C22600	(Pages: 2)	Name
,	` 0 '	

Rag	No
LUCK.	TAO

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2022

(CBCSS)

Polymer Chemistry

PCH 4E 03 2—POLYMER NANOTECHNOLOGY

(2019 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any eight questions.

Each question carries a weightage of 1.

- 1. What are nanocomposites?
- 2. How can we determine the stress-strain relationship of nanomaterials?
- 3. Mention the important applications of ceramic nanocomposites.
- 4. Explain the term DLC coating in Nanotechnology.
- 5. What is the limitation of powder mixing processing of nanocomposites?
- 6. Give one example for salt in filtration processing of nanocomposites.
- 7. Give the formula for calculating the size of nanomaterials from XRD pattern and explain the symbols.
- 8. For an experiment Vicker's hardness number is represented as 440HV30/20. What it indicates?
- 9. Give two applications of nanocomposites in defense field.

- 10. What are the advantages of magnetic nanoparticles in medicine?
- 11. What are the different types of CNT's used as nano fillers?
- 12. What are nano sensors?

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any four questions.

Each question carries a weightage of 3.

- 13. Discuss the mechanical properties of nanocomposite materials.
- 14. Write short note on biologically inspired nanocomposites.
- . 15. Explain the intrusion method for the processing of nanomaterials.
- 16. How is TEM different from SEM?
- 17. What are the basic differences between molecular machines and macroscopic machines?
- 18. Explain the principle and application of Oliver and Pharr type of nano indentation.
- 19. Write short note on thin film nanocomposites.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any two questions.

Each question carries a weightage of 5.

- 20. Discuss the various methods for the synthesis of nanocomposite materials.
- 21. Explain the various gel-casting impregnation techniques for the processing of nanomaterials.
- 22. Discuss the principle, instrumentation and applications of AFM.
- 23. Write an essay on applications of nanocomposites in industry, homeland security and structural applications.

 $(2 \times 5 = 10 \text{ weightage})$

C 22598 (Pages : 2) Name......

Reg.	No

FOURTH SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY] EXAMINATION, APRIL 2022

(CBCSS)

Polymer Chemistry

PCH4E02—TESTING AND CHARACTERISATION OF POLYMERS

(2019 Admission onwards)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section / Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any eight questions.

Each question carries a weightage of 1.

- 1. What is the difference between 'surface resistivity and 'volume resistivity'?
- 2. Why does storage modulus decrease with increase in temperature?
- 3. What is the significance of tan delta from DMA curve?
- 4. Write a note on haze.
- 5. Give the importance of strain rate in mechanical testing.
- 6. What is the difference between engineering stress and true stress?
- 7. Explain luminous transmittance and optical clarity of polymers.
- 8. Why is gel permeation chromatography used.
- 9. What is the role of reduced mass in IR spectroscopy.
- 10. How can percentage crystallinity of polymers be found?

2 C **22598**

- 11. Define environmental stress cracking.
- 12. Explain the use of capillary rheometer and cone and plate rheometer.
- 13. What is yield stress?

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any four questions.

Each question carries a weightage of 3.

- 14. Explain creep and stress relaxation.
- 15. Write short note on Dielectric strength of polymers. Name any two dielectric polymeric materials used in capacitors.
- 16. Expain how DSC can be used to characterize polymers.
- 17. Explain the test methods for determination with their practical significance for the following tests: (a) Heat build up; and (2) Flex cracking.
- 18. What information do you get from glass transition temperature of a polymer. Explain it with a graph.
- 19. Explain loss modulus from DMA curve with example.
- 20. Define Vicat softening point and heat deflection temperature.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 5.

- 21. Explain UV spectroscopy and Fluorescence spectroscopy with diagrams.
- 22. Explain the different impact testing methods of polymers.
- 23. Give the principle of IR spectroscopy. Describe the applications of IR spectroscopy in polymer characterization.
- 24. Give the principle of NMR spectroscopy.

 $(2 \times 5 = 10 \text{ weightage})$

C 22597	(Pages: 2)	Name
----------------	------------	------

Dag	No
nee.	110

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2022

(CBCSS)

Polymer Chemistry

PCH 4C 12—PHYSICAL CHEMISTRY OF POLYMERS

(2019 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any eight questions.

Each question carries a weightage of 1.

- 1. What is meant by theta temperature?
- 2. What are stereoregular polymers?
- 3. Define conformation of a polymer chain.
- 4. What are spherulites?
- 5. Briefly explain the molecular arrangement in amorphous polymers.
- 6. Show graphically the five regions of viscoelastic behavior.
- 7. Using suitable examples show the effect of aliphatic side groups on Tg.
- 8. What are the important techniques used to measure glass transition?
- 9. What is the importance of gel point?
- 10. What is Weissenberg effect?

2 C 22597

- 11. Explain the shear stress against shear rate curves of pseudoplastic and dilatants fluids?
- 12. How will you construct a liquid crystalline polymer from mesogens?

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any four questions.

Each question carries a weightage of 3.

- 13. Explain Flory-Krigbaum theory.
- 14. Write a short note on fringed micelle concept.
- 15. Explain the first order transitions observed in a liquid crystalline polymer with the help of a neat diagram.
- 16. Discuss the effect of plasticisers and copolymers on Tg.
- 17. Differentiate between creep and stress relaxation.
- 18. Mention the significance of time-temperature superposition principle for viscoelastic materials.
- 19. Explain the different stages in polymer dissolution.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any two questions.

Each question carries a weightage of 5.

- 20. (a) Write a note on Rouse-Bueche theory.
 - (b) Illustrate the isotactic, syndiotactic and atactic polymers with suitable examples.
- 21. Explain the classification of liquid crystals based on mesophase. Give a method each for the synthesis of main chain and side chain liquid crystals.
- 22. (a) Explain the free volume theory of glass transition.
 - (b) Briefly explain the terms tensile strength, tensile strength at yield, tensile strength at break, tensile modulus, tear strength and flexure strength.
- 23. (a) Explain power law.
 - (b) What are the important shear dependent phenomena observed in polymers? Explain.
 - (c) Explain the principle of capillary viscometers and rotational viscometers.

 $(2 \times 5 = 10 \text{ weightage})$