

Sk;+1/2 (4N) .

Let T}, be the m™ Hecke operator on My, (SLo(Z)). These operators preserves the
space of cusp forms. Suppose a non-zero form f € Sy, (SL2(Z)) satisfies the relation
fIT = as(m)f for every m > 1 and as(1) = 1. Then f is known as a normalized
Hecke eigenform. The space Sa,(SL2(Z)) has an orthonormal basis of normalized
eigenforms of all Hecke operators (for example, see theorem 6.15 in [9]]); let B be such

a basis. Similarly for the space of half integral weight forms in S,;:l /2

(4) we denote
the Hecke operators by ng (as in [11]; the operators Tn’; for m > 1 are generated
by operators leg where p varies over all primes). Let B* denotes an orthogonal basis
of eigenforms for all Hecke operators TT:Q (m > 1)on S,‘;H /2(4), (Theorem 1 of [|11]]
gives the existence of such a basis). Note that elements of B can be chosen in such a

way that their Fourier coefficients are real and algebraic numbers ( [[10]], page 216, line

12).

For k£ > 2, Proposition 1 of [11] gives the decomposition:

M;+1/2<4) = CHkH/? EB S;+1/2(4)>

where H),,/; is an Eisenstein series:

Hypt1)o = E;iofuz +27 (1 - (—1)ki)E,g+1/2,

70



5.1. PRELIMINARIES

where E}> Jp and B, /o are as defined in [[11], page 254. H} 1/, takes the value 1 at
infinity; this series was first studied by H. Cohen [4]]. If g € M4 /2(4) with Fourier

expansion g = »_ -, ay(n)e*™™* define the standard operators U, and W) by

—k—1/2 B
f|U4 = Zaf(4n)627rinz’ and f|W4 = (QZ—Z) f (4—2)

n>1
Now, define the projection map Pr (as in [14], page 185) from M}, /2(4) into MI;:—l/Q (4)
by
k+1
2

- 1
PTJr = (—1)[7]2 kW4U4 + §

The map Pr, satisfies (g;|Pry, g2) = (g1, g2|Pry) for g1, g2 € M,

k+1/2(4) where ¢,

or gs is a cusp form (see [|14]], page 186, line 13). Thus, the projection map Pr, pre-

serves the plus space of cusp forms S;" , . (4) and it is hermitian on this space. It also

k+1/2
preserves the space generated by the Cohen-Eisenstein series as it is the orthogonal

complement of the space of cusp forms.

Let D be a positive fundamental discriminant and s € C with Re(s) >> 1, define

L(D,s) = (%) n=e.

n>1

Let O(z) = Y,; €™ be the standard theta function, where » € H. It is
a modular form of weight 1/2 for I'y(4) (we refer to chapter 15 of [5] or chapter 3,

section 1 of [10] for the details). Let £ > 2 be a positive integer and D = 0, 1 (mod 4)
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be a positive fundamental discriminant. Define

Op(z) = O(Dz) =Y &Pz,
neZ
It is a modular form of weight 1/2 for I'¢(4D) with character (£) of conductor D or
4D according as D = 1(4) or D/4 = 2,3(4) (refer [30], page 32, lines 16-18). We
also define an Eisenstein series £/

kap,(2) P

It is a modular form of weight &, level 4D and character (2) , and has rational Fourier
coeflicients (rationality of the Fourier coefficients can be proved by deriving the Fourier

expansion explicitly, this is done towards the end of this chapter).

Let

b

1 a
TryP =
I = 0,(4) : To(4D)] . ) 912 .
(@ 8)ero(p)ro(4)

denote the trace operator (adjoint to the inclusion map under Petersson scalar product)

and it maps Siy1/2(4D) into Sy1/2(4). We take

1 0\ (1 u
D = DD, and i (mod Dy)
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as a set of representatives to define the above trace operator (see page 196 of [14]).

5.2 Statement of results

Let Ap x be a constant such that ©pF, , ), (2) }TTZ*DPTJF — ApHiy12 € S;+1/2(4).

Also let k& > 2 be even. Then we have,

Theorem 5.2.1.

) <@DEk,4D,(P) | TriP Pry — )\D,ka+1/2>

0<D fund. disc.
CT(k—1/2)
- (47T)k—1/2

N Lig. k- 1/2)

ot (9.9)"

where the sum in left hand side is taken over all the fundamental discriminants D > (

and the sum in right hand side is taken over an orthogonal basis of Hecke eigenforms

0fS:+1/2(4)'

In the simplest case where & = 6, we use S;;’/Q(ZL) = C¢ and S;, = CA (where 6

and A are as defined in page 177 of [14]) :
A(z) = 8000G4(2)* — 147G6(2)?

and

5(2) = 20 (26,(42)0'(2) — Cy(42)6(2)),

2w
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5.3. PROOF OF THE THEOREM

where

Gil2) = %gu — 1)+ Yo a(n)g

and oy_1(n) = >, d*!. We have 0|S; = A (this can be seen by comparing
the Fourier coefficient of § and A), where S; is the first Shimura-Kohnen lift from

S+

o1 /2(4) into Sy, (the definition of Shimura map defined by Kohnen is given in page

176 of [[14]]; see section §5.4|and equation (5.3)). We have,

Corollary 5.2.2.

L(11/2)L(5,11/2) &
Z <@DE674D7<?>‘TT2DPT+ - )\D,6H13/2> = (471')11/2 <58.6>

0<D fund. disc.

5.3 Proof of the theorem

b
Observe that, for € I'y(4D), 4|c and 2|k (hence (%)k = 1) one has
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5.3. PROOF OF THE THEOREM

That is,

ne”
_ - 2 az+b
(Dez + d)~1/? E > P Deya

nel

4\ I
Op(z) = (5) (7) (Dcz—i—d)*l/QZeQ’”D” Dot

Multiplying with £ (cDz + d)™" (£) on both sides, we get

%(ch +d) (g) On(2)

1 _ D & _4 k+1/2 _ . 2 _az+b
= —(CDZ+d> k[ = = (DCZ+d> 1/2262W1Dn Darrd
2 d d d

nel

Sum over (¢, d)’s (with ged(c, d) = 1 and 4|c)

3 %(CDZ +d)t (g) On(2)

(e,d)=1
4lc
1 D —4\ P12 I
= X gera(3)(5) (T)  erare Do
(e,d)=1 neZ
4lc
We get

1 Dc —4) "2 —k—1/2 2miDn?22tb
@DEk,4D,(2) ) Z Z )\ (Dcz 4 d) e Deatd

n€Z (¢,d)=1
4lc

1 (Dc) (-4)’“*1/2 1
= - — | {— (Dez +d) ™Y
2 S d d

4lc
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5.3. PROOF OF THE THEOREM

Dc\ [ —4\F/? e 1/3 miDn
—i—Z <7) (7) (Dcz + d) k17220
(e,d)=1

n>1
4le

= Ejq1/24D0 + E Prs1/24Dm2D-

n>1

In the above,

1 Dc\ [ —4\F/?
Ek+1/2,4D = 5 Z <7) (7) (DCZ + d)fkfl/Q

(e,d)=1
4lc

is an Eisenstein series of weight k£ + 1/2 for I'((4D). For each n > 1, the Poincare

series

¢ —4\ " —k—1/2 2min £l

Pk+1/2,4D;n = Z C_Z 7 (CZ + d) e cz+d
(e,d)=1
4D‘c

is a cusp form of weight k& + 1/2 for I'((4D) and characterized by

B 1 T(k—1/2)
(9, Prrj2apm) = [SLo(Z) : To(4D)] (4mn)*—172 ag(n);

where g = 37 ) a,(n)e*™"

is an arbitrary cusp form of weight & + 1/2, level 4D.

Using straightforward computations we have noticed that, 77" maps Poincare series

to Poincare series and Eisenstein series to Eisenstein series. We have

aD __
Pk+1/2,4D;n2D Try” = Pk:+1/2,4;n2D )
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5.3. PROOF OF THE THEOREM

and

4D
Ek+1/2,4D Try Pry = Hk+1/2,

where Hj. 1/, is the Cohen-Eisenstein series defined in preliminaries. To get this, let

g € Ski1/2. Now,

<Ek+1/2,4D|T7’2D79> = <Ek+1/2,4D 79|L> =0,

since gl is cusp form (here, ¢ is the inclusion map, adjoint to the trace map 7'{"). This
proves TP preserves the space of Eisenstein series, which is orthogonal complement
of the space of cusp forms with respect to the Petersson scalar product. So, we get a

constant Ap j such that

(@DEk74D7<?)> ‘TriDP’I”+ = )\D,k-H]C_i_l/Q + ZPI:;UQA;?%ZD

n>1

Dk —1/2) g
= ApiH + , ay(n?D)——
Dkt E+1/2 nZZI ’L4(47T7’L2D>k71/2 g;r g ) <g’g>

= AppHit1/2 + Ll/Q) Z Z (ag(nQD) g

la(dm)E=ti2 £\ o (n2D)*12 ] (g, 9)

(5.1)

where iy = [SLy(Z) : T'g(4)]. Now, by summing both sides over all the fundamental

discriminants D > 0, we get

TriPPr, — )\D,ka+1/2>

2 (@DEW,(?)

D fund. disc.
D>0
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5.3. PROOF OF THE THEOREM

I'k—1/2 ay(n*D
- Z Z i4<(47r)k_/1/g Z (nQ(D)k_l)/g g (5.2)

D fund. disc. geB+ n>1 <ga g>
D>0

Now we state the following result:

Claim: As D varies over all the positive fundamental discriminants and n? (n > 1)

varies over all squares, then n?D varies over all integers m > 1 such that m =
0,1 (mod 4) where k is even.

Proof of claim: Let m > 1 be an integer such that m = 0,1 (mod 4). If m is an odd

integer, split m = Dn? where D = 1 (mod 4) and square-free with n > 1 since
m = 1 (mod 4). If m is an even integer then 4|m. We write m/4 = dn® where d is a
square-free integer and n > 1. If d = 1 (mod 4), replace d by D so that m = D(2n)>.
If d = 2,3 (mod 4), let D = 4d so that m = Dn?. Since d is square-free integer, in all

the cases, D is a fundamental discriminant. This proves the claim. [

Thus the above equation (5.2) becomes

> <@DEk,4D,(P)

D fund. disc.
D>0

Try”Pry — )\D,k:HkJrl/Z)

['(k—1/2) ag(m)
- W Z Z mk—1/2 §

= (9.9)

geBTt
m=0,1 (mod 4)
Tk —1/2) g
W INT fg k- 1/2) -0
k—1/2 Z ’
ta(4m)Rml2 e (9,9)

Note that in (5.2)), before summing over all positive fundamental discriminants, right

hand side is a finite linear combination of absolutely convergent series. Each of the
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series in the finite sum becomes an absolute convergent series > nali(j% after
m2>1
m=0,1 (mod 4)
taking the sum over all fundamental discriminant D > 0. [l

5.4 Applications

We derive a certain algebraic nature involving some L — series associated with a Hecke

eigenform f and Fourier coefficient of g. We now use multiplicity result for S;" 1 /2(4)
and its relation with Sy; via Shimura correspondence (as in [[14], pages 176-177). Let
f € Sai be the normalized Hecke eigenform which corresponds to g via the identity:
If D is a positive fundamental discriminant, then there exists a unique (upto a scalar

multiple) non zero Hecke eigenform g € S, 1 /2(4) such that the following holds:

ay(n’D) = ay(D) Y d* 'y ( )af(n/d) (5.3)
dn
The multiplicity result for S et /2( ) states that: if f € Sy is a Hecke eigenform and
g€ S,:rl /2(4) is a corresponding eigenform for all 7’ ];; (with eigenvalue \,) via above
equation (5.3) such that f|7,, = A,g for all primes p, then the eigenspace generated
by g has dimension one ( [I1]]). The corresponding basis element ¢ via (5.3]) can be
chosen in such a way that its Fourier coefficients are real and algebraic (refer [[14], page
177, lines 4-6). Now, equation (3.3)) gives,
ag(n?D) ay(D) D @ p(d) (7) ap(n/d)

Z (n2D)k-12 ~ Dk-1/2 Z n2k—1

n>1 n>1
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_ ay(D) - ) () 5 arlm)

Dk—1/2 n2k—1 m2k—1
n>1 m>1

_ ag(D) L(f, 2k — 1)
- DF12 (D, k)

Substituting this in equation (5.1)), we get

()Dl;h4lh(2)yT%iD}DT+

B L(k—1/2) N~ _ag(D) L(f2k—=1) g

= AppHit1/2 + ia(dm)e-172 EZW (D)2 L(D,k) {g,9)
g

g D= 12D o ay(D)L(f, 2k ~ 1)

= AD k412 iy (47)k=12L(D, k) (9.9) '

(54)

geEBT

Claim: ©pE, , D(2) |Tr{P Pr. has rational Fourier coefficients.

Proof of claim: Let G = @DEkAD,(Q) € Mj41/2(4D). Note that, since ©p and
E,ﬁ an,(2) have rational Fourier coefficient, so has G (the rationality of the Fourier
coefficients of £ ,, () is obtained by explicitly deriving its Fourier series expan-
sion, which is given towards the end of this chapter). The projection operator Pr
picks up the coefficients such that (—1)¥n = 0,1 (mod 4), so it does not change the
nature of Fourier coefficients. It is enough to prove that G|T'r$P has rational Fourier

coefficients. We take

{(411)1 (1]) (é’f) ‘D = D1 D, and p (mod DQ)}
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as a set of representatives for the action of trace operator. Note that,
1 0 1 _ 0 1/4D -1 -1 0 -1 1
(4D11)(0A1L)*(71 0 )(002)(4&0)(07)-

By considering the action of the above representative matrices individually, one by one
(in this order) and by proceeding along the standard arguments (see calculations in the

appendix of [[14]), we conclude that the Fourier coefficients of G| Trj‘ID arerational. [

Finally, we have the following

Proposition 54.1. If g € k+1/2(4) is a Hecke eigenform and f € Soy is the corre-

ag(D)L(f,2k—1)

ATl (D) 8 algebraic over rationals.

sponding eigenform via (5.3)), then

Proof: Letd = dlm(M:+1/2( ), and {go = Hyt1/2,091,...,9a-1} be a basis of

Hecke eigenforms for M,

1 /2(4), whose Fourier coeflicients are real and algebraic

(coefficients of Hj 1/, are rationals, refer [4]]). Let j, = 0,1 (mod 4) where 0 < r <
d — 1. Let jo = 0 and € = Hyy1/2 so that aer, (jo) = 1. Let us consider the ;@

Poincare series P, in S| /o(4) which is not identically zero. Let €}, = Then

P
apy (j1)°
S;H/Q( ) with aer (1) = l and e (jo) = 0. We pick ¢}, from the orthogonal

complement of span of {¢, , ¢’ }. To select this, we find a non-zero Poincare series

Jjo? J1

indexed by j; in this orthogonal complement and in the plus space. We consider the
Poincare series P, € S, k1,2 (4) and take its projection inside the orthogonal comple-

ment of span of {¢/; , ¢/, }. Denote this projection by P;, (P;, = P}, ® Pj,, where P},

Then e, is orthogonal to both the

P
is in the linear span of {¢/ }). Let ¢/, (]2)

forms ¢’ and € with el (j2) = 1l and e, (jo) = Qe! (71) = 0. By proceeding in this
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way we have obtained a basis {¢], ... ¢} ,..., ¢} } forthe space M, ,(4), where

o » G G k+1/2

Gegr(jr) =1 andaegr(jz-) =0fori=0,1,...,r — 1.

Using this basis, we get another basis {¢;,, ¢;,,...,¢e;,  } of Mt

ri1/2(4) such that

ae, (ji) = 1if i = r and 0 otherwise, where 0 < 4,7 < d’ — 1. A direct computation

/

gives this set of basis from the constructed basis {e’, , ..

.5, } (for a detailed one

such proof, we refer to the proof of lemma 4.1 in [23]]).

Now, consider the system of linear equations formed by writing {go, ..., ga—1} in
terms of the new basis {¢;,,...,e;, , }. We note that in this system of equations, both

{90, ., 94-1} and {ej,,...,e;,  } are bases for M,

k1 /2(4). Hence the correspond-

ing matrix (a,,(jr))axq is invertible.

Now, equation (5.4) gives,

D(k —1/2)D7*12 o ay(D)L(f, 2k — 1)g
is(4m)F=12L(D, k) (9,9) '

@DEkAD’(Q) |TT2DPT+ = )\D,ka+1/2+
' geBT

By comparing the consecutive jg, j1, . . . , jo—1 Fourier coefficients from the above, we

get a system of equations:

(a/gz‘ (jT))d/Xd/ X =Y.

Entries of Y are Fourier coefficients of ©pFE,_, (2) |T riD Pr., which are ratio-

nals. Entries of X are

T(k—1/2)D~*Y2qa, (D)L(f1,2k — 1)
{ Dk i4(4m)=12L(D, k) (g1, 1)
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I'(k—1/2)D*1/2a,, (D)L(fr-1,2k—1) }

ia(4m)* 12 L(D, k) (9ar—1, 9ar—1)
where { f1, ..., for_1} are normalized cuspidal Hecke eigenforms corresponding to the
eigenforms { g1, . .., go—1} respectively via Shimura correspondence as given by equa-

tion (5.3). If K, = Q(ay, (j-))o<ij<a—1, the number field, then entries of X are in K.
Thus we get that the entries of X are algebraic numbers. Hence, % is al-

gebraic. [

Fourier expansion of the Eisenstein series I, , , (2)
we derive the Fourier series expansion of the Eisenstein series F,_, (2)> and obtain

that they are rational numbers. In the following computation, we have assumed that D

is a positive fundamental discriminant. Also k£ > 2 is even, hence ( 3 )Hl/ o1,
Ek,4D,(2)
1 D
=3 > (E) (cDz+d)™*
(e,d)=1
4le
1 D
(4c,d)=1
1 D
-1 (E> Hy ( )4ch—|—d)
d=1,-1 c;é(] dez
(4e,d)=1
1 D —k D
! ((T) W+ (5 e ) +Y S () teps v
c>1l  deZ
(4e,d)=1
D —k
=1+ = > u(d)(4eDz + d)
c>1 dez dldc
8ld
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=14+> ) u(o Z( )4ch+d6)

c>1 §lde

ey

c>1 §lde

d+— Dn+d

_H_ZZ# (2)

€L

Z;( )401) )

(o

4cD d/
p3 (7)o e
) d D
e>1 §lde mod D) el
27‘(‘7, E_1 ( D D 27rm(45 D+d +n)
T 22—5 (5) ~ (7)
c>1 §l4e d(mod D)
27'('@ k—1 M( D D 2ming 2minyz
Dk 12 > o <f 2 a)c e
c>1 §lde d (mod D)
27TZ k—1 2 M(é) 2minicz
! Dk _1lzn ( )c>154c(6) 5ke 5
o 27TZ k-1 [ Y ;U/<4C/5) D 2mindz
1+Dk 1/2(k ,Z ( ) (4de/0)* \4c/é ‘
n>1 e
c>1
2m 11(4c/9d) D 2mimz
- 1+ 5y 1y 2 2 (s ot (acs)
c>1 5|4C
27m D p(c/d) (D 2mimz
=1 o 1/2 — 2 > (m/48)" (m/45> (cjoy \cjs ) €
m>16| /4
c>1 dle
( 27TZ k2 k % D N(C/(D 2 2mimez
| DRk —1) mZ;l 522 (m/20)" m/26 ) (c/6)* \ ¢/ ‘
c>1 6|c<50dd
—2mi )"
=1+ Dk~ 1/2

n>1 c21 §|n

e ()

ck

H(C) <C/%> 627rin4z)
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D
(—2mi)" % < ) uic) (‘3/_5> 2min2
_ n/5 e TINLZ
D= 1/2 - ! ; e>1 5|Zn n/d ct
§ odd
=14+ ( 27TZ 22516 1 (= 27rin4z
o Dk—l/ZF
n>1 §ln
(- 27”>k2 " ( k—1 (2min2z
o Dk—1/2r( Z Z g S
n>1 sn
6 odd
. 2(2
=1+ Dl_ Zo_k 1D 27rm4z_ ( )

n>1

dn

where 04— p(n) =Y (£) d* ' and }_; j(n)

L(D - k o Zo_k 1D ,,7’)627&77,227

n>1

=3 (%) d*~1. We have used func-
dn
d

odd
tional equation for Dirichlet L function (notations as given in [2] theorem 12.11))

L(D,1—Fk) = D<;P),§k) <e2k + (_%) e’”’“> G(1,D)L(D, k)
_ Dk: IF( )
=2. aniy ———VDL(D, k),

’ (—2mi)* B 2
D*120(k)L(D, k) L(D,1—k)

Since L(D,1—k)/¢(1 —2k) € Q and ((1 —2k) € Q, we have L(D,1 — k) € Q and

hence the coeflicients of the defined Eisenstein series are rational
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Chapter

Conclusions and Recommendations

In this thesis, we set up a generalized version of the Saito-Kurokawa isomorphism.
Specifically, if f is a normalised newform of weight 2k — 2, level M /2 with character
x?2, we derived that the form f is lifted into two linearly independent Hecke eigenforms
F, F|Bg(4) in the Maass space of degree two Siegel modular forms of weight k, level
M with character y under the Saito-Kurokawa correspondence. Moreover, the relevant
Saito-Kurokawa isomorphism maps the space of newforms S5, (M /2, x?) into the
space of newforms S, (I'3(M), x) in the Maass space. Here, 32| M, cond(x) = M

and cond(x?) = M/2.

In another problem, we derived a non-cusp form of half-integral weight k& + 1/2
(k even) for ['y(4) in the Kohnen plus space whose Petersson scalar product with a

cuspidal Hecke eigenform g is equal to a constant times the L value L(g, k — 1/2).
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Future works:

We mention few problems for future work :

* Obtain a formula relating the Petersson inner products (f, f) and (F, F') where
f € Sop_o(M,x?) and F' € S;(T%(M), x) where 32|M, cond(x) = M and

cond(x?) = M/2.

* Develop the theory of newforms for the spaces S, , /o(8N) and S /2(16N)

where N is an odd and square-free integer.

* Obtain Saito-Kurokawa isomorphisms using the theory of newforms developed

in the above cases.
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